UML Drawing Tool
by
Saleh Mohamed Alshepani
B.Sc. (Computer Science)

Acadia University, 1991

Thesis
submitted in partial fulfillment of the requirements for
the Degree of Master of Science (Computer Science)
Acadia University
Fall Convocation 2000

© by Saleh Mohamed Alshepani, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothégue nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé€ une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-54520-2

Table Of Contents
Table Of COMtents...ccuceeereiiiieiancienrcrccrnsccsssvosnssssssssssscsssscsssanse tecesessensasanes iv
List Of FIgUIeS.ccuureeiiiiiieiiniiiiicirocascernenscososcsccsasssssssccssasscssensescrssssoscasansans xi
ADSIEACE. . eeeeiciinieriiieiciiirecietintetiosessrserssscsccassarssssesscossocssssscsvonsansssrensane xiv
Acknowledgment............ Seeescsteetrtanestsanresscscanaasccetnnacessronetsttsnrnnorecssanesrrse xv
Chapter 1 1
Introduction . 1
1.1 The need for @ MethOdOIOZYcooviiieeiiiieeeeeeeeeeeee e ee e e e et e e e eemenae e s 1
1.2 Object Oriented MethodolOGIEScooooiiiiiiiiieie it ee e 2
1.2.1 BOOCh MEthOdeeeieiie ettt e e e e e e e e e s eeesees s 3
1.2.1.1 The Development Processcccoeeveiiiiimimiiee et 4
1.2.1.1.1 Macro development PrOCESS........cccoeeeeeeeieemneeeeeereneercninieeeeennnerenecennenee 5
1.2.1.1.2 Micro development PrOCESS..........oo.ivveeermrerreemmmmmeeeeieencraeesemnnaeaeeeaeaeaanes 6
1.2.1.2 Graphical NOtatiONcoeoeiiiccieeeee e e e e e e e e e ne e e e e e e nemnnaas 8
1.2.2 Object Modeling Technique (OMT).....ccccennriiiiiiiee e e 13
1.2.2.1 ADAEYSIS. ... eiiiieiiieiieeeeteeeeeieee et e esee e s e e e r e e e eeeees e e e s s s an e s e eenan e 14
1.2.2.2 System Design....ccc.oiiiiiiieeeeeeee e e et e e e e e e e e e e e e e e e e 15
1.2.2.3 ObJeCt DESIGIL....coeiiiiiiteiieeeeeee et e e e e eee e s e e e eecre e s amneee e eae 15
1.2.2.4 Implementation.........ccvvvmiiiiieieieie e e e et e e e e e e eenes e enaeeesnanes 15
1.2.2.5 Graphical NOTAtIOncccvvuimeerieiiieirrenieeeeeeeeeeeeceeaeeeeereseeennamenseseennneeesenes 16
1.2.3 Object-Oriented Software Engineering (OOSE).......cccooeivviviiimriiriiiiiiciiececnen. 21

1.2.3.1 REQUITEIIENES «...coeiiiiniicieiieeeeieceeeiemceeanteneeeeeeseeeneesaeaeeeeeaasenssasnnmnransnnsnns 22

1.2.3.2 ADQALYSIS. ...t 23
1.2.3.3 CONSLIUCHON.cuneiieiitteeieeeee et e e e e e e e e e e eeneens 23
1.2.3.4 The Graphical NOtationc.ooeviemieiiiieiececeeeeeeeeeeeeeeeeeeeeee e 23

1.3 COnCIUSION ..o 26
Chapter 2 28
Unified Modeling Language (UML) 28
2.1 INEEOQUCHION. ...ttt et e e 28
2.2 Basic UML Building BIOCKSooooueiiiiioiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 29
22 T TRINES ..ot 30
2.2.1.1 Structural ThInGS....cocceeeeeieeiieeeeeeeee e 30
2.2.1.2 Behavioral ThinES.......cocooveeiiiiiiieeieeeeeeeeeeeeee e 35
2.2.1.3 Grouping ThINESccveeeiiieieieeeeeeeee e 36
2.2.1.4 Annotational ThinGSccooeoiiiiiiiiiiiieeeeeee e 37
2.2.2 RelationShipso..ieiiiieeeee e e 38
2.2.3 DIAGTAINS ...c.ueieiitieeiie e eie et eeeeee e e et ee e e e e eeee e s e 40
2.23.1 Class dIAGTamcc.ueeeeieeeeeiieeteee e e 40
2.2.3.2 Object dIaGTaM uveieeeeeiieeieeeeeee e 41
2.2.3.3 Use €ase dIagraml......ccooeieirieieiieeieieee e 42
2.2.3.4 Sequence di8ZIammcoooeeeuieiimiieeeeeeee e 43
2.2.3.5 Collaboration diagramcoeuieeiieuioiiiiiieeee e 44
2.2.3.6 Statechart diagraml.........ccooeeiieeimiieiiieiieeeeeeeeeeeeee e 45
2.2.3.7 ACIVILY QIAGTAMNL......ooieeeeeieeiieeeee ettt e e e eeeeeee e 46

2.2.3.8 Component diagrammlcccueeeeeeeieiiieeiie e 47

2.2.3.9 Deployment GIagramcooovrremirmereeeeeireereeeceeaeereee s eeeee e nsennnnnes 48

2.3 VIBWS ...t eeeeee e e e e e eanree e et it e e s e e e s eea e e e e e e e s en e e e s s ne e s nnane 48
2.3 T LOGICAl VIBW.....eeeeieiieeeeeeiieee ettt sttt et e sttt ce e e ese e mae s e s e nans 49
2.3.2USE CASE VIBW ..ooiiiiiiiieeeeieceeeeeeeraeee s e e e te s s e s e snnnmnnes 49
2.3.3 COmPONENt VIEW......oiieiniiieieeeetccennee et eseresaeessaasessssrsases s rrsaeesessseasenes 50
2.3.4 CONCUITENCY VIBWonniiineieeeeeeieee e eatersenase s s e s s sssnnnessssnerrnnnnanes 50
2.3.5 Deployment VIEW.......cooo o eoeiiiiaiiceeeceeire et ce e e e e s e s e e s 50

2.4 Extending UML ..ottt ce et esceeeseaee s enm s s e ee e e s ennnsnnaeeaes 50
2.4, 1 StOTEOLYPES. ... eneeeeuiieeeeeeeeeeeeeceee e ce e te e e e et ce st e s ms e s e s s s s aa e e e e e e e e s nnnsseeenenes 51
2.4.2 Tagged VAIUESueeeemiieeciiiee ettt cee e e s e s 51
2.4.3 CODSITAISeoveeeeneeieeeeraereeeeeeeeeeraraaaaessssnteesesestessaasssmmnassmsmnnnnsmssmnnnsnansennees 52

2.5 OPEN Modeling Language (OML)......oceeiiiiiie et 52
2.6 CONCIUSIONooeiiiiiceeeee ettt te e s e e e s ee e s e e e e e ee e e e s e eans 54
Chapter 3 e 56
The Binder - . 56
3.1 INtrOUCHON. ..o et s ettt e e e ee e ane e e 56
3.2 The Binder — @ DeSCOPHONccummmiiiiiiiiiii ettt 57
3.3 Creating new Page-Stylesot 62
3.3.1 Methods for the application class..............cccorioiiiiiiniccicre e 63
3.3.2 Methods for the client Classcoooeiiiiiiiiie e 63

3.4 CODCIUSIONoeeeieiiiiiie et reeeeeee e e e s st e e e e e ae e ee e s e s eeeeemenmsamenseeeenenenes 64
CRapter 4 ... iiicciniiiinniiiiiiiinsiisssasseecsissiissssssssssssessssnssnsasssssassssssssases e 65

UML Diagrams Tool - Description . .65

L 00 I €412 o 16 (1 Lo11 o) « WU Ut
4.2 UML Diagrams Tool (UDT)........cooee ettt
4.2.1 Basic functional reqUITeMENtScceveeeiiioiiimiiceeeeeee e ceee e e e e e e e e
4.2.2 Drawing functional reqUIrementscccooererummmmeteemrerie e e s seme e
4.3 UML Diagrams Supported..........cccooiimiiieee ettt
4.4 UDT User Interfacecccooiiiieie ittt
4.4.1 Class & Object Diagrams WINAOW........ccoeeeeeeeterrieremiiieiicrrereeee e e
4.4.2 Package Diagram WINAOWcccooceeriiiimmiiiiiiiiiie ettt
4.4.3 Use Case Diagram WINAOWccccccimmiiiiiiniiiiicinie et
4.4.4 Sequence Diagram WINAOW...........ccoerimiiiiiiiiii e
4.4.5 State Transition Diagram WindOW..........cocooiiiiiiiiiiiiimnee e

4.4.6 Class Diagram Generator window — Reverse Engineering in UDT

Chapter S... ceesesresssencsonssenanse

UML Drawing Tool — Design.. . cosesseveserees

TR AR 5 018 Yo L0 (e1a 1o) « WU U UeUU PR PTIS
5.2 Class and Object Diagrams Page-style Object Model...............ccoooiiiiiiniin.
5.3 Class and Object Diagrams Page-style Sequence Diagramscccccoooiiiie.
5.4 Class Descriptions of Class and Object Diagrams............cccooeeeiiiiniiiiiininn.
5.4.1 UMLDIagram Class......c.ccooeireumieiiaciiiiic et cse et e s st
5.4.2 UMLCIaSSFields Class.........occieimiimeeemeiiiieciiieiceie e s cceee e e
5.4.3 EdgeProperties Class..........cociioiiiiiiiiiiiiieei ettt
5.4.4 UMLEGItOL CIASSuuueiiiieieciiiieeeenienteieeeiirinee e seerere s et a s ennes

§5.4.5 UMLCIASSEAILOr CIaSS ovnnieeeeeee e eeeeeeeieeeeeeesaesemneeenesnesnseeaannsennsannnnesnnnees

65

67

67

67

68

69

70

73

74

75

76

77

80

80

5.4.6 UMLEditorClient ClIasscocoeeoeeereeroeieeceeee e et eeceeeeeee e 95
5.4.7 UMLClassEditorClient Classcoociiiiiieoenimiececetcete et e 96
5.4.8 UMLEditorController Class............ocooeeeiieiiiiiiieiceeeeeceeee e ee e eeeeans 97
5.4.9 UMLEJItOrVIiew Classcccoeeeroiieeerecieeiiecciiieeeeeeeeceeeeeeemensnsssseeseeeaeeeeenns 98
5.4.10 UMLHandIe ClIasscccueeeimiiiiee e te e et eeee e ee s 100
5.4.11 UMLSQhAPEVIEW ClaSS....ciiieieeeeeeeeeeeeeee e eeeeeee e e e e eeeennaeas 101
5.4.12 UMLNOAEVIEW Class...... oottt e e e e 102
5.4.13 UMLCIaSSVIEW ClaSS......ocoiiiiiirreceeeetee et et ee e e eeeeceeeeene e e 104
5.4.14 UMLODbBJECtVIEW ClaSS.....ciiiiiiiiniiiiciiiiiiearee e e eeee e e e emeneeeeeneneeee 105
5.4.15 UMLNOtEVIEW Classooiiiiiiiiiiieeiieeie ettt eecaeeeaee e e e e 106
S5.4.16 UMLTEXtVIEW CIaSS.....cuuceeiiiiiietieeeeeieteeeae e e et e e msemeneeeeennaenee 106
5.4.17 UMLEdGEVIEW ClaSS......ooiiiieeceiiieiicieeeeieetee e e vannnnseaeeeeseenesresensennes 107
5.4.18 UMLGENEraView Class.......ccceeeeicmmiiiiiiiiiiieeieeeeeeeiieaanseee seeeeeemeeeeeeemaneees 110
5.4.19 UMLSharedView Classccccooirerimiiiiteecectee ettt e et ceeee e e 111
5.4.20 UMLConnectionView Class ...t e 112
5.4.21 UMLPropertieSVIew Classoooeeiriiiimieieeeiiieieee e eeeeeeeeeeeeneeeas 112
5.4.22 UMLASSOCLVIEW ClaSS......ciioiieiieeiecieiee et e e 114
5.4.23 UMLAZEregView Classc.cooiiiiiiiieiiieiieiieeeeee e e eme e ee e eeenneenanes 114
5.4.24 UMLDependencyVIiew Class.........cccooeecmimmiiieeeeiieeeeee e eeeaneeeeeeeeecnnne 114
5.4.25 UMLClassDefinningDialog Class.........cccooeeeiieieeeeieeeeve e 115
5.4.26 UMLRelationsBuilder Class.........cccccccoriiiiiiiniiiciecict e 117
5.4.27 DiagramGeneratorBrowser Class.........cccoooireeeeeeeeiiieioceeeeeeeeeeeeeeeeeeeeees 119

SSExtending UDT ..ottt e e e e e e e e e e er e e s eaaees 121

Chapter 6 124
UML Drawing Tool Implementation 124
6.1 INErOAUCHION.ceoiiiiiiiitiieee ettt ettt a et e e e s rnme e sneaens 124
6.2 UMLDIAIram Class.........ccceeeeeeieeiieicieeeieereeeereettnnseseeeseeeeeemee s semeeeaseeeseeesesenmanaas 124
6.2.1 Method diSplayOn:oueiiiiieeee et e 124
6.2.2 Method COMPONENtAL:..........evieeeemreee et ee et e e et e oo ee e 125
6.2.3 Method shapesInside:oooooiiiiiii e 126
6.2.4 Method nodesInside: ... 126
6.3 UMLEGIEOr ClaS5eooeneeiieeiie et e ce e et eee e e e e e e eaeeeaes 127
6.3.1 Method newWIth:. ...t 127
6.3.2 Method remoVeNOdE.coo oottt e e 127
6.3.3 Method executeOperationWith:...........ccooiiiiiii e 128
6.3.4 Method dragShapeAt:coooneeeiie et 129
6.3.5 Method addNEWEdZEAL:cc.oiimieiiierccteceeeee et e 130
6.3.6 Method changeNodeName:coooocciiiiiiiee e 131
6.4 UMLEdItOrVIew Class.........cooeeiiioiiiieeeeiecee et e et e e eeeeses e e e e 132
6.4.1 Method updateEdges: USING:..........cccoiieiiaeieiiecieeee e e 133
6.4.2 Method updateEdge: USINg:cooeeeiiiiiiiiceee e e e e e e e e 135
6.5 UMLEditorController Class.c.....ceeooeeeiririeeieeieeee e ecceee e 135
6.5.1 Method yelloWBULtORACHVILYeeeeeeeiceie it ce e e e e ee e e e e 136
6.5.2 Method getLineFromUSErAL:...........ccoireiiiereeeeiecee e e e e 137
6.5.3 Method drag: Start:..........ccccuiiiiiiiiiiii et 138

6.6.1 Method createDiagram.............cocooociiiiiieiiiinecee e reteeeeee e e eeaee e anes

6.7 UMLRealtionSBUIAEr ClaSS.oeeeeeeeeeeeeeeeee ettt e et eeeee e e eenea e s aeee

6.7.2 Method asUMLDIAGIAM...........ccoummmieiiiecc e e cee e s e e s

6.7.3 MethOod ClassSR e EIEICES: oot ee st e ee e ee e e e e enae

Chapter 7

Conclusion

Bibliography....

...

...

143

143

144

144

145

146

146

146

147

149

List Of Figures
Figure 1-1: Models of the Booch Method. 4
Figure 1-2: Class Icons . . 8
Figure 1-3: Notes9
Figure 1-4: Relationships in Booch Class Diagram 9
Figure 1-5: Graphical representation of objects in the Booch method 10
Figure 1-6: Relationships in Booch Object Diagrams.........cccceceeeeceeceierereneesarecerasaasaes 10
Figure 1-7: Booch State Transition Diagrameeeeeereeeeeneeeeennneecreaneiencencesescenees 11
Figure 1-8: Booch Interaction Diagram 11
Figure 1-9: Booch Module Diagrameeeeueuieeenenseeenneecassencccans 12
Figure 1-10: Booch Process Diagraml......ccceeieeeececerecssoseeneeecscssnsssesossssessascscssaccssess 12
Figure 1-11: OMT : ProcCess...cccccereeieeresannnmencnrarearesssessssasessssanes . 13
Figure 1-12: Graphical representation of Classes in OMTccucccveirrersencrscscsceeseseacee 16
Figure 1-13: Graphical representation of Cardinality in OMT 16
Figure 1-14: Relations in OMT Object diagraml..........eeiereeescccirissnnncrscrssssnnssssavensanens 17
Figure 1-15: Graphical representation of states in OMT 18
Figure 1-16: States nesting in OMTcccccceeeennnne. cevessasennses 19
Figure 1-17: Processes, Actors, Data Store and File Objects in OMTccceeereneee 20
Figure 1-18: Data and Control flow between Processes.... 21
Figure 1-19: OOSE Models... cous teseecessorersssasessssersenesssssansarsarrassssnsassassranses 22
Figure 1-20: OOSE Domain Object Modeluuieoeeenereeiieerascrsrssnrerenserssssssssssesssanes 24
Figure 1-21: OOSE Design Modelcuuiiorererrininniniiiinrcnsniccsiecccsscssssssssnsesennncensesnsees 24
Figure 1-22: OOSE Analysis model 24
Figure 1-23: OOSE Use case model 25
Figure 1-24: OOSE State transition graph ceeeees2S
Figure 1-25: OOSE Interaction diagrami.......ceoicveeecreseeeesesssssssnenesrescsssnsssessansscesssssssese 26
29

Figure 2-1: Basic Building Blocks (vocabulary) of UML.....................

Figure 2-2: Graphical representation of a class in UML — definition (a) and an

example (b) covereseresnacesse 30
Figure 2-3: Graphical representation of an object in UML - definition (a) and an
example (b) 31
Figure 2-4: Graphical representation of interfaces in UML — definition (a) and
examples (b) and () .ccceeerereicenrisciunrrssessesinsicrcsnnaeeeneencssesenenssssssses 32
Figure 2-5: Graphical representation of collaborations in UML - definition (a) and
an example (D)ciiiinninnninierericennesisenscesissinensanassssseeiseesssnssscsosasssansense 33
Figure 2-6: Graphical representation of use cases in UML — definition (a) and an
example (b) . cessscsnsesnssseses 33
Figure 2-7: Graphical representation of active class in UML. 34
Figure 2-8: Graphical representation of a component in UML - definition (a) and
example (b)........ .34
Figure 2-9: Graphical representation of nodes in UML 35
Figure 2-10: Graphical representation of a message in UML.......... . .35
Figure 2-11: Graphical representation of states in UML....... 36
Figure 2-12: Graphical representation of packages in UML e 37

Figure 2-13: Graphical representation of a note in UML — definition (a) and

example (b).ceeeeciciorcccnssnceesarenneccaniones . teeesersesessansssnsnesesesssassants 37
Figure 2-14: Graphical representation of a dependency in UML - definition (a) and

an example (b) eesrenens . eeeeea 38

Figure 2-15: Graphical representation of generalizations in UML — definition (a)

and an example (b) tesessesersnrnsennn . 39

Figure 2-16: Graphical representation of associations in UML — definition (a) and

an example (b) . cossesesnsrsnssnssosanene 39

Figure 2-17: Graphical representation of an aggregation relationship in UML —

definition (a) and an example (b)........... . 40
Figure 2-18: A Class diagram in UML.......... 41
Figure 2-19: An Object diagram in UML ceesssserserssssesene v 42

Figure 2-20: A Use case diagram in UML.........oeeeueeenumreiriiecccisnssienensecnencesesessannn 43

Figure 2-21: A Sequence diagram in UML 44
Figure 2-22: A Collaboration diagram in UML 45
Figure 2-23: A Statechart diagram in UML....... 46
Figure 2-24: An Activity diagram in UML 47
Figure 2-25: An Component diagram in UML 47
Figure 2-26: A Deployment diagram in UML........ 48
Figure 2-27: Extensibility in UML 52
Figure 2-28: OML representation of the UML Class Diagram in Figure 2-18.......... 54
Figure 3-1: Binder Library Window .. 57
Figure 3-2: Binder Properties Dialog. . 58
Figure 3-3: Page-Style Properties ceesserensressrananee .59
Figure 3-4: A Binder’s Cover Page.........cccceeueee 60
Figure 3-5: New Page Window 61
Figure 3-6: A blank Class Diagram Page-Style with style-specific buttons............... 62
Figure 4-1: New Page window........... . 66
Figure 4-2: Class & Object Diagrams window......... e 70
Figure 4-3: The Fields Dialog window w71
Figure 4-4: Code Generation window ceesssesssssasantane 72
Figure 4-5: Package Diagram window......cccucceccoeeenessurecessesrennrnneccccssnnenee 73
Figure 4-6: Use Case Diagram window .74
Figure 4-7: Sequence Diagram window. .75
Figure 4-8: State Transition Diagram window . 76
Figure 4-9: Class Diagram Generator window....... ceeenses 78

Figure 5-1: Part 1 of the class diagram for the Class and Object diagrams Page-style
81

eae . *vcovesevecsssrovtoccacavsse

Figure 5-2: Part 2 of the class diagram for the Class and Object diagrams Page-style

... 82
Figure 5-3: Sequence Diagram for adding a new class . 83
Figure 5-4: Sequence Diagram for adding class variables 84

Figure 5-5: Sequence Diagram for undoing last action... 84

xiv
Abstract

Object-oriented design has now become a predominant technology and there is
urgent need for tools to assist developers in creating those designs. One area that needs
support is object-oriented analysis and design, including the drawing of new diagrams and
reengineering of existing ones. In this thesis, we describe a tool that can be used to
support the drawing of several types of UML (Unified Modeling Language) diagrams for
software design and their integration into a larger software development environment and
reengineering of existing code. This tool is part of a large project called the Binder
developed by students and faculty at Acadia University. It provides special page styles’
and an editor for such pages for the Binder. The UML diagrams implemented by page
styles and supported by this tool (called UML Drawing Tool or UDT) are: Class and
Object Diagrams, Use Case Diagram, Sequence Diagram, State Transition Diagram and
Package Diagram.

