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ABSTRACT

This thesis examines temporal and spatial variability in settlement and recruitment of
echinoderms in rocky subtidal habitats. A review of the literature revealed that the
processes which regulate the transitions from early life stages through to adulthood,
and thereby determine the distribution and abundance of echinoderm populations,
remain poorly understood. However, a salient feature of most echinoderm
populations is a high degree of temporal and spatial variability in settlement and
recruitment. In this study, settlement of echinoderm species was measured on artificial
collectors placed on and above the bottom in kelp beds and barrens at multiple sites
and sampled over a variety of temporal (days to years) and spatial (metres to 100's of
kilometres) scales. Settlement of echinoids (Strongylocentrotus droebachiensis)
measured in 3 regions of the northwest Atlantic showed order of magnitude
differences between regions, where settlement was highest in the Gulf of Maine,
lowest in the Bay of Fundy and intermediate in Nova Scotia. Within each region,
settlement differed between sites but was within the same order of magnitude. In
Nova Scotia, settlement of ophiuroids (Ophiopholis aculeata, Ophiura) sampled over 3
day intervals was compared with concurrent hydrographic and meteorologic measures.
A major settlement pulse occurred over one 3 day period and was associated with
minor fluctuations in the physical environment. Sampling every 2 weeks over 3 years
in kelp beds and barrens at 2 sites (exposed and sheltered) showed settlement pulses of
ophiuroids (0. aculeata, Ophiura), asteroids (Asterias) and echinoids (S.
droebachiensis, Echinarachnius parma) occurred between July and September of each
year. Timing of settlement differed consistently among species, the magnitude of each
pulse varied between years and species, and the year of maximum settlement differed
between species. Settlement of all species was greater at the sheltered site but patterns
were not consistent among species between habitats.  Sampling settlement
concurrently at different frequencies and on different collector types gave different
estimates of settlement. This indicates the need for calibration across studies and
assessment of sampling artifacts (e.g. changes in collector quality, post-settlement
mortality or migration) which can occur over longer deployment intervals. For most
species sampled, settlement predicted recruit density in natural populations the
following year. However, the strength of the relationship varied between species,
probably because of differing post-settlement processes.
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Chapter 1: General Introduction

The role of settlement and recruitment in determining population and community
structure, or what has been coined "supply-side ecology” (Lewin 1986), has been the focus
of intensive study for over a decade (reviewed by Underwood & Fairweather 1989,
Olafsson et al. 1994, Booth & Brosnan 1995, Caley et al. 1996, Hunt & Scheibling 1997).
Settlement of benthic marine invertebrates is generally defined as the attachment of larvae to
the substratum and attendant metamorphosis into the juvenile form (reviewed by Pawlik
1992). Recruitment is usually defined operationally as occurring some time after settlement
when individuals can be reliably counted and some post-settiement mortality or migration
may have occurred (sensu Keough & Downes 1982). Consequently, methodological
differences often complicate comparisons of recruitment within and among taxa and
habitats. Most studies on recruitment have involved sessile species, such as bamacles and
mussels, in rocky intertidal habitats (e.g. Connell 1985, Gaines & Roughgarden 1985,
Sutherland 1987, 1990, Raimondi 1990, Menge 1991, Minchinton & Scheibling 1991).
Fewer studies have involved mobile species, such as echinoderms, for which patterns of
distribution and abundance are influenced both by post-settlement mortality and migration
(Hunt & Scheibling 1997).

Echinoderms are ubiquitous in all marine benthic habitats from the intertidal zone to
the deep-sea. They are significant components of the trophic structure in many
communities and serve important ecological roles as both predators and prey. In some
cases, their impact as predators or grazers can be catastrophic. Population outbreaks of the
asteroid Acanthaster planci, for example, have devastated coral reefs in the south Pacific
(Moran 1986, Johnson 1992a) and intensive grazing by strongylocentrotid echinoids has
destroyed kelp forests throughout the north Atlantic and Pacific (Harrold & Pearse 1987,
Vadas & Elner 1992). Consequently, these species have been viewed as pests to be

controlled or eradicated. In contrast, some holothuroids and echinoids, are valued food
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resources and form the basis of major fisheries around the world (Sloan 1984). Yet others,
such as ophiuroids and crinoids, are suspension feeders comprising a large proportion of
the macrofaunal biomass of sedimentary environments, particularly in the deep-sea
(Haedrich et al. 1980).

In view of their considerable ecological and economic importance, the population
ecology of many echinoderms, particularly asteroids and echinoids, has been extensively
studied. However, the importance of early life-history events in determining population
structure and dynamics remains poorly understood for most species. The larval phase is a
critical component of the life-history of echinoderms and other marine invertebrates with
meroplanktonic larvae. Factors determining larval supply to benthic habitats include abiotic
(e.g. currents, temperature, salinity) and biotic factors (e.g. larval behaviour, food
availability, predation) which regulate larval production, development and survival
(reviewed by Young & Chia 1987, Rumrill 1990). Settlement can be induced by a variety
of biological, physical and chemical factors (reviewed by Rodriguez et al. 1993) but their
importance relative to pre- and post-settlement processes is not clear for echinoderms
(reviewed by Chia et al. 1984, Pearce 1997). Ebert (1983) reviewed studies of recruitment
in echinoderms and found that recruitment was spatially and temporally variable both
within and among species. He concluded that many factors contribute to recruitment
variability in ways that remain poorly understood. In many studies, researchers have made
inferences about patterns of settlement and recruitment based on population size structure or
distributional patterns of older individuals (Ebert 1983, Chia et al. 1984), although
sampling constraints and the small scale of such observations have limited the strength or
generality of the conclusions.

In this review, I summarise recent progress (much of it over the past 14 years since
Ebert's 1983 review) in the search for links between larval supply, settlement, and
recruitment in echinoderms, which ultimately determine the distribution and abundance of

populations. The text is divided into 4 major sections based on different stages of the early
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life-history of echinoderms and the processes that influence them: 1) factors affecting larval

supply, 2) induction of settlement, 3) spatial and temporal patterns of settlement and
recruitment, and 4) post-settlement processes. The section on patterns of settlement and
recruitment is central to the review and studies on this topic from the 4 most studied
echinoderm classes are summarised in tabular form to facilitate comparisons within and
between species, classes and geographic regions. My intent is to provide a comprehensive
synthesis and critical evaluation of the literature on patterns and processes of larval supply,
settlement and recruitment in echinoderms, and to identify gaps in our knowledge which

may guide future research.

FACTORS AFFECTING LARVAL SUPPLY
Hydrodynamics

While in the water column, invertebrate larvae generally have little control over
horizontal movement, although they may actively migrate vertically (reviewed by Young &
Chia 1987). Echinoderm larvae usually are found near the sea surface (Rumrill 1988a,
Pedrotti & Fenaux 1992) where ocean currents and wind may enhance larval dispersal
(reviewed by Ebert 1983, Harrold & Pearse 1987, Pearse & Cameron 1991). Larval
dispersal is aiso common in deep-sea echinoderms (Eckelbarger 1994, Pearse 1994, Tyler
et al. 1994, Young 1994a, b) where larvae can be retained locally or advected away from
spawning areas by currents (Mullineaux 1994). To fully understand the effect of
hydrodynamics on larval supply to the benthos, various spatial scales must be considered.
Because the arrival of planktonic larvae at suitable settlement sites is primarily dependant on
advective transport, both local hydrodynamics and large-scale oceanographic features are
important determinants of recruitment success (reviewed by Shanks 1995). Ebert and
coworkers (Ebert 1983, Ebert et al. 1994) documented the existence of a latitudinal cline in
settlement for Strongylocentrotus purpuratus and S. franciscanus and correlated settlement

with general oceanographic processes along the California coast. They found settlement
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was more variable along the northern coast, which is subjected to greater offshore
advection rates, than in the southern California Bight, which is thought to have a longer
residence period and therefore retain larvae. Ebert & Russel (1988), however, did not
observe this latitudinal cline in settlement of S. purpuratus in intertidal populations from
central California to Oregon. They proposed that local topographic features such as capes
and headlands reduced recruitment due to upwelling and cold water plumes that advect
larvae away from the coast. At sites between headlands with no predictable upwelling,
there was substantial annual recruitment. Further north in Washington, Paine (1986) found
that recruitment of S. purpuratus occurred only 4 times in 22 years suggesting sporadic
supply of larvae to the area. Although Paine (1986) found no consistent correlation with El
Nifio events at this latitude, recruitment was associated with above average sea
temperatures which he assumes is an indication of transport of larvae in northward flowing
currents.

Most echinoderm larvae have relatively long planktonic periods and are capable of
delaying metamorphosis in the absence of suitable substrata (Strathmann 1978a, b, Bosch
et al. 1989). Echinoid, asteroid and ophiuroid larvae have been found in offshore plankton
tows in the central Pacific where currents may enable long distance dispersal between
distant islands (Scheltema 1986). Once larvae are advected far offshore, however, the
likelihood of settling in a suitable habitat is greatly diminished unless currents deliver them
to coastal areas when they are competent to settle (Jackson & Strathmann 1981). In the
absence of a settlement substrate, ophiuroids may metamorphose in the plankton or settle
indiscriminately resulting in major losses (Hendler 1991). For example, Mileikovsky
(1968) found post-larval ophiuroids in plankton tows down to 4000 m in the Oyashio
Current (northwest Pacific) and attributed a decrease in numbers with depth to increasing
mortality. Local hydrodynamic processes may act to retain larvae within the coastal region.
Pedrotti & Fenaux (1992) found that ophiuroid and echinoid larvae remained in the surface

layer in the Bay of Villfranche, Mediterranean and rarely occurred beyond a divergence
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zone 30 km offshore. At a smaller spatial scale, Sewell & Watson (1993) found high

densities of asteroid larvae in plankton tows in an enclosed bay in Nootka Sound, British
Columbia, where there was substantial recruitment of Pisaster ochraceus. They proposed
that the larvae are spawned and retained within the bay where they settle and then disperse
over time. Similarly, Lubchenco-Menge & Menge (1974) found atypically high densities
of recruits of P. ochraceus at 1 site on San Juan Island, Washington, which they
considered a nursery area.

By far the largest body of research on asteroid early life-history is based on 1
species, the Crown-of-thoms starfish Acanthaster planci. This research has been motivated
by population outbreaks of A. planci which have had catastrophic effects on coral reefs
throughout the western tropical Pacific (reviewed by Moran 1986, Birkeland & Lucas
1990). There is general recognition that larval supply, settlement and recruitment are
critical aspects of this problem, although the relative importance of each of these processes
in initiating population outbreaks remains speculative (Johnson 1992b). The genetic
relatedness of populations of A. planci throughout the Pacific suggests that there is
widespread dispersal of larvae and considerable gene flow within reef systems connected
by ocean currents (Benzie 1992). Populations on the Great Barrier Reef are genetically
homogeneous, suggesting that outbreak populations arise from a single source (Nash et al.
1988, Benzie 1992). Although the primary source of larvae is not known, the 2 series of
outbreaks of A. planci recorded on the Great Barrier Reef during the past 4 decades have
progressed from north to south (Johnson 1992b, Moran et al. 1992) presumably by
advection of larvae (Nash et al. 1988). Hydrodynamic models of larval dispersal,
correlated with data on reported outbreaks, showed that the severity of the outbreak
decreases, and the proximity to the mainland increases, as larvae disperse southward
(James & Scandol 1992, Scandol & James 1992). Black & Moran (1991) developed a
numerical model of current patterns and larval supply to 6 reefs in the central Great Barrier

Reef. They found a clear correspondence between observed and predicted distributions of
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populations of A. planci in all 6 simulations and concluded that hydrodynamics and larval

supply are largely responsible for recruitment patterns. Recruitment of A. planci probably
occurs in deeper water on the reef slope; subsequent migration up the reef slope results in

outbreaks (Johnson et al. 1991).

Temperature and salinity

Thorson (1950) proposed that increased temperature may enhance settlement by
accelerating larval development and reducing the period that larvae are exposed to
planktonic predators. Evidence for a correlation between temperature and recruitment of
echinoids was reviewed by Ebert (1983) who found a positive relationship for echinoids
(species not stated) in Japan, an inverse relationship for Strongylocentrotus purpuratus in
southern California, and no obvious relationship for S. purpuratus in Oregon. In a
laboratory study, Hart & Scheibling (1988) showed that temperature has a strong positive
influence on larval development of S. droebachiensis. By comparing sea temperature
patterns off Nova Scotia in the early 1980's to recruitment events during the same period,
they found that recruitment tended to occur in years of relatively warm spring sea
temperature and not in colder years. Long term records for the same area show abnormally
warm spring sea temperatures in 1960 and 1983, which preceded echinoid population
outbreaks in the late 1960's and the early 1990's respectively (Hart & Scheibling 1988,
Scheibling 1996). In accordance with Thorson's hypothesis, Hart & Scheibling (1988)
proposed that increased larval survival during warm years results in recruitment pulses
which lead to population outbreaks several years later. Other studies of this species,
however, have suggested an inverse relationship between recruitment and sea temperature
during larval development. Foreman (1977) attributed heavy recruitment of §.
droebachiensis in British Columbia in 1969 to record low spring temperatures and
Himmelman (1986) related weak recruitment at sheltered sites in Newfoundland to

relatively high water temperatures. These equivocal findings suggest that temperature alone
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does not reliably explain recruitment patterns. Changes in sea temperature may simply

reflect shifts in local hydrodynamics or other environmental factors, such as salinity, food
availability or predator abundance, which may either enhance or limit larval survival.

The temperature dependence of developmental rate also has been proposed as a
mechanism influencing settlement rates in asteroids. Laboratory experiments with
Acanthaster planci have shown the length of the larval period ranges from 9 to 28 days and
decreases with increasing temperature between 25 °C and 32 °C (reviewed by Moran 1986,
Johnson 1992b). Larvae of A. planci are also found to respond to differences in salinity.
Wide salinity ranges (21 to 33 %o) can be tolerated but survival is greatest at 30 %o
(reviewed by Moran 1986, Brodie 1992). However, Brodie (1992) concluded that
fluctuations in temperature and salinity are relatively minor on the Great Barrier Reef and

are probably not responsible for outbreaks of A. planci in that region.

Predation

Although predation in the plankton has long been recognised as a major component
of larval mortality (Thorson 1950), few studies have examined predation of echinoderm
larvae (reviewed by Ebert 1983, Harrold & Pearse 1987, Young & Chia 1987, Rumrill
1990, Scheibling 1996). Laboratory experiments on predation of embryos and larvae of
Dendraster exentricus, Strongylocentrotus franciscanus and S. purpuratus showed that
planktonic invertebrate predators, such as crustaceans, chaetognaths, medusae and
ctenophores, selectively feed on embryos and early larval stages, whereas small
planktivorous fish choose the larger plutei (Rumrill & Chia 1985, Pennington et al. 1986).
Possible mechanisms which have been proposed to explain stage-specific predation include
selection of prey size by predators, escape swimming behaviour of larvae, and larval
structural defences (Rumrill & Chia 1985, Pennington et al. 1986).

As larvae approach the bottom they become exposed to a suite of suspension-

feeding benthic invertebrates including mussels, ophiuroids, ascidians, anemones, and
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tunicates (Hooper 1980, Cowden et al. 1984). In the laboratory, Tegner & Dayton (1981)

offered larvae of Strongylocentrotus purpuratus to 3 species of bryozoans and a serpulid
polychaete which are common suspension feeders inhabiting kelp fronds. They found that
only the polychaete could consume young plutei and that it had difficulty consuming larger,
mature plutei. They concluded that it is unlikely that these filter feeders reduce larval
abundance within a kelp forest, and suggested that planktivorous fish are more likely
responsible (see also Gaines & Roughgarden 1987).

The coral Pocillopora damicornis and several species of fish have been observed to
feed on eggs and/or larvae of Acanthaster planci (Yamaguchi 1973, and reviewed by
Yamaguchi 1975, Moran 1986). However, laboratory studies have shown that some
species of fish reject A. planci eggs and larvae, suggesting a chemical defence (reviewed by
Yamaguchi 1975, Moran 1986). Lucas et al. (1979) found that pomacentrid fish rejected
gelatin food particles with extracts of saponins from larval and adult A. planci and
concluded that the concentrations of saponins in eggs and larvae are sufficient to limit
predation. A chemical defence is also proposed for larvae of Pisaster ochraceus and for 3
species of echinoids which had higher survival rates than polychaete, gastropod or cirriped
larvae when offered to mussels or ascidians in the laboratory (Cowden et al. 1984, but see

also Young & Chia 1987).

Starvation
Starvation is a possible cause of larval mortality, although in reviewing the literature
on nutrition of larval echinoids, Pearse & Cameron (1991) concluded that starvation is
probably less important than predation in limiting larval survival. Strathmann (1996)
reviewed several studies on feeding rates and natural densities of echinoderm larvae and
concluded that death through starvation is unlikely under most conditions, although food
limitation may occur in nutrient poor waters. Laboratory studies on larvae of the asteroid

Asterina miniata showed that food limitation slows development, extends the time to
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metamorphosis, and reduces survival (Allison 1994, Basch & Pearse 1996). Basch &

Pearse (1996) found that larvae of A. miniata reared in field enclosures developed faster
than those in the laboratory where different hydrodynamic or light regimes may have
reduced food capture or quality. In laboratory feeding experiments with larvae of
Acanthaster planci, Lucas (1982) found that food limitation prevented development to the
late brachiolaria stage. He suggested that starvation and/or increased predation associated
with a longer larval period may reduce survival of larvae of A. planci on the Great Barrier
Reef under food-limited conditions. However, Olson (1985) pointed out that food used in
laboratory studies differs in composition from natural food resources and proposed that a
mixed diet may not be limiting, even at the same particle concentrations. He used in situ
culture chambers to examine larval survival of A. planci under natural food levels on the
Great Barrier Reef. Surviving larvae did not appear to be food limited, although
survivorship was relatively low (40 to 58 %). Olson (1985) attributed this to handling
error but it is clear from discrepancies between laboratory and field studies that more
experimentation is needed to resolve the issue of food limitation.

Birkeland (1982) correlated outbreaks of Acanthaster planci with heavy rainfall
events and proposed that terrestrial runoff, which results in phytoplankton blooms,
enhances larval survival, assuming the larvae normally are food limited. However, Moran
(1986) pointed out some of the weaknesses with this correlational hypothesis and
concluded that it is not well supported for some regions, such as the Great Barrier Reef
(but see also Shanks 1995). Brodie (1992) reviewed several hypotheses relating enhanced
larval survival of A. planci to various effects of runoff, including increased nutrient supply,
increased mortality of predators, a reduction in salinity to an optimal level and increased
temperature. Although he found the existing evidence for each of these hypotheses to be
inconclusive, he suggested that biotic and abiotic effects of riverine input should not be
discounted, and that further investigation may elucidate their roles in causing primary

outbreaks.
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Summary and Conclusions

Although much research has been done on larval behaviour in relation to the
dynamics of dispersal, most studies on larval echinoderms have been conducted in the
laboratory. Field studies have tended to focus on distribution in the water column and have
not followed larvae through to settlement. Despite major advances during the past decade
in methods of marking and tracking larvae (reviewed by Levin 1990), there remain
substantial deficiencies in our present understanding of larval dispersal and dynamics.
New methods such as the use of genetic markers for larval tracking may enable researchers
to determine the discreteness of populations and identify potential sources of larvae
(Palumbi 1995, Medeiros-Bergen et al. 1995). Hydrodynamic models of dispersal, which
have been proven effective in predicting recruitment of Acanthaster planci (Black & Moran
1991), could be applied to other species to obtain a more general understanding of the
relationship between physical factors and larval supply to benthic habitats. There is strong
evidence for regulation of settlement by currents and hydrodynamic forcing. However,
these factors can act at different spatial scales, all of which must be considered before fully
understanding settlement patterns. The roles of larval predation and starvation in
determining settlement and recruitment also remain unclear. Laboratory studies have
identified some predators of echinoderm larvae and have shown that larvae possess
chemical, structural, and behavioural defences to resist predation. Although starvation
seems to be less important than predation in regulating larval abundance, this needs to be
tested experimentally under realistic conditions of food availability and predator abundance,

preferably in the field (e.g. Olson 1985).

INDUCTION OF SETTLEMENT
Numerous laboratory experiments (mostly with echinoids) have documented
various cues for induction of settlement and metamorphosis of echinoderm larvae

(reviewed by Strathmann 1978b, Chia et al. 1984, Chia 1989, Rodriguez et al. 1993,
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Pearce 1997). Larvae of regular echinoid species, including Anthocidaris crassispina,

Arbacia punctulata, Lytechinus pictus, Pseudocentrotus depressus, Strongylocentrotus
droebachiensis and S. purpuratus, have been found to settle in response to a variety of
microbial and/or algal films that occur on natural substrata (Cameron & Hinegardner 1974,
Cameron & Schroeter 1980, Rowley 1989, Pearce & Scheibling 1990a, 1991, Kitamura et
al. 1993, reviewed by Morse 1992). Although specific inducers have been isolated,
studies which have tested a variety of substrata suggest that larvae are responding less to a
single cue than to a suite of signals which indicate the suitability of a habitat (Cameron &
Schroeter 1980, Pearce & Scheibling 1991, but see also Rowley 1989). In contrast,
irregular echinoids, such as Dendraster exentricus and Echinarachnius parma have been
shown to settle selectively in the presence of a chemical cue associated with conspecifics,
which largely restricts settlement to within adult populations (Highsmith 1982, Pearce &
Scheibling 1990b).

Studies of settlement induction and substrate preferences in asteroids have involved
only a few species. In Washington, Birkeland et al. (1971) found that larvae of the
asteroid Mediaster aequalis were highly selective, settling only on the tubes of the
polychaete Phyllochaetopterus prolifica. In New Zealand, Barker (1977) found that larvae
of Stichaster australis settled only on the encrusting coralline alga Mesophyllum insigne,
but that larvae of Coscinasterias calamaria were non-selective, provided there was a
microbial film on the substrate. In a subsequent study in England, he also found that larvae
of Asterias rubens and Marthasterias glacialis showed no marked substrate preference in
laboratory experiments, but tended to settle on the undersides of various substrata, as was
observed in the field (Barker & Nichols 1983). Acanthaster planci has been shown to settle
on a wide variety of substrata, although many studies report only qualitative results
(reviewed by Moran 1986) or are compromised by flawed methodology such as inadequate
controls for spontaneous settlement (reviewed by Johnson 1992b). In laboratory

experiments, Johnson et al. (1991) showed that some crustose coralline algae such as
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Lithothamnium pseudosorum and/or associated bacteria are highly inductive to larvae of A.
planci, whereas other coralline algal species are not. The authors proposed that A. planci
on the Great Barrier Reef settle in deeper water at the base of reefs where these inductive
substrata occur (see also Johnson 1992b). Alternatively, Zann et al. (1987) suggested that
A. planci in Fiji settle on coral in shallow water. However, because of the limited number
of settlers found in most studies (see Spatial and Temporal Patterns of Settlement and
Recruitment) spatial patterns of settlement of A. planci remain unresolved.

Very little is known about possible cues to settlement in holothuroids (Smiley et al.
1991), crinoids (Holland 1991) and ophiuroids (Hendler 1991). Some species exhibit
gregarious settlement, although the chemical or physical factors inducing metamorphosis
and settlement have not been experimentally examined. Young & Chia (1982) showed that
larvae of the holothurian Psolus chitonoides settle gregariously on or near adult
conspecifics in laboratory and field studies in the San Juan Islands, Washington. In
contrast, Hamel & Mercier (1996) found no evidence of gregarious settlement in another
holouthurian Cucumaria frondosa in laboratory and field studies in the St. Lawrence
Estuary. Rather, the larvae tended to settle on the undersides of rocks and avoided mud
and sand bottoms. Mladenov & Chia (1983) showed aggregated settlement of Florometra
serratissima on the bottom of culture dishes and concluded that gregarious settlement may
account for the adult aggregations that they observed in the field. Larval ophiuroids often
appear to settle indiscriminately or metamorphose in the water column in the absence of a

substrate more so than other echinoderms (reviewed by Hendler 1991).

Summary and Conclusions
Although various cues for induction of settlement of echinoderms have been
isolated, the evidence is often based on findings from laboratory studies or from anecdotal
evidence from the field. Chia et al. (1984) and Pearce (1997) concluded that larval

preferences for settlement substrata are generally less important than post-settlement
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processes, such as migration and mortality, in determining population distribution and
abundance. This brings into question the relative importance of induction for most species
of echinoderms and underscores the need to follow settlers in the field through to early
juvenile stages to better understand the consequences of preferential settlement (e.g.

Highsmith 1982, Young & Chia 1982).

SPATIAL AND TEMPORAL PATTERNS OF
SETTLEMENT AND RECRUITMENT
Sampling methods

A variety of techniques have been used to record settlement and recruitment rates of
echinoderms (Tables 1.1 to 1.4), but sampling accuracy remains a considerable
methodological challenge. Conventional sampling methods, such as quadrat and grab
sampling, are labour intensive and must be repeated frequently if recent recruits are to be
enumerated. Harris et al. (1994) have used photographic sampling to measure recruitment
of Strongylocentrotus droebachiensis in the Gulf of Maine, although the small size and
cryptic nature of early juveniles limit the applicability of this approach. Typically, these
methods either fail to detect or to accurately census recently settled individuals. Variation in
sampling method and frequency among studies may significantly affect measures of
recruitment rate, as has been shown for bamacles (Minchinton & Scheibling 1993, Miron
et al. 1995), suggesting caution when interpreting data and comparing across studies using
different methods.

Of the 52 studies of echinoids that I reviewed, 10 used artificial collectors to
measure settlement or recruitment rates (Table 1.1). Bak (1985) monitored recruitment of
Diadema antillarum on plastic collectors (light diffuser panels) suspended vertically 20 cm
above coral reefs in Curagao. He found that submergence times of more than 2 months
resulted in reduced settlement due to fouling. Harrold et al. (1991) used plastic pipes
containing either light diffuser panels or coralline algae (Calliarthron and Bossiella), and
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suspended 1 m above the seabed, to monitor settlement of Strongylocentrotus purpuratus
and S. franciscanus in a kelp forest in California. They found that settlement over 30 to 41
day sampling intervals was greater in the plastic-filled than in the coralline-filled collectors,
conflicting with their laboratory observations which showed greater settlement on
corallines. However, there were more juvenile crabs and polychaetes in the coralline-filled
collectors, which may have preyed upon the newly settled echinoids. Keesing et al. (1993)
used plastic bio-filter spheres suspended 1 m off the bottom in mesh bags to compare
settlement of several species of echinoderms on the Great Barrier Reef. They found a
significant correlation between settler densities on collectors and those on the natural
substrata for species from all 5 echinoderm classes. They also compared various sorting
techniques and found that recovery rates of settlers varied from 52 to 100 %, and that the
most time consurning method was required to collect all echinoderm settlers. Harris et al.
(1994) used panels of plastic turf mounted on racks on the bottomn to collect settlers of S.
droebachiensis in the Gulf of Maine. They found much higher rates of recruitment (3
months after settlement) on the turf than on natural substrata such as bare rock and coralline
algae. Ebert et al. (1994) and Schroeter et al. (1996) used scrub brushes suspended
vertically 1 to 1.4 m off the bottom to monitor settlement of Strongylocentrotus spp. in
California. Schroeter et al. (1996) concluded that patterns of recruitment on natural
substrata observed during benthic surveys were similar to the patterns of settlement
measured at weekly intervals in their collectors.

