SOFTWARE VISUALIZATION TOOLS FOR JAVA

STEPHEN FILSON SAMPSON

B.Sc., Mount Saint Vincent University, 19895
B.C.S., Acadia University, 1998

Thesis
submitted in partial fulfillment of the requirements for the
Degree of Master of Science (Computer Science)

Acadia University
August 2000

© Copyright by STEPHEN FILSON SAMPSON, 2000

il

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4
Canada

Your file Votre relérence

Our file Notre référence

The author has granted a non- L’auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-54538-5

iv

Table of Contents

1. INTRODUCTION 1
2. AN OVERVIEW OF SOFTWARE VISUALIZATION. 3
2.1 DEFINITION OF SOFTWARE VISUALIZATION 3
2.2 PROGRAM VISUALIZATION 3
2.3 ALGORITHM VISUALIZATION 3
2.4 ALGORITHM ANIMATION 4
2.5 PROGRAM AURALIZATION 5
2.6 VISUAL PROGRAMMING 5
2.7 BRIEF EVOLUTION OF MODERN SOFTWARE VISUALIZATION 6
2.8 JAVA 7
3. SURVEY OF VISUALIZATION WORK 8
3.1 SEE 9
3.2 POLKA 10
3.3 BALSA and BALSA-II 12
3.4 TANGO 14
3.5LENS .. 15
3.6 ZEUS 16
3.7NV3D 18
3.8 AMETHYST 20
39 CAT 21
3.19 PROGRAM EXPLORER 23
3.11 VISUALINDA 25
3.12ZSTEP 95 26
3.13 VIPS 27
3.14 PIE 28
3.15 FIELD... 29
3.16 LARGE DATA SETS AND SEMANTIC ZOOMING. 31
3.17 SEESOFT .32
3.18 ARMVLS 35
310 ELLOT eeeeeeeeeeereecnnrecraaceaneeeecrressssrnsansearsssmssessessssssassassmaemssssnomesesssosamanses st anrasesassarssnrennnnssssmnmasesassnmnmsesssn 36
3.20EVA 37
3.21 FISHEYE-VIEW 38
3.22 PROGRAM AURALIZATION 40
3.23 SURVEY SUMMARY 42
4. A VISUALIZATION TOOL FOR JAVA 45
4.1 MOTIVATION 45
4.2 DESIGN GOALS 45
42.1 EASY TO USE 46
4.2.2 MULTI-THREADED 47
4.2.3 GENERICALLY APPLICABLE AND SOFTWARE-PROBES teeesseresrsssseeneessnnnresennerar 47
4.2.4 NO CUSTOM ANIMATIONS 48
4.2.5 INTEGRATED WITH A SYSTEM DEBUGGER......coc ittt e eeenentcecsiem e enereseasessanaeeen 49
4.2.6 ANIMATION 49
4.2.7 TEXT VIEW 50
4.2.8 CLASS VIEW 51
4.2.9 SEEVIEW .- 53
5. IMPLEMENTATION: FEATURES AND ARCHITECTURE 55
5.1 THE JAVA DEBUGGER 55
5.1.1 TERMINOLOGY .56
5.2 THE SOFTWARE VISUALIZER - SSV 56

5.3 SEEVIEW .59

5.4 CLASSVIEW

5.5 TEXTVIEW

5.6 ANIMATION

5.7 ARCHITECTURE
6. USER TESTING

6.1 PURPOSE OF THE STUDY

6.2 RESULTS

6.3 SURVEY CONCLUSIONS

7. FUTURE WORK
6.1 PARALLEL DEBUGGING

6.2 PROFILING

6.3 IMPROVED CLASS VIEW
6.4 SEARCHING

7. CONCLUSION

APPENDIX A - USER QUESTIONNAIRE AND TASKS

APPENDIX B - USER QUESTIONNAIRE RESULTS

BIBLIOGRAPHY

FURTHER READING NOT DIRECTLY REFERENCED

62
65
66
66

68

69
69
71

73

73
74
74
75

76

77

82

83

87

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

List of Figures

POLKA animation of towers of Hanoi 11
NV3D 19
CAT 22
Program Explorer 24
Seesoft 34
Normal Network, Fisheye-View Network 39
Class view of ShapeDriver 52
Example of line oriented Seeview 54
Implementation of a software visualizer...... 57
Four example files displayed through by SSv...... 60

Seeview selection of a line 61
Classview of class Simple 63
Classview of a class with 3 level of hierarchyé64

Textview of an executing piece of code............65

Basic architecture of SSV. 67

vii

Software Visualization Tools for Java

Abstract

The field of software visualization exists to
facilitate both the human understanding and effective use of
computer software. This thesis surveys over twenty modern
software visualization systems to acquire information about
the current state of software visualization systems. This
knowledge is then used in the design and implementation of a
new system called Steve's Software Visualizer (SSV).

SSV is a program visualizer. SSV has all the
functionality of a debugger, for example, setting break
points, a call stack and evaluation of variables. SSV also
uses generic software visualization tools: Seeview,
Classview, Textview. These tools can be operated
interactively by the user, or viewed passively as an
animation. By using all three views in combination, certain
aspects of the software can be “visualized”. This is not

possible through traditional text based debugging methods.

1. INTRODUCTION

Modern software visualization began in the early 1980’s
with the introduction of the bit-mapped display and window
interface technology [Price 1993]. Graphical workstations
allowed researchers to create systems for visually exploring
graphical representations of software. For the first time,
dynamic, as opposed to static, representations of software
and data structure were available allowing researchers to
better understand and see the structure of their programs.

Software is generally created using textual symbols to
signify data and operations. These representations, known
as source code, are translated into a form the computer can
understand. Software visualization tools, such as the one
built for this thesis, put the source code in a form that a
programmer can better understand by displaying the structure
and true dynamic nature of the program.

Currently most source code is created, edited, and
displayed from within an integrated development environment
(IDE). Modern IDEs have the ability to maintain an enormous
amount of source code and text that must be analyzed to
determine what the symbols represent. The use of a software
visualization tool makes the meaning of the code more
apparent and concrete, while making the overall structure of

the program easier to grasp.

This thesis describes a software visualization tool for
Java, named Steve’'s Software Visualizer or SSV. The
visualizer has the functionality of a debugger as well as
having two new software visualization tools. The debugger
allows setting of break points and evaluation of variables,
while the software visualizer displays program structure
using graphical visualizations. Also, SSV is able to
animate and step through a running program free of user
interaction.

The remainder of this thesis is organized as follows.
Chapter 2 presents an overview of software wvisualization.
Chapter 3 reviews various related research and applications.
Chapter 4 presents a proposed visualization tool for Java
called Steve’s Software Visualizer (SSV). Chapter 5 presents
an implementation of this proposed tool. Chapter 6 presents
proposed future work on the visualization tool. Chapter 7
summarizes the results of user testing of the SSV system.

Chapter 8 is the conclusion of the thesis.

2. AN OVERVIEW OF SOFTWARE VISUALIZATION

2.1 DEFINITION OF SOFTWARE VISUALIZATION

Software Visualization is the use of the crafts of
typography, graphic design, animation, and cinematography
with modern human-computer interaction and computer-
graphics technology to facilitate both the human

understanding and effective use of computer software [Price

1998].

2.2 PROGRAM VISUALIZATION

Program visualization is the visualization of actual
program code or data structures in either static or dynamic
form [Price 1998]. This thesis primarily deals with this
branch of Software Visualization. NV3D is an example of a

program visualization system [Parker 1998].

2.3 ALGORITHM VISUALIZATION

Algorithm visualization is the wvisualization of the
higher-level abstractions which describe software [Price

1998]. Algorithm visualization deals with showing an

abstract representation of an algorithm. Visualizations
usually show the data and the effect on that data as the
algorithm runs. It is high level in its representation of
the algorithm, but at a lower level in that it shows only a
specific aspect of a program. Algorithm visualization use
is primarily in teaching environments. However several
applications exist for experienced programmers. Generally
much work is required to create algorithm animations or
abstract views because a generic view can not be used for

all algorithms.

2.4 ALGORITHM ANIMATION

Algorithm animation is dynamic algorithm wvisualization
[Price 1998]. It is any mechanism which presents the
running of an algorithm as a movie where the visual
representation of objects of the program smoothly change
their location and appearance, according to a script
determined by the algorithm [Lahtinen 1998]. The algorithm
visualization is created and then put into motion based on
time or events within the algorithm. The algorithm
animation is often similar to watching a cartoon. BALSA is

an example of an algorithm animation system [Brown, 1984].

