
Team Lab

- A Coilaborative Environment for Teamwork

BY

Guang Yang

Thesis
submitted in partial fiilfillment of the requirements for
the Degree of Master of Science (Cornputer Science)

Acadia University
Fa11 Convocation, 2000

Oby Guang Yang, 2000

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395. nie Wellington
Ottawa ON K I A ON4 Otta-wa ON K I A ON4
Canada Canada

Your lYe Votre rëlerence

Our nle Notre rdlerence

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Lïbrary of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou
copies of this thesis in microfom, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/nlm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 BACKGROUND 4

2.1 ENWYDEVELOPER .. 4
2.2 STORE AND OBJECTSTUDIO V6 TEAM EDITION ... 6

........*............ CHAPTER 3 INTRODUCTION TO MUD AND MO0,,,... ..-....... 9

CHAPTER 4 OVERVIEW OF MUM .. 12

.. CHAPTER 5 TEAM LAB OVERVIEW 21

... 5.1 E x r s m ~ ENVIRONMENTS AND TEAM LAB .,,. 21
.. 5.2 THE BENERTS OF USMG MUM MFRASTRUCTURE 24

... CHAPTER 6 CONCEPT AND DESIGN DETAILS 26

... 6.1 T m LAB AGENT 28
.. 6.1. I TLDeveZoper 28

.. 6.1.2 TLAdministrator 29
.. 6.2 TE^ LAB '~EAM MANAGEMENT 29

6.2.1 Team Lab Team ... 30
.. 6.2.2 TLTeamRegzStry 30

.. 6.3 CODE REPOSITORY 31
6.3.1 Code Repusitory .. 31

.. 6.3.2 TLCafegory 32
.. 6.3.3 TLCZass 32

6.3.4 TLProtocol ... 34
6.3.5 TWefhod ... 34

6.4 DESIGN - THE MAIN CLASSES ... 34
6.4.1 TeamLab .. 34
6.4.2 TLAdrninistrator .. 35
6.4.3 TLDeveloper .. 35
6.4.4 TLTeam .. 35
6.4.5 TLTeadnfoDacnptornnn 36
6.4.6 TLTeamRegistry .. 36

.. 6.4.7 TLCategory 36
6.4.8 TLC2m.r .. 37

.. 6.4.9 TLClassDefinition 38
.. 6.4.10 TLCZassDetaiZ 38

... 6.4.1 1 TLCodeRepository 39
... 6.4.12 TLProtocol 39

6-4-13 TLMethod .. 40 - 6-4-14 ~LMethodDefnition .. 40
6-4-15 TLCompiler .. 41
6.4.16 TLBrowser ... 41
6.4.1 7 TLBro wserBase 43

6-4-18 TLClassConverfer .. 43
.. 6.4.19 TLClass ConverterBase 44

6-4-20 TLTeamTool .. 44
6.4.21 TLTeamToolBase ... 45

6.5 SEQUENCE DIAGRAM .. 46
.. 6.5.1 Create Team 46

6.5.2 Remove Team ... 48
6.5.3 Add Category ... 49
6.5.4 Remove Category ... 50
6.5.5 Rename Category .. 51

.. 6.5.6 Defne Class 52
... 6.5.7 Remove CZass 53

... 6.5.8 Load Class 54
... 6.5.9 Unload Class 55

6.5. IO Release CZass (similar Set Public, Set Pn.vate, Set Current) .. 56
6.5.11 Set C lus Version ... 57

.. 6.5.12 Add Protocol 58
... 6.5.13 Remove Protocol 59

6.5.14 Accept Method ... 60
... 6.5.15 Remove Method 61

... 6.5.16 Transfer Class fiom TL Code Repositoïy to Local Image 62

... 6-5-17 Transfer Class from Local Image to TL Code Repository 63

CEIAPTER 7 F'UNCTIONALITY AND IMPLEMENTATION .. 64

CHAPTER 8 INSTALLATION ... 82

CHAPTER 9 CONCLUSION AND FUTURE WOIRK ... 83

GLOSSARY .. 85

Table of Figures

FIGURE 4.1 '?3AY" SEQUENCE DIAGRAM .. 14

FIGURE 4.2 METASERVER AND UNLVERSES 16

FIGURE 4 3 SIMPLIFIED DIAGRAM OF EVENT EXECUTZON ... 18

FIGURE 4.4 OBJECT CREATION TOOL 19

FIGURE 4.5 UNITOOL ... 20

FIGURE 5.1 TEAMWORK USING S m T A L K ,.,.........-.-.- ... 22

FIGURE 5.2 TEAM LAB OVERVIEW, 23

FIGURE 53 CLASS CONVERSION ... ,..,...... ... 23

FIGURE 6.1 OVERALL TEAM LAB STRUCTURE .. 26
.......................... F'IG- 6.2 CLASS DIAGRAM SEOWING AGGREGATION RELATIONSEID? 27

FIGURE 6 3 CLASS HIERARCHY DIAGRAM ... 28

............. FIGURE 6.4 LAUNCEIER WITH TOOLS AVAILABLE TO TEAM LAB DEVELOPERS 29
. .

FIGURE 6.5 TEAM LAB TEAM ... -30

.. FIGURE 6.6 CREATE A TEAM 47

......................... FIGURE 6.7 REMOVE A TEAM 48

F'IGURE 6.8 ADD A CATIEGORY ...-... 49

FIGURE 6.9 REMOVE A CATEGORY .. 50

FIGURE 6.10 RENAME A CATEGORY ... -51
FIGURE 6.11 DEFINE A CLASS ... 52

J?IGURE 6-12 REMOVE A CLASS .. 53

FEGURE 6.13 LOAD A CLASS .. 54

FIGURE 6.14 UNLOAD A CLASS,......................... : ... 55

.................... FIGURE 6.15 RELEASE A CLASS (SET PUBLIC. SET PRIVATE, SET CURlU3NT) 56

... FIGURE 6.16 SET CLASS VERSION 57

FIGURE 6.17 ADD A PROTOCOL ... 58

FIGURE 6.18 B M O V E A PROTOCOL 59

FIGURE 6.19 DEFINE A METHOD 60

FIGURE 6.20 REMOVE A METHOD 61

FIGURE 6.21 TRANSFER A CLASS FROM THE CODE REPOSITORY TO THE LOCAL
IMAGE 62

FIGURE 6.22 TRANSE'ER A CLASS FROM THE LOCAL IMAGE TO THE CODE
REPOSITORY .. 63

FIGURE 7.1 TEAM TOOL 64

FIGURE 7.2 TL BROWSER ... 67

.. FTGURE 7 3 CATEGORY MENU OF TL BROWSER .,. 68

.. FIGURE 7.4 NEW CATEGORY NAME REQUEST DIALOG 69

FIGURE 7.5 CLASS TEMPLATE-............ .. 70

... FIGURE 7.6 SYNTAX ERROR OF CLASS DEFINITION 70

FIGURE 7.7 INFORMATION AREA,.......... 72

... FIGURE 7.8 CLASS MENU 73

FIGURE 7.9 CLASS VERSIONS AND THEIR INDICATORS .. 74

FIGURE 7.10PROTOCOL MENU 77

FIGURE 7.11 OPERATE M E N 78

... FIGURE 7.12 ERROR MESSAGE WINDOW FOR METHODS 78

FIGURE 7.13 TL CLASS CONVERTER .. 79

IFTGURE 7.14 VERSION NUMBER REQUEST DIALOG ,., 80

vii

Abstract

As we are entering the 21st century, demand for high quality software increases

dramatically. Software development requires teams of developers working closely

together, so it becomes more and more important to have a good collaborative

environment in order to improve efficiency, productivity, and quality. Unfortunately most

software development tools are designed for a single user or do not have a good

environment for teamwork. This gap lead to the design of Team Lab.

Earlier work at Acadia University lead to the development of a collaborative virtual

environment called MLTM. This thesis is an atternpt to validate MUM architectrrre by

developing a MUM tool for integrated software development called Team Lab. Team

Lab is a basic code management tool that provides a common repository for shared code,

supports concurrent p r o g r d g activity and class level version control.

The conclusion of the thesis is that the architecture of MUM is a workable foundation for

a CVE with full support for software development tools.

..a vlll

DEDICATION

To my family and friends.

1 would like to thank everyone who helped and supported me d w g design,

implementation and writùxg of m y thesis. Thanks to everyone who designed and

implernented MUM, which is the basis of my thesis. Thanks to everyone who provided

usefùl information to make it better. These people include Dr. Ivan Tomek, Dr. Rick

Giles, David Murphy and Min Wu.

Specially, 1 would like to thank Dr. Ivan Tomek, my supervisor, for his many good

suggestions and guidance. Thanks to Dr. Peter Hitchcock, rny extemal examiner, Dr.

