
EMOO - Experimental MO0 - 
A Virtual Environment Framework 

by 

Min Wu 

Thesis 
Submitted in partial fulfillment of the requirements for 
the Degree of Master of Science (Cornputer Science) 

Acadia University 
Fall Convocation 2000 

C3 by Mïn Wu, 2000 



National Library 1+1 ofcanada 
Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services services bibliographiques 

395 Wellington Street 395. rue Wellington 
OttawaON KlAON4 Ottawa ON K I  A ON4 
Canada Canada 

Your fi& Votre rderenœ 

Our & Notre r e f d r m  

The author has granted a non- 
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microfom, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts fkom it 
may be printed or othenivise 
reproduced without the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/fh, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation. 



ABSTRACT ........................................................................................................... ......................... VII 

......... ............................................................. ............................................................... DEDICATION ..... .. IX 

CHAPTER 1 PREFACE .............................................................................................................................. 1 
1.1 ~ N T R O D U ~ O N  .................................................................................................................................... 1 
1.2 ORGANIZA~?ON OF THE THESIS .............................................................................................................. 2 

CHAPTER 2 BACKGROUND INFORMATION .................... ,... ....................................................... 4 

2-1 WHAT IS A VIRWAL ENVIRONMEW? ................................................................................................... 4 
....................................................................................................................... 2 2  WHAT IS A MUDIMOO? 4 

2 3  BRIEF HSTORY ...................................................................................................................................... 5 
2.4 HOW Do MUDS AND MOOS WORK AND WHAT ARE ïHEIR FUNCTIONS? ........................................... 6 
2.5 RECENT RESEARCH iN THIS AREA .......................................................................................................... 7 

2.5.1 LambdaMOO ................................................................................................................................. 7 
2.5.2 Jersey MO0 ................................................................................................................................... 8 
2.5.3 MU34 ........................................................................................................................................... 11 

2.6 CONCLUS ION ....................................................................................................................................... 13 

CHAPTER 3 EMOO DEVELOPMENT TECEfNOLOGY .................................................................... 14 

3.4.2 Sockers ......................................................................................................................................... 19 
3.4.3 DCOM ......................................................................................................................................... 20 
3.4.4 CORBA ........................................................................................................................................ 20 

3.5 WHY TBUILDER? ................................................................................................................................. 21 
3.6 WHY UML? ........................................................................................................................................ 23 
3.7 WHY RATIONAL ROSE? .................................... ,... ............................................................................... 24 
3.8 CONCLUS~ON ..................................................................................................................................... 25 

C W T E R  4 SYSTEM SPECIFICATION .............................................................................................. 26 

4.1 AN OVERWEW OF EMOO .................................................................................................................... 26 
4.2 BASIC PR~NCIPLES .......................................... .... ............................................. 26 
4.3 EMOO: HIGH-LEVEL USE CASES ....................................................................................................... 28 

4.3.1 Major Use Case Categories ............. ,... ................................................................................ 28 
4.3.2 Category I - Login and Logout ................................................................................................... 29 
4.3.3 Category 2 - Events and Tools .................................................................................................... 31 
4.3.4 Category 3 - Server and Universe ............................................................................................... 34 
4.3.5 Category 4 - Metaserver ............................................................................................................. 36 

.......................................................... ........................................... CHAPTER 5 DESIGN OVERVIEW ,., 37 

5.1 THE BIG PICTURE ................................................................................................................................. 37 
5 -2 OVERALL ARCHITECTURE ................................................................................................................... 38 

.......................................................................................... .................... 5.3 P ~ C I P L E S  OF OPERATION .. 39 

.......................................................................................................... CHAPTER 6 DETAILED DESIGN 43 



6.1.1 Overview .............. ....... ........................................................................................................... 43 
6.1.2 CIasses and 1nterfce.s ................................................................................................................. 44 

.......................... .......................................................................................................... 6.2 UN~VERSES .. 48 
...................................................................................................................................... 6.2.1 Overview 48 

......................................................................................................................................... 6.2.2 c~asses 49 
.......................................................................................................... 6.3 E m s  AND EVENT HANDLING 5s 

6.3.1 Overvi av.. .................................................................................................................................. 55 
......................................................................................................................................... 6.3.2 Classes 56 

........................................................................................ 6.3.3 Event Handling and Masage Passing 57 
................................................................................................................................ 6.3.3.1 Operation of events 58 

........................................................................................................................... 6.3.3.2 Operation of messaqes 59 
................................................................................................................................................. 6.4 Toou 60 

...................................................................................................................................... 6.4.1 Overview 60 
.................................................................................................................................. 6.4.2 Basic Tools 60 

............................................................... CHAPTER 7 ENVIRONMENT COMPARISONS ... 62 

. ............................................................................................................................... 7-1 EMOO vs MUM 62 . . . .  7-1-1 Szmzlannes ................................................................................................................................... 62 
7.1.2 Drrerences ................................................................................................................................... 63 

. 7.2 JAVA vs SMALLTALK ...................................... ... ........................................................................... 66 
7.2.1 About Java and SmalZtalk ........................................................................................................... 66 

..................................................................................... 7.2.2 Similarities between Java and Smalltalk 68 
7.2.3 Drrerences between Java and Smalltalk ........................ .. ....................................................... 69 

................................................................................................................................... 7.2.4 Conclusion 78 

CHAPTER 8 USING EMOO .................................................................................................................... 81 

8.1 ~NSTAUMG EMOO .......................................................................................................................... 81 
.................................................................................................................. 8.2 STARTING A METASERVER 81 

................................................................................................... 8.3 STARTMG AND SAVMG A UNIVERSE 82 
8.4 RUNNING A CLIENT ............................................................................................................................. 87 

CEfAPTER 9 CONCLUSION. ...................... .. ............................................................................... 101 

9.1 CURRENT STAE OF EMOO ............................................................................................................... 101 
..................................................................................................................................... 9.2 CONCLUSION 101 

9.3 FüTURE WORK ................................................................................................................................ 102 

GLOSSARY ..................... ........... ........................................................................................................... 104 



TABLE OF FIGURES 

.................................................................................. . FIGURE 2.1 LAMBDAMOO'S CONNECTION INTERFACE 8 

.................................................................................. . FIGURE 2-2 PORTION OF TWUMOO USER INTERFACE 9 
. ...............-...........................--.......*....................-.--.................. FIGURE 2-3 JERSEY'S MAJN USER INTERFACE 10 

FIGURE 2.4. MUM LAUNCHER ..................................................................................................................... 12 
. ........................................................................................................................ FIGURE 2-5 MUM U ~ O O L  12 

..................................... . FIGURE 3-1 INTERACTION BETWEEN A SERVER, A CLIENT AND THE ~ G I S T R Y  18 
............................................................................... . ..-......-.. FIGURE 4-1 MAJOR USECASE DIAGRAM .... 28 

...................................................... . ....................... FIGURE 4-2 LOGIN/LOGOUT USE CASE DIAGRAM .... 29 
............................................................... . ..-...-.............. FIGURE 4-3 EVENTSJ~OOLS USE CASE DIAGRAM ,, 31 

. FIGURE 4.4 SERVER/UNIVERSE USE CASE DIAGRAM ..................................................................................... 33 
 FIGURE^-5. METASERVER USE CASE DIAGRAM ......................................................................................... 36 
 FIGURE^^. EMOO BIG PICTURE .................................................................................................................. 36 
FIGURE 5.2 . EMOO's OVERALL ARCHITECTURE .......................................................................................... 38 

.............................................. FIGURE 5-3- E X E C ~ G  A COMMAND ON A SELECTED OBJECT ..................... .. 41 
. ................................................................................ FIGURE 6-1 ACTIVITY DIAGRAM OF LOGIN OPERATION 44 
. .-........................................................*................................. FIGURE 6.2 NETWORK LAYER CLASS DIAGRAM 44 
. ...................................................................................................... FIGURE 6-3 UNIVERSE CLASS DlAGRAM 49 

FIGURE 6 4  . EM0 CLASS DIAGRAM ............................................................................................................. 50 
........................................................................................... . FIGURE 6-5 EVENT HANDLING CLASS DIAGRAM 54 

........................................................... .................. . FIGURE 6.6 SEQUENCE DIAGRAM OF THE "GO" EVENT ,,., 58 
........................................................................... . FIGURE 6-7 SEQUENCE DIAGRAM OF THE "SAY" MESSAGE 59 

FIGURE 7-1 . WHAT IS JAVA? ........................................................................................................................ 67 
..................................................................................... FIGURE 8-1- EMOO METASERVER USER INTERFACE 82 

..................................................... . ......................... FIGURE 8-2 EM00 UMVERSE USER MTERFACE ..,....... 83 
. FIGURE 8-3 CREATING A NEW OR LOADMG A SAVED EM00 LMlVERSE ................................................... 84 

...................................................................................................... . FIGURE 8-4 CREATING A NEW UNIVERSE 85 
. .......................................................................*............................ FIGURE 8-5 LOADING A SAVED UNIVERSE 85 

FIGURE 8-6- UNIVERSES REGISTERED ON THE METASERVER ........................................................................ 86 
.......................................................................... FIGURE 8-7 . SAVING A UNIVERSE ....... ......................... 86 

......................................................................................... . FIGURE 8.8 EM00 LAUNCHER USER INTERFACE 87 
. .......................*............................................................................. FIGURE 8-9 AVAILABLE UNIVERSES LIST 88 
. .................................-----.......-...-.--...................-................................................ FIGURE 8-10 LOGIN DIALOG 87 
. FIGURE 8-1 1 S E L E ~ G  A TOOL TO OPEN .................................................................................................... 89 

....................................................... FIGURE 8-12 . "CREATIONTOOL" USER -ACE .............................. ., 90 
.............. .....*......................................... ................... FIGURE 8- 13 . "PROPERTYTOOL" USER INTERFACE .,,, ,.. 91 

FIGURE 8-14 . MIN's UNITOOL INTERFACE WHEN WHISPERING TO HEIDI ................................................. 92 
FIGURE 8-15 . AGENT HE~DI IS M "REGISTRY ROOM" AND WANTS GO TO THE "ENTRY ROOM" .................... 93 

. FIGURE 8- 16 OPENMG A RECORDER NAMED "MYRECORDER" ..................................................................... 93 
.............................................................................. . FIGURE 8-17 PORTION O F ~ O O  USERINTEWACE 94 
............................................................................ . ..... FIGURE 8-18 USERPICKS UP "MYRECORDER" ....... 96 

. ..................................................... FIGURE 8- 19 A USER SUBSCRlBES TO ADMINISTRATOR'S PICKUPEVENT 97 

. FIGURE 8-20 THE USER IS NOTIFIED OF EVENT SUBSCRIPTION AND OCCURRENCE ........................................ 98 
..................................................... . FIGURE 8-21 USER UNSUBSCRIBES ADMINISTRATOR'S "PICKUPEVENT" 99 

FIGURE 8.22 . ADMINISTRATOR'S "PICKUPEVENT" HAS BEEN UNSUBSCRIBED ................................. 100 



ABSTRACT 

EMOO - an Experimental MO0 - is an innovative implementation of a virtual 

environment based on M W  (MUD object-oriented) concepts, which provides a user- 

fkiendly interface to a virtual environment. It addresses collaborative work, particularly in 

geopphicaIIy dispersed teams and allows users to subscribe to events and to be notified 

automaticaliy when the event occurs. 

The focus of this thesis project is on conceptual and design issues of EMOO and the 

cornparison of implementation of a similar system in Java and Smalltak. 



1 would like to thank all who helped during the development of this thesis and the 

underlying project. Their suggestions, assistance with the project, reviewing of the thesis 

and overail guidance and support are sincerely appreciated. This includes Dr. Ivan 

Tomek, Dr Rick Giles, Guang Yang, David Murphy, Knsta Yetman, and Marlene Jones. 

In particular, 1 would like to thank my supervisor, Dr. Ivan Tomek, for his consistency of 

instruction and his consideration. It is Dr. Tomek who led me into the object world and 

taught me 00 (Object-Oriented) thinking, 00 analysis and 00 design. 1 could not have 

done it without him. 

1 also want to ttiank to Dr. Peter Hitchcock, my extemal examiner, Dr. Leslie Oliver, my 

internal examiner, Dr. Daniel Silver, acting director, and Dr. Anna Migliarisi, chair, for 

examining my thesis. 



DEDICATION 

To al1 the people who love me and are my beloved. 



Chapter 1 Preface 

1.1 Introduction 

The concept of a networked Virtual Environment (VE) that emulates selected features of 

the physical world has been known and popular at least since the late 1970's when the 

f is t  garne-oriented MUD (Multi-User Dungeons) [Haynes, 19981 was developed. The 

concept has since evolved and modem VEs are used not only in game-piaying but also 

for socialization and education. Lately, as software systems become larger and larger, 

software development often involves geographicaliy dispersed teams of developers. In 

order to explore the concept of using a virtual enviromnent to support such design 

activities, we designed and implemented several projects fiom Jersey MOO, through 

MZTM (Multi-Universe MOO), to the subject of this thesis, a project narned EMOO 

(JZxperimental MOO). Each of them has different implementation and characteristics, and 

a detailed description will be given in Chapter 2. 