UDT allows creation, editing, display and storage of UML diagrams and partially
automatic conversion of class diagrams into Smalltalk source code. These diagrams can
then be included in the Binder.

This thesis begins with an introduction to object-oriented methodologies followed
by a short description of the UML notation and a description of the Binder program. The
following chapters include the description, the design and implementation of the drawing

tool. The final chapter summarizes the thesis and includes suggestions for future work.

Acknowledgements

I would like to thank my wife for her support and encouragement for making this
possible. I would also like to express my sincere appreciation and gratitude to my
supervisor Dr. Ivan Tomek for his help, support, and suggestion during the preparation of
this thesis. I would like also to thank Dr. Rick Giles for being my internal examiner and
Dr. Arthur Sedgwick for being my external examiner. I am very thankful to the staff of the
School of Computer Science at Acadia University.

Last, but not least, I would like to extend my thanks to my family and friends
whose help and moral support encouraged me to complete this work. A special thanks to

the Libyan Educational Secretary for their sponsorship.

Chapter 1

Introduction

1.1 The need for a methodology

In developing a project, regardless of its size or purpose, everybody involved in the
project should agree on and follow a methodology or combination of methodologies that
is comprehensive enough to include all aspects of the project. This methodology, a body
of methods with a set of rules and assumptions, should be flexible enough to match the
uniqueness of each project [Networld 1999].

The popularity and effectiveness of disciplined object-oriented analysis and design
is clearly shown by the emergence of several competing methodologies. Each of these
methodologies has strengths and weaknesses, and the choice of which one to follow
depends to a large extent on the type of organization and business involved. The most
widely spread methodologies [Technology 1997] are described in the Object Modeling
Technique (OMT) [Rumbaugh 1991], the Booch Method [Booch 1993, 1994], Object-
Oriented Software Engineering (OOSE) [Jacobson 1992], Object-Oriented Analysis
(OOA) and Object-Oriented Design (OOD) [Coad 1991a, 1991b], Fusion Method
[Coleman 1994}, Designing Object-Oriented Software (DOOS) [Wirfs-Brock 1990]
Object Oriented Analysis and Design (OOAD) by Martin and Odell [Martin 1993] and

Object Lifecycles (OL) by Shlaer and Mellor [Shlaer 1992].

The choice of which methodology to use can be decided by considering at least the
following selection criteria:

® The methodology is suitable for the application requirements.

® It covers all software lifecycle phases.

® [t fits the programming language and more generally the program development
environment.

® The developers have experience with it or can acquire sufficient knowledge
about it.

® The methodology is widely supported. The support could be tools for creating
models, technical help, or a mentor.

@ It is easy to use and understand.

1.2 Object Oriented Methodologies

The first references to object-oriented methodologies first appeared in the late
1980s [Booch 1995]. After that there was an explosion of object-oriented methods as
various methodologists experimented with different approaches to object-oriented analysis
and design [Booch 1995]. Experience with these methods grew, accompanied by a
growing maturation of the field as a whole as more and more projects applied these ideas
to the development of production-quality mission-critical systems. By the mid 1990s a few
second-generation methods [Demmer 1997], borrowing from other methodologies, began
to appear, most notably the Booch method [Booch 1994] which replaced the Booch 91
version, BON [Waldén 1995], Firesmith [Firesmith 1993] and Fusion [Coleman 1994}

Because both Booch and OMT methods were independently growing together and were

collectively recognized as the most dominant methods world-wide, the two authors,
Booch and Rumbaugh, started working together when Rumbaugh joined the Rational
Software Corporation in October 1994. Their goal was to unify at least the various
notations used in different methods in what was originally called the Unified Method
(UM) and has since become the UML - Unified Modeling Language [Demmer 1997].
Later in 1995, Jacobson, the author of OOSE, joined Rational and the three authors
expanded the scope of UML to cover the needs of OOSE notations.

We summarize the three most influential methodologies in the order Booch
method, OMT and OOSE and illustrate the symbols of their notations in the remaining
sections of this chapter. For each method, we will give a description of the method

followed by the graphical representation of the symbols of the method’s notation.

1.2.1 Booch Method

The Booch method [Booch 1993, 1994] is a widely used OO-method for designing
systems using the object paradigm. It is one of the earliest recognizable object-oriented
design methods and covers the analysis and design phases of an OO-system. The Booch
method defines many symbols for documenting almost every design decision and
perspective and most developers using this method will never use all of its symbols and
diagrams. A designer will usually start with class and object diagrams in the analysis phase
and refine them in a series of steps.

Booch uses four models to describe an OO system: logical and physical structure,
and its static and dynamic semantics. Figure 1-1 shows the models of the Booch method.

The logical model (problem domain) is represented in the class and object structure. In

the class diagram, the architecture (static model) is constructed. The class diagram
shows existing classes and relationships among them including cardinalities, concurrency
and visibility aspects. The object diagram shows the existing objects and the relationships
among them, including visibility and synchronization aspects. The physical model is
represented in the module and process architectures. The module and process
architecture describes the physical allocation of classes and objects to modules and
processes. It deals with the association of concrete hardware with the software
components of a system. Model diagrams show the physical packaging of classes and
objects into modules and Process diagrams show the allocation of processes to

processors.

Dynamic model /
Static model /

) Class structure
Logical model | Qbject structure

Physical model | Module architecture
Process architecture

Figure 1-1: Models of the Booch Method

1.2.1.1 The Development Process

In addition to providing models, the Booch method defines a development process.
It supports the iterative and incremental development of a system in the analysis and
design phases. The view of the development process is divided into a macro and micro

processes.

1.2.1.1.1 Macro development process

This process is the controlling framework for the micro process. It allows for the

improvement of the micro process. It is designed to support the incremental development

of the system and represents the activities of the entire development team. It requires the

following activities:

Establish core requirements — In this phase, the vision for the general
requirements ideas is established for some application and its assumptions are
validated. An idea springs fourth a new business venture, complimentary
products and set of features for an existing product.

Develop a model of the desired behavior for the system — In this phase, the
classes and objects that form the vocabulary of the problem domain are
identified and the system's behavior is emphasized. This phase consists of
domain analysis and scenario planning. In domain analysis, classes and objects
that are common to a particular problem domain are identified. In scenario
planning, the primary function points are identified and scenarios are
documented. State machines for classes are developed where life-cycles are
clear.

Create an architecture — In this phase, an architecture is created for the
evolving implementation and common tactical policies are established. This
phase consists of architectural planning, tactical design and release planning. In
architectural planning, the aim is to create very early in the life cycle a domain-
specific application framework that can be successively refined. In tactical

design, decisions are made about the common policies. In release planning, a

formal development plan is yielded for identifying the stream of architectural
releases, team tasks and risk assessments.

e Evolve the implementation — In this phase, the growth and change in the
implementation through successive refinement is established until the
production system is reached. This phase consists of application of the micro
process and change management. Application of the micro process starts with
an analysis of the requirements for the next release, after which it leads to the
design of an architecture, and then classes and objects are invented that are
necessary to implement this design. The main product is a stream of executable
releases representing successive refinements to the first release of the
architecture. Change management attempts to recognize the incremental and
iterative character of the object-oriented system. It is possible to change the
class hierarchies and protocols, or mechanisms as long as it is not a threat for
the strategic architecture and the development team.

e Manage post-delivery evolution — This phase is mainly a continuation of
evolution by making more localized changes to the system as new requirements

are added and bugs are being eliminated.

1.2.1.1.2 Micro development process

The micro process describes the day-to-day activities by a single developer or
group of software developers and tracks the following activities:

o Identify classes and objects at a given level of abstraction - Classes and

objects are identified by finding the significant classes and objects in the

problem space. The result is a data dictionary of candidate classes and objects
and a document describing object behavior.

Identify their semantics - The aim is to establish the state and behavior of
each abstraction identified in the previous phase. Semantics are represented in
a top-down way in and, where it concerns system function points, strategic
issues are addressed. Also commonality in patterns of behavior are discovered,
because it may contribute to reusability.

Identify their relationships — In this phase, the boundaries of each abstraction
are solidified and co-operating classes and objects are identified. This phase
consists of specifying associations, identifying various collaborations and
refining associations. The identification of associations results in a class
diagram. The identification of collaborations results in object and module
diagrams. The refinement of associations results in a more specified description
of semantics and relationships.

Specify the interface and the implementation of these classes and objects -
This phase consists of the selection of the structures and algorithms that
provide the semantics of the earlier identified abstractions. The first three
phases of the micro process discuss the outside view of abstractions; this final
step focuses on their inside view. This results in artifacts capturing
representational issues of each abstraction and their mapping to the physical

model.

1.2.1.2 Graphical Notation

This section shows the graphical notation for the elements of the following Booch
diagrams: the class diagram, the object diagram, state transition diagram, interaction
diagram, module diagram and process diagram.

Figures 1-2 and 1-3 show all the elements and relations for representing Booch
class diagrams. Figure 1-2 shows the elements of the class diagram with the graphical
representations of the following icons: class, class utility, class category (a logical
collection of classes), parameterized class, instantiated class, metaclass (a class whose
instances are themselves classes) and class nesting. These icons represent the nodes in

Booch class diagrams.

class utility name

Class name)

Attributes attributes /{
tions()
Operations() opera
{constraints} nested
{constraints} class rf)
\/1
formal

¥ 1 arguments formal
i arguments

AN

E

:
ﬁxﬁ\h

instantiated (
class name

3

v\,/_.,—_j

Class category name
classes

Figure 1-2: Class Icons

Figure 1-3 shows how notes are represented graphically using Booch notation. Notes are

attached to the above icons to add documetation to them.

%m

Figure 1-3: Notes

Figure 1-4 shows realtionships represented as edges in a Booch class diagram. They
clarify the kinds of relationships between classes. The association relation can have a label, a

cardinality or a role or a combination of any of them. The has relation can be by reference

or value.
association: ——m8 ™ ———— inheritance: ———p» metaclass; ——————
has: @— uses:. O———————— instantiates: ———P
by reference: @———— by value: @—H
label cardinality
role ~
(key) \
{constraint}
“attributed
class

Figure 1-4: Relationships in Booch Class Diagram

10

Figures 1-5 through 1-6 show the elements and relations used in Booch object diagrams.

Figure 1-5 shows the graphical representation of objects using the Booch method.

name
attributes

Figure 1-S: Graphical representation of objects in the Booch method

Figure 1-6 shows relationships represented as edges in Booch object diagrams.
Relationships are used for showing the kind of relationship between objects. Synchronous
means wait forever until message is accepted. Timeout means wait for a specified amount
of time then abandon if message is not serviced. Asynchronous means ‘queue the message

and proceed without waiting’.

stmple: ————p timeout: ——®—)

synchronous: —>¢—p asynchronous: >

order: message

object/value OoO—p

role
(key}
{constraint}

link

Figure 1-6: Relationships in Booch Object Diagrams

11

Figure 1-7 shows the elements and relations of the state transition diagram. It shows
how states, superstate, start state, stop state and history icons are represented graphically.
States are connected using directed lines. State transition diagrams show the states of an

object, the events that cause transitions and actions resulting from transitions.

|

name

attributes

State Nesting

o—> @o— > Q
start stop

eveat/action history
Figure 1-7: Booch State Transition Diagram

Figure 1-8 shows the representation of interaction diagrams using the Booch method.
Objects are represented by dotted vertical lines with a rectangle showing the life of that
object. Interaction diagrams describe how scenarios are executed in the same context as an

object diagram but they show the dynamic aspects not the static aspects.

object object object
o i i

event

Operation(}
script i
Operation()

event

PR

Figure 1-8: Booch Interaction Diagram

12

Figure 1-9 shows the representation of the module diagram in the Booch method. These

are the icons for the different components of the module. They are connected using a

Main program Specification

directed line.

Dependency

Figure 1-9: Booch Module Diagram

Figure 1-10 shows the elements and relations of the process diagram. These icons
represent the physical nodes of the process diagram. They are connected using a solid

line.

Device

label

connection

Figure 1-10: Booch Process Diagram

13

1.2.2 Object Modeling Technique (OMT)

Object Modeling Technique (OMT) [Rumbaugh 1991] is an object-oriented
software development methodology that extends from analysis through design to
implementation, as shown in Figure 1-11. It starts by building the analysis model to
abstract essential aspects of the application domain. After that, design decisions are made
and more details are added to the model. Finally, the design model is implemented using a

programming language, a database and hardware.

4 A

Analysis Problem Statement

\
,_— Object Model
\"

Dynamic Model
\r Function Model
N\ i _J
Design System Design

\r Object Design

[Implementation]

Figure 1-11: OMT : Process

14

1.2.2.1 Analysis

In the analysis phase, the development team writes or obtains an initial description
of the problem statement. After that three models are created. They are the object model,
the dynamic model and the functional model.

The object model is a description of the structure of the objects in a system
including their identity, relationships, attributes and operations. Building an object model
requires identifying object classes, starting a data dictionary, adding associations between
classes and attributes for objects and links, organizing object classes using inheritance,
testing access paths using scenarios, and grouping classes into modules. The data
dictionary describes classes, attributes and association. The object model is represented
graphically using object diagrams. Figures 1-12 through 1-14 show the elements and
relations for representing object diagrams.

The dynamic model is a description of aspects of a system concerned with control
including time, sequencing of operations and interaction of abjects. Developing a dynamic
model requires preparing scenarios, identifying events capturing interactions between
objects and developing a state diagram for each class that has important dynamic behavior.
The dynamic model is represented graphically using state diagrams. Figures 1-15 and 1-16
show the elements and relations for representing state diagrams.

The functional model is a description of those aspects of a system that transform
values using functions, constraints and functional dependencies. It describes how output
values in a computation are derived from input values. Constructing a functional model
will require identifying input and output values, using data flow diagrams, describing what

each function does and identifying constraints. Data flow diagrams show functional

15

dependencies between values and the computation of output values from input values. The
function model is represented graphically using data flow diagrams. Figures 1-17 and 1-18

show the elements and relations for representing data flow diagrams.

1.2.2.2 System Design

System design is the first stage of design. At this stage, high-level decisions are
made about the overall structure of the system. The system design phase requires
organizing the system into subsystems, identifying concurrency inherent in the problem,
allocating subsystems to processors and tasks, choosing the basic strategy for
implementing " data stores, identifying global resources, choosing an approach to

implementing software control and considering boundary conditions.

1.2.2.3 Object Design

In the object design stage, a shift from the real-world orientation of the analysis
model towards software perspective is required for a practical implementation. The object
design phase will require obtaining operations for the object model, designing algorithms
to implement operations, optimizing access paths to data, adjusting class structure to take
advantage of inheritance, designing implementation of associations and organizing classes

into modules.

1.2.2.4 Implementation
In this phase, the established design is translated into code using the selected

programming language.

16

1.2.2.5 Graphical Notation
This section shows the graphical notation for the elements of the following OMT

models: the object model, the dynamic model and the functional model.

Figure 1-12 shows the graphical representation of a class in OMT. Classes are the main

components for representing the object model graphically.

Class Name
Attributes
Operations

Figure 1-12: Graphical representation of Classes in OMT

Cardinality is used to show how classes are related in the aspect of one-to-one, one-to-

many and other relationships. Figure 1-13 shows how cardinality is represented in OMT.

Class 1+ | Class
One One or more
123 [Class —Jg g cuss
Specified Many Optional, Zero or more

Figure 1-13: Graphical representation of Cardinality in OMT

17

Figure 1-14 shows the graphical representation of relations in OMT. Relationships are

used to show how classes are related. They are the edges of the Object model diagram.

Class

Association
Class Association Name Class
Role Role
Generalization (Inheritance)
Class
Class Class
Ternary Association

Class Py Class
N
Class

Qualified Association
Class
qualifier
Aggregation
Class

¥

1

Class

Class

Link Attribute

N

Class

Figure 1-14: Relations in OMT Object diagram

18

Figure 1-15 shows the graphical representation of states, start states and stop states in
OMT. These are used for constructing the state diagrams, which represent the dynamic
model graphically. States are connected using solid lines. Entry/exit actions are actions
that will take place when a state is entered/left. An activity is an operation with side

effects on objects, which has duration in time.

State name
Entry action
Activity @ Start State
Exit action
@ Stop State
event (attribute)
/action levent
(State ; State
event
Class

Figure 1-15: Graphical representation of states in OMT

19

Figure 1-16 shows state nesting and the splitting and synchronization of control in

substates.

~

Superstate

~

— 7
State nesting

Splitting and Synchronization of control

Figure 1-16: States nesting in OMT

20

Figure 1-17 shows the graphical representation of actors, data stores and files. It also
shows how processes are represented. All these icons are used for constructing data flow
diagrams. An actor is an active object that drives the data flow graph by producing or
consuming data values. A data store is a passive object that stores data for later access. A

process is something that transforms data values.

Actor Name of
Data store
Actor Objects Data Stare or File Object
Process
di dl
dl1 composite composite
d2 !
duplication of data value decomposition of data value compostion of data

Figure 1-17: Processes, Actors, Data Store and File Objects in OMT

21

Figure 1-18 shows how data flow and control flow between processes is represented
graphically. Data/Control flow is a connection from output of an object or process to

input from another object or process.

Data flow between Processes

Control flow

Figure 1-18: Data and Control flow between Processes

1.2.3 Object-Oriented Software Engineering (OOSE)

OOSE [Jacobson 1992] is another popular object-coriented development
methodology. It was specifically designed to be used for the development of large real-
time systems. It uses “use-cases” for most phases of development, including analysis,
design, validation and testing. A use case is a complete course of events specifying
interaction between the user and the system. Use cases are initiated by actors. They
describe the flow of events that involve these actors. Actors are the things that interact

with use cases such as human users, external hardware or other systems.

22

The process recommended by OOSE for the development of OO systems is

summarized in the diagram shown in Figure 1-19. In the following sections we will outline

the OOSE process and then show the notation that it uses.