Rick Giles, my interna1 examiner, Leslie Oliver, Acting Director, for their effort to

examine my thesis.

Chapter 1 Introduction

The ided collaborative environment should be an integration of multiple team-support

features into a seamless whole. It should provide means for communication, creation of

documents, private and shared spaces, security, and a variety of work tools. In other

words, rather than working with individual isolated tools, work teams should work in a

Collaborative Virtual Environment (CVE).

What are the main properties of software development tools required by a team of

software developers? One of the most importmt features is that programmers should be

able to share code easily. Code should be available to others as soon as a programmer

finishes editïng a unit of code and releases it to the team. Working in this way, developers

always get the latest code, which is the premise of efficient teamwork. At present, this

feature is suppoaed by tools such as ENVY/Developer [LI, StORE [2] and ObjectStudio

V6 Team Edition for VisualWorks Smalltalk [3]. These tools implement code ownership,

versioning, releases, and code configuration. However, the limitation of these tools is that

it is restricted to code management and lacks support for the other features mentioned

above and essential particularly for geographically dispersed teams.

Another desirable feature for collaborative software is that users should be able to work

both online and offline with code synchronization performed when they switch f b m

offline to online mode.

As mentioned above, a CVE should provide multiple ways of collaboration. In addition

to code sharing, users need to exchange ideas when they are working. Although many

chat roorn programs are avaiIabIe and widely used, support for communication should be

an integral part of the environment rather than a standalone application. This would not

only make their use easier and provide privacy, but it would also allow the team to

capture project-related documentation and create and maintain corporate memory.

Whenever there is a need for discussion, the team should also be able to establish a

private online meeting by simply launchhg a suitable interface, and capture its content as

a part of project documentation. Since the meeting space is not public, the discussion will

not be intermpted by uninvited users. A shared whiteboard maintained as a part of the

environment would dso be nice for expressing and recording ideas.

S eparation of individual proj ects and their parts, instant access to individual team

members, and possibility of informal and chance encounters should be supported to

emulate and complement the ideal situation of team members working in physical

proximity and meeting face-to- face.

Another important feature is instant notification of team members when a relevant unit of

work is released. As soon as a requirement document, design diagram, or a class is

released or changed, interested users should be notified if they want. This can be

implemented by a subscnption mechanism that enables users to express their interests in

work events such as classes being released, methods being modified, categories being

removed, new code being added, etc.

By its very definition, dl possible uses of a CVE emulating physical reality are

unpredictable and the environment thus must be easily extendible and customizable.

Whenever there is a need for new tools, users shouid be able to write them and add them

to the existing environment without disrupting the operation of the system. This requires

a suitable CVE architecture and implementation technology that facilitates nui-time

modification-

In consideration of the above-mentioned requirernents, Team Lab was developed as an

extension of MUM - Multi-Universe MO0 [4], an event dnven MO0 (MUD Object

Onented) whose architecture was designed to facilitate implementation of the

fünctionality outlined above. In the following sections, we will survey the principles of

MUM, outline the fûnctions and design of Team Lab, present several examples of its user

interfaces, and summarize conclusions and plans for the fiiture.

Chapter 2 Background

The rapid development of cornputer

due to the huge demand for high

technology today

quality software.

requires good tools for teamwork

Teamwork often involves many

deveiopers that work closely together. The better the tools they use, the more productive

they are.

Currently there are several products available on the market that support team work. In

the Smalltalk environment, these tools include ENlWDeveloper, StORE (SmalItalk

Open Repository Envionment) and O bject Studio V6 Team Edition. ENVY/D eveloper, is

a product of Object Technology International Inc, StORE and ObjectStudio V6 Tearn

Edition are products of Cincom.

2.1 ENVY/Developer

ENVWDeveloper is a very popular collaborative component development tool for

Srnalltalk developers. It supports concurrent development, shared repositories, version

control, coni5guration management, and distributed development for small to very large

teams. ENVY/Developer has following charactenstics:

Integrated Repository:

It provides concurrent component-level access to strearnline group development and the

access control is at the component level. In addition, ENW/Developer's incremental

development with dynamic linking avoids costly and error-prone load builds. It

implements code ownership and logs complete development history.

Organization of Software for Reuse

A component management environment must support the organization of software

components to facilitate the management of their complex relationships.

ENVY/Developer's applications are a mechanisrn for grouping collections of classes that

implement an application to form a reusable component. Each component can then be

codïgured for different envkonments and maintain dependencies. Component

ownership, a critical success factor for object-oriented projects, is supported at the class

and application level.

Version Control

It provides fine-grain versioning, including methods, classes, class extensions,

applications and configuration maps. Since it keeps complete history of al1 changes,

everyone in the team can get immediate access to all changes.

Configuration Management

Configuration management provides the basis for assembling components into final

appiications. ENVYIDeveloper's software configuration maps allow developers to

assemble their Smalltalk cornponents into complete systems. It is here that developers

create subsystems, and assemble subsystems to create systems.

2.2 StORE and ObjectStudio V6 Team Edition

StORE and ObjectStudio V6 Team Edition are very nice tools that support teamwork.

They enable management of software teams and their code fiom single to multiple

developers, across a range of multiple projects.

StORE

StORE is an optional component of VisualWorks. It is a tool for version and component

management for remote development with hportlexport to ENVY/Developer, although

it does not require ENVYKDeveloper. Its new mid-tier versioning and configuration

management toois ease code management and the check idcheck out mode1 simplifies

remote development. StORE currently uses Oracle 7 as a source code repository

providing a secure storage resource.

StORE users can work online with the shared database or offline with a local database. In

offline mode it is also possible to work without a local database although some functions

are resiricted. Code is grouped by packages and bundles, which provide easy

management of large amount of code. Users c m use the Settings tool to set up package

definitions. When a user Gnishes developing a package or wants to make the code

available to the team, he or she c m publish the package or the bundle containing it. This

writes the new version to the StORE database and makes it publicly available.

StORE can be used for individual or tearn development as a stand-alone tool or in

conjunction with ENVY/Developer.

ObjectStudio V6 Team Edition

ObjectStudio V6 Team Edition inchdes a repository management tool that enables the

administration of project code and personnel with ease and efficiency. It provides object

and version management, configuration management, access control, and cross-

application integration throughout the application's life cycle.

ObjectStudio V6 Team Edition has followùlg features:

Realtime Multiuser Developrnent-

Versioning and History Management.

User Authorkation and Ownership Management.

Release / Component Management-

Repository Browsing.

Backup and Copy Management.

Split Development.

Repository h p o r t / Export.

Tearn Management.

ObjectStudio V6 Team Edition tracks every change made to versioned classes and creates

a new working version of the class accessible only to the developer who made the

change. In the rneantime, the original version is still accessible to other developers. Other

developers can also create their own working versions. At any point in the process, a

developer may revert to a previous version, compare a curent version with a previous

one, or merge d i f f e ~ g versions into a third, new one.

Summary

In general, the three tooIs mentioned above are very weii designed and powerful enough

to support teamwork. They alI have a shared code repository and provide version control

and management. AI1 in alI, they are nice development tools but do not support

collaboration. Users cannot use them to communicate with others while they are working

on coding without the aid of other software. In order to find what code was changed by

other developers, they have to browse the classes in the code repository or wait to be

informed by their developers.

In considering these shortcomings, Team Lab addresses both code development and

collaboration. It is not only a code management and development tool, but also a part of a

collaborative vUtual environment called MUM. The MUM environment will be

explained later.

Chapter 3 Introduction to lMUD and MO0

MUDs/MOOs are client-server applications that support multiple user collaborations.

Their characteristics include real-time interactivity, networked service, multi-user

capability, extensibiiity and exclusivity [5]. Since they are suitable as communication

tools, we have used this mode1 to develop MUM (Multi-Universe MOO), the foundation

of Team Lab. This chapter provides the MUD/MOO background needed to understand

Team Lab.

3.1 Definition

MUD is the acronym of MuIti-User Dungeons and MO0 stands for MUD, Object-

Onented. MTJD also has some other translations such as:

Multi-User Domain.

4 Multi-User Dimension.

Multi-User Dialogs.

MUDs started appearing about 20 years ago [5] and typically they are role-playing

adventure games. They are client-server applications and allow multiple users to connect

to the server at the same tirne. On the server side MUDs provide many kinds of objects

that represent real world objects such as places, rooms, doors, people, tools, etc. These

objects usually reside in a big place called the universe, which may include sub-places.

User proxies in the universe are called avatars or agents. When a user connects to the

server, he or she can use appropriate commands to instruct the avatar that represents him

or her to do whatever he or she likes, for example, t a k with other users, move around,

create objects, find treasures, etc.

3.2 Brief History

Here is a brief history of different kinds of MUDs [6].