EMOO is a VE based on MO0 (MUD object-onented) concepts. As other VEs, it is a 

client-server application, but unlike other VEs, it places heavy emphasis on the client to 

perfonn as much processing as possible to minimize server and network load. Another 

distinguishing feahïre is that it allows its users to subscribe to events and be notified 

when they occur. 

EMOO also allows its users to create an arbitrary number of universes. The management 

and access to individual. network universes is controIled by a metaserver, wbich is aware 



of al1 currently accessible universes. Client operation is based on tools that have graphical 

interfaces to provide access to EMO07s general functionality. 

The implementation Ianguage of EMOO is Java. We have previously used Smalltalk to 

implement a similar environment called MUM (Multi-Universe MOO). MUM is a pilot 

project that has many innovative features, but its design is complicated, which affects its 

performance. EMOO uses dinerent design to address this problem. 

In the rest of this thesis, 1 will describe EMOO design and compare it with MUM with 
I 

the goal of comparing the implementation of these two major applications in the two 

different languages. 

1.2 Organization of the thesis 

The thesis consists of nine chapters. 

Chapter 1 Preface gives a brief introduction of EMOO and an overview of the thesis. 

Chapter 2 Background Information introduces basic concepts of MCTD and MOO, 

their brief history, and a description of research activities in this area. 

Chapter 3 EMOO Development Technologies explains the technologies and the 

development environment used to Unplement EMOO and the reason for using these 

technologies. 

Chapter 4 System Specification describes EMOO design goals and functions, using 

UML to describe high-level use cases. 



Chapter 5 Design Overview outlines EMOO's overall architecture and principles of 

operation. 

Chapter 6 Detailed Design gives a detailed description of individual EMOO 

subsystems and their responsibilities, and the main instance variables and meîhods of 

the main classes. 

Chapter 7 Environment Cornparisons compares EMOO with the simi1a.r system 

MUM. It also compares Java with Smalltalk based on implementation the similar 

systems. 

Chapter 8 Using EMOO uses screenshots to illusiïate step by step how EMOO works 

and how to use it. 

Chapter 9 Conclusion sununarizes EMOO curent state and suggests possible future 

work. 

Glossary gives the deçiitions and description of selected terms. 

Bibliography lists a l l  the references used in the thesis. 



Chapter 2 Background Information 

2.1 What is a Virtual Environment? 

A virtual environment (VE) is a software application that emulates physical world with a 

multitude of navigable places, portable objects, and communicating autonomous entities 

including h a n  users and software agents. Several paradigms have been used to 

implement a VE fiamework, including MUDs, MO Os, digital worlds, virtual reality, 

collaborative buildings, and mixed paradigms. Among them, MUDs and MOOs are used 

most, and their technologies are most mature [Tomek, 20003. 

2.2 What is a MUDMOO? 

MUD is an acronym of Multiple User Dimension, Multiple User Dungeon, or Multiple 

User Dialogue. MUD is a virtual world designed inside a . mputer allowing a user to 

extend the environment, socialize, accornplish goals, solve puzzles, add new areas to the 

world, and generally have a lot of fùn. MUCK, MUSH, MUX, DGD, YAMA, MUSE, 

M W ,  Ogham and MOOS are variants of MUDs [Okstate]. MO0 stands for MUD 

Object Oriented. ft is a M I D  implemented in an Object-Oriented language. 

MUDs (including MOOs) are client-server applications. They started appearing about 

twenty years ago as an Intemet-based version of a popular role-playing fantasy game 

called Dungeons and Dragons. The essence of a MUD is a text-based environment 

including entities such as rooms, castles, caves, and so on, representing a shulated world 



or universe in which participants can move around (navigate), communicate with one 

another, create, destroy, pick up and &op simuiated objects, use them, and cany thern 

around. 

The MUD server typicalIy holds a database representing a vimial representation of a 

physical space organized into "rooms". A room corresponds to a place where objects and 

characters representing users or software agents may be located. One of the essential 

features of MLTDs is that they allow users to communicate. The primary means of 

communication within MSJDs is by talking to characters representing other people who 

are located in the same room. 

2.3 Brief history 

Roy Trubshaw and Richard Bade developed the hrst MUD laiown as MUDI in 1979 

using assembly language programming F i i n e l .  The original version merely allowed 

. a user (player) to move about in a virtual location, but later versions provided for more 

variation including objects and commands that could be modified online or offline. 

As the Internet became popular and extensively used, Jim Aspnes wrote TinyMUD 

Original in August 1989, the fïrst of the 'tiny' family of MCIDs. TinyMUD was a simple, 

user-extensible multi-user game that was available to anyone on the Internet who laiew 

the address and port number of the server. It was created for players to reside in, 

navigate, converse and build virtual worlds together. It kept the entire database in 



memory rather than on hard disk and was much faster. The design assumed that the 

database would not grow too large. 

With the experience of using and developing tiny MUDs, Stephen White created the &st 

MO0 in May 1990. Compared to D s ,  it had greater flexibility in object manipulation, 

and was more realistic in tems of what objects could do by allowing actions to be 

attached to objects, rooms and players. In a MOO, every conceptual object was also an 

object in the implementation sense and had a unique identifier, as weI1 as other properties 

such as a name, current location, description, owner, etc. 

After the creation of the first MOO, Pave1 Curtis created LambdaMo0 in October 1990, 

a popular form of MOO. It was derived fiom Stephen White's MOO. LambdaMOO was 

a network-accessible, multi-user, programmable, interactive system, well-suited to the 

construction of text-based adventwe games, conferencing systems, and other 

collaborative software. It used its own programming language called Lambda MO0 to 

allow users to 

2.4 How do 

create their own objects. 

lMUDs and MOOs work and what are their functions? 

The traditional MUD interface is command-based. Ti1 order to use a MUD, a user must 

have a "character" (also called an "avatar") on the semer and supply a password to login 

to the MUD as that character. Once the connection has been opened, all commands 

entered by the user are perceived to corne fkom the character. When the connection 

closes, the state of the character, including its location, possessions, etc., is usualiy 



preserved by the server. When the user types a command such as 'Sook", the command is 

sent to the MUD server, the server processes the command according to a stored 

dictionary, and sends the result back to the client who displays the result on the screen. In 

some cases multiple-clients are notified Paynes, 19981. 

Though the hrst MUD was game-oriented, the concept has since evolved and modem 

MUDs are used not only for game-playing but also for socialkation, education and 

collaborative work. More details will be provided in the following sections. 

2.5 Recent research in this area 

2.5.1 LambdaMo0 

The currently most popular irnplementation of MUDs for "serious mudding" in 

educational and collaborative uses is LambdaMOO [Lambda]. Lambda is a special- 

purpose object-oriented programming language that allows its users to set up a MO0 

server with a universe of places and objects, define a group of users with the authority to 

rnodi& and extend the universe, and authorize others to use the universe in more or less 

restrictive ways. Figure 2-1 is a screenshot of a LambdaMOO connection. 



t h a t  you haue read  and understood t h i s  warning and t h a t  y o u  
accept these F a c t s  - and t h a t  i n  the  euent o f  any need t o  use 
your  s i t e  in*ormat ion i n  t h e  aforenent ioned nanner, you agree t o  

: ~ a u i n g  read t h e  above t e x t ,  do you wish t o  connect? [YES/NO] 
Okay, ... Guest i s  i n  use- Logging you i n  as %r imon-Wes t8  - Connected - 
Would you l i k e  t o  s t a r t  i n  a n o i s y  o r  q u i e t  enuironnent? n o i s y  enuironment 
will p lace  you  where you can g e t  h e l p  f r o n  o t h e r s  and conuerse; w h i l e  a q u i e t  
enuironnent w i l l  g i u e  you a q u i e t  p lace  t o  read h e l p  t e x t s ,  

[Please respond 'no isy '  o r  ' q u i e t '  o r  '@quit ' , ]  
The L inen C l o s e t  
The l i n e n  c l u s e t  i s  a dark, snug space, with b a r e l y  enough raom f o r  one person 
i n  it, You n o t i c e  what + e e l l i k e  towels, b lankets,  sheets, and spare 
p i l l o w s .  One u s e f u l  t h i n g  you'ue discouered i s  a n e t a l  doorknob s e t  a t  wa is t  
l e v e l  i n t o  what Bight  be a door, Another is a s n a l l  bu t ton ,  s e t  i n t o  t h e  
w a l l .  

There is new news, Type 'news8 t o  read  a l 1  news o r  'news new' t o  r e a d  j u s t  
new news. 

Type ' @ t u t o r i a l '  f o r  an i n t r o d u c t i o n  t o  bas ic  MOOing. I f  you haue n o t  a l ready  
done so, p lease t ype  'help nanners' and read t h e  t e x t  c a r e f u l l y .  I t  o u t l i n e s  
t h e  conumunity s tandard o f  conduct, which each p l a y e r  i s  expected t o  f o l l o w  
w h i l e  i n  LanhdaMOO. 

Figure 2-1. LambdaMOO's comection interface 

2.5.2 Jersey MO0 

Most MUDs and MOOs, including LambdaMOO, use Telnet for their user interfaces. 

More recent implementations started using GUI and web browsers pingua MOO], while 

still m6stiy retaining command-based operations. The user interface of TWUMOO 

[TWUMOO] is a typical example (Figure 2-2) of such an interface. A different approach 

was used by Jersey MOO. 



i 'II 111 Pioneer Commons 
1 MOOuzan version 0.1.7 
CopprighG (C) 1999 Sindre Ssrensen 
MOOtcan cornes mith ABSOLUTELY 80 BLLRRAHTIT 

i R 

!Il environment sponsored bv Texas Woman's El 

Figure 2-2. Portion of TWUMOO user interface 

The basis of Jersey MO0 was developed by Object Technology International Inc. (OTI) 

and extended at Acadia University. It introduced mouse-click-based operation to Save 

their users fiom having to remember many MUD commands. It was used to explore the 

concept of using a virtual environment to support cooperation within and among software 

development teams working on one or several projects, at the same physical location or 

geographically dispersed, at the same time or asynchronously [Tomek, 19991. Jersey 

MO0 consisted of a Smalltak server and a web user interface implemented with Java 

applets (Figure 2-4). Because ail execution occws on the server and the server executes 

Smalltalk messages, al1 communication fiom the client to the server is in tenns of 



SrnaIltalk messages, transmitted over the network as ASCII text. Since Jersey MO0 uses 

Java applets as user interface, it does not require users to remernber and type commands. 

Xnstead, command execution is based on clicking command names. This action then 

produces a command template, whkh is completed by the user and sent to the semer for 

execution. In addition, certain operations are implemented fully by mouse clicks and do 

not require any additional user interaction. Communication and navigation have their 

special interface. Figure 2-3 shows Jersey's main user interface. 

Figure 2-3. Jersey's main user interface 



2.5.3 MUM 

After some experimentation with Jersey, the Acadia University group concluded that its 

design makes it difncdt to implement certain features that are necessary in a vimial 

environment useful for collaborative work and education. For example, keeping users 

informed about some actions in the universe in which they are interested is difficult to 

implement and requires the use of Jersey agents. Moreover, although Jersey removes the 

need to remember commands, the user interface is still not quite as easy to use as a 

window customized for a specific task. Instead of having to fill in a template, the user 

should only need to enter cleariy identified values and click a button to execute the 

command. Because of these shortcornhg of Jersey, it was decided to implement a new 

MO0 with these and other features fiom scratch and the result is MUM - Multi-Universe 

MO0 [Tomek, 19991. 

MLIM provides a user-fiendly interface to a virtual environment, so that the user does 

not need to remember and type commands. It addresses collaboration, particularly in 

geographically dispersed teams, by allowing users to subscnbe to events and to be 

notified automatically when the event occurs. It also allows users to create any number of 

universes, and move their agents with their possessions Çom one universe to another. 

MUM uses event-driven operation to implement these features, that is, every action in 

MUM is an event, and every object in the environment operates solely on the principle of 

response to events. The implementation language is Smalltalk, which a o w s  very easy 

modification of events at run time. Figures 2-5 and 2-6 showing the MUM Launcher and 

MUM UniTool are two examples of a MUM user interface. 



Building Client universe. 
Linking to MUMClient in client unvierse. 
Starting Client universe. 

YOU CAN NOW LOGIN USING M E  BUrrON ABOVE. 
Attempting ta contact MetaSeiver at: moo.acadiau.ca 
Connected to moo.acadiau,ca - retriwing known servers 
Attempting to connect to sewer. 131.162.130.217 
Connection Successfull 
Asking Semer for required Parcels ... 
No updates necessary. Proceeding with login ... 
Attempting to authenticate 
Downloading toots ... 
LOGIN C O M P I ,  USE HELP IF REQUIRED. 