2.5 PROGRAM AURALIZATION

Program auralization is the use of sound to assist in
the formation of mental images of the behavior, structure
and function of a program or algorithm. Sound is used
instead of painting an abstract picture with the
arrangements of pixels and colour on the computer monitor
[Francioni 1991]. Different tones, pitches and volumes
represent events within a program. Program auralization is
traditionally used in combination with wvisual displays of
computer graphics. An example of such a system is the

SonicFinder [Gaver, 1989].

2.6 VISUAL PROGRAMMING

Visual programming is a field of software
visualization. It is a type of programming, which uses
graphical objects to build software [Price 1998]1. The
visualization is built first, and then the executable code
is derived from the abstraction. Either source code is
derived from the representation and then compiled, or the
graphical representation is compiled directly with no
generation of textual source code. An example system is

Prograph [Cox 1989].

2.7 BRIEF EVOLUTION OF MODERN SOFTWARE VISUALIZATION

The first major work of modern software wvisualization
research was in 1981 [Baecker, 1981]. The work was a 30-
minute, narrated, colour motion picture displaying how nine
different sorting algorithms manipulate their data, entitled
“Sorting Out Sorting”. In 1984, the most well known and
important early interactive system, BALSA [Brown, 1984], was
announced. This was followed by BALSA-II [Brown, 1988].
BALSA is an algorithm animation system that allows the user
to create real-time simulations of programs {as opposed to
movies) using high-resolution graphics. BALSA’'s interactive
capabilities inspired the development of many other systems.
During this same era, Myers [Myers 1988] carried out
pioneering work in automatic data wvisualization, which
integrated debugging capabilities with software
visualization tools.

In the early 1990’'s, more research was done on
algorithm animation systems such as TANGO [Sasko, 199017,
Zeus [Brown, 1991] and the LENS system [Mukherjea, 1994].

In the late 1990’s, research has focused on parallel
programs because software visualization lends itself nicely
to the complexity of parallel programs. Systems such as

VisualLinda [Kaoike, 1997], or Program Explorer [Lange, 1997]

are examples of parallel visualizers. Other recent work
includes the development of interactive software
visualization environments for teaching [Merlini, 1999], as
well as commercial applications for viewing class structure

and interactions [NVision, 1999].

2.8 JAVA

Java, is an object-oriented programming language released by
Sun Microsystems, Inc. The Java software development kit
was originally released with a command line interface.
However, many integrated development environments for Java
have been developed since. Many IDE support the addition or
co-existence of third party tools. This thesis introduces a
tool for representing abstract automatic program

visualization for Java.

3. SURVEY OF VISUALIZATION WORK

This chapter reviews twenty-two software visualization
applications and related research. This previous work is
reviewed to help understand the current state of software
visualization and to apply that information to the creation
of a new system which contributes to the understanding of
software.

In the chapter, three concepts are reviewed: the
fisheye-view, program auralization, and semantic zooming.
All of these can be applied to both algorithm animation or
program visualization systems. Six algorithm animation
systems are reviewed: BALSA, Tango, Zeus, CAT, ARMVLS and
EVA. The Eliot system can be classified as both an
algorithm animation system and a data visualization system,
whereas Lens is both algorithm animation and program
visualization system. Nine program visualization systems
are reviewed: See, Polka, NV3D, Program Explorer,
Visualinda, ZStep 95, Pie, Field, and SeeSoft. As well as
two data visualization systems: AMETHYST and VIPS.

Before the survey begins, three terms must be made
clear: user, animator, and programmer. A user 1s a person
who uses visualization, or a visualization package, to

better understand and visualize a particular piece of

software. An animator is a person who builds the software
visualization for the user. However, the animator role may
be further subdivided into scriptwriter, algorithm designer,
graphics programmer, etc., which differ from system to
system. For that reason, and for the sake of clarity and
simplicity, a person who builds visualizations will be
henceforth known as an animator. The word programmer can
be applied to both the user and animator, depending on the
context or current role of the individual. Therefore, when
the word programmer is used in this thesis, it will be made

clear which role is being played.

3.1 SEE

Baecker developed the SEE visual compiler [Baecker
1998)] as an aid to communicating information about programs
and comprehension of programs by paving attention to the
visual schema embodying the program and the visual
appearance of programs. Baecker believes the presentation
of program source text matters and that effective program
presentation portrays program structure, helping the user
deal with its complexity.

SEE is a prototype that uses graphic design principles
to create a project manual. SEE takes unmodified C source

text as input, and produces high quality typeset

10

presentations on a laser printer. This output includes
headers, footnotes, metadata, different indices, fonts and
annotations. This automated program presentation is
intended to produce a significantly better program
presentation. The compiler is heavily parameterized to
allow the customization of text display to suit individual
taste.

A drawback of a system such as SEE is that the project
manual that is created is out of date as soon as any changes
are made to the project. For large projects that are
modified daily, personal experience has shown that an
updated manual is rarely available because of the time and
expense of creating the manual. Also there is a great waste
of paper that occurs because the manual will be out of date
again as soon as the source code changes. However, once a
project is complete, a comprehensive manual is invaluable.

SSV addresses this downside by reading the current
files directly and giving an on-line representation of the
code. Therefore, the reporting of information is always

current.

3.2 POLKA

Stasko and Kraemer [Stasko 1993] developed a

visualization methodology to address requirements for

Il

application-specific viewing of parallel programs. The
methodology is called POLKA (Parallel program-focused
Object-oriented Low Key Animation) and it is an object-
oriented basis of visualization and animation that includes

high-level graphical object and motion primitives.

T Polka lor Windows

Figure 3.1 POLKA animation of towers of Hanoi

POLKA is a general-purpose animation system that is
particularly well suited to building animations of programs,
algorithms and computations, especially parallel
computations. POLKA supports colour, real-time, 2
dimensional, smooth animations. The focus of the system is
on a balance of power and ease-of-use. POLKA provides its

own high-level abstractions to make the creation of

12

animations easier and faster than with many other systems.
Programmers need not be graphics experts to develop their
own animations. POLKA also includes an interactive front-
end called SAMBA that can be used to generate animations

from any type of program that can generate ASCII text.

3.3 BALSA and BALSA-II

The Brown University Algorithm Simulator and Animator
(BALSA) [Brown, 1984] and its descendant BALSA-IT [Brown,
1988] were among the first interactive algorithm animation
systems. BALSA creates real-time simulations of programs
(as opposed to movies) using high~-resolution graphics [Brown
1984]. An animator interactively creates a simulation
through the BALSA interface. The user simply initiates the
desired simulation and interacts with or watches the
simulation. “Essentially, BALSA may be thought of as a
laboratory for experimentation with dynamic real-time
representations of algorithms” [Brown, 1984].

From the user perspective, he or she selects an
algorithm from the pull down menu. Users are able to start
and stop execution, as well as select different views for
the algorithm. Brown states, “A fundamental thesis of an
algorithm animation system is that a single view of an

algorithm or data structure does not tell a complete story”

13

[Brown 1988]. Therefore the user is able to select
different view, such as point or bar displays.

BALSA is noteworthy for two capabilities.

1) Interpretive runtime system - which allows a user to
start, stop, or even run a simulation backwards. 2) Command
shell - which allows a user to save, restore or invoke
scripts on the current executing algorithm simulation. The
greatest drawback of BALSA, which Brown admits, is the
overhead required to build a visualization.

To animate an algorithm, the algorithm is annotated
with “interesting events” that identify its fundamental
operations that are to be displayed. Interesting events are
triggers that are placed within the algorithm that lead to
changes in the image being displayed. When an algorithm is
run under BALSA, an interesting event is fired which
instructs the graphics package to change the image.

Brown admits the learning curve for a BALSA programmer
is probably a bit steeper than that of other algorithm
animation system, however the extra effort seems defensible
given Balsa’'s facilities for manipulating program displays
and execution, and for scripting.

SSV strongly addresses the issue of the learning curve.
All that is necessary to use the SSV system is the operator

of the system must compile his or her programs to generate

14

all debugging information. Then the user simply utilizes

the mouse and the keyboard to interact with SSV.

3.4 TANGO

Tango [Stasko 1990] is a popular framework and system
for algorithm animation. Tango was designed to provide a
clean, powerful, and flexible algorithm animation system
with formal models and precise semantics. Tango makes
iterative design easier by separating program abstraction
from animation design and making animation actions easily
and directly accessible. Using Tango, a programmer can
create a new animation in a few hours or days rather than
many days or weeks.

To produce an animation with Tango, an animator must
annotate the program with the necessary algorithm
operations. Animation scenes to implement the animation
actions must be designed by assembling collections of image,
location, path, transition and association operations.
Finally a control file must be created to specify the
mapping from the algorithm operations to the animation
scenes.