Many studies of ophiuroid recruitment have been done in the deep-sea where
sampling is logistically difficult and confined to conventional methods (Table 1.3).
Constraints on sampling frequency and the accuracy of site relocation limit conclusions
about recruitment dynamics in such remote communities (Grassle 1994). Ophiuroids also
are ubiquitous in shallow waters but there they typically are cryptic and hard to sample. In
Denmark, Muus (1981) collected recent settiers (0.325 mm) of Amphiura filiformis in

sediment samples sieved through a 0.265 mm mesh screen. She observed high rates of
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settlement and concluded that previous studies using larger mesh sizes did not sample
settlers. Estimates of ophiuroid settlement often have involved back-calculation based on
modal analysis of size distributions. These methods measure recruitment at best and the
stacked age classes that usually occur seriously limit the accuracy of this technique (Gage
1985). Even methods of measuring the size of an ophiuroid have been debated and the
reliability of some methods has been questioned (O'Connor & McGrath 1980, O'Connor et
al. 1983, Duineveld & Van Noort 1986, Bosselmann 1989, Munday & Keegan 1992). In
an effort to circumvent many of the problems with conventional sampling methods,
artificial collectors have been used to measure ophiuroid settlement and have detected high
rates of settlement in differing shallow water habitats (Keesing et al. 1993, Chapters 3 and
4).

Methods used to detect patterns of spatial and temporal variability in recruitment of
holothuroids have varied among studies (Table |.4). Compared to other echinoderms,
holothuroids are particularly difficult to measure accurately due to their soft and flexible
body wall. Cameron & Fankboner (1989) suggested that a single measurement of length
or wet weight can be unreliable. Different methods of measurement could account for
some of the variability observed both within and between studies, and may influence

conclusions that are drawn from them.

Echinoidea
Many studies have documented large spatial and temporal variability (over tens of
metres to thousands of kilometres and over months to years) in settlement and recruitment
rates of echinoids (Table 1.1 and reviews by Ebert 1983, Harrold & Pearse 1987, Pearse &
Cameron 1991). Pearse & Hines (1987) monitored populations of Strongylocentrotus
franciscanus and S. purpuratus in central California from 1972 to 1981. Throughout this
period there was only 1 significant pulse of recruitment of S. purpuratus (resulting in a 25-

fold increase in population density) and little evidence of recruitment of S. franciscanus.
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However, echinoids <10 mm were not accurately sampled in this study and the sampling

frequency was inadequate to reliably distinguish and track cohorts over time. Estes &
Duggins (1995) found episodic recruitment of S. droebachiensis, S. purpuratus, and S.
franciscanus between 1972 and 1990 in southeast Alaska, although S. polyacanthus
recruited heavily in each of these years in the Aleutian Islands. They suggest that large-
scale oceanographic processes are responsible for differences in larval supply to each of the
regions. Episodic recruitment also has been observed in S. purpuratus and S. franciscanus
in California and Washington (Paine 1986, Watanabe & Harrold 1991) and S.
droebachiensis in Nova Scotia (Scheibling 1986, Raymond & Scheibling 1987, Chapter
4). Rowley (1989) found recently settled S. franciscanus and S. purpuratus in echinoid
barren grounds and kelp beds in southern California between April and July in each of 3
successive years (1984 to 1986), but only in May of the final year did he observe heavy
settlement of both species (~1000 settlers m-2). He noted a rapid reduction in settler
densities within 10 days and suggested that other pulses during his 3 years of sampling
may have gone undetected. Sloan et al. (1987) observed low overall recruitment and a high
degree of variability among populations of S. franciscanus in southern British Columbia in
1984 and 1985. Although most studies of strongylocentrotids have shown recruitment to
be quite patchy in space and time, there are some exceptions. For example, recruitment
was temporally predictable and substantial over several years for S. droebachiensis in the
Gulf of Maine (Harris et al. 1985, 1994, Harris & Chester 1996) and S. purpuratus in Baja
California, Mexico (Pearse 1970 in Ebert 1983).

Watts et al. (1990) measured spatial and temporal variability in recruitment using
the genetic characteristics of Echinometra mathaei in Westem Australia. They found that
populations within 4 km of each other had as much genetic variance as populations sampled
over 1300 km of coast. The authors suggested that different populations of larvae are
supplied to adjacent areas over different years, resulting in genetic heterogeneity. On

Rottenest Island, Westem Australia, Prince (1995a, b) measured spatial and temporal



17

variability in recruitment of Echinometra mathaei at a variety of scales. She concluded that
differences in both local hydrodynamics, such as eddy formation and wave action, as well
as large-scale interannual variation in ocean currents determine patterns of recruitment.

Small-scale spatial variation in settlement and recruitment of echinoids has been
related to differences in habitat (Pearse & Cameron 1991), particularly between kelp
beds/forests and echinoid-dominated barren grounds (Pearse et al. 1970, Lawrence 1975).
Lower rates of recruitment of Strongylocentrotus franciscanus and S. purpuratus have been
recorded in kelp forests (Macrocystis pyrifera) than in adjacent barren areas in California
(Tegner & Dayton 1981) and a similar pattern has been observed for S. droebachiensis in
kelp beds (Laminaria spp.) in Nova Scotia (Scheibling 1986) and Norway (Leinaas &
Christie 1996).  Furthermore, Basch & Tegner (1995) found that recruitment of
Strongylocentrotus spp. was lower within a kelp forest than at the seaward edge. A
number of mechanisms have been proposed to account for these patterns. Various authors
have suggested that kelp forests act as larval filters by harbouring species which consume
larvae as they drift through the forest or settle on the bottom (Pearse et al. 1970, Bernstein
& Jung 1979, Tegner & Dayton 1981, Dayton & Tegner 1984, Gaines & Roughgarden
1987, Harrold & Pearse 1987, Chapman & Johnson 1990). In addition, Jackson &
Winant (1983) showed that kelp forests deflect currents which could act to reduce the
number of incoming larvae (see also Dayton & Tegner 1984). Larval supply to a kelp
forest also may be limited because larvae encountering a forest settle on the first suitable
substrates along the forest edge (Bemstein & Jung 1979, Tegner & Dayton 1981, Harrold
& Pearse 1987). Within the forest, post-settlement survival of recruits may be adversely
affected by understory macroalgae which increase sedimentation or decrease water flow,
light and microalgal cover, as has been shown for other benthic invertebrates (Eckman et
al. 1989, Duggins et al. 1990).

Studies which have compared settlement rates of strongylocentrotids between kelp

forests/beds and barren grounds have yielded equivocal results. Rowley (1989) reported
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no significant difference in the densities of newly settled Strongylocentrotus franciscanus
and S. purpuratus between a kelp forest and an adjacent echinoid barren ground in
southern California. However, the number of samples and size of the sampling units (200
cm? pieces of shale) may have been too small to provide a meaningful statistical
comparison. Rowley also noted that the kelp canopy density was low during this study
and might not have influenced larval supply to the kelp forest. Using artificial collectors
(scrub brushes), Schroeter et al. (1996) found that kelp forests had no significant effect on
settlement rates of S. purpuratus. However, settlement of S. franciscanus was low and
variable (0 to 10 per collector) with some evidence of higher settlement 20 m offshore of
the kelp forest. The authors concluded that kelp forests do not reduce larval supply or
settlement but offer the caveat that their 2 year study period may have been too short
(relative to natural cycles) to assess this. Using artificial collectors (plastic turf) in the Gulf
of Maine, Harris & Chester (1996) found settlement of S. droebachiensis was greater
within natural or artificial kelp beds than in adjacent barren grounds. In contrast, using
similar collectors in Nova Scotia, we found the opposite pattern: settlement of this species
was lower in kelp beds than in barrens (Chapter 4). These regional disparities may be
attributable to differences between the Gulf of Maine and Nova Scotia in size and growth
form of individual kelps, or in characteristics of the kelp bed (e.g. bed area and shape, kelp
density, understorey species) or surrounding environment (e.g. depth, topography,
hydrodynamic conditions), which may effect larval supply. Such differences are even
more pronounced between the Laminaria beds of the northwest Atlantic and the
Macrocystis forests of the northeast Pacific (see Harrold & Pearse 1987 for a description of
different kelp habitats).

Differences in echinoid settlement rates also have been recorded between habitats on
a tropical coral reef. Keesing et al. (1993) found that settlement of echinoid larvae (several
species were grouped together including Echinometra mathaei and Mespilia globulus) on an

artificial substrate (plastic biofilter spheres) was significantly greater on the windward edge
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than on the leeward edge of Davies Reef, Great Barrier Reef. The authors attributed this to

different water residence times. Within a given reef there was no significant difference in
settlement rate between collectors placed tens to hundreds of meters apart.

Although most studies of echinoid settlement and recruitment have focussed on
horizontal variability, few studies have documented variability over a depth gradient.
Harris et al. (1994) found settlement of Strongylocentrotus droebachiensis on artificial turf
to be greatest at 6 to 8 m and orders of magnitude lower at 20 and 30 m. Himmelman
(1986) also found decreased recruitment of S. droebachiensis with depth in
Newfoundland. He attributed this pattern to reduced food and slower growth resulting in
increased predation of juveniles. In contrast, DeRidder et al. (1991) found recruitment of
Echinocardium cordatum was greatest at 15 to 25 m, much less at 5 to 10 m, and absent in
the littoral zone.

Seasonal pattemns in settlement have been documented for a few species of
echinoids. In central California, Harrold et al. (1991) sampled artificial collectors in a kelp
forest at monthly intervals for a year and found clear settlement peaks in April and
November for Strongylocentrotus purpuratus and S. franciscanus. In northern and
southern California, Ebert et al. (1994) monitored the same species on artificial collectors at
weekly intervals between 1990 and 1993. They found that settlement of both species was
strongly seasonal occurring between late winter and early summer and that settlement rate
varied between species, among sites and among years. Settlement at southern sites tended
to be higher and more consistently annual than at northem sites. In the Mediterranean,
Pedrotti (1993) suggested that seasonal recruitment patterns of Paracentrotus lividus were
related to biannual spawning (in spring and fall), as indicated by the presence of larvae in

plankton samples.

Asteroidea

As with echinoids, asteroids show a high degree of spatial and temporal variability
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in settlement and recruitment throughout the distributional range of species (Table 1.2).

The most extensive study of settlement for any echinoderm is that by Loosanoff (1964) of
Asterias forbesi in Long Island Sound, Connecticut. From 1937 to 1961 he deployed
oyster shell collectors twice weekly at 10 sites in 3 areas along 26 km of shore and at
depths of 0 to 33 m. Loosanoff (1964) found that settlement increased with depth to 10 m
and then decreased to 33 m (see also Ebert 1983). Settlement occurred between June and
September but the settlement period varied between sites and years, ranging from 1 to 91
days (mean = 52 days). In years of heavy settlement, the settlement period was protracted;
in years of light settlement, it occurred late in the year. Settlement intensity varied from a
single peak in 1 week to relatively constant settlement over a period of 3 months. Total
annual settlement varied by 5 orders of magnitude (0.3 to 1700 per collector) with no
consistent pattern of high and low settlement years. Settlement varied between sites within
areas but tended to increase from northeast to southwest. Both Loosanoff (1964) and Ebert
(1983), who re-analysed Loosanoff's data, concluded that settlement was not correlated
with preceding or subsequent adult density (but see also Burkenroad 1957). Ebert (1983)
proposed that hydrodynamic conditions or planktonic predators regulating larval supply
may be more important in determining settlement and subsequent recruitment of A. forbesi
than settlement or post-settlement processes.

Despite massive sampling efforts, most studies of Acanthaster planci found few
settlers and these were patchily distributed in space and time (reviewed by Moran 1986,
Johnson 1992b). During extensive searches at Iriomote-jima in the Ryukyu Islands,
Yokochi & Ogura (1987) found only 9 juveniles of A. planci in 1984 and 13 in 1985. Fisk
(1992) used various methods to measure recruitment of A. planci on Green Island in the
northern Great Barrier Reef (considered a possible source for larvae that seed secondary
outbreaks on reefs to the south) and found only 2 recruits between 1986 and 1990 (Fisk et
al. 1988, Fisk 1992). In the central Great Barrier Reef south of Green Island, Doherty &
Davidson (1988) destructively searched for A. planci on 16 reefs in 1986 and 1987 and
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found only 4 individuals < 30 mm in diameter (all in 1986), which Johnson (1992b)

considered new recruits. From analysis of size-frequency distributions, they inferred low
settlement rates in 1986 and 1987 and an order of magnitude higher settlement rate in 1985.
However, Ebert (1983) and Moran (1986) pointed out that size- and diet-specific variation
in growth rates complicates identification of cohorts from size distributions. A. planci
individuals grow slowly at the early juvenile stage, when they feed on algae, and then
undergo a dramatic increase in growth rate when they shift to a diet of coral. This dietary
shift is not necessarily age-related and size at a given age can vary considerably (Moran
1986) indicating that more direct methods of measuring settlement and recruitment rates
than size-frequency analysis are needed to accurately detect patterns. Keesing et al. (1993)
found 11 asteroid settlers on artificial collectors on Davies Reef, Great Barrier Reef (3 A.
planci, 5 Choriaster granulatus and 3 Culcita novaeguineae) in 1992 and concluded that it
was a poor settlement year. Despite these meagre results, they suggested that collectors
could be used to monitor settlement of A. planci in various habitats and to predict the
location of outbreaks 3 years in advance.

Juveniles of Acanthaster planci have been found in Fiji where Zann et al. (1987,
1990) reported heavy recruitment in 1977, 1984 and 1987 in the intertidal zone of several
coral reefs based on size-frequency analysis. Recruitment occurred over thousands of
hectares in most years between 1979 and 1989, although intense recruitment in 1982 and
1983 occurred over only a few hectares. Zann et al. (1987, 1990) concluded that there is a
high degree of spatial and temporal variability in recruitment of A. planci and that outbreaks
originate from episodic events.

Differences in recruitment patterns of several co-existing species of temperate
asteroids suggest that factors influencing settlement and recruitment may not operate
uniformly across species. Sewell & Watson (1993) found that Pisaster ochraceus in
British Columbia settled in all 5 years studied, whereas Pycnopodia helianthoides settled in
4 of 5 years and Dermasterias imbricata settled in only 1 year. Himmelman & Dutil (1991)
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found that differences in distribution of recruits of 3 asteroid species were associated with
different habitat types across a depth gradient in the northern Gulf of St. Lawrence.
Recruits of Leptasterias polaris were most abundant at O to 1 m and found only in boulders,
cobble or bedrock; those of Asterias vulgaris were most abundant at 4 to 7 m and found
only in boulders or cobble; and those of Crossaster papposus were only found on
sedimentary bottoms deeper than 11 m.

Asteroids display a wide variety of reproductive strategies (Chia & Walker 1991)
which may influence patterns of recruitment, but little is known about recruitment of
species that reproduce by means other than planktonic larvae. For example, Ebert (1983)
contended that increased parental investment in the form of brooding, should increase
recruitment success and consequently decrease longevity. In support of this hypothesis,
Menge (1975) found a broadcast spawner (Pisaster ochraceus) lived approximately 3 times
longer than a brooding asteroid (Leptasterias hexactis) on San Juan Island, Washington.
Menge (1975) proposed that brooding has co-evolved with small body size to ensure
increased reproductive success and survival of L. hexactis in a competitive relationship
with larger P. ochraceus. However, Himmelman et al. (1982) suggested that brooding is a
fixed trait in the genus Leptasterias and doubts that it evolved from competitive interaction.
Boivin et al. (1986) concluded that the large egg reservoir and long development time of L.
polaris assure steady annual recruitment in the St. Lawrence Estuary.

There is indirect evidence for habitat selectivity in several asteroids based on the
differential distribution of juveniles and adults. These differences may arise by selective
settlement in a habitat different from that of adults (assuming that juveniles eventually
migrate to the adult habitat) or because of between-habitat differences in post-settiement
mortality. Migration to adult habitats may occur when juveniles reach a size refuge from
predation or require an alternate food source. Birkeland et al. (1971) found various species
of recently metamorphosed asteroids (Mediaster aequalis, Luidia foliolata, Crossaster

papposas, Henricia leviuscula, Solaster stimpsoni, S. dawsoni and Pteraster tesselatus) on
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the tubes of the polychaete Phyllochaetopterus prolifica and not elsewhere. The authors

suggested this habitat acts as a nursery ground for juveniles where there is an abundance of
food.

Plant assemblages seem to be particularly attractive habitats for asteroid settlement.
Scheibling (1980a) found juveniles of Oreaster reticulatus mainly within and adjacent to
dense seagrass beds and suggested that settlement in seagrass beds provides refuge from
predation by fish (Scheibling 1980a, b). Sewell & Watson (1993) found recruits of
Pisaster ochraceus, Pycnopodia helianthoides and Dermasterias imbricata on various
substrata including macroalgae such as Laminaria saccharina and Sargassum muticum.
Rumrill (1988b) reported that Pisaster ochraceus in laboratory experiments preferentially
settled on substrata collected from the Laminaria zone. Day & Osman (1981) found
juvenile Patiria miniata under boulders in a California kelp forest whereas adults were on
the exposed algal covered reef. They suggested that juveniles are either out-competed by

adults on exposed reefs or removed by predation (see also Harrold & Pearse 1987).

Ophiuroidea

Unlike echinoids and asteroids, most studies of ophiuroids (including a number in
the deep-sea) indicate consistent annual and seasonal patterns of settlement or recruitment
(Table 1.3). Although the deep-sea has been considered an aseasonal environment, some
species of ophiuroids (and other invertebrates) show seasonality in reproduction and/or
recruitment (Schoener 1968, Tyler et al. 1982, Tyler 1988, Gage 1994). In the northeast
Atlantic, Gage & Tyler (1981a, b, 1982b, c) found that Ophiura ljungmani and Ophiocten
gracilis on the Hebridean continental slope (600 to 1200 m depth) and Ophiura ljungmani in
the nearby Rockall Trough (2200 to 2900 m) reproduced seasonally, and that high densities
of recruits dominated populations of Ophiura ljungmani in the Rockall Trough. From these
studies, they inferred that settlement of both species occurs annually in summer. However,

they also observed annual recruitment (indicating a settlement peak in May) of
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Ophiomusium lymani which exhibited continual gametogenesis in the Rockall Trough

(Gage & Tyler 1982a, b). They suggest that this pattern of recruitment in Ophiomusium
lymani is related to the seasonal input of detritus from surface waters which may regulate
larval survival. Other studies of Ophiomusium lymani from sites at 1100 to 2300 m depth
in the northeast and northwest Atlantic and the northeast Pacific (reviewed by Gage 1982)
showed several juvenile modes in population size distributions, suggesting seasonal and
annual recruitment in the spring (Atlantic) or late summer (northeast Pacific).

Several studies of Amphiura filiformis from coastal waters of various regions have
shown different patterns of recruitment, although these differences may partly reflect
different sampling methods (Table 1.3). Very low and patchy recruitment of A. filiformis
was observed over an 8 year period in Galway Bay, Ireland (O'Connor & McGrath 1980,
O'Connor et al. 1983). Based on the reproductive cycle, settlement was assumed to occur
from September to November. The authors concluded that they had missed sampling
settlers because of high post-settlement mortality in the first year after settlement, although
it is possible that settlement rarely occurs in this population. Off the coast of the
Netherlands, Duineveld & Van Noort (1986) observed high recruitment of A. filiformis
from July to September in each of the 2 years studied. They concluded that high mortality
in the first year after settlement limits the number of intermediate size animals, but enough
survive to sustain a low rate of renewal of the adult population. In the @resund off
Denmark, Muus (1981) also found high recruitment of A. filiformis in both years of a 2
year study, with a peak from September to November. Here too, post-settlement mortality
was high and few recruits survived their first year, resuiting in a relatively stable adult
population. In contrast, A. chiajei, which began settling 3 months later than A. filiformis,
was found in very low numbers in the same area (Muus 1981). In the Mediterranean,
Pedrotti (1993) found larvae of A. filiformis comprised 70 % of the ophiuroids in plankton
tows from November to February. The author concluded that mixed larval stages found at

various times of the year were evidence for prolonged and variable recruitment.
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Continual recruitment also has been reported for Ophiura sarsi at depths of 148 to

156 m in the Gulf of Maine (Packer et al. 1994). Small individuals were found throughout
the year but the highest number of recruits occurred in January, suggesting a seasonal
peak. Using artificial collectors at 6 to 10 m depth off Nova Scotia, we found that Ophiura
sp. and Ophiopholis aculeata both settled in a pulse between late July and early August in 3
successive years (Chapter 4). However, highest settlement occurred in different years for
each species suggesting that different processes control larval supply and settlement of the
2 species. The regional difference in settlement pattern of Ophiura between Nova Scotia
and the Gulf of Maine may be due to differences in depth or geographic location.
Alternatively, different species may have been sampled, since we could not distinguish
between Ophiura sarsi and O. robusta (Chapter 4).

Ebert (1983) hypothesised that different reproductive strategies result in different
recruitment patterns, and that brooders should have more predictable recruitment than
spawners due to increased parental investment in brooding. He compared recruitment
(based on size distributions) of Ophioplocus esmarki (a brooder) and Ophionereis annulata
(a spawner) at False Point, California and found that the brooder showed higher or more
frequent recruitment. Ebert (1983) also hypothesised that recruitment declines with depth,
based on data from studies of the deep-sea ophiuroids Ophiura ljungmani and
Ophiomusium lymani.  Assuming a constant population where mortality equals
recruitment, he estimated mortality rate and showed that mortality, and thus recruitment,
decreases with depth. However, Ebert (1983) included data from Gage & Tyler (1982c)
who found considerable variability in survivorship of these ophiuroids and suggested that
depth is not a factor affecting their recruitment. Some support for Ebert's (1983)
hypothesis comes from the observations of Fujita & Ohta (1990) that recruitment of
Ophiura sarsi off the northeast coast of Japan was greater at 250 m than at deeper sites (350
to 550 m).

Many studies of ophiuroids are from deep water habitats with relatively uniform
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soft-bottoms; few studies have compared settlement or recruitment of the same species
between different habitats. We found higher settlement of Ophiura sp. and Ophiopholis
aculeata on artificial collectors in echinoid-dominated barren grounds than in kelp beds in
Nova Scotia (Chapter 4). However, recruitment of both species did not differ between
habitats | year later, suggesting differential post-settiement mortality. Keesing et al. (1993)
compared settlement between 2 habitats on Davies Reef in the Great Barrier Reef. Using
an artificial substrate, they found no differences in settlement of several combined species
of unidentified ophiuroids between the windward and leeward edge of the reef. This
pattern corresponded to observed recruitment to coral rubble in these habitats but Keesing

et al. (1993) suggested that identification of separate species might yield different patterns.

Holothuroidea

Despite the predominance of spawners among the holothuroids (Smiley et al.
1991), most studies of recruitment are based on fissiparous or brooding species (Table
1.4). Ebert (1983) reviewed several studies of fissiparous populations of Holothuria ara
in the South Pacific. He concluded that recruitment can be either continual or seasonal and
that rates of fission alone can be enough to sustain the population. Rutherford (1973)
sampled populations of the brooding holothuroid Cucumaria pseudocurata in the intertidal
zone in northern California and found that they recruit annually in February. He also found
a strong negative correlation between recruit survival and adult density leading him to
conclude that recruitment is density dependent and that recruits are space limited. Sewell
(1994) showed that Leptosynapta clarki, another brooder inhabiting intertidal mudflats of
Bamfield Inlet, British Columbia, recruited annually in April/May. Cameron & Fankboner
{(1989) concluded that recruitment of Parastichopus californicus (a spawner) occurs over
several months in fall and winter, based on an extended spawning period in southern
British Columbia and Washington. They found that recruitment over a 6 year period varied

markedly among sites, with regular recruitment in some areas and weak or no recruitment
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in others.

Differential settlement over a depth gradient has been observed for some
holothuroid species which settle in the shallow range of their habitat. In the St. Lawrence
Estuary, Hamel & Mercier (1996) found settlers of Cucumaria frondosa concentrated in
shallow water (O to 20 m) compared to aduits which were more common in deeper water
(40 and 60 m). Bulteel et al. (1992) found similar results for Holothuria tubulosa in 3
depth zones (6, 19 and 33 m) of a seagrass bed off Ischia Island, Gulf of Naples where

small individuals dominated the shallowest zone.

Crinoidea
There is little information about settlement or recruitment of crinoids on natural
substrata in the field. Mladenov & Chia (1983) were unable to find any settlers of
Florometra serratissima in 2 years of study in Barkley Sound, British Columbia,
suggesting that recruitment is low or sporadic. On Davies Reef (Great Barrier Reef),
Keesing et al. (1993) found 15 crinoid settlers (unidentified species) on artificial collectors.
12 of the settlers were on the windward edge of the reef and only 3 on the leeward, but the

sample size is too small to draw any conclusions about spatial trends in settlement.

Summary and Conclusions

Ebert (1983) identified spatial and temporal variability in recruitment as a salient
feature of most echinoderm life histories. While this review supports this contention, it
also demonstrates that various scales of spatial and temporal variability must be considered
in establishing patterns of settlement and recruitment. Although most echinoderm species
exhibit seasonal patterns of settlement, there is large inter-annual variation. Spatial
variability in settlement occurs at a variety of scales including habitat, site and region, all of
which introduce variables that are difficult to isolate. Although Ebert (1983) presents a

number of "clines” that may explain large-scale patterns of recruitment, these are generally
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based on correlative data and the causative factor(s) are not known. Large spatial and
temporal variability necessitates close monitoring of populations to detect ecologically
relevant patterns of settlement and recruitment, and suggests caution in interpretation and
generalisation of patterns from any particular study. Periodicity may operate on spatial and
temporal scales greater than those sampled and thus go undetected. Alternatively, patterns
may emerge that are of little consequence to the overall recruitment to a population. For
example, low levels of recruitment observed during a particular study may become
irrelevant when a single large recruitment event occurs before or after the sampling period.
Of 88 studies which examined temporal variation in settlement and/or recruitment of
echinoderms, 57 (65 %) were <3 years in duration (Fig. 1.1). Unfortunately, studies of
this duration yield little information on long-term patterns. The length of most studies
likely reflects funding periods for research grants, rather than a biologically meaningful
time scale.