- -- p. - - 

Figure 2-4. MUM Launcher 

Figure 2-5. MUM UniTool 



2.6 Conclusion 

My involvement with LMOOs began with MUM. Thou* MUM is a pilot project using 

state-of-art methodology and technologies, it still needs to be improved with new 

approaches and designs. Thus 1 chose an iinplementation of a new design of the MUM as 

my thesis project and implemented a MO0 called EMOO (Experimental MOO). 1 used 

Java as the programming language to explore a different technology and for cornparison 

with Smalltallc. The rest of the thesis details my approach and draws conclusion based on 

the experiences of MUM and EMOO. 



Chapter 3 EMOO Development Technology 

3.1 Overview 

This chapter describes the technologies and development environment used to implement 

EMOO, and explains why they were used. 

EMOO is a client-server systern based on the distributed object model. It uses Java (Java 

2nY3 [JavaSoft] as the programming language with Rernote Mehod Invocation (RMI) to 

implement network fiinctions and the disîributed environment. JBuilder 3 porland] is the 

Java Integrated Development Environment (IDE) used during development. Unified 

Modeling Language (UML) was used during system analysis and design, and Rational 

Rose 2000 Evaluation Edition Bational] was used as UML design tool. 

3.2 Why Distributed Objects? 

The t e m  "distributed objects" is used to describe interacting objects residing on different 

computers scattered across a network. Any object can reside anywhere on the network, 

and applications can interact with these objects exactly as they do with local objects. 

Distributed object technology must be related to client-server applications. The 

traditional clientkerver model sirnplified the development and maintenance of complex 

applications by separating centralized systerns into client and server components that 

were easily developed and maintained. The server components provide service and 



information and clients access the information or make requests on the server. But many 

clientlserver solutions merely divide one application into two parts, so it still rernains 

difficult to build, maintain, and extend mission-critical clientkerver applications. Using 

this approach, developers sometimes have to create the same functionality over and over 

again which makes code reuse difficult. Eventually, a proliferation of similar modules 

must be updated and maintained separately and a change to one module must be 

propagated to similar modules throughout the system. 

Distributed object technology fundamentally changes al l  these concepts. With the help of 

the powerfhl communications infrastructure, distributed objects complement today ' s 

client-server applications with self-rnanaging objects that can cooperate across different 

networks and operating systems. The distributed-object computing mode1 makes it easier 

to distribute data and fimction fieely and transparently. Programming objects c m  run on 

remote hosts as well as local hosts. In large complicated applications, distributed object 

technology can Save a lot of design overhead, and make a large distributed system easier 

to maintain parley, 19981. 

3.3 Why Java? 

Al1 our previous work with networked Virtual Environments (VE) used Smalltalk. One of 

the reasons for using Java to implement a VE was to acquire new VE experience. 

Another was to compare development in these two major object-onented languages. (The 

cornparison of two implementations in Java and Smalltalk will be given in Chapter 6.) 



Java is dso currently very popular and it is becoming the domhant mainStream object- 

oriented language. Which technical features make Java so attractive [Meier, 1999]? 

Java is an object-onented programming language with a set of supporting 

technologies, such as RMI, JDBC (Java Database Connectivity), JNDI (Java Naming 

and Directory Interface), JINZ, and so on. 

It is both compiled and interpreted. Java source compiles into bytecodes looking a lot 

Like conventional machine language. Bytecodes are executed by a Java Virtual 

Machine (JVM). 

It is designed to be portable and platform independent. 

Web browsers can interpret Java. 

It is -very dynamic. Java's dynafnic loading makes it possible to load cIasses 

incrementally into a virtual machine as it executes. 

Java's features make it very suitable for developing a VE, because al1 these features are 

important and needed to implement a VE. Moreover, more and more technologies are 

available in Java, so it is very useful for VE's evolution. 

3.4 Why RMI? 

There are several ways to support network communications, including basic socket 

communications, RMI remote objects, DCOM (Distributed Component Object Model) 

remote objects and CORBA (Common Object Request Broker Architecture) remote 

objects. The following sections explain why we chose RMI rather than one of the 

alternative technologies. 



3.4.1 RMI 

Remote Method Invocation (RMI) is a Java native scheme for distributed objects m. 
It provides a way for client and semer applications to invoke methods across a distributed 

network of clients and senrers running the Java Virtual Machine (Figure 3-1). The RMT 

API (Application Programming Interface) dows programmers to access a remote server 

object fkom a client program by making simple method calls on the server object. To 

transfer objects on the network, the RMI API uses the Serialization API to wrap 

(marshal) and unwrap (unmarsbal) the objects. To marshal an object, the Serialization 

API converts the object to a stream of bytes, and to unmarshal an object, the Serialization 

API converts a stream of bytes back into an object womson, 19973. 

The RMI architecture is based on the principle of stubs and skeletons. The stub, loaded 

on the client station, plays the role of the server's proxy. A remote method cal1 is 

performed through the stub, and the server's location is made transparent to the developer 

as a call to a remote method has the same syntax as a call to a local method. The server- 

side counterpart of the stub is the skeleton, which behaves like the client for the server. 

A working RMI system is composed of the following parts (Figure 3-1): 

1. Interface definitions for the remote services, which extend the Remote interface. 

2- Implementations of the remote services, which extend class UnicastRernoteObject or 

use the exportObjectO method to link into RMI. 

3. Stub and skeleton files, which are generated by the RMI compiler m i c  that runs on 

the rernote senrice implementation class file. 



4. m e g i s t r y ,  which is an RMI Naming senice that ailows clients to find the remote 

services. 

5. A Server hosting the remote services, using the Naming-rebindo method to make a 

remote cal1 to the RMI registry on the local host. 

6. A client program that needs the remote services, using the Narning.loohpO rnethod 

to look up the remote object by name in the rem0 te host's registry. 

Figure 3 - 1. Interaction between a server, a client and the RMIRegistry 

L 

Naming.lookup0 

Client Sewer 



3.4.2 Sockets 

Sockets are a mechanism for implementing low-level network connections [Stevens, 

19901. Socket-based applications are usually less expensive, more flexible, faster, but 

using sockets to co~llfnunicate between client and server can be cumbersome because of 

al1 the details that must be taken care of. The most complex task when using sockets is 

that it is very difficult to send an object as a parameter, or receive one as a return value. 

Since only primitive values c m  be sent across the socket stream, sending objects via a 

socket connection may requïre extracting the object's attributes, marshaling and 

transmitting them, and vice versa to receive return objects. 

In cornparison with sockets, RMI has the advantage of a higher-level Java networking 

API that provides transparent object access in a distributed environment. It encapsulates 

al1 of the network-level details of remote method calls. Its object serialization system 

provides a way to send and receive objects over the network as primitive values Farley, 

19981. 

Another disadvantage of sockets is that a program using sockets is larger and more 

complex than one using RMI. On the other hand, sockets may be faster. This is analogous 

to the choice of programming Ianguages: A program d e n  in assembly language can 

usuaIly outperfonn one written in C or Java. However, an assembly prograrn is much 

harder to write, is likely to contain more errors, and is more difficult to maintain than a 

program written in a high-level language. 



3.4.3 DCOM 

Distributed Component Object Mode1 (DCOM) is Microsofi's technology for distributed 

object architectures [DCOW. DCOM is an extension of Microsoft's Component Object 

Mode1 (COM), formerly called Network OLE, that forms the basic architecture of the 

Windows operating system. The main objective of COM is to permit independent 

development of software components that can intercornmunicate, regardless of languages 

or functions. DCOM extends the functionaliv of COM by allowing components to 

communicate remotely via LAN, WAN, or the Intemet, but it is only well suited for 

Microso ft-centric environments. If any operathg systems o ther than Microso fi NT and 

Windows are required, DCOM is not appropriate. 

RMI, as a Java-centric scheme for disb5buted objects, has all of the benefits of Java. In 

particular, RMI system is platfom independent, so it is suited for any operating systems 

and environment. 

3.4.4 CORBA 

The Common Object Request Broker Architecture (CORBA), developed by the Object 

Management Group (OMG), enables invocations of methods on distributed objects 

residing anywhere on a network, just as if they were local objects [CORBA]. Unlike 

RMI, which is Java-centric, CORBA is designed to be language-independent and allows 

objects on the client side to make requests objects on the server side without any pnor 

lcnowledge of where those objects reside, what language they are implemented in, and 

which operating system they are runnïng on. According to m a t i s ] ,  "The essential 



concept of CORBA is the Object Request Broker (ORB). ORB support network of clients 

and servers on different cornputers means that a client program (which may itself be an 

object) c m  request services fiom a server program or objects without haWîg to 

understand where the server is in a distributed network or what the interface to the server 

program looks Like. To make requests or return replies between the ORBs, programs use 

the General Inter-ORB Protocol (GIOP) and, for the Internet, its Intemet Inter-ORB 

Protocol @OP). lTOP maps GIOP requests and replies to the Intemet's Transmission 

Control Protocol (TCP) layer in each cornputer". CORBA is the best for large distribute 

systems with legacy services implemented in many languages, but it is much more 

complicated than RMI. It has a nch, extensive farnily of standards and interfaces, and 

defines remote objects using a separate language IDL (Interface Definition Language) for 

language independence. 

Compared with CORBA, RMI not only simplifies distributed application development 

for Java system, but also h a  the additional benefit of automatic distributed garbage 

collection. Since EMOO is completely implemented in Java, there is no need to link it to 

other systems implemented in other languages or to migrate to other languages in the 

future. RMI is the best choice for EMOO Nomson, 19971. 

3.5 Why JBuilder? 

There are many Java IDES for development of Java applications, such as JBuilder 

porland], Visual Age for Java [IBMVJ], Visual Café [Syrnantec] and Visual J++ 



wcrosofiVJ1. Each IDE has its own features, so different people may choose different 

IDES. We have decided to use JBuilder, which is described next. 

JBuilder, developed by Borland Company, is a group of very productive visual 

development tools for creating hi&-performance, platform-independent applications 

uskg Java. It is designed for all levels of development projects, ranging fkom applets and 

applications that require networked database comectivity to clientkerver and enterprise- 

wide, dis tributed multi-tier computing so Iutions. The JBdder3 open environment 

supports Pure Java, JavaBeans, Enterprise JavaBeans, Servlets, 3DK 1.1, Java 2, 

JFC/Swing, RMI, CORBA, JDBC, ODBC, and al1 major corporate database servers. 

JBuilder also provides developers with a flexible open architecture to incorporate new 

JDKs, third-party tools, add-ins, and JavaBean components [Borland]. 

Using JBuilderYs "Two-Way toof' technology the developer can easily design elegant 

GUIS by placing widgets on the screen, and automatically converting them into code. 

GUI design becomes very fast and the designer can concentrate on implementing system 

functions. Using JBuilder7s powerful Debugger one can rapidly fhd  a variety of errors: 

The debugger can execute program step by step, trace and watch values of al l  variables 

via setting breakpoint. JBuilderYs online help and method tips are also convenient: The 

p r o g r m e r  does not need to lookup and remember which methods an object knows. In 

response to typing the name of an object, JBuilder pops up a list with al1 the methods the 

object knows. 



3.6 Why UML? 

According to [Booch, 19991, "The Unified .ModeLing Language &ML,) is a graphical 

language for visualking, specifj6ng constmcting, and documenthg the aaifacts of a 

software-intensive system". UML was originally conceived by Rational Software 

Corporation and three of the most prominent methodologists in the information systems 

and technology industry, Grady Booch, James Rumbaugh, and Ivar Jacobson (often 

called '%ee Amigos"). When UML was created, Rational established the UML Partners 

consortium with severai organizations w i h g  to dedicate resources and work to UML, 

including Digital Equipment Corp., HP, i-Logix, InteliiCorp, IBM, ICON Computing, 

MC1 Systemhouse, Microsoft, Oracle, Rational Software, TI, and Unisys. This 

collaboration made UML well defined, expressive, powemil, and generally applicable. 

Finally, UML has been submitted to and approved by the Object Management Group 

(OMG) as a standard. UML graphical representations can be used as the basis of 

communication between software developers, so al1 the developers of a system can 

understand what the responsibilities of their parts of the system are during anaiysis and 

design phase [Fowler, 19971. 

UML is a notation for expressing object-oriented analysis and design (00A/OOD) in the 

form of diagrams. There are nine kinds of diagrams in UML to visualize a system fiom 

different perspectives: Class diagram, Object diagram, Use case diagram, Sequence 

diagram, Collaboration diagram, Statechart diagram, Activity diagram, Component 

diagram and Deplo yment diagram. 



We used a variety of UML notations to speci@ EMOO before Seginning implementation, 

including use case diagrams showing the uses of the system, class diagrams showing the 

relationship between classes, sequence diagrams showing the activities in the system, and 

the deployment diagram showing the architecture of the system, Some of these diagrarns 

are included later in this thesis. UML can help to analyze the needs correctly, define a 

precise hi&-level design, record design decisions, communicate with others, and 

minimize errors and misunderstanding. 

3.7 Why Rational Rose? 

There are many UML tools, such as Rational Rose [pationau, Visual UML Fisual 

Object], System Architect [Popkin], Visio ~ c r o s o f W S ] ,  and TogetherJ [Together]. 

Some of them are simple drawing tools, others are complex CASE (Cornputer-Aided 

Software Engineering) tools. Rational Rose is currently most widely used. It provides 

power for visual modeling, component-based development and round-trip engineering 

(transfonning UML notations into code, and vice versa), along with support for the UML 

[pational]. 