TANGO's most outstanding feature ig its ability to
produce path-transition paradigm animations. That is,

animations that use smooth transitions instead of

15

instantaneous swaps. For example, in a sorting algorithm
visualization, instead of two elements instantaneously
swapping, the objects of the sort physically move along
their own path, pixel by pixel, until the objects have
traded places.

SSV does not support path-transition. While the
paradigm is sound, it is more appropriate at the algorithm
level and not at the class or program level which SSV
targets.

The largest drawback of Tango is the time it takes to
create animations. SSV addresses this by providing generic
views instead of requiring the user to create his or her own

views.

3.5 LENS

Lens [Mukherjea 1994] is a combination of algorithm
animation and program visualization systems. Lens has the
capability to build and display animator created simulations
and has the ability to automatically display data
structures. Lens is implemented on top of UNIX, the X
Window System, the XTango animation system, and the debugger
dbx. This integration with a system debugger promotes
iterative design and exploration. There are capabilities

for setting break points, and viewing variable values.

16

Interacting with the system creates animations, and some
coding is needed, but the amount of work required by the
animator to achieve a visualization is less than coding an
animation from scratch, which is most common with algorithm
animation.

The purpose of the Lens system is to bridge the two
domains of program visualization and algorithm animation.
Lens can provide application-specific animation views for
debugging purposes. Programmers are encouraged to design
animations, but should not be troubled by learning a
graphics toolkit and writing code to use it.

SSV follows the design of the Lens system in that it is
implemented on top of a debugger. The ability to set a
break point and then proceed with self-exploration is

critical in learning a new piece of software.

3.6 ZEUS

Zeus [Brown 1991] is noteworthy for its use of objects,
strong typing, parallelism, and graphical development of
views. It was one of the first wvisualization systems to use
sound and colour in algorithm animation.

From the user’s perspective, inveoking the Zeus
application opens a control panel on the screen. The

control panel provides the user with configuration and

17

interpretive facilities. The configuration facilities allow
the user to select which algorithm to run, which view is to
be used and the data for the algorithm. The interpretive
facilities allow starting, stopping, and single-stepping an
algorithm.

To a programmer, Zeus is a framework for associating
multiple client-defined views with a set of client-defined
events. Zeus is a set of classes written in a in-house
dialect of Modula-2.

Zeus does not have any sophisticated graphics, or
specially built graphical editors, but it does allow the
algorithm animator to graphically demonstrate how an
instance of an object used by a view should look.

Brown states in [Brown 1991] that “constructing
animations in Zeus appears to be as easy and straightforward
as in any other algorithm animation system”.

Zeus can generate some utility views automatically
based on a set of interesting events that an algorithm
generates. From the user’s perspective, Zeus is similar to
other algorithm animation systems in that an animator is
needed to create visualizations, while a user simply runs
and interacts with the animator’s creation. The animator
must associate a set of interesting events with multiple

graphical views.

18

3.7 NV3D

NestedVision3D (NV3D) is a system for wvisualizing large
nested graphs using interactive 3D graphics [Parker 1998].
NV3D is available commercially and in differemt flavors.

The version of interest to this thesis is the object-
oriented software-visualizing package, which does program or
class visualizations. Nodes in the graphs represent
entities, such as methods, modules, or objects, while arcs
represent relationships between entities, such as
inheritance, or usage.

NV3D uses 3D representation, rapid navigation
techniques and nested graphs to help visualize the software.
A user is able to see as much or as little information as
desired by rotating, zooming, expanding or minimizing nodes.
A single class, for example X, can be selected and explored
alone (i.e. X is the only class on the screen) or class X
can be viewed and explored in relation to all or some of the
other classes.

An interesting feature of a different verxrsion of NV3D
[Parker 1998] is the “snake”. Dynamic behavior is shown as
a snake, which is animated and travels from ome end of an

arc to the other.

19

£

4.
-1
B
=
¥
L

Figure 3.2 NV3D

As mentioned above, NV3D provides generic class and
program views. Animators and programmers are not needed and
therefore NV3D provides no programming or view editing
capabilities. The generic views provide a common interface
for all classes and programs that are viewed with NV3D.

This common interface promotes familiarity between different
programs being visualized and therefore lowers the learning
curve when compared to other systems with custom views for
each new algorithm, class or program. SSV attempts to

capture the essence of NV3D by using generic 3D class views.

20

3.8 AMETHYST

Amethyst [Myers 1988] stands for A MacGNome
(programming) Environment That Helps You See Types.

Amethyst was designed for use in an instructional
environment to help the students wvisualize and understand
data structures. Therefore Amethyst is designed with
students in mind and is easy to use. The representations
Amethyst creates are similar to those found in popular data
structure textbooks and are created automatically with no
animator or programming required. However programming
facilities exist to create advanced, custom views.

The primary focus of Amethyst is to provide appropriate
displays of data structures automatically. These views are
updated continuously, so the user never sees an inconsistent
view of the data. Users can display a graphical view of the
data simply by selecting a variable in the program text and
issuing the “Show Value” command from a menu.

The visualizations are integrated into an advanced
programming environment that provides a structure editor
interface, which automatically inserts the appropriate
syntax when the user specifies the type of program structure
desired. The integrated system also provides multiple views
of the program being edited, such as an outline view, run-

time call stack, two different tree-structured decomposition

21

views, and the standard linear program views. A user is
also able to set breakpoints.

Amethyst is a model for SSV. Amethyst provides ease of
use and automatic data visualization, while SSV is easy to

use and provides automatic class information.

3.9 CAT

CAT [Brown 18996], short for Collaborative Active
Textbooks, 1is a web-based algorithm animation system for an
electronic classroom. CAT is a collection of web pages that
contain text and passive multimedia as well as “active
objects” (which are like Java applets). The system can be
active, so that a reader can interact with parts of the
textbook or the system can be collaborative in that a group
of people, such as a teacher and a set of students in an
“electronic classroom” setting can share a common
interactive experience. The instructor can control the

animation for all, or the students can run their own.

22

2} At 8 o & it £ mthe Alryrthan b o

e T e R

" AN LA st v

Figure 3.3 CAT

The algorithm and the views are implemented in Oblig,
which is an interpreted object-oriented language. CAT runs
through a browser which is capable of displaying multiple,
simultaneously animated views of an algorithm.

Cat follows the BALSA approach: strategically important
points of an algorithm are annotated with procedure calls
that generate “interesting events”. The interesting events

are then passed to each view that responds to the event by

drawing appropriate images.

23

3.10 PROGRAM EXPLORER

Program Explorer [Lange 19897] is a tocl to reduce the
amount of information presented to a debugging programmer,
and is also as an aid to improving a programmer'’s
understanding of the system of interest. Program Explorer
reduces the amount of information by merging, pruning or
slicing away information. This allows the user to
concentrate on only relevant information. Once the data is
obtained, Program Explorer has a very advanced visualization
display and interface that allows the user to interact with
the system.

Program Explorer is very interactive and powerful with
many low-level data collection features. It is based on
IBM’'s x1C compiler and uses IBM's Heapview Debugger to

monitor objects.

Selection: |

i

Class

event
jvInputHandlerImpl<432>
release
ivButton<431>
execute
App_ActionCallback<420>

do_action2

Close Overview Unfocus Clear Layout History

handld

ivSession<416>
handle
ivEvent<444>

| -
event “event

Y '
ivInputHandlerImpl<427> ivInputHandlerImpl1<437>

? :
release ;

re]éase
\ U
ivButton<426> ivButton<436>
execute execute
Y Y
App_ActionCallback<419> App_ActionCallback<421>
do_ackionl _do_action3

Y .
App<d415>~

(——— -

Class Graph

Figure 3.4 Program Explorer

Program Explorer reduces the amount of information

presented to a user.

powerful. However,

SSV was designed to be simple, yet

during user testing (see chapter 7)

24

users complained there was too much information presented in

the 3D class view.

Future work will strive to include

reduction facilities such as those found in Program

Explorer.

3.11 VISUALINDA

The VisuaLinda system [Kaoike 1997] is an integration of
a Linda server and a visualizer of parallel Linda programs.
The visualization module is built in the Linda server,
therefore programmers do not need to put additional
visualization primitives (i.e. indicate “interesting
events”) in their client programs in order to visualize
behavior. This integration helps the programmer debug
parallel Linda programs by minimizing the “probe effect,”
which is one of the main concerns in monitoring parallel
programs. Also, Visualinda uses automatic three-dimensional
views to display the relationship between the Linda server
and the client programs, as well as the execution of client
programs.

Visuallinda was designed so programmers can find a bug
simply by seeing the visualized output. Programmers can
observe inter-process communications as well as other
information to see when an error occurs. The framework can
also display each process’s state in addition to an overview
of program execution.