Traditional techniques of monitoring settlement and recruitment are time
consuming, labour intensive, and often inaccurate in sampling and identifying small
individuals. Identification of settlers to species level is often not done because of the lack
of suitable descriptions of early post-metamorphic forms and the difficulty in discriminating
taxonomic characteristics at microscopic scales. However, species identification recently
has been facilitated by molecular genetic techniques (for ophiuroid species) which have
broad applicability to future studies (Medeiros-Bergen et al. 1998). Of the 108 studies on
settlemnent and/or recruitment patterns that I reviewed (Tables 1.1 to 1.4), only 57 detected
individuals that might be considered recent recruits (<! mm for ophiuroids and <2 mm for
other classes).

Settlement and recruitment patterns often are inferred from infrequent measures of
size distributions which are difficult to interpret (Botsford et al. 1994). Estimates of
juvenile abundance can vary greatly between studies due to differences in sampling

method, frequency and efficiency, which limit direct comparisons between studies. Of 82
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studies which provide information on sampling frequency, 30 (37 %) sampled at intervals

<1 month (Fig. 1.2), although sampling frequencies <2 weeks were achieved in only 12
(15 %) of these studies. Because mortality and migration of settlers can occur within days
to weeks after settlement (Hunt & Scheibling 1997), studies with longer sampling intervals
may be unable to reliably detect patterns of settlement. 21 of the 82 studies (26 %) sampled
at yearly intervals providing information on interannual patterns of recruitment (Fig. 1.2),
particularly when these studies extended over several years.

The use of artificial collectors promises an efficient and effective way of frequent
monitoring which may enable reliable prediction of recruitment events. This is particularly
important for species which can severely impact benthic community structure or for
commercially important species. For example, artificial collectors have been used to
sample settlers and predict catch rates of rock lobster 4 years in advance for the fishery in
Western Australia (Phillips 1986, Pearce & Phillips 1994). Artificial collectors also may
provide a means of rigorously examining spatial and temporal patterns of settlement and
recruitment. However, collector results should be compared to measurements on natural
substrata to identify artifactual effects. Also, different collector types should be

standardised, or cross-calibrated (e.g. Chapter 2), to allow comparisons across studies.

POST-SETTLEMENT PROCESSES
Predation
Juvenile echinoids are prey to various invertebrate and fish predators but the relative
importance of these predators as agents of mortality is not well understood (reviewed by
Scheibling 1996). Highsmith (1982) found that the tanaid crustacean Leptochelia dubia
consumed Dendraster excentricus which settled outside of adult sand dollar beds in the San
Juan Islands, Washington. Larvae of D. excentricus that settled amongst adult
conspecifics had higher survival rates because tanaids were excluded from sand dollar beds

by bioturbation. Keats et al. (1985) concluded that size-selective predation of juvenile
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Strongylocentrotus droebachiensis by cunner and winter flounder may play an important
role in regulating recruitment to echinoid populations in Newfoundland. In a cobble bed in
Nova Scotia, Scheibling & Hamm (1991) found that juvenile rock crabs, lobsters and
sculpins had a significant effect on the survival of juvenile S. droebachiensis in predator
inclusion cages. In a Californian kelp forest, Pearse & Hines (1987) observed a dramatic
decline in the density of recently recruited S. purpuratus, which they suggested was due to
disease and/or predation by asteroids. Also in California, Rowley (1990) attributed a
higher rate of mortality of newly settled S. purpuratus in a kelp forest than in a nearby
barren ground to a difference in predation between the 2 habitats, although he did not
identify predators. In New Zealand, Andrew & Choat (1982) observed enhanced
recruitment of Evechinus chloroticus in predator exclusion cages in barren grounds and
suggested that fish are important predators of juveniles. They also found that survival of
caged juveniles was much higher in sparse and dense kelp forests than in barren habitats
and concluded that processes other than predation regulate echinoid abundance in algal
covered habitats (Andrew & Choat 1985).

The importance of spatial refugia from predation has been demonstrated for several
species of echinoids which find shelter in a variety of microhabitats. Mussel beds were
shown to provide a spatial refuge for juvenile Strongylocentrotus droebachiensis from
predation by fish, crabs and lobster in New England (Witman 1985). In cage experiments
in Nova Scotia, Scheibling & Hamm (1991) recorded a lower rate of predation on juveniles
of S. droebachiensis which sheltered among cobbles compared to those without a spatial
refuge. Juveniles of S. franciscanus are often observed under the spine canopies of
conspecific adults which provide protection from predators (Tegner & Dayton 1977, 1981,
Tegner & Levin 1983, Breen et al. 1985, Sloan et al. 1987, Rogers-Bennett et al. 1995).
In contrast, Andrew & Choat (1982, 1985) found no effect of conspecific adults on
juvenile survival of Evechinus chloroticus.

Several studies have documented bimodal size distributions of echinoids with
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prominent juvenile and adult modes but low numbers of intermediate size animals (e.g.

Tegner & Dayton 1981, Ojeda & Dearborn 1991, Rodriguez & Ojeda 1993, reviewed by
Scheibling 1996). This pattern has been attributed to an ontogenetic shift in microhabitat as
juveniles outgrow spatial refugia and are subjected to increased predation until they reach a
refuge in size as adults (but see also Botsford et al. 1994). For example, Scheibling &
Raymond (1990) found that juveniles of S. droebachiensis in a cobble bed declined in
abundance once they outgrew refuges in the interstices and undersides of cobbles. This
was attributed to predation since juveniles survived under boulders that were
experimentally transplanted to the bed, providing a more suitable spatial refuge for larger
individuals.

Predation of juveniles of the asteroid Acanthaster planci by a variety of animals
(including fish, crabs, lobster, shrimp, gastropods, corals and worms) has been observed
in field and laboratory studies (reviewed by Moran 1986, Keesing & Halford 1992a).
Keesing & Halford (1992b) placed laboratory-reared juveniles of A. planci of different
ages in open and closed cages to examine survival rates in the field. They found that
juveniles move little in the presence of adequate food supplies, suggesting that preferential
settlement in spatial refugia would enhance survival. They recorded high but declining
rates of mortality (attributed to predation) for newly settled juveniles over the first 4
months, suggesting that early post-settlement mortality could substantially affect population
dynamics. McCallum (1992) developed models to examine predation on juveniles as a
mechanism of controlling populations of A. planci and concluded that our understanding of
the stock-recruitment relationship and degree of openness of populations was insufficient to
reliably address this problem.

Post-settlement predation has been less well documented for other species of
asteroids. Dayton et al. (1974) concluded that populations of Acodontaster conspicuus and
Austrodoris mcmurdensis are at least partially regulated by predation of juveniles by the

detritivorous asteroid Odontaster validus. Day & Osman (1981) observed predation on
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juveniles of Patiria miniata by adult conspecifics and by cancrid crabs. In laboratory
experiments, Rumrill (1989) recorded high survival rates for juveniles of Asterina miniata
offered to a fish, 2 species of predatory crabs and 5 species of predatory asteroids. These
results, combined with observations of juvenile abundance in the field, led him to conclude
that post-settlement mortality due to predation is low.

Duineveld & Van Noort (1986) attributed the rapid decline in density of the
ophiuroid Amphiura filiformis off the Netherlands to predation of juveniles by shrimp,

crabs and polychaetes. They also proposed that high adult densities (1330 m'2) might
result in competition or cannibalism, but reported similar rates of post-settlement mortality
at a nearby site with lower adult densities (300 m-2). Packer et al. (1994) found that small
Ophiura sarsi (3 to 13 mm) were the most common component of the stomach contents of
American plaice (Hippoglossoides platessoides) in the Gulf of Maine. They concluded
that, despite their low caloric value, juveniles were selectively preyed upon because of their
abundance and/or accessibility.

Several predators of juvenile holothuroids have been identified but the impact of
predation on recruitment to adult populations is not clear. Rutherford (1973) showed that
recruits of the brooding holothuroid Cucumaria pseudocurata were reduced by 61 % after |
month and by more than 96 % after 1 year, and suggested predation by the asteroid
Pycnopodia helianthoides as a source of post-settlement mortality. In contrast, Sewell
(1994) observed "no dramatic decrease in numbers of juvenile Leptosynapta clarki in the
first month" and followed the cohort for 6 months until it merged with the aduit population.
This discrepancy could be a result of the different habitats sampled and different predator
assemblages. In the St. Lawrence Estuary, Hamel & Mercier (1996) observed predation of
juveniles of Cucumaria frondosa by the echinoid Strongylocentrotus droebachiensis and the
asteroid Solaster endeca, but these occurrences were rare. In laboratory experiments,
Cameron & Fankboner (1989) showed that Solaster dawsoni and a hermit crab Pagarus

hirsutiusculus selectively preyed on juveniles of Parastichopus californicus and suggested
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that predation may limit recruitment to areas free of predators. In cage experiments off

Okinawa Island, Wiedemeyer (1994) showed low rates of natural mortality (0.6 % mo-!) of
juvenile Actinopyga echinites. However, when the cage lids were removed and the
juveniles exposed to potential predators (a gastropod and several species of fish), mortality
rate increased 5 fold (to 3.3 % mo-!) due to predation. This predation rate is still low
compared to that observed for other holothuroid species, leading Wiedemeyer (1994) to

suggest that the juveniles of A. echinites are defended by toxins.

Migration and dispersal

Migration of juvenile echinoids between distinct habitats such as kelp forests and
barren grounds is generally discounted due to the large distances relative to the size and
rates of movement of the juveniles (Rowley 1989) or because of the presence of some
physical barrier such as sand (Watanabe & Harrold 1991). With increasing age and size,
however, the likelihood of migration increases. DeRidder et al. (1991) found no
recruitment of Echinocardium cordatum in the littoral zone and suggested that 2 to 4 year
old echinoids migrated there from deeper water.

Small scale migrations have been observed for juvenile asteroids that settle in
nursery areas and then move to adult habitats (reviewed by Chia et al. 1984). Birkeland et
al. (1971) commonly found several asteroids (Mediaster aequalis, Luidia foliolata,
Crossaster papposas, Henricia leviuscula, Solaster stimpsoni, S. dawsoni, Pteraster
tesselatus) on the tubes of the polychaete Phyllochaetopterus prolifica and suggested they
settle there and feed on epizoites before migrating to sandy areas to feed on larger prey.
Scheibling (1980a, b) suggested that Oreaster reticulatus individuals settle in seagrass beds
and then migrate to adult populations in open sandy areas. Similarly, Jost & Rein (1985)
proposed that migration of juvenile Astropecten bispinosus from Zostera marina beds
compensates for losses due to predation on a sand bottom. In contrast, Rumrill (1989)

measured low rates of movement of settlers and juveniles of Asterina miniata in the
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laboratory and concluded that migration was limited in natural populations. Extensive

migrations of juveniles or adults of Acanthaster planci to form aggregations of different
year classes have been proposed as a causal mechanism for population outbreaks, although
there is no obvious cue to trigger such behaviour (reviewed by Ebert 1983, Moran 1986,
Johnson 1992b).

Post-settlement migration of holothuroids has been observed at small and large
spatial scales. In laboratory and field studies in the San Juan Islands, Washington, Young
& Chia (1982) showed that post-settlement migration of Psolus chitonoides toward shaded
areas such as cracks and overhangs occurs within the first week of settlement. After 1
month, juveniles in the field could no longer be located and were presumed to have
dispersed. Young & Chia (1982) suggest that post-settlement processes such as migration
are more important than substratum choice at settlement in determining the spatial
distribution of P. chitonoides. Hamel & Mercier (1996) showed a 3-stage migration of
Cucumaria frondosa in the St. Lawrence Estuary: 4 to 5 months after settling on the
undersides of rocks, juveniles migrate to crevices; after 19 months, when they reach a size
refuge from predation (~ 35 mm), they move to exposed rock surfaces; finally, once sexual
maturity is reached after ~ 3 years, the adults migrate to deeper water. Similarly, Bulteel et
al. (1992) concluded that settlement of Holothuria tubulosa occurs in shallow seagrass beds
and that some individuals migrate to deeper water to reproduce.

For small fissiparous or brooding echinoderms, rafting on drift algae may be an
effective mode of dispersal for both adults and juveniles. Highsmith (1985) observed
rafting on drift algae for several brooding species of invertebrates on San Juan Island,
Washington, including the ophiuroid Amphipholus squamata. He concluded that the small
size of brooders, especially the juveniles, makes them well suited to this mode of dispersal.
Mladenov & Emson (1988) proposed that rafting on floating clumps of algae such as
Halimeda and Amphiroa may serve as a dispersal mechanism for strictly asexual

populations of the ophiuroids Ophiactis savignyi and Ophiocomella ophiactoides in
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Jamaica. Sewell (1994) provides anecdotal evidence for dispersal of the brooding

holothurian Leptosynapta clarki in Bamfield Inlet, British Columbia, by rafting, floating,
swimming, and transport by waves or currents. In contrast, Hess et al. (1988) showed
much greater gene flow between populations of L. clarki < 500 m apart than between those
Il to 24 km apart on San Juan Island, and concluded that dispersal between distant

locations was limited due to barriers of unfavourable habitat.

Disease, starvation and other mortality

Disease can have catastrophic effects on echinoid populations, as evidenced by
epizootics affecting Strongylocentrotus droebachiensis in Nova Scotia (Miller & Colodey
1983, Scheibling 1986) and Diadema antillarum in the Caribbean (Lessios et al. 1984,
Hughes et al. 1985). Scheibling & Stephenson (1984) reported higher mortality of adults
than juveniles of S. droebachiensis during a disease outbreak in Nova Scotia in 1983.
They suggested that juveniles, which shelter beneath rocks and in crevices, are more likely
to avoid exposure to a waterbomne pathogen. Following mass mortality of D. antillarum in
Barbados in 1983, recruitment in 2 successive years enabled populations to recover to
within 57 % of their pre-mortality levels by 1985 (Hunte & Younglao 1988). In other
areas, however, recruitment occurred at relatively low levels and recruits tended not to
persist (Bak et al. 1984, Lessios 1988, 1994, Carpenter 1990, Karlson & Levitan 1990).

Mass mortalities have also been observed for juveniles of Acanthaster planci in Fiji
(Zann et al. 1987, 1990). In some areas, the 1984 cohort suffered complete mortality by
1987 due to an undescribed sporozoan pathogen, while juveniles from the same cohort
survived in other areas. Necrotic lesions are typically observed in juveniles that have been
nutritionally stressed and Keesing & Halford (1992a) concluded that density-dependant
mortality, in the absence of sufficient coral food, could limit survival of juvenile A. planci.

Abiotic sources of mortality such as storms and temperature and salinity

fluctuations also may affect recruitment (Lawrence 1996). In British Columbia, mass
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mortality of recently settled Strongylocentrotus droebachiensis and §S. franciscanus was
attributed to rainwater runoff during the winter (Cameron & Fankboner 1989). In
laboratory and field experiments Himmelman et al. (1983, 1984) showed that juveniles of
S. droebachiensis suffered greater rates of mortality than adults when exposed to low

salinity conditions.

Summary and Conclusions

Most species of benthic marine invertebrates suffer very high mortality within the
first days to months of life after settiement (Gosselin & Qian 1997, Hunt & Scheibling
1997). Gosselin & Qian (1997) conclude that common processes may influence the early
post-settlement survival of most species, which are at least as important as processes
affecting larvae. However, the role of post-settlement processes in determining
populations of echinoderms remains a poorly studied component of their early life history.
High rates of settlement and recruitment are often recorded but the fate of recruits is usually
unknown. Various factors such as migration, predation, disease, storms and reduced
salinities have been implicated as sources of high post-settlement mortality or loss from a
population. However, separating these factors and determining their relative importance
has proven difficult, particularly in field studies. Although early survival can be tracked by
using methods as simple as size or age distributions, the sampling resolution of most
studies (Tables 1.1 to 1.4) is inadequate to make clear statements about meaningful time
scales and possible causes of mortality. Many predators of juvenile echinoderms have been
identified from laboratory studies and analysis of gut contents, but further field studies are
required to quantify predation rates under natural conditions and to examine predator-prey
interactions. Field enclosures and tethering are effective means of manipulating predators
and prey, although they may introduce experimental artefacts which must be assessed using

appropriate controls (Scheibling 1996, Hunt & Scheibling 1997).



Table 1.1. A summary of studies examining spatial and temporal patterns of settlement and/or recruitment of echinoids.

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
North Temperate
Strongylocentrotus Vega Island, barrens and 0.25 m? quadrats 2 10 mm Jul 1990, Apr Age/size-frequency analysis showed Leinaas &
droebachiensis Norway kelp, 2.5-10 m and Jul 1991 regular annual recruitment in barren  Christie
areas; kelp beds inhibit recruitment. 1996
Strongylocentrotus Isles of Shoals, barrens and artificial 0.49 mm 1990, 1992  Substantial annual settlement Harris et al.
droebachiensis New kelp, 0-30 m collectors (plastic and 1993, decreasing with depth (after 9m). 1994
Hampshire, turf) and photo once in Jun-  Recruitment greater on artificial
USA quadrats Jul turf than rock.
Strongylocentrotus Gulf of Maine, barrens, kelp,  artificial collectors 0.150 mm  May to Sep  Order of magnitude differencesin ~ Chapier 2
droebachiensis USA, Bay of silt, 10 cm-8 m (plastic turfand  or cheese 1994, maximum settlement between
Fundy and off bottom at 5- scrub brush) clothmesh 2-8 week regions. Highest settlement in the
Atlantic coast of 30 m size intervals Gulf of Maine (34008 m-2), lowest
Nova Scotia, in the Bay of Fundy (32 m*?), and
Canada intermediate in Nova Scotia (1066
m'2), Within regions, settlement
differed between sites but was
within the same order of
magnitude. Settlement greater in
the barrens than in adjacent kelp
beds in the Gulf of Maine.
Strongylocentrotus Si. Margaret's  habitat not 0.25m’ quadrats 2 mm Jul 1968 A size-frequency distribution Miller &
droebachiensis Bay, Nova stated, intertidal- suggested annual recruitment in Mann 1973
Scotia, Canada 20 m May and Jul, following Nov and
Apr spawnings.
Strongylocentrosus St. Margaret's  barrens 0.1 m? quadrat > 5 mm May-Sep Evidence for high recruitmentin  Lang &
droebachiensis Bay, Nova 1975, the year after destructive grazing of Mann 1976
Scotia, Canada monthly kelp.
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Table 1.1 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Strongylocentrotus Atlantic coast of barrens and artificial collectors 0.150 mm  Jun-Nov Settlement pulse in Jul of each Chapter 4
droebachiensis Nova Scotia, kelp, 0.2 and (plastic turf) and  and | mm 1992-1994,  year. Low settlement in 1992 and
Canada 2.3 m off 1.0 m2 quadrat for mesh size biweekly and  '93, high settlement in ‘94,
bottom at 5-10  recruits recruits once  Settlement greater in barrens than
m per year 1993- in kelp beds but not significant.
1995 Recruitment reflects settlement.
Strongylocentrotus Avalon barrens, 0-24m 0.2, 0.8 or 1.0 m?2 2-3 mm 1968-1969,  Decrecased recruitment with depth as Himmelman
droebachiensis Peninsula, quadrat (depending once or twice reduced food and slower growth 1986
Newfoundland, on density) in summer  results in increased predation.
Canada Suggested increased recruitment
with exposure to wave action
(fewer predators) and lower
temperature (increased larval
survival).
Strongylocentrotus Conception barrens and diver-operated air 1 mm summer High recruitment in 1979 and '80  Keats et al.
droebachiensis Bay, macro-algae, dredge in 0.1 m2 1979-summer and low from '81-83. Juveniles 1985
Newfoundland, 0-18 m quadrats 1983, once or most abundant in barren zone (6-9
Canada twice per year m) particularily on rough coralline

algae and rare in the macro-algal
zones (0-3 m and12-18 m).
Suggested that macro-algae inhibits
recruitment but rough coralline
algae in barren areas acts as a refuge
from predation.
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Table 1.1 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Strongylocentrotus St. Lawrence rock and cobble, diver-operated 0-1 mm once in 1978 Single pulse of recruitment in 1977 Himmelman
droebachiensis Estuary, intertidal-18 m  "scraping devices or 1979 at8 and then none from '78-81. High et al. 1983
Québec, Canada and an air lift sites and from recruitment at all depths in the
aparatus” in 1978- lower estuary, but limited to below
0.25 m* quadrats 1980/81 at 2  the fresh layer (0-2 m) further
sites, every 2- upstream. Suggested that low
8 months survival of juveniles in the upper
estuary related to low salinity.
Strongylocentrotus Strait of urchin grazed 0.25 m? airlifi 2.5 mm 1972-1975,  First record of an urchin outbreak  Foreman
droebachiensis Georgia, British and ungrazed mesh size  once per year in the region. Recruitment in 1973 1977
Columbia, bedrock in and '69 and none in '74 or '75.
Canada estuarine flow Recruitment success related to
30 km from plankton bloom and cold winters
river, 7.59 m which enhance larval survival.
Strongylocentrotus Aleutian Islands rock/boulder 025m?quadrats <2-3mm  1972-1990, Heavy recruitment in Aleutians in  Estes &
droebachiensis, and SE Alaska, bottom with or every 1-7 most of the 19 years; low and Duggins
S. purpuratus, USA without kelp, years (sites  episodic recruitment in SE Alaska. 1995
S. franciscanuy 6-13m sampled for 3- Regional differences related to
(Alaska), 15 years) larval transport and supply.
S. polyacanthus
(Aleutians)
Strongylocentrotus Tatoosh Island  habitar and method not stated  1-2 mm "can 1963-1985  Recruitment only observed in Paine 1986
purpuratus area, depth not stated be found"” 1963, '69, '82 and '83. No

Washingiton,
USA

consistent association with El Nifio
events affecting these waters but
some association with warmer
water temperatures suggesied
northward movement of water
enhances recruitment in this area.
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Table 1.1 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Strongylocentrotus northern habitat not antificial 0.06 mm Apr-Sep 1992 No significant vertical (5-20 m) or  Wing et al.
Sfranciscanus, California, USA stated (1992);  collectors mesh size and 1993, horizontal (10-100's m) variation in 1995a, b
S. purpuratus “rocky bottom"  (scrub brush) weekly settlement between collectors
(1993), 0.5-1 m within a site. Low settlement of
off bottom at both species in 1992; mainly
5-20 m (1992), during an unusual upwelling
10-12 m (1993) relaxation event in Jul, Minimal
settlement at 3 sites in 1993 but
high at a 4th site where settlement
of S. purpuratus during a
relaxation event in Apr.
Strongylocentrotus central tide-pools “thorough search” 0-2.5 mm 1985-1986,  Recruitment driven by physical Ebent &
purpuraius California to once in spring events: low recruitment at Russell 1988
central Oregon, upwelling sites (capes and
USA headlands); high annual recruitment
at sites between. No trend with
latitude.
Strongylocentrotus northern and habitat and artificial collectors 0.436 mm  1990-1993,  Secasonal scttlement (Feb-Jul) was  Ebert et al.
Jranciscanus, southern depth not stated  (scrub brush) mesh size weekly with  higher and more regular in the 1994
S. purpuratus California, USA but variable, some gaps south. Settlement correlated with
1-1.4 m off general oceanographic processes.
bottom
Strongylocentrotus Pacific Grove,  kelp forest, 1 m artificial collectors 0.25 mm Jul 1988-Jul  Two settlement peaks (Dec-Feb and Harrold et al.
purpuratus / California, USA off bottom at  (plastic light mesh size 1989, Apr-Jul). Greater settlement in 1991
S. franciscanus 10m diffuser and ~ monthly plastic collectors, probably due to
(not distinguished) coralline algae) fewer predators.
Strongylocentrotus Pacific Grove,  kelp forest, 10 m2 circular > 10 mm (5- Oct 1972-Aug S. franciscanus densities low Pearse &
purpuratus, California, USA 10 m plots 10 mm was 1981, every  throughout. Recruitment pulse of  Hines 1987
S. franciscanus variable) 2-12 months  S. purpuratus in 1975-76. A
with a gap in  massive reduction of urchins in
1973774 1976 due to predation or discase.
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Table 1.1 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Strongylocentrotus Carmel Bay, kelp forestand 1 m2 quadrats 2-3 mm 1986-1989, ~ Evidence of recruitment in kelpin  Watanabe &
purpuratus, central deforested rock "some twice per year 1987-88. Suggested that heavy Harrold 1991
8. franciscanus California, USA reef, 16-29 m <lcm recruitment in 1984 was
overiooked" responsible for population increase

and deforestation at both sites (but
only one site recovered).

Strongylocentrotus Santa Barbara, "paichy" kelp  collected shale 0.243 mm  1984-1986, Few settlers in Apr 1984/85and  Rowley

purpuratus, California, USA forest and with resident mesh size mostly during many in May '86; similar patterns 1989, 1990
S. franciscanus coralline barren, organisms summer for both species but lower densities
8-12m of 8. franciscanus. No significant
difference between habitats;

concluded that post-settlement
mortality is greater in the kelp.