Cornpared with pencil and paper documents, Rational Rose can quickly and conveniently 

create, modi&, and Save UML diagrams, and provide feedback on elementary mistakes 

such as syntactically incorrect diagrams. 



3.8 Conclusion 

Integrating al1 the above technologies and tools, EMOO can be designed and 

implemented relatively quickly with a reasonable assurance of quality. 



Chapter 4 System Specification 

This chapter describes EMOO features and fûnctionality fkom a user's point of view. 

Since EMOO is a re-implementation and extension of previous project calied MUM, 

most EMOO system specification came from MUM. 

4.6 An overview of EMOO 

EMOO is a virtual environment with high quality customizable and extendible user 

interfaces in which the client does as much work as possible to deviate the load on the 

server and the network. It also alows users to register their interest (subscribe) in events 

o c c e g  in the emulated universe and obtain automatic notification when these events 

occur. 

4.2 Basic Principles 

EMOO has the following basic MO0 features: 

Support for multiple users: EMOO allows any number of users to use the program at 

the same tirne and perfom typical MO0 operations such as communication, 

navigation, and contribution to the evolution of the environment. 

Network-based operation: Users connect their clients to a server ninning a universe 

on the Internet. 



0 Client-semer architecture: EMOO consists of two main parts: Servers anhating 

''miverses" in which all avatars, tools and places exist and interact, and clients, 

through which users control their avatars. 

Support for extendibility: Objects that make up the environment are constnicted fiom 

templates defïned as classes in a progranunhg language. New templates c m  be 

created at run-time and instantiated at any time. 

Persistence: A running universe can be saved in a file and reloaded. 

EMOO has the following additional features: 

0 Event-driven operation cornbined with message passing: Objects understand both 

messages and events. Operations that users may be interested in are implemented as 

events. This is the extension of EMOO over MUM. 

Events c m  be subscnbed to: User avatars and any other objects c m  subscribe to 

events. When the event occurs, al1 subscribers are notified. 

S . .  

9 Muiunization of server and network load: The client does as much work as possible 

to deviate the load on the server and the network. 

Multi-Threaded Design: The event dispatchedevent handler in the environment nuis 

in its own thread. Thus, each object's operation is separate fkom the operation of other 

objects, and if an operation fails it does not cause the whole system to crash. 

rn Powerfül client-side user interfaces: Users interaction with a universe is via a GUI, 

which provides access to EMOO's general functionality. Users only need to enter 

clearly identified values and click a button to execute an operation. 



0 Multiple interconnected universes: Users can create any nurnber of universes. The 

management of multiple connected universes is mediated by a metaserver. 

Off-Iine operation: Users can operate EMOO without being connected to the network. 

If a user chooses the "Local" mode, a local universe is created and the user is 

connected to it. 

4.3 EMOO: High-level Use Cases 

This section first lists the most important categories of operations, and then subdivides 

these categories into individual operations. 

4.3.1 Major Use Case Categories 

The major usages of EMOO are summarized in Figure 4- 1. 

LoginILogout 

User 

Mefaserver 

Figure 4-1. Major use case diagram 



4.3.2 Category 1 - Login and Logout 

This category describes events and actions related to user Iogins and logouts. Figure 4-2 

depicts the use cases graphi'cally and the following sections provide detailed descriptions. 

Exit EMOO a 
Figure 4-2. Loginnogout use case diagram 

4.3.2.1 User starts EMOO. 

1. User types "java EMOOLauncher" on comrnand line. 

2. Program opens EMOO launcher window. 

4.3.2.2 User Iogs in on Internet as rerristered user (administrator or agent) or =est. 

1. User clicks Remote radio button and clicks Login. 

2. Program pops up a Est with al1 available universes. 



User chooses a universe and clicks Select button. 

Program requests user name and password. 

User enters user name and password (if required), and clicks OK. 

Program displays whether user logged in successfully or not. 

User opens UniTool. If the user was on EMOO before, he or she is located in the Iast 

location if possible. If the user was never logged in or if the last location is 

inaccessible, he or she is located in the entry room. 

4.3.2.3 User IOES in locallv as reeistered user (admulistrator or agent) or guest. 

User clicks Local radio button and clicks Login. 

Program starts iocd server and requests user name and password. 

User enters user name and password (if required), clicks OK. 

Program displays whether user logged in successfully or not. 

User opens UniTool with user located in the 1 s t  local location (if any) or the entry 

room. 

4.3.2.4 User 1og.s out- 

1. User clicks Logout in launcher. 

2. Prograrn records curent location of avatar. 

3. Prograrn discomects EMOO launcher fkom the server. 

4.3.2.5 User exits. 

1. User clicks Exit in launcher. 

2. Program requests confinnation. 

3, Userconfinns. 

4. Program discomects EMOO launcher fiom the server and closes the launcher. 



4.3.3 Category 2 - Events and Tools 

This category describes the sequence of events and actions related to the use of EMOO 

tools, command execution and event handling. 

Use a tool 

Execute a command 

/ 
f2omrnunicate with others) 

Move to another place a 
Create a new object 

Change an objectk 
propertick 

Subcribe to an event 0 
Figure 4-3. Events/Tools use case diagram 



4.3.3.1 User oDens a tool listed in EMOO launcher window. 

1. User selects a tool fiom the Tool menu in launcher window. 

2. Program opens the selected tool's user interface. 

4.3.3.2 User executes a command of an obiect distilaved in UniTooI. 

1. User selects an object. 

2. User selects the command fiom the Action menu in UniTool window. 

3. Program executes command. 

4.3.3.3 User subscnbes to an event for a selected obiect usinn UniTooI. 

1, User selects Events fiom Subscribe menu. 

2. Program displays list of names of subscribable events in UniTool. 

3. User sele.cts an event and clicks OK button. 

4. Program subscribes user to the event and nomes him or her when the subscribed 

event occurs. 

* Unsubscribing is similar to subscribing but the list now displays al1 subscribed events 

that can be unsubscribed. 

4.3.3.4 User executes the "sa? command in the UniTool. 

1. User selects the "say" radio button, and enters text to be communicated followed by 

<Enter> in the i q u t  field. 

2. Program displays originator's name (as "John says: " in other occupants' window, or 

as T o u  Say: " in the originator's window) and the text in the UniTool of a11 users 

currently in the same location. 

4.3.3.5 User executes the "wwhisper" command in the UniTool. 



1. User selects the "whisper" radio button, chooses the target person fkom the list of 

occupants, and enters text to be co~lllllunicated followed by <Enter> in the input field. 

2. Program displays originator's name (as ''John whispers to " in the target person 

window or as T o u  whisper to " in the orïginator's window) and the text in the 

UniTool of these two users who are whisperkg. 

4.3.3.6 User moves to another Iocation. 

User selects Doors in the ComboBox in UniTooI. 

Program lists aU doors in the current location. 

User selects a destination fiom the door list and clicks the Go button. 

Program transfers user's avatar to the selected place. 

Program updates the list of occupants in the original location and in the new location 

and notifies al1 affected users. 

4.3.3.7 User creates a new place. 

1. User opens the Creation tool fkom the launcher. 

2. User builds a new place and enters its properties. 

3. Program creates a new place with a door to the current place and updates the door list 

of al1 occupants of the place. 

4.3.3.8 User creates a new obiect in a olace. 

1. User opens the Creation tool from launcher. 

2. User selects the type of an object to create. 

3. User inputs properties of a new object and clicks Create button. 

4. Program creates the object and updates the contents of this place and notifies al1 

affected users. 



4.3.3.9 User changes an obiect's ~ro~er t ies .  

1. User opens the Property tool fiom launcher. 

2. User chooses an object fkom a list- 

3. User changes properties and clicks Accept button. 

4. Program attempts to change the object's pmperties and displays whether the 

operation is successfd or not. This operation may be unsuccessfuI if the user is not 

the owner of the object. 

4.3.4 Category 3 - Server and Universe 

This category describes events and actions that occur when an administrator starts or 

shuts down a server and manages a universe. 

Create a new 

\ 
Shut down a 

Figure 4-4. Server/Universe use case diagram 



4.3.4.1 Administrator creates a new universe and starts the server. 

1. Administrator-types 'Tava EMOOUniverseManager" on command line. 

2. Program opens EMOO Universe window. 

3. Administrator selects "New" or 'New Universe" from menu. 

4. Administrator enters a name for the new universe. 

S. AdmUUstrator clicks Start button. 

6. Program creates a new universe and starts the server. 

7. Program contacts a metasemec and changes the status of the metaserver's list. 

4.3.4.2 Administrator loads a saved universe and starts the semer. 

1. Administrator types ''java EMOOUniverseManage17 on command line. 

2. Program opens EMOO Universe window. 

3. Administrator selects 'Zoad" or 'Zoad Universe" fkom menu. 

4. Administrator enters the name of the saved universe. 

5.  Admulistrator clicks Start button. 

6. Program ioads the universe and starts the server. 

7. Program contacts a metaserver and changes the status of the metaserver's list. 

4.3.4.3 Administrator saves a universe. 

1. Administrator clicks on the Save button in the EMOO Universe UI. 

2. Program opens a dialog window. 

3. Administrator enters a file name for the universe and clicks the OK button. 

4. Program saves the universe. 

4.3.4.4 Administrator shuts a server down. 

1. Administrator clicks Stop button in the EMOO Universe window. 



2. Program shuts down the semer. 

3. Program changes the status of metaserver's Est. 

4.3.5 Category 4 - Metaserver 

This category describes the events and actions related to the management of a metaserver. 

Figure 4-5. Metaserver use case diagram 

4.3.5.1 Administrator starts a metaserver. 

2 .  Administrator types "java EMOOMetaServerManager7' on command Iine. 

2. Program opens EMOO Metaserver window. 

3. Administrator clicks S tart button. 

4. Program starts a metaserver. 

4.3.5.2 Administrator shuts a metaserver down. 

1. Administrator clicks Stop button in the EMOO Metasemer window. 

2. Program shuts a metaserver down. 



Chapter 5 Design Overview 

This chapter gives a general overview description of EMOO design. 

5.1 The big picture 

Figure 5-1 shows the main parts of EMOO architecture. Users c m  contact a metasemer 

and connect to universes using their clients via network. 

T O O ~  Tool üI ToolUX Tool Ui 

Netwozk 

Figure 5- 1. EMOO big picture 



5.2 Overall Architecture 

The high-level UML deployment diagram (Figure 5-2) shows the layers of EMOO 

architecture. 

A 
User 

with the server and user 
interfaces evers and clients may be 

n the sarne cornputer. 

Figure 5-2. EMOO's overaii architecture 

As all MOOs, EMOO is a client-server application but has one additional layer - 

metaserver, which will be explained later. 

An EMOO system may consist of several EMOO universes and one or more EMOO 

metaserver. Metasemers keep track of available universes al1 over the network as well as 

their stztus such as IP address, name and running state. When a universe is created, a 



record is added to the semer list of the metaserver and whenever the universe starts or 

stops the record is changed correspondingly. Universes are the places where EMOO 

objects reside. A nuining universe accepts client comection requests submitted by clients 

via EMOO launchers. 

To clariw EMOO design, the following sections, introduce the main concepts and 

principles of operation, and d e h e  the terminology. The details are presented in 

Chap ter6. 

5.3 Principles of operation 

When a user starts EMOO fiom his or her client machine and connects to the Internet, 

EMOO e s t  contacts a metaserver. The metaserver retums a list of al1 universes with 

information about those universes that are currently connected, including their IP 

addresses. The user then selects a running universe and logs in, which establishes a direct 

comection to the selected universe. The selected universe checks whether the user is 

authorized to enter. After login the user is ready to fûnction in the universe. 

Objects in EMOO understand both messages and events. Only some messages that users 

may be interested in are implemented in the form of events. Most interactions between 

objects in EMOO are hmdled directly by messages, that is to Say, an object 

communicates with other objects by sending messages. Message passing is efficient 

because messages are automatically handled by Java system, but it is difficult to 

implement message subscribing. 



Some messages that an object understands such as an avatar "go" message, may be 

important to users who may want to know when the message is sent to the object. These 

messages are implemented via events. Events are easy to trace because they are processed 

by event handlers. Events also make it easy to implement operations consisting of 

cornplex sequences possibly involving asynchronism (This is currently unavailable in 

EMOO). 

Each event has a name, a receiver and parameters. The event name identifies the type of 

the event, the event receiver is the id of the object that will receive the event, and 

parameters contain necessary Uiformation to execute the event. Each universe has a single 

central event dispatcher that is responsible for dispatching events. When dispatching an 

event, the dispatcher creates an event handler and binds it with the receiver objects. Event 

handlers are actually Java threads. Each EMOO object has an event dictionary that 

contains the definition of a l l  events it understands. Event handlers get event definitions 

f?om event dictionaries, translate events into messages, and send them to target object. 

An event handler thread ends when the event is completed. Compared to message 

passing, it takes longer time to execute events and requires more complicated code. 