SSV does not use probes similar to VisuaLinda.
Laboriously adding “interesting events” and then removing

them once a bug is found is not efficient. This is

26

especially significant if a similar bug is found and the

events have to be re-entered.

3.12 ZSTEP 95

ZStep 95 [Lieberman 1998] is a program-debugging
environment designed to help the programmer understand the
correspondence between static program code and dynamic
program execution. 2ZStep 95 was designed to support the
problem-solving methodology of matching the expectations of
a programmer concerning the behavior of code to the actual
behavior of the code.

ZStep 95 is notable for its animated view of program
execution using the very same display used to edit the
source code, one-click access from graphical cbjects to the
code that drew them and as well as one-click access from
expressions in the code to their values and graphical
output.v However, ZStep 95‘'s most interesting feature is its
ability to incrementally generate a complete history of
program execution and output. With this history, ZStep 95
has the ability to run a program in forward and reverse
directions while controlling the speed and level of detail
displayed. This reversible control structure allows the

user to témporarily ignore the details of a particular

27

expression, however if the need presents itself, ZStep can
be backed up to look at the details.

The reversible control structure also effectively handles
the common software visualization problem of too much
detail. Using ZStep, a user can gquickly skim over code
until an error or bug occurs. Once found the user can back
up slightly and explore in more detail potential trouble

spots in the code.

3.13 VIPS

VIPS [Shimomura, 1990] is a visual debugger for list
structures. It makes use of the Sun Microsystems dbx
debugger to help visualize the execution of programs written
in the C language. VIPS implements a multiple window/view
mechanism to realize such facilities as: (1) displaying the
control flow in both the program text and a module structure
chart, (2) displaying the call stack as graphical objects,
and (3) displaying data structures as images which represent
data semantics.

The VIPS system (version 2), unlike earlier versions of
the same system, can acquire data type information necessary
for automatic display of data structures. However, the only
constructs VIPS can display are list structures because the

authors thought that list structures are the most difficult

28

type of data structure to debug. VIPS displays these
structures as rectangles containing text and arrows pointing
from one rectangle to the next.

Debugging is further aided through the use of multiple
windows displaying program information such as a monitor,
program-text, list, input-output, editor, wvariable display
and stack display windows. As well, many different views of
the list are available such as whole or partial lists,
element display and opening multiple views of the same list
from different aspects.

Unlike VIPS, SSV does not do any data visualizations.
However like VIPS, SSV has multiple views of the source code
from different aspects. This gives the user the same

information, but with a different presentation.

3.14 PIE

The Parallel Programming and Instrumentation Environment
(PIE) ([Lehr 1989] is a parallel programming environment
designed for developing performance-efficient parallel and
sequential computations. PIE provides programmers ways to
observe how computations execute by making use of special
development and runtime visualization tools. These tools
allow for automatic assistance for visually projecting

performance data onto programming constructs. For example,

29

a user can indicate, through the use of a graphical
representation of the code, where the operations that
enforce mutual exclusion occur. The system then
automatically observes the execution by using multiple forms
of instrumentation to gather statistical information. PIE
presents the performance information in a variety of ways,
including graphical representations of program constructs
showing the progression of each process, histograms of
process activity and event timelines.

PIE is designed to be an environment that presents
information it retrieves about computations in forms that
assist users in making their own qualitative judgements
about how their computations behave. The framework helps
develop techniques to predict, detect, and avoid performance
degradation. PIE supports languages such as C, MPC, C-
threads, Ada and Fortran.

It is the hope that SSV, like PIE, will assist users in
making their own qualitative judgements about new source

code.

3.15 FIELD

FIELD, the Friendly Integrated Environment for Learning
Development was created in an attempt to use workstations

effectively for UNIX-based programming [Reiss 1997]. FIELD

30

integrates a wide variety of UNIX tools into a common
framework. This framework uses ordinary UNIX tools with
graphical user interface wrappers around them, as well as
new tools to support both programming and program
visualization. All these tools are connected by way of a
message passing system connected to a database of program
information

The UNIX tools in FIELD include configuration management
(make), version control (rcs), as well as profiling tools.
The visualization tools include a text editor that is
augmented with a window that has clickable descriptive icons
that give additional information. Other tools include
graphical wversions of a call graph browser, a class
hierarchy browser, a data structure viewer, and a make
dependency browser.

FIELD has a wide variety of wvisualizations for different
applications. FIELD is able to show visualizations that
represent the static structure of a system, and
visualizations to show a system in action. FIELD
effectively displays this information using limited screen
space to display the large gquantities of information
inherent to a programming environment.

Unlike FIELD which has multiple, resizable, independent
windows, SSV is designed as a single window application,

which has multiple views of the program contained within the

31

main window. SSV would benefit from a design similar to

FIELD allowing better screen allocation and easier addition

of new views.

3.16 LARGE DATA SETS AND SEMANTIC ZOOMING

One of the key open problems in software visualization is
that most software visualizations are of smaller,
laboratory-created programs [Stasko 1996]. That is,
software visualizations do not scale up well, and they
poorly portray large systems or program executions on large
data sets. One proposed solution is the concept of semantic
zooming. In brief, semantic zooming allows the user to zoom
in/out or focus on a particular portion of the program or
data set. Unlike a standard zoom, the presentation style of
the view adjusts at the different zoom levels.

In the context of software wvisualization, [Stasko 1996]

defines semantic zooming as follows:

e All visualizations begin showing a view of the entire
data set of the program, usually at an abstract level due
to the data size

e At some level, all of the program data should be visible
without falling back on the use of scrolling and panning.
That is, the presentation of all program data should fit
within one window.

e Viewers interact with a view and zoom in on a portion of
the program data by interactively selecting a graphical
object representing that portion of the data.

32

¢®* Different zoom levels or perspectives on the program data

are shown either in the same window or in separate
windows.

e At the lowest, most detailed view level, the
visualizations should use recognized algorithm animations
or program visualization presentation styles.

All views update concurrently and always portray the
current state of the program execution.

Stasko presents helpful and useful ideas for dealing with
Jarge amounts of information. In the design of SSV, some of
Stasko’s principles of semantic zooming were adopted with
slight modification. For example all views update
concurrently, zooming is possible, but sometimes the program
image does not fit in one window therefore scrolling the

image is necessary.

3.17 SEESOFT

The SeeSoft [Eick 1992] visualization tool displays line-
oriented source code statistics by reducing each file and
line into a compact representation. SeeSoft displays
statistics using a rectangle to represent each file and
coloured rows within the rectangle to represent the
statistics associated with the lines of code. The position
of the rows corresponds to the position of the lines within

the file and the size of the rectangles to the size of the

33

file. The resulting display looks like a very small
representation of a code printout. See Figure 3.5.

Individual statistics are displayed with colour. These
colors, chosen by the user, represent information stored in
an elaborate database. For example, if the user wants to
see information on what lines were added on a certain date,
the user could have those line appear in red, while having
all lines associated with a bug fix appear in a yellow
colour.

Using high-interaction graphics and direct manipulation
techniques, the user manipulates the display to discover
interesting patterns in the code and statistics. Users of
the system are immediately able to recognize the files and
lines of code because the display looks like a text listing

viewed from a distance.

34

Seesoft is an effective tool because the display is

informative and clear. Statistics are obvious from the row
colours; code windows enable source code to be read, as well
as provide an intuitive human interface. SeeSoft is capable
of real-time screen updating in response to mouse actions.
Moving the mouse over a file representation activates a menu
of other statistics associated with the line or file. This
technique works well because it allows the user to have both
an overview of the statistic and also read the interesting

parts of the code.

35

With SeeSoft’s compact representation of data it is
possible to comfortably display 35 files containing 50,000
lines of code on a 1280x1024 pixel display. As many as
100,000 lines can be displayed but the representation is
tiny.

SSV uses the idea of an iconic file representation, not
to display statistics, but to convey information about

program flow.

3.18 ARMVLS

ARMVLS ([Warendorf 1997], which stands for Atomic
Reaction Model Visual Language System, is a wvisual language
algorithm animator. ARMVLS is a system that allows the user
to create images to visually demonstrate or to assist in the
description of how a computer algorithm works by means of
drawing and moving images on screen. The authors claim that
the system bridges the fields of visual language programming
and algorithm animation however ARMVLS would be better
classified as a program by demonstration system.

ARMVLS is a visual programming system to animate
algorithms that are themselves programmed in ARM (Atomic

Reaction Model). ARMVLS can animate most of the algorithms

36

traditionally done by textual coding. ARMVLS is easy to use
and does not require an expert user. Programming
illiterates can use the system and quickly create prototypes
or useful algorithm animations. There are no special modes
or specifically catered for types of animations. All
features and constructs of ARM are generic and can apply to
all algorithms that it can animate.