Strongylocentrotus Point Loma, inner, middle 1 m? quadrat 5-7.5 mm 1974-1977,  Substantial annual recruitment at  Tegner &
purpuratus, California, USA and outer kelp  "haphazardly ~ monthly all sites. S. franciscanus Dayton 1981
S. franciscanus forest, 12, 15 placed over rock recruitment lower at inner (12 m)
and 18 m piles where site and much higher outside the
urchins were kelp canopy. Concluded that kelp
abundant” and/or resident predators reduce
recruitment.
Strongylocentrotus Point Loma, outer, middle ! m? quadrats "< 10 mm  1983-1987, Recruitment on outer edge of kelp  Tegner &
purpuratus, California, USA and innerkelp  "haphazardly not ~twice per  forest was low from 1983-85and  Dayton 1991
S. franciscanus forest, 18, 1S placed over quantitative- year increased in '86 and '87 Lo previous
and 12 m aggregations of  ly sampled"” levels (1970's, see above),
urchins in boulder recruitment remained low within
piles” forest. Low recruitment related to
El Niiio conditions leading to
reduced production/survival of
tarvae and altered currents.
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Table 1.1 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Strongylocentrotus San Diego, inshore, artificial 0.436 mm  Mar-May Low settiement (0-10 per collector) Schroeter et
Sranciscanus, California, USA offshore and collectors (scrub  mesh size 1991 and Jan, in both years. Kelp forest had no al. 1996
S. purpuratus within 3 kelp  brush) Apr-Jul 1992, effect on setilement of S.
forests, ~ weekly purpuratus. Variable settiement of
I m off bottom (range = §. franciscanus with some evidence
at 12-15m 5-20d) for higher settlement offshore.
Concluded that kelp forests do not
affect larval supply or settlement.
Strongylocentrotus La Jolla, habitat not method not stated 0-2.5 mm 1970-1978, Good recruitment in 1969, '71, ‘74 Ebert 1983
purpuratus California, USA stated 6 months-3  and substantial recruitment in '72
years apart and '76.
Strongylocentrotus Papalote Bay,  habitat not method not stated 0-2 mm 1962-1969,  Substantial annual recruitment with Pearse 1970
purpuraties Baja California, stated once or twice more than one pulse in some years in Ebert
Mexico per year and variability in timing between 1983
years.
Dendraster exentricus  Montercy Bay, inshore sand plankton tows; 0.202 mm  1978-1981,  Abundance of competent larvac Cameron &
California, USA dollar bed to grab and core mesh size monthly with peaked in summer, Variable inter-  Rumrill
offshore, samples (tow); gaps annual settlement within and 1982
8-30 m 0.3 mm outside adult sand dollar bed.
mesh size
(grab)
Echinarachnius parma  Middle Atlantic  habitat not 0.1 m> Smith- 1 or 0.5 mm Jul 1977-Jul Regular annual recruitment at 3 of  Steimle
Bight and stated, 20-70m  McIntyre grab mesh size 1985, every 4 sites from Dec-Apr in Middle 1990
Georges Bank, 2-13 months  Atlantic Bight, from Nov-Jul on
northwest Georges Bank. No recruitment at
Atlantic the fourth site afier 1978 attributed

to anoxic conditions.
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Table 1.1 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Echinus affinis Rockall Trough, habitat not 3 m wide Agassiz 20, 16, 12, Jun 1973-Apr Mixed unimodal and bimodal size- Gage &
northeast stated, trawl, epibenthic 10, 1 or 1985, 1 day-  frequency distributions, but Tyler 1985
Atlantic 1632-2300 m  sledge, single- 0.5 mm 37 months variation in sampling methods and

Echinocardium
cordatum

Echinocardium
cordatum

Echinocardium
cordatum

German Bight, fine sand,
North Sea 25and 35 m

Terschelling and sand, 7-18 m
Texel Islands,

North Sea,

Netherlands

Bay of Seine, sand,
Normandy, 0-25m
France

warp trawl or

semi-balloon otter

trawl

vertical plankton
tows with Nansen
net; 10 cm?
subsamglc from
0.017m" Reineck
box core

0.2 m? Van Veen
grab sampler

0.1 m? grab
samples

mesh size apan

0.15 mm Apr 1985-Dec
mesh size 1986,

(tow); monthly

0.1 mm

mesh size

(core)

! mm mesh 1972-1982, ~
size once per year
from Apr-Jun

3-6 mm 1986-1987,
once per year

possible bias may have obscured
patterns. Samples using small
mesh sizes suggested recruitment is
rare.

Larvae and settlers present from Bosselmann
Jun-Aug in both years. Maximum 1989
settlement (26000 m'z) in Aug;

heavy post-settlement mortality

eliminated recruits by Sep of bath

years. Suggested dense settlement

enables population recovery in

years following heavy adult

mortality.

High recruitment (individuals < 1.5 Beukema
cm) in 1973, '77 and '80; low or no 1985
recruitment in other years.

Recruitment greatest at depths of 8-

12 m and low above 8 m and

below 12 m. Suggested that

recruitment occurs infrequently but
simultaneously over large areas

(100's of km), and may be related

to colder water temperatures.

Recruitment increased with depth; DeRidder et
no recruits in littoral zone. al. 1991
Suggested that 2-4 year olds

migrate to the littoral zone.



Table 1.1 continued

Species Location Habitat, Sampling Size¥ Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Sphaerechinus Penfret Island,  algac-encrusted "1 m wide dredge” 20 mm Dec 1988-Dec Consistent recruitment in Aug/Sep Guillou &
granularis Brittany, France shell debris, or diver collected mesh size or 1991, cach year but of vanable magnitude Michel
mud, Zostera not stated monthly with among years. Recruits found on 1993a, b, see
marina and rock, an 8 month  algac whereas adults occur only on  also
<5m gap in rocks. Suggested post-settlement  Glémarec &
1989/90 migration from juvenile to adult Guillou
habitats occurs both passively 1996

(with currents) and actively (with
change in diet).

Paracentrotus lividus,  Bay of 6-52 km plankton tows 0.2 mm 1984-1988,  Synchronous spawning twice per  Pedroti &

Arbacia lixula Villefranche, offshore, 10 m meshsize  every year (spring and falt). Larvae Fenaux

echinoplutei Provence, and 200-0 m 2 weeks-3 restricted to the surface layer, 1992,
France months decreased with distance from the Pedrotti

coast and rarely occurred beyonda 1993
divergence zone 30 km offshore.

Timing of recruitment of P. lividus
related 1o Jarval supply.

Clypeaster ravenelii northern Guilf of sand, 110 m otter trawl 10 mm Dec 1988-Jan Low numbers of juveniles (1-4 cm) McClintock
Mexico mesh size 1991, noticed in Sept 1989, and May and et al. 1994
bimonthly Aug '90 but linle evidence of
with gaps substantial recruitment. Suggested
that if recruitment occurs, it is

episodic.
South Temperate
Evechinus chloroticus  Goat Island barrens, -8 m  0.25 m?2 quadrats > 5 mm 1975-1977,  Juveniles found at all sampling Andrew &
Marine Reserve, “carefully "reliably yearly; 1979- dates. Smaller proportions of Choat 1982
New Zealand searched" found" 1981, juveniles in 1975-77 than in '79-81
monthly with suggested variable recruitment
gaps among years, Concluded that
recruitment maintains populations
in barrens.
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Table 1.1 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Centrostephanus central coasl barrens 5 m? transects >3 mm Jan 1985-Jan  Recruitment varied between 4 sites  Andrew &
rodgersii New South 1988, 1-3 spanning 300 km from no Underwood
Wales, Australia limes per year recruitment over 4 years to high 1989

annual recruitment. Suggested

differences in availability of spatial

refugia (rock types) may resull in

variable rates of juvenile survival.
Centrostephanus Botany Bay, barrens and "haphazard swim" 5-10 mm Oct 1986-Jun Recruitment observed at all 7 sites  Andrew 1991
rodgersii New South foliose algae, 1988, from Jan-Apr in both years.

Wales, Australia < 6 m

~ bimonthly

Suggested that growth of foliose
algae (at 5 sites following mass
montalities of C. rodgersii) did not
affect recruitment.

o



Table |.] continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source

Depth Method Period,

Frequency
Tropical
Araeosoma northern habitat not individually 25 mm Oct 1985-Feb  Only Phormosoma placenta Young 1992
Jenestratum, Bahamas stated, 100- collected using 1990, ~ twice showed direct evidence of
Archaeopneustes 930 m suction device or per year (9 recruitment; small indivduals of
hystrix, scoop on cruises) other species not detected.
Aspidodiadema jacobyi submersible Suggested recruitment of those
Brissopsis sp., species is sporadic and patchy,
Cidaris blakei, based on adult size distributions.
Conolampas sigsbei,
Linopneustes
longispinus,
Lytechinus euerces,
Paleobrissus hilgardi,
Paleopneustes cristatus,
Paleopneustes
tholaformis,
Phormosoma placenta,
Salenia goesiana,
Srylocidaris lineata
Diadema antillarum Curagao, coral reef terrace  transect survey size not May-Oct After mass mortality due to disease, Bak et al.
Caribbean and slope, stated 1983, twice < 1 mm recruits settled throughout 1984
3-30m the year. Larvae may have
originated from an island 52 km up
current not affected by disease.
Diadema antillarum Curagao, 2 coral reefs artificial collectors <3 mm 1982-1984, Continuous settlement with spring Bak 1985
Caribbean 24 km apart, (plastic light biweekly with and fall peaks. Settlement similar
20 cm off diffuser panels) gaps between years but differed between

bottom at 8 m

sites.

Ly



Table 1.1 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Diadema antillarum Barbados, fringing coral 10-250 m2 search < 10 mm = Oct 1984-Dec  Setilers found in Jun in cryptic Hunte &
Caribbean reef area scttlers; 1985, habitats and aggregated with adults  Younglao
10-15 mm = monthly on offshore region of reefs. 1988
recruits Populations recovered to 57 % of
pre-mortality levels within 2 years
after disease. Suggested recruitment
is greater on reefs with higher adult
densities.
Diadema antillarum St. Croix, US  coral reef, Im? quadrats 0-10 mm Dec 1983-Mar Low recruitment at 2 of 4 sites in  Carpenter
Virgin Islands, 2-10m 1986, 2-15  Feb, Apr 1984 only. Paucity of 1990
Caribbean months apart larvae/settlers after mass mortalies
from 1983-85 suggested population
recovery is recruitment-limited.
Diadema antillarum St. John, US habitat method recruit = 1984-1988,  Annual recruitment rates were low  Karlson &
Virgin Islands,  previously previously < 50 mm ~ yearly (0.017-0.534 m'zyr") after mass Levitan 1990
Caribbean stated stated mortalities from 1983-84.
Significant interannual variation
but no significant variation
between sites in the same bay.
Highest recruitinent in 1985,
lowest in '88. Concluded that
recruitment rate was density-
independent but too low to enable
populations to recover to pre-
disturbance levels.
Diadema antillarum Molasses Reef, offshore reef, 140 m? quadrat 3-4 mm Jul 1991-Aug Mass mortality in Jan/Feb 1991 Forcucci
Florida Keys 1-2m 1992, every  reduced densities by 97 %. Low 1994
reef tract, USA 1-4 months  recruitment from Jul-Oct 1991,

none in '92. Suggestcd populations
will not recover because mortality
rate exceeds recruitment,

14
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Table 1.2. A summary of studies examining spatial and temporal patterns of settlement and/or recruitment of asteroids.

Habitat,
Depth

Species Location

Sampling Size*

Method

Sampling  Patterns and Conclusions
Period,

Frequency

Source

North Temperate

habitat not
stated, 0-33 m

Long Island
Sound,
Connecticut,
USA

Asterias forbesi

Atlantic coast of barrens and

Nova Scotia, kelp, 0.2 and

Canada 2.3 m off
bottom at 5-10
m

Asterias vulgaris and/or
A. forbesi

Torbay,
southwest
England

rocky intertidal
shore

Asterias rubens
(= A. vulgaris)

collectors (100 size not
clean oyster shells stated
in wire mesh

bags)

artificial collectors 0.150 mm
(plastic turf)and  and | mm
1.0 m? quadrat for mesh size
recruils

"carefully 2-5mm

searched”

1937-1961,
twice per week 10m and then decreased to 33 m.
Timing and magnitude of
settlement varied between sites
and years, occurring between Jun

and Sep and ranging in duration

from 1-91 days {(mean = 52 days).

Settlement intensity varied from
a single peak in 1 week to
constant settlement throughout
the period. Annual settlement
increased from NE to SW and
varied by 4 orders of magnitude
(0-1700 collector’') with no
pattern of good and bad years.
Settlement not correlated with
adult density.

Settlement pulse in Aug/Sep of
each year. Highest settlement in
1993 and '94, intermediate
settlement in '92, Settlement

Jun-Nov
1992-1994,
biweekly and
recruits once

per year 1993- greater in kelp beds than in barrens.

1995 Recruitment reflects settlement.
1980-1981,
monthly and Sep ‘81 beneath boulders and
in crevices. No recruits found in
adjacent areas with similar

topography.

Settlement increased with depth to  Loosanoff

1964

Chapter 4

Recruits first appeared in Jul 1980 Barker &

Nichols
1983,
Nichols &
Barker 1984
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Table 1.2 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Asterina miniata Barkley Sound, mud and cobble, 0.25 m?quadrats  2-4 mm Mar 1985- Recruitment at 1 of 2 sites in Rumrill
British 4-6 m “ray length” Aug 1987, 1983 and '84; nonc at cither site 1989
Columbia, bimonthly- from '85-87. Evidence that
Canada yearly migration and juvenile monality
are not as important as pre- and
carly post-settlement events in
determining recruitment,
Mediaster aequalis, San Juan sandand tube  diver-collected >2 mm "fall and Juvenile asteroids of all species Birkeland et
Luidia foliolata, Islands, worm (Phyllo- winter, 1968- were commonly found on al. 1971
Crossaster papposas, Washington, chaetopterus 1969", 4 dives polychaete tubes and rare
Henricia leviuscula, USA prolifica) beds, elsewhere, Suggested tube worm
Solaster stimpsoni, 20 m beds are a nursery ground for
S. dawsoni, juveniles, which subsequently
Preraster tesselatus migrate to sandy areas to feed on
larger prey.
unidentified species northern habitat not anificial 0.06 mm Apr-Sep 1992, Low levels of settlement occurred  Wing et al.
California, USA staied, 0.5-1 m collectors mesh size weekly throughout most of the sampling 1995a
off bottom at  (scrub brush) period at both sites, with a peak
5-20m in settlement in Jul during an
unusual upwelling relaxation
event.
Patiria miniata Southern rockreefsand  method not stated  5-10 mm period not Juveniles found under boulders and Day &
California boulders stated adults on reef surface. Suggested  Osman 1981
Bight, USA juveniles are either excluded by
adults or subject to predation
when exposed.
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Table 1.2 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Astropecten Sardinia, ftaly  sand bottom 25 m? grid 10-15 mm  Jul/Aug 1980 Recruitment never observed on Jost & Rein
bispinosus, (5-10 m) and radius sandy bottom where adults of both 1985
A. aranciacus seagrass species coexist; suggested
(Zostera migration of juvenile A.
marina) beds bispinosus from seagrass beds
(10-20 m) compensates for loss via predation
by A. aranciacus.
Anseropoda placenta Bay of Brest, "muddy sand, "0.8 m wide 20 mm Dec 1983-Nov  Annual recruitment from Aug- Guillou &
Brittany, France sediments with  'Charcot' dredge”  mesh size 1986, monthly May. Higher recruitment at decper Diop 1988,
shells and sandy witha 6 site (where shells provide a see also
gravel”, month gap in refuge); possible migration to Glémarec &
17-35 m 1984 shallower sites (where adults are ~ Guillou
more abundant). 1996
South Temperate
Stichaster australis, Maori Bay, rockreefsand  "searched 27 mm 1974-1976, S. australis setlers found only on  Barker 1977
Coscinasterias and other sites  boulders, exhaustively on "on many encrusting coralline alga
calamaria around North intertidal-S m many occasions” occasions” (Mesophyllum insigne) at all
Island, sites. C. calamaria settlers not
New Zealand found in Maori Bay (where
juveniles and adults existed) but
occurred on various algae at other
sites.
Stichaster australis Maori Bay, alarge (2 m?)  measured each 2-3 mm 1974-1979, Recruitment density varied by an  Barker 1979
New Zealand intertidal juvenile found on monthly order of magnitude between years.
boulder the boulder Timing of recruitment also varied

between years.



Table 1.2 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Tropical
Oreaster reticulatus Grenadines and  scagrass beds 25-100 m? > 206 mm 1974-1977, ~  Juveniles mainly observed Scheibling
St. Croix, and sand quadratsalonga  radius every 1-4 adjacent to or within dense 1980a, b
Caribbean bottoms, transect months seagrass beds. Suggested that they
1-13m seltle in seagrass beds and migrate
to adult populations in open sand
areas once they reach a size refuge
from predation.
Acanthaster planci Iriomote-jima, fringing coral  0.25 m2quadrats  0.35 or Mar-Nov Found 13 recruits in Sep and Nov  Yokochi &
Ryukyu Islands, reef (flat and (20 or 10 cm layer 2 mm mesh 1985, 1985 (9 in '84). 12 of 13 found in Ogura 1987
Japan slope, floor of  of substrate size frequency and  5.5-7 m and one at 18.5 m depth.
groove or base  collected by hand) allocation of 11 of 13 found on the reef floor
of coral), depth 191 samples  and the other 2 on the reef slope.
not stated not stated
(imply
5.5-18.5 m)
Acanthaster planci Suva Reef, coral reef crest, 1 m?quadrats 10-11 mm 1979-1987, Low recruitment for most of the 9 Zann et al.
Fiji Islands intertidal-? monthly-ycarly years except 1984 when massive 1987
(imply 2 m) recruitment (3 order of magnitude

increase) over most of the reef flat
resulted in a population outbreak
and subsequent migration down
the reef slope.

Y9



Table 1.2 continued

Species Location Habitat, Sampling Size* Sampling  Patterns and Conclusions Source
Depth Method Period,
Frequency
Acanthaster planci Suva, coral reef and 1 m wide belt 10-30 mm 1979-1989, Massive recruitment in 1977 and  Zann et al.
Nukubuco and  rubble, transects, rubble yearly '84, large recruitment in '87 and 1990
other reefs, Fiji intertidal-0.5 m  searches, random little or no recruitment in other
Islands 0.25 m? quadrats, years, over thousands of hectares.
spot dives and reef Intense recruitment over only a
users’ reports few heciares in 1982 and '83. No
correlation between recruitment
and terrestrial runoff associated
with increased rainfall.
Acanthaster planci Green Island, livecoraland  rubble searches 22 mm 1986- 1990, Only 2 recruits (2 and 4 cm) found Fisk 1992,
Great Barrier coralline algal- once or twice  in 4 years, suggesting low or very see also Fisk
Reef, Australia covered rubble, per year patchy recruitment. et al. 1988
2-12m
Acanthaster planci 16 reefs in coral reef base,  destructive > 10 mm Jul-Nov 1986  Greater recruitment in the lower  Doherty &
central Great crest and flat; sampling of and Nov 1987, zones of the reef. Reduced Davidson
Barrier Reef, 15 m below, 10 m2 belt monthly recruitment with increasing 1988
Australia 2-5 m below transects distance downstream of the
and on top of primary outbreak population.
reef respectively Recruitment in 1985 was an order
of magnitude greater than in ‘86
and '87. Suggested that a single
year of successful recruitment
could result in cutbreaks.
Acanthaster planci, Davies Reef, windward and antificial collectors 0.5 mm Nov 1991-Jan Minimal settlement of asteroids  Keesing et
Choriaster granulatus,  Great Barrier leeward coral (100 plastic mesh size 1992, rubble  (n = 11) on collectors with al. 1993
Culcita novaeguineae  Reef, Australia  reef, 1 m off bio-filter spheres collected in Jan corresponding low recruitment to
bottom at in a net bag), rubble. 7 of the 11 settlers,
~I15m boxes of rubble including all 3 A. planci found

on the windward reef slope.
Suggested collectors could be a
useful tool in predicting outbreaks
of A. planci 3 years in advance,
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Table 1.2 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Acanthaster planci Lord Howe coral reef and 500-5000 m?2 >15cm 1987 and Suggested that range of observed  DeVantier &
Island, Australia unstated habitat, "“searched 1989, once sizes (15-52 cm) indicates annual  Deacon 1990
1-40 m systematically" each year recruitment since 1985.
Polar
Odontaster validus McMurdo volcanic diver-collected 0-1 g wet Ocl 1984-Aug  Size-frequency distributions McClintock
Sound, sediments, 10, weight 1985, every 2- showed no obvious recruitment et al. 1988
Antarctica 20and 30 m 7 months over the year. Suggested that
recruitment is Jow and temporally
stable.

* Measurements are diameters unless specified. Size is either the smallest individual recorded or detectable, the smallest size class containing individuals and/or
the mesh size used to filter or collect samples.
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Table 1.3. A summary of studies examining spatial and temporal patterns of settlement and/or recruitment of ophiuroids.

Species Location Habitat, Sampling Size* Sampling  Patterns and Conclusions Source
Depth Method Period,
Frequency

North Temperate

Acrocnida brachiata Douamencz sand, intertidal  0.25 m? core 0.16 mm Mar 1984-Jul  Annual recruitment at both sites  Bourgoin et
Bay, Brittany, and20m (intertidal), mesh size 1986, in Jun with high mortality in the al. 1990,
France 0.062 m? suction (intertidal), | ~ monthly subsequent 2 months. Higher see also
sample (subtidal) or 0.2 mm  with some recruitment in the subtidal zone is Glémarec &
mesh size  gaps attributed to less harsh Guillou
(subtidal) hydrodynamic conditions. 1996
Amphiura filiformis,  Bay of 6-52 km zooplankton tows 0.2 mm 1984-1988, Larvae restricted to the surface Pedrotti &
Ophiothrix fragilis, Villefranche, offshore, 10 m mesh size every layer, decreased with distance from Fenaux
Ophiopluteus Provence, and 200-0 m 2 weeks-3 the coast and rarely occurred 1992,
bimaculatus, France months beyond a divergence zone 30 km  Pedrotti
O. compressus offshore. A mixture of larval 1993
ophioplutei stages at various times of the year

suggested variable recruitment
over most of the year.

Amphiura filiformis Concarneau muddy sand, 17 0.1 m? Smith i mm mesh May 1972-Oct Recruitment in spring and fall Bourgoin &
Bay, Brittany, and28 m McImyre grab size 1973 and Jun  each year. Suggested high post-  Guillou
France sampler 1977-Feb spawning mortality of adults 1988, see
1979, every 3- facilitates recruitment, particularly also
7 months under unstable evironmental Glemarec &
conditions. Guillou
1996
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Table 1.3 continued

Species Location Habitat, Sampling Size* Sampling  Patterns and Conclusions Source
Depth Method Period,
Frequency
Amphiura filiformis North Sea, off  fine sand with  0.06 m? Reineck 1.0 and Sept 1982- Stable size structure with large Duineveld
the Dutch coast  silt, 30 m box corer 0.2 mm May 1984, ~  adult mode and seasonal & Van
nested sieves  quarterly recruitment from Jul-Sep each Noort 1986
( measured year. Density of recruits varied
disk size: annually (mean: 3000-15000 m?
"distance but high mortality in their first
between year resulted in a low but steady
alternating rate of renewal of adult
radial population.
shields")
Amphiura filiformis German Bight  muddy fine 0.1 m* van Veen 0.5 mm 1983, 1984 Size-frequency analysis suggested  Kiinitzer
and the central  sand, 38 and grab; 0.017m? mesh size;  and 1986- annual recruitment with 1989
North Sea 54m Reineck box 0.125 mm 1988, every settlement beginning Jul/Aug.
sampler mesh size Mar/Apr (and  Data from several studies indicated
(0.2- Jun, Jul/Aug a SW to NE progression in
0.3 mm) and Nov in timing of settlement in the North
1983 and Sea.
1987); Mar and
Dec 1987 and
Apr 1988
Amphiura filiformis Galway Bay, silty sand, 20 m 0.12 m2 van Veen 0.5 or | mm Oct 1974-Sept High densities found at a O'Connor
west coast of grab or suction mesh size 1976 and Nov  permanent site (mean = 290-2226 et al. 1983,
Ireland sampler 1978- m2) and throughout the bay, but  see also
Apr 1982, ~  only ~ 5 % were juveniles (<4  O'Connor
every mm). Very low and patchy & McGrath
1-7 months recruitment observed over the 8 1980

year period. Settlers were not
sampled due to large sieve size,
but peak settlement assumed to
occur in the fall (Sep-Nov).
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Table 1.3 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Amphiura filiformis,  the @resund, off muddy sand, 0.02 m? "mouse- 0265 mm  Oct 1963-Oct 79 % of A. filiformis sampled Muus 1981
A. chiajei Denmark 27 m trap" sampler mesh size 1_965. were recruits (0.3-0.6 mm). Peak
(settler = biweekly settlement (6-7000 m~2) occurred
0.325 mm) annually during a 2-6 week
interval in Sep-Nov. Few recruits
survived their first year. Few
Jjuveniles (0.7-
4 mm) were present and adult
cohorts overlapped with relatively
stable densities (mean = 575 m'?).
A. chiajei were present in very
low numbers and settlement
started in Nov (~ 3 mo after A.
filiformis).
Amphiura chiajei Killary Harbour, soft mud, 14m 0.02 m® 0.5 or Nov 1985-Oct Limited and variable recruitment  Munday &
west coast of "mousetrap” 1.4 mm 1988, every I- occurred over the sampling period. Keegan
Ireland sampler and mesh size 2 months with Suggested that low survival of 1992
0.12 m? van Veen (mecasured  a 12 month  recruits is due to competition with
grab oral width  gap in 1987/88 a dense adult population (~ 700 m’
and disk 2), Adult montality during severe
diameter) winters may allow for occasional
heavy recruitment.
Amphipholis squamata  Firth of Forth, "boulder-srewn “200 ml of muddy 0.5-1.0 mm Dec 1975-Nov Juveniles recruited to the study Jones &
Scotland rocky shore”,  gravel" from under 1976, monthly population from Jun-Sep but Smaldon,
low water boulders declined in numbers over winter 1989

and spring.



Table 1.3 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency

Amphipholis squamata  Firth of Forth, "loose muddy 200 ml of gravel; 0-0.99 mm  Dec 1975-Nov  Recruitment occurred from May-  Emson et
Scotland; South gravel between  150-200 ml of 1976, Aug in Scotland, but occurred in a al. 1989
Devon, England  boulders”, low  fringing turf monthly; Jul  pulse (in Aug) in England.

water; tidepools, 1986-Jun Differences in recruitment patterns

high water 1987, monthly auributed to differences in adult
survival: adults die in fall in
England whereas they continue to
brood through a second winter in
Scotland.

Ophiomusium lymani  various sites in  habitat not epibenthic sled, 0-1 mm 1910-1981, Re-analysed size distributions Gage 1982,
northeast and stated, [ 100- Agassiz trawl, (various variable from various studies. Presence of see also
northwest 2300 m Megatrawl, Otter  mesh sizes several juvenile modes in all Gage &
Atlantic and trawl, young fish used) regions suggested seasonal and Tyler
northeast Pacific rawl, Blake rawl annual recruitment in spring in 1982a,

the Atlantic and late summer in ~ Gage et al.
the NE Pacific. Juvenile modes 1980, Tyler
dominated most of the 1988

populations but survivorship low;
variable presence of adult modes
attributed to different rates of
monrtality with the NE Atlantic
region showing lowest adult
mortality.