First MIID: Roy Trubshaw and Richard Bartle developed the first multï-user game

(MUDI) in 1979 using assembly language programming. The original version merely

dowed a user (player) to move about in a precoded virtual universe. Later versions

provided for more variation including objects and commands that could be modified

online or offline.

TinyMUD Original: The first of the Tiny family of MUDs, was d e n in August

1989 by Jim Aspnes. TinyMUD was created for players to "hang out", converse and

build virtual worlds together. The environment is more social in orientation. It is

much faster because it keeps the entire database in memory. The design assumed that

the database would not grow too Iarge.

First MOO: The first MO0 was created by Stephen White in 1990. In a MOO, every

conceptual object is also an object in the irnplementation sense. Each object has a

unique identifier nurnber, which can be used to reference it, as well as other

properties such as a name, a description, and a location.

A popular form of MOO, LambdaMOO, was created by Pavel Curtis in 1990, denved

fiom Stephen White's initial MO0 server. LambdaMOO is a network-accessible,

multi-user, programmable, interactive system, weU suited for the construction of text-

based adventure games, conferencing systems, and collaborative software. It uses its

own programming language - Lambda MO0 language to allow its users to create

objects and extend functionality.

3.3 Uses of MUDs and MOOs

Initially, MUDs and MOOs were used only for gaming and socializing. In recent years,

they have been increasingly used in education [7], research [8] and collaborative work.

Chapter 4 Overview of MUM

Team Lab is integrated into MUM and this chapter provides the necessary background.

MUM (Multi-Universe MOO) was developed in 1998 and 1999 [4]. The purpose of this

project was to test the uses of a viaual environment as a collaborative tool supporting

geographically dispersed teams.

MZTM is a collaborative virtual environment, a MOO, a CVE (Collaborative Virtual

Environment) emulating physical world properties with simple text- and GUI interfaces.

Although MOOs have grown out of recreational uses, their use has progressively

extended to social and educational uses [9]. Ernpirical studies [10][11] have shown that

MOOs are effective for collaboration even though limited by their lack of features

supporting specifk collaboration tasks. At Ieast one commercial product was built on

traditional MO0 principles and is in production use [12]. MUM is an attempt to take

advantage of the proven MO0 potential and extend conventional implementation features

by adding certain new principles and providing tools airned at groups performing specific

work tasks.

Objects in MUM are called EDOs (Event-Dnven Objects). Al1 objects in the universe,

which can best be described as a real-world emulation, are EDOs. In fact, even the

universe is an EDO.

Being an EDO means that communication with this object is only possible through

events. Technically this means that each EDO has a process and a queue of pending

events, When an event is put into an EDOs event queue for execution, its process is

activated and when it gets its turn, in a round robin execution controlled by the

VisualWorks process mechanism, its event handler executes events accumulated in its

event queue.

Each EDO has certain basic properties such as name, location, owner, description, and

ID. A dictionary matching of IDs to EDO references is held in the Registry which itself is

an EDO. EDO'S refer to one another only through IDs and when an EDO needs to access

another object, the reference is obtained from the Registry.

EDOs exist both in the "server-side" universe and its "client-side" counterpart. On the

server side, EDOs represent things such as places, agents, doors, and other emulated real-

world objects. On the client side, EDOs are mauily the 'base EDOs" corresponding to UI

(User Interface) tools such as the launcher or the universal tool. The communication

between the server- and the client-side occurs exclusively between the client EDO which

resides on the client side (and in the "client universe") and the corresponding Agent

which resides on the server side (and in the "server universe"). As a consequence, when a

user wants to interact with an EDO in the (server) universe, he uses his UI (a UL is not an

EDO) to send a message to its "base" (an EDO), which sends an event to the client,

which sends an event to the agent, which sends an event to the destination EDO (Figure

4.1). Communication in the opposite direction reverses this sequence.

1 : User enters his or her message and presses "enter"

2: say: message

3 : SelfSayEvent

4: ToolSayRequestEvent

5 : Clients ayRequestEvent

6 : Agents ayRequestEvent

7, 8, 9: ConfirmationEvent

10: speaker:say: message

Figure 4.1 "say" sequence diagram

The fact that the user needs some information about any EDO with which he wants to

interact means that the client side must have sufficient information about it. Having the

whole EDO duplicated on the client side would be very wastefid because it would

basically require duplicating the universe on the crient side and updating it compietely

when anything in the universe changes. To prevent this, EDOs are represented on the

client side by their proxies, which contain only the necessary information such as name,

ID, description, etc. Un principle, the client side is aware only of the user's agent, its

current MUM location (place), and ail EDOs that are "visible" to it in this location. No

other information is directly available. To avoid transporthg EDOs to the client side,

proxies have IDs in the universe registry and when an EDO needs to be accessed, access

is always through the registry via its ID.

The concept of visibility is very important. Our interpretation essentially follows the real

world situation in which a person can see its location (place), and al1 objects in this

location including other persons and exits to other rooms. (In the real world, one could

dso see through an open door or through a window and the concept becomes more

complicated. With ow present user interface, we are ignoring this interpretation.)

Characteristics of MUM

Like existing MOOs, MUM provides support for multiple users: Multiple users function

in the environment via proxies (avatars, agents) that interact with other users and the

environment. Each person that enters MUM has a unique avatar that can be customized

with various tools for easier interaction with the environment.

MUM allows multiple co-existing and intercomected universes (hence its name). The

servers hosting these universes may reside on one or several machines, possibly on user

machines dong MUM clients. Users cm connect to any universe via metaservers that

hold directories of currently active universes, and user proxies can move fkom one

universe to another with their current holdings (Figure 4.2).

Universe

, Universe

Figure 4.2 Metaserver and universes

MUM is an Intemet based client-server application: MLTM uses standalone GUI-based

software to implement the client. The system consists of two main parts, the Server and

multiple Clients. The Server impiements the universal fûnctionality, has a repository of

tools, and stores the universe in which d l avatars, tools, objects, and places exist and

interact. Clients pel?orm client-side operations, offloading processing fiom the Server

and minimizing network traffic, and provide the interface through which users control

their avatars.

MUM is Event-Driven (Figure 4.3): All objects in a MUM universe, such as agents,

tools, and places, are Event-Driven Objects (EDOs). This means that ail operations in the

environment have the form of events and provide '%ooks" allowing other events and

users to subscnbe to their occurrence. Al1 EDOs have their own processes, event queues

and event handlers that are responsible for handling incoming events, n o t m g

subscribers, and interacting with other EDOs via new events. EDOs are autonomous and

personalized in that they work independently and know how to control the execution of

events and respond in an individualized fashion. Response to events may either be

synchronous or asynchronous, as event execution is suspended whenever it needs to wait

for the response fiom other EDOs, and resumes when the resuit cornes back. Suspended

events do not prevent other events £tom being executed. The event-driven mechanism

enables users (or EDOs) to subscnbe to any event that happens in MUM. Users can

register their interest in events sent to an EDO and whenever the EDO processes those

events the users are notified.

MLTM supports extendible objects: The objects that make up the environment can be

augmented or otherwise rnodified at run time with new functionality denning events that

they can handle. The system can also be extended by adding new Tools with their Tool

Manuals that provide user information as weI1 as information required to download a tool

to the client. This allows developers to custornize the Universe that they wish to run, and

personalize certain aspects of the system. The subject of tools is further explained below.

MUM's design is multi-threaded: Every object in the environment runs in its own thread.

This allows for a more stable design by isolating one object1s operation fiom the

operation of other objects. Threads of inactive objects are suspended to reduce system

load.

Notify subscribers w
true

is current state endstate ? Next event
I

fal'se
r i
1 Calculate result event 1

Calculate event targets c
Send result event to targets m

1 Result event is Request 1 mie
1 Event ? 1

false
I i

1 Calculate next state (

Suspend

Figure 4.3 Simplified diagram of event execution

Automatic Code Update: When a client connects to a MUM universe, the program e s t

checks if it has the latest code. If not, the program asks the user to download the new

version- By clicking a button, the new code is transferred fiom the server and installed

automatically. Since MUM is a large application, the code is divided into several parcels.

During the update process, only the new parcels are downloaded in order to Save time.

Tools: Tools are sophisticated EDOs with user-fkiendly interfaces that hide the intemal

complexity of event generation and dispatching. An example of a tool is the EDO

Creation Tool (Figure 4.4) which allows the user to instantiate (build) EDOs. Users send

events to a tool simply by operating the widgets in the tool's interface. A tool's interface

can be loaded dynamically, so users do not have to have the interface code when they

decide to use it. Each tool may have more than one interface and users can select any of

them. Every MUM tool has a corresponding tool base, which is an EDO and responsible

for translating messages to MUM events and vice versa

Figure 4.4 Object creation tool

At present, MUM provides a limited number of generd-purpose tools including the

UniTool (Figure 4.5), which provides standard MO0 communication and supports

navigation, access to objects, and subscription to events, an EDO Creation Tool, which

simplifies the object creation in MUM, a Propew Tool, which enables the users to

rnodie EDO propertîes, and a MUM Cstmera, which can be used to record

communications in places. Team Lab provides a set of additional tools that will be

explained later.