What distinguishes ARMVLS from other algorithm
animation systems is that visual techniques, instead of
textual codes, are employed to specify the animation

sequence.

3.19 ELIOT

Eliot [Lahtinen 1998] can be used in algorithm design,
visual debugging and learning programming. Eliot animates
algorithms written in the C programming language by
visualizing data structures as smoothly moving graphical
objects. All the movements are connected with the
operations of the data structures. The user selects a
visual object from a pre-defined library of visual data
types. The library includes basic types, like integer, and
structured data types, like tree. Each visual data type has
a set of visualizations associated with it. The user

selects one visualization for each data object he or she

37

wants to animation. Based on these selections, Eliot
automatically constructs an animation where the objects as
well as their operations are animated. The input C code and
selected animation types are then compiled into an
executable program.

Eliot was created as a tool for generating animations.
The need for Eliot arose because Eliot’s authors were
spending 100+ hours creating simple animations using the
tools that were available to them at the time. The result
is a system which reduces the required work time down to
just a few minutes.

Eliot makes two contributions to the field of program
visualization. These are ease of use and an innovative
implementation technique. However, the system requires an
animator to create the visualizations, which is a step that

SSV is able to skip.

3.20 EVA

EVA [Bykat 1996] was created to reduce the effort
required in the production of software visualizations. EVA
is an interactive Environment for Visualization and
Animation of Programming Concepts. EVA was designed with
the goal of providing an authoring environment for

visualization and animation of programming concepts. The

38

system integrates authoring, display and control system for
the specification and execution of visualizations.

EVA has four distinct players that are involved in
animation design, the teacher, the animator, the programmer,
and the user. These players use the system in different
ways. For example the teacher creates an analogy which
means he or she must invent an effective and informative
visualization. The animator must then produce the
animation, and then the programmer incorporates the
animation into a visualization. The user then studies and
uses the visualized concepts to understand and generalize
the meaning. To assist in these activities EVA provides an
object editor and piéture description language, as well as a
mouse sensitive visualization interface which offers
functions such as set/change parameters, redo, what-if,

explain and trace.

3.21 FISHEYE~VIEW

The Fisheye-View is a strategy proposed by Furnas [Furnas
1986] that imitates a fish eye in order to display
potentially huge structures on one computer monitor, and all
associated information. Graphical representation of objects
which are currently of interest appear focused and clear,

while objects not directly in focus, around the outside are

39

displayed successively smaller and less detailed. It
achieves a smooth integration of local detail and global
context by repositioning and resizing elements of the graph
[Ssakar 1994]. See Figure 3.6.

The following analogy was put forth by Furnas {Furnas
1986] as a way to explain the fisheye-view: When drawing a
map, humans represent their own “neighborhood” in great
detail, yet only major landmarks further away. The
neighborhood is said to be in “focus”, therefore many
building, signs and roads are presented and visible, while

the next town over may only be represented as a labeled dot.

Fisheye

4
Q
3
L

e0o0000000O0 . .
0000000000 . ,..,..- -
..........000-
0000000000 °
XYY I LXK
0000000000
X 'YX KN R
0000000000 o ee.-
00000060000 20990 .
0000000000 o e 00 e * -
0000000000 et
Figure 3.6 Normal Network Fisheye-View Network

The Fisheye-View has gained popularity [Sakar 1994 and
Muchaluat 1998] as a way of displaying huge amounts of

information. This type of view lends itself nicely to the

40

huge amount of information available on the World Wide Web.
See [Noik 1993] for more information on fisheye views of
hypertext networks.

The fisheye-view has the potential to change the way
large amounts of data are viewed in software visualization
as well as in other fields. However, fisheye technology is

still emerging and is not universally accepted.

3.22 PROGRAM AURALIZATION

Program auralization is the process of forming mental
images of the behavior, structure and function of a program
or algorithm using sound. Researchers have identified a

number of reasons for using sound (Francioni 19917:

® Visualization is highly subjective, and what is
insightful for one person is meaningless to someone else.
Program Auralization provides yet another “view” of a
program; a view that might make some things obvious to
some people. Furthermore, some types of information

might just be difficult to represent graphically.

® Listening can be done passively. That is, one does not
have to be paying strict attention listening to the
normal behavior of a program in order to notice that some
exceptional event has happened. Moreover, listening can

be done in parallel with viewing.

41

e People have remarkable abilities to detect and remember
patterns in sound (indeed, most people remember the
melody of a song much sooner than he or she learns the
words) .

¢ Sound is a powerful medium for delivery of large amounts
of data in parallel. This aspect of sound is especially
useful for visualizing parallel programs; but even a
sequential program can contain an enormous amount of

data.

e Sound is inherently temporal, as are computer programs

during execution.

All of the above reasons for using sound seem self-
evident, yet sound is a rarely used method of visualization.
While more software visualization system are beginning to
incorporate sound, such as Zeus [Brown 1991], there is
promising work in parallel computing [Jackson 1921], sound
is not the norm. Visualizing software using sound is a
slowly emerging field and as of yet there is not an
abundance of research.

Other researchers [Brown 1997] have found that sound
is more difficult to use than, say multiple views or colour,
smooth animation, or even 3D graphics. Perhaps this is
simply because we have less practice (and training)

composing music than drawing diagrams. Perhaps we are

42

unaccustomed to using sound as the primary input for problem
solving. Or perhaps it is because sound is a more difficult

medium to master.

3.23 SURVEY SUMMARY

Table 3.1 is a summary of the systems and research
reviewed in this chapter. The abbreviations used in the
“"System Type” column are as follows: PV stands for “program
visualization”, DV stands for “data visualization” and AA

stands for “algorithm animation”.

Table 3.1 - Survey Summary

System Name System | Features

or Tvype

Area of

Research

See PV Compiler that creates a high

quality typeset project manual from
unmodified C source code.

Polka AA & PV | General-purpose animation system
targeted towards viewing of
parallel programs.

Balsa and Among the first interactive
Balsa II algorithm animation systems.

>

Tango Designed to provide a clean,
powerful, and flexible algorithm
animation system with formal models
and precise semantics.

5

Lens AA & PV |Combination algorithm animation and
program visualization system.
Implemented on top of the dbx
debugger.

43

Zzeus

Noteworthy for its use of objects,
strong typing, parallelism, and
graphical development of views.
One of the first systems to use
colour and sound.

NV3D

PV

Uses 3D representation, rapid
navigation techniques and nested
graphs to help visualize the
software.

Amethyst

DV

Designed for use in an
instructional environment to help
the students visualize and
understand data structures.

Cat

A web-based algorithm animation
system for an electronic classroom.

Program
Explorer

PV

A tool to reduce the amount of
information presented to a
debugging programmer.

Visualinda

PV

Designed so programmers can find a
bug by seeing the visualized
output. Programmers can observe
inter-process communications as
well as other information to see
when an error occurs.

ZStep 95

bv

Program-debugging environment
designed to help the programmer
understand the correspondence
between static program code and
dynamic program execution. Can run
a program in forward and reverse
directions.

Vips

DV

Vips is a visual debugger for list
structures.

Pie

PV

A parallel programming environment
designed for developing
performance-efficient parallel and
sequential computations.

Field

PV

FIELD integrates a wide variety of
UNIX tools into a common framework.
The framework uses ordinary UNIX
tools with graphical user interface
wrappers around them, as well as
new tool to support both
programming and visualization.

Semantic
Zooming

Semantic zooming allows the user to
zoom in/out or focus on a
particular portion of the program
or data set. Unlike a standard
zoom, the presentation style of the
view adjusts at different zoom

levels.

Seesoft

PV

Displays line-oriented source code
statistics by reducing each file
and line into a compact
representation.

Armvls

A visual language algorithm
animator. ARMVLS allows the user
to create images to visually
demonstrate or to assist in the
description of how a computer
algorithm works by means of drawing
and moving images on the screen.

Eliot

AA & DV

Can be used in algorithm design,
visual debugging and learning
programming. Visualizes data
structures as smoothly moving
graphical objects.

Eva

EVA integrates authoring, display
and a control system for the
specification and execution of
visualizations.

Fisheye-view

A strategy that imitates a fish eye
in order to display potentially
huge a structures on one computer
monitor, and all associated
information.

Program
Auralization

The process of forming mental
images of the behavior, structures
and function of a program or
algorithm using sound.

45

4. A VISUALIZATION TOOL FOR JAVA

4.1 MOTIVATION

Software visualization produces a mental picture. A
programmer writes a piece of code, and in the “minds eye” he
or she understands what it does and how it is supposed to
work. Software visualization helps the programmer get a
better understanding what a piece of software is doing by
showing a graphic representation of the code.