Requirements
-
Use-Case Model
Domain Object Model
User Interfaces
alysis
Analysis Model
Subsystems

Figure 1-19: OOSE Models

1.2.3.1 Requirements

Construction

Block Model

Interaction

State Model

In the requirements phase, the functionality of the system is defined. This phase

consists of developing a use case model, a domain object model and user interfaces. The

use case model describes actors and use cases that specify all the interactions between the

user and the system. Actors define the roles that users or external entities play in

exchanging information with the system. The domain object model represents a logical

23

view of the system to support specifying the use cases. User interfaces compliment use

cases by showing what the system looks like when executing these use cases.

1.2.3.2 Analysis

The analysis model structures the system by modeling interface objects, entity
objects and control objects. It provides a foundation for the design. In this model
subsystems are defined. Subsystems group related objects and may include further

subsystems.

1.2.3.3 Construction

This phase consists of the construction of design and implementation models. The
design model refines the analysis models with regard to the selected implementation
environment. Blocks, groups of design objects, are used to describe system
implementation. The state model is developed for individual objects within blocks. The
interaction model is used for showing inter-object messages and stimuli for the use cases.

The implementation model consists of the source code implementing the blocks.

1.2.3.4 The Graphical Notation

This section shows the graphical notation for the components of the following
OOSE models and diagrams: the domain object model, the design model, the analysis

model, the use case model, the state transition graph and the interaction diagram.

24

Figure 1-20 shows the graphical representation of objects in OOSE.

O

Object

Figure 1-20: OOSE Domain Object Model

Figure 1-21 shows how blocks, which are used to describe system implementation, are

represented graphically in OOSE.

D

Block Block with its type

Figure 1-21: OOSE Design Model

Figure 1-22 shows the elements and relations of the OOSE analysis model. An entity
object is an object that holds information for a long time, even when a use case is
completed. An interface object is an object that contains functionality of a use case that
interacts directly with the environment. A control object is an object that models
functionality that is not in any other object (e.g. calculating taxes using several different

criteria). An attribute contains information of some type.

O 10 O O

Entity Interface Control Entity Type

Figure 1-22: OOSE Analysis model

25

Figure 1-23 shows the elements of an OOSE use case model. The model includes the

graphical representation of actors, use cases and the relationships between them.

> J

Use case Instance association Class association
Actor

Figure 1-23: OOSE Use case model

Figure 1-24 shows components of an OOSE state transition graph. It shows how
different types of nodes of the state transition graph are represented graphically in OOSE.
A signal is an inter-process stimulus: it is sent between two processes. A message is an intra-

process stimulus: a normal call inside one process.

C D O

State Start State Task
Label Decision Destroy

Send Receive Send Receive
Messages Signals

Figure 1-24: OOSE State transition graph

26

Figure 1-25 shows components of an OOSE interaction diagram.

N

X

N —
NS signal
Y
N
% D
N message
\
X
N
X

System border block

Figure 1-25: OOSE Interaction diagram

1.3 Conclusion

There are many more methodologies for the development of a software project,
but the three represented above have been most influential. The decision as to which one is
appropriate is more or less a matter of personal taste and design culture. However, it
appears certain that those who use these techniques to the best of their abilities will be
able to write better projects than those who do not use them. Learning analysis and design
methodologies is a very good investment that will serve the learner well for the rest of his
or her life in developing any project. Following a methodology builds a group skill and
intelligence and reduces dependence on each individual.

Although the process of developing a project may differ from one team to another,
the components of the various artifacts, such as classes, events, and packages, are shared
by all methodologies. This is reflected in the sets of symbols used by Booch, Rumbaugh

and Jacobson. This suggests that a unified representation of concepts would make

27

development easier. This recognition led to the proposal of several unifying notations,

which are the subject of the next chapter.

28

Chapter 2

Unified Modeling Language (UML)

2.1 Introduction

The similarities and differences of notations used by different OO methodologies
led to several attempts to a unified standard notation including the Unified Modeling
Language (UML) [Rational 2000] and OPEN Modeling Language (OML) [Firesmith
1998]. The most dominant and successful of these is the Unified Modeling Language
(UML). This chapter introduces the elements of UML and few illustrative examples. We
will give more examples in subsequent chapters. We will also include a brief description of
OML later in this chapter.

UML is a standard graphical language for visualizing, specifying, constructing and
documenting the artifacts of a software system. It provides a standard notation for
expressing a system’s blueprint [Booch 1999] — it is not a methodology.

The work on UML started in 1994 when J. Rumbaugh, the author of OMT
(Object Modeling Technique), joined G. Booch, the author of Booch method, as a partner
at Rational Software Corporation [Rational 2000]. Their aim was to unify their methods
and the first version of the Unified Method was released in October 1995 [Booch 1995].
In the same year, I. Jacobson, the author of OOSE (Object-Oriented Software
Engineering), joined Booch and Rumbaugh at Rational and the three authors expanded the
scope of UML to include OOSE. Their work led to the release of the next version of
UML in 1996 [Booch 1996]. After getting feedback from the software engineering

community and with the support of several organizations, another version of UML was

29

released in 1997 [Booch 1997]. This version was accepted by the Object Management
Group (OMG) in 1997 [Booch 1999] as the standard for expressing analysis and design of

software products developed by the object oriented approach.

2.2 Basic UML Building Blocks
Figure 2-1 shows that there are three kinds of building blocks in UML. They are:

things, relationships and diagrams. We will explain them in the following sections.

UML
Relationships Thing Dia
. .) Class
Dependency Structural Behavioral Grouping Annotational Object
Association U
Generalization S case
A i Sequence
ggregauon ClAss Interaction Pack ge Note Collaboration
Object State machine Statechart
Collaboration Activity
Interface Component
Active class Deployment
Use case
Component
Node

Figure 2-1: Basic Building Blocks (vecabulary) of UML

30

2.2.1 Things
Things are the basic object-oriented building blocks of the UML. There are four
kinds of things: structural things, behavioral things, grouping things and annotational

things [Booch 1999].

2.2.1.1 Structural Things

Structural Things represent the conceptual or physical elements in a model. There
are seven kinds of structural things in UML: a class, an object, an interface, a
collaboration, a use case, an active class, a component and a node.

A class describes a set of objects that share the same attributes, operations and
relations with objects from other classes. A class is represented graphically by a rectangle
that is divided into up to three compartments, the name compartment, the attributes
compartment and the operations compartment, as shown in Figure 2-2(a). Only the top
compartment is required. Figure 2-2(b) shows an example representing class Shape with

attributes corner, color, width, origin and name and operations draw, displayOn: and kind.

Shape
origin
corner
Class name color
Attributes width

perations aw
displayOn:
kind

(a) (b)

Figure 2-2: Graphical representation of a class in UML — definition (a) and an
example (b)

31

An object is an instance of a class. It is present at execution time and allocates
memory for its instance variables. An object is graphically represented by a rectangle with
an underlined object name, as shown in Figure 2-3(a). An object name may be an object
name, the class name preceded by a colon, or both the object name and the class name

separated by a colon, as shown in the example in Figure 2-3(b).

Object name aShape :Shape aShape:Shape

(a) (b)

Figure 2-3: Graphical representation of an object in UML, — definition (a) and an
example (b)

An interface is a collection of operations that specify a service provided by a class
or a component. It defines a set of operation specifications described by their signatures
only. It is usually attached to the class or component that realizes it via a solid line and is
represented graphically as a circle with its name, as shown in Figure 2-4 (a). Figure 2-4(b)
shows an example of the use of interface Sortable with the operations = and > by class
String. Figure 2-4 (c) shows the interface Sortable; note that it is represented by the same
symbol as a class but marked with the ‘stereotype’ <<interface>>. (Stereotypes are

covered in Section 2.3.1)

32

O String <<interface>>
== Sortable

Interface name

size

= Sortable

(a) (b) (c)

Figure 2-4: Graphical representation of interfaces in UML — definition (a) and
examples (b) and (c)

A collaboration is a combination of roles and elements that work together to
provide some cooperative behavior. Collaborations represent the implementation of
patterns that make up the system. Collaborations have a structural part that specifies the
classes, interfaces and other elements that work together, and a behavioral part that
specifies the dynamics of the interaction of these elements. The structural part is rendered
using a class diagram (Section 2.1.3.1) and the behavioral part is rendered using an
interaction diagram (sections 2.1.3.4 and 2.1.3.5). A collaboration can be represented
graphically by a dotted ellipse that includes the name of the collaboration, as shown in
Figure 2-5 (a). Figure 2-5 (b) shows an example of a collaboration called Internode

messaging which represents secure messaging among nodes in a Web-based retail system.

33

- e

(2) (b)

Figure 2-5: Graphical representation of collaborations in UML - definition (a) and
an example (b)

A use case describes a sequence of actions that a system performs from the
perspective of system’s users. It describes the system activities from the point view of its
actors. A use case is always initiated by an actor - a human user, a physical sensor or a
class located outside the system that is involved in the interaction with the system
described in a use case. A use case is represented graphically by a solid ellipse, as shown in
Figure 2-6 (a). Figure 2-6 (b) shows an example of a use case called Money withdrawal
in an ATM system. This use case might represent the dialog between a user and an ATM

resulting in withdrawing money from an ATM.

Money
withdrawal

(a) (b)

Figure 2-6: Graphical representation of use cases in UML — definition (a) and an
example (b)

34

An active class is a class whose objects own one or more processes or threads.
Objects from an active class represent elements whose behavior is concurrent with other

elements. Graphically, it is représented as a class with heavy lines, as shown in Figure 2-7.

EventManager

suspend
flush

Figure 2-7: Graphical representation of active class in UML

A component is a physical part of a system that provides the realization of a set of
interfaces. It represents the physical packaging of classes, interfaces and collaborations
such as a file containing the source code of some part of the system, libraries, tables or
documents. It is represented graphically by a rectangle with tabs with the inclusion of its
name, as shown in Figure 2-8 (a). Figure 2-8 (b) shows an example of a component called

uml.st, a Smalltalk source code file.

Component uml.st
name

(a) (b)

Figure 2-8: Graphical representation of a component in UML - definition (a) and
example (b)

A node is a physical element representing a computational resource that exists at

runtime. A node may contain a set of components. An example of a node is the

35

implementation of a client in a client-server system. It is represented graphically by a cube

that includes its name, as shown in Figure 2-9.

Figure 2-9: Graphical representation of nodes in UML

2.2.1.2 Behavioral Things

Behavioral things are the dynamic parts of UML models. They represent behavior
over time and space. They are usually connected to structural things like classes, objects
and collaborations. There are two kinds of behavioral things in UML.: interaction and state
machine.

An interaction is a sequence of messages exchanged among a set of objects. An
interaction involves messages, action sequences and links. Messages are the stimuli
exchanged between objects in the system. Action sequences define the order in which
messages are sent. Links capture the relationship between a message sender and a
receiver. The graphical representation of a message is a directed line labeled with the name
of its operation, as shown in figure 2-10.

show

—>

Figure 2-10: Graphical representation of a message in UML

36

A state machine is a sequence of states that an object goes through in response to
a sequence of events. A state machine involves states, state transitions and events. The
state of an object represents the cumulative history of the object’s behavior. State
encompasses all of the object's static properties and their current values. A state transition
is a change of state caused by an event. State transitions connect two states in a state
diagram or show state transitions from a state to itself. An Event is an occurrence that
causes the state of a system to change. It can convey data values or information from one
object to another. The graphical representation of a state is a rounded rectangle with its
name and its substates, as shown in Figure 2-11. Section 2.1.3.6 includes an example of a

statechart diagram that includes states, transitions and events in a state machine.

Processing

Figure 2-11: Graphical representation of states in UML

2.2.1.3 Grouping Things
Grouping things are the.organizational parts of UML models. There is only one

grouping thing in UML and is called a package.

37

A package is a construct for organizing structural, behavioral and grouping things
into groups. It is represented graphicaily by a tabbed folder with a name and optional

contents, as in Figure 2-12.

'—l UML shapes
UMLClassView
UML di UMLObjectView
dialogs UMLActorView
UMLNoteView

Figure 2-12: Graphical representation of packages in UML

2.2.1.4 Annotational Things

Annotational things are the explanatory parts of UML models. There is only one
annotational thing in UML and it is called a note.

A note is a graphical symbol containing textual information, such as constraints,
comments, method code bodies, and tagged values, about an element or a collection of
elements. It is represented graphically by a rectangle with a dog-eared corner with a
textual or graphical comment, as shown in Figure 2-13 (a). Figure 2-13 (b) shows how a

note is attached to an element; in this case a class called Shape.

B Shape All subclasses must
Comments implement this
Constraint draw——T"" | method.

(a) (b)

Figure 2-13: Graphical representation of a note in UML — definition (a) and
example (b)

38

2.2.2 Relationships

Relationships tie things together. There are four relationships in UML:
dependency, association, aggregation and generalization relationships.

A dependency is a relationship between two things in which one thing is
dependent on the other. Any change to one thing may affect the state of the other thing.
Dependency is a visibility relation where one thing is visible to the other. It is most often
between a class that uses another class as a parameter to an operation. An example of
dependency relationship is the relation between a Client and a Supplier where the client
depends on the supplier to provide it with certain services (Figure 2-14 (b)). Dependency
relationship is represented graphically with a directed dotted line with an optional name, as

shown in Figure 2-14 (a).

optional name sends requests to
> Client Supplier

(a) (b)

Figure 2-14: Graphical representation of a dependency in UML - definition (a) and
an example (b)

A generalization is a relationship that represents inheritance between two things.
It shows a relationship between a general thing (a superclass) and a specific kind of that
thing (a subclass). A generalization relationship means that the subclass shares and extends
the structure or behavior defined in one or more superclasses. An example of a
generalization is the relation between the Account class (the superclass) and the

SavingAccount class (the subclass) as shown in Figure 2-15 (b). It is represented

39

graphically by a solid line with a hollow arrowhead including an optional name to identify
the type or purpose of the relationship, as shown in Figure 2-16 (a). The hollow

arrowhead always points to the superclass.

> SavingAccount —> Account

(a) (b)

Figure 2-15: Graphical representation of generalizations in UML — definition (a)
and an example (b)

An association is a relationship that describes a set of links between objects. It
shows that objects of one kind of thing collaborate with objects of another kind of thing,
or that one object uses the services of other objects. An example of an association
relationship is the relation between a Person and the Company he or she works for, as
shown in Figure 2-16 (b). It is represented graphically by a solid line that may have a
direction, a name, a cardinality and a role name on either side, as shown in Figure 2-16 (a).
The notations (1..*) means one or more and (*) means zero or more. In Figure 2-16, it
means that the company can have one or more persons and a person can work for zero or

more companies.

Optional name Person

works for Com[- any

Figure 2-16: Graphical representation of associations in UML — definition (a) and
an example (b)

40

An aggregation is a special kind of association that represents a relation between a
whole and its parts. It shows that one thing represents a larger thing, the whole part - a
container, consists of smaller things, the parts. It relates an assembly class to its
components classes. For example, the relation between a Document and a Paragraph is
an aggregation relationship, where the whole is the document and the parts are the
paragraphs (Figure 2-17 (b)). An aggregation is represented graphically by a solid line

with a diamond at the whole side, as shown in Figure 2-17 (a).

o) Paragraph ¢ Document

(a) (b)

Figure 2-17: Graphical representation of an aggregation relationship in UML —
definition (a) and an example (b)

2.2.3 Diagrams
A diagram is a connected graph with things representing the nodes and relations
representing the edges. A diagram shows the elements that make up the system. There are

nine diagrams in UML and they are explained in the following sections.

2.2.3.1 Class diagram

The class diagram is the most common diagram in object-oriented models. It
shows the relationships between classes, interfaces and collaborations. The nodes in a
class diagram are classes, interfaces and collaborations and the edges are dependency,

association, generalization and aggregation relationships. Class diagrams may contain

41

packages or subsystems, notes, and constraints. Class diagrams are used for modeling the
static design view of the system that supports the function requirements of the system. An

example of a simple class diagram is shown in Figure 2-18.

University O———— Department Course Description

L
has is defined by

L.*

University Person Course

| .

Staff Student

Figure 2-18: A Class diagram in UML

2.2.3.2 Object diagram

An object diagram shows the relationship between objects in a system. An object is
an instance of a class. It is present at execution time and allocates memory for its instance
variables. An object diagram shows a snapshot of instances found in the class diagram.
The nodes of the object diagram are objects and the edges are links. Object diagrams are
instances of class diagrams or the static part of interaction diagrams. They are used for
modeling the static design view of a system from the perspective of real cases. An example

of an object diagram is shown in Figure 2-19.

42

m: Staff
sl: Student
d: Department
s2: Student
s3: Student

Figure 2-19: An Object diagram in UML

2.2.3.3 Use case diagram

A use case diagram shows the relationship between use cases and actors. The
nodes of use case diagrams are use cases and actors and the edges are dependencies,
generalizations and associations relationships. Use case diagrams organize and model the
behaviors of a system. They describe what the system is supposed to do from the point
view of its actors. They may contain notes and constraints and are used for modeling the
static use case view of a system. Figure 2-20 shows an example of a use case diagram for

a catalog order system [Richter 1997].

43

Catalog Order System

Place Order

Order Item
Return Item
Customer

Figure 2-20: A Use case diagram in UML

2.2.3.4 Sequence diagram

A sequence diagram is an interaction diagram that shows ordering of messages in
time. An interaction diagram shows the messages dispatched between objects and it is
used for modeling the dynamic view of a system. The contents of sequence diagrams are
objects, links and messages. Sequence diagrams give detailed description of use cases in a
system. That means each sequence diagram is an instance of a use case. Sequence
diagrams may contain notes and constraints. A vertical dashed line in a sequence diagram
represents the existence of an object over a period of time and a thin rectangle shows the
time taken for an object to perform an action. Figure 2-21 shows an example of a
sequence diagram for a simple Automated Teller Machine withdrawal. The directed
line with the filled arrow head represents sending a message and the directed line with an

arrow only represents returning a value.

verify account

account Ok

process transaction

transaction succeed

:User
i insert card
uest password
> req P
enter password
request kind
> A
enter kind
request amount
o
enter amount
< dispense cash
take cash
rint receipt
-« ;
eject car
o
1aKe cara
display main screen
- 1SP.

_‘._J

Figure 2-21: A Sequence diagram in UML

2.2.3.5 Collaboration diagram

44

A collaboration diagram is an interaction diagram that shows sending or receiving

messages in the context of the structural organization of objects. It can always be

transformed into a sequence diagram and vice versa. The contents of collaboration

diagrams are objects, links and messages. Collaboration diagrams, like any other UML

diagram, may contain notes and constraints. Sequence numbers are used to indicate the

order of messages in time. Figure 2-22 shows a simple example of a collaboration

diagram, a part of the sequence diagram in Figure 2-21. Note how the messages are

numbered. The directed line in Figure 2-22 that has a circle at one end to represents a

return value, the line without a circle indicates a message.

45

. >
I: insert card
u:User | 2 :enterpasssl vord atm : ATM 2.1 : verify account b : Bank
2.2 :account Ok

Figure 2-22: A Collaboration diagram in UML

2.2.3.6 Statechart diagram

A statechart diagram shows the definition of a state machine. It consists of states,
events and activities and may contain notes and constraints. It shows the sequences of
states of an object in response to outside stimuli, together with its responses and actions.
Statecharts show the behavior of an interface, class or collaboration and the event-ordered
behavior of an object. They show the flow of control from state to state and model the
dynamic view of a system. Figure 2-23 shows an example of a statechart diagram using
state machine. The example shows the states associated with operation of a telephone.
The initial state is Idle, the final state is Active. The Active state is a state machine

with an initial state Dial Tone and final states Time out, Ringing, Invalid and

Busy.