You Say: Hi there
Lucas (1-1-57) says: Hi Dylan, how are you?

You Say: Good, how are you?

Figure 4.5 Unit001

Chapter 5 Team Lab Overview

Team Lab is a collaborative development tool for Smalltalk programmers Since it was

built over MUM, it has all MUM characteristics. Its integration into a virtual environment

makes it a good basis for teamwork. To put Team Lab into perspective, this chapter

describes Team Lab along with other popular tools for Smalltalk software development

teams.

5.1 Existing environments and Team Lab

Smalltalk envkonments such as VisualWorks [2], like other interactive development

environments, are single-user enWonments and developers use an "image" residing on

their own machine, and System Browsers and other tools to write and edit the code in

their images (? In order to share code with others in a single-user environment, a user

must file the code out to a file and transfer the file to other team members. This mode of

operation may be acceptable for simple applications that involve only one or a few

programmers, but becomes difficult to coordinate when there are more members.

Consequently, many Smalltalk teams use a third-party product such as ENVYDeveloper

or StORE, extensions of the basic environment in which developers own code modules

and share a database with archived versions of an application (Figure 5.1). Neither

StORE nor ENVY/Developer provide any collaboration support beyond code

management.

A Smalltalk image is a snapshot of the state of its interactive development environment and the basis of
SmaUtak's operation.

Figure 5.1 Teamwork usiog Smalltak

Team Lab was designed for code development in Smalltdk and is written in

VisualWorks Smalltalk. It is a client-semer application. Users have their code stored in a

code repository on the server instead of locally. The code repository becomes available

when developers login, so they always have up-to-date code. This does not mean that

developers cannot work ofthe. They can also work on their own images without

connecting to the server and whenever there is the need for code release or update, they

can comect to the server and transfer the code to or fkom the code repository. A remote

browser, TL Browser, is designed to browse and edit the code in the code repository

(Figure 5.2). TL Browser has al1 the basic fünctions of a Smalltak System Browser but

provides additional features for class-level version control, management, security, etc.

Client

TL Browser n

CIient 1-

Repository
EditCode < 2 Edit Code

--

Figure 5.2 Team Lab overview

TL Browser n

Figure 5.3 Class conversion

L

Server
Smailtaik

Load
Class

Team Lab uses MUM as its foundation, so al1 Team Lab objects including the code

repository, categories, classes, protocols and methods, reside in a MUM universe. The

definitions of these objects are not same as those corresponding definitions in Smalltak

since they use MUM conventions. They are event-driven objects @DOS) and Team Lab

can convert them to corresponding Smalltallc objects and vice versa. Users can transfer

Smalltalk Convert Convert r\

image 2
Class

--

CIient
r \

Smalltalk
Image

/

classes between the client image (Smalltalk objects) and the code repository (Team Lab

objects), converting them to the appropriate representations, or fiom the code repository

to the semer Smalltalk image (Smalltallc objects) via the load operation (Figure 5.3).

These operations are explained in more details in the next chapter.

5.2 The benefits of using MUM infrastructure

As a MUM tool, Team Lab inherits all of MUM's features and benefits fiom them as

follows:

Event-based operation: Most Team Lab classes are subclasses of EDO or MUMPlace

and inherit their basic characteristics. The most important one is that they are event-

driven. Instances of these classes have their own event handlers, event queues and

threads. This makes it possible to subscribe to events relevant to the development

process.

Subscription and notification: Users can subscribe to any event that Team Lab objects

understand and whenever the event occurs, the subscribers are notified. As an

example, users can subscribe to events such as the release of a class, the change of a

method, and the addition of code.

Multiple ways of collaboration: While engaged in development, users c m use the

UniTool to communicate with others, the MUMCamera to record communications,

and the Property Tool to modi@ the properties of objects.

0 Extendibility: Uçers c m create MUM objects using the EDO Creation Tool to build

new places and objects. When new tools are implemented for MUM, they are

immediately available to Team Lab users-

Chapter 6 Concept and Design Details

Being a part of MUM, Team Lab uses MUM concepts. Especially important for Team

Lab is MUMPlace, the ciass modeling physical space in the real world.

Team Lab

Protocoi

Figure 6.1 Overdl Team Lab structure

From users' point of view, Team Lab is a place in the MUM universe that holds sub-

places such as team registry, code repository, categories, classes, protocols and methods

(Figure 6.1 and 6.2). The reason why we choose MUMPIace as their super class is that

places can contain sub-places as well as other objects, using the same tree structure as

categories, classes, protocols and methods in Smalltalk. In addition, users can enter each

place in order to browse contents in the place and if they are ïnterested in any object they

can subscribe to the events the object understands and be notified whenever the events

occur. For example, users can subscribe to events such as cIasses being released, created,

modified, etc. The event notification mechanism enables users to have the latest

information about the work done by their partners. This avoids users wasting their time to

wait for other's work.

Figure 6.2 Class diagram showing aggregation relationship

Team Lab uses the following four main concepts: Team Lab agent, Team Lab team, code

repository and client side tool. These will be described in the following sections.

6.1 Team Lab Agent

Users can use one of two kinds of Team Lab agents, namely TLDeveloper and

TLAdministrator. B 0th are subclasses of MUMPersonifiedAgent (Figure 6.3).

1 Object 1

I
:
1 TLDeveloper /

Figure 6.3 Class hierarchy diagram

6.1.1 TLDeveloper

TLDevelopers are the lowest leveI Tearn Lab agents and extensions of ordinary MUM

agents. They understand more events than normal MUM agents and also have more tools.

When a normal MUM agent connects to a MUM universe, he or she automatically gets a

UniTool, an EDO Creation Tool and a Property Tool. In addition to these tools, a

TLDeveloper also gets a TL Browser, a TL Class Converter and a TL Team Tool.

TLDevelopers use these three tools to access the code repository and to obtain team

information (Figure 6.4).

Shutting down connection-..

Client Reset Beginning ...
Client Reset Finished
Disconnected

Attempting to contact Metasetver at: 131.162.132.29
Connected to 131.162-132.29 - retrieving known sewers

Attempting to connect to setver 131 -1 62.1 32.29
Connection Successful!

Asking Sewer for required Parcels ...
No updates necessaty. Proceeding with login ...
Attempting to authenticate

Downloading tools ...
LOGlN C O M P l , USE HELP IF REQUIRED.

1-1-10 - EDO Property Tool
1-1-9 - EDO Creation Tool
1-18 - UniTaol
11-43 - Team Tool
1-1-44 - TL System Browser
1-1-45 - TL Class Converter

Figure 6.4 Launcher with tools available to Tearn Lab developers

6.1.2 TLAdministrator

TLAdministrator is the agent responsible for managing Team Lab environment, such as

creating and removing teams, developers, etc. Usually there is only one instance of

TLAdministrator in each universe, but it is possible to have more. TLAdministrator is a

subclass of TLDeveloper, so it has all the power that a TLDeveloper has. Its additional

fùnctionality includes management in Team Lab.

6.2 Team Lab team management

Team management depends on Team Lab team (TLTeam) and team registry

(TLTeamRegistry) (Figure 6.5). These two concepts are explained below:

/ TLTeamRegistry 1
1 1

Register 1 '--'
1 O.'

/ TLTeam 1

Figure 6.5 Team Lab Team

6.2.1 Team Lab Team

A team is a group of software developers working together on a project. Each team has

one team leader who is also a developer and responsible for managing developers on the

team. TLDevelopers can be assigned to be team leaders by TLAdministrator. Developers

may be added to a team or removed at any tirne. Only the tearn leader and

TLAdministrator have the power to make changes to teams. A developer may work in

several different teams at the same time.

6.2.2 TLTeamRegistry

TLTeamRegistry is a registry of al1 Team Lab teams identified by their IDs.

TLDevelopers can get information about available teams fiom the registry but they are

not aiiowed to make any changes to it. TL Team Tool works together with

TLTeamRegistry and TLTearn and thus provides facilities for managing teams.

6.3 Code Repository

The code repository is the central database of code objects. It resides on the server (Fig.

6- 1) and holds al1 code objects created by developers and shared by them, Objects in the

code repository are classified as category, class, protocol and method objects. The

definitions of these objects are sixnila- to the corresponding terms in Smalltalk. The

following subsections expiain the code repository and code objects in more detail.

