
UML Drawing Tool

by

Saleh Mohamed Alshepani

B.Sc. (Computer Science)

Acadia University, 199 1

Thesis

submitted in partial fiilfillment of the requirements for

the Degree of Master of Science (Computer Science)

Acadia University

FaIi Convocation 2000

O by Saleh Mohamed Alshepani, 2000

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa ON K1A ON4 OttawaON K1AON4
Canada Canada

Your lile Votre référence

Our fi& Noue rdfdnmce

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/fïlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Table Of Contents

... Table Of Contents iv

List of Figures ... ri

Abstract ... xiv

Acknowledgment .. xv
Chapter 1 ... 1

... Introduction 1

... 1.1 The need for a methodology 1

.. 1.2 Object Oriented Methodologies 2

... 1.2.1 Booch Method 3

.. 1.2.1.1 The Development Process - 4

1.2.1.1.1 Macro development process ... 5

.. 1.2.1.1.2 Micro development process 6

... 1.2.1.2 Graphical Notation 8

.. 1 .2.2 Object Modeling Technique (OMT) 13

1.2.2.1 Analysis .. 14

... 1 .2.2.2 System Design 1 5

1.2.2.3 Object Design ... 15

... 1 .2.2.4 Irnplementation .. 15

... 1.2.2.5 Graphical Notation 16

... 1 .2.3 Object-Onented Software Engineering (OOSE) -21

.. . 1.2.3 1 Requirements 2 2

2.2.3 -9 Deployment diagram .. 48

... 2.3 Views 48

2.3.1 Logical -ew .. 49

2-3 -2 Use case View .. 49

.. 2.3 -3 Component new 50

.. 2.3.4 Concurrency View 50

... 2.3 -5 Deplo yment View 50

... 2 -4 Ext ending UML 5 0

... 2.4.1 Stereotypes 51

... 2.4.2 Tagged values -51

... 2.4.3 Constrains 5 2

.. 2.5 OPEN Modeling Language (Ob&) -52

... 2.6 Conclusion 54

Chapter 3O.......... 56

... The Binder 56

.. 3.1 Lntroduction 56

3.2 The Binder - a Description ... 57

... 3 -3 Creating new Page-Styles 62

... 3 .3.1 Methods for the appiication class -63

.. 3 -3 -2 Methods for the client class 63

.. 3 -4 Conclusion -64

Chapter 4 65

UML Diagrams Tool - Description 65

4.1 Introductio~ ... 65

... 4.2 UML Diagrams Tool (UDT) 67

... 4.2.1 Basic hctional requirements 6 7

.. 4.2.2 Drawing functional requirements 67

... 4.3 UiVE Diagrams Supported -68

... 4.4 UDT User Interface.. -69

4.4.1 Class & Object Diagrams window .. 70

... 4.4.2 Package Diagram window -73

.. 4.4.3 Use Case Diagram window -74

... 4.4.4 Sequence Diagram window 75

* 4.4.5 S tate Transition Diagram window 76

.................. 4.4.6 Class Diagram Generator window - Reverse Engineering in UDT 77

... Chapter 5 80

.. UML Drawing Tool . Design 80

.. 5.1 Introduction 80

... 5.2 Class and Object Diagrams Page-style Object Mode1 81

................................... 5.3 Class and Object Diagrams Page-style Sequence Diagrams 83

.. 5.4 Class Descriptions of Class and Object Diagrams 85

.. 5.4.1 UMLDiagram Class 85

.. 5.4.2 UMLCIassFields Class 87

... 5 .4.3 EdgeProperties Class -88

... 5.4.4 UMLEditor Class 89

... 5 .4.5 UMLClassEditor CIass 93

5.4.6 UMLEditorClient Class ... -95

5.4.7 UMLClassEditorClient Class .. 96

5.4.8 UMLEditorControiler Class ... -97

5.4.9 UMLEditorView Class,. .. 98

5 .4.1 0 UMLHandle Class .. 100

5 .4.1 1 UMLS hapeView Class .. 101

5.4.12 UMLNodeView Class ... 102

5.4.13 UMLClassView Class ... 104

5.4.14 UMLObjectView Class .. 105

5.4.15 UMLNoteView Class ... 106

5 .4.1 6 UMLTextView Class .. 106

5.4.17 UMLEdgeView Class ... 107

5.4.1 8 UMLGeneraView Class .. 110

5 .4.19 UMLS haredview Class .. I l l

5 .4.20 UMLConnectionView Class ... 112

5.4.2 1 UMLPropertiesView CIass ... 112

5.4.22 UMI;AssociView Class ... 124

5.4.23 UMLAggregView Class ,. ... 114

5 .4.24 UMLDependencyView Class 114

5 .4.25 UMLClassDefinningDialog Class .. 115

5 .4.26 UMLRelationsBuilder Class .. 117

5 .4.27 DiagramGeneratorBrowser CIass .. 119

5.5 Extending UDT 121

Chapfer 6 ... 124

UML Drawing Tool Impiementation .. 124

6 . I Introduction .. 124

6.2 UMLDiagram Class .. 124

6.2.1 Method displayon: ... 124

6.2.2 Method componentAt. .. 125

6.2.3 Method shapeshside: ... 126

6.2.4 Method nodesInside: .. 126

6.3 UMLEditor Class ... 127

6.3.1 Method newWith: ... 127

6.3 -2 Method removeNode .. 127

6.3 -3 Method executeoperationwith: .. 128

6.3.4 Method dragShapeAt: .. 129

6.3 -5 Method addNewEdgeAt: .. 130

6.3 -6 Method changeNodeName: .. 131

6.4 UMLEditorView Class ... 132

6.4.1 Method updateEdges: using: .. 133

6.4.2 Method updateEdge: using: .. 135

6.5 UMLEditorController Class .. 235

6.5.1 Method yeIlowButtonActivity ... 136

6.5.2 Method getLineFromUserAt: .. 137

6.5.3 Method drag: start:~....~... 138

6.6 DiagramGeneratorBrowser Class .. 142

... 6.6.1 Method createDiagram 143

.. 6.7 WReaItionsBuilder Class.. 143

6.7.1 Method on: ... 144

6.7.2 Method asUh4LDiagra.m +.. ... 144

6.7.3 Method classReferences: .. 145

Chapter 7 ... 146

Conclusion ... 146

.. 7.1 Surnmary 146

... 7.2 Future Work 147

Bibliograpby .. 149

List Of Figures

Figure 1-1: Models of the Booch Method ... 4

Figure 1-2: Class Icons .. 8

Figure 1-3: Notes ... 9

Figure 1-4: Relationships in Booch Class Diagram .. 9

Figure 1-5: Graphical representation of objects in the Booch method 10

Figure 1-6: Relationships in Booch Object Diagrams 10

Figure 1-7: Booch State Transition Diagram ... 11

Figure 1-8: Booch Interaction Diagram ... 11

Figure 1-9: Booch Module Diagram ... 12

Figure 1-10: Booch Process Diagram .. 12

.. Figure 1-11: OMT : Process 13

Figure 1-12: Graphical representation of Classes in OMT 16

................................. Figure 1-13: Graphical representation of Cardinality in OMT 16

Figure 1-14: Relations in OMT Object diagrarn .. 17

Figure 1-15: Graphical representation of states in OMTo...................... 18

Figure 1-16: States nesting in OMT ... 19

Figure 1-17: Processes, Actors, Data Store and File Objects in OMT 20

Figure 1-18: Data and Control flow between Processes ... 21

Figure 1-19: OOSE Models ... 22

Figure 1-20: OOSE Domain Object Mode1 24

Figure 1-21: OOSE Design Mode1 24

Figure 1-22: OOSE Analysis mode1 ... 24

Figure 1-23: OOSE Use case mode1 .. 25

... Figure 1-24: OOSE State transition graph 25

Figure 1-25: OOSE Interaction diagram .. 26

Figure 2-1: Basic Building BIocks (vocabulary) of UML 29

xii

Figure 2-2: Graphical representation of a class in UML . definition (a) and an

example (b) ... 30

Figure 2-3: Graphical representation of an object in UML - definition (a) and an

example (b) ... 31

Figure 2-4: Graphical representation of interfaces in UML - definition (a) and

... examples (b) and (c) 32

Figure 2-5: Graphical representation of collaborations in UML - definition (a) and

an example (b) .. 3 3

Figure 2-6: Graphical representation of use cases in UML - definition (a) and an

exampie (b) .. 33

Figure 2-7: Graphical representation of active class in UML 34

Figure 2-8: Graphical representation of a component in UML . definition (a) and

... example (b) 34

Figure 2-9: Graphical representation of nodes in UML .. 35

Figure 2-10: Graphical representation of a message in UML 35

... Figure 2-11: Graphical representation of States in UML 36

..................................... Figure 2-12: Graphical representation of packages in UML 37

Figure 2-13: Graphical representation of a note in UML - definition (a) and

example (b) ... 37

Figure 2-14: Graphical representation of a dependency in UML, . definition (a) and

... an example (b) -38

Figure 2-15: Graphical representation of generalizations in UML - definition (a)

and an example (b) ... 39

Figure 2-16: Graphical representation of associations in UlMXI - definition (a) and

.. an example (b) 39

Figure 2-17: GraphicaI representation of an aggregation relationship in UML -

definition (a) and an example (b) ... 40

Figure 2-18: A Class diagram in UML ... 41

Figure 2-19: An Object diagram in UML .. 42

... Figure 2-20: A Use case diagram in UML -43

Figure 2-21: A Sequenee diagram in UML .. 44

Figure 2-22: A Collaboration diagram in UML ... 45

Figure 2-23: A Statechart diagram in UML .. 46

Figure 2-24: An Activity diagram in UML ... 47

Figure 2-25: An Component diagram in UML ... 47

Figure 2-26: A Deployment diagram in UML .. 48

Figure 2-27: Extensibiïity in ZTML .. 52

Figure 2-28: OML representation of the UML Cïass Diagram in Figure 2-18 54

Figure 3-1: Binder Library Window ... 57

Figure 3-2: Binder Properties Dialog 58

Figure 3-3: Page-Style Properties ... 59

... Figure 3-4: A Binder's Cover Page 60

Figure 3-5: New Page Window ... 61

............... Figure 3-6: A blank Class Diagram Page-Style with style-specific buttons 62

Figure 4-1: New Page window 66

Figure 4-2: Class & Object Diagrams window ... 70

Figure 4-3: The Fields Dialog window 7 1

Figure 4-4: Code Generation window ... 72

Figure 4-5: Package Diagram window 73

Figure 4-6: Use Case Diagram window .. 74

Figure 4-7: Sequence Diagram window .. 75

Figure 4-8: State Transition Diagram window .. 76

... Figure 4-9: Class Diagram Generator window 78

Figure 5-1: Part 1 of the class diagram for the Class and Object diagrams Page-style

.................. 81

Figure 5-2: Part 2 of the class diagrarn for the Class and Object diagrams Page-style

................... 82

Figure 5-3: Sequence Diagram for adding a new class ... 83

Figure 5-4: Sequence Diagram for adding class variables ... 84

Figure 5-5: Sequence Diagram for undoing last action ... 84

Abstract

Object-oriented design has now become a predominant technology and there is

urgent need for tools to assist developers in creating those designs. One area that needs

support is object-oriented analysis and design, including the drawing of new diagrams and

reengineering of existing ones. In this thesis, we describe a tool that can be used to

support the drawing of several types of UML (UnSed Modehg Language) diagrams for

software design and their integration into a larger software development environment and

reengineering of existing code. This tool is part of a large project caiied the Binder

developed by students and faculty at Acadia University. It provides special page swles'

and an editor for such pages for the Binder. The UML diagrams Mplemented by page

styles and supported by this tool (cailed UML Drawing Tool or UDT) are: Class and

Object Diagrams, Use Case Diagram, Sequence Diagram, State Transition Diagram and

Package Diagram.

UDT aliows creation, editing, display and storage of UML diagrams and partially

automatic conversion of class diagrams into Smalltaik source code. These diagrams can

then be included in the Binder.

This thesis begins with an introduction to object-oriented methodologies foliowed

by a short description of the UML notation and a description of the Binder program- The

foiiowing chapters include the description, the design and implement ation of the drawing

tool. The final chapter sumarizes the thesis and includes suggestions for future work.

1 would like to thank my wife for her support and encouragement for making this

possible. I would also lïke to express my sincere appreciation and gratitude to my

s u p e ~ s o r Dr. Ivan Tomek for his help, support, and suggestion during the preparation of

this thesis. 1 would like also to thank Dr. Rick Giies for being my interna1 examiner and

Dr. Arthur Sedgwick for being my extemal examiner. 1 am very thankfûl to the staff of the

School of Computer Science at Acadia University.

Last, but not least, 1 would like to extend my thanks to my famiiy and fiends

whose help and mord support encouraged me to complete this work. A special thanks to

the Libyan Educational Secretary for their sponsorship.

Chapter 1

Introduction

1.1 The need for a methodology

In developing a project, regardless of its size or purpose, everybody involved in the

project should agree on and follow a rnethodology or combination of methodologies that

is comprehensive enough to include all aspects of the project. This methodology, a body

of methods with a set of rules and assumptions, should be flexible enough to match the

uniqueness of each project petwortd 19991.

The populanty and effectiveness of disciplined object-onented analysis and design

is clearly shown by the emergence of several competing rnethodologies. Each of these

methodologies has strengths and weaknesses, and the choice of which one to follow

depends to a Large extent on the type of organization and business involved. The most

widely spread methodologies [Technology 19971 are described in the Object Modeling

Technique (OMT) w b a u g h 19911, the Booch Method pooch 1993, 19941, Object-

Oriented Software Engineering (OOSE) [Jacobsen 19921, Object-Oriented Andysis

(OOA) and Object-Oriented Design (OOD) [Coad 199 1 a, 199 1 b], Fusion Method

[Coleman 19941, Designing Object-Oriented S oflware @O0 S) [Wirfs-Brock 19901

Object Oriented Analysis and Design (OOAD) by Martin and OdeU Fiartin 19931 and

Object Lifecycles (OL) by Shlaer and MeIlor [Shlaer 19921.

The choice of which methodology to use can be decided by considering at least the

following selection cnteria:

The methodology is suitable for the application requirements.

It covers d l software Wecycle phases.

It fits the programming language and more generdly the program development

environment.

The developers have experience with it or can acquire suscient knowledge

about it.

The methodology is widely supported. The support could be tools for creating

models, technical help, or a mentor.

It is easy to use and understand.

1.2 Object Orïented Methodoiogies

The first references to object-onented methodologies first appeared in the late

2980s pooch 19951. M e r that there was an explosion of object-oriented methods as

various methodologists experimented with different approaches to object-onented analysis

and design [Booch 19951. Experience with these methods grew, accompanied by a

growing maturation of the field as a whole as more and more projects applied these ideas

to the development of production-quality mission-critical systems. By the mid 1990s a few

second-generation methods [Dernmer 19971, borrowing fiom other methodologies, began

to appear, most notably the Booch method [Booch 19941 which replaced the Booch 91

version, BON pa ldén 19951, Firesmith piresrnith 19931 and Fusion [Coleman 19941.

Because both Booch and OMT methods were independently growing together and were

collectively recognized as the most dominant methods world-wide, the .~WO authors,

Booch and Rumbaugh, started working together when Rumbaugh joined the Rational

Software Corporation in October 1994. Their goal was to unif;, at Ieast the various

notations used in different methods in what was origindy called the Unified Method

0 and has since become the UML - Unified Modeling Language [Demmer 19971.

Later in 1995, Jacobsen, the author of OOSE, joined Rational and the three authors

expanded the scope of TSML to cover the needs of OOSE notations.

We summarize the three most infiuential methodologies in the order Booch

method, OMT and OOSE and illustrate the symbols of their notations in the remaining

sections of this chapter. For each method, we will give a description of the method

followed by the graphical representation of the symbols of the method's notation.

1.2.1 Booch Method

The Booch method Pooch 1993, 19941 is a widely used 00-rnethod for designing

systems using the object paradigm. It is one of the earliest recognizable object-orïented

design methods and covers the analysis and design phases of an 00-system. The Booch

method defines many symbols for documenting almost every design decision and

perspective and most developers using this method will never use ail of its syrnbols and

diagrams. A designer will usually start with class and object diagrams in the analysis phase

and refine thern in a series of steps.

Booch uses four models to describe an 00 system: logical and physical structure,

and its static and dynamic semantics. Figure 1-2 shows the models of the Booch method.

The logical mode1 (problem domain) is represented in the class and object structure. In

the class diagram, the architecture (static model) is consmicted. The class diagram

shows existing classes and reIationships among them including cardinalities, concurrency

and visibility aspects. The o bject diagram shows the existing objects and the relationships

among them, including visibility and synchronization aspects. The p hysical model is

represented in the module and process architectures. The module and process

architecture describes the physicai allocation of classes and objects to modules and

processes. It deais with the association of concrete hardware with the software

components of a system Mode1 diagrams show the physical packaging of classes and

objects into modules and Process diagrams show the docation of processes to

processors,

Dynamic

Static mode

Logical model

Physicai model

Class structure
O bject structure

-
Module architecture
Process architecture

Figure 1-1: Models of the Booch Method

1.2.1.1 The Development Process

In addition to providing models, the Booch method defines a development process.

It supports the iterative and incremental development of a system in the analysis and

design phases. The view of the development process is divided into a macro and micro

processes.

1.2.1.1.1 Macro development process

This process is the controliing ffarnework for the micro process. It allows for the

improvement of the micro process. It is designed to support the incremental development

of the system and represents the activities of the

follawin~ activities:

Establish core requirements - Ln

entire development team. It requires the

this phase, the vision for the general

requirements ideas is established for some application and its assumptions are

validated. An idea springs fourth a new business venture, complimentq

products and set of features for an existing product.

Develop a mode1 of the desired behavior for the system - In this phase, the

classes and objects that form the vocabulary of the problem domain are

identified and the system's behavior is emphasized. This phase consists of

domain analysis and scenario planning. In domain analysis, classes and objects

that are common to a particular problem domain are identified. In scenario

planning, the primary fiinction points are identified and scenarios are

documented. State machines for classes are developed where life-cycles are

clear.

Create an architecture - In this phase, an architecture is created for the

evolving implementation and common tactical policies are established. This

phase consists of architectural planning, tactical design and release planning. In

architectural planning, the aim is to create very early in the life cycle a domain-

specific application fiamework that can be successively refined. In tactical

design, decisions are made about the common policies. In reIease planning, a

forma1 development plan is yielded for ident-g the stream of architectural

releases, team tasks and nsk assessments.