19



Table 1.3 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Ophiomusium lymani  Rockall Trough, silt, clay, and  Agassiz trawl, 0-2 mm Apr 1978-Sep Polymodal size distributions Gage &
northeast sand mixture,  epibenthic sled (10 mm or 1980, I day-7 suggested annual recruitment with Tyler
Adtlantic 2200 m 0.5 mm months apart  a scttlement pulse in May (due to  1982a, b,
mesh size large mesh size, settlers were only see also
and/or effectively measured on 2 trawls  Gage et al.
“sorted on in 1980). This conflicts with the 1980, Tyler
deck") observed lack of seasonal 1988
reproduction but may be explained
by regulation of larval survival by
scasonal inputs of detritus from
surface waters. Concluded that
high mortality of juveniles < 4
mm results in low rate of increase
of adult population.
Ophiocten gracilis Rockall Trough silt, clay, and  epibenthic sled or  0.75- May 1975-Sep Heavy settlement in early summer Gage &
and Outer sand mixture, 0.25 m? box-core 1.0 mm 1980, ~ every (May/Jun) at two sites in the Tyler
Hebrides 2200, 2900 and (0.5 mm and 2-7 months Rockall Trough (2200 and 2900 1981a, see
continental 600-1200 m unstated m) where adults absent. Mortality also Gage
slope, northeast mesh size) at that time was high and no et al. 1980,
Atlantic settlers survived the winter, Found Gage &
a population on the Hebridean Tyler
continental slope (600-1200 m) 1981b,
with a polymodal size distribution 1982b, c,
of juveniles suggesting annual and Tyler &
seasonal recruitment. Gage 1980,
Tyler 1988
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Table 1.3 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Ophiocten gracilis, Rockall Trough silt, clay, and  epibenthic sled 0.25- Jun 1973-Sep  Suggested uniform annual Gage and
Ophiura ljungmani and surrounding  sand mixture,  and box core 0.5 mm 1980, 1-43 settlement over the observed depth Tyler
slopes, 704-2900 m (0.5 mm months apart  range for both species. Adult 1982c, see
northeast mesh size) breeding populations of Ophiocten also Gage
Atlantic gracilis (range = 704-2900 m) & Tyler
concentrated at ~ 1000 m witha  1981a,
high proportion of juveniles at all 1981b,
depths but decreased survivorship  Gage et al.
with depth. Adult Ophiura 1980
ljungmani (range = 1632-2900 m)
concentrated at ~ 2900 m and
juveniles dominated the shallower
populations with no clear trend in
survivorship. Concluded that both
species showed considerable
variability with depth and
suggested that depth is not a direct
controlling factor.
Ophiura ljungmani Rockall Trough, silt, clay, and  epibenthic sled 0.25- Nov 1975-Sep Time series of size distributions  Gage &
northeast sand mixture, 0.5 mm 1980, ~ 3 showed that high densities of Tyler
Atlantic 2200 and (0.5 mm times per year recruits dominated the population. 1981b , see
2900 m mesh size) Suggested settlement occurs also Gage
annually in summer but the et al. 1980,
timing and magnitude varies from Gage &
year (O year. Tyler
1982c, b,
Tyler &
Gage 1980,
Tyler 1988
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Table 1.3 continued

Species Location Habitat, Sampling Size* Sampling  Patterns and Conclusions Source
Depth Method Period,
Frequency
Ophiura robusta and/or  Atlantic coast of barrens and antificial collectors 0.150 mm  Jun-Nov 1992- Settlement pulse of both species  Chapter 4
O. sarsi, Nova Scotia, kelp, 0.2 and (plastic turf)and  and | mm 1994, in Jate Jul-early Aug of each year.
Ophiopholis aculeata Canada 2.3 m off 1.0 m? quadrat for mesh size biweekly and  Highest settlement in 1992 for
bottom at 5-10  recruits recruitsonce  Ophiura and in '93 for
m per year 1993-  Ophiopholis aculeata. Settlement
1995 of both species greater in barrens

than in kelp beds. Recruitment
same between habitats.

Ophiura sarsi Gulf of Maine, poorly sorted Blake trawl 1 mm mesh Jul 1985-Aug  Followed multiple cohorts over  Packer et
USA silt-clay, size 1986, every 1- time. Small individuals (< 3 mm) al. 1994
148-156 m 4 months in all sample dates with high

numbers of recent recruits (< |
mm) in Jan. Suggested
continuous recruitment with an
annual peak around Jan.

Ophiura sarsi northeast Japan mud, trawl or dredge torSmm May I1987-Mar Settlement not detected due to Fujita &
200-600 m mesh size 1989, 2-7 large mesh size. Size distribution Ohta 1990
times per site  showed strong recruitment at
shallow depths and poor

recruitment at deeper sites.
Multiple modes at 250 m site
suggested annual recruitment with
a peak in Mar-May.
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Table 1.3 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
Asteraporpa annulata  northern Gulf of "substrate 10 m semi- 15 mm Oct 1988-Apr  Of 177 individuals sampled, only McClintock
Mexico covered with balloon trawl mesh size 1991, 19 times 4 were juveniles (3-4 mm) all of et al. 1993
rhodolith which were attached 10 adult
structures”, aboral discs. Suggested gradual
90 m supply of juveniles that either
actively or passively recruit to
adult conspecifics.
Tropical
Ophiocomella Discovery Bay, coralline algae  hand collected I-1.5 mm Jun-Augand  Only 6 juveniles found suggesting Mladenov
ophiactoides Jamaica onrock, <2 m samples of Dec 1981, Jul recruitment via larvae is rare, et al. 1983
Amphiroa spp. 1982, monthly Concluded that continuous
(where O. reproduction by fission and a high
ophiactoides survival rate maintains large
resides) populations.
Ophiactis savignyi Wanlitung, tidepools, 0.3-  500-1000 g 0-09 mm  Feb 1991-Jan Low numbers of recruits found Chao &
southern Taiwan 0.5 m deep samples of the (across 1992, monthly from May-Dec with a pulse in Tsai 1995
sponge Haliclona widest part Jun. Regeneration by fission
sp. (where O. of disk) occurred ycar round with a peak in

savignyi resides)

Jul.
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Table 1.4. A summary of studies examining spatial and temporal patterns of settlement and/or recruitment of holothuroids.

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency
North Temperate
Cucumaria frondosa western Gulf of  mussels, "haphazard 0.5-1.0 mm Jun/Jul 1993,  Recruitment from May-Jul with  Medeiros-
Maine, USA coralline algae  samples of cach Oct 1994 and  peak in mid-Jun. Recruitment Bergen &
and kelp substrate” Apr-Jul 1995  highest in mussel beds, lowest on Miles
holdfasis, 7.5- individual mussels, and 1997, see
125 m intermediate in kelp holdfasts and  also
coralline algae. Medeiros-
Bergenet
al. 1995
Cucumaria frondosa St. Lawrence bedrock, 200 m?2 "transect  0-15 mm,  spring 1992- Spawned mid-June 1992and '93  Hamel &
Estuary, boulders and parallel to the (measured winter 1993, and settled 3 weeks later. Settlers  Mercier
Canada gravel, coast” "length") “once at the concentrated in shallow water 1996
0-60 m beginning of (0-20 m). Concluded low annual
cach season" recruitment and migration to
deeper water at sexual maturity (~
3 years).
Cucumaria Shell Beach, rocky intertidal, “samples 0-1 mg Aug 1970-Jan  Seasonal reproductive cycle with  Rutherford
pseudocurata northern +03m collected” for {dried 1972, ~ spawning in Jan 1971 and '72. 1973
California, reproductive cycle; weight) monthly for Recruits first observed in Feb
USA 16 cm? quadrats reproductive 1971. All mature females in the
for size cycle; Feband  population were found brooding,
distributions Mar, 1971 for  suggesting annual recruitment.
size
distributions
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Table 1.4 continued

Species Location Habitat, Sampling Size* Sampling Patterns and Conclusions Source
Depth Method Period,
Frequency

Leptosynapta clarki Bamficld, mid-intertidal 785.4 mm? 0.25 mm May 1990-Aug Recruitment pulse in Apr/May of Sewell
British mudflat perspex corc mesh size 1991, every 2 both years. Noted "paltchy 1994
Columbia, (length months distribution of juveniles".

Canada measured
after
relaxation in
MgCly)

Parastichopus Howe Sound,  algal mats, "qualitatively 0.004 "sizec May 1979-Dec  Extended spawning period Cameron

californicus Clayoqowt stipes or thalli, obsecrved” or index" = 1984, every 2-3  suggested recruitment occured over &

Sound, and polychaete collected contracled months (varied several months at Canadian sites  Fankboner

Indian Arm, tubes, crevices length x with site) with no recruitment in the San 1989

British in rock walls, width x Juan Islands. Followed growth of

Columbia, 5-15 m (not scaling 2 cohons that settled in 1981 and

Canada and San  stated for all factor of 0.1 ‘83, Suggested recruitment is

Juan Islands, habitats) common and regular in some areas

Washington, and weak or non-existent in

USA others.

Holothuria tubulosa Ischia Island, seagrass diver collected 0-20 g "total May 1988-Dec  Combining all sample dates Bulteel et
Gulf of Naples, (Posidonia wet weight” 1989, every 2-4  showed a depth gradient in size al. 1992
haly oceanica) bed, 6, months distribution with smaller

19 and 33 m individuals (but of different ages

and/or reproductive states) at
shallow depths (6 m). Concluded
that recruitment occurs in the
shallow part of the seagrass bed
and that some individuals migrate
down-slope.
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Fig. 1.1. Frequency distribution of sampling duration for 88 studies which monitored
temporal patterns of settlement and/or recruitment in 4 classes of echinoderms (Tables 1.1

to 1.4; studies using larval distribution or genetic analysis to predict patterns are excluded).
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Fig. 1.2. Frequency distribution of modal sampling interval for 82 studies which
monitored temporal patterns of settiement and/or recruitment in 4 classes of echinoderms
(Tables 1.1 to 1.4; studies using larval distribution or genetic analysis to predict patterns,

or with insufficient data to assess sampling interval, are excluded).
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GENERAL CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

In the 14 years since Ebert's 1983 review, there has been a substantial increase in
research on the early life-history stages of echinoderms, particularly in relation to settlement
and recruitment patterns and processes. For example, of the 108 studies included in the
tables, 80 were published after 1982. I have compartmentalised this research into three
components: larval supply, settlement and recruitment. Most of the studies that I reviewed
dealt with only one of these components, some in only a peripheral manner. In population
studies, for example, it is often concluded that recruitment is highly variable and probably
important in population regulation without strong empirical or experimental support for
these conclusions. I contend that each of these components represents a critical stage of
early life-history of echinoderms, and that studies which integrate all components for a
given species will best enable us to understand the relative importance of each. Also, it is
only through an integrated approach that we can reasonably parametrise population
dynamics models (e.g. stage-based matrix or simultaneous differential equation models) to
predict patterns of settlement and recruitment for echinoderm populations. To date, there
has been little application of such models to benthic marine invertebrates in general
(Eckman 1996). However, models will only be as good as the data used to construct them
(Grant 1989) and, as indicated by this review, there remain many unanswered questions
about the early life histories of echinoderms.

Many species of echinoderms produce vast quantities of planktonic larvae that are
dispersed over great distances and suffer huge losses before settling. Larval supply is a
crucial determinant of spatial and temporal patterns of recruitment in these species, and a
potential bottleneck to population growth. However, the fate of larvae in the plankton
remains the most poorly known aspect of echinoderm early life histories, a “black box”
which we are only beginning to penetrate (McEdward 1995). The behaviour of

echinoderm larvae has been studied almost exclusively in the laboratory (mostly under
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static conditions) and the relevance of observed behaviours to the situation in nature is

difficult to predict. Experimental mesocosms may circumvent this problem by
approximating natural conditions while enabling some degree of control over factors which
regulate larval behaviour. Natural mesocosms such as tide pools also may prove useful in
studies of larval behaviour (Metaxas & Scheibling 1993). Field studies may benefit from
new methods of larval tracking (reviewed by Levin 1990) which, when combined with
increasingly more sophisticated hydrodynamic models (e.g. Griffin & Thompson 1996),
could yield more accurate predictions of advective transport of larvae from spawning
sources, and elucidate physical factors which influence larval supply (e.g. Taggart et al.
1996).

Studies of settlement of echinoderm larvae also have been largely restricted to static
conditions in the laboratory. These studies have shown that many species can be induced
to settle on a variety of substrata, including microbial films, suggesting that settlement is
not substratum specific (Pearce 1997). Settlement induction, therefore, may be less
important than larval supply in determining rates and patterns of settlement. Once
competent larvae are delivered to an area by large-scale hydrodynamic processes, specific
settlement sites may be determined by variations in boundary-layer flow, either by passive
deposition of larvae or active selection of particular substrates when flow conditions permit
(Butman 1987). Field experiments which track competent larvae through to settlement,
particularly in areas where they will encounter a variety of substrata or microhabitats, could
advance our understanding of the role of larval behaviour in determining settlement patterns
in nature. A logical extension of such studies would be to monitor the fate of settlers in
different microhabitats to determine whether larvae tend to select sites to maximise post-
metamorphic survival.

Although the number of studies examining spatial and temporal patterns of
settlement and recruitment in echinoderms has increased markedly over the past 14 years,

the distribution of these studies across taxa and geographic regions is highly skewed. Of
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the 108 studies on this topic that I reviewed (Tables 1.1 to 1.4), 77 were done in northern

temperate waters and 36 of those were on echinoids, of which 27 were on
strongylocentrotids. The work on Strongylocentrotus has revealed that recruitment patterns
can be highly variable, both temporally and spatially, even within the geographic range of a
species. However, this emphasis on a single northern temperate genus may bias our
perception of recruitment variability among echinoderms in general. Only 24 of the studies
on recruitment patterns have involved tropical echinoderms, and 14 of those have been on 2
species, Diadema antillarum and Acanthaster planci, which have undergone large
population fluctuations, atypical of tropical species. Most studies of recruitment of D.
antillarum have been aimed at investigating population recovery after a mass-mortality in
the Caribbean, whereas studies A. planci have been prompted by attempts to understand
population outbreaks on the Great Barrier Reef. Unfortunately, recruits rarely have been
found in these cases, offering few insights for recruitment of even these most studied
species. Furthermore, the paucity of studies from southern temperate (5) and polar (2,
both Antarctic) regions provides little direct evidence to assess geographic variation in
patterns and processes of recruitment of echinoderms. Because spatial and temporal
variability in recruitment are common at all scales, among all echinoderm taxa, and
throughout all geographic regions, data from one or a few species in a region will likely not
be representative of other species in that area. Nevertheless, knowledge gained from
intensively studied species can guide future research on the less studied species and
geographic regions.

Although the importance of recruitment in determining the distribution and
abundance of echinoderm populations is widely recognised, the inherent variability in the
definition of recruitment often causes confusion when it fails to identify which stage of the
early life-history is being considered (for a more general discussion of this problem, see
Hunt & Scheibling 1997). Recruitment typically is defined operationally by the method

used to sample juveniles which can vary greatly among studies, even of the same species
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(Tables 1.1 to 1.4). Because post-settlement processes such as predation and migration
can alter the pattern of juvenile abundance, the measure of recruitment may depend largely
on the time elapsed since settlement. Without isolating the effects of these processes, the
researcher is left without a clear understanding of the factors responsible for the pattern
observed or whether it reflects the pattern of settlement. Although sampling early juveniles
presents significant challenges, the development of new techniques for tagging and
monitoring (e.g. time-lapse video) recruits in the field can greatly extend our ability to track
cohorts from settlement or at least shortly thereafter. The use of artificial collectors,
coupled with continuous temperature and current records, is facilitating the detection of
settlement patterns over ecologically relevant spatial and temporal scales, and in relation to
local hydrographic conditions (e.g. Miller & Emlet 1997, Chapters 2 to 4). Conventional
procedures for tracking of cohorts and detecting recruitment events, such as modal analysis
of size-frequency distributions, also have benefited from advancements in analytical
methods and improved techniques of aging individuals. By increasing the efficiency and
precision of sampling, these technological and methodological advances will enable future
researchers to better understand the mechanistic links between the early life-history stages

of echinoderms which cause the patterns that we observe.
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RESEARCH OBJECTIVES

This thesis examines settlement of echinoderm species on artificial collectors at
different spatial and temporal scales to identify patterns and processes determining

population dynamics in the rocky subtidal zone. The major objectives are:

1) To compare settlement among distinct geographic regions (100's of kilometres apart),
and relate differences to patterns of settlement at smaller scales among sites within
regions (10's of kilometres) and among habitats within sites (10's of metres) (Chapter
2).

2) To assess the effect of collector type and sampling frequency on measures of settlement

(Chapters 2 and 4).

3) To examine effects on larval supply and settlement of small-scale hydrodynamic forcing

(Chapter 3).

4) To compare settlement of species with similar larval types at different temporal (days to
years) and spatial (metres to 10's of kilometres) scales within a region (Atlantic coast of
Nova Scotia) to resolve patterns and gain insight into the underlying processes (Chapter

4).

5) To compare recruitment of these species over the same scales to determine whether
recruitment patterns reflect settlement or are shaped by post-settlement processes

(Chapter 4).
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Chapter 2: Variation in settlement of Strongylocentrotus

droebachiensis in the northwest Atlantic:

effects of spatial scale and sampling method

INTRODUCTION

The green sea urchin Strongylocentrotus droebachiensis is a common inhabitant of
the rocky subtidal zone throughout the northwest Atlantic. In areas where this species is
abundant, it is capable of drastically altering community structure by the destructive grazing
of kelp (Laminaria spp.) to form sea urchin-dominated barren grounds (Chapman 1981,
Wharton & Mann 1981, Miller 1985a, b, Scheibling 1986). Apart from its ecological
importance, S. droebachiensis forms the basis of a rapidly growing sea urchin fishery,
which has renewed interest in the processes that control sea urchin population dynamics
(Scheibling & Hatcher 1994). Settlement and subsequent recruitment of sea urchins are
seen as key factors in regulating urchin populations (Harrold & Pearse 1987). Many
studies have shown recruitment of echinoderms to vary over a variety of spatial and
temporal scales, from tens of metres to thousands of kilometres and from months to years
(reviewed by Ebert 1983, Pearse & Cameron 1991). However, little is known about
patterns of settlement due to the difficulties in sampling settlers before post-settlement
processes such as mortality or migration occur. Recent studies using artificial collectors
have shown that settlement of sea urchins can be effectively measured to better understand
the processes that determine recruitment patterns (Harrold et al. 1991, Keesing et al. 1993,
Ebert et al. 1994, Harris et al. 1994, Schroeter et al. 1996, Miller & Emlet 1997). Artificial
collectors provide a uniform substrate for measurement of settlement and allow for
consistent comparisons both within and between sites and habitats across large distances at
relevant time scales. In this study, settlement of S. droebachiensis on three types of

artificial collectors was compared in three regions of the northwest Atlantic: the Atlantic
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coast of Nova Scotia, the Bay of Fundy, and the Gulf of Maine. The objectives of the this

study were to determine the scales of spatial variability of settlement and to compare

different methods of settlement sampling.

MATERIALS AND METHODS

Settlement of Strongylocentrotus droebachiensis was measured at 20 sites in 3
geographic regions of the northwest Atlantic separated by 100's of km: 8 in the Gulf of
Maine (Region A), 9 in the Bay of Fundy (Region B), and 3 along the Atlantic coast of
Nova Scotia (Region C) (Table 2.1 and Fig. 2.1). Within each region most sites were
separated by 0.5 to 100 km. Exceptions to this were: Star Island which was sampled at
several depths along a rock ridge, White Island which included a sea urchin-dominated
barren ground and a kelp bed habitat separated by a rock outcrop, and Mill Cove which
included adjacent barren and kelp habitats (Table 2.1). Although the sites used in this
study included a variety of habitat types (Table 2.1), they all contained populations of S.
droebachiensis.

Settlement was measured using artificial collectors separated by 0.02 to 10 m and
placed at 5 to 30 m depth (Table 2.1). Three different collector designs were used. Rack
collectors were 0.01 to 0.04 m? rectangular sections of plastic turf mounted horizontally
with cable ties on 35 x 65 cm plasticised wire racks (Fig. 2.2). Four or five replicates were
mounted on each rack which was attached to bricks and therefore elevated 10 cm off the
bottom. At one site (Tongue Shoal) several racks were suspended in 2 m increments up to
8 m off the bottom. Replicates were either on the same rack or on racks placed within 2 m
of each other. The plastic turf used was either "mining turf" (PNS-3, Monsanto Canada
Inc., La Salle, PQ, Canada) or sections of plastic doormats made of a similar material and
with a similar configuration. Pipe collectors were made up of paired 20 cm x 14 cm
diameter PVC pipes mounted on a plastic vane and attached to a rope by swivels to allow

orientation into the current (Fig. 2.2). Each pipe was lined with 0.05 m? pieces of plastic
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turf (PNS-3, Monsanto Canada Inc.) and protected from predators by plastic light diffuser

grating (1 cm aperture). Paired collectors were suspended in an array at 0.2 and 2.3 m off
the bottom by a sub-surface float and anchored with two 20 kg cement blocks (Fig. 2.2).
Each replicate array was placed 10 m apart within each site. Brush collectors consisted of
two wooden scrub brushes with 0.014 m? of nylon bristles (#0115, National Brush Co.,
Aurora, IL, USA; from Ebert et al. 1994) which were deployed 1 m apart at one site in
Maine (Nubble Lighthouse) and suspended vertically 15 cm off the bottom. Collectors
were sampled at 2 to 10 week intervals from May to August 1994 (Table 2.1). Rack and
brush collectors were sampled once over the settlement period and pipe collectors were
sampled at 1 or 3 successive intervals over this period (Table 2.1). Data from pipe
collectors at sites in Nova Scotia are presented for both an ~2 week interval (15 to 18 d)
encompassing the peak of the settlement period to compare between sites within this
region, and for 3 successive ~2 week intervals combined, for comparison with the rack
collectors over the same 6 to 7 week period. Sampling intervals at all other sites (except
Hardwood Island and Campobello Narrows which were terminated early) encompass most
of the settlement period which ranged from June to early July in the Gulf of Maine, late
June to July in Nova Scotia, and late July in the Bay of Fundy (Chapter 4, unpublished
data).

The collectors were sampled by divers who removed the substrate and placed it into
plastic bags which were returned to the laboratory for processing. Each substrate was
soaked in 50 to 70 % Ethanol or 7 to 8 % Magnesium Chloride for 5 to 20 min and then

gently agitated or rinsed with filtered sea water to remove settlers. The water was poured
through a mesh screen (150 um Nitex or cheese cloth) and settlers were retained for
identification and enumeration under a dissecting microscope. Settler densities were

compared between sites, collector types and collector heights using analysis of variance

(ANOVA). Post hoc and paired comparisons were made using Student-Newman-Keuls
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(SNK) tests or t-tests (a=0.05). Statistical comparisons between regions (Fig. 2.3) were

made using log transformed data [In (n+1)] and all other comparisons (Figs. 2.4 to 2.6)

used raw data.
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Fig. 2.1. Map of 3 regions that include 20 study sites where artificial settlement collectors
were deployed in 1994 in the northwest Atlantic (Region A: Gulf of Maine; Region B: Bay

of Fundy; Region C: Atlantic coast of Nova Scotia).
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Shoals

Figure 2.1
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Fig. 2.2. Two different types of artificial settlement collectors which were deployed at 20
sites in the northwest Atlantic in 1994 to sample settlers of Strongylocentrotus
droebachiensis. A rack collector (A) in a sea urchin-dominated barren ground and a pipe

collector array (B) in a kelp bed (Laminaria spp.).
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RESULTS

Both rack and pipe collectors showed significant differences between sites (rack:
F=55.969, p=0.0001; pipe: F=18.912, p=0.0001) and order of magnitude differences in
settlement between regions, with highest overall settlernent (grand mean of the site means)
in the Gulf of Maine (rack: 14481 individuals m2; pipe: 3724 individuals m-2), lowest
settlement in the Bay of Fundy (rack: 33 individuals m2; pipe: 20 individuals m-2), and
intermediate settlement in Nova Scotia (rack: 900 individuals m2; pipe: 302 individuals
m-2) (Fig. 2.3).

Within the Gulf of Maine, settlement differed significantly between sites
(F=19.465, p=0.0001) but was within the same order of magnitude in most cases (Fig.
2.4). Exceptions are two sites in Casco Bay (Inner Green Island and CIiff [sland) which
showed lower settlement than most sites in the southern Gulf of Maine, and the adjacent
sites at Star Island in the Gulf of Maine which showed order of magnitude reductions in
settlement with depth from 8 to 30 m. Within Nova Scotia, settlement was not significantly
different between sites (F=2.090, p=0.1861). Settlement was very low and variable in the
Bay of Fundy and also did not differ significantly (F=0.697, p=0.6741). Sites in the Gulf
of Maine and Nova Scotia, showed greater settlement in the barrens than in adjacent kelp
beds, although the difference was not statistically significant in Nova Scotia (Fig. 2.4).

Pipe collector arrays suspended 0.2 and 2.3 m above the bottom showed no
significant difference in settlement within sites located in all three regions (F=2.749,
p=0.1582) (Fig. 2.5a). A collector array with racks suspended O, 2, 4, 6 and 8 m above
the bottom at one site (Tongue Shoal) also showed no significant difference in settlemnent at
any height in the water column (F=1.324, p=0.3063) (Fig. 2.5b).

Comparison of different collector types within sites showed that rack collectors at
both Mill Cove Barren and Mill Cove Kelp sampled twice as many settlers as pipe
collectors over the same time interval, and 7 times more settlers at White Island (Fig. 2.6).

However, these differences were not statistically significant at Mill Cove Kelp (t=1.192,
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p=0.2607), marginally non-significant at Mill Cove barren (t=2.225, p=0.0503), and

confounded by a difference in sampling intervals between collector types (58 d for rack, 18
d for pipe) at White Island. There was also no significant difference between rack and pipe
collectors at Hardwood Island (t=0.711, p=0.5092) where settlement was low and
variable. Although settlement was high at Nubble Lighthouse, there was no significant
difference between rack and brush collectors (t=0.327, p=0.7502).
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Fig. 2.3. Mean (+ SE) density of settlers of Strongylocentrotus droebachiensis at sites
across three regions of the northwest Atlantic using rack (A) and pipe (B) collectors.