6.3.1 Code Repository

The code repository is a place in Team Lab. Objects representing Smalltalk code written

by TLDevelopers is stored here. The code repository looks like the Smalltalk system

organization, which holds category information but it is not exactly the same. For

example, in Visual Works Srnalltalk some information is stored in arrays while in the

code repository it is stored in OrderedCollections because the code repository class is a

subclass of MSMPlace, which is an event-driven object and uses OrderedCollections to

store its content information.

Srnalltak code in the code repository is represented by TLCategory objects and users c m

add, remove or modi& them by using TL Browser. Because the repository is a subcIass

of MI,TMPlace, users can also "enter" the code repository and browse its contents using

UniTool although this would be much less convenient than using TL Browser. Typically

there is orily one instance of code repository in a Team Lab and one Team Lab in a MUM

universe, but it is possible to have more.

6.3.2 TLCategory

TLCategories are c'places" in the code repository and represent Smalltalk categories of

classes in the Team Lab environment. They may contain sub-places - TLClasses.

TLCategories can be converted into Smalltalk categories and vice versa.

6.3.3 TLClass

TLClasses are "places" in TLCategories and represent Smalitalk cIasses. They may

contain TLProtocols. TLClasses c m be converted into Smalltalk classes and vice versa.

Classes know their owners and versions and it is thus possible to have more than one

class definition with a single cIass name and different versions. Only class owners c m

make changes to their classes unless the classes are public.

TLClasses use the following specialized concepts:

Public: Classes can be set to ccpublic". L€ a class is public, everyone can make changes to

it. To synchronize editing of pubtic code, methods of a public class are protected by

locks. E a method is edited by a user, it is locked and others cannot make changes to it.

After the lock is removed (the user "accepts" the code), it is available to al1 users again.

Class Conversion: Smalltalk class definitions in Team Lab are EDOs in MUM and so

they are not exactly the same as class definitions in the underlying VisualWorks

Smalltalk environment. In VisualWorks, Smalltalk class defmitions also contain more

information such as subclasses, while in TeamLab, only essential information is stored in

TLClasses. However, classes can be converted between Team Lab and VisualWorks. If

there are classes in a user image that do not exist in the code repository and the user

wants to share them with other users, he or she can transfer them to the code repository.

Users may also want to transfer classes written by others fiom the code repository to their

own images for local testing or changes because if a class is not public other users are not

allowed to change it directly in the code repository. After a user modifies a class, he or

she can transfer it back to the code repository by giving it a different version - different

versions of a class may be owned by different users.

There are two ways to convert classes (Figure 5.3). One is conversion between the server

Smalltalk image and the code repository in MUM and the other is between the client

image and the code repository. The former is performed by the load function and can be

used for testing (details follow). The latter is used for code synchronization and offline

programming.

Load: Classes in the code repository are objects in a MUM universe but they are not class

objects in the server Smalltalk image. To load a TLClass from the code repository into

the server Smalltalk image means to create its Smalltalk version and install it in the

server Smalltalk image. A class may have severd versions, but only one of its versions

can be loaded into the server SmalItalk image at one t h e .

A class may also be unloaded. This removes the class fkom the semer Smalltalk image,

but Zeaves the corresponding TL object in the code repository.

6.3-4 TLProtocol

TLProtocols are ccplaces" in TLClasses that represent Sma1ltal.k method protocols in

Team Lab environment. They c m contain TLMethods. TLProtocols can be converted

into Smalltalk protocols and vice versa

6.3.5 TLMethod

TLMethods are c'objects" in TLProtocols representing methods in Team Lab

environment. They contain method code and can be converted into Smalltaik methods

and vice versa.

6.4 Design - the Main Classes

This section introduces the main Team Lab classes. Since there are more than two

hundred event classes that are very similar, most of them are not listed here.

6.4.1 TeamLab

Description: TeamLab is a subclass of MURfPlace and its instance is a place in MUM

universe. It holds al1 Team Lab places and objects.

Superclass: MUMPlace

Instance Variables:

ID of the team registry.

34

codeRepository <String> ID of the code repository.

teamLabToo1s <OrderedCollection> A collection of tools that are needed in

Team Lab environment.

6-4.2 TLAdministrator

Description: TLAdministrator is an agent responsible for rnanaging Team Lab

environment, such as creating and deleting teams and developers.

Superclass : TLDeveloper

Instance Variables:

6.4.3 TLDeveloper

Description: Developers are agents who c m work in Team Lab environment. They

understand more events tha. nomal MUM agents and have access to more tools.

Superclass : MUMPersonifiedAgent

Instance Variables:

teams <OrderedCollection> IDs of teams the developer is currently working in.

6.4.4 TLTeam

Descrbtion: TLTeam represents a team workbg in Tearn Lab environment. It Imows al1

the developers in the tearn.

Superclass: EDO

Instance Variables :

ID of the team leader.

developers <OrderedCollection> IDs of developers currently in this team.

6.4.5 TLTeamInfoDescriptor

Descnphon: An instance of this class provides basic information about a Team Lab team

and is used to transfer team information between clients and servers.

Su~erclass: Object

Instance Variables:

t e d e a d e r <String> ID of team leader-

memb ers <OrderedCollection> IDs of team members.

6.4.6 TLTeamRegistry

Descri~tion: Instances of this class hold IDs of al1 teams in a MUM universe,

Superclass: MUMPlace

Instance Variables:

teams <OrderedCollection> IDs of Team Lab tearns in this universe.

6.4.7 TLCategory

Description: Instances of this class represent categones in Team Lab. They can be

converted uito Smalltalk categones.

Sutierclass: MUMPtace

Instance Variables:

classes <OrderedCollection> IDs of classes in the category.

loaded cBoolean>

Smalltalk image.

True if the category is loaded into the server

6.4.8 TLClass

Description: Instances of this class represent Team Lab classes. They can be converted

into SrnalItalk classes.

Superclass: -lace

Instance Variables:

version

cIassOwner

inst anc eVars

classVars

pools

classhstanceVars

variables.

protocols

category

superClassName

comment

loaded

Smalltalk image.

released

current

Version of the class.

ID of the class owner.

String representation of instance variables.

String representation of class variables.

String representation of pools.

String representation of the class instance

<OrderedCollection> IDs of the class' protocols.

<String> Name of the class' category.

<Symbol> The name of its super class.

<String> Comment for this class.

<Boolean> True if the class is loaded into the server

True if the class is released.

True if the class is the current class.

Public True if the class is available to public.

6.4.9 TLCIassDefinition

Description: Instances of this class provide basic information about Team Lab classes.

They are used to transfer Somation about classes between servers and clients. This

class and its subclass TLClassDetail work as class proxies but they are used in different

situations. TLClassDefinition is used by TLBrowser whereas TLClassDetail is used by

TLClassConverter. TLClassDefkition cames less information and thus reduces network

load.

Surierclass: Object

Instance Variables:

superCIass

name

instarzceVars

classvars

pools

category

classhs tancevars

comment

Super class name.

The name of the class.

String representation of instance variables.

String representation of class variables.

String representation of pools.

Category name.

String representation of class instance variab les.

Comment for this class.

Description: Instances of this class provide al1 information about Team Lab cIasses and

corresponding metaclasses. They are used to transfer information about classes between

servers and clients. Team Lab class or Smdtalk class can be created by using this

information. In most cases such as getting a list of classes in category, only its super class

is used in order to reduce network load.

Superclass: TLClassDefhition

Instance Variables:

classProtocols <OrderedCoUection> Class protocols.

instanceProtocols <OrderedCollection> Instance protocols.

classMethods <O rderedCo llection> Class methods.

instanceMethods ~OrderedCollection> Instance methods.

version <String> Version number of the class.

6.4.1 1 TLCodeRepository

Description: An instance of this class holds al1 the code objects in Team Lab. It is an

EDO and contains other Team Lab objects. There is only one instance of

TLCodeRepository in each Team Lab.

Su~erclass: MUMPlace

Instance Variables:

categories <OrderedCollection> IDs of categones in Team Lab environment.

6.4.12 TLProtocol

Descrbtion: Instances of this class represent class and instances protocols in Team Lab

environment. They c m be converted into Smalltallc pro tocols.

Superclass: MUMPlace

Instance Variables:

methods <OrderedCollection> IDs of methods in this protocol.

clasName <Symbob Class name to which the protocol belongs.

meta <Boolean> Tme if the protocol is a class protocol.

6.4.13 TLMethod

Description: Instances of this class are EDOs representing methods in Team Lab

environment. They can be converted into SmaIltalk methods.

Superclass: EDO

Instance Variables:

text c T e D

clasName <Symbol>

protocol <String>

meta cBoolean>

CurrentUser <String>

Text representation of the source code for this method.

The name of the class to which the method belongs.

The protocol name in which the method is.

True if it is a class method.

ID of the user who is editing the method.