Evolve the implementation - Zn this phase, the growth and change in the

impIementation through successive refinement is established until the

production system is reached. This phase consists of application of the micro

process and change management. Application of the micro process starts with

an anaiysis of the requirements for the next release, after which it teads to the

design of an architecture, and then classes and objects are invented that are

necessary to implement this design. The main product is a stream of executable

releases representing successive refinements to the first release of the

architecture. Change management attempts to recognize the incremental and

iterative character of the object-oriented system. It is possible to change the

class hierarchies and protocols, or mechanisms as long as it is not a threat for

the strategic architecture and the development team.

Manage post-delivery evolution - This phase is mainly a continuation of

evolution by making more localized changes to the system as new requirements

are added and bugs are being eliminated.

1.2.1.1.2 Micro development process

The micro process describes the day-to-day activities by a single developer or

group of software developers and tracks the foliowing activities:

Identify classes and objects at a given level of abstraction - Classes and

objects are identified by finding the significant classes and objects in the

problem space. The result is a data dictionw of candidate classes and objects

and a document describing object behavior.

IdentiQ their semantics - The aim is to establish the state and behavior of

each abstraction identifÏed in the previous phase. Semantics are represented in

a top-down way in and, where it concems system function points, strategic

issues are addressed. Aiso commonality in patterns of behavior are discovered,

because it may contribute to reusability.

LdentiQ their relationships - Zn this phase, the boundarïes of each abstraction

are solidified and CO-operating classes and objects are identified. This phase

consists of speciijrhg associations, ident+g various collaborations and

refining associations. The identification of associations results in a class

diagram. The identification of collaborations results in object and module

diagrams. The refinement of associations results in a more specified description

of semantics and relationships.

SpeciQ the interface and the implementation of these classes and objects -
This phase consists of the selection of the structures and dgorithms that

provide the semantics of the earlier identified abstractions. The first th-ee

phases of the micro process discuss the outside view of abstractions; this final

step focuses on their inside view. This results in artifacts capturing

representational issues of each abstraction and their mapping to the physicai

modei,

1.2.1.2 Graphical Notation

This section shows the graphical notation for the elements of the foliowing Booch

diagrams: the class diagram, the object diagram, state transition diagram, interaction

diagram, module diagram and process diagram.

Figures 1-2 and 1-3 show al1 the elements and relations for representing Booch

class diagrams. Figure 1-2 shows the elements of the class diagram with the graphical

representations of the following icons: class, class utility, class category (a logical

collection of classes), parameterized class, instantiated class, metadass (a class whose

instances are themselves classes) and class nesting. These icons represent the nodes in

Booch class diagrams.

I f o l 1

Figure 1-2: Class Icons

Figure 1-3 shows how notes are represented graphicaiiy using Booch notation. Notes are

attached to the above icons to add documetation to them.

Figure 1-3: Notes

Figure 1-4 shows realtionships represented as edges in a Booch class diagram. They

clac the kinds of relationships between classes. The association relation can have a label a

cardinality or a role or a combination of any of them. The has relation can be by reference

or value.

association: inhentance: -b metaclass: %+

has: a- uses: 0------ instantiates: -
by reference: e-CI byvalue: -

label d h d i t y

Figure 1-4: Relationships in Booch Class Diagram

Figures 1-5 through 1-6 show the elements and relations used in Booch object diagrarns.

Figure 1-5 shows the graphical representation of objects using the Booch method.

Figure 1-5: Graphical representation of objects in the Booch method

Figure 1-6 shows relationships represented as edges in Booch object diagrams.

Relationships are used for showing the kind of relationship between objects. Synchronous

means wait forever until message is accepted. Timeout means wait for a specified amount

of time then abandon if message is not s e ~ c e d . Asynchronous means 'queue the message

and proceed without waiting'.

simple: ,-w tirneout: 8 ,

order: message
objecthiue 0-w

Figure 1-6: Relationships in Booch Object Diagrams

Figure 1-7 shows the elements and relations of the state transition diagram. It shows

how states, superstate, start state, stop state and history icons are represented graphicdy.

States are comected using directed lines. State transition diagrarns show the states of an

O bject, the events that cause transitions and actions resulting from transitions.

state statc

\

State

m--F
start

Nesting

Figure 1-7: Booch State Transition Diagram

Figure 1-8 shows the representation of interaction diagrams using the Booch method.

Objects are represented by dotted vertical lines with a rectangle showing the Me of that

object. Interaction diagrams describe how scenarios are executed in the sarne context as an

object diagram but they show the dynamic aspects not the static aspects.

objecî object objecî

!
I

Figure 1-8: Booch Interaction Diagram

Figure 1-9 shows the representation of the module diagram in the Booch method. These

are the icons for the dif5erent components of the module. They are comected using a

directed line,

Main program S pecifîcation Body -
Dependency

Figure 1-9: Booch Module Diagram

Figure 1-10 shows the elements and relations of the process diagram. These icons

represent the physical nodes of the process diagram. They are connected using a solid

iine.

Figure 1-10: Booch Process Diagram

1.2.2 Object Modeling Technique (OMT)

Object Modeling Technique (OMT) m b a u g h 19911 is an object-oriented

software development methodology that extends &om analysis through design to

implementation, as shown in Figure 1-1 1. B starts by building the analysis model to

abstract essential aspects of the application domain. After that, design decisions are made

and more details are added to the model. Finaiiy, the design model is implemented using a

programming language, a database and hardware.

t-

Problem Statement

'm
Object Model

1 Dynÿmic Model 1

Function Modcl d
Design System Design

s
I Object Design

Figure 1-11: OMT : Process

1.2-2.1 Analysis

In the analysis phase, the development team wrïtes or obtains an initial description

of the problem statement. M e r that three models are created. They are the object model,

the dynamic model and the functional model.

The object mode1 is a description of the structure of the objects in a system

including their identity, relationships, attributes and operations. Building an object mode1

requires i d e n t m g object classes, starting a data dictionary, adding associations between

classes and attributes for objects and links, organinng object classes using inheritance,

testing access paths using scenarios, and grouping classes into modules. The data

dictionary descnbes classes, attributes and association. The object model is represented

graphically using object diagrams. Figures 1-12 through 1-14 show the elements and

relations for representing object diagrams.

The dynamic mode1 is a description of aspects of a system concerned with control

inchding time, sequencing of operations and interaction of objects. Developing a dynamic

model requires preparing scenarios, ident iwg events capturing interactions between

objects and developing a state diagram for each class that has important dynamic behavior.

The dynamic model is represented graphically using state diagrams. Figures 1 - 15 and 1 - 16

show the elements and relations for representing state diagrams.

The functional model is a description of those aspects of a system that transform

values using functions, constraints and functional dependencies. It describes how output

values in a computation are derived fiom input values. Constructing a functional mode1

wili require identif$ng input and output values, using data flow diagams, describing what

each fùnction does and identifying constraints. Data flow diagrams show functional

dependencies between values and the computation of output values from input values. The

fùnction model is represented graphically using data flow diagrams. Figures 1 - 17 and 1-1 8

show the elements and relations for representing data flow diagrams.

1.2.2.2 Systern Design

System design is the first stage of design. At this stage, high-level decisions are

made about the overd structure of the system. The systern design phase requires

organiong the system into subsystems, i denwng concurrency inherent in the problem,

allocating subsystems to processors and tasks, choosing the basic strategy for

implementing . data stores, identifying global resources, choosing an approach to

implementing software control and considering boundary conditions.

1.2.2.3 Object Design

In the object design stage, a shift fiom the real-world orientation of the analysis

model towards software perspective is required for a practical implementation. The object

design phase will require obtaining operations for the object model, designing algorithms

to implernent operations, optimiting access paths to data, adjusting class structure to take

advantage of inheritance, designing implementation of associations and organiting classes

into modules.

1.2.2.4 Implementation

In this phase, the established design is translated into code using the selected

programming language.

1.2.2.5 Graphical Notation

This section shows the grapfiicd notation for the elements of the following OMT

models: the object model, the dynamic rnodel and the functional model.

Figure 1-12 shows the graphical representation of a class in OMT. Classes are the main

components for representing the object mode1 graphically.

Figure 1-12: Graphical representation of Classes in OMT

CardinaMy is used to show how classes are related in the aspect of one-to-one, one-to-

many and other relationships. Figure 1-13 shows how cardinaliv is represented in OMT.

One One or more

Specified Optional, ~ e r o o r more

Figure 1-13: Graphical representation of Cardinality in OMT

Figure 1 - 14 shows the graphical representation of relations in OMT. Relationships are

used to show how classes are related. They are the edges of the Object mode1 diagram.

Association - 1

Generaiization (Inheritance)

rn

Class

Temary Association

Quaiified Association

c h s s Class ~ssociation Name

Role Roh

Link Attn'bute

CI.7ss

Figure 1-14: Relations in OMT Object diagram

Figure 1-15 shows the graphical representation of states, start states and stop states in

OMT. These are used for constructing the state diagrams, which represent the dynarnic

mode1 graphicaliy. States are connected using soiid lines. Entry/exit actions are actions

that wiU take place when a state is enteredhefi. An activity is an operation with side

effects on objects, which has duration in tirne.

%te niune
Entq action
Activity
Exit action

Staa State

@ Stop state

event (attributel
/action /<vent

Sht e Siate

rvent

Figure 1-15: Graphical representation of states in OMT

Figure 1-16 shows state nesting and the splitting and synchronization of control in

substates.

sukate substate

State nesting

su bstatr substate

su bstate substate

Splitting and Synchronization of control

Figure 1-16: States nesting in OMT

Figure 1-17 shows the graphical representation of actors, data stores and fdes It also

shows how processes are represented. Ali these icons are used for constmcting data flow

diagrams. An actor is an active object that drives the data flow graph by producing or

consuming data values. A data store is a passive object that stores data for later access. A

process is something that transforms data values.

Actor Objects

Name of
Dala store

Data Store or File Object

process name m
Process

duplication of data value decomposition of data value

composite

compostion of data

Figure 1-17: Processes, Actors, Data Store and File Objects in OMT

Figure 1-18 shows how data flow and control flow between processes is represented

graphicaüy. DataKontrol flow is a comection nom output of an object or process to

input from another object or process.

Data niune

Data flow betsveen Processes

boolean result C!3 control flow

Figure 1-18: Data and Control flow between Processes

1.2.3 O bject-Oriented Software Engineering (OOSE)

OOSE [Jacobson 29921 is another popular object-oriented development

methodology. It was specifically designed to be used for the developrnent of large real-

time systems. It uses "use-cases" for most phases of development, including analysis,

design, validation and testing. A use case is a complete course of events specmng

interaction between the user and the system. Use cases are initiated by actors. They

describe the flow of events that invoive these actors. Actors are the things that interact

with use cases such as human users, extemal hardware or other systems.

The process recommended by OOSE for the development of 00 systems is

surnmarized in the diagram shown in Figure 1-19. In the following sections we wiIl outline

the OOSE process and then show the notation that it uses.

Requirements

\
Use-Case Model

Domain Object Model

User Interfaces

Figure 1-19: OOSE Models

1.2.3.1 Requirements

In the requirements phase, the fünctionality of the system is defined. This phase

consists of developing a use case mode4 a domain object mode1 and user interfaces. The

use case mode1 descnbes actors and use cases that spece aU the interactions between the

user and the system. Actors define the roles that users or externa1 entities play in

exchanging information with the system. The domain object mode1 represents a logical

view of the system to support s p e c w g the use cases. User interfaces compliment use

cases by showing what the system looks like when executing these use cases.

1.2.3-2 Analysis

The analysis rnodel structures the systern by modeling interface objects, entity

objects and control objects. It provides a foundation for the design. In this model

subsystems are defined. Subsystems group related objects and may inchde further

subsystems.

1.2.3.3 Construction

This phase consists of the construction of design and implementation models. The

design model refines the analysis models with regard to the selected implementation

environment. Blocks, groups of design objects, are used to describe system

implementation. The state model is developed for individual O bjects within blocks. The

interaction model is used for showing inter-object messages and stimuli for the use cases.

The implementation model consists of the source code irnplementing the blocks.

1.2.3.4 The Graphical Notation

This section shows the graphitai notation for the components of the following

OOSE models and diagrams: the domain object rnodel, the design model, the analysis

model, the use case model, the state transition graph and the interaction diagram.

Figure 1-20 shows the graphitai representation of objects in OOSE.

O
Object

Figure 1-20: OOSE Domain Object Model

Figure 1-21 shows how blocks, which are used to describe system irnplementation, are

represented graphically in OOSE.

Block
-

Block with its type

Figure 1-21: OOSE Design Model

Figure 1-22 shows the elements and relations of the OOSE analysis model. An entity

object is an object that holds information for a long tirne, even when a use case is

completed. An interface object is an object that contains fùnctionaiity of a use case that

interacts directly with the environment. A controi object is an object that models

fùnctionality that is not in any other object (e.g. calcuiating taxes using several different

criteria). An attribute contains information of some type.

Entiîy hterface Control

artribute

Entity Type

Figure 1-22: OOSE Analysis model

Figure 1-23 shows the elements of an OOSE use case model. The model includes the

graphical representation of actors, use cases and the relationships between them. - _____)

Use case Instance association Class association
Actor

Figure 1-23: OOSE Use case model

Figure 1-24 shows cornponents of an OOSE state transition graph. It shows how

different types of nodes of the state transition graph are represented graphically in OOSE.

A signai is an inter-process stimulus: it is sent between two processes. A message is an intra-

process stimulus: a normal cail inside one process.

D
State

Label

E l
Task

D estroy

Send Receive R e m Send Receive

Messages Signals

Figure 1-24: OOSE State transition graph

Figure 1-25 shows components of an OOSE interaction diagram.

System border block

+
signal -
message

Figure 1-25: OOSE Interaction diagram

1.3 Conclusion

There are many more methodologies for the development of a software project,

but the three represented above have been most influentid. The decision as to which one is

appropriate is more or less a matter of persond taste and design culture. However, it

appears certain that those who use these techniques to the best of their abilities wdl be

able to write better projects than those who do not use them. Learning analysis and design

methodologies is a very good investment that will serve the learner well for the rest of his

or her life in deveioping any project. Following a methodology builds a group skiIl and

intelligence and reduces dependence on each individual.

Although the process of developing a project may dif5er fiom one team to another,

the components of the various artifacts, such as classes, events, and packages, are shared

by al1 methodologies. This is reflected in the sets of syrnbols used by Booch, Rumbaugh

and Jacobsen. This suggests that a unified representation of concepts would make

development easier. This recognition led to the proposai of severai uniQing notations,

which are the subject of the next chapter.

Chapter 2

Unified Modeling Language (UML)

2.1 Introduction

The similarities and dserences of notations used by different 00 methodologies

led to several attempts to a unified standard notation incIuding the Unïfied Modeiing

Language (UML) Bationai 20001 and OPEN Modeling Language (OML) piresrnith

19981. The most dominant and successful of these is the Unified Modeling Language

(UML). This chapter introduces the elements of UML and few iiiustrative examples. We

will give more examples in subsequent chapters. We will also include a brief description of

OML later in this chapter.

UML is a standard graphical Ianguage for visuaiizing, specQing, constructing and

documenting the artifacts of a software system. It provides a standard notation for

expressing a system's blueprint pooch 19991 - it is not a methodology.

The work on UML started in 1994 when J. Rumbaugh, the author of OMT

(Object Modeling Technique), joined G. Booch, the author of Booch method, as a partner

at Rational Software Corporation wtional 20001. Their aim was to uniQ their methods

and the first version of the Unified Method was released in October 1995 pooch 19951.

In the same year, 1. Jacobson, the author of OOSE (Object-Oriented Software

Engineering), joined Booch and Rumbaugh at Rational and the three authors expanded the

scope of UML to incJude OOSE. Their work led to the release of the next version of

UML in 1996 [Booch 19961. After getting feedback from the software engineering

cornmunity and with the support of several organizations, another version of UML was

released in 1997 [Booch 19971. This version was accepted by the Object Management

Group (OMG) in 1997 pooch 19991 as the standard for expressing analysis and design of

software products developed by the object oriented approach.

2.2 Basic UML Building Blocks

Figure 2-1 shows that there are three khds of building blocks in UML. They are:

things, relationships and diagrams. We will explain them in the following sections.

Use case
Generalization Sequence
Aggregation Collaboration

Object Shte machine Statechart
Coiiaboration Activity

Interface Component
Active class Deployment

Use case
Component

Node

Figure 2-1: Basic Building Btocks (vocabulary) of UML

2.2-1 Things

Things are the basic object-oriented building blocks of the UML. There are four

kinds of things: structural things, behavioral things, grouping things and annotationai

things Booch 19991-

2.2.1.1 Structural Things

Structural Things represent the conceptual or physical elements in a model. There

are seven h d s of structural things in UML: a class, an object, an interface, a

collaboration, a use case, an active class, a component and a node.

A class describes a set of objects that share the same attributes, operations and

relations with objects from other classes. A class is represented graphically by a rectangle

that is dîvided into up to three compartments, the name cornpartment, the attributes

compartment and the operations compartment, as shown in Figure 2-2(a). Only the top

compartment is required. Figure 2-2@) shows an example representing class Shape with

attributes corner, coior, width, origin and name and operations draw, displayon: and kind.

corner
color

dispIayOn:

Figure 2-2: Graphical representation of a class in UML - definition (a) and an
example (b)

An object is an instance of a class. It is present at execution time and aliocates

memory for its instance variables. An object is graphically represented by a rectangle with

an underlined object name, as shown in Figure 2-3(a). An object name may be an object

name, the class name preceded by a colon, or both the object name and the class name

separated by a colon, as shown in the example in Figure 2-3 (b).

Figure 2-3: Graphical representation of an object in UML - definition (a) and an
example (b)

An interface is a collection of operations that s p e c e a seMce provided by a class

or a component. It defines a set of operation specifications descnbed by their signatures

ody. It is usudy attached to the class or component that realizes it via a solid line and is

represented graphically as a circle with its name, as shown in Figure 2-4 (a). Figure 2-4(b)

shows an exarnple of the use of interface Sortable with the operations = and > by class

String. Figure 2-4 (c) shows the interface Sortable; note that it is represented by the sarne

symbol as a class but marked with the 'stereotype' <interface? (Stereotypes are

covered in Section 2.3.1)

Figure 2-4: Graphicai representation of interfaces in UML - definition (a) and
examples (b) and (c)

A colIaboration is a combination of roles and elements that work together to

provide some cooperative behavior. Collaborations represent the implementation of

patterns that make up the system. Collaborations have a structurai part that specifies the

classes, interfaces and other elements that work together, and a behavioral part that

specifies the dynamics of the interaction of these elements. The structural part is rendered

using a class diagram (Section 2.1.3.1) and the behaviorai part is rendered using an

interaction diagram (sections 2.1.3 -4 and 2.1.3 -5). A collaboration can be represented

graphicdly by a dotted ellipse that includes the name of the collaboration, as s h o w in

Figure 2-5 (a). Figure 2-5 @) shows an example of a collaboration cded Internode

messaging which represents secure messaging arnong nodes in a Web-based retail system.