46

Active

dial digit

invalid digit

Figure 2-23: A Statechart diagram in UML

2.2.3.7 Activity diagram

An activity diagram is a special kind of statechart diagram. It shows the flow of
activities in a system where an activity is an ongoing execution within a state machine. It
shows the sequences of states for an object in response to completion of internal state
operations. Activity diagrams show the flow of control among objects in a system.
They emphasize the flow of control from activity to activity. They contain activity states,
action states, transitions and objects and may contain notes and constraints. They are used
for modeling the dynamic view of a system by modeling the sequential steps in a
computational process and the flow of an object as it moves from state to state. Figure 2-
24 shows an example of an activity diagram for password validation. The hollowed

diamond is a decision symbol.

47

Enter password \ \f Check password)
. 5(J .

/

failed

try again cancel Cancel entry

\ﬁ

Figure 2-24: An Activity diagram in UML

2.2.3.8 Component diagram

A component diagram is a language/system-dependent implementation diagram
that shows dependencies among components. Any component in a component diagram
maps into one or more classes, interfaces or collaborations. Component diagrams are used
for modeling the static implementation view of a system by modeling physical things such
as libraries, files, tables and documents. The nodes of component diagrams are
components and interfaces and the edges are dependencies, generalizations, associations
and realizations. Component diagrams may contain packages, subsystems, notes and
constraints. Figure 2-25 shows an example of a component diagram for a Smalitalk source
file using two data files. It shows that the component test.st is dependent on two

components, namely filel.bos and file2.bos.

Figure 2-25: An Component diagram in UML

48

2.2.3.9 Deployment diagram

A deployment diagram shows the system in terms of its hardware nodes. A
hardware node may be a physical processor, such as a CPU, or a device such as a printer.
A node in the deployment diagram contains one or more components. The nodes of the
deployment diagrams are nodes and the edges are dependencies and associations
relationships. Deployment diagrams may contain packages, subsystems, notes and
constraints. They are used for modeling the static deployment view of a system by
describing the topology of the hardware on which a system executes. Figure 2-26 shows

an example of a deployment diagram.

“Processor”
server

Local
network

“Processor”
server

Figure 2-26: A Deployment diagram in UML

2.3 Views

A view in UML is a set of UML diagrams. Views link the modeling language to
the method chosen for developing a system. Views are very important for capturing the
complete picture of the system to be constructed. Each view shows a particular aspect in

describing the system. The IEEE Draft Standard [IEEE 1998] refers to a view as

49

something which “address one or more concerns of the system stakeholder, an individual
or a group that shares concerns or interests in the system such as developers, users,
customers, etc.” A view is a piece of the model that is still small enough for us to
comprehend and that also contains all relevant information about a particular concern.
Views do not have a graphical representation; they are only conceptual or physical
groupings of UML diagrams. There are five views in UML [Eriksson 1998]: logical view,
use case view, component view, concurrency view and deployment view. What type of
view should be used and when it should be used is strongly dependent on the person who
is using it and the tasks that are needed to be accomplished. UML views capture both
structural and behavioral aspect of software development. Structural views make use of
classes, packages, use cases and so forth. Behavioral views are represeanted through

scenarios, states and activities. The five UML views are explained in the following

sections.

2.3.1 Logical View

This view captures the system’s static structure and dynamic behavior. The static
structure is described in class and object diagrams. The dynamic behavior is described in
state, sequence, collaboration and activity diagrams. It is used by designers and

developers. It defines interfaces and the internal structure of classes.

2.3.2 Use case View
This view captures the functionality of the system as seen by external actors. It is

used by customers, designers and developers. It is also used by testers to validate the

50

system by testing the use case view against the finished system. It contains use case

diagrams and activity diagrams.

2.3.3 Component View
This view shows the organization of code components. It describes the
implementation modules and their dependencies. It is used by developers and contains

component diagrams.

2.3.4 Concurrency View

This view shows concurrency in the system and addresses communication and
synchronization problems. It divides the system into processes and processors, describing
parallel execution and handling of asynchronous events. The concurrency view is for the
developers and integrators of the system. It consists of state, sequence, collaboration,

activity, component and deployment diagrams.

2.3.5 Deployment View

This view shows the deployment of the system into the physical architecture. It
encompasses the nodes that form the system’s hardware topology on which the system
executes. It is for developers, integrators and testers of the system. It consists of the

deployment diagram. It also shows which programs are executed on which computer.

2.4 Extending UML
All types of analysis and design documents that may ever be needed in the future
can not be predicted and this is why UML is an open-ended language. This characteristic

allows for extending the language to cover possible new types of models. It allows UML

51

to grow to meet any project’s needs and adapt to any software technology. UML can thus
be adapted to a specific application domain methodology, user or organization. UML
defines three extension mechanisms: stereotypes, tagged values and constraints. Figure 2-

27 shows examples of each of them.

2.4.1 Stereotypes

This extensibility mechanism deals with extending the vocabulary of UML. It
allows for the creation of new building blocks from the basic ones. The graphical
representation of a stereotype in UML is a name enclosed in guillemets as in <<abstract>>,
and placed above the name of another element, as shown in Figure 2-27. In some
languages like C++ or Java, the designer might want to model abstractions where
abstractions are just classes that can not be instantiated. In Figure 2-27, LinkedList is a

class that is marked with an appropriate stereotype <<abstract>> to identify it as an abstract

class.

2.4.2 Tagged values

This extensibility mechanism deals with extending the properties of UML
building blocks. It allows for the inclusion of new types of information in the specification
of certain elements. Tagged value is represented graphically by a string enclosed by braces
written under the name of another element such as {version 1.1}, as shown in Figure 2-27.
If you are working on a product that undergoes many releases over time, you often want
to track its version. Since version is not a UML concept, it can be added to a class like

LinkedList by introducing new tagged value, {version 1.1}, to the class.

52

2.4.3 Constraints

This extensibility mechanism deals with extending the semantics of a UML
building block. It allows for adding or modifying UML rules. A constraint is represented
graphically by a string between braces and placed near the element or connected to the
element by dependency relationship such as {ordered}, as shown in Figure 2-27. Figure 2-

27 shows that the LinkedList class is constrained so that all additions are done in order.

- ——<<abstract>> Tagged value

Named stereotype LinkedList __/

{version 1.1}~

add(element) {ordered}
display() j

constraint

Figure 2-27: Extensibility in UML

2.5 OPEN Modeling Language (OML)

OPEN (Object-Oriented Process, Environment and Notation) is an alternative
object-oriented development method developed and maintained by the OPEN Consortium
(comnsists of 26 internationally recognized OO methodologists, researchers, who endorse,
develop and teach the OPEN approach to OO development) [Firesmith 1998]. It consists
of a modeling language (OML) and a process. It is based on the unification of the methods
of Henderson-Sellers, Graham and Firesmith [Firesmith 1998].

OML (OPEN Modeling Language) is a notation for depicting object-oriented

systems. It was developed by Don Firesmith, Brian Henderson-Sellers and Ian Graham,

53

with considerable input from other members of the OPEN consortium. It consists of a
metamodel for specifying the syntax and semantics of underlying concepts of object-
oriented modeling and a notation, COMN (Common Object Modeling Notation), for
documenting the models produced by using OPEN. Henderson-Sellers describes it as
being designed from the bottom up by a small team of methodologists who were able to
propose a notation free from the hereditary biases of earlier data-modeling methods. The
intention of the designers of OML is that it should concentrate on describing the
commonly understood elements of object technology such as encapsulation, interfaces,
inheritance and a discrimination between objects, classes and types.

Despite the wider acceptance of the UML, OML continues to be enhanced and
may be used as a superset to the UML. OPEN, however, has not yet been backed by the
commercial forces that backed the UML. Thus OPEN has not yet gained much
commercial attention. However, Brian Henderson-Sellers, one of OPEN’s authors,
believes "we are now entering into the realization by industry developers that they DO
need a methodology and when they do, OPEN's mindshare is set to grow by leaps and
bounds" [Gottesdiener 1998].

In general, OML and UML are quite similar. Their notations differ but they can be
used to show the same concepts, Figure 2-28 shows the OML equivalent of the UML

class diagram in Figure 2-18.

54

1.*

University (+ Department Course Description

has T
aggregation
University Person L | Course
association
register
generalization u u
Staff Student

Figure 2-28: OML representation of the UML Class Diagram in Figure 2-18

One of the main differences between the UML and OML is the UMLs lack of a
process. The reason that UML is not bound to any process will be explained briefly in the
next section. OML on the other hand has a full lifecycle process, which according to
Henderson-Sellers can be used together with UML. UML has the advantage that it is
already familiar to the vast majority of the software community and dominates the

industry.

2.6 Conclusion

UML is a modeling language, a collection of definitions and universal
symbols for use in the description of OO systems. It is not a methodology and its use is
method-independent. It is basically a modeling language. The Unified Process [Jacobson
2000] is an attempt to provide such a process for the Unified Method [Booch 1995].
Since the aim was to make UML standard and acceptable, it was unnecessary to bind

UML to a certain process because it is almost impossible to define a process that would be

55

equally suitable for the different factors involved in the development of varying types of
software. UML was designed to be applicable to any process.

UML provides support for modeling classes, objects, the many kinds of
relationships among them, dynamic system behavior and features of physical
implementation. UML is extensible through the definition of additional stereotypes, tagged
values and constraints. [t defines a number of diagrams, their structure and their use.
Larger diagrams are shown in the description and design chapters. UML is becoming the
standard notation for object-oriented system development because of the support it
already has from many methodologists, software developers and programmers,
management consulting firms, system analysts and CASE tool vendors. As an example, the
following companies support UML: Digital Equipment, IBM, Hewlett-Packard, ICON
Computing, I-Logix, Microsoft, MCI Systemhouse, IntelliCorp, ObjecTime, Sterling
Software, Texas Instruments, James Martin & Co, and Unisys. The recognition of UML is
apparent from the huge number of books that have been written about UML and by the
thousands of people that have taken training courses in the language. All this progress and
UML’s use is still expected to grow substantiaily in the years to come.

The best source for up to date information on UML is Rational's site where Grady
Booch, Ivar Jacobson, and Jim Rumbaugh continually develop and extend the UML
notation. The most recent updates on the Unified Modeling Language are available via the

worldwide web at http://www.rational.com/uml.

56

Chapter 3

The Binder

3.1 Introduction

After the overview of methodologies presented in the first two chapters, we will
now begin a detailed presentation of the main subject of this thesis — the design and
implementation of UML tools in a larger framework.

Documentation is a very important part in any project development and keeping all
project documentation in an integrated whole for easy access is equally as important.
Project documentation is usuaily kept in a combination of electronic and paper. Even in an
electronic form, the variety of formats results in a set of incompatible files that are hard to
integrate and process in a uniform way. Hence there is a need for a tool that can keep
everything organized and bound together. An attempt to address this problem resulted in a
project called an Electronic Binder [Tomek 2000], a tool that was developed by Acadia
students and faculty to provide various kinds of page-styles and allow a developer to
organize and keep all project documentation together for easy access and printing. The
Binder also provides search mechanisms for searching the whole content, a section, or a
specific page-style. The Binder program is extendable and allows for the adding of new
page-styles.

The following sections briefly describe the Binder to provide a context for the
UDT tool, which has been implemented as a collection of Binder page styles to support
the drawing of selected UML diagrams. The details of UDT are explained in the next three

chapters.

57

3.2 The Binder — a Description

A Binder is a collection of pages and/or sections and each section can have any
number of sections and/or pages. A Binder is a part of a binder Library. We will now
explain the operation and user interfaces of a binder to provide a clear context for the rest

of the thesis.

% Binder Library | |
Binders: Page Styles:

Glossary
Inspection Form

e,
o X
AR 34

Creating a Page Styie
Drag and Drop Example

2

UDT Classes % = Meeting Minutes

UML diagrams o e Plan

Work notes ST Problem / Saelutian
g Problem Report
B Reading Report Page Styles
= Text Editor / Workspace { List
o Textual use case S %@
;*;:ig UML Class Diagrams S
. . . FUML Package Diagrams
:&iﬁ Binder List |,y Sequence Diagrams

i B UML State Diagrams
: UML Use-Case Diagrams

Figure 3-1: Binder Library Window

Figure 3-1 shows the first window that will be opened when the Binder program is
run. It displays two lists with buttons on the right side of each list. The list on the left-hand
side shows all binders stored in a library catalog. The buttons on the right side of this list
have the following functions: The Create button is for creating a new binder. It opens a

special window (Figure 3-2). The Remove and Rename buttons operate on the binder

58

selected in the binder’s list. The /mport button imports a new binder from a file into the
library catalog, allowing users to exchange binders. The Load and Save buttons are for
loading and saving entire library catalogs. The Open button is used for opening the
selected binder and clicking it opens the window in Figure 3-4.

The list on the right-hand-side of Figure 3-1 lists all available page styles. The
buttons on the right side of this list have the following functions: the Add button is for
adding a new page-style (Figure 3-3). The Remove button removes the selected page-
style. The Properties button shows the properties of the selected page-style (Figure 3-3).
The Save and Load buttons allow users to save and load page-styles to or from files. The

Help button opens a help window on the selected page-style.

;;e" Binder Plope:ties

Title:

| UML diagrams

Author:

E Saleh Alshepani

Filename:

| umldiagrams|

{ Created: Last Edited:

[1242571993 E 1Z7/25/1533

Figure 3-2: Binder Properties Dialog

The Binder Properties window in Figure 3-2 allows the user to create a new binder

by filling in the required fields.

59

4% Page Style Properties

Name:
E UML Class Diagram

Description:

This page allows a user to draw a class
diagram using UML notation.

Implemented by class:
. | UMLClassEditorClients|

Figure 3-3: Page-Style Properties
The Page Style Properties window in Figure 3-3 is displayed when the user clicks ’
either the Add or the Properties hutton on the right side of the page’s list (Figure 3-1). It
allows the user to view, define and edit the selected page-style properties - its name,
description and the Client class implementing the page. The Client class is used to provide
the interface between the page-style application and the binder. Its function will be
explained in more detail later. After clicking Ok on a new style, the new page-style is

added to the list of page-styles.

s A
R e e o S o

Title:
| UM diagrams

: Author:

N
SR

[SalehAlshepani

23

Created:
[1272821993

Last Edited:
[127281893

Filename:
l =i

Figure 3-4: A Binder’s Cover Page

The window in Figure 3-4 is displayed when the user clicks on the Open button
with a selected binder. It displays the title page of the binder. Using the buttons at the top
of the window, the user can move among pages and sections and create, edit or delete
them. The user can also view a collapsible table of contents, move pages and sections
around using the table of contents, and print or search the whole binder or a selected

portion of it.

61

' Pae mpelli
Title:
E UOT Class Diagram

. Author:

E Salzh Alshepani

- Created: Last Edited:
IREETEE | 12/201939
Select a page style:

- [Text Editor / Workspace 2

Textual use case

1AL Class Diagrams
UML Package Diagrams
UML Sequence Diagrams
UML State Diagrams

Figure 3-5: New Page Window

The window in Figure 3-5 is displayed when the user requests the creation of a
new page. It allows the user to specify the name of the page and select its style from the
list of available page-styles. Clicking Ok opens a new blank page with the selected style as
in Figure 3-6. The basic user interface is the same for all page styles, but each style can

add its special purpose buttons and provides its own layout.

4
35:

X

IR,
)

Figure 3-6: A blank Class Diagram Page-Style with style-specific buttons

3.3 Creating new Page-Styles

Creating a new page—style requires the implementation of two or more classes.
The first required class is an application class, which defines the user interface for that
page. Its instance is plugged into the universal binder page. This class must be a subclass
of the ApplicationModel class. The second required class is a client class, which provides

the interface between the application class and the binder. This class must be a subclass of

63

the ClientApplication class. The ClientApplication class provides most of the
functionality needed to accomplish the interface with the binder and defines the searching
and printing operations for the binder. When creating a new page-style for the Binder, the

developer must implement certain methods described in the following subsections.

3.3.1 Methods for the application class

The application class must implement method newWith: anObject. This is a
class method and is sent to the application class from the client class to create a new

instance of the application class on anObject.

3.3.2 Methods for the client class

The client class must implement methods newWithOutContents,
newWithContents: anObject, help, and isDirty. Method
newWithOutContents is a class method and is sent to the client class to return a new
initialized instance of the application. Method newWithContents: anObject is a
class method and is sent to the client class to return a new instance of the application class
opened on anCbject. Method help is a class method and is sent to the client class to
return a help string for this page style. Method isDirty is an instance method that is
sent to the client class instance to check whether the contents have changed. It is used to
determine whether the user should be warned before proceeding to another page.

Methods menu, accept, preClose, displayFromSearch: anObject,
and searchFor: aStringusing: aStringSpec should be overridden by the client
class if some action other than the default is required. Instance method menu should be

overridden if the application has a menu. Instance method accept should be overridden

64

if a page needs to store anything between viewings. It returns whatever information the
application wants to store between viewing of the page (e.g. Editor page should return its
text). Instance method preClose should be overridden for clients that need to internally
accept something before closing, or by any client, which needs something to happen
before closing. It is called before the current page is closed or method dirty is called. It
returns #continue if it is ok to continue closing or anything else otherwise. Instance
method displayFromSearch: anObject should be overridden to do whatever is
required to display this client when its being displayed as the result of a search. Instance
method searchFor: aString using: aStringSpec should be overridden if the
page wants to be searchable for the text aString and any additional arguments, such as

wildcard options are supplied in aStringSpec.

3.4 Conclusion

Gathering all project-related information into a single document can easily be
accomplished using the Binder tool described in this chapter. Besides application
development, the Binder can be used for other applications as well. The author, Dr. Ivan
Tomek, used it as an integrating medium for course materials. It has also been used to

gather on-line help for Smalltalk.

65

Chapter 4

UML Diagrams Tool - Description

4.1 Introduction

Object-oriented design requires tools to assist developers. One area that needs
support is the drawing of design diagrams, which can best be accomplished by a drawing
tool. Tools are avaiiable that support the drawing of some UML diagrams. One such tool
is Together Java [Together 1998] by Object International. This is a very elegant tool and
is considered one of the best Java products available. The tool can be used to construct
UML diagrams and generate Java code automatically. Another documentation tool is
Rational Rose [Rose 1996] from Rational Software [Rational 2000]. This tool can also be
used to construct UML diagrams and generate Java and other code automatically.

UML Diagrams Tool (UDT), implemented in this thesis, is a drawing tool that
supports the drawing of several types of UML diagrams and their integration with the
Binder (Chapter 3). It provides special ‘page styles’ and an editor for such pages for the
binder. The UML diagrams supported by UDT are:

e Class and Object Diagrams.
® Use Case Diagram.
® Sequence Diagram.

e State Transition Diagram.

Package diagram.
UDT allows creation, editing, displaying, storing and deleting UML diagrams. It

allows for converting the class diagrams into Smalltalk source code, which will help

66

software developers in the implementation phase and their saving in a binder as part of

complete project description. It also supports limited reverse engineering, allowing

automatic creation of selected UML diagrams from Smalltalk code. Figure 4-1 shows how

a UDT style is selected for a Binder page.

- Title:

E Caver Page
Author:

E Saleh Alshepani

. Created: Last Edited:
NEALEE P 122371989

. Select a page style:

- | Text Editor # Workspace

: | Textual use case

;UL Class Diagrams

UML Package Diagrams

* FUML Sequence Diagrams
UML State Diagrams

Figure 4-1: New Page window

As with every Binder style, UDT is a complete pluggable application and this
means that it can also be used independently of the Binder program, performing the same
tasks and providing the same functionality. Figures 4-3, 4-6, 4-7, 4-8 and 4-9 included

later in this chapter show the editing windows of the supported UML diagrams.

67

4.2 UML Diagrams Tool (UDT)

The use of UDT in the Binder is as a drawing tool for selected UML diagrams.
The users of this tool are expected to know UML notation but the tool provides on-line
help.

UDT functional requirements can be divided into basic functional requirements and

drawing functional requirements. These will be described next.

4.2.1 Basic functional requirements

UDT provides several features that are shared among all of its diagrams. These
features are: saving diagrams in files, loading diagrams from files, opening new files,
printing diagrams, scrolling windows to allow for larger diagrams, providing a tool bar for
fast saving, loading and drawing of shapes, providing a pop-up menu for each shape in the
diagram, allowing multiple undo and redo of previous actions and entering text anywhere

in the diagram.