6.4.14 TLMethodDefinition

Description: Instances of this class provide information about Team Lab methods. They

are used to transfer method information between servers and clients. Tearn Lab methods

or Smalltalk methods c m be created kom the information.

Su~erclass: Object

Instance Variables:

name <String> Name of the method.

text cText> Text representation of the code for the method.

protocol <String> The protocol name in which the method is.

className <Symbol> Name of the class to which the method belongs.

6.4.15 TLCompXler

Descriution: Instances of this class are used to compile Team Lab code and check syntax

errors of class definitions and methods.

Su~erclass: Compiler

Instance Variables:

6.4.16 TLBrowser

Description: TLBrowser is a code browser for the Team Lab code repository. It has the

same basic fùnctions as a Smalltalk System Browser and additional fùnctions for Team

Lab class management (Figure 7.2).

Su~erclass: MUMTool

Instance Variables:

category CS tring> Selected category.

className <Symbol> Selected class.

meta cBoolean> False for viewing instance methods, tnre for

class methods.

protocol

method

Selected protocol.

Selected method.

textMode <Symbol> Indicating the nature of the currently viewed

text such as class definition, class comment or method definition.

categoryList

classList

protocolList

methodList

textValue

metaHolder

infoHo lder

an operation.

categories

classes

protocois

methods

currenMo lder

10 adedHo lder

re1easedHolder

allHolder

publicHolder

cValueHolder> Category list value holder.

 valueH Ho lder> Class list value holder.

<ValueHo lder> Protocol list value holder.

<ValueHo lder> Method List value holder.

<ValueHo lder> Text value holder.

<ValueHo Ider> Value hoider of the meta instance variable.

cVaiueHoIder> Value holder the feedback information about

<OrderedCollection~ Categories in the code repository.

~OrderedCollection> Classes in the category.

<OrderedCollection> ProtocoIs of the currently selected ciass.

cOrderedCollection> Methods in the selected protocol.

~ValueHolder> Value holder of the "current" staie.

<ValueHo lder> Value holder of the "loaded" state.

<ValueHo lder> Value holder of the "release" state.

cValueHolder> Value hoIder of the "all" state.

<VaIueHolder> Value holder of the "public" state.

6.4.1 7 TLBrowserBase

Description: TLBrowserBase is a tool base that works with TLBrowser. In MUM, a tool

base is a part of a UI on the client side and is responsible for translating messages to

events or events to messages.

Su~erclass: MUMToolBase

Instance Variables:

6.4.18 TLCIassConverter

Description: TLClassConverter is the UI tool responsible for tramferring classes between

the client image and the code repository (Figure 7.3).

Su~erclass: MUMTool

Instance Variables:

infoHo lder cValueHolder> Value holder of the feedback information

about the operation being performed.

TLCategoryList

1ocalClassList

1ocalCategory

TLCategory

TLClassList

1ocalCategoryList

categones

classes

updating

cValueHolder> TL category value holder.

<OrderedCollection> Local class value holder.

<VaIueHolder> Local category value holder.

cValueHolder> TL category value holder.

<ValueHo lder> TL class value holder.

cVdueHolder> Local category value holder.

<OrderedCollection> Categories in the code repository.

<OrderedCollection> Classes in the selected category.

cBoolean> True if information is being updated.

6.4.19 TLClassConverterBase

Description: TLClassConverterBase is a tool base that works together with

TLClassConverter. It is responsible for translating messages to events and events to

messages for use in MUM environment.

Su~erclass: MUMTooiBase

Instance Variables:

6.4.20 TLTeamTool

Description: TLTeamTool is the UI tool for managing teams. It can be used to create,

modify and remove Team Lab teams (Figure 7.1).

Superclass: MUMTool

Instance Variables:

nonmemb erHo lder cValueHolder> Non-member value holder.

memb erHo lder

uifoHolder

operations.

se1ectedTeam

teamHolder

teams

members

nonmembers

developers

c ValueHolder > Team member value holder.

c ValueHolder > Value holder of the feedback information of

<String> Selected team.

< ValueHoIder > TL team value holder.

<OrderedCollection> All teams in the universe.

-=OrderedCollection> Member proxies of the team.

<OrderedCollection> Non-member proxies.

<OrderedCollection> Proxies of al1 available developers.

Name value holder for creating new tearns.

ID of the team leader.

6.4.21 TLTeamToolBase

Descri~tion: TLTeamToolBase is a tool base that works together with TLTeamTool. It is

responsible for translating messages to events or events to messages for use in MUM

environment.

Su~erclass: MUMToolBase

Instance Variables:

6.4.22 AgentAddCategoryRequestEvent

Descri~tion: Instances of this class are sent b y TLDevelopers to TLCodeRepository to

request it to add a new category.

Superclass: RequestEvent

Instance Variables:

category <String> Name of the category to be added.

agent <String> ID of the agent who send this event.

Note: Team Lab contains definitions of many similar event classes.

6.5 Sequence Diagram

This section contains a series of UML sequence diagrams iIlustrating Team Lab's

operation in selected use cases.

Create Team

1 : User clicks on "Create" button

2: addTeam message

3 : SeEAddTeamEvent

4: ToolAddTeamRequestEvent

5: CIientAddTeamRequestEvent

6: AgentEDOCreationRequestEvent

7: ConhnationEvent

8: AgentAddTeamRequestEvent

9, 10, 1 1 : T L C o ~ a t i o n E v e n t

12: confirmation: message

Figure 6.6 Create a team

6.5.2 Remove Team

1 : User clicks on "Remove" button

2: removeTeam message

3 : SelfRemoveTeamEvent

4: ToolRemoveTeamRequestEvent

6: AgentRemoveTearnRequestEvent

12: confirmation: message

Figure 6.7 Remove a tearn

6.5.3 Add Category

1 : User selects "add" menu item

2: addTLCategory message

3 : SelfAddTLCategoryEvent

4: TooiAddCategoryRequestEvent

5: CIientAddCategoryRequestEvent

6: AgentAddCategoryRequestEvent

7: EDOCreationRequestEvent

8 : ConfirmationEvent

9, 10, 1 1 : TLConfïrmationEvent

22: confirmation: message

Figure 6.8 Add a category

6.5.4 Remove Category

1 : User selects "remove" menu item

2: removeTLCategory message

10: confirmation: message

Figure 6.9 Remove a category

6.5.5 Rename Category

1 : User selects "rename" menu item

2 : renameTLCategory message

3 : SelfRenameCategoryEvent

4: ToolRenarneCategoryRequestEvent

5 : ClientRenameCategoryRequestEvent

6: AgentRenarneCategoryRequestEvent

7, 8,9: TLConfinnationEvent

10: confirmation: message

Figure 6.10 Rename a category

6.5.6 Define Class

1 : User selects "accepty' menu item

12: c o ~ a t i o n : message

Figure 6.1 1 Define a class

6.5.7 Remove Class

1 : User selects "remove" menu item

2: removeclass message

3 : SelfRemoveClassEvent

4: ToolRernoveClassRequestEvent

5 : ClientEtemoveClassRequestEvent

6: AgentRemoveCIassRequestEvent

7,8,9: TLConfïrmationEvent

10: confinnation: message

Figure 6.12 Remove a class

6.5.8 Load Class

1 : User selects "load" menu item

2: IoadCIass message

3 : SelfLoadClassEvent

4: ToolLoadClassRequestEvent

5 : ClientLoadClassRequestEvent

6: AgentLoadCIassRequestEvent

7, 8,9: TLConfumationEvent

10: confirmation: message

Figure 6.13 Load a class

6.5.9 Unload Class

1 : User selects c'unload" menu item

2: unloadClass message

3 : SelfUnloadClassEvent

4: ToolUnloadCIassRequestEvent

5 : ClientUnioadClassRequestEvent

6: AgentUnloadClassRequestEvent

7,8 ,9: T L C o ~ a t i o n E v e n t

10: confirmation: message

Figure 6.14 Unload a class

6.5.10 Release Class (similar Set Public, Set Private, Set Current)

1 : Users selects "release" (or "set public", "set private", "set currentyy) menu item

2: setClassState message

5: Client SetClassStateRequestEvent

10: confirmation: message

Figure 6.15 Retease a class (set public, set private, set curent)