«herface>>
Sohble

Sortable

O
interface name

Stdng

s u e -
sut
- -

>

Figure 2-5: Graphical representation of collaborations in ZTML - definition (a) and
an example (b)

A use case describes a sequence of actions that a system perfonns nom the

perspective of system's users. It describes the system activities from the point view of its

actors. A use case is always initiated by an actor - a human user, a physical sensor or a

class located outside the system that is involved in the interaction with the system

described in a use case. A use case is represented graphically by a solid ellipse, as shown in

Figure 2-6 (a). Figure 2-6 @) shows an example of a use case cded Money withdrawal

in an ATM system. This use case might represent the dialog between a user and an ATM

resuIting in withdrawing money fiom an ATM.

Money
withdrawal

0)

Figure 2-6: Graphical representation of use cases in UML - definition (a) and an
example (b)

An active class is a cIass whose objects own one or more processes or threads.

Objects h m an active class represent elements whose behavior is concurrent with other

elements. Graphicdy, it is represented as a class with heavy lines, as shown in Figure 2-7.

Figure 2-7: Graphical representation of active class in UML

A cornponent is a physical part of a system that provides the realization of a set of

interfaces. It represents the physical packaging of classes, interfaces and collaborations

such as a file containhg the source code of some part of the system, libraries, tables or

documents. It is represented graphicaliy by a rectangle with tabs with the inclusion of its

name, as shown in Figure 2-8 (a). Figure 2-8 (b) shows an example of a component c d e d

uml.st, a Smalltalk source code file.

Component
l $ F -

Figure 2-8: Graphical representation of a component in UML - definition (a) and
example (b)

A node is a physical element representing a computationd resource that exists at

runtime. A node may contain a set of components. An example of a node is the

implernentation of a client in a client-semer system. It is represented graphicalIy by a cube

that includes its name, as s h o w in Figure 2-9.

Figure 2-9: Graphical representation of nodes in UML

2.2.1.2 Behavioral Things

Behavioral things are the dynamic parts of UML models. They represent behavior

over time and space. They are usuaily comected to structural things like classes, objects

and collaborations. There are two kinds of behavioral tbings in UML: interaction and state

machine.

An interaction is a sequence of messages exchanged among a set of objects. An

interaction involves messages, action sequences and links. Messages are the stimuli

exchanged between objects in the system. Action sequences d e k e the order in which

messages are sent. Links capture the relationship between a message sender and a

receiver. The graphical representation of a message is a directed line labeled with the name

of its operation, as shown in figure 2-20.

show
b

Figure 2-10: Graphical representation of a message in UML

A state machine is a sequence of states that an object goes through in response to

a sequence of events. A state machine involves states, state transitions and events. The

state of an object represents the cumulative history of the object's behavior. State

encompasses all of the object's static properties and their current values. A state transition

is a change of state caused by an event. State transitions connect two states in a state

diagram or show state transitions from a state to itself. An Event is an occurrence that

causes the state of a system to change. It can convey data values or information fiom one

object to another. The graphical representation of a state is a rounded rectangle with its

name and its substates, as s h o w in Figure 2-1 1. Section 2.1.3.6 includes an exarnple of a

statechart diagram that includes states, transitions and events in a state machine.

Processing

Figure 2-11: Graphical representation of states in UML

2.2.1.3 Grouping Things

Grouping things are the~organizational parts of UML models. There is only one

grouping thing in UML and is cded a package.

A package is a constmct for organinng structurai, behavioral and grouping things

into groups. It is represented graphicaily by a tabbed folder with a name and optional

contents, as in Figure 2- 12.

Figure 2-12: Graphical representation of packages in UML

2.2.1.4 Annotational Things

Annotational things are the explanatory parts of UML rnodels. There is oniy one

annotational thing in UML and it is called a note.

A note is a graphical symbol containing textual infiormation, such as constraints,

comments, method code bodies, and tagged values, about an element or a collection of

elements. It is represented graphicdly by a rectangle with a dog-eared corner with a

textual or graphical comment, as shown in Figure 2-13 (a). Figure 2-13 @) shows how a

note is attached to an element; in this case a class cailed Shape.

Cornments
Constra.int

Figure 2-13: Graphical representation of a note in UML - definition (a) and
example (b)

Shape

draw- '

Ml subdasses must
irnplement this
method.

2.2.2 Relationships

Relationships tie things together. There are four relationships in UML:

dependency, association, aggregation and generaiization relationships.

A dependency is a relationship between two things in which one thing is

dependent on the other. Any change to one thing may affect the state of the other h g .

Dependency is a visibility relation where one thing is visible to the other. It is most oRen

between a class that uses another class as a parameter to an operation. An example of

dependency relationship is the relation between a Client and a Supplier where the client

depends on the supplier to provide it with certain seMces (Figure 2-14 (b)). Dependency

relationship is represented graphicdy with a directed dotted iïne with an optional name, as

s h o m 11 Figure 2- 14 (a).

sends r e q u e to
Client

Figure 2-14: Graphical representation of a dependency in UML - definition (a) and
an example (b)

A generalization is a relationship that represents inheritance between two things.

It shows a relationship between a general thing (a superclass) and a specific kind of that

thing (a subclass). A generalization relationship means that the subclass shares and extends

the structure or behavior defined in one or more superclasses. An example of a

generalization is the relation between the Account class (the superclass) and the

SavingAccount class (the subclass) as shown in Figure 2-15 (b). It is represented

graphicaiiy by a solid line with a hollow arrowhead including an optional name to ident*

the type or purpose of the relationship, as shown in Figure 2-16 (a). The hoUow

arrowhead always points to the superclass.

y Account

Figure 2-15: Graphical representation of generalizations in UML - definition (a)
and an example (b)

An association is a relationship that describes a set of links between objects. It

shows that objects of one kind of thing collaborate with objects of another land of thing,

or that one object uses the seMces of other objects. An example of an association

relationship is the relation between a Person and the Company he or she works for, as

shown in Figure 2-16 (b). It is represented graphically by a solid iine that may have a

direction, a name, a cardinality and a role narne on either side, as shown in Figure 2-1 6 (a).

The notations (13) means one or more and (*) means zero or more. In Figure 2-16, it

means that the Company c m have one or more persons and a person c m work for zero or

more companies.

Figure 2-16: Graphical representation of associations in UML - definition (a) and
an example (b)

An aggregation is a special kind of association that represents a relation between a

whole and its parts. It shows that one thing represents a larger thùlg, the whole part - a

container, consists of srnaller things, the parts. It relates an assembly class to its

components classes. For example, the relation between a Document and a Paragraph is

an aggregation relationship, where the whole is the document and the parts are the

paragraphs (Figure 2-17 @)). An aggregation is represented graphicdy by a solid line

with a diamond at the whole side, as shown in Figure 2-1 7 (a).

h Paragrap h Document

Figure 2-17: Graphical representation of an aggregation relationship in UML -
definition (a) and an example (b)

2.2.3 Diagrams

A diagram is a connected graph with things representing the nodes and relations

representing the edges. A diagram shows the elements that make up the system There are

nine diagrams in UML and they are explained in the following sections.

2.2.3.1 Class diagram

The class diagram is the most common diagram in object-oriented models. It

shows the relationships between classes, interfaces and collaborations. The nodes in a

class diagram are classes, interfaces and coliaborations and the edges are dependency,

association, generalization and aggregation relationships. Class diagrarns may contain

packages or subsystems, notes, and constraints. Class diagrams are used for modeling the

static design view of the system that supports the function requirements of the system. An

example of a simple class diagram is shown ia Figure 2- 2 8.

University Department

a

hm i is defmed by

l..*

University Person

Figure 2-18: A Class diagram in UML

2.2.3.2 Object diagram

An object diagram shows the relationship between objects in a system. An object is

an instance of a class. It is present at execution time and allocates memory for its instance

variables. An object diagram shows a snapshot of instances found in the class diagram.

The nodes of the object diagram are objects and the edges are links. Object diagrams are

instances of class diagrams or the static part of interaction diagrams. They are used for

modehg the static design view of a system fiom the perspective of real cases. An example

of an object diagrarn is shown in Figure 2-19.

sl: Student

d: Department

s2: Student

Figure 2-19: An Object diagram in UML

2.2.3.3 Use case diagram

A use case diagram shows the relationship between use cases and actors. The

nodes of use case diagrams are use cases and actors and the edges are dependencies,

generalizations and associations relationships. Use case diagrarns organize and mode1 the

behaviors of a system. They describe what the systern is supposed to do fiom the point

view of its actors. They may contain notes and constraints and are used for modehg the

static use case view of a system. Figure 2-20 shows an example of a use case diagram for

a catalog order system [Richter 19971.

Cataiog Order System

Customer U

Figure 2-20: A Use case diagram in UML

2.2.3.4 Sequence diagram

A sequence diagram is an interaction diagram that shows ordering of messages in

time. An interaction diagram shows the messages dispatched between objects and it is

used for modeling the dynamic view of a system. The contents of sequence diagrams are

objects, links and messages. Sequence diagrams give detailed description of use cases in a

system That means each sequence diagram is an instance of a use case. Sequence

diagrams may contain notes and constraints. A vertical dashed line in a sequence diagram

represents the existence of an object over a period of time and a thin rectangle shows the

time taken for an object to perform an action. Figure 2-21 shows an example of a

sequence diagram for a simpie Automated TeIler Machine withdrawaI. The directed

iine with the med arrow head represents sending a message and the directed line with an

arrow only represent s returning a value.

enter p w o r d w
rctquest kind I

l aiter kind

request mount I
enter amount

? transaction succezd

display main screen

Figure 2-21: A Sequence diagram in UML

2.2.3.5 Collaboration diagram

A collaboration diagram is an interaction diagram that shows sending or receiving

messages in the context of the structurai orgaakation of objects. It c m always be

transformed into a sequence diagram and vice versa. The contents of collaboration

diagrams are objects, links and messages. Collaboration diagrams, Like any other UML

diagram, may contain notes and constraints. Sequence numbers are used to indicate the

order of messages in time. Figure 2-22 shows a simple example of a collaboration

diagram, a part of the sequence diagram in Figure 2-21. Note how the messages are

numbered. The directed Iine in Figure 2-22 that has a circle at one end to represents a

return value, the line without a circle indicates a message.

Figure 2-22: A Collaboration diagrarn in UML

2.2.3.6 Statechart diagram

A statechart diagram shows the definition of a state machine. It consists of states,

events and activities and may contain notes and constraints. It shows the sequences of

states of an object in response to outside stimuli, together with its responses and actions.

Statecharts show the behavior of an interface, cIass or collaboration and the event-ordered

behavîor of an object. They show the flow of control fiom state to state and mode1 the

dynaniic view of a systern. Figure 2-23 shows an example of a statechart diagram using

state machine. The example shows the states associated with operation of a telephone.

The initial state is Idle, the final state is Active- The Active state is a state machine

with an initial state D i a 1 Tone and final states T i r n e out , Ringing, Invalid and

B u s y .

Active

invdid digit
invalid

. -

Figure 2-23: A Statechart diagram in UML

2.2.3.7 Activity diagram

An activity diagram is a special kind of statechart diagram. 1t shows the flow of

activities in a system where an activity is an ongoing execution within a state machine. It

shows the sequences of states for an object in response to completion of internai state

operations. Activity diagrams show the flow of control among objects in a system.

They emphasize the flow of control eom activity to activity. They contain activity states,

action states, transitions and objects and may contain notes and constraints. They are used

for modeling the dynamic view of a system by modeling the sequential steps in a

cornputational process and the flow of an object as it moves fiom state to state. Figure 2-

24 shows an example of an activity diagram for password validation. The hollowed

diamond is a decision symbol.

Enter password Check password

A
Failed

try again cancel

Figure 2-24: An Activity diagrarn in UML

2.2.3.8 Component diagram

A component diagram is a language/system-dependent implementation diagram

that shows dependencies among components. Any component in a component diagram

maps into one or more classes, interfaces or collaborations. Component diagrams are used

for modeling the static implementation view of a system by modeling physical things such

as libraries, files, tables and documents. The nodes of component diagrams are

components and interfaces and the edges are dependencies, generalizations, associations

and realizations. Component diagrams rnay contain packages, subsystems, notes and

constraints. Figure 2-25 shows an example of a component diagram for a Smailtalk source

file using two data files. It shows that the component test-st is dependent on two

components, namely filel .bos and file2.60~.

Figure 2-25: An Component diagram in UML

2.2.3.9 Deployment diagram

A deployment diagram shows the system in terms of its hardware nodes. A

hardware node may be a physicd processor, such as a CPU, or a device such as a printer.

A node in the deployment diagrarn contains one or more components. The nodes of the

deployment diagrams are nodes and the edges are dependencies and associations

relationships. Deployment diagrams may contain packages, subsystems, notes and

constraints. They are used for modeling the static deployment view of a system by

describing the topology of the hardware on which a system executes. Figure 2-26 shows

an example of a deployment diagram.

Figure 2-26: A Deployment diagram in ZTML

2.3 Views

A view in UML is a set of WML diagrams. Views link the modeling language to

the method chosen for developing a system. Views are very important for capturing the

complete picture of the system to be constructed. Each view shows a paaicular aspect in

describing the system. The IEEE Dr& Standard P E E 19981 refers to a view as

something which "address one or more concerns of the system stakeholder, an individual

or a group that shares concem or interests in the system such as developers, users,

customers, etc." A view is a piece of the mode1 that is still smaii enough for us to

comprehend and that dso contains all relevant information about a particular concem.

Views do not have a graphical representation; they are only conceptual or physical

groupings of UML diagrams. There are five views in UML [Eriksson 19981: logical view,

use case view, component view, concurrency view and deployrnent view. What type of

view should be used and when it should be used is strongly dependent on the person who

is using it and the tasks that are needed to be accomplished. UML views capture both

structurai and behaviorai aspect of software development. Stmctciral views make use of

classes, packages, use cases and so forth. Behavioral views are represented through

scenarios, States and activities. The five UML views are explained in the following

sections.

2.3.1 Logical View

This view captures the system's static structure and dynamic behavior. The static

structure is descnbed in class ind object diagrams. The dynamic behavior is described in

state, sequence, collaboration and activity diagrams. It is used by designers and

developers. It defines interfaces and the interna1 structure cf classes.

2.3.2 Use case View

This view captures the functionality of the system as seen by external actors. It is

used by customers, designers and developers. It is also used by testers to validate the

system by testing the use case view against the finished system. It contains use case

diagrams and activity diagrams.

2.3.3 Component View

This view shows the organization of code components. It describes the

implementation modules and their dependencies. It is used by developers and contains

component diagrams.

2.3.4 Concurrency View

This view shows concurrency in the system and addresses communication and

synchronization problems. It divides the system into processes and processors, describing

parallel execution and handling of asynchronous events. The concurrency view is for the

developers and integrators of the system. It consists of state, sequence, collaboration,

activity, component and deployment diagrams.

2.3.5 Deployment View

This view shows the deployment of the system into the physicd architecture. It

encompasses the nodes that form the system's hardware topology on which the system

executes. It is for developers, integrators and testers of the system. It consists of the

deployment diagram. It also shows which programs are executed on which compter.

2.4 Extending UML

AU types of analysis and design documents that may ever be needed in the future

can not be predicted and this is why UML is an open-ended language. This characteristic

aIlows for extending the language to cover possible new types of models. Ft d o w s UML

to grow to meet any project's needs and adapt to any software technology. UML can thus

be adapted to a speciiic application domain methodology, user or organization. UML

defines three extension mechanisms: stereotypes, tagged values and constraints. Figure 2-

27 shows exarnples of each of them.

2.4.1 Stereotypes

This extensibdity mechanism deals with extending the vocabulary of UML. It

allows for the creation of new building blocks from the basic ones. The graphical

representation of a stereotype in UML is a name enclosed in guillemets as in «abstra@>,

and placed above the name of another elernent, as shown in Figure 2-27. In some

laquages like C++ or Java, the designer might want to model abstractions where

abstractions are just classes that can not be instantiated. In Figure 2-27, LinkedList is a

class that is marked with an appropriate stereotype <Qbstract» to i d e n e it as an abstract

class.

2.4.2 Tagged values

This extensibility mechanism deals with extending the properties of W

building blocks. It dlows for the inclusion of new types of information in the specificatioa

of certain elements. Tagged value is represented graphically by a string enclosed by braces

wrïtten under the name of another element such as (version r.z), as shown in Figure 2-27.

If you are working on a product that undergoes many releases over tirne, you often want

to track its version. Since version is not a UML concept, it c m be added to a class like

LinkedList by introducing new tagged value, {version ï.I), to the class.

2.4.3 Constraints

This extensibiiity mechanism deds with extending the semantics of a UML

building block. It ailows for adding or modïQmg UML rules. A constraint is represented

graphically by a string between braces and placed near the elernent or comected to the

elernent by dependency relationship such as {ordered), as shown in Figure 2-27. Figure 2-

27 shows that the LinkedList class is constrained so that alf additions are done in order.

Tagged value
<ebstracP>

Named stereotype LinkedLis t
{version 1.1)

add(e1anent) - {O rdered)
display0 i

constraint

Figure 2-27: Extensibility in UML

2.5 OPEN Modeling Language (OML)

OPEN (Object-Oriented Process, Environment and Notation) is an alternative

object-oriented development method developed and maintained by the OPEN Consortium

(consists of 26 internationaiiy recognized 00 methodologists, researchers, who endorse,

develop and teach the OPEN approach to 00 development) piresrnith 19981. It consists

of a modeling language (OML) and a process. It is based on the unification of the methods

of Henderson-Sellers, Graham and Firesmith Firesmith 19981.

OML (OPEN Modeling Language) is a notation for depicting object-oriented

systems. It was developed by Don Firesmith, Brian Henderson-Sellers and Ian Graham,

with considerable input fkom other members of the OPEN consortium. It consists of a

metamodel for speciIjring the syntax and semantics of underlying concepts of object-

oriented modehg and a notation, COMN (Common Object Modehg Notation), for

documenting the models produced by using OPEN. Henderson-Sellers describes it as

being designed from the bottom up by a smali team of methodologists who were able to

propose a notation £kee from the hereditary biases of earlier data-modeling methods. The

intention of the designers of OML is that it should concentrate on describing the

commonly understood elements of object technology such as encapsulation, interfaces,

inheritance and a discrimination between objects, classes and types.