4.2.2 Drawing functional requirements

UDT allows the drawing of UML symbols and text. All symbols have a pop-up
menu for performing symbol-specific actions. A shape can be moved anywhere inside the
window and moving a shape drags it with all the lines (edges) that are connected to it. The
size of a shape automatically adjusts to the size of the text inside it except for the note
shape, which has a fixed size. Deleting a shape deletes all the lines that are connected to it.
In accordance with UML rules, a shape can have a note attached to it using dashed line.
The following shapes and lines can be drawn using UDT: A class, an object, a package, a

use case, an actor, a state, a state machine, a start sate, an end state, a note, an

68

association, an aggregation, a generalization and a dependency. Using a pop-up menu
which becomes available when the user clicks the right mouse button inside a shape, any
shape can be deleted or renamed. For the class shape, the pop-up menu can also be used
to define a class with all or some of its methods as a Smalltalk class, toggle between class
and instance sides and open a Smalltalk browser. For the note shape, the pop-up menu can
also be used to change the text inside the note. Also all lines, edges, can be deleted or
renamed using a pop-up menu. For the association and aggregation lines, the pop-up menu
can also be used to change their properties (role name in either side, cardinality (none,
zero or more, one or more, discrete numbers, range of numbers) in either side, direction

(left, right, both, none)).

4.3 UML Diagrams Supported

UDT supports the following UML diagrams (page styles): Class and Object
Diagram, Use case Diagram, Sequence Diagram, State Transition Diagram and Package
Diagram. These diagrams (except the package diagram) were described in Chapter 2. A
package diagram is part of a class diagram but is drawn separate in UDT. It shows the
relationship between packages - collections of classes. It allows the following shapes and

lines: A package shape, a note, and directed and undirected dashed lines.

69

4.4 UDT User Interface

Each kind of UDT diagram has an editor with a tool bar for easy access. When the
user selects a style page when creating a new page for the binder, the appropriate UML
diagram editor will be opened. All buttons on the tool bar are supported by pop-up bubble
help. The first seven buttons of the tool bar (Figure 4-2) are common to all UDT
diagrams. They are from left to right: New, Load, Save, Print, Undo, Redo and
Text. The first six are self-explanatory and Text is used for entering a text anywhere in
the diagram. The Load button, which is the second button from left, differs in the Class
and Object Diagrams window by allowing the user to choose to load from a file or a
Smalltalk code (for reverse engineering) — the other diagrams, only loading from a file is
possible. We will now give examples of each of these diagrams and explain their

operation.

70

4.4.1 Class & Object Diagrams window

UMLEditor UMLEditorClient

dialog
state g
view print
diagram isDirty .
saved searchForusing: | HIMLHandleView
doUndoRedo
controller
Mlename o UML ClassEditorClient] ©-*
unDo usps
initializeWith:
extension ; UMLEditorView
windowName launghes
loadDiagram P
printDiagram UML ClassEditor
addNewNodeAt:
addNewText
initialize

view

diagram
addNewEdgeAt:

addNewNote
: S

3 2 ¥
E: R 2 RIS 3 AR R & p2
B R R ««««w««««‘«c«wz««m—«« R R B R e e s «mm«««c«f«w««m««(«««&

accept

RE

N
s

[

has ha’s

Q
»
S

ST s cecc e Taet et

UMLDiagram

confains ugés

=
()

Figure 4-2: Class & Object Diagrams window

The Class & Object Diagram window, Figure 4-2, allows the user to draw UML
Class and Object diagrams. The buttons from number eight to fifteen (left to right) are
Class, Object, Note, Association, Aggregation, Generalization,
Dependency and Note Connection. Clicking a button displays a dialog asking for
a name, except the Note Connection which does not have a name. Clicking anywhere

in the drawing area will then display that shape in the selected position. Clicking the

71

<operate> mouse button on any shape in the drawing area shows a pop-up menu specific

to the selected shape.

UMLEditor

doUndoRedo
view
controller
diagram
currentEEdge
message
dialog

Figure 4-3: The Fields Dialog window

The Fields Dialog window, Figure 4-3, opens when the user selects ‘change
variables’ or ‘change methods’ from a pop-up menu which becomes active when the user
clicks the left mouse button inside a class shape. It allows adding or removing methods or

variables to the class or instance side.

72

é’/’ Code Generatos

SuperClass | ApplicationModel

Class Name | UMLEditar :

¢ Instance {; Class
Variables _ Methods N
2 [V addNewEdgeAt: 2 |

v doUndoRedo
v view v addNewMNodeAt:
v contraller v addNewNote
v diagram i |V loadDiagram
#} currentEdge undo
message || edgesFor. =
dialog 22 IV addNewText |-

Figure 4-4: Code Generation window

To generate code from a diagram, the user can use the code generator
window (Figure 4-4). This window (opened via selecting ‘define’ from the class
shape pop-up menu) allows the user to generate Smalltalk code for the selected
class in the Class and Object Diagram window. It defines the selected class, its
instance and class variables and their accessor methods, as well as stumps of other

methods listed in the class node.

73

4.4.2 Package Diagram window

E +® Package Diagiam 25 PR
] o :
g g‘al«),:

SIPIIPIIIIPNEI,

$4%

SN

—1
- ——————===-=2>1UDT Shapes

1
UDT Editors

%

LRSS

AN

900

RIS d 330 30 IS S e S0 s s 58S 5555 50525 3555:

ki

T
I
1
~ 1 %
1
I
Y

\\g V

!

I

SananmY

3

SH3555535355555%8

UDT Clients UDT Dialogs

};}5

S

{CLLLLLULLANLELALLLCLRRURLANLL AR 41

s
R

3

i

s

IO

:Q'
X

AN AAMIIMAAAT AR LA AL IS R yrreTrres
A R A N A A A AR AR A ARV "‘\‘a;,..w..“ YA
] SR SRR R PARRRATE R R e
B e e e e SRR ARSI NN AN RN
e A T e A G L A LA e € £ e A A AL A2 O AL A A A AL i S ELDLI LRSI 9L L ALOOA LN NI CILL BRI

Figure 4-5S: Package Diagram window

The Package Diagram window, Figure 4-5, allows the user to draw package
diagrams using UML notation. The only new button here is the Package button (eighth

button from left). It is used to display a UML Package shape in the drawing area.

74

4.4.3 Use Case Diagram window

Enter classes

>

\Remove classes

Remove edges

Enter edges

Figure 4-6: Use Case Diagram window

The Use Case Diagram window, Figure 4-6, opens when the user selects the use
case diagram page-style. It allows the user to draw UML use case diagrams. The only new
buttons here (from left to right) are the eighth, Use case button which is used to draw

Use case shapes, and the ninth, Actor button which is used to draw Actor shapes.

75

4.4.4 Sequence Diagram window

:UML Editor node1:UMIL NodeView | nodeZ:UM{ NodeV

get new edqe’”‘
I

I _tretumanedge !
\ :

is valid edge from

-7 ==

Yes

!
|
E
|

is valid edge to

_Yes

X

Check for adding an edge between two nodes

Figure 4-7: Sequence Diagram window

The Sequence Diagram window, Figure 4-7, opens when the user selects the
sequence diagram page-style. It allows the user to draw UML sequence diagrams. The
eighth button from left is used for drawing an Object shape with a vertical dashed line.
The tenth button is used to draw a Message shape. The first button on the right is the
Align button. It is used to align all the objects in the diagram with the top of the selected

object.

76

4.4.5 State Transition Diagram window

State Transition Diagram

.——}@dding variable%——}(Prompt for a variab@

/

[Terminate addinga

Figure 4-8: State Transition Diagram window

The State Transition Diagram window, Figure 4-8, opens when the user selects the
state transition diagram page-style. It allows the user to draw UML state diagrams. The
buttons from eight to fifteen (left to right) are State Machine, State, Class,
Note, Start State, State Connection, End State, History State and
Note Connection. All of these buttons are used for drawing State Transition

Diagram shapes and are self-explanatory.

77

4.4.6 Class Diagram Generator window — Reverse Engineering in UDT

Reverse engineering is the process of transforming code into a model through a
mapping from a specific implementation language. Any tool designed to support the
drawing of any design diagrams should support some kind of reverse-engineering for at
least the static design diagrams (inheritance, association and aggregation relationships) and
dynamic design diagrams (interaction diagrams).

Reverse engineering inheritance and association diagrams (class diagrams) from
Smalltalk code is both aided and impeded by the nature of the Smalltalk language and its
programming environment. While reverse engineering for other OO languages proceeds
from an analysis of the source text of a program, this need not be the case for Smalltalk
due to its fully reflective nature. In a Smalltalk environment, it is very simple to determine
which classes inherit from whom by asking the class for its superclass but it is more
problematic to determine association relationships. This is due to the fact that Smalltalk is
not a statically typed language. In any statically typed language, the same strategy of
parsing the program source to determine both types of relationships would work. But this
will not work in Smalltalk because in Smalltalk variables are not typed until runtime. As a
consequence, deriving a full set of associations in a Smalltalk program is more
complicated and requires runtime traces. UDT is restricted to identifying some

associations and class hierarchy relationship only.

2 Class Diagram Generator

UDT-Reverse-Engineeiat EdgeProperties 3 add-remove |
UDT-Views UMLClassFields initialization 2
UDT-Madels -~ accessing i
UDT-State-Drawing vt displaying s
4 UDT-Class-Drawing printing %
#UDT-Dialogs &
UDT-UseCase-Drawini: i
i1 UDT-Package-Drawin i

instanceVariableNames: 'nodes edges *

; classVariableNames: *
UMLClassFields ! poolDictionaries: “
UtALClassVYiew o '
UMLConnectionViev category: UDT-Models
UMLDependencyView::
UIMEDiagrarm
LIRALE depetieer
UMLEndView
ML Generasiew
UivLHandle

& UMLHistoryView

Figure 4-9: Class Diagram Generator window

To generate parts of a class diagram from Smalltalk code, the user can use the
class diagram generator window (Figure 4-9). This window opens when the user clicks on
the Load button (which loads from a file or Smalltalk code) in Figure 4-2 and selects
Code. 1t allows the user to generate a class diagram for the classes in the Selected
classes list. First, the user must add classes to the Selected classes list by
dragging a category from the category list (upper left), which will add all of its classes to
the Selected classes list, or dragging specific class from the classes list (second

upper left), which will add that class to the Selected classes list. After that, the

79

user selects one or more classes (if no selection is made, all the classes in the list will be
considered) from the Selected classes list and clicks on the Create button. This
will create a class diagram for all the selected classes. The class diagram will contain
inheritance and association relationships only for the selected classes. The class diagram is

placed in the current Class and Object Diagram page of the Binder.

80

Chapter 5

UML Drawing Tool — Design

S.1 Introduction

The purpose of this chapter is to provide insight into UDT design and to provide a
context and foundation that will be useful for future UDT extension.

There are many design methodologies for object-oriented software development
and some of them are mentioned in Chapter 1. The methodology that we followed in
designing UML Drawing Tool is Responsibility Driven Design (RDD) [McKean 1995].
This methodology divides design into two stages: exploratory design and final (detailed)
design. In the exploratory design stage, the stress is on finding classes and their general
responsibilities and collaborations. In the final design stage, the stress is on abstraction,
inheritance relations and responsibilities shared between classes.

In the following, we summarize UDT design using UML class diagrams and
descriptions of UDT classes. Since UDT implements five page-styles for the Binder
program and includes about fifty classes, only the design of one page-style, namely the
Class and Object Diagram page-style, will be explained in detail. The other page-styles,
which include Use Case Diagram, State Diagram, Sequence Diagram and Package
Diagram page-styles, are similar in their design. In the next sections we will provide the
following for the Class and Object Diagrams page-style: the Object Model, some
Sequence Diagrams, and textual class descriptions. All the diagrams in this chapter were

produced by UDT.

5.2 Class and Object Diagrams Page-style Object Model

The class and object diagrams page-style Object Model describes the static
structure of classes. It shows how classes are related to each other. Figures 5-1 and 5-2
show the Object Model for the class and object diagrams page-style using UML notation.
Figure 5-1 shows the main classes of UDT and how they are related to the Binder. These
classes are the base for any page-style. For any new page-style all that is needed is the

substitution of UMLClassEditorClient with the new page-style client and the

UMLClassEditor with the new page-style editor.

These classes are implemented in the Binder and are not part of UDT

ClientApplication

PageUl

e=—has—

2,

PageStyle

/

Iy Y-y

T
UMLEditorClient

UMLEditor

| Stactk

.sg..

accept

print

isDirty
searchFor.using:

au es

UMLClassEditorClient

dialog

state

view

diagram
saved
doUndoRedo
controller
filename
currentNode

DoUndoRedo

UMLHandleView

newWWithContents:

newWithQOutContents

lau

UMLClassEditor

es

usgs

uges

DiagramGeneratorBrowser

unDo
initializeWith:
extension
windowName
loadDiagram
printDiagram
addNewNodeAt:

wl ext
initialize
view

diagram
addNewEdgeAt:

Figure 5-1: Part 1 of the class diagram for the Class and Object diagrams Page-style

0.*

(™

S

contains_[UMLEditorView

UMLEditorController

UMLRelationsBuilder

addNewNote

82

Figure 5-2 shows the remaining classes that are used in the Class and Object
Diagram page-style. They represent all the shapes (nodes and edges) that can be drawn in
this diagram. The classess UMLEditor, UMLDiagram, UMLNoteView and
UMLConnectionView are common to all diagrams but the other classes are different for

each diagram.

UMLGeneraView| 1.+ UMLSharedView UMLEditor
<< ——has——
o~ SN 1.
EdgePraperties
UMLClassView UMLDiagram
: 3 .) has
! Q.. F N 0.+ 48 s S g
depénds depends S 2
\/ UMLPropertiesView | [UMLConnectionView | [[UMLNoteView

UMLClassFields

1% 0. S D‘x

C T]
UMLAggregView | | UMLAssociView | | UMLDependencyView | [UMLObjectView

Figure 5-2: Part 2 of the class diagram for the Class and Object diagrams Page-style

83

5.3 Class and Object Diagrams Page-style Sequence Diagrams

In this section we show three UML Sequence Diagrams for the Class and Object
diagrams page-style. Figure 5-3 shows the Sequence Diagram for adding a new class. It is
the same for adding all other shapes include lines. The only difference is substituting

UMLClassView with that shape’s view.

:User | | :UML ClassEditor | |:UMLClassView | [:UMLDiagram | | :UMLEditorView

1 1 i
| ! {
. clicks a% ; {
| gt name : |
1 1 L}
] I

I

i

_enter na_m_ﬁ ,
| 1
! create >

- e e o= o - — - = - —]

I

: !_j\n:stance returned !

I @t position !

klicks positi (
add the class

1 i —p—:

: L display the class

Figure 5-3: Sequence Diagram for adding a new class

84

Figure 5-4 shows the Sequence Diagram for adding variables to a class. It is the same for

adding methods to a class.

:User :UML ClassEditor | | :UMLEditorController || :UMLClassFieldsDialog

] 1
1 [
clicks right buttm_1l :
lasks for pop-up magy !

]
;gi\s-plavs pop-up menu

selects change va@jes
[} .
1 asks for variables

I .
[returns variables
=~

——.I_———-—__———.——

I
I
1
I
I
f
I
1
1
{
i
{
I
I

Figure 5-4: Sequence Diagram for adding class variables

Figure 5-5 shows the Sequence Diagram for undoing the last action (adding or removing a
shape). It is the same for redoing the last action. The only difference is that, DoUndoRedo

object sends the message redo instead of undo.

:User :UUML ClassFditor :DolUndoRedo :Stack

1 1

1
clicks undo - !
undo last action

1]
. pop last actzcln*”

t . §
__+eturn last action

Hends undo message | !

iindoes last action : |

——— -y

Figure S-5: Sequence Diagram for undoing last action

85

5.4 Class Descriptions of Class and Object Diagrams

The following sections present a full description of all classes used in this page-

style. Other page-styles use similar classes with similar states and behaviors.

5.4.1 UMLDiagram Class
a Class: UMLDiagram
Q Superclass: Object

o Purpose:. UMLDiagram class is used for representing a UML diagram. It contains
all the information about all the nodes and edges and their positions on the window. It
consists of two ordered collections. The first collection is used for storing the nodes of
the UML diagram and the second collection is used for storing the edges of the UML
diagram.

o Instance Variables:
nodes <OrderedCollection> A collection of nodes objects in a diagram.
edges <OrderedCaollection> A collection of edges objects in a diagram.

o Class Behaviors:

creation

new Create a new instance of UMLDiagram and initialize it.

aQ Behaviors:

accessing Setters and getters for the instance variables.
initialization
initialize Initialize the receiver by initializing its nodes and edges as

empty ordered collections.

86

displaying
displayOn:aGraphicsContext Display the diagram in a window by

asking each node and edge to display itself at its origin.

add - remove

addNode: aNode Add a node to the diagram.
removeNode: aNode Remove a node from the diagram.
addEdge: anEdge Add an edge to the diagram.

removeEdge:anEdge Remove an edge from the diagram.
searching
componentAt:aPoint Return the node or edge that contains aPoint.
Returns nil if no shape is found at aPoint
findEdgeNamed: aName Return an edge object named aName.

findNodeNamed: aName Return a node object named aName.

testing
= aDiagram Return true if aDiagram is equal to the receiver.
enumerating
nodesDo:aBlock For each node in the diagram evaluate aBlock.
edgesDo:aBlock For each edge in the diagram evaluate aBlock.

nodesInsiade:aRectangle Return all the nodes inside aRectangle.
edgesInside:aRectangle Return all the edges inside aRectangle.
shapesInside:aRectangle Return all the shapes inside aRectangle.

edgesFor:aNode Return all edges that are connected to aNode.

87

5.4.2 UMLClassFields Class

a Class: UMLClassFields
a Superclass: Object

a Purpose: UMLClassFields class holds information about a UML class variables or
methods. It contains information about the class and instance side for the variables or
methods. It has a dictionary with two keys. It stores the instance variables or methods
at the #instance key and stores the class variables or methods at the #class key. The
value for each key is a collection of the corresponding variables or methods.

o Instance Variables:]
Field <Dictionary> A dictionary of the names of the instance and

class methods or variables of this class.

a Class Behaviors:

creation

new Create a new instance of UMLClassFields and initialize it.

o Behaviors:

accessing Setters and getters for the instance variables.
initialization
initialize Initialize the receiver by setting the instance and class sides

of field to empty sets.
add — remove
add:aName at:aSymbol Add aNamne to the set at aSymbol in the

dictionary field.

88

remove:aName at:aSymbol Remove aName from the set at aSymbol in

the dictionary field.

5.4.3 EdgeProperties Class

Q

Q

Class:

Superclass:

EdgeProperties

Object

Purpose: EdgeProperties class holds information about edge properties. The

properties are the role name, the cardinality and the value or values for that cardinality.

Instance Variables:

role

cardinality

startValue

EndValue

Class Behaviors:

creation
new

Behaviors:

accessing

initialization

<String> A string for the role name of the edge.

<Symbol> A symbol for the cardinality type (#OneCardinality,
#DiscreteCardinality, #FixedCardinality, #ZorOCardinality,
#ZorMCardinality, #RangeCardinality).

<Number | String> A number to hold the start value for a range
or a string to hold the discrete values.

<Number | nil> A number to hold the end value for a range.

Create a new instance of EdgeProperties and initialize it.

Setters and getters for the instance variables.

89

initialize Initialize the receiver by setting its cardinality to default
(#OneCardinality).
5.4.4 UMLEditor Class
a Class: UMLEditor

o Superclass:

a Subclasses:

ApplicationModel
UMLClassEditor, UMLUseCaseEditor, UMLSequenceEditor,

UMLStateEditor, UMLPackageEditor.

a Purpose: This class is the super class for all UDT editors. It provides general user

interfaces such as toolbar buttons and drawing area for a selected UML diagram. It

provides the common behavior for all UML diagrams that are supported by this

application.