Horizontal bars indicate sets of non-significantly different sites (SNK, p>0.05).
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Fig. 2.4. Mean (+ SE) density of settlers of Strongylocentrotus droebachiensis at different
sites within three regions of the northwest Atlantic. Horizontal bars indicate sets of non-
significantly different sites (SNK, p>0.05). In the Bay of Fundy and Nova Scotia there

were no significant differences between sites.
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Fig. 2.5. Mean (+ SE) density of settlers of Strongylocentrotus droebachiensis suspended
at different heights above the bottom using pipe collectors at 6 sites (A) and rack collectors
at Tongue Shoal (B). Collector heights within sites were not significantly different (pipe:
F=2.749, p=0.1582; rack: F=1.324, p=0.3063).
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Fig. 2.6. Mean (+ SE) density of settlers of Strongylocentrotus droebachiensis from
different collector types deployed within the same sites and habitats (NS=no significant
difference between collector types; p>0.050: a=not tested due to unequal sampling

intervals).
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DISCUSSION

Order of magnitude differences in settlement of Strongylocentrotus droebachiensis
occur at large spatial scales between distinct geographic regions. This is likely due to
differences in larval supply caused by large-scale oceanographic features. During the
spring, when larvae are in the water column, there is net movement of water out of
Passamaquoddy Bay and the Bay of Fundy which continues down the coast of Maine
(Brooks 1985, Harris & Chester 1996). A counter-clockwise coastal gyre in the
northeastern Gulf of Maine tumns offshore at Penobscot Bay, in the central Gulf of Maine,
where a separate coastal current moves onshore and in a southwesterly direction (Brooks
1985). These current patterns may act to enhance larval supply to the southwestern Gulf of
Maine and to advect larvae away from the Bay of Fundy and northeastern Gulf of Maine
(Harris & Chester 1996). Casco Bay is closer to the transition zone of offshore to onshore
currents near Penobscot Bay and is a more contained area which may limit the supply of
larvae when compared to points in the southwestern Gulf of Maine. Harris and Chester
(1996) reported low recruitment of S. droebachiensis in the northeastern Gulf of Maine
when compared to high rates of recruitment measured in the southwestern Gulf of Maine in
1995. The Atlantic coast of Nova Scotia typically is subject to unidirectional longshore
coastal currents (NE to SW) with periodic upwelling (Han et al. 1997, Loder et al. 1997)
suggesting that larvae may be advected away from the coast under certain conditions.

Factors related to larval survival such as food availability and temperature may also
vary between regions with different hydrodynamic regimes. Regional differences in sea
urchin abundance and reproductive output could also play a role in the differential supply of
competent larvae. Although all sites in each region contained substantial populations of
adults, the source of larvae is not clear.

Within each region, settlement of Strongylocentrotus droebachiensis differed
between sites with no clear spatial trend, except in the Guif of Maine where Casco Bay

could be considered a sub-region due to its spatial separation from other sites and the
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reduced settlement there. This suggests that, within a relatively close geographic range

(0.5 to 50 km), variability in urchin settlement is controlled by local hydrodynamic features
that either enhance or limit settlement. Factors such as habitat, depth and stratification of
larvae also may play a role. Higher settlement rates in barrens than in adjacent kelp beds
were observed at sites in both Nova Scotia and the Gulf of Maine, suggesting that kelp
beds have a negative effect on settlement. This could be due to differential mortality,
hydrodynamic effects or selective settlement (Pearse et al. 1970, Lang & Mann 1976,
Rowley 1989). At Star Island, settlement decreased with depth suggesting that larval
supply and/or survival is greater in shallow water or that sea urchins prefer to settle in
shallow water. Settlement in collectors placed on the bottom or at heights of up to 8 metres
off the bottom showed no significant differences in settlement suggesting that competent
larvae occur throughout the water column within the depth ranges sampled (4 to 13 m
depth).

In order to be able to directly compare patterns of settlement, similar sampling
methods should be used (Minchinton & Scheibling 1993, Miron et al. 1995). If different
methods are employed, such as different collector types and/or substrata, these methods
must be cross-calibrated. Our study determined that there were no differences in
measurement of settlement between rack and brush collectors, although only two brush
collectors were used. Studies by Ebert et al. (1994) and Schroeter et al. (1996) in
California used the same brush collectors to sample settlement of Strongylocentrotus
franciscanus and S. purpuratus, although the densities they reported were generally much
lower than those we found in Maine. Settlement was consistently higher on rack compared
to pipe collectors at Mill Cove and White Island indicating that these different collector
types could be calibrated to make direct comparisons across regions. However, differences
between these two collector types were not sufficiently large to obscure the pattern of large-

scale variation in settlement of S. droebachiensis between regions in the northwest Atlantic.
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Chapter 3: A major settlement event associated with minor

meteorologic and oceanographic fluctuations

INTRODUCTION

For benthic marine invertebrates with planktonic larvae, spatial and temporal
variability in larval supply and settlement are important determinants of population structure
and dynamics (Gaines & Roughgarden 1985, Minchinton & Scheibling 1991, Gaines &
Bertness 1993). Rates and patterns of settlement are influenced both by physical (e.g.
currents, temperature and salinity) and biological (e.g. larval behaviour, food availability
and predation) factors which regulate the development, survival and delivery of larvae
(Young & Chia 1987, Rumrill 1990). Many invertebrate larvae have extended planktonic
periods (weeks to months) which can result in high mortality (Morgan 1995) and long-
distance dispersal (Shanks 1995).

The larvae of invertebrates are found throughout the water column over continental
shelves but often aggregate near the sea surface where wind-driven currents may influence
dispersal (Pearse & Cameron 1991, Shanks 1995, Young 1995). Most invertebrate larvae
are weak swimmers and have little control over horizontal dispersal by currents, although
they may migrate vertically and thus enhance dispersal in oscillating flow environments
(Young & Chia 1987, Shanks 1995). Because the arrival of planktonic larvae at suitable
settlement sites is primarily dependant on advective transport, both local hydrodynamics
and large-scale oceanographic features can influence settlement success (Shanks 1995).
Emphasis on coupling physical processes with patterns of larval supply and settlement have
related successful settlement to the delivery of larvae via meso- to large-scale physical
forcing, such as upwelling events (Johnson et al. 1984, Wing et al. 1995a, b) or tidally-
induced internal waves (Pineda 1991, Leichter et al. 1998). The range of variability in the

hydrodynamic environment that affects supply of larvae to the benthos demands that
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processes operating at various spatial and temporal scales be considered (Denman & Powell

1984).

This study is part of a larger project investigating spatial and temporal patterns of
settlement and recruitment of several echinoderm species in Eastern Canada and the Gulf of
Maine (Chapters 2 and 4). We found that settlement of most species occurred in a single,
well defined pulse within an ~2 week period each year, but the magnitude of settlement
during this pulse varied greatly between sites and years and the timing of the pulse varied
among species. In this communication, we measure settlement of ophiuroid larvae at 3 day
intervals over one of these 2 week pulses to isolate the timing of settlement, and relate it to

local hydrographic conditions.

MATERIALS AND METHODS

From July 21 to August 5, 1993, the settlement of ophiuroid larvae was measured
on collectors in two adjacent habitats, a sea urchin (Strongylocentrotus droebachiensis)-
dominated barrens and a kelp bed (Laminaria longicruris), in the rocky subtidal zone (6 to
10 m below mean sea level) at Mill Cove (44° 34.9'N, 64° 3.2' W) in St. Margaret's Bay,
a large semi-protected embayment along the Atlantic coast of Nova Scotia (Fig. 3.1).
Collectors consisted of paired 20 x 14 cm diameter PVC pipes mounted on a plastic vane
and attached to a rope by swivels to allow orientation into the current (Fig. 2.2). Each pipe
was lined with an artificial substrate, 0.05 m? pieces of polyethylene plastic turf (PNS-3,
Monsanto Canada Inc.), and protected from predators by plastic light diffuser grating (1 cm
aperture). Paired collectors were suspended in an array at 0.2 m (Low) and 2.3 m (High)
off the bottom by a sub-surface float and anchored with two 20 kg cement blocks. Four
collector arrays were placed in line at 10 m intervals within each habitat (Barrens and
Kelp), parallel to and ~15 m from the interface between habitats (i.e. ~30 m apart). The
collectors were sampled at 3 d intervals when divers removed the plastic turf from one of

each of the paired collectors (the other collector was used for another experiment) and
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replaced it with a new piece. Thus, settlers were sampled from 4 replicate collectors in each
of 4 sampling strata (Kelp High, Kelp Low, Barrens High and Barrens Low) once every 3
d. Samples were immediately placed in sealed plastic bags and returned to the laboratory
for processing within 6 h of collection. The turf was soaked in 50 % EtOH for 10 to 20
min and then gently agitated and rinsed with filtered sea water to remove settlers. The rinse

water, together with the water from the plastic sampler bag, was filtered through a 150 um

Nitex® mesh screen (small enough to retain echinoderm settlers) and the retained contents
of the sample were stored in 70 % EtOH for subsequent identification and enumeration of

settlers under a dissecting microscope.

Current velocities and salinities were measured using two S4® current meters
(InterOcean Systems, Inc., San Diego, CA, USA) mounted on stands secured to the

bottom in the kelp bed at 6.6 m depth and in the barrens at 9.7 m depth. The meters were

33 m apart and located 10 m from one end of each collector line. Current velocity (1 cm-s™!
and 2° accuracy) was measured electromagnetically in a torroid approximately 1 m dia. x
0.35 m high and centred at 70 cm above the bottom. Current direction is given relative to
true north (T). Instantaneous current vectors were measured every 0.5 s and averaged over
| min at 10 min intervals over the 15 d period. Current velocities were partitioned into
alongshore and offshore component vectors, corresponding to the local bathymetry and
shoreline. Positive alongshore currents (300° T) run parallel to shore in a WNW direction
(into the bay), and positive offshore currents (30° T) run in a NNE direction (towards the

middle of the bay), at Mill Cove (Fig. 3.1). Salinity was measured every 3 h from
conductivity and temperature sensors on the two S4® meters.
Sea temperature was measured at 2.4 h intervals using HOBO®Temp data loggers

(Onset®Computer Corp., Pocasset, MA, USA) deployed in sealed plastic (Nalgene®)
bottles adjacent to one of the High and Low collectors in each habitat at Mill Cove. These

data are compared to sea temperatures recorded hourly at two stations (3 and 10 m depth at
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44° 32.8'N, 64° 1.2' W, and 17 and 37 m at 44° 33.0' N, 64° 1.1' W) at Northwest Cove

(Fig. 3.1), near the mouth of St. Margaret's Bay ~4.5 km south of Mill Cove (unpublished
data, Brian Petrie, Ocean Sciences Division, Department of Fisheries and Oceans, Bedford
Institute of Oceanography, Halifax, NS, Canada).

Wave height and period were recorded (Marine Environmental Data Service,
Department of Fisheries and Oceans Canada, Ottawa, ON, Canada) at Osborne Head Buoy
(MEDSO037) located 66 km ESE of Mill Cove and 5 km offshore (44° 29' N, 63° 25’
W)(Fig. 3.1). Measures of significant wave height (average of the highest 1/3 of the
waves in a wave field) and peak period (corresponding to the maximum energy wave
component in the field) were calculated every 30 min. These measures serve as an index of
general sea state which may have influenced large-scale hydrographic forcing in the area.

Instantaneous hourly measures of wind velocity and atmospheric pressure were
recorded at the Shearwater Meteorological Station (44° 38' N, 63° 30' W)(Fig. 3.1) 63 km
east of Mill Cove (Ocean Sciences Division, Department of Fisheries and Oceans, Bedford
Institute of Oceanography, Halifax, NS, Canada). In contrast to the current data (but in
accordance with meteorological convention) wind direction is expressed as the direction
from which the winds were blowing relative to true north. The wind conditions we
observed at Mill Cove were consistent with those recorded at the station.

Synoptic weather maps of eastern Canada (6 h intervals from July 23 to 29, 1993)
were obtained from the Maritimes Weather Centre (Atmospheric Environment Service,
Environment Canada). These maps provided an assessment of atmospheric features that

influenced weather in St. Margaret's Bay during the study period.



106

Fig. 3.1. Map of the central Atlantic coast of Nova Scotia showing the locations of the
study sites at Mill Cove and Northwest Cove in St. Margaret's Bay, the Shearwater
Meteorological Station (SMS), the Osborne Head Buoy (OHB) and Little Duck Island in

Mahone Bay (Chapters 2 and 4). The map is oriented relative to true north.
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RESULTS

Larval ophiuroids (Ophiopholis aculeata, Ophiura spp.) settled in abundance during
the 15 d study period (Fig. 3.2a). There was little or no settlement over the first 6 d and
then a large pulse over the next 3 d (July 27 to 30) followed by declining settlement over
the last 6 d. Settlement rates fluctuated synchronously among all four sampling strata
(Kelp High, Kelp Low, Barrens High and Barrens Low), indicating uniform larval supply
at the scale of our site (30 x 30 m). Settlement during the last 9 d of this study represented
63 % and 87 % of the total settlement for Ophiura and O. aculeata respectively in 1993, and
71 % of the total settlement of O. aculeata over a 3 year period (1992 to 1994) at Mill Cove
(Chapter 4, unpublished data).

Sea temperature at Mill Cove rose from 11 to 15 °C over the study period (Fig.
3.2b). However, there were two ~24-h fluctuations in temperature that signalled a shift in
water masses and established thermal stratification across the depth range of the sensors.
On July 24, temperature fluctuated by ~2 "C and stabilised at 14 °C for a day before
dropping to as low as 10 °C at the deepest sensor on July 26, during the second
fluctuation. Temperature at all 4 sensor positions increased to 13 °C on July 27, when the
settlement pulse began, then gradually rose over the remainder of the study period. During
the second fluctuation, stratification was much stronger, and much lower temperatures
were recorded at the deepest position (Barrens Low) than in the other 3 strata. A similar
pattern in sea temperature was recorded at 3 and 10 m depth off Northwest Cove, although
there was little fluctuation on July 24 (Fig. 3.3a). At 17 m, temperature declined gradually
from 10 to 7 °C between July 24 and 26, then increased to 12 °C by July 30 before
dropping gradually to 8 °C by the end of the study period. By July 31 the water column
was well stratified between 10 and 17 m. The bottom temperature at 37 m remained stable
at 4 to 6 °C throughout the study period.

Salinity in both the barrens and kelp bed fluctuated inversely with temperature at

Mill Cove during the July 24 and 26 events, and declined gradually from 30.4 to 29.8 psu
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over the study period (Fig. 3.2c). Salinity was consistently higher in the barrens, with the

greatest difference between habitats occurring during the second fluctuation, indicating an
intrusion of colder, more saline water from deeper in the bay.

Mill Cove is generally sheltered from ocean swell except during severe storms.
During the study period, wave heights were low (0.5 to 2 m) and wave periods were short
(5 to 10 s), indicating a relatively calm sea state (Fig. 3.3b). The lowest wave energy

occurred from July 24 to 27 when winds blowing off the coast likely damped the waves.

The S4® meter in the kelp bed malfunctioned, and reliable velocity data were not
obtained from it during the study period. Current measures in the barrens showed a clear

serni to diurnal tidal signal on the alongshore axis with generally weak flow over the study

period: mean speed (+ SD) = 2.73 cm-s™! £1.91 (Fig. 3.4). The offshore component

remained relatively constant and weak at a mean speed of 1 cms™! in a positive (NNE)
direction while the alongshore component oscillated from positive (WNW) to negative

(ESE). On July 26 the alongshore component strengthened and shifted to the negative

direction only while oscillating about 5 cm-s-! for 4 d before weakening on July 30.

From July 24 to 26, atmospheric pressure rose gradually from 1006 to 1022 hpa
and then dropped to 1013 hpa by July 29 and stabilised for the remainder of the study (Fig.
3.3c). These minor fluctuations indicate the passage of weak pressure gradients. Surface
Meteorological Analyses from July 23 to 29 confirm this, showing a weak low pressure
area which passed over Nova Scotia at the start of the study and moved off to the NE by
July 25 as a high moved down from northern Quebec and over Nova Scotia by July 26.
This high pressure cell moved NE on July 27 and was replaced by unsettied weather
through to July 29.

Winds were generally light and variable during the study, usually blowing from a

southerly direction at speeds of ~5 m-s~! (7.5 knots), with little evidence of a diabatic effect
(Fig. 3.3d). Between July 24 and 26 however, the wind reversed direction and blew from
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the north at speeds up to 7 m-s~!, before switching back to winds from the south for the

rest of the period.
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Fig. 3.2. (a) Mean larval settlement density (+ SE; some error bars are obscured by data
points) for 4 replicate collectors in each of 4 sampling strata (Kelp High, Kelp Low,
Barrens High and Barrens Low) plotted at the midpoint of each 3 d sampling interval
(staggered for graphical clarity), (b) sea temperature measured at 4 locations and (c) salinity
measured at 2 locations in Mill Cove over a 15 d period in July/August 1993. All data are
standardised to local time (AST). The shaded area indicates the period of maximum larval

settlement.
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Fig. 3.3. (a) Sea temperature measured at Northwest Cove, (b) significant wave height
and peak period measured at Osborne Head Buoy, (c) atmospheric pressure and (d) wind
speed and direction measured at Shearwater Meteorological Station over a 15 d period in
July/August 1993. All data are standardised to local time (AST). The shaded area indicates

the period of maximum larval settlement.
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Fig. 3.4. Current velocity measured at 9 m depth in Mill Cove over a 15 d period in
July/August 1993. Data are standardised to local time (AST) and given as alongshore and
offshore component vectors relative to true north. The shaded area indicates the period of

maximum larval settlement.
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DISCUSSION

The timing of ophiuroid settlement in relation to local hydrographic fluctuations
suggests that water mass intrusions resulting in settlement pulses can occur during
relatively weak weather conditions. Unlike some other oceanographic systems (e.g. Wing
et al. 1995b), it is unlikely that a dominant physical event determines ophiuroid settlement
off Nova Scotia. Rather, local bathymetry probably modifies bay- or shelf-scale forcing to
produce upwelling which may deliver or induce competent larvae.

After infusions of cold water from July 24 to 27 and subsequent mixing of the
water column above 17 m, a shift in currents apparently supplied competent larvae to the
site at Mill Cove which settled there in high numbers between July 27 and August 5. The
typical flow of water in St. Margaret's Bay is in a counter-clockwise motion (Heath 1973a)
which argues for the delivery of larvae to the site from water masses within the bay and is
coincident with the current direction measured during the settlement pulse at Mill Cove.
Although we collected ophiuroid larvae during a 1 to 2 month settlement window in each of
3 years, the majority of settlement occurred within two weeks (Chapter 4). The settlement
pulse described here (the only one for which we have corresponding physical data) may
reflect the advective delivery of a discrete batch of larvae at the scale of our sampling grid
(30 m square) or greater. Altematively, competent larvac may be ubiquitous in surface
waters during a longer period and the upwelled water might provide a trigger for mass
settlement.

Our measures of temperature and salinity are typical for St. Margaret's Bay in
summer, when water can either be stratified or mixed depending on local conditions
(Sharaf El Din et al. 1970, Heath 1973a, b, Platt & Irwin 1979). The rapid fluctuations in
salinity and temperature at Mill Cove and correlated changes in temperature stratification
observed at Northwest Cove indicate that changes are occurring on at least a bay-scale.
Although the shift in wind on July 26 is coincident with the change in currents, it is

unlikely that this represents an Ekman upwelling response, given the relatively small size of
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St. Margaret's Bay (i.e. somewhat less than the internal Rossby radius). Possible

mechanisms for the observed hydrographic fluctuations include the setup-setdown of water
within the bay due to changes in atmospheric pressure or windstress (Heath 1973b) or local
expression of shelf-scale upwelling (Petrie et al. 1987). Given the limited oceanographic
and atmospheric data, and complex coastal bathymetry, it is not possible to unequivocally
identify the causative mechanism of upwelling on the west side of St. Margaret's Bay
during this study.

The most striking finding of this study is that settlement of species with long-lived
planktonic larvae (e.g. up to 7 mo for Ophiopholis aculeata; Strathmann 1978a), can occur
over a few days in association with low amplitude fluctuations in the physical environment,
which may be typical but not easily predicted. These pulses can account for most of the
settlement of a species at a given site over several years. Our observations underscore the
importance of measuring settlement and oceanographic processes at short time scales to

understand settlement variability over much longer periods.
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Chapter 4: Temporal and spatial variability in settlement

and recruitment of echinoderms in kelp beds and

barrens in Nova Scotia

INTRODUCTION

The importance of larval supply, settlement and recruitment as determinants of
population structure and dynamics of marine invertebrates with planktonic larvae has been
the subject of considerable research over the past 2 decades (reviewed by Underwood &
Fairweather 1989, Olafsson et al. 1994, Booth & Brosnan 1995, Caley et al. 1996). In
particular, many studies have shown that temporal and spatial variability in settiement are
important in regulating recruitment, and can occur at temporal scales that range from days
to years, or even decades, and spatial scales of metres to kilometres (reviewed by Ebert
1983, Butman 1987, Chapter 1).

Most studies have inferred patterns of settlement from those of recruitment, which
may confound settlement with post-settlement mortality or migration (reviewed by Connell
1985, Gosselin & Qian 1997, Hunt & Scheibling 1997). For example, variation in
sampling method and frequency have been shown to significantly affect measures of
barnacle recruitment in relation to differences in post-settiement mortality (Minchinton &
Scheibling 1993, Miron et al. 1995). The increasing use of artificial settlement collectors
enables direct quantification of settlement by sampling at frequent intervals, and thereby
minimizing the effects of predation and migration (e.g. Harrold et al. 1991, Keesing et al.
1993, Ebert et al. 1994, Harris et al. 1994). Sampling collector arrays facilitates replication
in space and time and separation of settlement from post-settlement processes (Harrold et
al. 1991). However, different collector types should be calibrated for comparisons across
studies (Chapter 2) and related to recruitment in natural habitats to determine links between

larval supply and population structure and dynamics.
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Differences in population densities of echinoids have been attributed to lower rates

of recruitment in kelp beds/forests than in echinoid-dominated barrens in the northwest
Pacific (Tegner & Dayton 1981), and northwest (Scheibling 1986) and northeast (Leinaas
& Christie 1996) Atlantic. However, studies comparing settlement rates of echinoids
between these two habitats have yielded inconsistent results and the relative roles of
settlement verses post-settlement processes in determining recruitment patterns remains
poorly understood (reviewed in Chapter 1). Along the Atlantic coast of Nova Scotia, large
tracts of the rocky subtidal zone fluctuate between kelp beds and barrens on a decadal time
scale (Chapman 1981, Wharton & Mann 1981, Miller 1985a, b, Scheibling 1986,
Scheibling et al. in press). During the early 1990's, this region was in transition from kelp
beds to barrens because of destructive grazing of kelp by the echinoid Strongylocentrotus
droebachiensis (Scheibling et al. in press). This provided a rare opportunity to compare
settlement and recruitment between these adjacent habitat types without the potential
confounding effects of between-site variability.

To determine whether the factors that regulate settlement and recruitment are habitat
or species-specific, we sampled several species of echinoderms with dispersing
planktotrophic larvae that are typical of many marine benthic invertebrates (Strathmann
1987). Most of the species occur in high densities at our sites (Dempsey 1996,
unpublished data) and are dominant components of the rocky subtidal ecosystem along the
Atlantic coast of Nova Scotia. To determine the importance of scale in regulating settlement
and recruitment of these species, we measured settlement in artificial collectors, and
recruitment to natural substrata, at temporal scales of days to years, and spatial scales of
10's of metres between and within habitats (kelp beds and barrens), and kilometres
between sites. We relate settlement to recruitment and show that both general patterns and
species-specific variability are important in establishing and maintaining these populations

in the rocky subtidal ecosystem.
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MATERIALS AND METHODS

Site descriptions

Patterns of echinoderm settlement and recruitment were measured at 2 sites selected
for their differing hydrodynamic regimes: Mill Cove (44° 34.9' N, 64° 3.2' W) in St.
Margaret's Bay, a large semi-protected embayment, and Little Duck Isiand (44° 22.0' N,
64° 11.0' W), an exposed island at the mouth of Mahone Bay (Fig. 3.1). The substratum
at Mill Cove consists of granitic boulders and bedrock pavement at 6 to 10 m depth (below
mean sea level). At Little Duck Island, broad ridges of grooved basalt form the seabed at 5
to 7 m depth. Both sites encompassed an echinoid (Strongylocentrotus droebachiensis) -

dominated barrens and a kelp bed (Laminaria longicruris), with high densities of §.

droebachiensis (up to 400 m-2) aggregated at the interface between habitats and
destructively grazing the kelp. This echinoid front advanced shoreward 10 to 15 m during
the study period (Scheibling et al. in press) creating new barrens, dominated by encrusting
coralline algae, in its wake. Kelp morphology differed between sites in accordance with
the differing flow regimes (Gerard & Mann 1979): Laminaria longicruris had longer stipes
and longer and broader fronds at Mill Cove than at Little Duck Island. This resulted in a
higher canopy at Mill Cove, although the kelps at this more protected site usually lay along
the substratum whereas those at Little Duck Island often were suspended by wave surge.
The understory in the kelp bed was composed of turfs of articulated coralline algae
(Corallina officinalis) and various other red algae (e.g. Ceramium rubrum, Chondrus
crispus, Palmaria palmata). For a further description of the sites and destructive grazing by
the echinoid front see Scheibling et al. (in press).

Seasonal fluctuation in sea temperature was measured at 2.4 h intervals in 1993 and
1994 using HOBO®Temp data loggers (Onset®Computer Corp., Pocasset, MA, USA)

deployed at 0.2 m and 2.3 m off the bottom (the height of settlement collectors, see below)

in each habitat at both sites.
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Settlement sampling

Settlement collectors were constructed from 20 x 14 cm diameter PVC pipes
mounted on a plastic vane and attached to a rope by swivels to allow orientation into the
current (Fig. 2.2). Each pipe was lined with 0.05 m? pieces of polyethylene plastic turf
(PNS-3, Monsanto Canada Inc.) which served as a settlement substrate. The turf liners
were protected from macro-predators by plastic light diffuser grating (1 cm aperture). The
collector design was modified after Harrold et al. (1991) to accommodate the plastic turf,
which Harris et al. (1994) showed to be an effective settlement surface for
Strongylocentrotus droebachiensis.