Despite the wider acceptance of the UML, OML continues to be enhanced and

may be used as a superset to the UML. OPEN, however, has not yet been backed by the

commercial forces that backed the UML. Thus OPEN has not yet gained much

commercial attention. However, Brian Henderson-Sellers, one of OPEN'S authors,

believes "we are now entering into the realization by industry developers that they DO

need a methodology and when they do, OPEN'S mindshare is set to grow by leaps and

bounds" [Gottesdiener 19981.

In general, OML and UML are quite similar. Their notations diner but they can be

used to show the same concepts, Figure 2-28 shows the OML equivalent of the UML

class diagram in Figure 2- 18.

Course Description
A

University Person '--*. Course

association
regMer

Staff Student
1

Figure 2-28: OML representation of the UML Class Diagram in Figure 2-18

One of the main dflerences between the UML and OML is the UMLs lack of a

process. The reason that UML is not bound to any process will be explained briefly in the

next section. 0ML on the other hand has a full lifecycle process, which according to

Henderson-SelIers can be used together with UML. UML has the advantage that it is

already familiar to the vast majority of the software community and dominates the

industry.

2.6 Conclusion

UML is a modeling language, a collection of definitions and universal

symbols for use in the description of 00 systems. It is not a rnethodology and its use is

method-independent. It is basicaiiy a modeling language. The Unifïed Process [Jacobson

20001 is an attempt to provide such a process for the Unified Method [Booch 19951.

Since the aim was to make UML standard and acceptable, it was unnecessary to bind

UML to a certain process because it is almost impossible to define a process that would be

equally suitable for the dEerent factors involved in the development of varying types of

softvare. UML was designed to be applicable to any process.

UML provides support for modehg classes, objects, the many kinds of

relationships among them, dynarnic system behavior and features of physical

implementation. UML is extensible through the definition of additional stereotypes, tagged

values and constraints. It defines a number of diagrams, their structure and their use.

Larger diagrams are shown in the description and design chapters, UML is becoming the

standard notation for object-oriented system development because of the support it

already has tiom m q methodologists, software developers and programrners,

management consulting firms, system analysts and CASE tool vendors. As an example, the

following companies support W: Digital Equipment, IBM, Hewlett-Packard, ICON

Computing, 1-Logix, Microsofi, MC1 Systemhouse, IntelliCorp, ObjecTime, Sterling

Software, Texas Instruments, James Martin & Co, and Unisys. The recognition of UML is

apparent fiom the huge number of books that have been d e n about UML and by the

thousands of people that have taken training courses in the language. Al1 this progress and

UML's use is still expected to grow substantially in the years to corne.

The best source for up to date information on üML is Rational's site where Grady

Booch, Ivar Jacobson, and Jim Rumbaugh continually develop and extend the UML

notation. The most recent updates on the Unified Modeling Language are available via the

worldwide web at http://www.rational.com~ud.

Chapter 3

The Binder

3.1 Introduction

M e r the overview of methodologies presented in the first two chapters, we will

now begin a detailed presentation of the main subject of this thesis - the design and

irnplementation of UML tools in a larger fkamework.

Documentation is a very important part in any project development and keeping al1

project documentation in a . integrated whole for easy access is equaliy as important.

Project documentation is usualiy kept in a combination of electronic and paper. Even in an

electronic form, the variety of formats results in a set of incompatible mes that are hard to

integrate and process in a unifom way. Hence there is a need for a tool that can keep

everything organized and bound together. An attempt to address this probiem resuIted in a

project called an Electronic Binder [Tomek 20001, a tool that was developed by Acadia

students and faculty to provide various kinds of page-styles and allow a developer to

organize and keep ail project documentation together for easy access and printing. The

Binder also provides search mechanisms for searching the whole content, a section, or a

specinc page-style. The Binder program is extendable and allows for the adding of new

page-styles.

The following sections briefly describe the Binder to provide a context for the

UDT tool, which has been implemented as a collection of Binder page styles to support

the drawing of selected UML diagrams. The details of UDT are explained in the next three

chapters.

3.2 The Binder - a Description

A Binder is a collection of pages a d o r sections and each section can have any

number of sections a d o r pages. A Binder is a part of a binder Library. We will now

explain the operation and user interfaces of a binder to provide a clear context for the rest

of the thesis.

Zreating a Page Style
3rag and Drop Example
JDT Classes
JML diagrams
Nark notes

V.V*

Page Styles:

Glossary 4
Inspection Form @

$@
Meeting Minutes gm

Plan km

Problem / Salutian
:X'+:

Problem Report :A% ~2%

Reading Report i~ i@ Page Styles
Text Editor / Workspace a 1 List
Textual use case
UML Class Diagrams
UML Package Diagrarns
UML Seauence Diagrams
UML tat te ~iaqram;
UML use-case-~iagrams g&f@] -

Figure 3-1: Binder Library Window

Figure 3-1 shows the hrst window that will be opened when the Binder program is

run. It displays two lists with buttons on the right side of each list. The List on the lefi-hand

side shows ali binders stored in a library catalog. The buttons on the right side of this list

have the following finctions: The Create button is for creating a new binder. It opens a

special window (Figure 3-2). The Remove and Rename buttons operate on the binder

setected in the binder's list. The Import button imports a new binder fiom a file into the

library catalog, allowing users to exchange binders. The Load and Save buttons are for

loading and saving entire library catalogs. The Open button is used for opening the

selected binder and clicking it opens the window in Figure 3-4-

The list on the right-hand-side of Figure 3-1 Iists al1 available page styles. The

buttons on the right side of this list have the foUowing fiinctions: the Add button is for

adding a new page-style (Figure 3-3). The R e m ~ e button removes the selected page-

style. The Properties button shows the properties of the selected page-style (Figure 3-3).

The Save and Load buttons d o w users to Save and load page-styles to or ti-om files. The

He@ button opens a help window on the selected page-style.

UML diagrarns .-.-.....~......-....-...-....-~.~...-..-.--....-..-......-...-..-.-........*-.*.*.**..*.**

ii Filename:

!i Created: Last Edited:

Figure 3-2: Binder Properties Dialog

The Binder Properties window in Figure 3-2 allows the user to create a new binder

by filling in the required fields.

) UML Class Diagram

Description:

diagrarn using UML notation,

lmplemented by class:

Figure 3-3: Page-Style Properties

The Page Style Properties window in Figure 3-3 is displayed wh{ en the user clicks '

either the Add or the Properties Wton on the right side of the page's list (Figure 3-1). It

allows the user to view, define and edit the selected page-style properties - its name,

description and the Client class irnplementing the page. The Client ciass is used to provide

the interface between the page-style application and the binder. Its fùnction will be

explained in more detail later. After clicking Ok on a new style, the new page-style is

added to the list of page-styles.

Figure 3-4: A Binder's Cover Page

The window in Figure 3-4 is displayed when the user clicks on the Open button

with a selected binder. It displays the title page of the binder. Using the buttons at the top

of the window, the user can move among pages and sections and create, edit or delete

them. The user can also view a collapsible table of contents, move pages and sections

around using the table of contents, and print or search the whoIe binder or a selected

portion of it.

/ [~ e x t Editor / Workspace a

1 UML Package Oiagrarnn
-- UML Sequence Diagrams

UML State Diagrams

Figure 3-5: New Page Window

The window in Figure 3-5 is displayed when the user requests the creation of a

new page. It d o w s the user to s p e c e the name of the page and select its style fiom the

List of available page-styles. Clicking Ok opens a new blank page with the selected style as

in Figure 3-6. The basic user interface is the same for ali page styles, but each style c a .

add its special purpose buttons and provides its own layout.

Figure 3-6: A blank CIass Diagram Page-Style with style-specific buttons

3.3 Creating new Page-Styles

Creating a new pagestyle requires the implementation of two or more classes.

The first required class is an application class, which defines the user interface for that

page. Its instance is plugged into the universai binder page. This class m u t be a subclass

of the ApplicationModel class. The second required class is a client class, which provides

the interface between the application class and the binder. This class must be a subclass of

the ClientApplication class. The ClientApplication class provides most of the

fùnctionality needed to accomplish the interface with the binder and defines the searching

and p ~ t i n g operations for the binder. When creating a new page-style for the Binder, the

developer must implement certain methods described in the foilowing subsections.

3.3.1 Methods for the application class

The application class rnust implement method ne w W i th: anOb j ect. This is a

class method and is sent to the application class fiom the client class to create a new

instance of the application class on anOb j e ct .

3.3.2 Methods for the client cIass

The client class must implement methods n e wWi t h O u t Con t en t s,

newWithContents: anObj ect, h e l p , and i s D i r t y . Method

n e w W i thûu t Con t en t s is a class method and is sent to the client class to retum a new

initialized instance of the application. Method n e w W i t h Contents : anOb j e c t is a

class method and is sent to the client class to retum a new instance of the application class

opened on anOb j ect. Method help is a ctass method and is sent to the client class to

retum a help string for this page style. Method i s D i r t y is an instance method that is

sent to the client class instance to check whether the contents have changed. It is used to

determine whether the user should be wamed before proceeding to another page.

Methods menu, accept, preclose, displayFromSearch: anOb j ect,

and searchFor: as tring us ing: as t r i ngspec should be overridden by the client

class if sorne action other than the default is required. Instance method menu should be

ovemdden if the application has a menu. Instance method accept should be ovemdden

if a page needs to store anything between viewings. It returns whatever information the

application wants to store between viewing of the page (e-g. Editor page should return its

text). Instance method p reclo se should be ovenidden for clients that need to intemaliy

accept something before closing, or by any client, which needs something to happen

before closing. It is cailed before the current page is closed or method dirty is called. It

retums #continue if it is ok to continue closing or anything else otherwise. Instance

method dispLayFromSearch: anObject should be ovemdden to do whatever is

required to display this client when its being displayed as the result of a search. Instance

method searchFor: as t r i n g using: as tringspec should be overridden if the

page wants to be searchable for the text as tring and any additional arguments, such as

wildcard options are supplied in as t ringspec,

3.4 Conclusion

Gathering ail project-related information into a single document can easily be

accomplished using the Binder tool described in this chapter. Besides application

developrnent, the Binder c m be used for other applications as well. The author, Dr. Ivan

Tomek, used it as an integrating medium for course materials. It has aiso been used to

gather on-line help for Smalitalk.

Chapter 4

UML Diagrams Tool - Description

4.1 Introduction

Object-oriented design requires tools to assist developers. One area that needs

support is the drawing of design diagrams, which can best be accomplished by a drawing

tool. Tools are avaiiable that support the drawing of some UML diagrams. One such tool

is Together Java [Together 19981 by Object International- This is a very elegant tool and

is considered one of the best Java products avaiiable. The tool can be used to construct

UML diagrams and generate Java code automatically. Another documentation tool is

Rational Rose p o s e 19961 fiom Rational Software Bational 20001. This tool can also be

used to construct UML diagrams and generate Java and other code automaticaliy.

UML Diagrams Tool (LTDT), implemented in this thesis, is a drawing tool that

supports the drawing of several types of UML diagrams and their integration with the

Binder (Chapter 3). It provides special page styles' and an editor for such pages for the

binder- The UML diagrams supported by UDT are:

Class and Object Diagams.

Use Case Diagram.

Sequence Diagram.

State Transition Diagram.

Package diagram.

UDT allows creation, editing, displaying, storing and deleting UML diagrams. It

allows for converting the class diagrams into SmaUtalk source code, which will help

software developers in the implementation phase and their saving in a binder as part of

complete project description. It also supports limited reverse engineering, allowing

automatic creation of selected UML diagrams fiom Smailtaik code. Figure 4-1 shows how

a UDT style is selected for a Binder page.

Select a Daae stvle:
Text Editor / Workspacs 9 x2w
Textual use case &$$$

UML Package Diagrams $@
UML Sequence Diagrams
UML State Diagrams

Figure 4-1: New Page window

As with every Binder style, UDT is a complete pluggable application and this

means that it c m also be used independently of the Binder program, performing the same

tasks and providing the same functionality. Figures 4-3, 4-6, 4-7, 4-8 and 4-9 included

later in this chapter show the editing windows of the supported UML diagrams.

4.2 UML Diagrams Tool P T)

The use of UDT in the Binder is as a drawing tool for selected UML diagrams.

The users of this tool are expected to know UML notation but the tool provides on-line

help.

UDT fiinctional requirements can be divided h to basic tùnctional requirements and

drawing fùnctional requirements. These will be describ ed next.

4.2.1 Basic functional requirements

UDT provides several features that are shared arnong all of its diagrams. These

features are: saving diagrams in files, loading diagrarns from mes, opening new files,

printing diagrams, scrolling windows to allow for larger diagrams, providing a tool bar for

fast saving, loading and drawing of shapes, providing a pop-up menu for each shape in the

diagram, aliowing multiple undo and redo of previous actions and entering text anywhere

in the diagram-

4.2.2 Drawing functional requirements

UDT allows the drawing of UML symbols and text. Al syrnbols have a pop-up

menu for performing symbol-specific actions. A shape can be moved anywhere inside the

window and moving a shape drags it with ali the lines (edges) that are connected to it. The

size of a shape automatically adjusts to the size of the text inside it except for the note

shape, which has a fixed size. Deleting a shape deletes all the lines that are connected to it.

fn accordance with UML rules, a shape can have a note attached to it using dashed line.

The following shapes and h e s cm be drawn using UDT: A class, an object, a package, a

use case, an actor, a state, a state machine, a start sate, an end state, a note, an

association, an aggregation, a generaiization and a dependency. Using a pop-up menu

which becomes available when the user clicks the right mouse button inside a shape, any

shape can be deleted or renamed. For the class shape, the pop-up menu c m also be used

to define a class with all or some of its methods as a Smalltalk class, toggle between class

and instance sides and open a SmalItalk browser. For the note shape, the pop-up menu c m

also be used to change the text inside the note. Also al1 lines, edges, c m be deieted or

renamed using a pop-up menu. For the association and aggregation h e s , the pop-up menu

can also be used to change their properties (role narne in either side, cardindity (none,

zero or more, one or more, discrete numbers, range of numbers) in either side, direction

(left, right, both, none)).

4.3 UML Diagrams Supported

UDT supports the following UbL diagrams (page styles): Class and Object

Diagram, Use case Diagram, Sequence Diagram, State Transition Diagram and Package

Diagram. These diagrams (except the package diagram) were descnbed in Chapter 2. A

package diagram is part of a class diagram but is drawn separate in UDT. It shows the

relationship between packages - collections of classes- It allows the following shapes and

lines: A package shape, a note, and directed and undirected dashed lines.

4.4 UDT User Interface

Each kind of UDT diagram has an editor with a tool bar for easy access. When the

user selects a style page when creating a new page for the binder, the appropriate UML

diagram editor wiii be opened. Ail buttons on the tool bar are supported by pop-up bubble

help. The first seven buttons of the tool bar (Figure 4-2) are comrnon to ail UDT

diagrams. They are Eom le& to right: New, Load, Save, Pr in t , Undo, Redo and

T e x t . The f is t six are self-explanatory and T e x t is used for entering a text anywhere in

the diagram. The Load button, which is the second button fiom left, dBers in the Class

and Object Diagrams window by dowing the user to choose to load fkom a file or a

Smalltalk code (for reverse engineering) - the other diagrams, only loading fkom a f5le is

possible. We will now give examples of each of these diagrams and explain their

operation.

70

4-4.1 Class & Object Diagrams window

UMLEditor
dialog
state
view
diagram
saved
doUndoRedo
controller
filename

extension
windowName
IoadDiagram
prinf Diagram
addNewNadeAt:
addNewText
initialize
view
diagram
addNewEdgeAt:
addNewNote

Figure 4-2: Class & Object Diagrams window

The Class & Object Diagram window, Figure 4-2, aiiows the user to draw UML

Class and Object diagrams. The buttons f?om number eight to fifieen (let3 to right) are

C l a s s , O b j ect, Note, Association, Aggregation, Generaîization,

Dependency and No te Connection. Clicking a button displays a dialog aslcing for

a narne, except the Note Connect ion which does not have a name. Clicking anywhere

in the drawing area will then display that shape in the selected position. Clicking the

<operate mouse button on any shape in the drawing area shows a pop-up menu specinc

to the selected shape.

Figure 4-3: The Fields Dialog window

The Fields Dialog window, Figure 4-3, opens when the user selects 'change

variables' or 'change methods' from a pop-up menu which becomes active when the user

clicks the Lefi mouse button inside a class shape. It allows adding or removing methods or

variables to the class or instance side.

d Instance C Class
Variables Methods

Ij 4 doUndoRedo

:ii 4 controtter
. 4 diagram
:i cunentEdge

message
ii dialog

$ &!? Read Write

Figure 4-4: Code Generation window

To generate code from a diagram, the user can use the code generator

window (Figure 4-4). This window (opened via selecting 'de£ineY tiom the class

shape pop-up menu) allows the user to generate Smalltalk code for the selected

class in the Class and Object Diagram window. It defines the selected class, its

instance and class variables and their accessor methods, as well as stumps of other

methods listed in the class node.

4.4.2 Package Diagram window

__----------
UDT Editors

% -.
I \

\
\ \

1 \ -.
I % -..
I -

\

UDT Clients rl

-' UDTShapes a
UDT Dialogs --n

Figure 4-5: Package Diagram window

The Package Diagram window, Figure 4-5, allows the user to draw package

diagrams using tTML notation. The only new button here is the Package button (eighth

button ftom leR). It is used io display a UML Package shape in the drawing area.

4.4.3 Use Case Diagram window

Figure 4-6: Use Case Diagram window

The Use Case Diagram window, Figure 4-6, opens when the user selects the use

case diagram page-style. It allows the user to draw UML use case diagrams. The only new

buttons here (fiorn left to right) are the eighth, Use case button which is used to draw

U s e case shapes, and the ninth, Actor button which is used to draw A c t o r shapes.

4.4.4 Sequence Diagram window

I
1
I
1
I
I

I I
t 1
J
1 yes J

yes

Check for adding an edge between two nodes

Figure 4-7: Sequence Diagram window

The Sequence Diagram window, Figure 4-7, opens when the user selects the

sequence diagram page-swe. It d o w s the user to draw UMZ sequence diagrams. The

eighth button from 1eR is used for drawing an 05 j ect shape with a vertical dashed he.

The tenth button is used to draw a Message shape. The first button on the nght is the

Al ign button. It is used to align aii the objects in the diagram with the top of the selected

object.

4-4.5 State Transition Diagrarn window

rompt for a variabl

Figure 4-8: State Transition Diagrarn window

The State Transition Diagrarn window, Figure 4-8, opens when the user selects the

state transition diagram page-swe. It allows the user to draw UML state diagrams. The

buttons f?om eight to fifteen (left to right) are State Machine, State, C l a s s ,

Note, Sta r t State, State Connect ion, E n d State, H i s t o r y S t a t e and

Note Connection. AU of these buttons are used for drawing State Transition

Diagram shapes and are self-explanatory.