To keep track of al1 EMOs (EMOO Objects, see Figure 6-3) in the universe, the universe 

has a registry containing a hashtable matching EMOs and their unique ids. All references 

to EMOs in the operation of the universe including messages and events, and in the 

cornmunication between the client and the server are in terms of these ids. 



The interaction between the user and an object may take one of two foms. One 

possibility is that the EMO has a specialized interface, the other is that it does not. In the 

first case, users communicate with the object via the interface and do not have to use any 

commands. If an object does not have its own specialized user interface or if the interface 

cannot be used for a particular operation, the user must communicate with the object via 

commands. This is implemented in a somewhat similar way as in Jersey but with a better 

user interface: The user selects an object in the UniTool, and chooses a command fiom 

the Action menu (see Figure 5-3). Clicking a command causes UniTool to send the 

command to the comesponding object. At present, EMOO commands are very simple that 

do not require parameters. If they did, a dialog window could be generated on the fly as 

Figure 5-3. Executing a cornand on a selected object 



After this general overview of EMOO design, Chapter 6 will describe the individual 

subsystems in more detail. 



Chapter 6 Detailed Design 

This chapter explains the details of EMOO subsystems and their classes and methods. 

6.1 Network Layer 

6.1.1 Overview 

The network layer implements communication between clients and servers using Remote 

Method Invocation technology. When a user c o ~ e c t s  to a server, the server fïrst checks 

its "clients" table to find whether this user is already connected to this server. If a user 

with that name is already logged in, it does not aliow another log in with the same name. 

If the user name is available, the server checks its ccagents" table to fhd whether this user 

has an avatar on the server and if there is one, it performs password authentication. If the 

user has no avatar, the server creates a new avatar, and adds a new record to its "agents" 

table. If the user connects to his avatar successfully, the server adds a new record in 

"clients" table. When the user logs out, the server removes the user's record fiom the 

corresponding table. The login operation is described by the UML activity diagram in 

Figure 6-1. 



v 

/ Connectto \ 

[ no avatar ] 
! 

logged in] 

/ [ not logged in ] 
\ / 

/ [has avatar] 
\I/ 

Check 
avatar 1 \ password / 

I 1 

Add a record 
to "agents" 

I ! 

\J/ \1; [corectl 

/ Log on sewer\ 

Figure 6-1. Activity diagram of login operation 

6.1.2 Classes and Interfaces 

The network layer dehes  three interfaces: RMIMetaServerInterface, 

RMIServerInterface and Rh!UClientInterface. They al1 extend the Remote interface in 

RMI package and are implemented by classes RMIMetaServer, RMIServer and 



RMLClient. Classes EMOOMetaServerManager, EMOOUniverseManager and 

EMOOLauncher are used to manage metaservers, universes and clients. The relationships 

between these classes and interfaces are shown in Figure 6-2: 

I 

I manages 

1 EMOOLauncher I 
' manages * 

RMISewr 
Interface 

Figure 6-2. Network Layer class diagram 

The following is a bnef description of these and other essential classes. We start with a 

description of domain classes. 

RMIMetaServer 

Responsible for providing information on availabIe universes. 

Suverclass: UnicastRemoteObject 

Main Instance Variables: 

serverList CVectorS records the information of alI universes that register with it 



Main Methods: 

serverRegistry(String serverName,String ipAdd) registers server on the semerList 

updateList(S tring serverName,S tring ip Add,S tring s tatus) updates server st atus in 

semerList 

destroy(String serverName,String ipAdd) deletes a server fiom semerList 

EWISewer  

Responsible far mediating the communication between users and their avatars. 

Superclass: UnicastRemoteObject 

Main Instance Variables: 

clients <Hashtable> records usernames with their RMI comection 

agents <Hashtable> records usemames with their correspondkg avatars 

Main Methods: 

login(RMTClientInterface c, String userName, String password) receives clients login 

logout(String userName) lets clients logout 

broadcast(S tring target, String msg) sends information to clients 

RMIClient 

User's client responsible for connecting to a metaserver to k d  all available universes 

and connecting to a certain universe. 

Su~erclass: UnicastRernoteObject 

Main Instance Variables: 

userName <String> client login name 



userPassword <String> client login password 

semer CRMIS erverInterface> reference to a RMIServerInterface 

Main Methods: 

connect(String host) connects to server 

dÏsconnect0 disconnects fiom sever 

noti@(String msg) receives information coming fiom server 

The remainina components of the network layer are as follows: 

EMOOMetaSvwerManager 

A metaserver manager with GUI responsible for staaing and stopping a metaserver. 

Superclass : JFrarne 

Main Instance Variables: 

metaSemer C KMIMetaServer> referenee to a metaserver 

Main Methods: 

starto starts a metaserver 

stop0 stops a metaserver 

EMOOUniverseManager 

A universe manager with GUI responsible for starting and stopping a server, and 

responsible for creaeing, Ioading and saving a universe. 

Superclass: JFrame 

Main Instance Variables: 

currentuniverse <Universe> reference to the currently d g  universe 



Main Methods: 

newuniverse0 creates a new universe 

IoadUniverseO loads a universe fiom a saved universe file 

saveuniverse0 saves a universe into a file 

startUniverse~niverse auniverse) starts a server that hosts the universe 

EMOOLauncher 

Instantiates a client, and provides a tool for users to operate in EMOO system. Additional 

details will be explained later. 

Superclass; JFrame 

Main Instance Variables: 

client -4XMIClienP reference to a client 

cwrentserver c ServerIdentiIp reference to a currently nuining server 

Main Methods : 

getServerList0 

remoteLoginO 

localLogin() 

gets a list of available servers 

logs in a remote universe 

logs in a local universe 

6.2 Universes 

6.2.1 Overview 

Universes themselves are EMOs just like the objects that reside in them. This is because 

making universes operate on the same principle as  everything else provides unifonnie of 

design and operation, and allows users to subscribe to events. When a universe is created, 



several fundamental EMOs are dso created automatically. These include the following 

ones: a 'Xegistry Room" with a registry that is responsible for instantiating EMOs and 

holding records of al1 objects in the universe, an 'Zngine Room" with an avatar 

representing the anministrator, normally the creator of the universe. Once the universe is 

created, users may start expanding it by adding new users, new places, new objects, and 

new tools. A universe class diagram is shown in Figure 6-3. 

Figure 6-3. Universe class diagram 

f 

6.2.2 Classes 

EMO 

To01 

EMO is an acronym for EMOO Object. This is the abstract super class of all objects in 

EMOO. Its main instance variables and methods and generalization relationship with 

other EMOs are described in the diagram Figure 6-4. 

communicates via network 

Adrninistrator Guest(Açent) 

1 1.-• 

resides in 

thrOugh , Door 
1 



1- 
&bkw hddings 

Figure 6-4. EMO class diagram 



Superclass: Object 

Main Instance Variables: 

id 

name 

place 

owner 

lock 

description 

subscrib ers 

dictionary 

registry 

id of the EMO 

name of the EMO 

location of the EMO 

id of the EMO's owner (initially the EMO's creator) 

permission to be changed by other EMOs 

description of the EMO 

subscribers to a certain eve~lt 

maps events to correspondhg messages 

cEMORegistry> reference to a universe's registry 

Main Methods: 

initiakze0 initializes the values of instance variables 

hear(S tring s) receives notification messages 

getpropert~ 0 returns an EMO's changeable properties 

setProperty(Hashtab1e p) sets new property values 

emoGeneO returns an EMO ' s gene 

Note: An EMO's gene is a table that contains essential information representing the 

EMO in a compact way. It is used when the universe is being saved in a file or loaded 

fkom a file. The EMO can be rebuiit fiom its gene. 



EMORegis try 

Maintains a list of alI EMOO objects that exist in the EMOO universe. Responsible for 

creating new EMO objects. 

Suverclass: EMO 

Main Instance Variables: 

objects ~Hashtabl- id -> object associations of alî objects in the universe 

universe <Universe> place where the registry and other EMOs reside 

server 4WfIServer> reference to the server of the universe 

currentId <kt> id of the next new object 

Main Methods: 

startRMI0 starts the RMIServer of the universe 

createObject(String className, String objectName, String place, String description) 

creates a new EMO object 

addObject(String id, EMO O) adds a new object to the "objects" table 

removeObject(String id) removes an object f%om the "objects" table 

getObject(String id) returns an object specified by its id 

lookup(S tring name) retums an object specified by its narne 

objectToGene0 converts an object in the registry tu its gene 

geneToObject(Hashtab1e gene) reconstnicts an object kom its gene 

Place 

Represents a place in the EMOO universe. 

Su~erclass: EMO 



Main Iristance Variables: 

contents cVector> contains ids of al l  objects in this pIace 

Main Methods : 

occupants0 retums all avatars in &is place 

doorso returns al1 doors in this place 

allContents0 retums dl objects in this place 

addContents(String id) adds an object to this place 

removeContents(String id) removes an object fiom this place 

Universe 

Subclass of Place, contains al1 EMOO objects. Responsible for building constnicts such 

as Registry Room, Entry Room. 

Superclass: Place 

Main Instance Variables: 

no instance variable in this class. 

Main Methods: 

buildUniverse0 builds fundamental EMOs when a universe is first created 

Door 

Represents a uni-directional door in a place. Used by avatars to go to another place. 

Superclass: EMO 

Main Instance Variables: 

destination <String> place to which this door leads 



Main Methods: 

pass(String guestId) passes an avatar to the destination place 

Guest (Agent, Administrator) 

Guest, Agent and Administrator define avatars representing users in a universe. They 

perform actions requested by users. Agent and Administrator are subclasses of Guest. 

The difference between Guest, Agent and Administrator is that they have different 

authorities. Administrator has the highest authonty and can perform al1 operations, 

including creation of agents and guests. Agents c m  perform ail operations except for 

creating agents and guests. Guests can not create and destroy agents, guest, or objects. 

Superclass: EMO 

Main Instance Variables: 

password <String> password of the user connecting to this avatar 

holdings <Vector> ids of objects held by the avatar 

subscribeciEvent~Vector~ al1 events that the avatar is subscribed to 

Main Methods : 

say (S tring s) implements "say" operation 

whisper(String toName, String msg) implements 'khispei' operation 

emote(String s) mlements "emote" operation 

go(S tring door) implements "go" operation 

createNew Obj ect(S tring className, String obj ectName, String descnp tion) 

creates a new object 

executes "destroy" command destroy(String id) 



dropObject(String id) executes "drop" comrnand 

holdObject(String id) executes '%hold" command 

getEvents(S tring id) gets events that can be subscribed to 

setSubscribeEvent(String eventName) subscribes to an event 

setUnsubscrÏbeEvent(SubscriberIdentity si) unsubscrhes a subscribed event 

6.3 Events and Event Handling 

6.3.1 Ovewiew 

EMOO events are objects representing action requests. They are handled by EMOO 

event handling mechanism. The universe contains one central event dispatcher, which has 

an event queue, and is responsible for extracthg events from it and activating event 

handlers to execute them. Each EMO has a "dictionary" table that translates events to 

corresponding messages. Using Java Reflection APT, event handler can execute an event 

by dynamically invoking methods corresponding to their names at runtime. The 

relationship between classes in this subsystem is described in Figure 6-5: 

notifies T 

-- - 

Figure 6-5. Event handling class diagram 



6.3.2 Classes 

EMOEvent 

Represents an event that cm be subscribed to. In order to be able to transport event 

objects on the network, it implements javai0.S erializable interface. 

Superclass: Object 

Main Instance Variables: 

name CS tring> name of event 

target e r i n g >  object that the event is sent to 

parameters cVector> parvneters necessary to execute the event 

Main Methods: 

setP arameters(Vector v) sets parameters needed to execute the event 

Responsible for dispatching the events in its event queue and activating EventHandlers to 

execute them. It is subclass of Thread class to implement multithreaded control, thus it 

has its own thread to perform its operation independently without disturbing any other 

running application. 

Su~erclass: Thread 

Main Instance Variables: 

eventQueue cVector> stores events needed to be handled 

Main Methods : 

addEvent(EM0Event e) adds incoming event to eventQueue 

dispatcho dispatches the events in its event queue and 



forkes EventHmder to executing events. 

executes "dispatch" while thread is ninning 

EMOEventHandler 

Responsible for hanclhg EMO events and n o t i w g  subscribers. It implements 

java.lang.Runnable interface, so that it can be nuinable within a "dispatch" thread. 

Su~erclass: Object 

Main Instance Variables: 

event cEMOEvenP event handled by the event handler 

Main Methods: 

runo handles EMO event and notifies subscnbers when it is executed 

6.3.3 Event Eandling and Message Passing 

EMOO events are handled by EMOO's event dispatcher and event handler. Messages do 

not use the dispatcher and event handler. The foIIowing sequence diagrams show the 

implementation on two examples. Figure 6-6 describes the operation of event "go". 

Figure 6-7 describes the operation of message "say". 



6.3-3.1 ODeration of events 

Figure 6-6. Sequence diagram of the "go" event 

Simplified details of individual steps of the "go" event are as follows: 

1. User chooses a door in the door list and clicks the "Go" button on EMOOLauncher. 

The "go" message is sent to RMICEent. 