Paired collectors were suspended in an array at 0.2 m (Low) and 2.3 m (High) off
the bottom by a sub-surface float and anchored with two 20 kg cement blocks. Low
collectors were located within the kelp canopy at both sites. High collectors were intended
to measure larval supply in the water column above each habitat. Because paired Low and
High collectors are sampling different regions of the water column with different flow rates
and temperatures (Chapter 3), we considered them to be independent in statistical analyses.
Four collector arrays were placed in line at 10 m intervals within each habitat (barrens and
kelp bed) giving 4 sampling strata (Kelp High, Kelp Low, Barrens High, Barrens Low).
Within each habitat we positioned collector arrays at a fixed distance from the interface
between habitats and at the same depth to limit potential confounding effects of location,
and we spaced these arrays equally to increase the likelihood of obtaining a representative
sample with few replicates. The two lines were parallel and ~15 m from the interface (i.e.
~30 m apart). At the beginning of each year, the position of the lines was adjusted to
maintain a similar distance from the interface which shifted because of the advancing
echinoid front.

Collectors were sampled by divers who removed the plastic turf, immediately
placed it in a sealed plastic bag and replaced it with a new piece of turf and cleaned plastic

grating. Replacement turf was pre-soaked in tanks of flowing 50 um filtered seawater for
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~1 week prior to deployment to allow for growth of a microbial film (Pearce & Scheibling

1991, Pearce 1997). Samples were returned to the laboratory for processing within 6 h of
collection. The turf was soaked in 50 % EtOH or 7 to 8 % MgCl, for 10 to 20 min and

then gently agitated and rinsed with filtered sea water to remove settlers. The rinse water,

together with the water from the sample bag, was filtered through a 150 um Nitex® mesh
screen (small enough to retain echinoderm settlers). The retained contents of the sample
were stored in 70 % EtOH for subsequent identification and enumeration of settlers using a
Bogorov tray under a dissecting microscope.

Settlers of echinoids (Strongylocentrotus droebachiensis and Echinarachnius
parma) ophiuroids (Ophiopholis aculeata and Ophiura) and asteroids (Asterias) were
identified from descriptions in the literature (Agassiz et al. 1883, Gordon 1929, Russell-
Hunter 1979, Pearse et al. 1987, Todd & Laverack 1991, Medeiros-Bergen et al. 1998).
Adults of Ophiura robusta occur in low numbers at both sites, although some settlers may
have been O. sarsi which is common in deeper waters (Packer et al. 1994). Asterias
vulgaris and A. forbesi occur at both sites with A. vulgaris being the more common
species. Because we were unable to speciate the settlers of Ophiura and Asterias, we refer
to them by genus.

Settlement was monitored in one of the paired collectors at each stratum in an array
at bi-weekly intervals from 11 June to 20 November 1992, 26 May to 11 November 1993,
and 9 June to 16 October 1994. Sampling was staggered between sites by ~1 week for
logistical reasons. Settlers from two replicate arrays (20 m apart) were initially counted to
record temporal patterns in settlement. The remaining 2 arrays also were counted for the 2-
week period of highest settlement for each species, site and year. From 11 to 24 July
1992, we concurrently sampled all of the paired collectors to examine spatial variability
within habitats at Mill Cove.

We define settlement operationally as the number of larvae of a species (genus) that

attach to the turf during each 2-week period. We assume that the short sampling period and
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the design of our collectors minimise post-settlement mortality and emigration. To
determine the effect of sampling frequency on our estimate of settlement, the second of the
paired collectors was sampled at different intervals at Mill Cove. Thus, settlement at
successive 3 d intervals from 21 July to 5 August 1993 was summed and compared to
measures from concurrent bi-weekly samples for each combination of collector height and
habitat. Similarly, settlement summed over 3 successive 16 d intervals from 9 June to 27
July 1994 was compared to concurrent 48 d samples at Mill Cove. The amount of
algal/detrital fouling on collectors and the abundance of herbivorous gammarid amphipods
(which could reduce fouling) also were measured in the 48 d samples to examine their
potential effects on settlement at different collector heights. As an index of fouling we
measured the thickness (in mm) of layers of sediment and flocculent material in

standardised sample bottles.

Recruitment sampling

We define recruitment operationally as juveniles that survive to be counted ~1 year
after settlement. The size of l-year-old echinoderm recruits was determined from
published growth rates and inspection of size-frequency distributions based on field
samples (see below). We designated echinoids <8 mm (horizontal test diameter) as recruits
of Strongylocentrotus droebachiensis based on growth rates for this species of 6 to 8§ mm
in the first year measured under laboratory and field conditions in Nova Scotia (Raymond
& Scheibling 1987). We designated asteroids <10 mm (radius) as recruits of Asterias,
which is consistent with early growth rates of Asterias vulgaris measured in the field in
temperate waters (Smith 1940, Barker & Nichols 1983, Nichols & Barker 1984,
Himmelman & Dutil 1991). We combined juvenile Asterias vulgaris and A. forbesi with
small individuals that could only be identified to genus. Identifying ophiuroid recruits was
complicated by a lack of juvenile growth data for Ophiopholis aculeata and Ophiura

robusta, and the absence of distinct cohorts in our samples. Packer et al. (1994) reported
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growth rates of Ophiura sarsi of 2 to 4 mm in the first year at 150 m depth in the Gulf of

Maine. Because modal size of O. sarsi from this population is ~7 times larger than Ophiura
robusta, and ~3 times larger than Ophiopholis aculeata, at our sites, we designated
individuals <2 mm (disc diameter) as recruits of Ophiura robusta and individuals <4 mm as
recruits of Ophiopholis aculeata.

To compare the density of echinoderm recruits between years, sites and habitats,
we collected and measured all individuals of each species from 6 to 10 quadrats of 1 m?
randomly positioned along a belt transect of 4 m x 50 m (Strongylocentrotus
droebachiensis in both habitats at Mill Cove in 1995 and in the barrens at Little Duck Island
in 1993 were measured in only 4 quadrats). Each transect extended alongshore in each
habitat at each site, parallel to and ~5 m from the line of collector arrays (in the direction of
the echinoid front). Quadrats were sampled by divers between 30 August and 21 October
1993, 14 July and 2 September 1994, and 13 July and 31 August 1995. The location of
the transect was staggered by <3 m each year to avoid overlap with previous transects and
to maintain a similar position relative to the collector arrays and the advancing echinoid
front.

Within each 1 m? quadrat, a 0.1 m? inset quadrat was sampled using a suction
device to sample individuals as small as | mm. The remainder of the quadrat (0.9 m?) was
carefully searched by divers who removed and manually sorted through algal turfs and
broke up coralline crusts to locate small and cryptic individuals. For each quadrat,
echinoderms (and other invertebrates) were placed in sealed plastic bags. Samples were
sorted in the laboratory where echinoderms were identified and measured with vernier
calipers (0.1 mm accuracy). Measures from the 0.9 m?> and 0.1 m’ quadrats were
combined to obtain the density of recruits per | m2. The comparability of the two methods
in sampling recruits was assessed by calculating the ratio of the number of recruits collected
in the 0.9 m2 portion to those collected in the 0.1 m? portion, pooled over all quadrats

within each transect. In most cases, the ratio approximated 9, indicating that differences in
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sampling methodology or sampling scale had little effect on our estimates of recruitment.

Exceptions to this were samples in the kelp bed at Little Duck Island of Strongylocentrotus
droebachiensis in 1995, and Asterias in 1993 and 1994, where ratios ranged from 1.4 to
3.2, indicating that recruitment may have been a slightly underestimated in the 0.9 m?

quadrats. Individuals of each species (genus) were pooled over all quadrats in a habitat to

record size distributions.

Statistical analyses

Effects on settlement and recruitment of site, habitat, collector height (for
settlement) and year were examined using factorial ANOVA. Analysis of settlement is
based on 4 replicate collectors sampled over the 2-week period of highest settlement.
Effects on settlement of sampling frequency, habitat and height also are examined by
factorial ANOVA based on 4 replicate collectors. All analyses are based on counts of
settlers per collector (i.e. 0.05 m? of turf) but converted to settlers per m? for comparability
with recruitment measurements. Periods of low settlement (mean density <2 settlers per
collector) within a site were excluded from statistical analysis. Analysis of recruitment data
is based on 6 to 10 (occasionally 4) replicate quadrats sampled in each site, habitat and
year. All factors are considered fixed, including site because the sites were selected to

represent two different hydrodynamic environments. Cochran's test was conducted prior

to ANOVA to test the assumption of homogeneity of variance (00=0.05). Where necessary,

raw data were log transformed [In (x+1)] to satisfy this assumption. Post-hoc comparisons

are made using Tukey's HSD test (a=0.05).
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RESULTS

Temporal and spatial patterns of settlement

Settlement of echinoderms in the kelp bed and barrens mainly occurred over an ~2
week period between July and September of each year (Figs. 4.1 to 4.4). The magnitude
and timing of each settlement peak varied between species and years, and the year of
maximum settlement differed between species. Most settlement occurred during the
summer months when sea temperature was at or near the yearly maximum (Fig. 4.5).
During the settlement period, temperature was slightly higher on average but more variable
at Mill Cove than Little Duck Island. Temperatures at both sites were lower on average and
more variable in 1994 than 1993.

Settlement of the echinoid Strongylocentrotus droebachiensis was consistently low
at both sites in 1992 and 1993 but increased by an order of magnitude in 1994 (Fig. 4.6).
Analysis of the 1994 settlement peak indicated no significant difference between habitats
(F, 1»=0.962, p=0.346) or collector heights (F, ;,=3.200, p=0.099) at Mill Cove. There
also was no significant interaction of habitat and height (F, ,,=2.427, p=0.145). Missing
data from the kelp bed at Little Duck Island in 1994 limited between-site comparisons to the
barrens, where there was no significant effect of site (F, ,=0.267, p=0.617), or height

(F, 10=0.966, p=0.349), or interaction of height and site (F, ,;=3.671, p=0.084).

The irregular echinoid Echinarachnius parma settled in collectors only once over the

3 year sampling period, at Mill Cove from 8 to 22 September 1994. Settlement of E.

parma did not differ significantly between habitats (F, ,=0.531, p=0.480)(mean + SE,
averaged over collector heights, n=8: kelp, 65.0 £42.6 m-2; barrens, 120 + 76.0 m-2) but
was an order of magnitude greater in High (172.5 £76.9 m2) than in Low (12.5 £ 7.5

m~2) collectors (averaged over habitats), although this difference was marginally non-
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significant (F, ,=4.320, p=0.060). There was no significant interaction of habitat and

collector height (F, ;,=0.014, p=0.909).

Settiement of the asteroid Asterias was highly variable at both sites in all years
resulting in a significant 4-way interaction of year, habitat, height and site (Fig. 4.7, Table
4.1). Post-hoc comparisons indicate greater settlement in 1993 and 1994 than in 1992, but
between-site differences were significant in only 2 cases (Barren Low in 1994, Kelp Low
in 1992). Settlement tended to be greater in High than in Low collectors, particularly at
Mill Cove. With the exception of Little Duck Island in 1992, settlement of Asterias in High
collectors was consistently greater above the kelp bed than above the barrens. However,
this difference was statistically significant in only one case (Little Duck Island in 1994). At
Mill Cove, a second pulse of settlement occurred at the end of the sampling period in
September/October 1994. Again, settlement was greater in the High than in the Low
collectors (F, ,,=14.453, p=0.003), but there was no significant difference between
habitats (F, ,,<0.001, p=0.993) and no interaction of these factors (F, ,,=0.084, p=0.776).

The ophiuroid Ophiopholis aculeata settled in significantly greater numbers in High
than in Low collectors and there were no interactions between collector height and any of
the other factors (Fig. 4.8, Table 4.2). However, there were significant 2-way interactions
between year and site and between habitat and site. Post-hoc comparisons show that
settlement (averaged over habitats and heights) differed between years (1993>94>92) at
Mill Cove but not at Little Duck Island and was greater at Mill Cove than Little Duck Island
in 1993 but not 1992 or 1994. Also, settlement (averaged over years and heights) was
greater in the barrens than the kelp bed at Little Duck Island and greater in both habitats at
Mill Cove than Little Duck Island.

Settlement of the ophiuroid Ophiura decreased over the 3 years to very low
numbers in 1994. ANOVA of settlement in 1992 and 1993 indicated a significant 3-way
interaction between year, habitat and height and a 2-way interaction between year and site

(Fig. 4.9, Table 4.3). Post-hoc comparisons show that settlement (averaged over habitats,
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heights and sites) was greater in 1992 than in 1993 and greater at Mill Cove than Little

Duck Island in both years. Settlement in Low collectors (averaged over sites) was greater
in the barrens than in the kelp beds in 1992, but not in 1993, and greater in High than in
Low collectors in the kelp bed in 1992. Ophiura, the only species that settled in abundance
at Mill Cove in 1992, also was used to test the effect of array position within habitats in a
nested ANOVA. The analysis showed that the effect of position, the nested factor, was not
significant (kelp bed: F, ;4=0.456, p=0.717; barrens: F; ;,=2.021, p=0.152) nor was the
interaction of height and position (kelp bed: F; ,=0.706, p=0.562; barrens: F; =1.150,

p=0.359), indicating little variation among collector arrays within each habitat.

Effect of sampling frequency

At Mill Cove, sampling at 3 d intervals showed that most settlement of Ophiopholis
aculeata and Ophiura during the ~2-week settlement period in 1993 occurred within 6 d (see
also Chapter 3). A comparison of settlement of these ophiuroids summed over 5
successive 3 d intervals with that recorded over the same 15 d interval (Fig. 4.10a, b)
indicated no significant effect of sampling frequency (Ophiopholis aculeata: F, ,,=3.543,
p=0.072; Ophiura: F ,,=0.488, p=0.492) or interaction of sampling frequency with habitat
(F,,=0.081, p=0.778; F,,,=0.025, p=0.877) or height (F,,,=0.090, p=0.767;
F,,,=0.059, p=0.811). A comparison of settlement of Strongylocentrotus droebachiensis
and Ophiopholis aculeata summed over 3 successive 16 d intervals to that recorded over the
same 48 d interval in 1994 (Fig. 4.11a, b) indicated a significant interaction of sampling
frequency and height (S. droebachiensis: F, ,,=16.097, p=0.001; Ophiopholis aculeata:
F,,,=12.326, p=0.002). Post-hoc comparisons show that settlement for both species
(averaged over habitats) was greater in High than in Low collectors in the 48 d sample but

not in the summed 16 d samples, and greater in the 48 d sample than in the summed 16 d
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samples in High collectors but not in Low collectors. Ophiura settled in low numbers
during 1994 and most settlement of Asterias occurred later in the year (Fig. 4.11c). For
both species there was no significant effect of sampling frequency (Ophiura: F, ,,=0.800,
p=0.380; Asterias: F| 5,=3.960, p=0.058) nor significant interaction with habitat (F ,,=0,
p=1; F|,,=3.960, p=0.058 respectively) or height (F, ,,=0.200, p=0.659; F,,,=0.615,
p=0.441 respectively).

ANOVA of the fouling index after 48 d shows that High collectors were more
fouled than Low collectors (F, ,,=151.742, p<0.001), collectors in the kelp bed were more

fouled than those in the barrens (F, ;,=9.484, p=0.010), and that there was no significant
interaction of habitat and collector height (F, ,=0, p=I)(Fig. 4.12). This difference in

fouling, in part, could be due to differences in the abundance of herbivorous amphipods.
ANOVA of amphipod abundance in the 48 d sample showed greater numbers in Low than
in High collectors (F, ,=14.878, p=0.002), no difference in abundance between habitats
(F;.1,=1.653, p=0.223), and no interaction of habitat and collector height (F, ,=1.653
p=0.223)(Fig. 4.12). To further examine the relationship between fouling and settlement,
and between amphipod abundance and fouling, we used regression analysis (Fig. 4.13).
Settlernent of both Strongylocentrotus droebachiensis (r2=0.280, p=0.035) and
Ophiopholis aculeata (r?=0.775, p<0.001) was positively related to fouling in the 48 d
sample, but there was no significant relationship in each of the 16 d samples (p>0.2)(Fig.

4.13). Fouling was negatively related to amphipod abundance in the 48 d sample
(r2=0.367, p=0.013).

Temporal and spatial patterns of recruitment
Size distributions of Strongylocentrotus droebachiensis from 1993 to 1995 were
skewed towards juvenile size classes (<16 mm), reflecting recent recruitment (Fig. 4.14).

In 1995 in particular, echinoid populations in both habitats at each site were dominated by
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recruits from the previous year (<8 mm). Analysis of recruit density indicated significant
differences between years (F,g,=123.092, p<0.001), habitats (F, ¢,=76.000, p<0.001)
and sites (F, g5=34.315, p<0.001)(Fig. 4.18) but no significant 2-way (year x habitat:
F,45=1.934, p=0.151; year x site: F,g,=1.235, p=0.296; habitat x site: F,4;=0.033,
p=0.856), or 3-way (F,3=2.409, p=0.096) interactions. Recruitment of S.
droebachiensis was greater in barrens than in kelp beds, greater at Mill Cove than Little
Duck Island, and greater in 1995 than 1994 (by an order of magnitude) and in 1994 than
1993 (Fig. 4.18).

Recruitment of the irregular echinoid Echinarachnius parma was not recorded at
either site; only 10 small individuals, from barrens at Mill Cove (8 in 1993 and 2 in 1994)
were collected during this study.

Size distributions of Asterias were heavily skewed towards juveniles (<10 mm) in
both habitats at each site in 1994 and 1995, and in the kelp bed at Little Duck Island in
1993 (Fig. 4.15). Analysis of recruit density indicated a 3-way interaction of year, habitat
and site (Fig. 4.18, Table 4.4), largely because of differences in magnitude, rather than
direction, of recruitment. Post-hoc comparisons indicated that recruitment generally was
greater in 1995 and 1994 than in 1993, greater in kelp beds than barrens, and greater at Mill
Cove than Little Duck Island.

Size distributions of Ophiopholis aculeata were approximately normal at both sites
in all years, but slightly skewed towards the smallest size classes (<4 mm) at Mill Cove in
1995 (Fig. 4.16). Modal size tended to be smaller at Mill Cove (4 to 6 mm) than Litde
Duck Island (7 to 9 mm) between 1993 and 1995. Analysis of recruit density indicated
significant differences between years (F,g,=11.726, p<0.001) and sites (F,4,=19.807,
p<0.001), but not between habitats (F, 4,=0.405, p=0.526)(Fig. 4.18). There were no
significant 2-way (year x habitat: F, 4,=0.287, p=0.751; year x site: F, 4,=0.713, p=0.493;

habitat x site: F,4,=0.217, p=0.643) or 3-way (F,4,=0.624, p=0.538) interactions.
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Recruitment was greater at Mill Cove than Little Duck Island and greater in 1995 than

1994, and in 1994 than 1993.
Ophiura robusta occurred in low numbers at both sites and with approximately
normal size distributions (Fig. 4.17). Recruits were rare or absent between 1993 and 1995

precluding any statistical analysis (Fig. 4.18).

Relationship between settlement and recruitment

We used regression analyses to examine the relationship between mean settlement
in the Low collectors during the ~2 week peak each year (1992 to 1994) to mean
recruitment ~1 year later (1993 to 1995) from each combination of site, habitat and year
(Fig. 4.19). Logarithmic transformation of the means [log (x+1)] strengthened the
relationship in 3 out of 4 cases (for Ophiura it remained non-significant). For
Strongylocentrotus droebachiensis, recruitment strongly reflected settlement in the previous
year: 84 % of the variation in recruitment is explained by the variation in settlement. Low
settlement of echinoids in 1992 and 1993 resulted in low recruitment in the subsequent
years, but a large settlement event in 1994 resuited in high recruit density in 1995 at both
sites and in both habitats. Although settlement and recruitment rates of Asterias were more
variable, 42 % of the variation in recruitment is explained by variation in settlement.
Recruitment of Ophiopholis aculeata was consistently low, although settlement varied by
almost 3 orders of magnitude. Nevertheless, 38 % of the variation in recruitment of this
ophiuroid is explained by variation in settlement. Ophiura exhibited a similar variation in
settlement as O. aculeata but recruits were so rare each year that there was no significant

relationship between recruitment and settlement.
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Table 4.1. Results of a 4-factor ANOVA and Tukey’s HSD test for settlement of Asterias
at Mill Cove and Little Duck Island sampled over 3 years in 2 habitats (barrens, kelp bed) at
2 heights (High, Low). Statistically significant post-hoc comparisons of each treatment
level are given with levels increasing in magnitude; those with common underlines do not
differ significantly («=0.05). Data are log transformed [In(x+1)]. MC: Mill Cove, LD:
Little Duck Island, K: kelp bed, B: barrens, H: High, L: Low

_Source df _Sum of Squares Mean Square F-Value P-Value
Year 2 105.869 52.935 248.804 0001
Habitat 1 2.664 2.664 12.522  .0007
Height 1 23.233 23.233 109.198  .0001
Site 1 4.778 4.778 22457 .0001
Year * Habitat 2 814 407 1913  .1550
Year * Height 2 351 175 824 4428
Year * Site 2 10.689 5.345 25.121  .0001
Habitat * Height 1 1.136 1.136 5341 0237
Habitat * Site 1 701 701 3296 .0736
Height * Site 1 2.311 2.311 10.862 .0015
Year * Habitat * Height 2 441 221 1.037 .3596
Year * Habitat * Site 2 .846 423 1.989  .1443
Year * Height * Site 2 .526 263 1.237  .2963
Habitat * Height * Site 1 107 107 502 4809
Year * Habitat * Height * Site 2 3.148 1.574 7.399 .0012
Residual 72 15.318 213

Source: Year Habitat Height Site

MCKH: 92 9493 LDH9%:BK MCB%: L H BL94: MCLD
MCKL: 92 9493 MCK92:LH KL92: MCLD
MCBH: 92 94 93 MCK93:LH

MCBL: 92 94 93 MCK94: LH

LDKH: 92 93 94 LDK9%: L H

LDKL: 9294 93

LDBH: 92 94 93
LDBL: 97939
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Table 4.2. Results of a 4-factor ANOVA and Tukey's HSD test for settlement of
Ophiopholis aculeata at Mill Cove and Little Duck Island sampled over 3 years in 2 habitats
(barrens, kelp bed) at 2 heights (High, Low). Statistically significant post-hoc
comparisons of each treatment level are given with levels increasing in magnitude; those
with common underlines do not differ significantly (¢=0.05). Data are log transformed
[In(x+1)]. MC: Mill Cove, LD: Little Duck Island, K: kelp bed, B: barrens, H: High, L:
Low

Source df Sum of Squares Mean Square _ F-Value P-Value
Year 2 26.866 13.433 44783
Habitat 1 6.080 6.080 20.268 .0001
Height 1 11.835 11.835 39.456 .0001
Site 1 17.897 17.897 59.663 .0001
Year * Habitat 2 034 017 057 9450
Year * Height 2 094 047 157 8546
Year * Site 2 19.010 9.505 31.688 .000!
Habitat * Height 1 368 368 1.226 2719
Habitat * Site 1 2.365 2.365 7.885 .0065
Height * Site 1 .129 129 430 5142
Year * Habitat * Height 2 1.326 663 2211 1172
Year * Habitat * Site 2 438 219 729 4859
Year * Height * Site 2 534 267 891 4149
Habitat * Height * Site 1 027 027 091 7640
Year * Habitat * Height * Site 2 190 095 318 .7290
Residual 70 20.997 .300
Source: Year Habitat Height Site

MC: 9294 93 LD:KB ali pooled: L H 93: LD MC

K: LD MC

B:LDMC
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Table 4.3. Results of a 4-factor ANOVA and Tukey's HSD test for settlement of Ophiura
at Mill Cove and Little Duck Island sampled over 3 years in 2 habitats (barrens, kelp bed) at
2 heights (High, Low). Statistically significant post-hoc comparisons of each treatment
level are given with levels increasing in magnitude; those with common underlines do not
differ significantly (a=0.05). Data are log transformed [in(x+1)]. MC: Mill Cove, LD:
Little Duck Island, K: kelp bed, B: barrens, H: High, L: Low

Source df Sum of Squares Mean Square F-Value P-Value
Year 1 33.824 33.824 155.674 .0001
Habitat 1 12.118 12.118 55.772 .0001
Height 1 8.749 8.749 40.267 .0001
Site 1 26.294 26.294 121.015 .0001
Year * Habitat 1 .633 .633 2915 .0942
Year * Height 1 106 106 487 4885
Year * Site 1 1.440 1.440 6.628 0132
Habitat * Height | 1.439 1.439 6.621 0132
Habitat * Site H .683 683 3.145 .0825
Height * Site 1 056 056 259 6133
Year * Habitat * Height | 1.366 1.366 6.286 .0156
Year * Habitat * Site 1 021 021 097 7570
Year * Height * Site 1 234 234 1.077  .3046
Habitat * Height * Site 1 017 017 080 .7786
Year * Habitat * Height * Site 1 610 610 2.806 .1004
Residual 48 10.429 217
Source: Year Habitat Height Site

BH: 9392 L92: KB K92:LH 92: LDMC

BL: 9392 93:. LDMC

KH: 93 92

KL: 9392

MC: 9392

LD: 93 92
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Table 4.4. Results of a 3-factor ANOVA and Tukey's HSD test for recruitment of Asterias
at Mill Cove and Little Duck Island sampled over 3 years in 2 habitats (barrens, kelp bed).
Statistically significant post-hoc comparisons of each treatment level are given with levels
increasing in magnitude; those with common underlines do not differ significantly
(=0.05). Data are log transformed [In(x+1)]. MC: Mill Cove, LD: Little Duck Island, K:
kelp bed, B: barrens

Source df  Sum of Squares _Mean Square F-Value P-Value
Year 2 43.304 21.652 56.190 .0001
Habitat 1 80.524 80.524 208.970 .0001
Site 1 22.188 22.188 57.581 .0001
Year * Habitat 2 6.357 3.179 8.249 0005
Year * Site 2 7.943 3.972 10.307 .0001
Habitat * Site 1 5.142 5.142 13.344 .0004
Year * Habitat * Site 2 3.203 1.601 4.156 .0182
Residual 108 41.617 385

Source: Year Habitat Site

MCK:939495 MC94:BK  K93:LD MC
LDB: 93 94 95 MC95:BK  B95:LDMC
LDK: 93 93 35 LD93:BK  K95:LDMC
LD94: BK
LD95: BK
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Fig. 4.1. Mean density of settlers of Strongylocentrotus droebachiensis in collectors at 2.3
and 0.2 m off the bottom (High and Low) in 2 habitats (kelp bed and barrens) from June to
November 1992 to 1994 at Mill Cove and Little Duck Island. Data are plotted at the

midpoint of each bi-weekly sampling interval (n=2 to 4).
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Fig. 4.2. Mean density of settlers of Asterias in collectors at 2.3 and 0.2 m off the bottom
(High and Low) in 2 habitats (kelp bed and barrens) from June to November 1992 to 1994
at Mill Cove and Little Duck Island. Data are plotted at the midpoint of each bi-weekly

sampling interval (n=2 to 4).
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Fig. 4.3. Mean density of settlers of Ophiopholis aculeata in collectors at 2.3 and 0.2 m
off the bottom (High and Low) in 2 habitats (kelp bed and barrens) from June to November
1992 to 1994 at Mill Cove and Little Duck Island. Data are plotted at the midpoint of each

bi-weekly sampling interval (n=2 to 4).
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Fig. 4.4. Mean density of settlers of Ophiura in collectors at 2.3 and 0.2 m off the bottom
(High and Low) in 2 habitats (kelp bed and barrens) from June to November 1992 to 1994
at Mill Cove and Little Duck Island. Data are plotted at the midpoint of each bi-weekly

sampling interval (n=2 to 4).
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Fig. 4.5. Sea temperature measured at 2.3 and 0.2 m off the bottom (High and Low) in 2
habitats (kelp bed and barrens) in 1993 and 1994 at Mill Cove and Little Duck Island.
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Fig. 4.6. Mean (x SE) density of settlers of Strongylocentrotus droebachiensis sampled in

4 replicate collectors at 2.3 and 0.2 m off the bottom (High and Low) in 2 habitats (kelp
bed and barrens) during the bi-weekly period of peak settlement in each year (1992 to
1994) at Mill Cove and Little Duck Island.
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Fig. 4.7. Mean (* SE) density of settlers of Asterias sampled in 4 replicate collectors at

2.3 and 0.2 m off the bottom (High and Low) in 2 habitats (kelp bed and barrens) during

the bi-weekly period of peak settlement in each year (1992 to 1994) at Mill Cove and Little
Duck Island.
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Fig. 4.8. Mean (x SE) density of settlers of Ophiopholis aculeata sampled in 4 replicate

collectors at 2.3 and 0.2 m off the bottom (High and Low) in 2 habitats (kelp bed and
barrens) during the bi-weekly period of peak settlement in each year (1992 to 1994) at Mill
Cove and Little Duck Island.
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Fig. 4.9. Mean (* SE) density of settlers of Ophiura sampled in 4 replicate collectors at

2.3 and 0.2 m off the bottom (High and Low) in 2 habitats (kelp bed and barrens) during

the bi-weekly period of peak settlement in each year (1992 to 1994) at Mill Cove and Little
Duck Island.
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Fig. 4.10. Mean (+ SE) density of settlers of (a) Ophiopholis aculeata and (b) Ophiura in 4
replicate collectors in each of 4 sampling strata (Kelp High, Kelp Low, Barrens High,
Barrens Low) over a 15 d period in Jul/Aug 1993 at Mill Cove. Settlement summed over 5

successive 3 d (5x3 d) intervals is compared to a single 15 d measure over the same period.
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Fig. 4.11. Mean (+ SE) density of settlers of (a) Strongylocentrotus droebachiensis, (b)
Ophiopholis aculeata and (c) Asterias in 4 replicate collectors in each of 4 sampling strata
(Kelp High, Kelp Low, Barrens High, Barrens Low) over a 48 d period in Jun/Jul 1994 at
Mill Cove. Settlernent summed over 3 successive 16 d (3x16 d) intervals is compared to a

single 48 d measure over the same period.
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Fig. 4.12. Mean (+ SE) of fouling index and density of amphipods in 4 replicate collectors
in each of 4 sampling strata (Kelp High, Kelp Low, Barrens High, Barrens Low) over a 48

d period in Jun/Jul 1994 at Mill Cove.
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Fig. 4.13. a) Relationship between settlement of Strongylocentrotus droebachiensis ( O )
and Ophiopholis aculeata ( @ ) and fouling index, and b) relationship between fouling
index and amphipod abundance in 4 collectors in each of 4 sampling strata (Kelp High,
Kelp Low, Barrens High, Barrens Low) over a 48 d period in Jun/Jul 1994 at Mill Cove.