4.4.6 Class Diagram Generator window - Reverse Engineering in UDT

Reverse engineering is the process of transforming code into a mode1 through a

rnapping fiom a specific implementation language. Any tool designed to support the

drawing of any design diagrams should support some h d of reverse-engineering for at

least the static design diagrams (inhentance, association and aggregation relationships) and

dynamic design diagrams (interaction diagrams).

Reverse engineering inheritance and association diagrams (class diagrams) fkom

Smailtaik code is both aided and impeded by the nature of the Smdtalk language and its

progamming environment. While reverse engineering for other 00 languages proceeds

fiom an analysis of the source text of a program, this need not be the case for Smalltalk

due to its fùUy reflective nature. In a Smalltalk environment, it is very simple to determine

which classes inherit £tom whom by asking the class for its superclass but it is more

problematic to determine association relationships. This is due to the fact that Smailtalk is

not a statically typed Ianguage. In any statically typed language, the same strategy of

parsing the program source to determine both types of relationships would work. But this

wili not work in Smalltalk because in Smalltalk variables are not typed until runtime. As a

consequence, deriving a full set of associations in a Smalltaik program is more

complicated and requires runtime traces. UDT is restricted to identdjring some

associations and class hierarchy relationship only.

classVariableNames: "

poolDictionaries: "

category: 'UDT-Models'

Figure 4-9: Class Diagram Generator window

To generate parts of a class diagram Eom Smalltak code, the user can use the

class diagram generator window (Figure 4-9). This window opens when the user clicks on

the Load button (which Ioads Eom a file or Smalltalk code) in Figure 4-2 and selects

Code. It allows the user to generate a class diagram for the classes in the Select ed

classes list. First, the user must add classes to the Selected classes Est by

dragging a category fkom the category list (upper lefi), which will add al1 of its classes to

the S e l ect ed c l as ses list, or dragging specific class fkom the classes Est (second

upper lefi), which wilI add that class to the Selected classes list. After that, the

user seiects one or more classes (if no seiection is made, ail the classes in the list will be

considered) from the Selected classes list and clicks on the C r e a t e button- This

WU create a class diagram for aN the seiected classes. The class diagram will contain

inherit ance and association relationships ody for the selected classes. The class diagram is

placed in the current Class and Object Diagram page of the Binder.

Chapter 5

UML, Drawing Tool - Design

5.1 Introduction

The purpose of this chapter is to provide insight into UDT design and to provide a

context and foundation that wiIl be usefil for fbture UDT extension.

There are many design rnethodologies for object-oriented software development

and some of them are rnentioned in Chapter 1. The methodology that we followed in

designing UML Drawing Tool is Responsibility Driven Design (RDD) WcKean 19951.

This methodology divides design into two stages: exploratory design and final (detailed)

design. In the exploratory design stage, the stress is on finding classes and their general

responsibilities and collaborations. ln the final design stage, the stress is on abstraction,

inheritance relations and responsibilities shared between classes.

In the followhg, we summarize UDT design using UML class diagrams and

descriptions of UDT classes. Since UDT implements five page-styles for the Binder

program and includes about fifty classes, ody the design of one page-style, namely the

Class and Object Diagram page-style, wilI be explained in detail. The other page-styles,

which include Use Case Diagram, State Diagram, Sequence Diagram and Package

Diagram page-styles, are similar in their design. In the next sections we wili provide the

following for the Class and Object Diagrarns page-style: the Object Model, some

Sequence Diagrarns, and textual class descriptions. Ail the diagrarns in this chapter were

produced by UDT.

5.2 Class and Object Diagrarns Page-style Object Mode1

The cIass and object diagrams page-style Object Model describes the static

structure of classes, It shows how classes are related to each other. Figures 5-1 and 5-2

show the Object Model for the class and object diagrams page-style using UML notation.

Figure 5-1 shows the main classes of UDT and how they are related to the Binder. These

classes are the base for any page-s~le. For any new page-style all that is needed is the

substitution of UMLClassEditorClient with the new page-style client and the

UMLCIassEditor with the new page-style editor.

These classes are implemented in the Binder and are not part of UDT

accept U-
print l isDirtv

diaiog
state
view
diagram
saved
doUndoRedo
controller
filename
currentNode

extension
windawName
IoadDiagram
printDiagram
addNewNodeAt: z%!zL
view
diagram
addNewEdgeAt:
addNewNote

k h k u n d UMLEditorView 1

UMLE ditorcontroller t
Figure 5-1: Part 1 of the class diagram for the Class and Object diagrams Page-style

Figure

Diagram page-style. They

the remaining classes that are used in the Class and

82

Object

represent all the shapes (nodes and edges) that can be drawn in

this diagram. The classes UMLEditor, ZTMLDiagram, UMLNoteView and

UMLConnectionView are common

each diagram

to aii diagrams but the other classes are dBerent for

Figure 5-2: Part 2 of the class diagram for the Class and Object diagrams Page-style

5.3 Cïass and Object Diagrams Page-style Sequence Diagrams

In this section we show three UML Sequence Diagrams for the CIass and Object

diagrams page-styie. Figure 5-3 shows the Sequence Diagram for adding a new class, It is

the same for adding all other shapes include Lines. The ody dBerence is substituting

UMLCIassView with that shape's view.

clicks a s :

I
I l &tance returned 1
p t position 5

d

Figure 5-3: Sequence Diagram for adding a new class

Figure 5 4 shows the Sequence Diagram for adding variables to a class. It is the same for

adding methods to a class.

1 1 1
1
I

1
I lasks for pop-up mepy'

1 I

e l a y s pop-up menu
-

I
s e a c h a n q e e s 1 1 1 1

i 1
t 1 f
I I,, returns variables I
I ?-- 1

Figure 5-4: Sequence Diagram for adding class variables

Figure 5-5 shows the Sequence Diagram for undoing the last action (adding or removing a

shape). It is the same for redoing the last action. The only dEerence is that, DoUndoRedo

object sends the message redo instead of undo.

I] I 1 I

] I I I
I 1
I 1
1 I I 1
t I I ~ e t u r n last action t
I *ends undo message I-' I
I
1

-
-"does last action I I
1 1

Figure 5-5: Sequence Diagram for undoing 1 s t action

5-4 Class Descriptions o f Class and Object Diagrams

The following sections present a full description of al1 classes used in this page-

style. Other page-styles use sirniiar classes with similar States and behaviors.

5.4.1 UMLDiagram Class

CIass: UMLDiagram

Su~erclass: Object

Puruose: UMLDiagram class is used for representing a UML diagram. It contains

al1 the information about al1 the nodes and edges and their positions on the window. It

consists of two ordered collections. The first collection is used for storing the nodes of

the UML diagram and the second collection is used for storing the edges of the UML

diagram.

Instance Variables:

nodes <OrderedCollection> A collection of nodes objects in a diagram.

edges <OrderedCollection> A collection of edges objects in a diagram.

Class Behaviors:

creation

n e w Create a new instance of UMLDiagram and initialize it.

Behaviors:

accessing Setters and getters for the instance variables.

initialkation

i n i t i a l i z e Initialize the receiver by initialking its nodes and edges as

empty ordered collections.

displaying

display0n:aGraphicsContext Display the diagram in a window by

asking each node and edge to display itseif at its ongin

add - rernove

a d m o d e : a N o d e Add a node to the diagram-

removeNode: a N o d e Remove a node fiom the diagram.

addEdge : a n E d g e Add an edge to the diagram-

removeEdge : a n E d g e Remove an edge corn the diagram.

searching

componentAt: a P o i n t Retum the node or edge that contains apoint .

Returns ni1 ifno shape is found at a P o i n t

findEdgeNamed : a N a m e Retum an edge object named aName ,

fincWodeNamed: aName Return a node object named aName.

testing

= aDiagram Retum true if aDiagram is equal to the receiver.

enumerating

nodesDo: a B l o c k For each node in the diagram evaluate a B l o c k .

edgesDo: a B l o c k For each edge in the diagram evaluate a B l o c k.

n o d e s r n s i a d e : a R e c t a n g l e Retum ail the nodes inside a R e c t a n g l e .

e d g e s Insi d e : a R e c t a n g l e Retum dl the edges inside a R e c t angle.

s h a p e s r n s i d e : aRectangle Return al1 the shapes inside aRectangle.

edgesFor: a N o d e Retum ail edges that are connected to a N o d e -

5.4.2 UMLClassFields Class

Class: UMLCIassFields

Superclass: Object

Purpose: UMLClassFields class holds ùiformation about a UML class variables or

methods. It contains information about the class and instance side for the variables or

methods. It has a dictionary with two keys. It stores the instance variables or methods

at the #instance key and stores the class variables or methods at the #class key. The

value for each key is a collection of the corresponding variables or methods.

Instance Variables:

Field <Dictionary> A dictionary of the names of the instance and

class methods or variables of this class.

CIass Behaviors:

creation

new Create a new instance of UMLClassFieIds and initialize it.

Behaviors:

accessing Setters and getters for the instance variables.

initialization

i n i t i a l i z e Initialize the receiver by setting the instance and class sides

of field to empty sets.

add - remove

add: aNarne at: aSymbol Add a N a m e to the set at aSymbol in the

dictionary field.

remove : aName a t : as ymbo 1 Remove aName from the set at aSymbo 1 in

the dictionary field.

5.4.3 EdgeProperties Class

Class: EdgeProperties

Su~erclass: Object

Pumose: EdgeProperties class holds information about edge properties. The

properties are the role name, the cardinality and the value or values for that cardinality.

Instance Variables:

role <String> A string for the roie name of the edge.

cardinality -4 y m bol> A symbol for the cardinality type (#OneCardinality,

#DiscreteCardinality, #FixedCardinality, #ZorOCardinality,

#ZorMCardinality, #RangeCardinality).

start Value <Number 1 String> A number to hold the start value for a range

or a string to hold the discrete values.

Enflalue <Number 1 nii> A number to hold the end value for a range.

Class B ehaviors:

creation

n e w Create a new instance of EdgeProperties and initiaiize it.

Behaviors:

accessing Setters and getters for the instance variables.

i n i t i a l i z e Lnitialize the receiver by setting its cardinaiity to default

(#OneCardinality) -

5.4.4 UMLEditor Class

o Class: UMLEditor

Q Superdass: ApplicationModel

o Subclasses: UMLClassEditor, UMLUseCaseEditor, UMLSequenceEditor,

UMLS tateEditor, UMLPackageEditor.

o Purnose: This class is the super class for al1 UDT editors- It provides general user

interfaces such as toolbar buttons and drawing area for a selected UML diagram. It

provides the common behavior for al1 UML diagrams that are supported by this

application.

a Instance Variables:

do UndoRedo <DoUndoRedo> A DoUndoRedo object to handle al1 the

undo and redo operations.

view -WMLEditorView> A UMLEditorView object for providing a

drawing window for the selected UML diagram.

diagram cUMLDiagram> A UMLDiagram object for storing the

nodes and edges of the selected UMZ diagram.

con froller -=UMLEditorControIler> A controller for handling the

keyboard and mouse inputs.

aimentNode 4BlLNodeView> The node that has the focus.

cuwentEdge cUMLEdgeView> The edge that has the focus.

sfale CSyrnboP The action to be performed Iike adding or

deIeting a node or an edge.

jZename <String> The file name of the current diagram.

saved <Boolean> True if the file is saved, false otherwise.

o Class Behaviors:

creation

n e w W i t h : aDiagram Answer a new instance of UMLEditor with

diagram set to aDiagram

interface spec

windowspec Provides the user interface to allow for the drawing of UML

diagrams.

buttonspec Provides the toolbar buttons.

o Behaviors:

accessing Setters and getters for the instance variables.

initiaiize-release

ini t i a l i z e Initialize the receiver by setting conh-oller to the view's

coatroller and setting the controller's menu to the main menu.

menu accessing Pop-up menus for the seleceted UML diagram.

menu message

changeEdgeName Change the current edge's name.

changeNodeName Change the current node's name.

changeNoteText Change the note's text.

changeText Change the selected text contents.

e d g e p r o p e r t i es Manipulate the current edge properties.

HardCopy Print a hard copy of the current diagram as a text.

printscreen Print a hard copy of the current diagram as a

diagram.

removeEdge Remove the current edge from the diagram.

removeNode Remove the current node and al i of its edges fiom

the diagram.

actions

addNewConnection Add an instance of UMLConnectionView (dashed

line) between an instance of UMLNoteView and an instance of

UMLNodeView.

DragShapeAt :aPoint If shape at aPoint is selected then drag it to where

the mouse is inside the wiodow, otherwise make that shape the

current selection.

addNewConnectionAt:aPoint Add a comection at aPo i n t .

addNewEdgeAt : aPoint Add the current edge between two nodes at

aPoint.

addNewNodeAt : aPoint Add the current node at aPoint.

addNewNote Add a UMLNoteView object to the diagram.

addNewText Add a UMLTextView object to the diagram.

1 oadDiagram Load a UML diagram £tom a file.

newDiagram Create a new UML diagram.

saveDiagram Save the current UML diagram.

pr i n t D i agram Print the current UML diagram.

r e d o Redo the last action (adding or deleting).

undo Undo the Iast action (adding or deleting).

undoing-redoing

redoAddEdge : anEdge Add the Iast deleted edge.

undoAddEdge : anEdge Remove the Iast added edge.

redoAddNode : aNode Add the last deleted node.

undoAddNode: m o d e Remove the last added node.

private

windowName Retum the window name (subclass responsibility, subclasses

must implement this).

e x t e n s i o n Retum a valid file name extension for this type of diagram.

Valid extensions are: '.ucoJ for Class and Object diagrams, '.uucJ

for UseCase diagrams, '.ust7 for State diagrams, '.upd' for Package

diagrams, '.usey for Sequence diagram and etc.

v a l i d v i e w : aShape Retum true if aShape is a valid shape in the

current UML diagram.

v a l i d s h a p e s Return a set of al1 the valid shapes for the current UML

diagram (subclass responsibility, subclasses must implement this).

i s V a l i d F r o m : s l to:s2 c o n n e c t i o n : s 3 Return tme if s3 can

connect s l and s 2.

5.4.5 UMLCIassEditor Class

Class: UMLClassEditor

Superclass: UMLEditor

Pumose: This class provides a toolbar buttons for drawhg the shapes needed for

UML class and object diagrams. It only dows for the drawing of the shapes that are

valid for the Class and Object diagrams.

Class Behaviors:

interface spec

but tonspec Provide toolbar buttons description.

Behaviors:

menu accessing Pop-up menus for UML class diagram shapes.

menu message

browseCIass Open a Smalltalk browser on the current class.

changeClassAt tributes Manipulate the current class' s attribut es b y

adding or removing attributes.

changeClassOperations Manipulate the current class' s operations b y

adding or rernoving operations.

definecl ass Define the current class and its attributes and operations in

the Smalltalk library. It generates part of the code for this class.

instanceside: aBoolezn Work with the instance side of the class if

aBoo lean is tme, otherwise work with the class side.

actions

addnewAggrega tion Add an aggregation edge to the diagram, an instance

of UMLAggregView.

addNewAssocia ti on Add an association edge to the diagram, an instance

of UMLAssociView,

addNewC1ass Add an instance of UMLClassView to the diagram.

addNe wDependency Add a dependency edge to the diagram, an instance

of UMLDependencyView.

addNewGeneraliza tion Add a generalization edge ta the diagram, an

instance of UMLGeneraView.

addNewObject Add an instance of UMLObjectView to the

diagram.

private

windowName Retum 'Class and Object Diagrams'.

extension Retum '.uco'.

validshapes Retum the set [klass, #abject, #note, #text, #association,

#generalization, #dependency, komection, #shared]

addGeneraFromClass : cl toClass : c2 Add the current edge which is

a generalization between two classes.

addGeneraFromClass: cl toGenera : c2 Add the current edge which is

a generalization between a class and a generaiization to create a

shared generaiization.

addGeneraFromC1 ass : cl toshared: c2 Add the current edge which is

a generalization between a class and a shared generalization.

removeGenevEdge Remove the current edge which is a generalizatioa

removeSharedEdge Remove the current edge whïch is a shared

generalization and remove al1 the edges that are comected to it.

textC1ass Retum the current class information,

5.4.6 UMLEditorClient Class

a CIass: UMLEditorClient

a Suuerclass: ClientApplication

o SubcIasses: UMLCIassEditorClient, UMLUseCaseEditorCIient,

UMlLStateEditorClient, UMLSequenceEditorCIient,

UMLPackageEditorClient.

a Purpose: This class is the super class for ail UDT editor clients. It acts as an interface

between the Binder program and the UMLEditor application.

CI Class Behaviors:

creation

ne wWi th 0 u t Con t en t s Answer a new initialized instance of the application

(UMLEditor).

newWi thcon t ent s:newContent s Answer an instance of the application

(UMLEditor) opened on newlont ent S.

help

h elp Return a help text for this client's application-

o Behaviors:

accessing Setters and getters for the instance variables,

accepting

accept Accept the current changes to this diagram (see Chapter 3 for more

details) .

i s D i r t y True if the contents have been changed, false otherwise diagram

(see Chapter 3 for more details).

searching

searchFor: tl using: t2 Search the application for t 1 and return

#notfound if tl is not found in the application. t 2 is used as an

additional argument when searching for t 1.

Printing

pxint Print the application's contents.

5.4.7 UMLClassEditorClient Class

O Class: UMLCIassEditorClient

o Superclass: UMLEditorClient

a Purpose: This class acts as an interface between the Binder program and the

IlMLCIassEditor application.

o Class Behaviors:

creation

newWi thcontent s : newcontent s Answer an instance of the application

opened on newcontent s (class or object diagram).

5.4.8 UMLEditorController Class

Class: UMLEditorController

SupercIass: ControllerWithMenu

Subclasses: UMLClassCon tro IIer, UMLSequenceController,

UMLS tateControIler.

Purpose: This class is the super class for al1 UDT editors controiiers. It handles ail

mouse events like pressing the yellow or red buttons. It shows the appropriate pop-up

menu when pressing the left mouse button.

Instance Variables:

a~rsor <Cursor> the cursor shape for a specific action.

Behaviors:

accessing Setters and getters for the instance variables.

control defaults

redBut tonActivi ty Invoke the appropriate action (sending a

message, dragging a shape, selecting a shape and dropping a shape)

when the lefi mause button is pressed..

yellowButtonActivity Activate a specific pop-up menu when the

right mouse button is pressed depending on the position of the

cursor.

events

en terEvent :event Set the cursor to a cross hair shape when entering the

current window if there is an action to be taken.

exi tEvent : event Reset the cursor shape when existing the current

window.

redBut tonPressedEvent : event send the receiver the instance

message redBu t t onAc ti vi ty

yellowButtonPressedEvent : event send the receiver the instance

message yel l O wBu t tonAct i vi ty

private

getLineFromUserAt: aPoint Retum an end point of a Line starting

at the point aPo i n t .

r ec tang l eA t : aPoint Get a rectangle fiom the user starting at the

point aPo i n t .

uml drag

drag: aShape s tart : aPoint Drag aShape starting at the

position aPoint by sending dragAt : aPoint for: self to

aShape.