The following quote serves as motivation and a goal in
the design and implementation of a visualization tool for
Java.

"A programmer will not use a tool for debugging whose

development time outweighs that to simply debug a program
with traditional text-based methods.” [Mukherjea 1994]

4.2 DESIGN GOAILS

Any tool will not be used if it creates more work than
it saves. Some of the animation packages such as BALSA
(Brown 1988], Tango [Stasko 1990] and Polka [Stasko 1993]
require laboriously hand created animations. This may be

acceptable for an algorithm animation system but not for

46

program visualization. A visualization tool must be simple
to use as well as easily and generically applied if it is to
be useful to a developer.

The primary goal of this thesis is to define a tool
that needs minimal user intervention to create a software
visualization display and which shows both the dynamic and
static behavior of the software being developed. As well,
the visualization system is interactive to promote iterative
design and exploration. Interaction is provided by debugger

technology integrated with the visualization system.

4.2.1 EASY TO USE

A major goal of the system is ease of use. SSV
provides predefined graphical views of the software. The
user is able to simply point and click to see a visual
representation of a generic (Java) program. No programming
is reguired. This is in contrast to systems such as BALSA
[Brown 1988] or Tango [Stasko 1990], which can be source
code level intensive when building animations or using the
system. These systems require user programming to create
algorithm specific animations and views. However, in
defense of these systems, they are designed for algorithm

and not program visualization.

47

All that is required on the part of the user to utilize
the system is use of the mouse or keyboard to interact with
generic predefined views. Also, the user of the system must
compile his or her programs to generate all debugging
information. This debugging information embeds itself
within the Java class file, enabling the debugger part of
the visualizer to read extra information about the source

code.

4.2.2 MULTI-THREADED

The tool supports multi-threaded programs insofar as
parallel programs run under SSV. However, the multi-
threaded nature of the program is not apparent in the visual
display. Nonetheless, the implemented program could easily
be modified to include graphical views of a concurrent

nature.

4.2.3 GENERICALLY APPLICABLE AND SOFTWARE-PROBES

The software-probe approach requires programmers to
insert function calls at various points within a program
which allows interaction with the software visualization

system. Once the bug is found, these procedures must be

48

deleted. However, if another bug is found, programmers must
insert them again and also delete them again after the
debugging is finished. Most programmers have had similar
experiences inserting many output procedures (e.g. “printf”)
into their programs while debugging and then deleting them
afterwards [Koike, 1997]. Also, at the multi-threaded level
of debugging, software probes can affect or change the
outcome of running program. Therefore, no probes are
introduced to existing code in this implementation. It is
the job of the visualizing system to create the interesting
events and generate a visualization. The system does not
change any source code or class files. It only reads them

and generically generates visualizations.

4.2.4 NO CUSTOM ANIMATIONS

The visualization system does not support custom user
animations. Automatic visualization is paramount in this
thesis. In this context, creation of custom animations and
custom views distracts the developer from the goal of
understanding the software. While a system such as Tango
[Stasko 1990] is an algorithm animation system and was built
for a different purpose than our implementation, it is the
extra work of coding or learning of a graphic library that

we wish to avoid in this thesis. Therefore, while these

49

custom views do promote understanding, the time required to
build these views is costly and would be better spent

elsewhere.

4.2.5 INTEGRATED WITH A SYSTEM DEBUGGER

The visualizer is integrated with a system debugger to
promote iterative design and exploration. The user is able
to set breakpoints, animate the program, step through the
program line by line, start or stop the software, as well as
inspect variables.

The idea of integration with a system debugger is
borrowed from the Lens system [Mukherjea 1994]. Lens is a
combination of algorithm animation and a program
visualization system that is built on top of the UNIX
debugger dbx. It is the power the debugger gives to Lens

that we want in this thesis.

4.2.6 ANIMATION

The use of animation in a software visualizer is
extremely important because programs are fundamentally
dynamic. The user is able to start the visualizer, sit back
and watch an animated Text View, a three dimensional

abstract class view, as well as an abstract two dimensional

50

view at the method level of a chosen piece of executing
software.

Animation is included in most modern software
visualizers such as Zeus [Brown 1991)], Lens [Mukherjea
1994], Cat [Brown 1996], as well as SSV. There are benefits
to allow the user of the system to be a passive viewer of a
running visualization system. Software visualization is
highly subjective. What is obvious for one user is not for
another. Therefore by allowing the user to sit back and
watch a movie-~like software visualization, he or she will
gain insight into the software because of the different

perspective.

4.2.7 TEXT VIEW

The text view of the source code is the traditional
text view provided by standard debuggers. The text view has
a cursor or indicator at the beginning of the currently
executing line and updates itself as the program executes.
If the program flow leads to a different file, the text view

switches to reflect the change.

51

4.2.8 CLASS VIEW

The class view is the quintessence of the visualizing
system. It is a three-dimensional representation of a
loaded class. The generic view displays a class by showing
all the methods associated with the class as well as all the
methods of its super class(es). The current class is
displayed closest to the user with a black color, while
subsequent super classes appear further into the screen with
a unigque color. One exception to the way classes are
coloured is the method that is currently executing. This
executing method always glows with a yellow color. For
example in Figure 4.1 the main method in ShapeDriver is
currently executing. Furthermore, methods of different
classes that share the same name, for example “String
toString()”, all appear vertically aligned. See Figure 4.1,

Figure 5.4 and Figure 5.5 for examples of the class view.

52

shapeDriver init()
ShagEDr 298 ,00Ipss 4 Glanig!
shi%%%ﬁf&arﬂh@egﬁﬁgﬁ g;

Shigednimgmbiereatashayalist {Shape)
ShapeDriver createStaticShapelList (Shape)

java.lang.Object equalg(java.lang.Object)
java.lang.Object finalizef)
java.lang.Object get(lass()
. java.lang.Object hashCoda()
RURILYTEST e ioavsolang
java.lang.0bject notify(}
java.lang.Object notifyall ()

ShapeDLL¥ery LARAquEhERa e ives)

java.lang.Object toString(}

iaeDilimerobjectalared)(Shape)
Shggsfﬁang.object wa;txlong! .
java.lang.Object wait (long, int]

S . ie =
A i;' j P

[2= 2o
PRI N PO S

Figure 4.1 Class view of ShapeDriver. Method main is
currently executing.

The idea for the classview is taken from NV3D [NVision
1999]. NV3D uses 3 dimensional boxes and textual labels to
represent classes and methods within the class. NV3D is
able to display a great deal of information. However,
because of the textual label for each method and class, the

box is redundant and therefore is a waste of space since the

53

label of the method provides an adequate object of
representation. Also, the scenes within NV3D can be zoomed
in or out and are highly interactive so our implementation
copies this. See Figure 3.2. However what NV3D is
noticeably lacking is dynamic interaction. It does not
provide run-time information; NV3D provides only static
information based on a database of information about the
program structure.

As interesting and informative as these views are, it
is the addition of animation that makes the wvisualizer truly
powerful. As a program executes, and classes are displayved,
the currently executing method “glows”.

This three dimensional class view gives the user a
different look at the code, hopefully allowing for greater

insight into any relationships or problems.

4.2.9 SEEVIEW

The Seeview is the other major view of the SSV system.
The general idea for the Seeview comes from the Seesoft
system [Eick 1992]. See Figure 3.5. Seesoft interactively
displays line-oriented statistics by colours as iconic views
of a file. It is informative to display an iconic view of
the file as the program executes showing the current line of

execution because it gives a global view of the file. This

54

This global view gives the user a sense of program flow.
Therefore the view is an abstract line oriented view of a
file showing the current line of execution (Figure 4.2).
Like the Method view, the currently executing line of code
glows to indicate it is the current point of execution.

For each line of text within a source code file, there
is a corresponding graphic line. See Figure 4.2 and Figure
S.1. However, figure 4.2 is somewhat misleading because

when Seeview is displayed, each line is only one pixel high.

for(i=0;1<5;i++)
{
Colorindex|i] = 0;
x[i] = 3;
color =i + X]i];
}
X[0] = getColor(idx);

Figure 4.2 Example of line oriented Seeview

55

5. IMPLEMENTATION: FEATURES AND ARCHITECTURE

Steve’s Software Visualizer (SSV) is platform
independent. The Java compiler and interpreter are from the
Java™ 2 SDK Version 1.2.2-001 Standard Edition released by
Sun Microsystems. Sun’s Java™ Platform Debugger
Architecture (JPDA) provides debugging support. Three-
dimensional graphics are provided through a package called

Magician (an OpenGL implementation) released by Arcane

Technologies Ltd.