2. RMIClient invokes the "go" method on the remote server through 

RMIServerIntedace. 

3. RMlServer executes RMIServerInterface's "go" method. 

4. RMIServer sends the "go" message to the corresponding agent. 

5. Agent sends the ccgoEvent" to the EMOEventdispatcher. 

6. EMOEventDispatcher dispatches the "goEvent3' to EMOEventHandler. 

7. EMOEventHandler dynamically invokes agent "go" method to handle "goEvent" and 

sends a notification to subscribers. (This is not shown due to lack of space.) 



8- Agent executes the "go" operation and retunis a feedback message to RMIServer 

9. RMIServer invokes the "update" method on the rernote client through 

RMIClientInterface. 

IO. RMICLient executes RMIClientInterface7s "pdate" method. 

1 1. EMOOLauncher UI receives the update message and displays it. 

6.3 -3 -2 Cberation of messages 

Figure 6-7. Sequence diagram of the "say" message 

Detaîls of individual steps in the execution of the "say" message are as follows: 

1. User selects "say" radio button on EMOOLauncher UT, inputs a string* and presses 

return. The "say" message is sent to RMIClient. 

2. RMIClient invokes the "say" method on the remote semer through 

RMIS erverhterface. 



3. RMTServer executes RMIServerInterface ' s "say" method. 

4. RMIServer invokes the "say" method of the corresponding agent. 

5. Agent executes the "say" operation and retums the result of "say" to RMIServer. 

6 .  RMIServer invokes the "broadcast" method on the remote client to broadcast the 

result of "'say" through RMIClientInterface. 

7. RMIClient executes RMIClientInterface7s "broadcastY7 method. 

8. EMOOLauncher receives the broadcast message and dispIays it. 

6.4 Tools 

6.4.1 Overview 

Tools are special objects whose main purpose is to provide client-side user interfaces. 

With a tool, users do not need to remember any comrnands. All operations are executed 

by clicking appropriate widgets on the UT. Users c m  add new tools, as  they want. 

Currently, EMOO implements the following tools. 

6.4.2 Basic TooIs 

EMOOLauncher 

Allows the user to login, both locally and via Internet, and logout. It also provides access 

to other EMOO tools. See Figure 8-8 in Chapter 8 for a screenshot of the interface. 

UniTool 

Provides basic communication and navigation functions. Has a communication part with 

input and output areas, an entity List area showing objects, doors, occupants and persona1 



holdings, commands understood by the selected object, and an objects' subscribable 

events. See Figure 8-14 in Chapter 8 for a screenshot of the interface. 

CreationToo 1 

Mows the user to create a new instance of an existing object template and to define its 

properties. See Figure 8-12 in Chapter 8 for a screenshot of the interface. 

PropertvTool 

Displays an object's properties and allows the user to edit them ifthe user is authorized to 

do so. See Figure 8-13 in Chapter 8 for a screenshot of the interface. 

EMORecorder 

Records and plays what avatars Say and emote in a place. See Figure 8-17 in Chapter 8 

for a screenshot of the interface. 



Chapter 7 Environment Cornparisons 

The f h t  part of this chapter compares EMOO with its predecessor MUM [Tomek, 19991. 

The second part compares the irnplementation lauguages Java and Smdtalk in light of 

our EMOO and MUM experience. 

7.1 EMOO vs. RIUM. 

EMOO is a successor of MUM and their functionaiity and design have many similarities. 

There are, however, also differences, mainly in design. This section discusses both the 

similarities and the differences. 

7.1-1 Similarities 

Both EMOO and MLTM have a metaserver with a registry of al1 server universes, their 

status, and Intemet addresses. They both support multiple universes and are easily 

extended. By contacthg a metaserver users can select which universe to connect or go to. 

As client-semer applications, EMOO and MUM do as much work as they c m  on client 

side to reduce the server load. Ciient side applications include tools. Tools are 

responsible for handling user input and convert it to proper messages or commands 

understood by objects in semer universes. These messages or commands are sent to the 

objects via network comection. Tools also display information received fiom the server. 



Tools provide fiendly user intefiaces. Users do not need to type a command or message 

directly, so there is no need to remember commands and type them in again and again. 

By selecting items in lists or clicking buttons they c m  do almost everything that 

traditional MUDM00 users can do. The fÏiendly user interfaces of EMOO and MUM 

make it easier and more interestîng to explore the universes. Although the number of 

available tools is still limited, the concept of a tool provides unlimited possibilities. 

Both EMOO and MUM have event objects representing action request. Events are 

handied by event handler, and can be subscribed and unsubscribed by users. The event 

handler works in its own thread so that one object's operation will not interfere with other 

objects' operations. 

7.1.2 DifT'erences 

As a new design and implementation based on some of MUM's ideas, EMOO has made 

some improvements, and used some different design and implementation approaches. 

The most obvious difference is that EMOO is implemented in Java, whereas MUM is 

irnplemented in Smalltaik. A detailed cornparison of Java and Smalltalk is given in next 

section. 

MUM uses fûlly event-driven operation and dl objects in MUM communicate with 

others by sending events. Using this mechanism, it is easier to trace events sent by any 

object. This enables programmers to find bugs in the program quickly. Another 

advantage of event-driven operation is that users Gan express their interests in any object 



in MUM. However, fülly event-driven operation leads to event class explosion: there are 

more than two hundred event classes in MUM, and some of them have no methods, just 

provide a uniform format to match the event-processing mechanism of event handlers, 

and help p a s  information fiom the originator to a distant target- This bloats the number 

of classes, makes code haïd to read and difficult to reuse, Another disadvantage of fully 

event-driven operation is that it creates an overhead in execution. Event handlers 

consume much more CPU time than message passing, because execution of one event 

may require hundreds of messages. 

In EMOO, objects understand both messages and events. Only those operations that users 

may be interested in are implemented in the form of events and c m  be subscribed. Thus, 

EMOO's code is very succinct and does not require so many event classes. Most of the 

communication between objects is done by sending messages, so operation is more 

efficient. Using this hybrid mechanism, EMOO can keep most of KKM's good features, 

improve efficiency and simpLi@ implementation. 

Each MUM object has its own event handler and event process. The handler works 

independently without disturbing any other objects, so if there is a .  exception, only the 

object that caused the exception will be affecteci. This feature enhances the usability of 

MUM and makes it less error-prone. However, it leads to too many event handler objects 

and too many processes nuining at the sarne time, which increases system resource 

consumption and slows down execution. 

In EMOO, a central event dispatcher works as a post office and is responsible for sending 

events to destination objects. Al1 outgoing events are sent to the dispatcher for 



redirection. When dispatching an event to the destination object, the event dispatcher 

forks a thread and creates an event handier object to handle this event. Using this event 

handling mechanism, EMOO can have good and stable performance without too many 

handler objects and ninning processes. 

On the client side, each MUM tool has a tool base that is responsible for translating 

messages to events and vise versa, Although tool bases do not take any server time to do 

these translations, developers have to write correspondhg tool base code. 

In EMOO, tools communicate with objects in remote universes directly 

greatly simplifies developers' work and provides an efficient way 

between tools and objects. 

via RMI, which 

for cooperation 

In MUM, the client contains a small universe that is constmcted every time the client is 

opened. This client-side universe is the environment in which the components that make 

up the client communicate. This client-side universe is necessq because MUM is fbIly 

event-driven. EMOO is not fblly event-driven, and there is no need for a client-side 

universe. 

Events in MUM not only cm be subscnbed to, but also c m  be suspended and resumed. 

This makes it easy to implement asynchronous activities with complex state transitions. 

The MUM event handler is Mplemented as a finite state automaton (FSA) interpreting a 

state diagram describing all possible ways in which the event can be executed, so that the 



execution of an event can be suspended at any state and resumed, EMOO does not use 

FSA mechanism, and EMOO events can not be suspended. 

In MUM, users can travel fiom one universe to another with their possessions. Users can 

also download tools residing in the server universe when using them if they do not have 

corresponding code. These functions greatly extend the usability of MUM. EMOO also 

codd but currently does not implement these fiinctions. 

7.2 Java vs. SmaUtaIk 

The comparison of Java and Smalltalk is a sensitive topic [Chimu], partially because Java 

poses a greater challenge to Smailtalk than any other language. The following 

comparison is based on some objective data and my subjective evaluation as a 

programmer with non-trivial but limited experience in both Java and Smalitalk. The 

comparison here is based on VisualWorks 3.0 ~isualWorks] that was used to implement 

MUM and Java 2 that was used to implement EMOO. 

7.2.1 About Java and SmaiItaik 

Java was developed by a team led by James Gosling at Sun Microsystems in the early 90s 

Forton, 19991. It was origindly designed for writing programs for small computers 

ernbedded in consumer electronics appliances, such as microwave ovens. It is a new 

object-oriented progr&g language, synthesized fiom several existing languages, so 

someone [Chimu] said that "Java is a light-statically-typed, simple version of Smalltalk 

with the syntax of the C family." 



The Figure 7-1 shows the idluences that shaped Java: 

Brewing Java 

Figure 7-1. What is Java? padros] 

Smalltalk [Smalltak] was developed at Xerox's Pa10 Alto Research Center over a period 

of ten years between 1970 and 1980. It was originally designed for the Dynabook project, 

a vision of an inexpensive notebook-sized persona1 compter with the power to handle au 

information-related needs, so that it could be used both by professionals and by adults 

and children without any pnor knowledge of cornputers. It is a pure object-oriented 

programming language integrated with a multi-windowed development environment 

[Winston, 1 9 9 71. 



Java is the latest widely used object-oriented Zanguage. Smalltafk is among the purest 

object-oriented language, and it introduced many of the current object-oriented concepts, 

so it is no wonder that there are many sunilarities between it and Java. 

7.2.2 Similarities between Java and Smaiitaik 

Both Java and Smalltalk are object-oriented languages. Classes are the abstraction of 

objects. Attributes of a class are described in class (static) variables and instance 

variables. Behaviors of a class are implemented in methods and executed by sending a 

message (invoking a method). Both languages provide single inheritance, but subclasses 

can redefine inherited behavior (override methods) [Naughton, 19991, [Sharp, 19971. 

Both Java and Smalltalk are portable. In order to implement platfom-independence, most 

implementation of both languages translate source code into bytecodes that are then 

executed by a virtual machine. Althou& the nature of the bytecodes is somewhat 

different, the two languages have the same execution model. 

In the area of memory management, both Java and Smailtallc provide automatic garbage 

collection to retrieve instances that are no longer referenced, and in this way memory is 

released. 



7.2.3 DifTerences between Java and SmalItalk 

00 thinking 

Everything in Smdltalk is an object and this makes design clean and eliminates errors 

caused by working around the language. Java has eight primitive data types that are not 

objects and special wrappers need to be used to encapsulate them into objects. This 

compficates programming because some entities understand methods, and some don't. 

This makes applications more difficdt to maintain and understand, 

Tvping 

Java is statically typed, which means that users must declare an object's type before using 

it, but programmers c m  bypass this feature by casting that allows users to assign a value 

of one type to a variable of another type. Smalltalk is dynarnically typed, which means 

that nothing about the type of an object needs to be known before a Smalltalk program is 

nui. Users can not declare an object's type before using it, and the type is determined at 

run time. Static typing has its advantages and disadvantages. The main advantage is that 

the compiler can perform type checking to catch certain types of errors and bind calls to 

dennitions. This can margindy speed up method dispatching and prevent 

"DoesNotUnderstand:" messages. Its main disadvantage is that it Limits reuse by fieezing 

the range of objects that c m  receive or use a message. Although casting can make static 

typing somewhat dynamic, it violates static typing and negates its advantages. Another 

disadvantage of static typing is that users have to provide types for al1 variables, 

parameters, and return values of methods, requiring extra keystro kes, and increasing the 

programming time and making cade less readable. 



Extensibilitv 

Smdtalk's extension mechankm is unlimited and al l  its source code visible to the 

programmer on-line. This allows the programmer to view, extend and media every 

aspect of the system, including its class library, which can make the programmer's Iife 

much easier. In Java, source code is not open and thefinal modifier means that a final 

class can not be subclassed, a final method can not be ovemdden, and a h a 1  variable can 

not change its value. That means that udess classes are designed perfectly, either they 

must be redesigned as their use evolves or new classes duplicathg their behavior must be 

created. However, the fact that the programmer can view and modify every aspect of the 

system presents the danger of introducing errors into the compiler or debugger and 

reduces reliability and security. 

Access control 

Java has four modifiers, public, defuult, protected and private, to let programmers control 

the visibility of fields, methods, constructors and classes. Using these modifiers, 

programmers can control the access to make code safe. SmaIltalk has no access control. 

Ali classes and methods are public, and al1 variables are private. This makes Smalltalk 

syntax simple, but prograrnmers Iose the control of access to their code. 

Productivitv 

Smalltalk has an integrated and powerfiil devebpment environment, and includes rich 

and mature class library, which makes it very productive. Since the source code is 

available and the language is reflective, developers can extend or custornize it as they 



wish. Based on studies of on large projects at multiple companies, Smalltalk implements 

function points with 50% of the code of Java [Capers Jones]. Development using 

Smalltalk is faster than using Java for the following reasons: 

First, SmalItaik usually needs less code to perform the same operation. 