5.4.9 UMLEditorView CIass

P Class: UMLEditorView

P Superclass: View

o Subclasses: CIassEditorView, SequenceEditorView, StateEditorView.

a Purpose: This class is the super class for aii UDT editors views. It provides a

drawing area for the selected UML diagram- It has a vertical and horizontal scroiiers

for drawing large diagrams.

o Instance Variables:

seiectedShapes <OrderedCollection> The collection for the selected shapes

inside this view.

a Behaviors:

controuer

d e f a u l tcontroll ercl a s s Return the

(ZTMLEditorController) for this view.

displaying

d i s p l a y o n : aGraphicContext Paint the view.

controiier

accessing

s e l e c t e d s h a p e s Return an ordered collection of the selected shapes

in the diagram.

h a n d l esAt: aPoint Return the handie at apoint .

visual ComponentAt : aPoint Retum the shape at aPoint.

u n s e l e c t : aShape Remove aShape fiom the selected shapes.

unsel ectExcept : handles Make handles the ody selected shapes.

upda teEdges : edges using: aNode Change the positions of edges

according to the position of the node aNode.

updateEdge:anEdge using:nodes Change the position of anEdge

according to the positions of nodes.

5-4.10 UMLHandle Class

Class: UMLHandIe

Superclass: View

Pumose: This class is responsible for displaying handles to mark the selected shape

as selected. It displays a rectangle with a difEerent color on the shape selected if it is a

node and displays srnail rectangles a long the line if the selected shape is an edge.

Instance Variables:

shape <UMLS hapeView> The selected UML shape.

points <OrderedCollection> A collection of the points that shouId

be displayed in a different color.

Class Behaviors:

creation

on: ashape Retum an instance of the receiver on the UML shape aShape.

Behaviors:

accessing

testing

containsPoint: aPoint

displaying

displayon: aGraphicsContext Display the receiver on the window.

disp1aySquareOn:aGraphicsContext at : aPoint Display srnail

square at the point aPo in t .

add - rernove

add: aPoint Add the point apoint to the collectionpoin~s.

Getters and setters for the instance variables.

Test whether this shape contains aPoint.

101

remove: apoint Remove the point apo in t fiom the coliectionpoints.

converting

as OrderedColl ec ti on Retum an ordered collection on this handle.

54.11 UMLShapeView CIass

O C-S- UMLS hapeView

P Superclass: Dependentpart

a Subclasses: UMLNodeView, UMLEdgeView.

a Pumose: This class is the superclass for al1 LlDT views and that includes both shapes

and edges. It provides the behavior required by aii shapes and edges in any UML

diagram.

O Instance Variables:

kind <Syrnbol>

isSe lected <Boolean>

origin <Pain t>

corner <Point>

name <String>

a Behaviors:

accessing

A shape kind (#class, #abject, #association,).

True if the shape is selected, fdse otherwise.

The origh of the shape.

The corner of the shape.

The name of the shape.

extent Retum the width and height of the receiver as a point.

layout Return the smallest rectangle that contains the shape.

f u l l N a m e Retum the name and the kind of the shape.

preff ezedBo u n d s Retums the bounds of the shape.

searching

searchFor: tl using: t2 Search the shape for tl and retum

hotfound if tl is not found in the shape. t2 is used as an

additionai argument when searching for t 1.

nearestPointTo: aPoint Retum the nearest point on the shape's

bounds that is Iocated on the straight line between apoint and the

center of the receiver.

transforming

moveBy: aPoint Move the shape by aPoint.

testhg

containsPoint:aPoint Test whether this shape contains apoint.

i sEdge Test if thïs shape is an edge, returns Mse.

isNode Test ifthis shape is a node, retums false.

pos tcopy Make a deep copy, copy dl instance variables.

converting

asOrderedCol1 ec ti on Retum an OrderedCollection with this shape.

cornparing.

= aShape Check for equality.

5.4.12 UMLNodeView Class

o Class: UMLNodeView

O SupercIass: UMLShapeView

UMLClassView, UMLEndView, UMLTextView,

UMLNo teView, UMLActorView, UMZS tateview,

UMLPackageView, UMLO bjectview, UMLStartView,

UMLKistoryView, UMLUseCaseView.

a Purpose: This class is the super class for d UDT nodes views. It provides the

behavior required by ail nodes in any UML diagram.

a Behaviors:

accessing

handl e Return array of the four corners of the node.

heigh t Return the height of the node.

w i d t h Return the width of the node.

testing

i s N o d e Since this is a node return tme.

converting

asHandl e Return a UMLHandle object on this node.

drag

dragAt: aPoint for: alontroller Drag the receiver (current

node) starting at the position apoint .

dragWith :edges at :aPoint for:aController Drag the

receiver (current node) with dl the edges in edges starting at

position aPo in t .

54-13 UMLClassView Class

a Class: UMLClassView

a Su~erclass: UMLNodeView

a Purpose: This class is responsible for drawing a class in UML notation on a window.

It draws a rectangle with three sections. The fist section for the class name, the

second section for the variables and the third section for the methods. The size of the

rectangle depends on the contents ofthe largest section.

O Instance VariabIes:

variab les ~UMLClassFields> A Class that has a dictionary for holding

information about the instance and class variables.

<UMLClassFields> A Class that has a dictionary for holding

infiormation about the instance and class methods.

<Symbol> Which side of the field (#class or #instance).

<String> The name of the super class.

side

srcperCZms

o Behaviors:

accessing

s i d e Retum #class or #instance depends on which side to process.

superc l ass Retum the receiver's super class.

v a r i a b l e s Return the variables (ciass and instance) of the receiver.

methods Retum the class and instance methods of the receiver.

f i r s t L i n e Retum the yposifion of the end of the first section.

secondLine Retum the yposilion of the end of the second section.

displaying

display0n:aGraphicsContext Display the receiver on the window.

private

nameAs Text Li s t Return the name as a TeirtList object.

v a r i a b l esAsTextLi s t Return the variables as a TextList object.

val uesAsTextList Retum the variables and methods as a TextList

object.

drag

dragAt : aPoint for: acontroller Drag the receiver (current

class) starting at the position apoint.

5.4.14 UMLObjectView Class

O Class: UM1LO bjectview

a Superclass: UMLNodeView

a Purpose: This class is responsible for drawing an object shape in UML notation on a

window. It draws a rectangle with the name of the object inside it. The size of the

shape depends on the width of the name with a fixed height.

a Behaviors:

accessing Getters and setters for the instance variables.

pnvate

centerBottom Return the point at the middle of the bottom line of

reactangle.

asTextList Retum the name of the object as a TextList object.

the

displaying

displayon: aGraphicsContext Display the receiver on the window.

5.4.15 UMLNoteView Class

Class: UMLNo teView

Superclass: UMLNodeView

Purpose: This class is responsible for drawing a note shape in UML notation on a

window. The size of the shape is fixed.

Instance Variables:

texi crext> A text that holds the note contents.

Behaviors:

accessing Getter and setter for the instance variable.

dis playing

displayOn: aGraphicsContext Display the receiver on the window.

5.4.16 UMLTextView Class

a Ciass: UMLTextView

a Superclass: UMLNodeView

O Purpose: This class is responsible for displaying a text anywhere on a window. It

asks for the text and then display it on a window.

a Instance Variables:

string <String> The text to be displayed on a window.

O Behaviors:

accessing Getter and setter for the instance variable.

private

asTextList Return the text as a TextList object,

displaying

display0n:aGraphicsContext DispIay the receiver on the window.

5.4.17 UMLEdgeView Class

a Class: UMLEdgeView

O Superclass: UMLShapeView

n Subclasses: UMLPropertiesView, UMLSharedView, UMLGeneraView,

UMLSequenceLineView, UMLConnectionView,

UMLStateConnectionView, UMLSequenceConnectionView.

O Pumose: This class is the super class for all UDT edges views. It provides the

behaviors required by a l l edges in any UML diagram.

Instance Variables:

Jrorn <String> The name of the node at the fiom-side.

f O <String> The name of the node at the to-side.

s h o w h e <Boolean> If true show the name of the edge.

edge <OrderedCollection> An ordered collection of the points of

this edge.

a Behaviors:

accessing

from

t o

Return the name of the node at the fiom-side.

Return the name of the node at the to-side.

fromKind Return the kind of the node at the fiorn-side.

toECind Retuni the kind of the node at the to-side.

at:i Return the point at index i of edge.

a t : i pu t : p o i n t Put the Point point at index i of edge.

endsOf: a P o i n t If aPoint exists in edge then return the index of

the point before apoint in edge, otherwise if apoint is in the

middle between two points in the edge then return the index of

aPo int in edge, othemise retum d.

h a n d l e Return array of the points of edge.

size Return the size of edge.

tes ting

i s E d g e Since this is an edge, retum true.

connectedTo: name Retum true if the this edge is comected to the node

named name.

isl;ine Retums true if edge has only two points.

i s p o l y l i n e Retum true if edge has more than two points.

converting

asHandl e Return a UMLHandle object on this edge.

reset Make edge straight line by removing al1 the middle points between

the first and the last point.

displaying

d i s p l a y o n : aGraphicsContext Display the receiver as a solid line on

a window.

displaySolidon: aGraphicsContext Display the receiver as a solid

line on a window.

di spl ayDo t t edOn : aGraphicsContext Display the receiver as a

dashed liae on a window.

displayLeftArrow0n:aGraphicsContext Display a left arrow

shape at the end of the receiver on a window.

displ ayRigh tArrowOn : aGraphicsContext Display a right arrow

shape at the beginning of the receiver on a window.

displayNameon: aGraphicsContext Display the name of the

receiver on a window.

private

display0nX:aGraphicsContext extentzextent at:aPoint

Used for displaying a dashed line horizontally.

display0nY:aGraphicsContext extent :extent a t :aPoint

Used for displaying a dashed Line vertically.

fromNàme Return the name of the node at the fi-orn-side.

t oName Return the narne of the node at the to-side.

add - remove

add:pointl afterzpoint2 Add the point point1 to edge f i e r the

point point2.

add:point 1 before :point2 Add the point point 1 to this edge afier the

point point 2.

remove:aPoint Remove the point apoint £tom this edge.

drag

dragAt : aPoint for: acontroller Drag the receiver (current

edge) starting at the position aPo int.

dragEndPoin tAt : p l s t a r t : p2 f o r : acontroller Drag the end

point p 1 of the receiver (current edge) starting at position p2.

dragMidde lPo in tA t : p l s t a r t : p S for: acontroller Drag

the middle point p i of the receiver (current edge) starting at

position p2.

update

upda teUsing: aNode for: aController Update the state of the

receiver (current edge) according to the state of aNode (an

instance of UMLNodeView).

5.4.18 UMLGeneraView CIass

Class: UMLGeneraView

Superclass: UMLEdgeView

Purpose: This class is responsible for drawing a line representing a generalization

edge in UML notation.

Instance Variables:

shared <Boolean> True if this edge is shared between classes.

Behaviors:

accessing A setter and getter for the instance variable.

converthg

a sMul i t Set the shared variable to true.

a ssingl e Set the s h e d variable to fdse.

assharedview Retum an instance of UMLSharedView on the receiver.

update

upda t eUs ing: aNode for: acontroller Update the state of the

receiver (generalization edge) according to the state of aNode.

5.4.19 UMLSharedView Class

a Class: UMLSharedView

n Su~erclass: UMLEdgeView

a Purpose: This class is responsible for drawing a shared edge for representing a

comection between a group of subclasses and a superclass. It represents a shared

generalization in UML

a Instance Variables:

fiomSide <SortedCoIIection> A sorted collection of associations

where the keys are the edges full names and values are points.

a Behaviors

accessing A setter and a getter for the instance variable.

add-remove

add:anAssociation Add the association anAssociation to the

fiomSide collection.

remove: anAssociation Remove anAssociation fiom the

fi-o&de collection.

update

updateusing: aNode f o r : acontroller Update the state of the

receiver (shared edge) according to the state of aNode.

5.4.20 UMLConnectionView Class

o Class: UMLConnectionView

O Su~erclass: UMLEdgeView

o Purpose: This class is responsible for drawing a dashed line representing a

comection edge in UML notation. This edge is used for comection a note object and

any UML shape.

5.4.21 UMLPropertiesView CIass

o Class: UMLPropertiesView

a Su~erclass: UMLEdgeView

O Purpose: This class is the super class for aii edges views that have some extra

properties like cardinality and role names.

a Instance Variables:

direction <SymboB A symbol to show the direction of the edge. The

avaiiable directions are: #none, #lefi, #kight and #both.

properties CDictionarp A dictionary for holding this edge's properties with

two associations. One for the m-side of the edge and the other for

the from-side of the edge. The value for the dictionary elements is

an EdgeProperties object,

currenf <Symbol> A syrnbol for indicating which side of the edge

should have its property displayed.

a Behaviors:

accessing A setter and getter for the instance variable.

displaying

displayDiscreteCardinality0n:aGraphicsContext Display

the discrete cardinality for this edge on the muent side.

displ ayFixedCardinali tyOn : aGraphicsContext Display

fixed cardinaiity for this edge on the cuwenf side.

displayOneCardinali tyOn :aGraphicsContext Display

one cardinality (nothing) for this edge on the crivent side.

displ ayRangeCardina1ityOn : aGraphicsContext Display

range cardinality for this edge on the cztwent side.

displ ayZorMCardinali tyOn : aGraphicsContext Display

zero or more cardinality for this edge on the czrrrent side.

displayZorOCardinalityOn:aGraphicsContext Display

zero or one cardinality for this edge on the riment side.

the

the

the

the

the

displ ayRol eNameOn : aGraphicsContext Displays the role name for

this edge on the cztrrent side.

private

c a r d i n a l i typosi t i o n :aText Retum a point on the window for

displaying the cardinality of this edge.

r o l ePosi ti on : aText Return a point on the window for displaying the d e

name of this edge.

5.4.22 UMLAssociView Ciass

n Class: UMLAssociView

O S u ~ e r c i m UMLPropertiesView

o Pumosg This class is responsible for drawing a line representing an association edge

;n UML notation.

5.4.23 UM-ggregView Ciass

a Class: UMLAggregView

a Suuerclass: UMLPropertiesView

a Purr>osg This class is responsible for drawing a line representing an aggregation

edge in UML notation.

5.4.24 WDependencyView CIass

a Class: UMLDependencyView

a S u ~ e r c l a g UMLPro pertiesview

a Purnose; This class is responsible for drawing a line representing a dependenoy e d w

in UML notation.

5.4.25 UMLClassDefinningDialog Class

O Class: UMLClassDefinningDialog

o Suoerclass: S irnpleDialog

o Pumose: This class is responsible for drawing the interface needed for defining a

class and its variables and methods.

a Instance Variables:

name <String> The narne of the class to be defined.

choice

srrperClassName

r e d ccessing

wri &A ccessing

v d a b lesList

<UMLClassView> The UMLClassView object to be defined.

<ValueHolder> A value holder on an input field for the cIass

name.

<MultiSelectionList> A list of all the methods. If choice is

#cIass then class methods are listed othenvise instance methods are

listed.

<Symbol> Used to indicate instance or class side. Possible

values are: #instance or #class.

<ValueHolder> A value holder on the superclass's narne.

<Booiean> Iftrue define getters for the selected variables.

<Boolean> Iftrue define setters for the selected variables.

<MultiSelectionList> A list of al1 the variables. If choice is

#class then class variables are listed otherwise instance variables are

iisted.

O Class Behaviors:

interface specs

w i n d o wspec The description of the user intefiace.

creation

class:aClassView Create an instance of the receiver fiom

aclassview which is an instance of the class UMLCIassView.

o Behaviors:

accessing

name The name of the UMLClassView object.

initialize-release

uml Cl ass : aClassView

aClassView.

Initiaiize the receiver with the state of

action

~ P P ~ Y Define the class named name with the selected variables and

methods.

d e k g

addMethodsNames : names Define the methods in the collection names

for the class narned nme.

adaReadingAccessFor: vars Define getters for the variables in the vars .

list,

addWri t i n g A c e s s F o r : vars Define putters for the variables in the vars

Est.

private

c h a n g e d c h o i c e Used to switch between the class and instance sides of the

class.

5.4.26 UMLRelationsBuilder CIass

O Class: UMLRelationsBuilder

o Su~erclass: Object

o Pumose: This class provides aU the functionality for dealing with reverse

engineering. It: implements al the necessary functions for finding the associations and

generdizations for a collection of classes.

o Instance Variables:

main Classes <Set> A set of the classes for which a reverse engineering should

take place.

associa fions <Set> A set of al1 the associations for the classes in mainClasses.

associations <Set> A set of al1 the generalizations for the classes in

main Classes.

o Class Behaviors:

creation

new Create a new instance of UMLRelationsBuilder and initialize it.

on: acollection Create an instance of the receiver on the classes in

acollection.

a Behaviors:

accessing Setters and getters for the instance variables.

initialize

initialize Initialize the receiver by setting the instance variables

mainClasses, associations and aggregarions to ernpty sets.

add - remove

add:aSymbol Add as ymbo 1 which is a class name to mainCfasses.

addAssociation:anAssociation Add anAssociation

(class 1->class2, class 1 uses class2) to associations.

addGenera1ization:anAssociation Add anAssociation

(class 1 ->class2, class 1 subclass of class2) to generafizations-

remo ve : as ymbo 1 remove as ymbo 1 which is a class name fiom mainClasses,

removeAssociation:a~ssociation Remove anAssociation

(class l ->class2, class 1 uses class2) from associations.

removeGenera1ization :anAssociation Remove anAssociation

(class 1 ->class2, class 1 subclass of class2) f?om generuikatons.

converting

asUMLDiagram Convert the receiver to an instance of UMLDiagram by

adding al1 the nodes (classes) and edges (associations and

generalizations) to a new instance of UMLDiagram.

class relations

buil dAssocia ti ons For each class in mainCZasses find the classes that

use this class and the classes that this dass uses and add them to

associa fions.

b u i l dGeneralizations For each class in mainClasses find its

superclass and add it to generczZizufions.

getAssociations:umlDiagram Add all the edges in associations to

umlDiagram which is an instance of UMLDiagram.

getGenera1izations:umlDiagram Add all the edges in generalizafions

to umlDiagram which is an instance of UMLDiagram.

ge t Edges:umlD i agram Add ai l edges (associations and generalizations) to

umlDiagram,

getNodes:umlDiagrarn Add ai l the nodes (the classes in mainClasses and

their superclasses) to umlD i agr am.

pnvate

al1Messages:aClass Retum a collection of al1 messages that are sent by

allass.

classesUses:aClass Return a collection of ail the classes that use

allass,

cl assesReferences:aClas s Retum a collection of al1 the classes that

aClass uses.

classes Return a set of al1 the classes that have an association relation with

the classes in mainClasses.

s uperc l asses Retum a set of the superclasses of ail the classes returned by

the previous method.