0 Instance Variables:

doUndoRedo

view

diagram

controller

currentNode

currentEdge

<DoUndoRedo> A DoUndoRedo object to handle all the
undo and redo operations.

<UMLEditorView> A UMLEditorView object for providing a
drawing window for the selected UML diagram.

<UMLDiagram> A UMLDiagram object for storing the
nodes and edges of the selected UML diagram.
<UMLEditorController> A controller for handling the
keyboard and mouse inputs.

<UMLNodeView> The node that has the focus.

<UMLEdgeView> The edge that has the focus.

90

state <Symbol> The action to be performed like adding or

deleting a node or an edge.

Sfilename <String> The file name of the current diagram.
saved <Boolean> True if the file is saved, false otherwise.

Class Behaviors:
creation
newWith:aDiagram Answer a new instance of UMLEditor with
diagram set to aDiagram.
interface spec
windowSpec Provides the user interface to allow for the drawing of UML
diagrams.
buttonSpec Provides the toolbar buttons.
Behaviors:
accessing Setters and getters for the instance variables.
initialize-release
initialize Initialize the receiver by setting controller to the view’s
controller and setting the controller’s menu to the main menu.
menu accessing Pop-up menus for the seleceted UML diagram.

menu message

changeEdgeName Change the current edge’s name.
changeNodeName Change the current node’s name.
changeNoteText Change the note’s text.

changeText Change the selected text contents.

91

edgeProperties Manipulate the current edge properties.

HardCopy Print a hard copy of the current diagram as a text.

printScreen Print a hard copy of the current diagram as a
diagram.

removeEdge Remove the current edge from the diagram.

removeNode Remove the current node and all of its edges from
the diagram.

actions
addNewConnection Add an instance of UMLConnectionView (dashed

line) between an instance of UMLNoteView and an instance of

UMLNodeView.

DragShapeAt:aPoint Ifshape at aPoint is selected then drag it to where

the mouse is inside the window, otherwise make that shape the

current selection.

addNewConnectionlt:aPoint Add a connection at aPoint.

addNewEdgeAt:aPoint Add the current edge between two nodes at

aPoint.

addNewNodelAt:aPoint Add the current node at aPoint.

addNewNote
addNewText
loadDiagram
newDiagram

saveDiagram

Add a UMLNoteView object to the diagram.
Add a UMLTextView object to the diagram.
Load a UML diagram from a file.

Create a new UML diagram.

Save the current UML diagram.

92

printDiagram Print the current UML diagram.

redo Redo the last action (adding or deleting).

undo Undo the last action (adding or deleting).
undoing-redoing

redoAddEdge:anEdge Add the last deleted edge.

undoAddEdge:anEdge Remove the last added edge.

redoAddNode: aNode Add the last deleted node.

undoAddNode: aNode Remove the [ast added node.

private

windowName Return the window name (subclass responsibility, subclasses
must implement this).

extension Return a valid file name extension for this type of diagram.
Valid extensions are: ‘.uco’ for Class and Object diagrams, ‘.uuc’
for UseCase diagrams, .ust’ for State diagrams, ‘.upd’ for Package
diagrams, ‘.use’ for Sequence diagrams and etc.

validView:aShape Return true if aShape is a valid shape in the

current UML diagram.
validShapes Return a set of all the valid shapes for the current UML
diagram (subclass responsibility, subclasses must implement this).
isValidFrom:sl to:s2 connection:s3 Return true if s3 can

connect s1 and s2.

93

5.4.5 UMLClassEditor Class

a Class: UMLClassEditor
a Superclass: UMLEditor

@ Purpose: This class provides a toolbar buttons for drawing the shapes needed for
UML class and object diagrams. It only allows for the drawing of the shapes that are
valid for the Class and Object diagrams.

o Class Behaviors:

interface spec
buttonSpec Provide toolbar buttons description.
a Behaviors:
menu accessing Pop-up menus for UML class diagram shapes.

menu message

browseClass Open a Smalltalk browser on the current class.

changeClassAttributes Manipulate the current class’s attributes by
adding or removing attributes.

changeClassOperations Manipulate the current class’s operations by
adding or removing operations.

defineClass Define the current class and its attributes and operations in
the Smalltalk library. It generates part of the code for this class.

InstanceSide:aBoolean Work with the instance side of the class if
aBoolean is true, otherwise work with the class side.

actions

94

addnewAggregation Add an aggregation edge to the diagram, an instance
of UMLAggregView.

addNewAssociation Add an association edge to the diagram, an instance
of UMLASssociView.

addNewClass Add an instance of UMLClassView to the diagram.

addNewDependency Add a dependency edge to the diagram, an instance
of UMLDependency View.

addNewGeneralization Add a generalization edge to the diagram, an

instance of UMLGeneraView.

addNewObject Add an instance of UMLODbjectView to the
diagram.
private
windowName Return ‘Class and Object Diagrams’.
extension Return “.uco’.
validShapes Return the set [#class, #object, #note, #text, #association,

#generalization, #dependency, #connection, #shared]
addGeneraFromClass:cl toClass:c2 Add the current edge which is
a generalization between two classes.
addGeneraFromClass:cl toGenera:c2 Add the current edge which is
a generalization between a class and a generalization to create a
shared generalization.
addGeneraFromClass:cl toShared:c2 Add the current edge which is

a generalization between a class and a shared generalization.

95

removeGenerEdge Remove the current edge which is a generalization.
removeSharedEdge Remove the current edge which is a shared
generalization and remove all the edges that are connected to it.

textClass Return the current class information.

5.4.6 UMLEditorClient Class

g Class: UMLEditorClient

a Superclass: ClientApplication

a Subclasses: UMLClassEditorClient, UMLUseCaseEditorClient,
UMLStateEditorClient, UMLSequenceEditorClient,

UMLPackageEditorClient.

a Purpose: This class is the super class for all UDT editor clients. It acts as an interface
between the Binder program and the UMLEditor application.

a Class Behaviors:

creation

newWithOutContents Answer a new initialized instance of the application
(UMLEditor).

newWithContentsnewContents Answer an instance of the application
(UMLEditor) opened on newContents.

help

help Return a help text for this client’s application.

a Behaviors:

96

accessing Setters and getters for the instance variables.
accepting
accept Accept the current changes to this diagram (see Chapter 3 for more
details).

ispirty True if the contents have been changed, false otherwise diagram

(see Chapter 3 for more detatls).

searching
searchFor:tl using:t2 Search the application for t1 and return
#notfound if t1 is not found in the application. £2 is used as an
additional argument when searching for t1.
Printing
print Print the application’s contents.

5.4.7 UMLC ClassEditorClient Class

o Class: UMULClassEditorClient
o Superclass: UMLEditorClient

a Purpose: This class acts as an interface between the Binder program and the
UMLClassEditor application.

a Class Behaviors:

creation

newWithContents:newContents Answer an instance of the application

opened on newContents (class or object diagram).

97

5.4.8 UMLEditorController Class

o Class: UMLEditorController

g Superclass: ControllerWithMenu

a Subclasses: UMULClassController, UMLSequenceController,
UMLStateController.

o Purpose: This class is the super class for all UDT editors controllers. It handles all
mouse events like pressing the yellow or red buttons. It shows the appropriate pop-up
menu when pressing the left mouse button.

Q Instance Variables:

cursor <Cursor> the cursor shape for a specific action.
o Behaviors:
accessing Setters and getters for the instance variables.
control defaults
redButtonActivity Invoke the appropriate action (sending a
message, dragging a shape, selecting a shape and dropping a shape)
when the left mouse button is pressed..
yellowButtonActivity Activate a specific pop-up menu when the
right mouse button i1s pressed depending on the position of the
Cursor.

events

enterEvent:event Set the cursor to a cross hair shape when entering the

current window if there is an action to be taken.

98

exitEvent:event Reset the cursor shape when existing the current
window.

redButtonPressedEvent:event send the receiver the instance
message redButtonActivity

yellowButtonPressedEvent:event send the receiver the instance

message yellowButtonActivity

private
getLineFromUserAt:aPoint Return an end point of a line starting
at the point aPoint.
rectangleAt:aPoint Get a rectangle from the user starting at the
point aPoint.
uml drag
drag:aShape start:aPoint Drag aShape starting at the

position aPoint by sending dragAt:aPoint for:self to

aShape.

5.4.9 UMLEditorView Class

a Class: UMLEditorView
Q Superclass: View

Q Subclasses: ClassEditorView, SequenceEditorView, StateEditorView.

Q

99

Purpose: This class is the super class for all UDT editors views. It provides a
drawing area for the selected UML diagram. It has a vertical and horizontal scrollers

for drawing large diagrams.

Instance Variables:
selectedShapes <OrderedCollection> The collection for the selected shapes
inside this view.
Behaviors:
controller
defaultControllerClass Return the controller
(UMLEditorController) for this view.
displaying
displayOn:aGraphicContext Paint the view.
accessing
selectedShapes Return an ordered collection of the selected shapes
in the diagram.
handlesAt:aPoint Return the handle at aPoint.

visualComponentAt:aPoint Return the shape at aPoint.
unSelect:aShape Remove aShape from the selected shapes.
unSelectExcept:handles Make handles the only selected shapes.
updateEdges:edges using:aNode Change the positions of edges
according to the position of the node aNode.
updateEdge:anEdge using:nodes Change the position of anEdge

according to the positions of nodes.

100

5.4.10 UMLHandle Class

a Class: UMLHandle
a Superclass: View

a Purpose: This class is responsible for displaying handles to mark the selected shape
as selected. It displays a rectangle with a different color on the shape selected if it is a
node and displays small rectangles a long the line if the selected shape is an edge.

a Instance Variables:

shape <UMLShapeView> The selected UML shape.
points <OrderedCollection> A collection of the points that should
be displayed in a different color.
a Class Behaviors:
creation
on:aShape Return an instance of the receiver on the UML shape aShape.
o Behaviors:
accessing Getters and setters for the instance variables.
testing
containsPoint:aPoint Test whether this shape contains aPoint.
displaying
displayOn:aGraphicsContext Display the receiver on the window.
displaySquareOn:aGraphicsContext at:aPoint Display small
square at the point aPoint.
add — remove

add: aPoint Add the point aPoint to the collection poinis.

101

remove:aPoint Remove the point aPoint from the collection points.

converting

asOrderedCollection Return an ordered collection on this handle.

5.4.11 UMLShapeView Class

a Class: UMLShapeView
o Superclass: DependentPart
g Subclasses: UMLNodeView, UMLEdgeView.

Q Purpose: This class is the superclass for all UDT views and that includes both shapes
and edges. It provides the behavior required by all shapes and edges in any UML
diagram.

o Instance Varables:

kind <Symbol> A shape kind (#class, #object, #association,).
isSelected <Boolean> True if the shape is selected, false otherwise.
origin <Point> The origin of the shape.

corner <Point> The corner of the shape.

name <String> The name of the shape.

a Behaviors:

accessing
extent Return the width and height of the receiver as a point.
layout Return the smallest rectangle that contains the shape.

fullName Return the name and the kind of the shape.

prefferedBounds Returns the bounds of the shape.

102

searching
searchFor:tl using:t2 Search the shape for tl and return
#notfound if t1 is not found in the shape. t2 is used as an
additional argument when searching for t1.
nearestPointTo:aPoint Return the nearest point on the shape’s
bounds that is located on the straight line between aPoint and the
center of the receiver.
transforming

moveBy:aPoint Move the shape by aPoint.

testing
containsPoint:aPoint Test whether this shape contains aPoint.
isEdge Test if this shape is an edge, returns false.
isNode Test if this shape is a node, returns false.

copying

postCopy Make a deep copy, copy all instance variables.

converting

asOrderedCollection Return an OrderedCollection with this shape.
comparing.

= aShape Check for equality.

5.4.12 UMLNodeView Class

g Class: UMLNodeView

0 Superclass: UMLShapeView

O Subclasses:

a

103

UMLClassView, UMLEndView, UMLTextView,
UMLNoteView, UMLACctorView, UMLStateView,
UMLPackageView, UMLObjectView, UMLStartView,

UMLHistoryView, UMLUseCaseView.

Purpose: This class is the super class for all UDT nodes views. It provides the

behavior required by all nodes in any UML diagram.

Behaviors:
accessing
handle Return array of the four corners of the node.
height Return the height of the node.
width Return the width of the node.
testing
isNode Since this is a node return true.
converting
asHandle Return a UMLHandle object on this node.
drag
dragAt:aPoint for:aController Drag the receiver (current
node) starting at the position aPoint.
dragWith:edges at:aPoint for:aController Drag the

receiver (current node) with all the edges in edges starting at

position aPoint.

104

5.4.13 UMLClassView Class

a Class: UMLClassView
o Superclass: UMLNodeView

a Purpose: This class is responsible for drawing a class in UML notation on a window.
It draws a rectangle with three sections. The first section for the class name, the
second section for the variables and the third section for the methods. The size of the
rectangle depends on the contents of the largest section.

g Instance Variables:
variables <UMLC ClassFields> A Class that has a dictionary for holding

information about the instance and class variables.
methods <UMLClassFields> A Class that has a dictionary for holding
information about the instance and class methods.
side <Symbol> Which side of the field (#class or #instance).
superClass <String> The name of the super class.

0 Behaviors:

accessing
side Return #class or #instance depends on which side to process.
superClass Return the receiver’s super class.
variables Return the variables (class and instance) of the receiver.
methods Return the class and instance methods of the receiver.
firstLine Return the y position of the end of the first section.
secondLine Return the y position of the end of the second section.

displaying

105

displayOn:aGraphicsContext Display the receiver on the window.
private
nameAsTextList Return the name as a TextList object.

variablesAsTextList Return the variables as a TextList object.

valuesAsTextList Return the variables and methods as a TextList
object.
drag
dragAt:aPoint for:aController Drag the receiver (current

class) starting at the position aPoint.

5.4.14 UMLObjectView Class

a (Class: UMLObjectView
a Superclass: UMLNodeView

a Purpose: This class is responsible for drawing an object shape in UML notation on a
window. It draws a rectangle with the name of the object inside it. The size of the
shape depends on the width of the name with a fixed height.

o Behaviors:
accessing Getters and setters for the instance variables.
private

centerBottom Return the point at the middle of the bottom line of the
reactangle.

asTextList Return the name of the object as a TextList object.

106

displaying

displayOn:aGraphicsContext Display the receiver on the window.

5.4.15 UMLNoteView Class

a Class: UMLNoteView
a Superclass: UMLNodeView
Q Purpose: This class is responsible for drawing a note shape in UML notation on a
window. The size of the shape is fixed.
0 Instance Variables:
text <Text> A text that holds the note contents.
Q Behaviors;
accessing Getter and setter for the instance variable.
displaying
displayOn:aGraphicsContext Display the receiver on the window.
5.4.16 UMLTextView Class
o Class: UMLTextView
o Superclass: UMLNodeView
a Purpose: This class is responsible for displaying a text anywhere on a window. It
asks for the text and then display it on a window.
a Instance Vanables:
string <String> The text to be displayed on a window.
0 Behaviors:

accessing Getter and setter for the instance variable.

107

private
asTextList Return the text as a TextList object.
displaying
displayOn:aGraphicsContext Display the receiver on the window.

5.4.17 UMLEdgeView Class

a Class:
a Superclass:

a Subclasses:

a Purpose:

UMLEdgeView
UMLShapeView
UMLPropertiesView, UMLSharedView, UMLGeneraView,
UMLSequenceLineView, UMLConnectionView,

UMLStateConnectionView, UMLSequenceConnectionView.

This class is the super class for all UDT edges views. It provides the

behaviors required by all edges in any UML diagram.

O Instance Variables:

from
o
showName

edge

a Behaviors:
accessing
from

to

<String> The name of the node at the from-side.

<String> The name of the node at the to-side.

<Boolean> If true show the name of the edge.
<OrderedCollection> An ordered collection of the points of

this edge.

Return the name of the node at the from-side.

Return the name of the node at the to-side.

108

fromKind Return the kind of the node at the from-side.

toKind Return the kind of the node at the to-side.

at:1i Return the point at index i of edge.

at:i put:point Putthe Point point at index i of edge.

endsOf:aPoint If aPoint exists in edge then return the index of
the point before aPoint in edge, otherwise if aPoint is in the
middle between two points in the edge then return the index of

aPoint in edge, otherwise return nil.

handle Return array of the points of edge.
size Return the size of edge.
testing
i1sEdge Since this is an edge, return true.
connectedTo:name Return true if the this edge is connected to the node

named name.

isLine Returns true if edge has only two points.
isPolyline Return true if edge has more than two points.
converting

asHandle Return a UMLHandle object on this edge.
reset Make edge straight line by removing all the middle points between
the first and the last point.
displaying
displayOn:aGraphicsContext Display the receiver as a solid line on

a window.

109

displaySolidOn:aGraphicsContext Display the receiver as a solid
line on a window.

displayDottedOn: aGraphicsContext Display the receiver as a
dashed line on a window.

displayLeftArrowOn:aGraphicsContext Display a left arrow
shape at the end of the receiver on a window.

displayRightArrowOn:aGraphicsContext Display a right arrow
shape at the beginning of the receiver on a window.

displayNameOn:aGraphicsContext Display the name of the

receiver on a window.

private

displayOnX:aGraphicsContext extent:extent at:aPoint
Used for displaying a dashed line horizontally.
displayOnY:aGraphicsContext extent:extent at:aPoint
Used for displaying a dashed line vertically.
fromName Return the name of the node at the from-side.

toName Return the name of the node at the to-side.

add — remove

add:pointl after:point2 Add the point pointl to edge after the
point point2.

add:pointl before:point2 Add the point pointl to this edge after the
point point2.

remove:aPoint Remove the point aPoint from this edge.

110

drag
dragAt:aPoint for:aController Drag the receiver (current
edge) starting at the position aPoint.
dragEndPointAt:pl start:p2 for:aController Drag the end
point pl of the receiver (current edge) starting at position p2.
dragMiddelPointAt:pl start:p2 for:aController Drag
the middle point pl of the receiver (current edge) starting at
position p2.
update
updateUsing:aNode for:aController Update the state of the
receiver (current edge) according to the state of aNode (an

instance of UMLNodeView).

5.4.18 UMLGeneraView Class

o Class: UMLGeneraView
Q Superclass: UMLEdgeView

a Purpose: This class is responsible for drawing a line representing a generalization
edge in UML notation.

o Instance Variables:
shared <Boolean> True if this edge is shared between classes.

a Behaviors:

accessing A setter and getter for the instance variable.

111

converting

asMulit Set the shared variable to true.

asSingle Set the shared variable to false.

asSharedView Return an instance of UMLSharedView on the receiver.
update

updateUsing:aNode for:aController Update the state of the

receiver (generalization edge) according to the state of aNode.

5.4.19 UMLSharedView Class

a Class: UMLSharedView
a Superclass: UMLEdgeView

a Purpose: This class is responsible for drawing a shared edge for representing a
connection between a group of subclasses and a superclass. It represents a shared
generalization in UML

0 Instance Variables:

JSfromSide <SortedCollection> A sorted collection of associations
where the keys are the edges full names and values are points.

Q Behaviors

accessing A setter and a getter for the instance variable.

add-remove

add: anAssociation Add the association anAssociation to the

fromSide collection.

112

remove:anAssociation Remove anAssociation from the
JfromSide collection.
update
updateUsing:aNode for:aController Update the state of the

receiver (shared edge) according to the state of aNode.

5.4.20 UMLConnectionView Class

a Class: UMLConnectionView
o Superclass: UMLEdgeView

0 Purpose: This class is responsible for drawing a dashed line representing a
connection edge in UML notation. This edge is used for connection a note object and

any UML shape.