As an example, the following piece of code in Smailtalk gets and displays the contents of 

a file: 

'C: Iautoaec. bat' asFilenarne exrs fs 

zjTi-ue: f Transcript show: ('Ci Iautoexec. bat' asMename readStrearn contents)] 

zFalse: [Transcnpt show: 'File does not exrst. 7. 

The same task is more complicated wiîh Java: 

import java. io. *; 

public class ReadFile { 

public static void main (Stnng argsl7) { 

t w  

int c; 

FileInputStream stream = new FilernputSh-eam("C:/autoexec.bat'>; 

while(( c = strearn. readQI != -2) System.out.print((char) c); 

stream. close& 

) catch (FileNotFoundException e) { 

System.out.prirztln ("File does nof m s t .  '7; 

1 

catch (IOException e) { 

Systern. out.println(e) ; 



1 

1 

Second, Smalltalk compiles code into bytecodes as soon as users fhish writing it, 

taking no noticeable time to do so. 

In Java, users usualIy compile their code after one or more classes are finished and 

sometimes the compiling process takes long time. Whenever the compiler h d s  errors, 

users have to go back to their code, correct the errors and recompile. This consumes 

much of Java developers' tirne, 

Third, it is easier to test a piece of code in Srnalltalk. 

For example, testing the outcome of a method in Smalltak, users only need to write the 

code in a Workspace and inspect it. In Java, users have to create a file with a "main" 

method, and then compile and run it to get the result, which is time consuming. 

Reflectivitv 

SrnaIlta& has a meta-programming mechanism dlowing it to reflect on itself. It is 

flexible enough to let its users access interna1 information and to modXy not only the 

development and runtime environment but even the language. As an example, developers 

can change the garbage collection rnechanism, manipulate bytecodes, redefine or extend 

the language, add multiple inheritance, add a privacy rnechanism and remove it, change 

language syntax, etc. Java also has a reflection API, Object class and Class class provide 

reflection capability. It resembles to Smalltaik meta-prograrnming, but it is more 



complicated and not so powerfiil. As an example, Java developers carinot make the 

changes Iisted above. Srnalltaik also provides easier access to the runtime environment. 

For example, in Smalltalk, users c m  h d  all the immediate subclasses of a class by the 

subclasses method, the whole hierarchy of subclasses using aZ~SubcZasses method, and 

the class itself with d l  it subclass hierarchy using withAZZSubclasses method. Java can not 

do this directly unless similar methods can be created. 

As an example, to access al1 instance variables of class EMO in Smalitalk, users could 

use: 

EMO inst VarNames, then click "inspectY' menu item. 

In Java, users must write sornething like this: 

class Getlnstances{ 

public static void rnain(Stringu args) { 

EMO emo = new EMOO; 

printInstances(emo) ; 

I 

static void printinstances(EM0 O) { 

Class c = o.getClass0; 

FieldB Instances = c.getFieZds0; 

for (int i = O; i < InstuncesJength; i t t )  { 

Stnng instanceName = Instances[i].getNameO; 

System. out.println("Nume: " + instanceName); 

1 

1 



1 

Debue4nq 

Srnalltallc's debugger gives users a stack trace, which allows users to look at any of the 

methods in the stack, inspect or change any of the variabIe values, redefine the executing 

message, change objects, and proceed without breakhg execution. Tt also has a browsing 

capability for looking at senders and implementers. To ïnvoke a debugger, users simply 

need to add "self halt" to their methods or insert invisible breakpoints. Java's debugger 

only tells users which line has an error in it and what error it is. Some Java DES, such as 

JBuilder, has more sophisticated debuggers that gïve users a stack trace and allow them 

to inspect variable values, but not change values during execution. Sirnilarly, methods 

cannot be redefined without breaking execution. 

Internet Awareness 

From the beginning, Java addressed Internet programming and has close ties with the 

Internet and web browsers. Its class library is more oriented towards building Internet 

applications than the SrnalltaIk class library. 

Thread-safetv 

Java class library was constnicted to be thread-safe and automatically settle potential 

conflicts between different running threads, so users only need to concem about their 

own code to be thread-safe. Most current Smalltalk dialects do not use threads of the 

underlying operating system and use their own thread mechanism. This means that 

concurrent programrning is easier in Java than in Smalltalk. 



S ynchronization 

Java implements synchronization through the synchronized keyword, which eliminates 

most of the complexity associated with synchronization. In Smalltalk, we must use the 

Semaphore class and its methods to implement synchronization and this may be more 

complicated. 

Runtime obiect creation 

Smalltalk has a global dictionary named Smalltalk (VisualWorksSi and higher use 

namespace objects instead) that contains all the classes in the system, and global 

variables. Using it users can create an object whose type is &own until runtime. With 

the reflection API, Java programmers can also deal with this, but it is more complicated. 

For example, EMOO needs to create an instance of a class at m t h n e  by its name. In 

Smalltalk: 

EMOClass : = SmalZtdk at: classNarne. 

newobject := EMOClass name: objectName. 

In Java the same effect reqiiires the following code: 

Clms emoDefinition; 

Classu argsCZass = n ew Class [l (String. class); 

06jectD args = new Object ff (objecfName); 

Constructor argsConstructor; 

tir{ 

emoDefNlition = Class. forNam e(cZassName); 



argsConstructor = emoDefinition.getConstructor(argsCZ~s); 

urgs Cunstmctor.n~nstance(args); 

1 catch (Exception e) { 

eprin tStackTrace0; 

1 

Runtime method invocation 

SmaIltalk has the perform: family of messages that aiiows the programmer to invoke a 

method on an object, even if the method is not known until nintime. Java's 

java.Zang.reflection.Method class c m  impIement the same fiuiction, but again, it is more 

complicated. Fox example, EMOO needs to invoke a method at runtime according to its 

name when handhg a .  event. In Smalftalk: 

anEM0 pefom:  methodNarne withArguments: parametersArray 

In Java: 

RY{ 

CZass cls = an EMU.getClass(?; 

CZass partypes0 = new Class fg; 

for ( int j = 0; jci;j++) partypesfi] = event.get.Parameters0.get~).getCZassO; 

Method meth = cls.getMethod(methodName, partypes) ; 

Object argZistD = n m  Objecw;  

for ( int j  = O; j c i ; j f  +) arglistH = event.getParametersO.getÿ); 

meth. invoke(an EMO, arglist) ; 

I 



catch (Exception e) { 

e.printStackTi-aceo; 

l 

It is obvious that the code written in Smalltalk is easier to use and understand than Java. 

Ease to leam 

Java has a more conventional syntax than Smalltalk, so that established programmers 

quickly feel comfortable with Java, while it takes longer to become comfortable with 

Smalltak. However, for new p rogrmers  who do not have any program experience, 

Smalltak may be easier to leam: It has ody  five reserved words (Java has 50 reserved 

words) and very simple syntax with few rules and special cases. 

Readability 

Each Java source file contains all information about a class including its dehition, 

variables, constructors and methods. In Smalltak, classes and methods are classified as 

categories, classes, protocols and methods. Dif5erent people have different preferences 

concerning these arrangements. 

S tandardization 

Smalltalk has an ANS1 standard W S I ,  19981. Java does not have one yet. However, 

Smalltalk has several dialects that differ somewhat fiom one implementation to another. 

The mos t popular dialects of Smalltalk are VisualWorks [VisualWorks] , VisualAge 

Srnalltalk [IBMST], Dolpin [polpin], GNU Smalltalk [GNW, and Squeak [Squeak]. Java 



has no dialect. Sun Mïcrosystems, Inc. is the only vendor of the Java development 

environment and others are vendors of Java IDES, 

Matunty 

Smalltak was unveiled about thirty years ago after ten years of research, while Java was 

created ody  ten years ago. Java is still evolving and relatively immature compared with 

Srnalltalk. We can compare Java to a teenager and Smalltalk to an adult. The version of 

JDK - Java development environment - is often updated and the different JDK versions 

are somewhat inconsistent, so that Java developers have to work around various 

immature aspects of the JDK during the development. Smalltalk's core libraries are more 

mature, but the great interest in Java will hasten its maturation. 

7.2.4 Conclusion 

Java and Smalitalk are both excellent object-oriented programming languages. They are 

both suitable for developing virtual environment systems such as MOOs. Based on rny 

experience, 1 consider Java to be better in the following categories: 

Java is a secure Ianguage with many features that facilitate the creation of secure 

applications. 

Using RMI API to implement a distributed object mode1 is more convenient, more 

efficient and simpler than using sockets in Smalltalk. (VisudWorksSi.1, the latest 

version VisualWorks, provides the OpenTalk [Cincom] fknework that can 

implement similar fiinctionality as M.) 

To transfer objects, the RMI API uses the Serialkation API to rnarshal and unmarshal 

objects. This is easier than converthg objects to BOSS (BinaryObjectStorageStream) 



and vice versa for tramferring hem in Smalltalk. AU we need to do is let object 

classes implement Serializable interface, we need not define by ourselves. (Recent 

VisuaiWorks OpenTalk performs the same fûnction.) 

a The Java class Iibrary was constructed to be thread-safe and has built-in threading for 

synchronizing blocks of code or methods. This is easier to use than equivalent in 

Smalltalk. 

0 Java is easy to leam and use for a programmer familiz with C/C+k 

Smalltallc is better in the following categories: 

0 Srnalltaik has a more mature virtual machine that is faster than current Java virtual 

machines. 

a Smalltalk has a better programming environment and a more mature class library, 

Srnalltalk programs are easy to change and reuse because they use dynamic typing 

with run-time type-checking instead of Java's static typing with compile-time type- 

checking. 

Smalltalk code is more concise, which makes it suitable for rapid application 

development. 

a hplementïng dynarnic object creation and method invocation is easier in Srnalltalk 

than in Java. 

In conclusion, at present, because Smalltalk is more mature, productive and dynamic, 1 

concluded that it is better using Smalltalk than Java to implement a text-based MOO. 



Java is certainly more popular and has a larger user community. Consequently, there is 

much effort behind Java that pushes it to develop rapidly and make it better and better, 

but this does not mean that Smalltalk will disappear. SmdtaIk is aIso evolving. Java's 

onslaught contributed to the emergence of Smalltalk's fiee versions and created a 

pressure on  m e r  Smalltallc development. 

The differences between Java and Smalltak iisted above are diminishing, because Java 

and Smalltalk are both leaming f?om each other's strong points to offset their weakness. 

The cornpetition between Java and Smalltalk makes the information technology world 

more exciting. 



Chapter 8 Using EMOO 

To put the earlier chapters into context and to help those who want to experiment with 

EMOO, this chapter describes the use of EMOO and shows how it is installed. Several 

screenshots show the graphical user interfaces that users will typically encounter while 

using this system. 

8.1 InstaWng EMOO 

All EMOO code is available at htt~://ace.acadiau.ca~user/ivan/resear~h/CVE/index~html. 

EMOO class files are contained in a compressed zip file called cbemoo.zip". File 

"java.policy" is used for changing Java security policy and giving permissions to nui 

RMI client and server programs. To install EMOO proceed as follows: 

1. Install Java 2 SDK (JDK1.2) or above. This is available at www. javasoft.com. 

2. Create a working directory, for example "c:ùnyclasses7'. 

3. Unzip emoo.zip to the directory created in Step 2. 

4. Copy the "java.policy" file to the "jre\lib\security" directory of your JDK installation. 

8.2 Starting a Metaserver 

To enable EMOO, start a metaserver as follows: 

1. Start RMI's registry: Open a console (a DOS window in Windows), and execute the 

following command in the working directory: 

c: \myclasses> rmiregr'stry 



2. Run EMOO metaserver: Open another console and enter 

O;dk insial2 directory)java -classpath c:\mycZasses emoo.EMOOMetaSewerManager 

This will open the EMOO metaserver window (Fig. 8-1). 

3. Start the metaseruer. Click the "Staxt" button in the EMOO metaserver window. 

Figure 8- 1. EMOO metaserver user interface 

8.3 Starting and saving a Universe 

Once a metaserver is running, a server running a universe must be started. Any number of 

universes may run on a single metaserver. Once a universe is started, any number of  users 

can then connect to it. To start a universe, execute the following steps: 



1. Start RMI's registry: Open a console, go to your working directory, and execute the 

following command: 

c: \myclasses> rmiregr'sq 

Do not execute this step if you have already started RMI registry. 

2- Run EMOO universe: Open another console and execute 

Gdk install directo?y)juva -classpath c: Imyclasses emoo. EMOO UniverseManager 

The EMOO universe window will open (Fig. 8-2). 

Figure 8-2. EMOO universe user interface 



Create a new universe or load one fiom a file: To create a new universe, click New 

button to enter the universe name (Fig. 8-3, 8-4). To load a universe from a file, click 

the Load button (Fig. 8-3,8-5). 