5.4.27 DiagramGeneratorBrowser CIass

o Class: DiagramGeneratorBrowser

R Superclass: Browser

120

CI Purpose: This cIass provides a browser that is used for reverse engineering. It's

layout is identical to the Smailtallc Browser. It adds a list for selecting the classes for

wtiich a class diagram should b e drawn.

O Instance Variables:

se lectedCIussesList < MuitiSelectionInList> A MultiSelectionInList

object to store the selected classes for reverse engineering. It allows

a multi selection of classes for which the reverse engineering stiodd

happen.

<UMLClassEditor> The application that creates an instance of

the receiver.

O Class Behaviors:

interface opening

openFrom:anApplication Answer a new instance of

DiagramGeneratorBrowser from anAppl icat ion.

intefiace spec

windo wspec Provide the user interface to allow for selecting classes for

reverse engineering.

resources

selectedClassMenu Return a pop-up menu for the selected classes list.

O Behaviors:

accessing Setters and getters for the instance variables.

actions

crea teDiagram Create a partial class diagram for dl the selected classes in

selectedCCassesList and close the Browser.

cancelDiagram Close the reverse engineering browser.

private

addSe1 ec tedCa tegory Add al1 the classes of the selected category

t O selecfedCïnssesList.

addSelectedC1ass Add the selected class to selectedClasseslist-

removeSelectedClasses Remove all the selected classes fiom

selece tedClassesList.

ge t s e l ectedCl asses Return a collection of ail the selected classes in

seZectedClnssesList or aii the classes if there were no seIections.

5.5 Extending UDT

Several UML diagrams are not supported by this version of UDT, but it is easy to

extend UDT to implement them since most of the common fùnctionality is already

implemented in the base classes UMLEditor, UMLEditorClient, UMLNodeView and

UMLEdgeView. For each new diagram, all that is needed is subclassing of dl or some of

these base classes or their subclasses.

SubcIassing UMLEditor is needed to provide an editor for the new diagram. The

class method buttonspec of UMLEditor, which provides a specifk toolbar buttons

for the new diagram, should be overridden. Other methods that should be implemented by

UMLEditor subclasses are: windowName, validshapes and extens ion. Method

windowName is an instance method that retums the name of the new page-style. Method

validshapes is an instance method that returns an ordered collection of the names of

the shapes that can be drawn in this diagram Method ex tension is an instance method

that retum the extension of the file that stores this diagram.

In order to be able to use the new diagram as a page-style in the Binder program,

the new diagram's editor must have a cIient class that is a subclass of UMLEditorClient

(Refer to Chapter 3 for more detail on the client class). This client class should have the

new diagram's editor as its application and should implement the methods described in

Chapter 3.

Every node in the new diagram should be represented by a view that is a subclass

of UMLNodeView. For exarnple, UML Class Diagram has the following nodes: class

and note. The class shape has a view (UMLClassView) that is a subclass of

UMLNodeView and the note shape also has a view (UMLNoteView) that is a subclass of

UMLNodeView. Instance methods d i spl ayOn: aGraphicsCont ext and k i n d

m u t be overridden. Method d i s p l a y o n : is used to paint the new node on

aGraphicsContext. Method kind is used to return the kind of node (#class,

#note, #ob j ect, etc). Method dragAt:aPoint for:aController might be

ovemdden ifthe new node should be dragged differently. As an exarnple of that, the class

node ovemdes this method to allow the dragging of the tree format of the generalization

edge which dEers in shape fiom other edges like association or aggregation.

Every edge in the new diagram should be represented by a view that is a subclass

of UMLEdgeView. For example, UML Class Diagram has the followïng edges:

association, generalization, dependency and aggregation. Ai1 these edges have views

(UMLAssociView, UMLGenerView, UMLDependencyView, UMLAggregView) that

are subclasses of UMLEdgeView. Instance methods displayon:

aGraphicsContext and kind must be overridden. Method disp layon: is used to

paint the new edge on the aGraphicsContext, Method kind is used to return the

kind of edge (#association, #generalization, #aggregation, etc). Method

dragAt:aPoint foracontroller might be overridden if the new edge shouId be

dragged differentfy. As an example of that, the message edge in the Sequence Diagram

overrides this method to allow the dragging to be up and down only. Another method that

might have to be overridden is updateusing: aNode for: acontroller which

updates the current edge according to the position of aNode. As an example of that, the

message edge in the Sequence Diagram overrides this method to aiiow the update to be

according to the dashed vertical line f?om aNode, an object node, and not aNode itself.

Chapter 6

UML Drawing Tool Implementation

6.1 Introduction

The UML Drawing Tool (UDT) is irnplemented using Smalltaik, VisuaiWorks 3 .O

[Cincom 20001. The implementation is based on the design described in Chapter 5. The

folfowing sections present samples of the implementation of selected UDT classes. In

source code classes are in Bold and methods are in Itali c.

6.2 UMLDiagram Class

This class is the mode1 for aU UDT page-styles, an object that manages (calcuiates,

sorts, stores, retrieves, simulates, converts and so on) idonnation Boward 19951. It

holds di domain information about a diagram displayed in a single window or Binder

page. It contains two ordered coliections, one for storing dl the nodes and the other for

storing al1 the edges of the diagram. In the following subsections, the irnplementation of

some of the methods of this class will be shown.

6.2.1 Method displayon:

This instance message is used to display the receiver on an instance of

GraphicContext. It is sent to an instance of UMLDiagram to display aIl the nodes and

edges on the drawing window for that diagram using the window's GraphicsContext

object. It first asks each node to display itself on the drawing area relative to its ongin and

then asks each edge to display itself.

displayon: aGraphicsContext

self nodes do: [:node 1 aGraphicsContext d i s p l a y : node

at: node o r i g i n] .

self edges do: [:edge 1 aGraphicsContext d i s p l a y : edge

a t : edge o r i g i n]

6.2.2 Method componenwt:

This instance message is used when the user wants to select, drag or display a pop-

up menu for a specinc shape. It is caiied when a mouse button is pressed inside the

drawing area. It is sent to an instance of UMLDiagram to return a component at a

specific point. If there are more than one component, the most recently added component

is retumed. The argument a p o i n t represents a point on the drawing area of the diagram,

the position of the mouse cursor. The rnethod first searches the edges collection and

returns the first edge that contains this point in its bounding area. If no edge is found, it

searches the nodes collection for that point.

componentAt: aPoint

se l f edges do: [:edge 1 (edge con t a in spo in t : a P o i n t)

i fT rue : [̂ edge]] .

self nodes do: [:node 1 (node con t a in sPo in t : aPoint)

i f T r u e : [̂ node]] .

6.2.3 Method shapesrnside:

This instance message is used when ali shapes inside a specific rectangle are to be

dragged together. It is sent to an instance of UMLDiagram to retwn a collection of aii

the shapes (nodes and edges) that are displayed inside a specific rectangle. Argument

aRectangle represents a rectangle on the drawing area of the related diagram. The

rnethod first creates a collection of d the nodes inside aRectangle and then adds al1

the edges inside the rectangle to that collection. It then returns the h a i collection.

shapesxnside: aRectangle

1 aCollection 1

acollection := self n o d e s I n s i d e : aRectangle.

acollection a d d A l l : (self edgesInside: aRectangle) .
"aCollection

6.2.4 Method nodeshide:

This instance message is used when ail nodes inside a specific rectangle are to be

dragged together. Tt is sent to an instance of UMLDiagrarn to return a collection of al1

the nodes that are displayed inside a specific rectangle. The argument aRectangle

represents a rectangle on the drawing area of the diagram. Method layout returns the

srnallest rectangle that completely covers the receiver.

nodesInside : aRectangle

"self nodes select: [:node 1 aRectangle c o n t a i n s : node

layout]

6.3 UMLEditor Class

This class is the superclass of all UML diagram editors. It provides a drawing area

and a toolbar with buttons, initiates all UDT tool operations and collaborates with other

classes to execute them. Foliowing is the description of some of the methods implemented

in this class.

6.3.1 Method newWith:

This class message is used for opening a page with a specsc diagram. It is sent to

a subclass of the UMLEditor class to create a new instance of the class on a specific

diagram. The argument aDiagram represents a UMLDiagram object, such as a Class

and Object Diagram, a Sequence Diagram, etc., that this editor should display. It first

creates a new instance of the receiver and then initializes the receiver with the nodes and

edges of aDiagram-

newwith: aDiagram

^self n e w i n i t i a l i z e w i t h : aDiagram

6.3.2 Method removeNode

This instance message is sent to an instance of a subclass of UMLEditor when the

user selects "remove node" fiom a pop-up menu. It removes the currently selected node

and ali its edges. It first asks the UMLDiagram object to delete the current node and then

asks the UMLEditorView object to remove the current selection. After that it updates the

DoUndoRedo object. The next step is the deletion of al1 the edges that are attached to the

128

current node. The last step is to tell its dependents that it has changed so that the diagram

can redisplay itseE

removeNode

1 edges node 1

node := se l f current Node.

s e l f diagram removeNode: node .

s e l f view u n s e l e c t : node.

self doUndoRedo undo: #reDoAddNode: redo: #unDoAddNode:

arguments: (Array with: node) .
edges := self diagram edgesFor: node.

edges do: [:edge 1 s e l f curren tEdge: edge.

self removeEdge].

s e l f changed: node k i n d with: node

6.3.3 Method executeoperationwith:

This instance message is sent to an instance of a subclass of UMLEditor by the

UMLEditorController when the user clicks the nght mouse button inside the drawing

area of the current diagram. It first needs to determine which action is to be performed.

The message value is usually an action, message, related to the type of action that

should be performed. I f m e s sage is undefined, nothing happens. The following are some

valid values for the m e s sage instance variable: # a d m e wNodeAt:,

#addNewEdgeAt:, #dragShapeAt: and #addNewConnectionAt:. The argument

apoint is the point in the window where the mouse button was clicked.

executeqpera t i o n W i t h : aPoint

self m e s s a g e i s N i l i f F a l s e : [self perform: self m e s s a g e

w i th : aPoint]

6.3.4 Method dragShapeAt:

This instance message is sent to an instance of a subclass of UMLEditor, such as

UMLClassEditor, by the UMLEditorControlIer when the user clicks the right mouse

button inside the drawing area of the current diagram. It first asks the view, an instance of

UMLEditorView, for the selection at ePoint. The selection is not ni1 if a shape at

aPo int was previously selected. If no selection is found, the method makes the shape at

aPoint the current selection. It clears alI selections ifno shape is found. If a selection is

found, the method asks the controller to drag the shape inside the selection to where the

mouse is inside the window.

dragShapeAt: aPoint

1 handle umlshape 1

message := n i l .

handle := self v i e w h a n d l e s A t : aPoint.

handle i s N i l i f F a l s e : [̂ controller d r a g : handle s h a p e

s t a r t : aPoint] .

umlShape := self v i e w v i s u a l C o m p o n e n t A t : aPoint.

umlShape i s N i l if T r u e : [^self view u n S e l e c t E x c e p t :

OrderedCollection n e w] .

self view unSelectExcept : umlshape asHandle

asOsderedCol1 ecti on

6.3.5 Method addNewEdgeAt:

This instance message is sent to an instance of a subclass of UMLEditor by the

instance method executeopera t i onA t : aPoint when the user executes the n e w

edge command. It adds a new edge between two nodes. It first checks whether the from-

side of the edge is on a valid node by asking the view to return the visual component at

aPo int and checking whether the returned shape is a shape valid for this edge. Then it

asks the controuer object to draw a iine fiom aPoint to the last point where the left

mouse button was d o m and checks whether that point is on a shape valid for this edge. If

the shape is valid, it updates the current edge with the appropriate origin, corner, fiom-

side node's name and to-side node's name values and adds it to the UMLDiagram object

edges collection. Findy, it updates the diagram by sending its receiver the message

updatelhanges:.

adàNewEdgeAt: aPo in t

1 shapel endPoint shape2 1

shapel := self view visualComponentAt: aPoint .
(selE validview: shapel) ifFalse: ["self].

endPoint := controller getLineFromUserAt: aPoin t .

shape2 : = self view visualComponentAt : endPoint.

(self validview: shape2) ifFalse: [*self].

shapel = shape2 ifTrue: ["self].

(self i sVal idFrom: shapel k i n d to: shape2 kind

c o n n e c t i o n : self currentEdge kind)

ifFalse: ["self] .
sel f cuzrentEdge connectFrom: shapel to: shape2.

self diagram addEdge: self currentEdge.

se l f updatechanges: s e l f currentEdge

Method upda teChanges: aShape sets the value of message to ni1 and

sends its receiver the message changed : w i t h : so its view updates itself accordlngly.

upda techanges : aShape

message := nil.

saved := f a l s e .

s e l f c o n t r o l l e r c u r s o r show.

self changed: aShape kind w i t h : aShape

6.3.6 Method changeNodeName:

This instance message is sent to an instance of a subclass of UMLEditor when the

user selects "change name" £kom the <operate> menu. It changes the name of the currently

selected node in the diagram. It frrst asks the user to enter a new name and then asks the

current node to change its narne to the new name and redisplay itself. Then it asks the

view of this class to update aii the edges that are comected to this node. After that it

sends the receiver the message changed: w i t h : so that aü its dependents will be

updated accordingly.

changeNodeName

1 name n o d e F u l l N a m e edges node 1

name := Dialog r e q u e s t : ' E n t e r new Name :

i n i t i a l A n s w e r : self c u r r e n t N o d e name.

(name i s E m p t y o r : [name = se l f c u r r e n t N o d e n a m e]) i f T r u e :

[^ se l f] .
nodeE'ul lName : = self c u r r e n t N o d e f u l l N a m e .

se l f c u r r e n t N o d e name: name.

node := self c u r r e n t N o d e .

self v i e w i n v a l i d a t e R e c t a n g l e : (node l a y o u t e x p a n d e d B y :

3 @ 3) r e p a i r N o w : t rue .

se l f d i a g r a m edgesDo : [: edge 1 edge changeSideName:

nodeFullName wi t h : node f u l l N a m e] .
edges := self edgesFor: n o d e .

self v i e w u p d a t e E d g e s : edges using: node .

se l f changed: node k i n d w i t h : node

6.4 UMLEditorView CIass

This class dehes the view (the object responsible for display) for al1 UDT

diagrams editors. It provides a drawing area for drawing a selected type of a UML

diagram. It scrolIs its contents honzontally and verticdy to allow the drawing of large

diagams and provides al1 operations that deal with the drawing of nodes and edges. It

holds UMLHandle objects for marking a node or an edge as selected.

6.4.1 Method updateEdges: using:

This instance message is sent to an instance of UMLEditorView by its controller

when dragging a UMLNode object from one position to another. It updates the ongins

and corners of al1 edges in the first argument, edges, to match the second argument,

aNode, which is a UMLNode object. Message upda t e U s i n g : f o r : is sent to each

edge in edges.

up&teEdges : edges using: aNode

edges do: [: edge I edge u p d a t e u s i n g : aNode for: s e l f

con troll er]

Method upda teus ing : for : is sent to an instance of a subclass of UMLEdgeView

to check whether the edge is a h e segment or a polyline. If the edge is segment (h e with

only two points), the instance message updateLineUsing: f o r : is sent to that edge.

If the edge is a polyline with more than two points, the instance message

u p d a t e P o l y L i n e : i s sen t to that edge. Thismethod wili beexplained inthenext

subsection.

updateusing: aNode for: acontroller

s e l f i s L i n e

i f T r u e : [se l f upda teL ineUs ing : aNode fox: a lon t ro l l e r]

ifFa1se: [self upda tePo lyL ineUs ing : aNode]

Method upda teLine Uslng: f o r : is sent to an instance of a subciass of

UMLEdgeView to fhd the UMLNode object comected to this edge and adjusts the edge

to the shortest distance between the centers of the two nodes.

updateLineUsing: aNode for: aController

node l node2 [

(self frorn sameAs: aNode fullName)

if True: [nodel := aNode.

node2 := a c o n t r o l l e r mode2 diagram

findA7odeNamed: self t o]

ifFalse: [nodel := a c o n t r o l l e r mode1 diagram

findNodeNamed: self from.

node2 := aNode] .
s e l f o r i g i n : (nodel neares tPointTo: node2 layout c e n t e r) .
self corner : (node2 n e a r e s t p o i n t To : nodel l a y o u t c e n t e r)

Method updatePolyLine: is sent to an instance of a subclass of UMLEdgeView

to check ifit is comected at the fiom-side, its origin is updated and ifit is connected at the

to-side, its corner is updated.

upda tePolyl ineUsing: aNode

1 p o i n t 1

(aNode f u l l N a m e sameAs: s e l f from)ifTrue: [

p o i n t := self a t : 2.

s e l f origin: (aNode neares tPointTo: p o i n t)]

i fFa1se : [(aNode fullName sameAs: self t o) i f T r u e : [

point := self at: self size - 1.

self corner: (aNode nearestPointTo: point)]]

6.4-2 Method updateEdge: using:

This instance message is sent to an instance of UMLEditorView by its controller

when dragging a segment of UMLEdge object fiom one position to another inside the

view drawing area. It updates the origin and corner of anEdge according to the positions

of the nodes in the nodes argument. For each node in the nodes collection, it sends the

instance message upda tepolyline: (the code is shown in the previous subsection) to

anEdge.

upda teEdge : anEdge using: nodes

nodes do: [: node 1 anEdge updatePolyLineUsing: node

6.5 UMLEditorController CIass

This class is the controiier for ali UDT editor views. It uses polling to handle all

the rnouse events. It defines the <operate> menu and launches sorne operations when the

lefi mouse button is pressed. Some of the operations associated with the left mouse button

are: dropping a shape on the diagram, selecting or unselecting a shape and dragging a

shape inside the window.