6.5.11 Set Class Version

1 : User select "set version" menu item

2: setversion message

3 : SelfSetVersionEvent

4: ToolSetVersionRequestEvent

5 : CIient SetVersionRequestEvent

6: AgentSetVersionRequestEvent

7, 8,9: TLConjkmationEvent

10: confirmation: message

Figure 6.16 Set class version

6.5.12 Add Protocol

1 : User selects "add" menu item

2: addTLProtoco1 message

3 : Sel£6iddProtocolEvent

4: TooiAddProtocolRequestEvent

5: ClientAddProtocolRequestEvent

6: AgentAddProtocolRequestEvent

7: EDOCreationRequestEvent

8 : ConfinnationEvent

9, 1 0, 1 1 : TLConfirmationEvent

12: confirmation: message

Figure 6.17 Add a protocol

6.5.13 Remove Protocol

1 : User selects "remove" menu item

6: AgentRemoveProtocolRequestEvent

10: confirmation: message

Figure 6.18 Remove a protocol

6.5.14 Accept Method

1 : User selects "accept" menu item

2: addTLMethod message

12: confirmation: message

Figure 6.19 Define a method

6.515 Remove Method

1 : User selects "remove" menu item

2: removeMethod message

1 0 : confirmation: message

Figure 6.20 Remove a method

6.5.16 Transfer CIass from TL Code Repository to Local Image

1 : User clicks on "<<" button

2: getTLCIass message

3 : SelfClassDetailEvent

4: TooIClassDetailRequestEvent

5: ClientClassDetailRequestEvent

6: Agent ClassDetailRequestEvent

7, 8, 9: TLConfirmationEvent

10: confhnation: message

Figure 6.21 Transfer a class from the code repository to the local image

6.5.17 Transfer Class from Local Image to TL Code Repository

l : User clicks on "»" bution

2: transferClass message

10: confirmation: message

Figure 6.22 Transfer a class fiom the Local image to the code repository

Chapter 7 Functionality and Implementation

This chapter describes the uses and functionality of the three Team Lab client side tools

and some implementation details.

7.1 Team Tool

The Team tool (Figure 7.1) is used for managing teams. It is used mainly by the

adrninistrator and team leaders and its basic fùnctions are listed below:

Figure 7.1 Team tool

Create a team: To create a tearn, enter the team name in the 'Wamey' text box on top of

the window and press the "Create" button. Since MtTM objects use IDs, it is possible to

use the same name for multiple teams. Only TLAdministrator can perform this action.

Remove a team: From the 'Team" combo box, select the team to be deleted and press the

"Remove" button. Only TLAdministrator can perform this action.

Add a team member: Only TLDevelopers and TLAdrninistrator can be added to a team,

After selecting the desired team fiom the ''Team" combo box, all available developers are

listed in the 'Members" and 'Wonmembers" list boxes respectively. Available developers

include dl instances of TLDevelopers in the universe. Select a developer fkom the

'Nonmembers" list and press the "»>" button and the developer wili be added to the

team. Only TLAdministrator and the leader of the team can perform this action.

Remove a team member: After selecting the desired team in the team combo box, al1

available developers are listed in the cMembers" and 'Wonmembers" list boxes

respectively. Select a developer fiom the c'Members" list and press "cc'* button. The

developer d l be removed fkom the team. Only TLAdrninistrator and the leader of the

tearn can perform this action. This operation only removes the developer fiom the team

but if a user wants to remove an existing developer fiom the 'Wonmembei' list (fiom

Team Lab environment), he or she must use MUM UniTool to do it.

Assim team leader: After selecting the desired team in the "Team" combo box, aii

available developers are listed in the "Members" and 'Wonmembers" List boxes

respectively. Select a developer from the c'Members" list and press "As Leader" button.

The developer will become the leader of the team. Team leader's ID is displayed in the

"Leader" text box. Only TLArlministrator and the leader of the team can perform this

action. If the team has no leader assigned yet, only TLAdministrator c m perform this

action.

7.2 TL Browser

TL Browser (Figure 7.2) is very similar to the standard Smalltalk System Browser and

has the same basic fùnctions. The main differences are that it is used remoteIy to browse

the code in the code repository located in the server and that it provides some additional

features such as class level version control and security.

description := aString

I

Figure 7.2 TL Browser

classVariableNames: 'ClassVarNamel ClassVarName2'
pciolBictionaries: "
category: 'Editor'

Figure 7.3 Category menu of TL Browser

Users can perfom the following operations upon categones using TL Browser (Figure

7.3)-

add: Add a new category in the code repository. The program will ask the user to input -

the new category name (Figure 7.4). If the name is already exist in the code repository,

the action will have no effect.

update: Update the category list to reflect changes in the code repository.

rename as: Rename the selected category. The program will ask the user to provide a new

name.

remove: Remove the selected category if it is empty or ail the classes in the category that

are owned by the user.

Enter new category name
then accept or CR

cIassVariableNarnes: 'ClassVarNarnel CIassVarNarne2'
poolDictionaries: "
category: 'Editor'

Figure 7.4 New category name request dialog

load: Load the selected category into server Smalltalk image. It also loads all classes in -

the category provided that they are owned by the user. Othenvise only classes owned by

the user will be loaded,

unload: Remove the selected category with al1 its classes fiom the server Smalltalk

image. If the user is not the owner of the category and al1 the classes in the category, only

classes owried by the user will be udoaded.

Users can perform the following class operations using TL Browser:

Define a class: Users can mite and compile ("accept") class definitions by using the cIass

template provided by the browser (Figure 7.5).

Bus Simulation

@ instance Cl class

1 current loaded @ released

NameOfSuperclass subclass: #NameOfClass
instanceVariablel4ames: 7nstVarNamel instVarName2'
classVaria bleNames 'CiassVarNamel ClassVarName2'
pooIDictionaries: *
category: Text Editor '

Figure 7.5 Class template

instanceVariableNames: seats doors
classVariableNames: "

poolDictionaries: "
category: 'Bus Simulation'

Figure 7.6 Syntax error of class definition

Upon "accept", the browser first checks for syntax errors and prompts the user if there is

any (Figure 7.6).

In Smalltalk System Browsers this kind of syntax error is displayed in the text area of the

browser. In TL Browser it is not displayed in the same area. The reason is that during the

process of compiiing, a variety of error messages may be produced by the Smalltalk

compiler and they are directed to the text area of the Smalltalk Browser. Some of the

messages rnay be not valid in Team Lab since the code it uses is in the code repository in

the server instead of in the local image. An example is the "super class not found" error

discussed in the next paragraph. The compiler TLCompiler that TL Browser uses is a

subclass of the SmalItallc cIass "Compiler" and some methods of the Smalltalk compiler

are "primitive" code. The code for these primitive methods is not available to users, so it

is not possible to overwrite them without knowing what they do. In this case users do not

have a choice to select where an error message should go unless they u?ite a new

compiler. In order to avoid displaying these unwanted error messages in the text area, TL

Browser ignores them and uses a separate window to display the wanted error messages.

Example: Handling of error message "The super class is not found": When compiling the

code of a class definition, a Smalltalk compiler checks for the existence of the super class

in the local image and if it camot find one it sends a message to the browser to display.

TL Browser gets that message too, but it ignores it becauçe it may be not correct. Instead

of displaying the message, TL Browser checks for the existence of the super class in the

server SmaIltalk image and the code repository. If the super class is not found, a "super

class not found" error is displayed in the information box at the bottom of the browser

(Figure 7.7), otherwise the class is saved in the code repository.

6 instance O class

instanceVanableNames: beats doors '
classVariableNames: "
poolDictionaries: "
category: 'Bus Simulation'

Figure 7.7 Information area

Most operations on classes c m be performed fkom the <operat* menu in the class list

(Figure 7.8).

Figure 7.8 Class menu

set version: Users can give a class a version by selecting "set version". The browser wiU

ask the user to input a version number. The default value is 1.0. In the example in Fig 7.8,

multiple versions of class FileInTooi are shown as FileInTool(l .O), FileInTool(l.1 CP),

FileInTool(2.OR.L). The meaning of the letters attached to the version numbers is

described below.

set current: Users c m attach the ''currenf' indicator to a class. The indicator can be used,

for example, to indicate that this is the class the owner is currently working on. A current

class is marked by a capital letter "C" after its version number (Figure 7.9). The purpose

of the indicator is documentary on@.

Bus Simulation

1 ApplicationModel subclass: #FileInTacd
instancevariableNames: 'currentDrive driveList filelist directorylist paths tilename '
classVariableNarnes: "

poolDictionaries: "
category: 'File-ln-Tool'

Figure 7.9 Class versions and their indicators

set public: A class can be set as public. If a class is public and not locked, every

developer cm make changes to it, including adding/removing protocols, renaming

protocols, addinghemoving methods as well as modimg methods. A public class is

marked by a capital letter 'Y after its version number (Figure 7.9).

set private: A private class cannot be changed by anyone except its owner and only the

owner can set it to public. A private class is not marked by any letter.

release: A class can be released by its owner. Released classes cannot be changed any

more. A released class is marked by a capital letter "R" after its version number (Figure

7.9).

load: Classes c m be loaded into the server Smalitalk image. While [oading a class whose -

category does not exist in the server Smalltalk image, the category will be created. AU

protocols and methods in the class are loaded at same time. A dass may have several

versions. OnIy one of its version can be loaded at any given time. If one version is

already in the server Smalltak image and the user selects to load another version, the

former version will be unloaded fista A loaded class is marked by a capital letter 'Y

after its version number (Figure 7.9).

unload: A loaded class can be unloaded. This removes the class fiom the server Smalltalk

image but leaves it in the code repository.