5.4.21 UMLPropertiesView Class

a Class: UMLPropertiesView
Q Superclass: UMILEdgeView

Q Purpose: This class is the super class for all edges views that have some extra
properties like cardinality and role names.
0 Instance Variables:
direction <Symbol> A symbol to show the direction of the edge. The
available directions are: #none, #left, #right and #both.
properties <Dictionary> A dictionary for holding this edge’s properties with

two associations. One for the fo-side of the edge and the other for

113

the from-side of the edge. The value for the dictionary elements is

an EdgeProperties object.

current <Symbol> A symbol for indicating which side of the edge
should have its property displayed.
Behaviors:
accessing A setter and getter for the instance variable.
displaying
displayDiscreteCardinalityOn:aGraphicsContext Display

the discrete cardinality for this edge on the currenf side.

displayFixedCardinalityOn:aGraphicsContext Display the

fixed cardinality for this edge on the current side.

displayOneCardinalityOn:aGraphicsContext Display the

one cardinality (nothing) for this edge on the current side.

displayRangeCardinalityOn:aGraphicsContext Display the

range cardinality for this edge on the current side.

displayZorMCardinalityOn:aGraphicsContext Display the

zero or more cardinality for this edge on the current side.

displayZorOCardinalityOn:aGraphicsContext Display the

zero or one cardinality for this edge on the current side.

displayRoleNameOn:aGraphicsContext Displays the role name for

private

this edge on the current side.

114

cardinalityPosition:aText Return a point on the window for
displaying the cardinality of this edge.
rolePosition:aText Return a point on the window for displaying the role

name of this edge.

5.4.22 UMLAssociView Class

Class: UMLASssociView
Superciass: UMLPropertiesView

Purpose: This class is responsible for drawing a line representing an association edge

in UML notation.

5.4.23 UMLAggregView Class

a

a

Q

Class: UMLAggregView
Superclass: UMLPropertiesView

Purpose: This class is responsible for drawing a line representing an aggregation

edge in UML notation.

5.4.24 UMLDependencyView Class

a

a

a

Class: UMLDependencyView
Superclass: UMLPropertiesView

Purpose: This class is responsible for drawing a line representing a dependency edge

in UML notation.

115

5.4.25 UMLClassDefinningDialog Class

Q

Q

a

Class:

Superclass:

UMLClassDefinningDialog

SimpleDialog

Purpose: This class is responsible for drawing the interface needed for defining a

class and its variables and methods.

Instance Variables:

name
umliClass

className

methodsList

choice

superClassName
readAccessing
writeAccessing

variablesList

Class Behaviors:

interface specs

<String> The name of the class to be defined.

<UMLClassView> The UMLClassView object to be defined.

<ValueHolder> A value holder on an input field for the class
name.
<MultiSelectionList> A list of all the methods. If choice is

#class then class methods are listed otherwise instance methods are
listed.

<Symbol> Used to indicate instance or class side. Possible
values are: #instance or #class.

<ValueHolder> A value holder on the superclass’s name.
<Boolean> If true define getters for the selected variables.
<Boolean> If true define setters for the selected variables.
<MultiSelectionList> A list of all the variables. If choice is
#class then class variables are listed otherwise instance variables are

listed.

]

116

windowSpec The description of the user interface.
creation
class:aClassView Create an instance of the receiver from

aClassView which is an instance of the class UMLClassView.
Behaviors:

accessing

name The name of the UMLClassView object.

initialize-release

umlClass:aClassView Initialize the receiver with the state of
aClassView.
action
apply Define the class named name with the selected wvariables and
methods.
defining
addMethodsNames : names Define the methods in the collection names

for the class named name.
addReadingAccessFor:vars Define getters for the variables in the vars
list.
addWritingAcessFor:vars Define putters for the variables in the vars
list.
private
changedChoice Used to switch between the class and instance sides of the

class.

117

5.4.26 UMLRelationsBuilder Class

a Class: UMLRelationsBuilder
a Superclass: Object

0 Purpose: This class provides all the functionality for dealing with reverse
engineering. It implements all the necessary functions for finding the associations and
generalizations for a collection of classes.

a Instance Variables:

mainClasses <Set> A set of the classes for which a reverse engineering should
take place.

associations <Set> A set of all the associations for the classes in mainClasses.

associations <Set> A set of all the generalizations for the classes in
mainClasses.

a Class Behaviors:

creation

new Create a new instance of UMLRelationsBuilder and initialize it.

on:aCollection Create an instance of the receiver on the classes in

aCollection.
a Behaviors:
accessing Setters and getters for the instance variables.
initialize
initialize Initialize the receiver by setting the instance variables

mainClasses, associations and aggregations to empty sets.

add - remove

118

add:aSymbol Add asymbol which is a class name to mainClasses.
addAssociation:anAssociation Add anAssociation
(classl->class2, classl uses class2) to associations.
addGeneralization:anAssociation Add anAssociation
(class1->class2, class1 subclass of class2) to generalizations.
remove:aSymbol remove aSymbol which is a class name from mainClasses.
removedAssoclation:anAssociation Remove anAssociation
(class1->class2, classl uses class2) from associations.
removeGeneralization:anAssociation Remove anAssociation
(classl->class2, classl subclass of class2) from generalizations.
converting
asUMLDiagram Convert the receiver to an instance of UMLDiagram by
adding all the nodes (classes) and edges (associations and
generalizations) to a new instance of UMLDiagram.
class relations
buildAssociations For each class in mainClasses find the classes that
use this class and the classes that this class uses and add them to
associations.
buildGeneralizations For each class in mainClasses find its

superclass and add it to generalizations.

getAssociations:umlDiagram Add all the edges in associations to

umlDiagram which is an instance of UMLDiagram.

119

getGeneralizations:umlDiagram Add all the edges in generalizations
to umlDiagram which is an instance of UMLDiagram.

getEdges:umlDiagram Add all edges (associations and generalizations) to
umlDiagram.

getNodes:umlDiagram Add all the nodes (the classes in mainClasses and
their superclasses) to umlDiagram.

private

allMessages:aClass Return a collection of all messages that are sent by
aClass.

classesUses:aClass Return a collection of all the classes that use
aClass.

classesReferences:aClass Return a collection of all the classes that

aClass uses.

classes Return a set of all the classes that have an association relation with

the classes in mainClasses.
superClasses Return a set of the superclasses of all the classes returned by

the previous method.

5.4.27 DiagramGeneratorBrowser Class

a Class: DiagramGeneratorBrowser

o Superclass: Browser

Q

120

Purpose: This class provides a browser that is used for reverse engineering. It’s

layout is identical to the Smalltalk Browser. It adds a list for selecting the classes for

which a class diagram should be drawn.

Instance Variables:

selectedClassesList < MultiSelectionInList> A MultiSelectionInList
object to store the selected classes for reverse engineering. It allows
a multi selection of classes for which the reverse engineering should
happen.

caller <UMLClassEditor> The application that creates an instance of

the receiver.

Class Behaviors:

interface opening
openFrom:anApplication Answer a new instance of
DiagramGeneratorBrowser from anApplication.
interface spec
windowSpec Provide the user interface to allow for selecting classes for
reverse engineering.
resources

selectedClassMenu Return a pop-up menu for the selected classes list.

Behaviors:

accessing Setters and getters for the instance variables.

actions

121

createDiagram Create a partial class diagram for all the selected classes in

selectedClassesList and close the Browser.

cancelDiagram Close the reverse engineering browser.
private
addSelectedCategory Add all the classes of the selected category

to selectedClassesList.

addSelectedClass Add the selected class to selectedClassesList.
removeSelectedClasses Remove all the selected classes from
selecetedClassesList.

getSelectedClasses Return a collection of all the selected classes in

selectedClassesList or all the classes if there were no selections.

5.5 Extending UDT

Several UML diagrams are not supported by this version of UDT, but it is easy to
extend UDT to implement them since most of the common functionality is already
implemented in the base classes UMLEditor, UMLEditorClient, UMLNodeView and
UMLEdgeView. For each new diagram, all that is needed is subclassing of all or some of
these base classes or their subclz}sses.

Subclassing UMLEditor is needed to provide an editor for the new diagram. The
class method buttonSpec of UMLEditor, which provides a specific toolbar buttons
for the new diagram, should be overridden. Other methods that should be implemented by

UMLEditor subclasses are: windowName, validShapes and extension. Method

122

windowName is an instance method that returns the name of the new page-style. Method
validShapes is an instance method that returns an ordered collection of the names of
the shapes that can be drawn in this diagram. Method extension is an instance method
that returns the extension of the file that stores this diagram.

In order to be able to use the new diagram as a page-style in the Binder program,
the new diagram’s editor must have a client class that is a subclass of UMLEditorClient
(Refer to Chapter 3 for more detail on the client class). This client class should have the
new diagram’s editor as its application and should implement the methods described in
Chapter 3.

Every node in the new diagram should be represented by a view that is a subclass
of UMLNodeView. For example, UML Class Diagram has the following nodes: class
and note. The class shape has a view (UMLClassView) that is a subclass of
UMLNodeView and the note shape also has a view (UMLNoteView) that is a subclass of
UMLNodeView. Instance methods displayOn: aGraphicsContext and kind
must be overridden. Method displayOn: is used to paint the new node on
aGraéhicsContext. Method kind is used to return the kind of node (#class,
#note, #object, etc). Method dragAt:aPoint for:aController might be
overridden if the new node should be dragged differently. As an example of that, the class
node overrides this method to allow the dragging of the tree format of the generalization
edge which differs in shape from other edges like association or aggregation.

Every edge in the new diagram should be represented by a view that is a subclass
of UMLEdgeView. For example, UML Class Diagram has the following edges:

association, generalization, dependency and aggregation. All these edges have views

123

(UMLAssociView, UMLGenerView, UMLDependencyView, UMLAggregView) that
are subclasses of UMLEdgeView. Instance methods displayoOn:
aGraphicsContext and kind must be overridden. Method displayOn: is used to
paint the new edge on the aGraphicsContext. Method kind is used to return the
kind of edge (#association, #generalization, #aggregation, etc). Method
dragAt:aPoint for:aController might be overridden if the new edge should be
dragged differently. As an example of that, the message edge in the Sequence Diagram
overrides this method to allow the dragging to be up and down only. Another method that
might have to be overridden is updateUsing:aNode for:aController which
updates the current edge according to the position of aNode. As an example of that, the
message edge in the Sequence Diagram overrides this method to allow the update to be

according to the dashed vertical line from aNode, an object node, and not aNode itself.

124

Chapter 6

UML Drawing Tool Implementation

6.1 Introduction

The UML Drawing Tool (UDT) is implemented using Smalltalk, VisualWorks 3.0
[Cincom 2000]. The implementation is based on the design described in Chapter 5. The
following sections present samples of the implementation of selected UDT classes. In

source code classes are in Bold and methods are in Ttalic.

6.2 UMLDiagram Class

This class is the model for all UDT page-styles, an object that manages (calculates,
sorts, stores, retrieves, simulates, converts and so on) information [Howard 1995]. It
holds all domain information about a diagram displayed in a single window or Binder
page. It contains two ordered collections, one for storing all the nodes and the other for
storing all the edges of the diagram. In the following subsections, the implementation of

some of the methods of this class will be shown.

6.2.1 Method displayOn:

This instance message is used to display the receiver on an instance of
GraphicContext. It is sent to an instance of UMLDiagram to display all the nodes and
edges on the drawing window for that diagram using the window’s GraphicsContext
object. It first asks each node to display itself on the drawing area relative to its origin and
then asks each edge to display itself.

displayOn: aGraphicsContext

125

self nodes do: [:node | aGraphicsContext display: node
at: node origin].
self edges do: [:edge | aGraphicsContext display: edge

at: edge origin]

6.2.2 Method componentAt:

This instance message is used when the user wants to select, drag or display a pop-
up menu for a specific shape. It is called when a mouse button is pressed inside the
drawing area. It is sent to an instance of UMLDiagram to return a component at a
specific point. If there are more than one component, the most recently added component
is returned. The argument aPoint represents a point on the drawing area of the diagram,
the position of the mouse cursor. The method first searches the edges collection and
returns the first edge that contains this point in its bounding area. If no edge is found, it
searches the nodes collection for that point.
componentAt: aPoint

self edges do: [:edge | (edge containsPoint: aPoint)
ifTrue: ["edgell.

self nodes do: [:node | (node containsPoint: aPoint)
ifTrue: ("nodel].

“nil

126

6.2.3 Method shapesInside:

This instance message is used when all shapes inside a specific rectangle are to be
dragged together. It is sent to an instance of UMLDiagram to return a collection of all
the shapes (nodes and edges) that are displayed inside a specific rectangle. Argument
aRectangle represents a rectangle on the drawing area of the related diagram. The
method first creates a collection of all the nodes inside aRectangle and then adds all
the edges inside the rectangle to that collection. It then returns the final collection.
shapesInside: aRectangle

| aCollection |

aCollection := self nodesInside: aRectangle.
aCollection addAll: (self edgesInside: aRectangle).

~aCollection

6.2.4 Method nodesInside:

This instance message is used when all nodes inside a specific rectangle are to be
dragged together. It is sent to an instance of UMLDiagram to return a collection of all
the nodes that are displayed inside a specific rectangle. The argument aRectangle
represents a rectangle on the drawing area of the diagram. Method layout returns the
smallest rectangle that completely covers the receiver.
nodesInside: aRectangle

“self nodes select: [:node | aRectangle contains: node

layout]

127

6.3 UMLEditor Class

This class is the superclass of all UML diagram editors. It provides a drawing area
and a toolbar with buttons, initiates all UDT tool operations and collaborates with other
classes to execute them. Following is the description of some of the methods implemented

in this class.

6.3.1 Method newWith:

This class message is used for opening a page with a specific diagram. It is sent to
a subclass of the UMLEditor class to create a new instance of the class on a specific
diagram. The argument aDiagram represents a UMLDiagram object, such as a Class
and Object Diagram, a Sequence Diagram, etc., that this editor should display. It first
creates a new instance of the receiver and then initializes the receiver with the nodes and
edges of aDiagram.
newWith: aDiagram

~“self new initializeWith: aDiagram

6.3.2 Method removeNode

This instance message is sent to an instance of a subclass of UMLEditor when the
user selects “remove node” from a pop-up menu. It removes the currently selected node
and all its edges. It first asks the UMLDiagram object to delete the current node and then
asks the UMLEditorView object to remove the current selection. After that it updates the

DoUndoRedo object. The next step is the deletion of all the edges that are attached to the

128

current node. The last step is to tell its dependents that it has changed so that the diagram

can redisplay itself.
removeNode
| edges node |
node := self currentNode.
self diagram removeNode: node.
self view unSelect: node.
self doUndoRedo undo: #reDoAddNode: redo: #unDoAddNode:
arguments: (Array with: node).
edges := self diagram edgesFor: node.
edges do: [:edge | self currentEdge: edge.
self removeEdge].

self changed: node kind with: node

6.3.3 Method executeOperationWith:

This instance message is sent to an instance of a subclass of UMLEditor by the
UMLEditorController when the user clicks the right mouse button inside the drawing
area of the current diagram. It first needs to determine which action is to be performed.
The message value is usually an action, message, related to the type of action that
should be performed. If message is undefined, nothing happens. The following are some
valid values for the message instance variable: #addNewNodeAt:,
#addNewEdgeAt:, #dragShapeAt: and #addNewConnectionAt: The argument

aPoint is the point in the window where the mouse button was clicked.

129

executeOperationWith: aPoint
self message isNil ifFalse: [self perform: self message

with: aPoint]

6.3.4 Method dragShapeAt:

This instance message is sent to an instance of a subclass of UMLEditor, such as
UMLClassEditor, by the UMLEditorController when the user clicks the right mouse
button inside the drawing area of the current diagram. It first asks the view, an instance of
UMLEditorView, for the selection at aPoint. The selection is not nil if a shape at
aPoint was previously selected. If no selection is found, the method makes the shape at
aPoint the current selection. It clears all selections if no shape is found. If a selection is
found, the method asks the controller to drag the shape inside the selection to where the
mouse is inside the window.
dragShapeAt: aPoint

| handle umlShape |
message := nil.
handle := self view handlesAt: aPoint.

handle isNil ifFalse: ([~controller drag: handle shape
start: aPoint].

umlShape := self view visualComponentAt: aPoint.

umlShape isNil ifTrue: ["self view unSelectExcept:

OrderedCollection new].

130

self view unSelectExcept: umlShape asHandle

asOrderedCollection

6.3.5 Method addNewEdgeAt:

This instance message is sent to an instance of a subclass of UMLEditor by the
instance method executeOperationdt: aPoint when the user executes the new
edge command. It adds a new edge between two nodes. It first checks whether the from-
side of the edge is on a valid node by asking the view to return the visual component at
aPoint and checking whether the returned shape is a shape valid for this edge. Then it
asks the controller object to draw a line from aPoint to the last point where the left
mouse button was down and checks whether that point is on a shape valid for this edge. If
the shape is valid, it updates the current edge with the appropriate origin, corner, from-
side node’s name and to-side node’s name values and adds it to the UMLDiagram object
edges collection. Finally, it updates the diagram by sending its receiver the message
updateChanges:.
addNewEdgeAt: aPoint

| shapel endPoint shape2 |

shapel := self view visualComponentAt: aPoint.
(self validView: shapel) ifFalse: ["self].
endPoint := controller getLineFromUserAt: aPoint.
shape2 := self view visualComponentAt: endPoint.
(self validView: shape2) ifFalse: [“self].

shapel = shape2 ifTrue: ["self].

131

(self isValidFrom: shapel kind to: shape2 kind
connection: self currentEdge kind)
ifFalse: [~self].

self currentEdge connectFrom: shapel to: shapel2.

self diagram addEdge: self currentEdge.

self updateChanges: self currentEdge

Method updateChanges: aShape sets the value of message to nil and
sends its receiver the message changed: with: so its view updates itself accordingly.
updateChanges: aShape

message := nil.

self controller cursor show.

self changed: aShape kind with: aShape

6.3.6 Method changeNodeName:

This instance message is sent to an instance of a subclass of UMLEditor when the
user selects “change name” from the <operate> menu. It changes the name of the currently
selected node in the diagram. It first asks the user to enter a new name and then asks the
current node to change its name to the new name and redisplay itself. Then it asks the

view of this class to update all the edges that are connected to this node. After that it

sends the receiver the message changed:

updated accordingly.

changeNodeName

132

with: so that all its dependents will be

| name nodeFullName edges node |

name := Dialog regquest:

initialAnswer:

(name isEmpty or: [name =
[*self].
nodeFullName
self currentNode name: name.
node := self currentNode.
self view
3 @ 3) repairNow: true.
self diagram edgesDo: [:edge
nodeFullName with: node
edges :=

self view updateEdges: edges

self changed: node kind with:

6.4 UMLEditorView Class

self currentNode name])

invalidateRectangle:

self edgesFor: node.

'Enter new Name : °

self currentNode name.

ifTrue:

:= self currentNode fullName.

(node layout expandedBy:

| edge changeSideName:

fullName].

using: node.

node

This class defines the view (the object responsible for display) for all UDT

diagrams editors. It provides a drawing area for drawing a selected type of a UML

diagram. It scrolls its contents horizontally and vertically to allow the drawing of large

133

diagrams and provides all operations that deal with the drawing of nodes and edges. It

holds UMLHandle objects for marking a node or an edge as selected.