6.5.1 Method yellowButtonActivity

This instance message is sent to an instance of UMLEditorControlIer when the

user presses the <operate> ('yellow') mouse button. It opens a pop-up menu related to the

shape in that position. Tt k s i asks the view to find the shape at the cursor point, by

sending the message vi sua1 Componen tAt : aPo i n t to the view, and then displays

the right pop-up menu for that shape. If there is no shape at that point, the method

displays a pop-up menu that enables the user to add new LTML shapes specific to that

diagram. Ifthe shape is a node, it sets the current node to be this node and asks the model

of the view to supply the pop-menu associated with this node and displays it. If the shape

is an edge, it sets the current edge to be this edge and asks the view's model to supply the

pop-up menu associated with this edge and displays it.

yellowButtonPressedEvent: event

self yellowButtonActivity

yellowButtonActivity

1 umlobject 1

umlOb j ect : = self view visualComponentAt :

self sensor cursorPoint .
urnlob j ect i s N i l

ifTrue: [self rnenuHolder value: self model viewMenu]

ifFalse: [self updatechanges: umlobject]

super yellowButtonActivity.

upda teChanges : aShape

aShape i s N o d e

i f T r u e : [s e l f model cur ren tNode : ashape]

if False : [self model cur ren tEdge : aShape] .

s e l f menuHolder value:

(self model p e r f o r m : (aShape kind , 'Menu1) asSymbo l)

6.5.2 Method getLineFromUserAt:

This instance message is sent to an instance of a UMLEditorController by its

view's modei to draw a line foliowing the cursor movernent on the screen. It is used when

adding an edge between two UMLNode objects. It asks the Screen to show a line on the

screen starting at apoint and returns the last point on the screen where the ieft mouse

button was up.

getLineFromUserAt : aPoin t

line 1

line := Array with: aPoint w i t h : aPoint.

Cursor c r o s s H a i r showWhil e: [

[s e l f s e n s o r r edBu t tonPressed l w h i l e T r u e : [

Screen d e f a u l t d i s p l a y s h a p e : line a t : self s e n s o r

globalOriginforMilliseconds: 0 .

self viewHasCursor i f T r u e : [

line a t : 2 put: self s e n s o r c u r s o r P o i n t]]] .
^ l i n e at: 2

6.5.3 Method drag: start:

This instance message is sent to an instance of a UMLEditorController by its

view's model when the user clicks the lefi mouse button on a seIected shape. The first

argument umlshape is the shape to be dragged inside the drawing area and the second

argument apoint is the starting point. The method sends the method dragAt : f o r : to

umlShape and the method changed to its mode1 so its view wilI change accordingly.

drag: umlShape s t a r t : aPoint

umlshape dragAt : aPoint for: self.

self model changed

The next two methods are required by the above definition if umlShape is a node.

They are sent to an instance of a subclass of UMLNodeView. Method dragAt : f o r :

asks the model for al1 the edges that are connected to this node and then removes them.

M e r that it sends the message dragwith: a t : to its receiver which drags the selected

node to foilow the cursor position. This process stops when the left mouse button is

released. Finally ail the updated edges of this node are added back to the diagram.

dragAt: aPo in t for: acontrol ler

1 oldPoint oldLayout edges I

oldPoint := aPoint.

edges := acontroller model edgesFor: self.

edges do: [: edge 1 acontroller model d i a g r a m

removeEdge: edge] .
acontroller v i e w i n v a l i d a t e .

oldLayout : = self l a y o u t expandecBy: 3 @ 3 .

Cursor hand showWhfie: [[acontroller s e n s o r redBu t t o n P r e s s e 4

w h i l e T r u e : [acontroller viewHasCursor if T'rue: [

oldPoint := self d r a g w i t h : edges at: oldPoint

i n s i d e : oldLayout f o r : acontroller]]] ,

edges do: [: edge 1 acontroller mode1 diagram addEdge: edge]

Method dragWi th: a t : drags the receiver fiom its original position to foliow the

cursor position and draws lines on the screen for each edge that is c o ~ e c t e d to this node-

dragWith: edges at: aPoin t ins ide : aRectangle for: acontroller

] newPoint oldLayout (

oldLayout := aRectangle.

newPoint := acontroller s e n s o r c u r s o r P o i n t .

newPoint = aPoint i f F a l s e : [

self moveBy: newPoint - aPoint.

acontroller view updateEdges: edges using: self.

edges do: [: edge 1 Screen d e f a u l t

d i s p l ayShape: edge edge

a t : acontroller s e n s o r g l o b a l o r i g i n

f o r N i l l i s e c o n d s : 101 .

acontroller v i e w i n v a l i d a t e R e c t a n g l e : oldLayout

repa i rNow: true .
oldLayout := oldLayout moveBy: newPoint - aPoint.

acontroller view i n v a l i d a t e R e c t a n g l e : oldLayout

repairNow: true] ,

^newPoint

The next three methods are required by the definition in 6.5.3 if umlShape is an

edge. They are sent to an instance of a subclass of UMLEdgeView. Method dragAt :

for: asks the receiver (an edge) for the nearest point on its drawing area to aPoint. If

the nearest point was the fist or the last point on the edge then no dragging is allowed. If

the nearest point is an inner point then ifit is the second or the one before the last then

dragEndPo in tA t : start : for: is sent. If the point was between the second and

the one before the last then dragMiddlePoin tAt : s tart : f o r : is sent.

dragAt : aPoint for: acontroller

1 point indexl index2 1

point := self n e a r e s t P o i n t T o : aPoint.

(point = self o r i g i n or: [point =self c o r n e r]) i f T r u e : ["self].

indexl := self endsOf: point.

indexl isNil i f T r u e : [*se l f] . .

(self edge i n d e x o f : point) i s Z e r o i f f i r rue: [

self add: point a f t e r : (self a t : indexl) 1 .

index2 := indexl + 1.

(index2 = 2 o r : [index2 = (self s i z e - l)])

i f T r u e : [self dragEndPoin tAt : index2 s t a r t : aPoint

f o r : acontroller]

ifFaIse: [self dragMiddelPointAt: index2 start: aPoint

fox: acontroller]

Method dragMidd2 ePoin tAt : s t a r t : for: is sent to drag the receiver from

the middle.

dragMiüàelPointAt: pos s t a r t : aPoint for: acontroller

1 newPoint oldPoint 01dLayout 1

oldPoint : = aPoint .
Cursor hand showwhile: [[a~ontroller sensor

redButtonPressed]

whil eTrue: [acontroller viewHasCursor if True: [

newPoint := acontroller sensor cursorPoint.

newPoint = oldPoint ifFalse: [

oldLayout := self layout expandeciBr 3 @ 3.

self at: posput: (self at: pos)

-F (newPoint - oldPoint) .
oldPoint := newPoint.

acontroller view invalidateRectangle:

oldlayout repairNow: true .
acontroller view invalidateRectangle:

self layout repairNow: true] 3 1 1

Method dragEndPointAt : s tart : for: is used to drag the receiver (an

edge) fiom one of its ends.

dragEndPointAt: pos s t a r t : aPoint for: acontroller

1 newPoint oldPoint oldLayout col 1

oldPoint := aPoint.

col : = OrderedCollection n e w ,

pos = 2 i f T r u e : [col add: (acontroller model diagram

findNodeNamed: self from)] .
pos = (self edge s i z e - 1) i f T r u e : [col add:

(acontroller model d iagram fincWodeNamed: self to) 1 .
Cursor hand showwhile: [[acontrolier s e n s o r redButtonPressedl

w h i l e T r u e : [acontroller viewHasCursor i f T r u e : [

newPoint := acontroller sensor cursorPoint.

newPoint = oldPoint ifFalse: [

self moveAt: pos from: oldPoint t o : newPoint

wi th : col f o r : alontroller .

oldPoint := newPoint]]]]

6.6 DiagramGeneratorBrowser Class

This ciass provides a browser that is used for reverse engineering. Its layout is

almost identical to the Smalltalk Browser but adds a list for selecting the classes for which

a class diagram should be drawn (see Figure 4-9). It invokes al1 the operations for

selecting the desired classes either by dragging the whole category or just a class to the

selection list. In the following subsections, the implementation of some methods will be

shown.

6.6.1 Method createDiagram

This instance method is used to create a partial class diagram for the selected

classes. It is sent to an instance of DiagramGeneratorBrowser when the user clicks the

Create button in Figure 4-9. It fïrst creates a new instance of UMLRelationsBuilder

on the selected classes and then sends that instance the message a s UMZDiagram which

converts that instance to an instance of UMLDiagram. FinaIly, it assigns this instance of

UMLDiagram to the callers diagram for display on the caller's window.

createDiagram

1 associations 1

associations := UMLRelationsBuilder on: self

getSelectedC1asses.

self caller diagram: associations a s ~ D i a g r a m .

self cancelDiagram

6.7 UMLRealtionsBuilder Class

This class provides ail the functionalïty for dealing with reverse engineering. It

implements all the necessary functions for finding the associations and generalizations for

a collection of classes and provides information necessary for drawing the diagrams. It

contains three ordered collections, one for storing the selected classes, another for storing

ali the associations and the third one for storing d l the generaiizations. In the foliowing

subsections, the implementation of some methods wiii be shown.

6.7.1 Method on:

This class message is used to create an instance of UMLRelationsBuiIder on

classes selected by the user. It is sent to UMLRelationsBuilder by

DiagramGeneratorBrowser to retum an instance initialized to the classes in the

argument a C o l l e c t i o n .

on: acollection

^self new mainclasses: a lo l lec t ion

6.7.2 Method asUMLDiagram

This instance method is used to convert the receiver to an instance of

UMLDiagram. It is sent to an instance of UMLRelationsBuilder by

DiagramGeneratorBrowser to retum an instance of UMLDiagram. This instance then

c m be displayed in a Class Diagram editor's window.

a s m D i a g r a m

1 u m l D i a g r a r n 1

umlDiagram := UMLDiagram n e w .

self getNodes : um1Diagra.m.

self getEdges: u m l D i a g r a m .

"um1Diagram

6.7.3 Method classReferences:

This instance method is used to retum a collection of al1 classes that reference the

class in the argument. It is sent to an instance of UMLRelationsBuilder with the name of

the class as an argument. It first gets the 'user' classes nom the class SmalltalkClasses

and then searches the selectors of ail these classes for as ymbo 1.

classReferences: aSymbol

1 calls userclasses 1

calls := Set new.

userclasses := SmalltalkClasses userclasses asset.

userclasses := userclasses collect: [:class 1

(Smalltalk associationAt: class) value] .

userclasses do: [: class 1 (((class whichSelectorsReferTo:

(Smalltalk associationAt : a~ymbol)) asset) addAll :

(class whichSelectorsRef erTo: aSymbol) ; yourself)

i s E m p t y ifFalse: [

calls add: class instanceBehavior name]] .

^calls asOrderedCollection

Chapter 7

Conclusion

7.1 Summary

The purpose of this thesis was to develop a tool that could be used to support the

drawing of severai types of UML diagrams, their integration into a larger software

development environment (the Binder) and reengineering of existing code. This was

achieved through the foliowing:

Studying object-oriented methodologies. Several object-oriented methodologies were

studied to accomplish two things: understanding the need for a methodology in object-

oriented software development and understanding the dzerences and similarities

behveen object-oriented methodologies.

Studying the Unified Modeling Language (UML). Since the aim was to allow for the

drawing of selected types of UML diagrams, a comprehensive study of UML was

done.

Designing and implementing UDT.

Studying the Binder program. A fiili study and understanding of the Binder allowed

the integration of the tool into the Binder to be accomplished easily.

The result of tfiese activities is UDT - UML Drawing Tool. UDT enables the

drawing of the following UML diagrams: Class and Object Diagarns, Use Case Diagram,

Sequence Diagram, State Diagram and Package Diagram. UDT implements these

diagrams as page styles for the Binder program. The drawing is accomplished by

providing an editor and a toolbar for each page style. The toolbar provides general buttons

for creating, storing, loading and printing of selected UML diagrams, undoing and redoing

of previous actions and adding a note and note comection to the selected UML diagram.

It also provides buttons for adding edges and nodes for each supported UML diagram,

The editor provides a drawing area for the selected diagram. It enables tne selection,

deleting and dragging of any shape in the diagram. For each shape, the editor provides a

specific pop-up menu for that shape.

UDT also provides the following f o m d and reverse engineering mechanisms: ft

aiiows for the defining of classes and their variables and the creation of empty rnethods

fiom diagrarns. It also enables partial creation of UML class diagrams f?om Smalitalk code

including inheritance and association.

7.2 Future Work

Based on the work done in this thesis, many topics can be suggested for firture

work. Some of these topics are:

Extending UDT to incfude the remaining UML diagrams. Other UML diagrms can be

implemented as page-styles to the Binder. This cm be accomplished by subclassing

UMLEditor class to provide an editor for the new diagrarn and subciassing

UMLEditorController and UMLEditorView classes if necessary. All the nodes in

the diagrarn should be represented by views that are subclasses of UMLNodeView

and ail edges should be represented by views that are subclasses of UMLEdgeView.

Also each diagram's editor should have a client class that is a subcIass of

UMLEditorClient (to be used for the Binder).

Automatic creation of other diagrams fi-om code. Parts of other UML diagrams can be

generated nom a Smalltalk code. An example is generating Sequence Diagrams h m

use cases.

Applying changes to the Smalltalk Library. In the curent version of UDT some

changes to a class in a UDT diagram, such as rernoving or renaming a class or

changing its state or behavior, are not applied to the library. In future versions, these

changes could be made to aliow for a stronger link between the diagram and the code.

0 Design control capturing the evolution of diagrams coutd be implemented as a part of

the Binder and linked to source code versions.

Dynamic diagrams such as sequence and state diagrams could be used to support and

partially automate the creation of texts.

r Additional reverse e n g i n e e ~ g tasks on the basis of more sophisticated code analysis

or mntime tracing.

B ibliograp hy

pooch 19991

[Cincom 20001

[Coad 1991aI

[Coad 1991bI

[Coleman 2 9941

[Demmer 19971

Eriksson 19981

Booch, G., Object-Oriented Analysis and Design with Applications,
2nd edition, Benjamin Cumrnings, Redwood City, Caiifomia, 1993.

B ooch, G., Object-Oriented Anaiysis and Design with Applications,
Benjamin Cummings, Redwood City, California, 1994.

B ooch G. and Rumbaugh J., Unified Method for Object-Oriented
Development, Documentation Set Version 0.8, October 1995.

Booch G., Jacobson 1. and Rumbaugh J., The Unined Modeling
Language for Object-Orïented Development, Documentation Set
Version 0.91, September 1996.

Booch G., Jacobson 1. and Rumbaugh J et. al., The Unified
Modeling Language for Object-Onented Development Version 1 .O,
UML Notation Guide, UML Sumary, UML Semantics, Rationai
Software Corporation, January 1 997 and the UML 1.1 update of
Sept. 1997.

Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling
Language User Guide, Addison Wesley Longman, Inc, 1999.

Cincom's VisualWorks - Smalltalk Software,2000. Available via:
http ://www.cincom.com/visualworks/

Coad, P. and Yourdon, E., Object Onented Analysis (2nd Edition),
Yourdon Press, Englewood Cliffs, New Jersey, 199 1.

Coad, P. and Yourdon, E., Object Oriented Design, Yourdon Press,
Englewood Cliffs, New Jersey, 199 1.

Coleman, D., Arnold, P., Bodoff, S., DolIin, C., Gilchrist, H.,
Hayes, F. and Jeremaes, P., Object-Oriented Development The
Fusion Method, Prentice Hdl, Englewood, New Jersey 07632,
1994.

Dernrner, C., UML 1.1 vs. MWOOD, using matenal fiorn Booch,
G., Rumbaugh, J. and Jacobson, I., 1997. Available via:
http://stud2.tuwien.ac.at/-e87267 1 I//ummwl .html

Eriksson, H. and Penker, M., UML, Toolkit, John Wiley & Sons,
ISBN: 0471191612, 1998.

piresrnith 1 9931 Firesmith D-G,, Object-oriented Requirements Analysis and Logical
Design - ASE Approach, John Wiley & Sons NY, 1993.

piresrnith 19981 Firesrnith, D., Henderson-Sellers, B. and Graham, I., OPEN
Modeling Language (OML) Reference Manual, Cambridge
University Press, 1 99 8.

[Gottesdiener 19983 Gottesdiener, E., 00-Methodologies: Process & Product Patterns,
Component Strategies, Vol. 1, No 5, 1998.

Boward 19951 Howard, T., The Smalltalk Developer's Guide to VisualWorks,
SIGS Publications, Inc., New York, 1995.

P E E 19981 IEEE "Recomrnended Practice for Architectural Description,"
Draft Std. P1471, IEEE, 1998.

[Jacobsen 19921 Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G.,
Object-Oriented Software Engineering, Addison-Wesley, 1992.

[Jacobson 20001 Jacobsen, I., Rumbaugh, 3. and Booch, G., The Unifïed Software
Development Process, Addison Wesley Longman, Inc., 1999.

Martin 19931 Martin, J. and Odell, J., Object Oriented Analysis and Design,
Prentice Hall, Englewood, New Jersey, 1993.

WcKean 19951 McKeaq A., and Wirfs-Brock, EL, Responsibilities-Driven Design
"Tutorial Notes, Tutorial42". Parcplace-Digitalk, Inc., 1995.

metworld 19991 Networld Solutions - AH rights reserved. QualIT and POC are
registered service marks of Paladin Enterprises, Inc., 1999.
Available via:
http ://www.netw~rld-soIutions.com/qudit/defauIt.htm

[Oestereich 19991 Oestereich, B., Developing Software with UML, Object-oriented
analysis and design in practice, Addison Wesley Longman Ltd,
1999.

wtionai 20003 Rational Software, The Unified Modeling Language (UML,), 2000.
AvaiiabIe via: http:l/www.rational.com/

mchter 19971 Richter, C., Exploring the Unified Modeling Language (UML) by
Example, Object Engineering, Inc, 1997.

[Shlaer 19921

[Technology 19971

[Together 19981

[Tomek 20001

w d é n 19951

[Wirfs-Brock 19901

The Rational Rose, Rational Software, 1996- Available via:
httu ://www.rational. corn/

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenseq
W., Object-Oriented Modeling And Design, Prentice Hall,
Englewood Cliffs, New Jersey, 199 1.

Shlaer, S. and MeIior, S. J, Object Lifecycles: Modeiing the wodd in
States, Prentice-Hall, Englewood CMs, New Jersey, 1992.

Object Oriented Technology, 1997. Available via:
h-p://disc.cba.uh. edd-rhirscWs~rin~97/1rnlho~e. htm

Together J/C++, Object International, Peter Coad's Company,
1998. Available via: http://www.oi.coml

Tomek, I., An Electronic Binder for an Object-Oriented Analysis
and Design course, SIGCSE, Symposium, Austin, 2000.

Waldén, K. and Nerson, J., Seamless Object-Oriented Software
Architecture: Analysis and Design of Reliable Systems, Prentice
H d , 1995.

Wirfs-Brock, R., Wilkerson, B. and Wiener, L., Designing Object-
Oriented Software, Prentice Hall, Englewood, New Jersey 07632,