Also shown are regression lines for each set of grouped data (n=16).
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Fig. 4.14. Size-frequency distributions (horizontal test diameter, mm) of

Strongylocentrotus droebachiensis collected in 1.0 m2 quadrats (n=4 to 10) in 2 habitats
(kelp bed and barrens) between July and October 1993 to 1995 at Mill Cove and Litde

Duck Island. Recruits (shaded black) are individuals <8 mm.
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Fig. 4.15. Size-frequency distributions (radius, mm) of Asterias (A. vulgaris and A.
forbesi combined) collected in 1.0 m2 quadrats (n=10) in 2 habitats (kelp bed and barrens)

between July and October 1993 to 1995 at Mill Cove and Little Duck Island. Recruits
(shaded black) are individuals <10 mm.
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Fig. 4.16. Size-frequency distributions (disc diameter, mm) of Ophiopholis aculeata
collected in 1.0 m2 quadrats (n=6 to 10) in 2 habitats (kelp bed and barrens) between July
and October 1993 to 1995 at Mill Cove and Little Duck Island. Recruits (shaded black) are

individuals <4 mm.
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Fig. 4.17. Size-frequency distributions (disc diameter, mm) of Ophiura robusta collected

in 1.0 m2 quadrats (n=10) in 2 habitats (kelp bed and barrens) between July and October
1993 to 1995 at Mill Cove and Little Duck Island. Recruits (shaded black) are individuals

<2 mm.
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Fig. 4.18. Mean (x SE) density of recruits of Strongylocentrotus droebachiensis, Asterias,

Ophiopholis aculeata and Qphiura robusta collected in 1.0 m? quadrats (n=4 to 10) in 2
habitats (kelp bed and barrens) between July and October 1993 to 1995 at Mill Cove and
Little Duck Island.
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Fig. 4.19. Relationship between mean settlement (1992 to 1994) and mean recruitment in
the subsequent year (1993 to 1995) of Strongylocentrotus droebachiensis, Asterias,
Ophiopholis aculeata and Ophiura measured in 2 habitats (kelp bed and barrens) at Mill
Cove and Little Duck Island. Means are caiculated from settlers sampled in 4 Low
collectors during the bi-weekly interval of peak settlement in each year (1992 to 1994) and
from recruits collected from 4 to 10 quadrats of 1.0 m2 between July and October 1993 to
1995. Also shown are regression lines and exponential equations relating recruit density

(y) to settler density (x) and the associated r2 and p value of this relationship.
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DISCUSSION

Temporal patterns of settlement

Timing of settlement of echinoderms in our study differed consistently among
species, in relation to differences in timing of spawning and larval development. Almost all
settlement of Strongylocentrotus droebachiensis occurred in July but low numbers of
settlers were found as late as October. Strongylocentrotus droebachiensis spawns in
March/April at both sites (Meidel & Scheibling 1998) and laboratory-reared larvae settle 4
to 22 weeks post-fertilization at temperatures within the range they experience along the
coast of Nova Scotia (Strathmann 1987, Pearce & Scheibling 1990a, Meidel et al. 1999).
We recorded settlement of Echinarachnius parma in September 1994, but we may have
missed the settlement peak for this species because our sampling ended in
October/November. Spawning of E. parma in the Gulf of Maine begins in August and
peaks in November (Cocanour & Allen 1967) and laboratory-reared larvae settle within 5 to
10 weeks (Highsmith & Emlet 1986). Settlement of Asterias at our sites was variable
among years occurring from late July to early October, which may in part be explained by
the occurrence of two species. In New England and Prince Edward Island, A. vulgaris
spawns from April to July, whereas A. forbesi spawns in July/August (Smith 1940,
Boolootian 1966, Menge 1986). Thus, the second peak in settlement at Mill Cove in
September/October 1994 could be that of A. forbesi. Settlement of A. forbesi over a 24 to
year period in Long Island Sound occurred between June and September each year
(Loosanoff et al. 1955, Loosanoff 1964). The ophiuroids, Ophiopholis aculeata and
Ophiura, settled from July to early August each year. Spawning of Ophiopholis aculeata
occurs in April/May in Norway (Olsen 1943) and laboratory-reared larvae settle within 12
to 31 weeks (Strathmann 1978a). Ophiura sarsi spawns from March to June in
Washington (Strathmann 1987) but Packer et al. (1994) suggest deep water populations of
O. sarsi in the Gulf of Maine spawn year round with a peak from January to April. Thus,

the summer/fall settlement peak that we observed for each echinoderm species along the
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Atlantic coast of Nova Scotia was consistent with their respective annual reproductive
cycles and measured larval periods.

The infrequent occurrence of major settlement events observed in our study
underscores their potential importance in determining population structure and abundance in
this region. For most of the species that we measured, settlement was minimal during 1 or
2 out of the 3 years of our study and, within each year, the majority of settlement occurred
over a period of 2 weeks or less. For example, Strongylocentrotus droebachiensis settled
in abundance only in the first 2 weeks of July in 1994. In contrast, S. droebachiensis in
the southern Gulf of Maine settle in large numbers each year in June and early July (Harris
et al. 1994, 1985, Harris & Chester 1996), and S. franciscanus and S. purpuratus in
California and Oregon settle over a protracted period each year from December to July
(Harrold et al. 1991, Ebert et al. 1994, Wing et al. 1995a, Miller & Emlet 1997). Unlike
S. droebachiensis, Asterias settled in high but variable numbers each year of our study,
which concurs with the long term observations by Loosanoff (1955, 1964) on A. forbesi in
Long Island Sound.

Variation in the magnitude of settlement between species and years at our sites
suggests that large-scale environmental factors, such as fluctuations in sea temperature or
shelf-scale upwelling events do not regulate settlement. Temperature is known to increase
the rate of larval development (reviewed by Strathmann 1987) and higher than normal
spring temperatures have been suggested to enhance settlement of Strongylocentrotus
droebachiensis in Nova Scotia (Hart & Scheibling 1988, Scheibling 1996). In our study
however, interannual variation in temperature alone can not explain settlement patterns,
because species with similar larval development and timing of settlement, settled in greatest
abundance in different years. For the same reason, shelf-scale upwelling and relaxation
events, which periodically occur along the Atlantic coast of Nova Scotia in the summer
(Petrie et al. 1987), are also not likely to regulate settlement as has been suggested for

echinoderm larvae in other systems (Johnson et al. 1984, Wing et al. 1995a, b, Miller &
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Emlet 1997). Rather, differences between species in interannual settlement patterns may be

related to differences in reproductive output and larval survival, which determine larval
availability in a given year. Because the same interannual pattern was observed at both sites
for each species, larval delivery probably is determined by hydrodynamic forcing at scales

of at least 10's of kilometres.

Spatial patterns of settlement

Although we detected few statistically significant differences between sites,
settlement of echinoderms, and particularly of ophiuroids, tended to be greater at Mill Cove
than Little Duck Island. This may be related to local differences in hydrodynamic
conditions resulting in greater larval supply to Mill Cove. The predominant southwesterly
flow along the Atlantic coast of Nova Scotia (Han et al. 1997, Loder et al. 1997) suggests
that larvae arriving at both sites probably originate from spawning populations to the
northeast. Mill Cove is in a large semi-enclosed embayment characterized by a
unidirectional counter-clockwise flow that may retain larvae (Heath 1973a, b). In contrast,
Little Duck Island is a more exposed site subjected to variable, wave-induced flows that are
more likely to disperse than retain larvae supplied to the area. Similarly, Ebert & Russel
(1988) suggest that settlement of Strongylocentrotus purpuratus in California and Oregon is
lower off capes and headlands which experience more upwelling than the more sheltered
bays and coves in between.

Although settlement differed between kelp beds and barrens for some species, kelp
beds did not exhibit a consistent or strong inhibitory effect on settlement. The ophiuroids,
Ophiopholis aculeata and Ophiura, showed a trend toward greater settlement in the barrens,
whereas Asterias settled in greater numbers above kelp beds (i.e. on High collectors).
Unlike the other species, however, Asterias recruits were observed on kelp fronds
suggesting that the kelp itself may filter out settlers, reducing the number available to settle

within the bed (i.e. on Low collectors). Our limited data on settlement of
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Strongylocentrotus droebachiensis indicate higher settlement on average in barrens at Mill
Cove in 1994 (the only year of heavy settlement) although the difference was not
statistically significant. This may have been due to insufficient power in our test of a
habitat effect resulting from low replication. We calculated that 12 replicates would have

been required to conclude that the habitat effect we observed in Low collectors (with n=4)
was statistically significant (0¢=0.05) assuming adequate power (1-8=0.80). Previous

studies comparing settlement of echinoids between kelp beds/forests and barrens also have
yielded equivocal results (reviewed in Chapter 1). Regional differences in kelp
morphology and kelp bed/forest structural complexity may account for some of these
disparities. For example, kelp beds in Nova Scotia typically extend only 1 to 2 m above
the bottom and probably do not deflect currents (and therefore incoming larvae) in the same
way as the kelp forests of the northwest Pacific, where the canopy extends to the surface
{Jackson & Winant 1983, Dayton & Tegner 1984, Harrold & Pearse 1987).

Although echinoderm larvae generally are found near the surface (0 to 30 m depth)
in nearshore waters (Rumrill 1988a, Pedrotti & Fenaux 1992, Miller & Emlet 1997), there
is little resolution of larval distribution within the surface layer. In our study, echinoderm
larvae generally settled in greater numbers in High than Low collectors. High collectors
were intended to measure larval supply independently of habitat effects, including
decreased flow in the benthic boundary layer (Eckman et al. 1989). However, the kelp bed
at each site is 2 to 3 m shallower than the barrens which may have resulted in High
collectors sampling different strata of the water column containing different numbers of
larvae. Furthermore, collectors closer to the surface and exposed to more light become
more fouled, which may enhance settlement in shallower collectors (see Sampling
frequency). Therefore, between-habitat differences in settlement in High collectors (e.g.
Asterias) may simply reflect depth-related differences in larval abundance or degree of

collector fouling. Settlement in Low collectors is less likely to be affected by small
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differences in bottom depth since these were further from the surface, and in a region

where settlement is more likely influenced by bottom features (reviewed by Butman 1987).

Sampling frequency

Comparisons of settlement measured at shorter or longer intervals show that our bi-
weekly samples measured settlement with minimal confounding by post-settlement
processes or temporal changes in collector efficacy. Because our collectors were isolated
from the substratum and excluded many potential predators, early post-settlement mortality
or migration probably was minimized. Thus, although most settlement of Ophiopholis
aculeata and Ophiura in 1993 occurred over 6 days within a 2-week period (Chapter 3),
there was no difference in settlement measured every 3 days for 15 days compared to a
single measure over the whole interval. In contrast, settlement of Strongylocentrotus
droebachiensis and O. aculeata pooled over 3 successive 16 day intervals was significantly
less than that measured over the same 48 day interval. This may be because of fouling
during long deployment times which enhances the quality of the settlement surface or its
ability to passively trap settlers. Greater fouling in High than in Low collectors, and in
kelp beds than in barrens may be related to the difference in depth between habitats (see
Spatial patterns of settlement) and/or to the greater number of herbivorous amphipods in
Low collectors which reduced algal fouling. Artifactual effects of sampling design, such as
the presence of migrating or settling grazers or predators in collectors (Harrold et al. 1991)
or differential light availability as a function of depth or shading (Eckman & Duggins 1991)

may bias results and limit comparability between studies, or locations in the same studies.

Temporal and spatial patterns of recruitment
Interannual patterns of recruitment of echinoderms in our study are similar to
patterns of settlement in the previous year, with major recruitment events occurring in only

1 or 2 out of 3 years. Sporadic recruitment has been documented for many species of
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echinoderms in various geographic regions, and is often attributed to variable settlement
(reviewed by Ebert 1983, Chapter 1). Although we recorded recruitment of all species in
all years, it is these strong recruitment events which probably have a disproportionate
contribution to overall population abundance and demographic structure.

Species-specific differences in recruitment between kelp beds and barrens probably
are a result of differences in both settlement and post-settlement mortality between habitats.
Recruitment of Strongylocentrotus droebachiensis was ~2 times greater in barrens than in
kelp beds, although there was no statistically significant difference between habitats in
settlement (but see Spatial patterns in settlement). This suggests that juveniles suffered
higher mortality in kelp beds. We observed the opposite effect of habitat on Asterias for
which recruitment was up to an order of magnitude greater in kelp beds than barrens.
Settlement of asteroids also tended to be greater in and above kelp beds but differences
between habitats were not as great (the ratio of recruits in kelp beds relative to barrens,
pooled over sites and years, is 9.4; the ratio for settlers pooled over sites, years and
collector heights, is 1.7), suggesting higher post-settlement mortality in the barrens. This
also appears to be the case for O. aculeata since there was no difference in recruitment of
this ophiuroid between habitats but settlement was greater in the barrens. Kelp creates
structure that may offer spatial refuges from predation to juveniles of some species, such as
Asterias which settles on kelp fronds and O. aculeata which shelters within the holdfasts.
Kelp beds also harbour predators that consume juveniles of these and other species (such
as S. droebachiensis) which are not found on the fronds or may be less cryptic in the early
juvenile stages. Between-habitat differences in post-settlement mortality also may be
related to differences in the assemblage of predators, which have different prey preferences
or predation rates. Juvenile echinoderms are prey to various invertebrate and fish predators
but the role that predation plays in differential post-settlement survival remains unclear

(reviewed by Scheibling 1996, Chapter 1).
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Greater recruitment of most echinoderm species at Mill Cove than Little Duck Island

was consistent with greater settlement at Mill Cove, but this also may be related to
differences in availability of suitable refugia, or the types or abundance of predators at the
two sites. For example, the boulders at Mill Cove provide undersides and crevices that
may shelter juveniles from predation more effectively than the more open substratum at
Little Duck Island. In caging experiments in a cobble bed in Nova Scotia, Scheibling &
Hamm (1991) recorded a lower rate of predation on juveniles of S. droebachiensis which

sheltered among cobbles and small boulders compared to those without a spatial refuge.

Does settlement predict recruitment?

Settlement of the dominant species of echinoderms at our sites does predict
recruitment, however the strength of the relationship varies, probably because of differing
post-settlement processes. Strongylocentrotus droebachiensis showed a strong relationship
whereby recruitment in all years, sites and habitats was proportionate to settlement
measured in the same location one year earlier. This suggests that rates of settiement of this
species could be used to predict recruitment of one year-olds, which may be beneficial for
management of the local echinoid fishery (Hatcher & Hatcher 1997). Fluctuating patterns
of settlement of Asterias among sites, habitats and years resulted in a weaker relationship,
although recruitment was generally greater in kelp beds. The strength of the relationship
between settlement and recruitment for Ophiopholis aculeata was similar to that for
Asterias, but the slope of the regression line was much lower indicating greater post-
settlement mortality of these ophiuroids. There was no relationship between settlement and
recruitment of Ophiura: recruitment was minimal throughout the study, despite at least one
year of high settlement, indicating high post-settlement mortality (possibly because of a
lack of suitable sedimentary habitat at our rocky sites). The absence of recruits of
Echinarachnius parma at our sites clearly reflects the unsuitable substratum: a large

population of this species occupied a sandy bottom ~100 m from our site at Mill Cove.
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Echinarachnius parma has been shown to selectively settle in response to cues from
conspecifics (Pearce & Scheibling 1990b), although a few settlers were found in our
collectors.

Our study demonstrates the importance of settlement and post-settlement processes
in determining the population structure, distribution and abundance of mobile benthic
marine invertebrates with dispersing larvae. For most of the echinoderm species we
studied, recruitment did reflect settlement patterns, although the importance of post-
settiement processes in determining recruitment varied among species, habitats and sites.
Heavy settlement events occurred sporadically at our sites and in different years for
different species. These events clearly were important determinants of subsequent
recruitment, although the causes of such events and mechanisms regulating supply of
larvae and survival of juveniles are not well understood. The temporal and spatial
variability that we observed within and between species/genera underscores the need to
monitor settlement and recruitment at varying scales of space and time to better understand

their role in population dynamics.
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Chapter 5: General Conclusions

This thesis examined temporal and spatial variability in settlement and recruitment
of echinoderms in rocky subtidal habitats. A review of the literature (Chapter 1) revealed
that numerous studies have addressed settlement and recruitment patterns of echinoderms,
particularly species (mainly echinoids and asteroids) of ecological or economic importance.
However, the processes which regulate the transitions from early life stages through to
adulthood, and thereby determine the distribution and abundance of echinoderm
populations, remain poorly understood. The supply of planktonic larvae of echinoderms to
benthic populations is regulated by a complex interaction of biotic and abiotic factors such
as hydrodynamics, sea temperature, predation and starvation. Echinoderm larvae have
been induced to settle on various substrata in laboratory studies and specific chemical
inducers have been isolated in some cases. However the importance of settlement
induction and substratum preferences in determining settlement patterns in natural habitats
is not clear. A salient feature of most echinoderm populations is a high degree of temporal
and spatial variability in settlement and recruitment. Settlement variation exists at spatial
scales ranging from metres between adjacent habitats to hundreds of kilometres between
regions. Seasonal settlement is common among echinoderm species but interannual
variation in settlement and/or recruitment is often high, and several years may elapse
between successful recruitment events. Some of this variability is likely attributable to
measurement inaccuracies associated with sampling individuals which are small, cryptic
and transient, and procedural inconsistencies among different studies. A variety of post-
settlement processes including predation, migration, disease and starvation may alter
observed patterns of settlement and play an important role in regulating recruitment rates
and patterns.

To assess variability in settlement over large and small spatial scales and to compare

sampling techniques, settlement of Strongylocentrotus droebachiensis was measured on 3
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different collector types in 3 regions of the northwest Atlantic (Chapter 2). Different

collectors types in the same locations measured different settlement rates suggesting limited
comparison of results across studies without first calibrating collectors. However, these
differences did not obscure the order of magnitude differences in settlement between
regions (100's of kilometres), with highest settlement in the Gulf of Maine, lowest
settlement in the Bay of Fundy and intermediate settlement in Nova Scotia. These large-
scale patterns are likely due to differences in larval supply caused by large-scale
oceanographic features. Within each region (10's of kilometres), settlement differed
between sites but was within the same order of magnitude. Within sites, (10's of metres)
settlement decreased with depth and was lower in kelp beds than barrens but these
differences were not always significant. At the scale of regions, patterns of settlement are
clearly related to larval supply but within a region, and between habitats within a site,
settlement patterns are less clear and likely controlled by factors such as larval behaviour,
predation and small-scale hydrodynamics.

Settlement of ophiuroids (Ophiopholis aculeata, Ophiura), measured over 3 day
intervals during their annual 2 week settlement period at Mill Cove was associated with
minor fluctuations in the physical environment (Chapter 3). Hydrographic (temperature,
salinity, current velocity, wave height and period) and meteorologic conditions
(atmospheric pressure, wind velocity) were recorded concurrently at the site or nearby
locations. A major settlement pulse occurred over one 3 day period with declining
settiement over the following 6 days. This pulse was associated with a shift in current
direction and preceded by rapid temperature and salinity fluctuations. Similar changes in
temperature occurred at a second site (4.5 km away) indicating at least bay-scale forcing.
This period was characterised by the passage of weak atmospheric pressure gradients and a
low-energy sea-state. These meteorologic and oceanographic fluctuations were within the

normal range for this time of year, indicating that major settlement events can occur over
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very short time periods and are not likely regulated by major oceanographic events such as

shelf-scale upwelling.

Settlement of various echinoderm species, measured in different habitats (kelp
beds, barrens) at different sites (Mill Cove, Little Duck Island) and over periods of days to
years, demonstrated the importance of variability at different scales in understanding
settlement patterns and inferring processes which shape them (Chapter 4). Settlement
pulses of ophiuroids (Ophiopholis aculeata and Ophiura), asteroids (Asterias) and
echinoids (Strongylocentrotus droebachiensis and Echinarachnius parma) occurred between
July and September of each year at both sites. Timing of settlement differed consistently
among species, in relation to differences in timing of spawning and larval development.
The magnitude of each pulse varied between years and species, and the year of maximum
settlement differed between species. Variation between species suggests that large-scale
environmental factors, such as fluctuations in sea temperature or shelf-scale upwelling
events do not regulate settlement. Similar interannual patterns at both sites suggest that
larval delivery probably is determined by hydrodynamic forcing at scales of at least 10's of
kilometres (see also Chapter 3). However, consistently greater settlement at Mill Cove (a
sheltered site within a large bay) may be related to bay-scale circulation which retains
larvae, compared to a more variable hydrodynamic regime at Little Duck Island (an exposed
site) which is more likely to disperse larvae. Although settlement differed between habitats
for some species, kelp beds did not exhibit a consistent or strong inhibitory effect on
settlement as suggested by previous studies. Ophiuroids showed a trend toward greater
settlement in the barrens, whereas asteroids settled on kelp fronds and in greater numbers
in and above kelp beds. The echinoid, S. droebachiensis, tended to settle more in barrens,
although the difference was not statistically significant.

Settlement sampled at intervals of 3 days to 7 weeks showed that biases in estimates
of settlement can occur between habitats and collector heights within a site (Chapter 4).

For example, greater settlement in High (2 m off bottom) than Low (0.2 m off bottom)
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collectors over 7 weeks may result from greater fouling of High collectors because of

increased exposure to light and/or decreased exposure to small grazers. However,
settlement measured over 5 successive 3 day intervals demonstrated that patterns based on
bi-weekly sampling were not obscured by post-settlement mortality or changes in collector
quality.

Interannual patterns of recruitment of echinoderms were similar to patterns of
settlement in the previous year, with major recruitment events occurring in only 1 or 2 out
of 3 years (Chapter 4). These settlement/recruitment events probably have a
disproportionate contribution to overall population abundance and demographic structure.
Greater recruitment of all echinoderm species at Mill Cove than Little Duck Island was
consistent with greater settlement at Mill Cove, but this also may be related to differences in
availability of suitable refugia, or the types or abundance of predators at the two sites.
Species-specific differences in recruitment between kelp beds and barrens probably are a
result of differences in both settlement and post-settlement mortality between habitats.
Regression analyses showed that, in most cases, settlement of echinoderms does predict
recruitment, however the strength of the relationship varies between species, probably
because of differing post-settlement processes.

This thesis has shown that variability in settlement and recruitment of echinoderm
species occurs over a range of temporal (days to years) and spatial (metres to 100's of
kilometres) scales. To understand how this variability influences population structure and
dynamics, future studies must address the biotic and abiotic processes which determine the
observed patterns. This will require both detailed monitoring and careful experimentation
in differing habitats and over extended periods. In particular, future research should
attemnpt to resolve sources and sinks of larvae, the relative importance of biological and
physical processes determining larval supply and settlement, and the factors which regulate

early post-settiement mortality.
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