5.1 THE JAVA DEBUGGER

The Java Debugger, jdb, is a simple command-line
debugger for Java classes. The core of the jdb used in the
SSV implementation is part of a demonstration package of the
JPDA that provides inspection and debugging of a local or
remote Java Virtual Machine. The jdb relies on the Java
Debugging Interface (JDI), which is a high-level Java API
providing information for debuggers and similar systems that

require access to the running state of a virtual machine.

56

The foundations for this implementation are the JDI
package and a debugger that 1s included. The example

debugger includes a working Graphical User Interface.

5.1.1 TERMINOLOGY

- The debuggee is the process or application being

debugged.

- The debugger, or visualizer, is a tool used to view and

step-wise run the debuggee.

5.2 THE SOFTWARE VISUALIZER - SSV

The software visualizer created for this thesis, named
Steve’'s Software Visualizer or SSV, is a fully automated
software visualization tool for Java. See Figure 5.1 for a

sample screen shot.

57

’, ESOUHCES i D doubia veass = @,]373.. - s -
, Derueiaa In:ﬂ T et ShapeDnver java calsavd IBB§~Ub] ect
K D) Rectangte ;32 1 l--lm--o Va3, ieey ; m-igct FICIs ke
§l Dishapesva 1 . prr A A RlE T x iq73. 130GV 11284
1 Doweeorwna GRESTITITNE i ‘] {2, 1am .ch-”‘('%.«xm-smng’
i Deangessva i ’ ! : hapékiygécéé& Jgs égde')
JeEwm [P rorarn waves | 4 S X ey chiect nashCoce:
N k' I R 3 1373, 1306
:gmn" :. " gl re veid RamdemTern(o I k MWI_{I ‘}
:::; ! * Thepell shupelise * new Thopetsi. , E p? 1a%s- g coTilyeilt ’
oD e et . < opt _registriesivesi)
Jyveen. cun_ 25t ng \nlanden = : ™~ o b'gb !"_,q‘ * -
i T ‘ i
o ShapeOne A S I R TR] : mm@mmb
34121 ShapeOmver StancTest 73 G iava.iang.Gbject wait {igEg) :
Jr snapeomer man 10t ‘ ; 'a‘ra targ. ubJECl’. waitiizng, 1at} 4
— i
campletea Mreac="mair", ShageOnver otalArea0, tne=49
cugen resumec. 4
B campleted: threac="main", ShageDiver latalArea(), line=51
Wign resumed. 3
- 0 compieted hreac="mau", ShapeOnver ptaiAreaQ, tne=52 7
B cubon resumed. E
ifSten comptetaa Mreac="maur", ShapeOrvar WLaAreaQ, une=19 E
{fExacubon resumea ¢
g carmpleted threag="mau", ShapeOriver lotalArea(). ine=51 E

cubon resumed
completed: thread="maur", ShapeDrver mtalArea(, bae=52

K cuton resumed.
‘¥Step completed: thread="mair", ShapeDnver talkraaQ, une=49

1[Executon resumed,

| :
i : ; 413____ e _ e

Figure 5.1 Implementation of a software visualizer

1. All available source code - a display of all available
source code.

2. Source code - currently executing Java source code -
highlighted line is currently line of execution.

3. Call stack - shows program control flow.

4. Variable monitor - displays user specified variables and
updates them as the program runs.

5. Message window - displays any system informatiomn.

6. Command prompt - a command line interface to the system
- also available through menu and tool bar.

7. Output window - where System.out.println is displayed.

58

8. Seeview — a line representation of the Java source file.
There is one line for every line of code in the Java
source file. The black line indicates the current line
of execution.

9. Classview - a 3D Class viewer that displays a class and
all of its super-classes.

10. Menu and system buttons - the buttons and menus allow
the user to interact with the system.

SSV displays a three-dimensional representation of a
loaded class, while highlighting the currently executing
method. See the right most windows of Figure 5.1 (labeled
*97) and Figure 4.1. SSV displays the source code of the
loaded class, provided it is available, in two forms:
1) The actual text (see window labeled “2” in Figure
5.1).

2) An abstract view of the entire file from which the
source code originated (see window labeled *“8” in
Figure 5.1).

Operation of SSV requires the debuggee be generated
with all debug information set to be included within the
executable class file. This enables the debugging side of
the visualizer to access the debug information and provide
the unique views. Also, some configuration of SSV is
required. For example the user of the system is expected to
give the CLASSPATH and location of any additional source

code.

59

5.3 SEEVIEW

SSV has a view known as Seeview which displays the
source code of a loaded class, provided it is available, as
a compact representation of the entire file from which the
source code originated. Seeview simultaneously maps lines
of code into thin rows. Each row is coloured light orange,
while the currently executing line is coloured black. See
Figure 5.2 for four examples of loaded classes displayed by
Seeview.

As the visualizer executes, the debuggee program steps
through and executes line-by-line. As each line executes,
Seeview changes to the currently executing file, as well as
updating the black coloured current line indicator.

The user is not involved with or distracted by the
syntax of the code, instead the user sees a “high level”,
syntax free view of the code. This is useful because it
gives the user a global view of the file. A large amount of
source code is displayed and program flow is easily

followed.

PrintStream.java

ClasslLoader.java

= _
P o
[rotoae
—
o e ——
S ——s i i+ = e e e
—_— s e

e

- —
—-———— e ———
e et

L

—— -
—_——
——
——— P

me——
— S—
———— R
= e ——

i s —

— ———eo
—_— ——
o - —

Simple java

Objectjava

Figure 5.2 Four example files displayed using Seeview

60

61

Seeview can also display the actual line of text
represented by the thin rows. The user uses the mouse
pointer and clicks on a line in the Seeview. Instantly the
textview changes showing a highlighted line of text

displaying the source code which the thin line represents.

See Figure 5.3 for an example.

OV RRARAY

public int torvalXYZ()

Simple.java

ST NS AN RRRARN]

» m] revurn = + ¥y + u;

T

Bt

a int ¢ = 10;

m] ine i = 2;

4 m} 3cring name = "Sceve’;
O
o
¥

ASOIXT

AN A X AR AN R R AR
CARIXERTIN

'O,

o

TR

return (x + y +) * c + 2,

-
4

SAALNARRKN]

)

public 3tring toString()

=

O return "Simple”;

SRR

N3

!

]
B
i
=
s
e
Ha
o
3
2

R R L A Foy

FE3

Figure 5.3 Seeview selection of a line

Seeview is particularly useful in helping the user spot
patterns within the code. For example, the execution of a
loop under Seeview is very noticeable. The repeated pattern
of execution of a block of code or the lack of movement of

the current line indicator draws the attention of the user.

62

5.4 CLASSVIEW

SSV has a view known as Classview, which displays the
currently executing class and its inherited hierarchy in a
3-dimensional manner. For example, in Figure 5.4, a class
called Simple is displayed. Simple is derived from
java.lang.object. The methods of simple are displayed in
the foreground, while the methods of object are displayed in
the background. Figure 5.5 shows an example that has three
levels of inheritance. The lowest class is TPrim and is
displayed in front. TPrim inherits from DrawPrim, which is
displayed in the middle, and finally DrawPrim inherits from
java.lang.object, which is displayed furthest from the
viewer.

As the visualizer executes, the debuggee program steps
through and executes line-by-line. As each line executes,
Classview changes to reflect the currently executing class.
If the current class changes, for example, the code steps
into a string output routine, the Classview display changes
to reflect the string class structure. When the string
routines complete and execution returns to a different
class, the Classview display adjusts automatically and

displays the current class.