Figure 8-3. Creatïng a new or loading a saved EMOO universe 



Figure 8-4. Creating a new universe 

pictures 
songs 

@ temp 
tinguistics.ppt 
MemoryLeaks-ppt 
MarnoryLeaks.bn 

Figure 8-5. Loading a saved universe 



When a universe is started, it registers its status on the metaserver (Fig. 8-6). 

Figue 8-6. Universes registered on the rnetaserver 

To Save the currently running universe, click Save button to save it in a file (Fig. 8-7). 

pictures 
songs 
temp 
Linguistics.ppt 
Memoryleaks.ppt 
MamoryLeaks.îxt 

El MoveMouse.exe 

Figure 8-7. Saving a universe 



8.4 Running a Client 

Opening and closing a client 

Use EMOO launcher to contact EMOO universes and connect to them, both locally and 

rernotely, and disconnect. The launcher also provides access to other EMOO tools. 

Figure 8-8. EMOO launcher user interface 

1. Open EMOO launcher: Open a console and execute 

Gdk install directoy)j~va -classpath c: Imyclasses emoo. EMOOLauncher 

The EMOO Iauncher window will open (Fig. 8-8). 

2. Select a remote universe or create a local one: Select Remote radio button and click 

Login buaon to open a list of al1 currently available universes (Fig. 8-9). Select Local 

to create a local universe (Fig. 8-4). 



3. Log in a universe: M e r  selecting a universe, click Select button to open a login 

dialog (Fig 8-10). 

Figure 8-9. Available universes list 

Figure 8-10. Login dialog 



After logging in, you can open a tool fiom the Tools menu (Fig. 8-1 1). The following 

section describes the available tools. 

Figure 8- 1 1. Selecting a tool to open 



CreationTool 

This tool allows the user to create a new instance of an existing object template and to 

d e h e  its properîies. The user chooses the object type (class), gives the object a name and 

description, and clicks "Create" to create the object (Fig. 8-12). 

Figure 8- 12. ccCreationTool'7 user interface 



PropertyTool 

This tool displays an object7s properties and allows the user to edit them if he or she is 

authorized to do so. To edit an object's properties, the user first selects the object, then 

chooses and ediîs the properties, and clicks Accept button (Fig. 8-13). 

Figure 8-1 3. c'PropertyTool" user interface 



UniTool 

This tool provides basic communication and navigation fùnctions. It has a 

communication part with input and output areas, an entity Iist area showing objects, 

doors, occupants and personal holdings, and display the commands understood by the 

selected object, and its subscribable events. 

The user can select "Say" or 'Tmote" to Say or emote to everyone in the same room, or 

select '"Nhisper" and a person, Heidi in this example to whisper to. Entering the text in 

the input field executes the command (Fig. 8-14). 

Pou say: Hi, H e i d i  Administrator(9) 
H e i d i  saps: How are pou? 
Pou Sap: Good 
Pou uhisper to Heidi: 1 have a secret  Co tell you. 

Figure 8-14. Min's UniTool interface when whispering to Heidi 



To move fiom the curent room to another one,. the user chooses a door fiom the door kt, 

and clicks Go button (Fig. 8-1 5)- 

Figure 8-15. Agent Heidi is in 'Registry Room" and wants go to the "Tktry Room" 



To use an object, such as a recorder, the user chooses the object in the UniTool and clicks 

Open button (Fig. 8-16). The object's tool interface opens (Fig. 8-17). 

Figure 8- 16. Opening a recorder named "myRecordei' 



sonpRecorder appears in 
You sap: aaaaa 
Pou sap: bbbbb 
Yau sep: ccccc 

Figure 8- 17. Recorder user interface 



Manipulating ob jects 

The Action menu in the UniTool allows the user to pick up, drop and destroy an object 

(Fig. 8-1 8). The use of the interface is self-explanatory 

oor to Registiy Room(1 O) 

Figure 8-1 8. User picks up "myRecorder" 



Subscribing to events 

The user c m  subscribe to an object7s events to be notined when they occur. To subscribe 

to an event, the user selects the object, opens its events list f?om the Subscribe menu in 

the UniTool, chooses an event fkom the event list, and clicks OK button (Fig. 8-29 and 8- 

20). 

Figure 8- 19. A user subscnbes to Adrninistrator's pickUpEvent 



pickUpEvent is successfullp subscribed. door to Dream Land(4) 
dropEvent is successfullp subscribed. 
goEvent is successfully subscribed. A door to Registry Room(1 O) 
mpRecorder disappears. 
Administrator received pickUpEvent 

Figure 8-20. The user is notified of event subscription and occurrence 



To unsubscribe, the user opens subscribed events ftom the Subscribe menu in the 

UniTool, chooses a subscribed event, and clicks OK button (Fig. 8-21 and 8-22). 

Figure 8-2 1. User unsubscribes Adrninistrator's c'pickUpEvent" 



pickUpEvent is successfullp subscribed. A door to Drearn Land(4) 
~WopEvent is successfuLly subscribed. Administrator(9) 
goEvent is successfully subscribed. A doorto Registry Room(1 O) 
mpRecorder disappears. rnin(l2) 
AFiminis trator r eceived pickUpEvent 
pickUpEvent CAliministrator(9) J is successfullp 

Guang(l33) 

unsubscribed. Heidi(l4) 

sonyRecordeE disappears. 

Figure 8-22. Administrator ' s "pickUpEventy ' has been unsubscribed 



Chapter 9 Conclusion 

9.1 Current state of EMOO 

At present, EMOO is fiilly working and has been tested on a srnail scale. It has aii the 

basic functions that a traditionai MUD/MOO has. Users can communicate with others 

using the UniTool, create, pick up, drop and destroy objects, walk around, and subscribe 

to events. It has basic objects including agents, guests, places and doors. Four tools have 

been implemented including UniTool, Creation Tool, Property Tool and Recorder. 

9.2 Conclusion 

As we enter the new millenium, distributed software developrnent is becoming more 

cornmonplace and there is a growing need for software environments supporting it. 

Collaborative Vimial EnWonments (CVE) are one of the promising approaches. 

In designhg a multi-user virtual environment for Cornputer Supported Collaborative 

Work (CSCW) [CSCW], we must consider many aspects ïncluding concurrency, 

efficiency, extendibility, security, complexity, flexibility and usability. Distributed teams 

require the capability to work together, save and version their work, and merge work 

done by individuals into a whole. We must consider the management of concurrent 

access by a potentially large number of users, provide tools to support easy versioning of 

a design and merging of multiple artefacts. We must also balance speed and functionality, 

flexibility and security, efficiency and complexity according to the différent 

requirements. 



EMOO is an extension of a new approach to the implementation of a virtual environment 

based on MOOs. It re-implernents most of the features of the pilot project MU34 in Java, 

including a simplified version of event-based operation, the possibility to create any 

number of interconnected universes, a substantial client relieving the server and the 

network of much activity7 and powedkl and extendible client-side user interfaces. EMOO 

is not a simple translation of MUM fkom Smalltalk to Java, however, and incorporates 

many changes and improvements in design and implementation to address the problems 

of balancing speed and functionality, efficiency and complexity (see Chapter 7 for 

details). 

Using Java to implement EMOO also gives us an opportunity to compare Java with 

Smalltalk - the implementation language of MUM - and leam more about Java and 

Smalltalk. 

9.3 Future work 

The fÏrst desirable extension of EMOO is to add more EMO objects and tools, for 

example whiteboard and binder, to support communication and multiple formal software 

design notations and template-based drawing, such as UML and versions management. 

Other possible enhancements include converting the client to an applet, so that users can 

use a web browser to connect to EMOO without having to invoke the Java interpreter. At 

present, EMOO is an application because the focus is on conceptual and design issues 

without the additional complications of applet programming. 



Implementing automatic code update, so that when a user connects to a universe the code 

is automatically updated, and a locking mechanism, for example to manage multiple 

users working on a single design, are also desirable. Such mechanisms can transform a 

fiee-for-al1 design into an organized and coordinated design effort. Support for multiple 

languages so that servers can be implemented using different programming languages, 

such as Smalltalk, Java, C*, should also be considered. Ail these fünctions are usefùl to 

address CSCW needs- 



Glossary 

Application Programming Interface. 

Avatar The representation (proxy) of a user in a virtual environment. 

CASE Cornputer-Aided Software Engineering. 

CORBA Common Object Request Broker Architecture. 

CVE Collaborative Virtual Environment. A virtual environment designed for 

collaboration. 

CSCW Cornputer-Supported Cooperative Work. 

EMOO Experimental MOO. 

Function Point A software metric used to measüre the complexity of an 

application fiom the functional perspective. Also used to predict the amount of source 

code that must be written to irnplement an application. Different tanguages require a 

different average number of statements to implement one Function Point [Capers Jones]. 



MO0 

language. 

MUD Object Onented. MUD implemented in an Object-Oriented 

MSJD Acronym for Multiple User Dimension, Multiple User Dungeon, or 

Multiple User Dialogue. A virtual software world where a user can extend the 

environment, communicate with others, navigate, and use objects. 

Remote Method Invocation. 

UML Unified Modeling Language. A grap hical language for visualizing, 

specimg, constructing, and documenthg the artifacts of a software-intensive system. 

VE Virtual Environments. 

Virtual Environment A software environment that emulates physical world with 

a multitude of navigable places, portable objects, and communicating software entities 

including human users and software agents. Can be implemented according to various 

paradigrns including MUD. 



Bibliography 

, 

[ANSI, 19981 NCITS J20, ANSI Smalltalk Standard document, Mach 1998 

@3adros] http://www~cs~washin~r~ton.edu/homes/~b/doc/iava-Ian.d~~fiame.htm 

pooch, 19991 Grady Booch, James Rumbauch, Ivar Jacobson: nie Unified Modeling 

Lunguage User Guide, Addison Wesley Longman, Inc., 1999 

[Borland] h~://www.borland.codjbuilder/ 

[Capers Jones] h~://www.s~r.com/libr~/Olan~gtbI.htrn 

[Chùnu] http://www.chin~u.codpub~i~ations/ 

[CORBAJ http://www.corba.ore/ 

PCOW 

P l p i n ]  http ://www.obiect-arts.com/Home-htm 

[Fadey, 1998 J Jim Farley: Java Distnbuted Computuig, O'Reilly, 1998 

powlery 19971 Martin Fowler with Kendall Scott: UMI;  DistiZZed, Addison Wesley 

Longman, hc., 1997 

[ G W  h m  ://www. qnu.org/ 

[Haynes, 19981 Haynes C, Holmevik JR: High wired: on the design. use, and theory 

of educntion Mûûs, University of Michigan Press, A n .  Arbor, 1998 

morton, 19991 Ivor Horton: Beginning Java 2, Wrox, 1999 



Lambda] htt~://www.moo.mud.org 

Fingua MO01 http://linwa.utdallas. edu 

Meier, 19991 Carol Meier and George Watson: Condensed Java, tutorial notes of 

OOPSLA'99,1999 

~ c r o s o f i V J ]  htt~://msdn.microsoft.comfvisuali/ 

wcroso  fWS] hf.tp://wwv.microsoft.com/office/visio/ 

[Momson, 19971 Michael Momson and Jerry Ablan: Teach Yourself More Java in 21 

Days, Sarns.net, 1997 

~ l i n e ]  httD://www.apocalvpse.or~~ub/u/l~b/muddex/mudlie.html 

[Naughton, 19991 Patrick Naughton and Herbert Schildt: Javam2: me Complete 

Reference, n i rd  Edition, McGraw Hill, 1999 

[Okstate] httt~://www.cs.okstate.edu/-iddmudfaci-D 1 .htrnl#q 1 

D'o~kid h~://www.~opkin.corn/ 

Fational] ht!m://www.rational.com/Droducts/rose/index.html 

[RMlrl http://www. ia~a~~ft.c~m/~r~ducts/idk~nni/index.ht~nl 

[Sharp, 19971 Alec Sharp: SmalltaZk by Example, McGraw Hill, 1997 

[Smalltalk] http://www.smaIltak.or~ 

1 S queakl h~ : / /ww~.sq~eak .ore /  

[Stevens, 19901 W Richard Stevens: LL3LL.Y Newtwork Prograrnrning, Prentice Hall hc., 

1990 

[S ymantec] http://www .symantec.~om/domain/cafe/vcafe3 0-html 

[Together] ~ ~ : / / w w w .  too;ethersoft.com/ 



- [Tomek, 19991 Ivan Tomek, Rick Giles: Virtual Environment for Work Study, and 

Leisure, J o m d  of the Virtual Reality Society, 1999 

[Tomek, 20001 Ivan Tomek: The Design of a MOO, Jounial of Network and Cornputer 

Applications, to be published 

[TWUMOO] httD://rnoo.twu.edu:7000/ 

wisual Object] http://www,vîsualob~iectrnodelers.com/ 

~isua lWorks  J http ://www.cincorn.com/ 

w a t i s ]  http://www,whatis.com 

~ m s t o n ,  19971 Patrick Henry Winston: On to SmalZtalk, Addison Wesley Longman, Inc., 

1997 

Jersey MOO, MUM & EMOO : http ://ace.acadiau.ca/uçer/ivan/research/CVE/inde~~ hm1 