The middle part of the browser contains check boxes labeled "all", "current", "loaded",

"released" and "public". Users can use them to filter classes that are displayed in the class

List. By defauIt, al1 classes are displayed (Figure 7.9).

Classes c m also be moved to other categories, removed and renamed. The text area in the
\

lower part of the browser cm display either the class definition or the class comment as

in a Smalltalk System Browser.

The function of the two radio buttons "instance" and "class" is the same as in the regular

browser. By default, the selection is "instance", so îhe browser displays instance

protocols m d methods of the class. When the "class" radio button is selected, the browser

displays class protocols and methods.

The protocol list in the browser displays all the protocols of the selected class (Figure

7.10). Users c m add, rename and remove protocols.

add: Add a protocol. To be able to add a protocol, the user must be the owner of the class -

or the class must be public.

rename as: Rename the protocol. The user must be the owner of the class or the class

must be public.

remove: Remove the protocol. The user must be the owner of the class or the class must

be public.

current a loaded @ released public

message çelector and argument names
"comment stating purpose of message"

1 temporary variable names 1

Figure 7.1OProtocol menu

The text area in the lower part of the browser is also used for displaying and editing

method defkitions (Figure 7.11). After wrïting or editing a method, users can compile

and Save it by selecting "accept" fiom the <operate> menu of the text area. To add or

rnodi& a rnethod, the user must be the owner of the class or the class must be public. If

there is an error in the method, the browser will prompt the user in a separate window

(Figure 7.12).

Methods c m be moved to another protocol or removed. The user must be the owner of

the class or the class must be public.

6 instance G class

Figure 7.1 2 Operate menu

currentDrive value asfilename isReadable

whileTrue: [paths removelast].

paths add: currentDrive value.
self getSubdirectones; getfiles; displayPath]

[Dialog wam: The drive ' . currentDrive value . ' is not available!'.
current Drive value: paths first].

Figure 7.12 Error message window for methods

7.3 TL Class Converter

TL Class Converter (Figure 7.13) is a tool for tramferring class definitions between

clients and servers. Its purpose is to allow developers to work ofnule and write code in

their own images. When they connect to the server, they c a . use the converter to transfer

their classes to the code repository or to download code f?om it.

Figure 7.13 TL Class Converter

The cornbo box on the left side of the TL Class Converter displays categones present in

the local image of the user. When a user selects a category, all classes in the category are

listed in the list below i t The combo box and the Est on the right are responsible for

displaying categones and classes in the code repository respectively.

To transfer a class to the code repository, users must select a class in the local class list

and click ''>>''. The class converter wili ask the user to enter a version number (Figure

7.14) because every class in the code repository must have a version. The default version

is 1.0.

Figure 7.14 Version number request dialog

To protect some critical system classes in the server Smalltalk image, not all classes in

the local image can be transferred to the code repository. The heuristic used to decide

which classes can be safely transferred is as follows: If a class resides both in the server

Smalltalk image and in the local image but not in the code repository, it might be a

system class. If such a class was transferred eom the local image to the code repository,

it codd then be modified and loaded into the server Smalltalk image and overwrite the

existing class. Because of this, Team Lab does not allow this cIass to be transferred.

To transfer a class fiom the code repository to the local image, the user must select a

class in the cIass list on the right side and click "<<''. If a class with the same name

already exists in the local image, the transferred class will replace the existing one.

Chapter 8 Installation

This chapter describes where to get Team Lab and how to install it.

Team Lab is implemented in VisualWorks Smalltalk 3.1 and its parcels and installation

guide can be àownloaded fkom

hm ://ace. acadiau.ca/User/ivan/Reseasch/CVE/download. html

To install Team Lab, users must have installed VisualWorks Smalltalk 3.1 and the

ForkedUI parcel, which is a parce1 fkom VisudWorks. Team Lab requires five parcels,

namely Network, MUM - Core, MUM - Events, MUM - Tools and Team Lab. The first

four parcels are MUM parcels and the last one is Tean Lab parcel. To instd Team Lab,

load the parcels in following order:

Network

MUM - Core

MUM - Events

MUM - Tools

Team Lab

Since Team Lab is built on h4UM, follow instructions about how to start a MUM

universe that can be also found at above Web site.

Chapter 9 Conclusion and Future Work

Team Lab is an experimental collaborative v b a l environment designed for teamwork.

Because of its seamless integration with MUM environment, it is in some ways more

powerfil than existing code development toois. The combination of features of MUM

and Team Lab gives the environment the potential of higher productivity and efficiency,

while allowing more meaniflgfid product documentation by capturing a broader

development context as a basis for the management of organizational memory.

At present, Team Lab and MUM are still at an experimental stage of development. They

have only been tested in a iîmited academic context with focus on operation,

extendibility, and maintainability rather than CS C W (Computer Supported Coop erative

Work) measures.

The main limitations of the present form of MUM are its purely event-driven operation

and clumsy inter-universe navigation. Events present a high execution overhead and may

slow down operation unacceptably for a large number of simultaneous users although

scalability has not been tested. In the area of maîntainability and extendibility, the

drawback of MUM is that there are too many types of events, that events implement even

operations that do not seem to require them, and that extension of existing EDOs and

implementation of new EDOs is somewhat obscure.

The main limitation of Team Lab is its incomplete integration with the underlying

VisualWorks environment. In particular, as team support became available as a part of

VisualWorks in the form of StORE, a firture version of Team Lab should take advantage

of StORE facilities and build on them, integrating their functionality into MUM.

Future work2 should include a new MLTM architecture that removes complete reliance of

events, integration of Team Lab and StORE and a variety of new tools and CSCW

features. The new tools should include a more powerful remote browser in that users c m

select to browse classes in the local image, in the semer Smalltalk image or in the code

repository. The new browser should also provide al l fûnctions a Smalltalk System

Browser bas. A shared whiteboard is another usefid tool that team members c m ilse it for

discussion as a real whiteboard. Once the design stabilizes and the implementation

acquires sufficient fünctionality, it should be tested, initially in an academic environment

and then in the "red world".

-

' A brief introduction to this thesis was accepted by CRIWG, 6& International Workshop on Groupware
C181.

CS- Computer-Supported Cooperative Work.

CVE Collaborative Virtual Environment.

MUD Multiple User Dmgeons,
-

MO0 MUD, Object Onented.

MSJM Multi-Universe MOO.

StORE Smalltalk Open Repository Environment

UML Unified Modeling Language.

Bibliograp hy

[l] Object Technology International: ENVY/Developer/Developer,

http://www.oti.com/briefs/ed/edb~ef5i.htm.

[2] Cincom: VisualWorks Smditalk 5, http://www.cincom.com.

[3] Cincom: ObjectStudio, h~://www.cincom.com/obiectstudio/index.h~l.

[4] MUM, h ~ : / / a c e . a c a d i a u . c a l l T s e r / i v a n / R e s e ~ l

[5] Rémy E. : ColIaborative Networked Communication: MUDs as S ystems Tools,

[6] Mud FAQs,

h~://www.mudconnect.com/resources/Mud Resources:Mud FAOs-html

[7] Diversity University, http ://anven.marshall.edu/

[8] Bruclanan A. and Resnick M.: The MediaMOO Project: Constructionism and

Professional Community,

http ://www.cc. qatech. edu/fac/Amv.Bruckman/papers/conver~ence. html

[9] Haynes, C., Holmevilc, J. R., High wired: On the design, use, and theory of

educational MOOs, University of Michigan Press 1998.

[IO] Churchill, E., Bly S.: V h a l Environments at Work: Ongoing use of MUDs in the

Workplace, WACC 1999.

[Il] ChurchilI, E., Bly S.: It's al1 in the words: Supporting work activities with

lightweight tools, Group 1999.

[12] TeamWave, httD://www.tearnwave.com/

1131 Tomek I., Giles R.: Vimial Environments for Work, Study, and Leisure, Journal of

the Virtual Reality Society, volume 4, number 1, 1999.

[14] Tomek 1.: The Design and Implementation of a MOO, to be published in Journal of

Network and Computer Applications.

[15] JerseyMOO, hi211 : / / a c e . a c a d i a u . c a l L T s e r / i v a n / R e s e ~ l

[16] Rheingold H. : The V h a l Community, http://~.rheinpold.com/vc/boo W

[17] Burka L.: The MUDLine,

hm ://www.or,ensite.com ~br/random/servicos/muds/mudline. html

[18] CRIWG, 6th International Workshop on Groupware, htt~://criwe2000.di.f~. ul.pt/