6.4.1 Method updateEdges: using:

This instance message is sent to an instance of UMLEditorView by its controller
when dragging a UMLNode object from one position to another. It updates the origins
and corners of all edges in the first argument, edges, to match the second argument,
aNode, which is a UMLNode object. Message updateUsing: for: is sent to each
edge in edges.
updateEdges: edges using: aNode

edges do: [:edge | edge updateUsing: aNode for: self

controller]

Method updateUsing: for: is sent to an instance of a subclass of UMLEdgeView
to check whether the edge is a line segment or a polyline. If the edge is segment (line with
only two points), the instance message updateLineUsing: for: is sent to that edge.
If the edge is a polyline with more than two points, the instance message
updatePolyLine: is sent to that edge. This method will be explained in the next
subsection.
updateUsing: aNode for: aController

self isLine

i1fTrue: [self updateLineUsing: aNode for: aController]

ifFalse: [self updatePolyLineUsing: aNode]

134

Method updateLineUsing: for: is sent to an instance of a subclass of
UMLEdgeView to find the UMLNode object connected to this edge and adjusts the edge

to the shortest distance between the centers of the two nodes.

updatelineUsing: aNode for: aController

j nodel node2 |
(self from sameAs: aNode fullName)

ifTrue: [nodel := aNode.

node2 := aController model diagram

FfindNodeNamed: self to]

ifFalse:[nodel := aController model diagram

findNodeNamed: self from.
node?2 := aNode].
self origin: (nodel nearestPointTo: node2 layout center).

self corner: (node2 nearestPointTo: nodel layout center)

Method updatePolyLine: is sent to an instance of a subclass of UMLEdgeView

to check if it is connected at the from-side, its origin is updated and if it is connected at the

to-side, its corner is updated.
updatePolyLineUsing: aNode

| point |

{aNode fullName samelds: self from)ifTrue: [

point := self at: 2.

self origin: (aNode nearestPointTo: point)]

ifFalse: [(aNode fullName samelAs: self to) ifTrue: [

135

point := self at: self size - 1.

self corner: (aNode nearestPointTo: point)]]

6.4.2 Method updateEdge: using:

This instance message is sent to an instance of UMLEditorView by its controller
when dragging a segment of UMLEdge object from one position to another inside the
view drawing area. It updates the origin and corner of anEdge according to the positions
of the nodes in the nodes argument. For each node in the nodes collection, it sends the
instance message updatePolyLine: (the code is shown in the previous subsection) to
anEdge.
updateEdge: anEdge using: nodes

nodes do: [:node | anEdge updatePolyLineUsing: node]

6.5 UMLEditorController Class

This class is the controller for all UDT editor views. It uses polling to handle all
the mouse events. It defines the <operate> menu and launches some operations when the
left mouse button is pressed. Some of the operations associated with the left mouse button
are: dropping a shape on the diagram, selecting or unselecting a shape and dragging a

shape inside the window.

136

6.5.1 Method yellowButtonActivity

This instance message is sent to an instance of UMLEditorController when the
user presses the <operate> (‘yellow’) mouse button. It opens a pop-up menu related to the
shape in that position. It first asks the view to find the shape at the cursor point, by
sending the message visualComponentAt: aPoint to the view, and then displays
the right pop-up menu for that shape. If there is no shape at that point, the method
displays a pop-up menu that enables the user to add new UML shapes specific to that
diagram. If the shape is a node, it sets the current node to be this node and asks the model
of the view to supply the pop-menu associated with this node and displays it. If the shape
is an edge, it sets the current edge to be this edge and asks the view’s model to supply the
pop-up menu associated with this edge and displays it.
yellowButtonPressedEvent: event

self yellowButtonActivity

yellowButtonActivity
| umlObject |
umlObject := self view visualComponentAt:
self sensor cursorPoint.
umlObject isNil
ifTrue: [self menuHolder value: self model viewMenu]
ifFalse: [self updateChanges: umlObject]

super yellowButtonActivity.

137

updateChanges: aShape
aShape isNode
ifTrue: [self model currentNode: aShape]
ifFalse: [self model currentEdge: aShapel.
self menuHolder value:

(self model perform: (aShape kind , 'Menu') asSymbol)

6.5.2 Method getLineFromUserAt:

This instance message is sent to an instance of a UMLEditorController by its
view’s model to draw a line following the cursor movement on the screen. It is used when
adding an edge between two UMLNode objects. It asks the Screen to show a line on the

screen starting at aPoint and returns the last point on the screen where the left mouse

button was up.
getLineFromUserAt: aPoint
| line |
line := Array with: aPoint with: aPoint.
Cursor crossHalr showWhile: [
[self sensor redButtonPressed] whileTrue: [
Screen default displayShape: line at: self sensor
globalOriginforMilliseconds: O.
self viewHasCursor ifTrue: [
line at: 2 put: self sensor cursorPointl]].

~line at: 2

138

6.5.3 Method drag: start:

This instance message is sent to an instance of a UMLEditorController by its
view’s model when the user clicks the left mouse button on a selected shape. The first
argument umlShape is the shape to be dragged inside the drawing area and the second
argument aPoint is the starting point. The method sends the method dragAt: for: to
umlShape and the method changed to its model so its view will change accordingly.
drag: umlShape start: aPoint

umlShape dragAt: aPoint for: self.

self model changed

The next two methods are required by the above definition if umlShape is a node.
They are sent to an instance of a subclass of UMLNodeView. Method dragAt: for:
asks the model for all the edges that are connected to this node and then removes them.
After that it sends the message dragWith: at: to its receiver which drags the selected
node to follow the cursor position. This process stops when the left mouse button is
released. Finally all the updated edges of this node are added back to the diagram.
dragAt: aPoint for: aController

| oldPoint oldLayout edges |

oldPoint := aPoint.

edges := aController model edgesFor: self.

edges do: [:edge | aController model diagram

removeEdge: edge].

aController view invalidate.

139

oldLayout := self layout expandedBy: 3 @ 3.
Cursor hand showWhile: [[aController sensor redButtonPressed]
whileTrue: [aController viewHasCursor ifTrue: [
oldPoint := self dragWith: edges at: oldPoint
inside: oldLayout for: aController]]l].

edges do: [:edge | aController model diagram addEdge: edge]

Method dragWith: at: drags the receiver from its original position to follow the
cursor position and draws lines on the screen for each edge that is connected to this node.

dragWith: edges at: aPoint inside: aRectangle for: aController

| newPoint oldLayout |
oldLayout := aRectangle.
newPoint := aController sensor cursorPoint.
newPoint = aPoint ifFalse: [
self moveBy: newPoint - aPoint.
aController view updateEdges: edges using: self.
edges do: [:edge | Screen default
displayShape: edge edge
at: aController sensor globalOrigin
forMilliseconds: 10].
aController view invalidateRectangle: oldLayout
repairNow: true.

oldLayout := oldLayout moveBy: newPoint - aPoint.

140

aController view invalidateRectangle: oldLayout
repairNow: true].

“newPoint

The next three methods are required by the definition in 6.5.3 if umlShape is an
edge. They are sent to an instance of a subclass of UMLEdgeView. Method dragAt :
for: asks the receiver (an edge) for the nearest point on its drawing area to aPoint. If
the nearest point was the first or the last point on the edge then no dragging is allowed. If
the nearest point is an inner point then if it is the second or the one before the last then
dragEndPointAt: start: for: is sent. If the point was between the second and

the one before the last then dragMiddlePointAt: start: for: is sent.

dragAt: aPoint for: aController
| point indexl index2 |
point := self nearestPointTo: aPoint.
(point = self origin or: [point =self corner]) i fTrue: [*self].
indexl := self endsOf: point.
indexl isNil ifTrue: [“self].
(self edge indexOf: point) isZero ifTrue: [
self add: point after: (self at: indexl)].
index2 := indexl + 1.
(index2 = 2 or: [index2 = (self size - 1)1])
i1fTrue: [self dragEndPointAt: index2 start: aPoint

for: aController]

141

index2 start: aPoint

ifFalse: [self dragMiddelPointAt:
for: aController]

Method dragMiddlePointAt: start: for: is sent to drag the receiver from

the middle.
dragMiddelPointAt: pos start: aPoint for: aController
| newPoint oldPoint oldLayout |

oldPoint

:= aPoint.
Cursor hand showWhile: [[aController sensor

redButtonPressed]
whileTrue: [aController viewHasCursor IfTrue: [
newPoint := aController sensor cursorPoint.
newPoint = oldPoint ifFalse: [

oldLayout := self layout expandedBy: 3 @ 3.

self at: pos put: (self at: pos)

+ (newPoint - oldPoint).

= newPoint.

oldPoint
aController view invalidateRectangle:

oldLayout repairNow: true.

aController view invalidateRectangle:

self layout repairNow: truel]]]]

Method dragEndPointAt: start: for: is used to drag the receiver (an

edge) from one of its ends.

142

dragEndPointAt: pos start: aPoint for: aController
| newPoint oldPoint oldLayout col |
0ldPoint := aPoint.
col := OrderedCollection new.
pos = 2 1fTrue: [col add: (aController model diagram
findNodeNamed: self from)].
pos = (self edge size =~ 1) ifTrue: [col add:
(aController model diagram findNodeNamed: self to)].
Cursor hand showWhile: [[aController sensor redButtonPressed]
whileTrue: [aController viewHasCursor ifTrue: [
newPoint := aController sensor cursorPoint.
newPoint = oldPoint ifFalse: [
self moveAt: pos from: oldPoint to: newPoint
with: col for: aController.

oldPoint := newPoint]l]]

6.6 DiagramGeneratorBrowser Class

This class provides a browser that is used for reverse engineering. Its layout is
almost identical to the Smalltalk Browser but adds a list for selecting the classes for which
a class diagram should be drawn (see Figure 4-9). It invokes all the operations for
selecting the desired classes either by dragging the whole category or just a class to the
selection list. In the following subsections, the implementation of some methods will be

shown.

143

6.6.1 Method createDiagram

This instance method is used to create a partial class diagram for the selected
classes. It is sent to an instance of DiagramGeneratorBrowser when the user clicks the
Create button in Figure 4-9. It first creates a new instance of UMLRelationsBuilder
on the selected classes and then sends that instance the message as UMLDiagram which
converts that instance to an instance of UMLDiagram. Finally, it assigns this instance of
UMLDiagram to the callers diagram for display on the caller’s window.
createDiagram

| associations |

associations := UMLRelationsBuilder on: self
getSelectedClasses.

self caller diagram: associations asUMLDiagram.

self cancelDiagram

6.7 UMLRealtionsBuilder Class

This class provides all the functionality for dealing with reverse engineering. It
implements all the necessary functions for finding the associations and generalizations for
a collection of classes and provides information necessary for drawing the diagrams. It
contains three ordered collections, one for storing the selected classes, another for storing
all the associations and the third one for storing all the generalizations. In the following

subsections, the implementation of some methods will be shown.

144

6.7.1 Method on:

This class message is used to create an instance of UMLRelationsBuilder on
classes selected by the wuser. It is sent to UMLRelationsBuilder by
DiagramGeneratorBrowser to return an instance initialized to the classes in the
argument aCollection.

on: aCollection

~self new mainClasses: aCollection

6.7.2 Method asUMLDiagram
This instance method is used to convert the receiver to an instance of

UMLDiagram. It is sent to an instance of UMLRelationsBuilder by
DiagramGeneratorBrowser to return an instance of UMLDiagram. This instance then
can be displayed in a Class Diagram editor’s window.
asUMLDiagram

| umlDiagram |

umlDiagram := UMLDiagram new.

self getNodes: umlDiagram.

self getEdges: umlDiagram.

~“umlDiagram

145

6.7.3 Method classReferences:

This instance method is used to return a collection of all classes that reference the
class in the argument. It is sent to an instance of UMLRelationsBuilder with the name of
the class as an argument. It first gets the ‘user’ classes from the class SmalltalkClasses
and then searches the selectors of all these classes for aSymbol.

classReferences: aSymbol

| calls userClasses |

calls := Set new.
userClasses := SmalltalkClasses userClasses asSet.
userClasses := userClasses collect: [:class |

(Smalltalk associationdAt: class) value].

userClasses do: [:class | (((class whichSelectorsReferTo:

(smalltalk associationAt: aSymbol)) asSet) addAall:
(class whichSelectorsReferTo: aSymbol); yourself)

isEmpty ifFalse: [
calls add: class instanceBehavior name]l].

~calls asOrderedCollection

146

Chapter 7

Conclusion

7.1 Summary

The purpose of this thesis was to develop a tool that could be used to support the
drawing of several types of UML diagrams, their integration into a larger software
development environment (the Binder) and reengineering of existing code. This was
achieved through the following:

e Studying object-oriented methodologies. Several object-oriented methodologies were
studied to accomplish two things: understanding the need for a methodology in object-
oriented software development and understanding the differences and similarities
between object-oriented methodologies.

e Studying the Unified Modeling Language (UML). Since the aim was to allow for the
drawing of selected types of UML diagrams, a comprehensive study of UML was
done.

¢ Designing and implementing UDT.

e Studying the Binder program. A full study and understanding of the Binder allowed
the integration of the tool into the Binder to be accomplished easily.

The result of these activities is UDT — UML Drawing Tool. UDT enables the
drawing of the following UML diagrams: Class and Object Diagrams, Use Case Diagram,
Sequence Diagram, State Diagram and Package Diagram. UDT implements these
diagrams as page styles for the Binder program. The drawing is accomplished by

providing an editor and a toolbar for each page style. The toolbar provides general buttons

147

for creating, storing, loading and printing of selected UML diagrams, undoing and redoing
of previous actions and adding a note and note connection to the selected UML diagram.
It also provides buttons for adding edges and nodes for each supported UML diagram.
The editor provides a drawing area for the selected diagram. It enables the selection,
deleting and dragging of any shape in the diagram. For each shape, the editor provides a
specific pop-up menu for that shape.

UDT also provides the following forward and reverse engineering mechanisms: It
allows for the defining of classes and their variables and the creation of empty methods
from diagrams. It also enables partial creation of UML class diagrams from Smalltalk code

including inheritance and association.

7.2 Future Work

Based on the work done in this thesis, many topics can be suggested for future
work. Some of these topics are:

e Extending UDT to include the remaining UML diagrams. Other UML diagrams can be
implemented as page-styles to the Binder. This can be accomplished by subclassing
UMLEditor class to provide an editor for the new diagram and subclassing
UMLEditorController and UMLEditorView classes if necessary. All the nodes in
the diagram should be represented by views that are subclasses of UMLNodeView
and all edges should be represented by views that are subclasses of UMLEdgeView.
Also each diagram’s editor should have a client class that is a subclass of

UMLEditorClient (to be used for the Binder).

148

Automatic creation of other diagrams from code. Parts of other UML diagrams can be
generated from a Smalltalk code. An example is generating Sequence Diagrams from
use cases.

Applying changes to the Smalltalk library. In the current version of UDT some
changes to a class in a UDT diagram, such as removing or renaming a class or
changing its state or behavior, are not applied to the library. In future versions, these
changes could be made to allow for a stronger link between the diagram and the code.
Design control capturing the evolution of diagrams could be implemented as a part of
the Binder and linked to source code versions.

Dynamic diagrams such as sequence and state diagrams could be used to support and
partially automate the creation of texts.

Additional reverse engineering tasks on the basis of more sophisticated code analysis

or runtime tracing.

[Booch 1993]

[Booch 1994]

[Booch 1995]

[Booch 1996]

[Booch 1997]

[Booch 1999]

[Cincom 2000]

[Coad 1991a]

[Coad 1991b]

[Coleman 1994]

[Demmer 1997]

[Eriksson 1998]

149

Bibliography

Booch, G., Object-Oriented Analysis and Design with Applications,
2nd edition, Benjamin Cummings, Redwood City, California, 1993.

Booch, G., Object-Oriented Analysis and Design with Applications,
Benjamin Cummings, Redwood City, California, 1994.

Booch G. and Rumbaugh J., Unified Method for Object-Oriented
Development, Documentation Set Version 0.8, October 1995.

Booch G., Jacobson L. and Rumbaugh J., The Unified Modeling
Language for Object-Oriented Development, Documentation Set
Version 0.91, September 1996.

Booch G., Jacobson I. and Rumbaugh J et. al., The Unified
Modeling Language for Object-Oriented Development Version 1.0,
UML Notation Guide, UML Summary, UML Semantics, Rational
Software Corporation, January 1997 and the UML 1.1 update of
Sept. 1997.

Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling
Language User Guide, Addison Wesley Longman, Inc, 1999.

Cincom’s VisualWorks — Smalltalk Software,2000. Available via:
http://www.cincom.com/visualworks/

Coad, P. and Yourdon, E., Object Oriented Analysis (2nd Edition),
Yourdon Press, Engiewood Cliffs, New Jersey, 1991.

Coad, P. and Yourdon, E., Object Oriented Design, Yourdon Press,
Englewood Cliffs, New Jersey, 1991.

Coleman, D., Amold, P., Bodoff, S., Dollin, C., Gilchrist, H.,
Hayes, F. and Jeremaes, P., Object-Oriented Development The
Fusion Method, Prentice Hall, Englewood, New Jersey 07632,
1994.

Demmer, C., UML 1.1 vs. MWOOD, using material from Booch,
G., Rumbaugh, J. and Jacobson, 1., 1997. Available via:

http://stud2.tuwien.ac.at/~e8726711//ummw] .html

Eriksson, H. and Penker, M., UML Toolkit, John Wiley & Sons,
ISBN: 0471191612, 1998.

[Firesmith 1993]

[Firesmith 1998]

[Gottesdiener 1998]

[Howard 1995]

[IEEE 1998]

[Jacobson 1992]

[Jacobson 2000]

[Martin 1993]

[McKean 1995]

[Networld 1999]

[Oestereich 1999]

[Rational 2000]

[Richter 1997]

150

Firesmith D.G., Object-oriented Requirements Analysis and Logical
Design - ASE Approach, John Wiley & Sons NY, 1993.

Firesmith, D., Henderson-Sellers, B. and Graham, I., OPEN
Modeling Language (OML) Reference Manual, Cambridge
University Press, 1998.

Gottesdiener, E., O0O-Methodologies: Process & Product Patterns,
Component Strategies, Vol. 1, No 5, 1998.

Howard, T., The Smalltalk Developer’s Guide to VisualWorks,
SIGS Publications, Inc., New York, 1995.

[EEE “Recommended Practice for Architectural Description,”
Draft Std. P1471, IEEE, 1998.

Jacobson, L., Christerson, M., Jonsson, P. and Overgaard, G.,
Object-Oriented Software Engineering, Addison-Wesley, 1992.

Jacobson, 1., Rumbaugh, J. and Booch, G., The Unified Software
Development Process, Addison Wesley Longman, Inc., 1999.

Martin, J. and Odell, J., Object Oriented Analysis and Design,
Prentice Hall, Englewood, New Jersey, 1993.

McKean, A., and Wirfs-Brock, R., Responsibilities-Driven Design
“Tutorial Notes, Tutorial 42”. ParcPlace-Digitalk, Inc., 1995.

Networld Solutions - All rights reserved. QuallT and POC are
registered service marks of Paladin Enterprises, Inc., 1999.
Available via:
http://www.networld-solutions.com/qualit/default. htm

Oestereich, B., Developing Software with UML, Object-oriented
analysis and design in practice, Addison Wesley Longman Ltd,
1999.

Rational Software, The Unified Modeling Language (UML), 2000.
Available via: _http://www.rational.com/

Richter, C., Exploring the Unified Modeling Language (UML) by
Example, Object Engineering, Inc, 1997.

[Rose 1996]

[Rumbaugh 1991]

[Shlaer 1992]

[Technology 1997]

[Together 1998]

[Tomek 2000]

[Waldén 1995]

[Wirfs-Brock 1990]

151

The Rational Rose, Rational Software, 1996. Available via:
http.//www rational.com/

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen,
W., Object-Oriented Modeling And Design, Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

Shlaer, S. and Mellor, S.J, Object Lifecycles: Modeling the world in
states, Prentice-Hall, Englewood Cliffs, New Jersey, 1992.

Object Oriented Technology, 1997. Available via:
http://disc.cba.uh.edu/~rhirsch/spring97/lam1/hope htm

Together J/C++, Object International, Peter Coad’s Company,
1998. Available via: http://www.oi.com/

Tomek, I., An Electronic Binder for an Object-Oriented Analysis
and Design course, SIGCSE, Symposium, Austin, 2000.

Waldén, K. and Nerson, J., Seamless Object-Oriented Software
Architecture: Analysis and Design of Reliable Systems, Prentice
Hall, 1995.

Wirfs-Brock, R., Wilkerson, B. and Wiener, L., Designing Object-
Oriented Software, Prentice Hall, Englewood, New Jersey 07632,

1990.