Jjuszano syl burizss suop ST BuTyybTTybIH -~SseTd 3BY3 UTYITM
poy3sw burinosxs AT3usaand 3yl sS3ybTTUDBTIY OSTEe MITASS®ID

‘sseTo burjinosxs AT3uUsIand syl JFO BANIoNIJIS 3yl sAeTdsTp

MmoTASSETD puer wexboxd sabbngep 3yl s=3noaxa ASS SY

S9TdwTS SSeT> JO MITASSETD ¥°S 2anbtg

(30T ‘Bg0r) 31em

18000 Buey - ear(

{BuoT) 31EM 308Lq0" buey*esef
DATER ClopEny ey e
{} but13g03 @uw@@mmmm_ .mw _ WM
(W1} 7995 97duTg

{) 83AT]ENIBY8THAI

() TT¢A3T300
(1437300

(3UT) BTEIOTYIIAGIAN 33T

adifh HnAp AU

(uT}1988 BTN
(ut)x3ss apdus
399 ({0 bueT * e4El
308(q0" Bue] - esel
303(qo" Buey esnl

-z
nl

{17386 mmﬁm

MWMMH%WW wmwm i mmﬁaa
109 Eo.mqﬂ.gm.s%mmwwm www_m%mmmmmm
e B

i ” g7 91GWES

€9

method to a blinking yellow colour and ensuring that the
method is always visible. This draws the user's attention

to the method. See Figures 5.4 and 5.5.

resit i é(}

s EO) e clinitd)

Tprmhradf a;%ggl% ject]

TFrlffoa ne

prim 3 Eﬁ't yiect)

! ngﬁ% als{Ja“' Jang: 9 Jl chjec
e Jang.bject 90218 Uﬁa o

jor bt flfaql Jeair

-— i ™

Ao L JIE ﬂ?lt Al
i LDrawg‘t;&a;lgl Hsea habgping)

va.lang.0bject notify()
;:va lang. ObjECt notifyall {}

Tprlffbrahﬁﬁﬂ}ﬂ Eﬁt registerNatives ()

TPrer}rahﬁihmw&ij&nﬂ (kostring{)
java.lang.Object wait()
jave.lang.Object wait(long)
java.lang.Objsct wait(long, int)

Figure 5.5 Classview of a class with 3 levels of hierarchy

5.5 TEXTVIEW

SSV has a view known as Textview, which displays the
actual source code of a loaded class if it is available.
The Textview has many uses including highlighting the

current line of execution (which changes as the program

65

runs), indicating breakpoints or displaying different files

and specific lines.

See Figure 5.6.

ARUHY

L

public class 3imple

Simple()
«a

AR KA A R NN LR TN AT N AAR

0
c

B RS BN ATAN AR

public int y
public int s

public int tovalXYZ(}

return x ¥ y + g

Figure 5.6 Textview of an executing piece of code

Simple_java

QAN

RN

R AR AR

66

5.6 ANIMATION

SSV is useful if it helps the user understand the
software. To aid in this recognition process, the ability
to animate SSV is included; where animation is defined as
the automatic and repeated stepping through of source code
while the visualization displays are simultaneously updated.
The period of time a wvisualization can be animated for is
determined by the user. The user can choose any time

period, for example, a thirty second interval.

5.7 ARCHITECTURE

SSV has all the functionality of a debugger, for
example, setting break points, a call stack and evaluation
of variables. SSV also has the software visualization tools
added for this thesis: Seeview, Classview, Textview and
animation. Each is interesting and useful by itself however
when used in combination SSV becomes a powerful
visualization tool. By using the views in combination,
certain aspects of the software can be “visualized” that
would not be possible through traditional text based

debugging methods.

67

SSV is part software visualization tool and part
debugger because the software visualization tools are built
on top of a Java debugger. See figure 5.7 for an

illustration of the architecture.

3D Classview Seeview

Magician Swing Jdb
(OpenGL) {Java) {A command line debugger)

JPDA
(Sun's Java Platform Debugger
Architecture)

Figure 5.7 Basic architecture of SSV

68

6. USER TESTING

A pilot study involving six Acadia University computer
science students was conducted to test the benefits of the
SSV tool. Subjects were given two tasks to perform with
SSV. The first task was relatively simple. The subjects
were asked to determine the hierarchy (both superclass and
descendants) of a class called “Shape”. There are three
possible avenues to find the answer: source code
explorations using the text view, a command line function,
or program stepping. The second task was more challenging.
Subjects were asked to trace through the execution of a
function showing the value of two local variables during
each iteration of a loop and the final return value. The
function is called “totalArea” which is passed a list of
five Shape objects which are a combination of Shape derived
classes called Circle, Triangle and Rectangle. The two
local variables are “total” and “area” which accumulate the
area of the Shapes and report the current Shape’s area
respectively. The subjects were then given a survey to
complete. See Appendix A for details of the tasks and for
the questionnaire. Appendix B contains the individual

responses.

69

6.1 PURPOSE OF THE STUDY

The purpose of the study was to test if SSV gives users
insight to Java source code and the execution of the
compiled byte code. That is, does SSV deliver on the ideals
of its design? For example, does the global view of the
file (Seeview) help the user follow program flow? Or does
the three-dimensional class view help the user understand a
new class? Also, the survey was used to gather general

feedback and comments about the system.

6.2 RESULTS

As a whole the feedback from the gquestionnaire was
positive. In addition there were some valuable and valid
criticisms and suggestions. Overall the system was found to
be useful (Appendix B, 6c), and respondents generally like
using the system (Appendix B, 6a).

The survey has four points of evaluation: 1) learning
to use the system, 2) the screen, 3) using the system, and
4) an overall assessment. On average respondents were
indifferent about learning to use the system (Appendix B,
3). However, individual responses concerning learning to

use the system were either difficult or easy. Responses

70

concerning the screen layout, color, and arrangement of
information were positive (Appendix B, 4). However several
users complained that the source code window font was too
small, or suggested that the window be larger. Responses
concerning using the system (Appendix B, 5), such as the
number of steps per tasks, or remembering how to use the
system are positive.

The overall assessment had mixed scores (Appendix B,
6) . Overall users liked using SSV, but gave it low marks
for ease of use. However, the question “Overall I found SSV
useful” received the highest positive average response of
all survey questions. Despite this, the overall
helpfulness of the line representation of the Java file was
rated low, but not as low as the 3D representation. Yet the
individual responses were either very high or very low.

Comments concerning the system were mixed. Some
respondents liked the line representation but others did
not. Some respondents found the system easy to use, while
one subject wrote, “it wasn’t the most intuitive”. However,
with one exception, most found that the three-dimensional
class hierarchy (Classview) contains too much information.
One subject responded, “the new 3D hierarchy is a good idea,
it just needs a bit of work”. While another wrote, “the 3D

class representation is cool, but.it is too busy”. The

71

comments included, “the 3D class view is bewildering and
intimidating” and “the 3D class hierarchy was frustrating”.
General comments about the SSV system include
improvements to moving, resizing, or toggling of certain
windows. One respondent suggested that keyboard short cuts
would make the system easier to use. Also, several
respondents suggested the system should have source code
search capabilities. Users wanted to be able to search a

single file, all files, or locate a certain class.

6.3 SURVEY CONCLUSIONS

The pilot study was the first pubblic showing of SSV.
Based on user testing, more work is needed on screen layouts
and the three-dimensional class representation before SSV is
ready for general use.

Blackwell [Blackwell, 1996a] presents an assessment of
visualization tools that focuses on the way computer
scientists think that visual programming assists the thought
processes of the programmer, with a list of twelve
categories of possible benefit.

One of Blackwell’'s categories is abstraction, where,
despite agreement that abstraction is an important issue,

the author remarks that some computer scientists believe

72

that pictures are good at showing abstraction, while others
say that abstract data is challenging. This difference of
opinion is shown by our own user testing with clear
separation of abstract usefulness (Appendix B, 6d and 6e).
Cognitive resources is another of Blackwell’s
categories. The author writes, “computer scientists claim
that the human mind is optimized for vision, making shapes
easier to process than words.” However, Petre [Petre, 1993]
presents evidence that learning to read graphics and
“seeing’ an information display is an acquired skill. SSV
is targeted towards those individual who like abstract
representations of their code and after a little training

and practice, SSV could be a useful visualization tool.

73

7. FUTURE WORK

Animated visual displays let the user assimilate
information rapidly and help identify trends and anomalies.
However academia seems to be further ahead than the real
world in software visualization. In [Price, 1993], the
author suggests that “software engineers (and their
employers) have not seen demonstrable gains from using this
technology. It is clear that if SV systems are to make a
contribution to software engineering then solid results
proving their benefits will be necessary.” Hopefully in the
future more companies will find results that lead to
integration of more software visualization tools into their

systems.

7.1 PARALLEL DEBUGGING

Future work on SSV should include true support for
parallel processes. In the current form SSV visualizes a
parallel program but the concurrency is not immediately
apparent. Visualization of all threads and the state of
those threads would be interesting and informative, as well

as any message passing that occurs.

74

7.2 PROFILING

Future work on SSV should include profiling such as
that seen in [De Pauw 1998]. Histograms displaying method
time lengths, method usage or histograms of instances would
be interesting and useful debugging information, as well as

giving insight into program execution.

7.3 IMPROVED CLASS VIEW

Future work on SSV should involve the class view. The
NV3D system can display multiple classes on the screen at
the same time. This multiple display allows the user to
explore and investigate with less screen switching and
therefore a smoother, more pleasant experience. Therefore
adding this ability to SSV would give the user easier access
to information. Multiple classes on the same screen lends
itself nicely to the proposed future addition of parallel
program support.

Based on user testing (Chapter 6), some respondents
felt too much information is currently displayed by the 3D
class view. A possible solution to this problem could be

allowing the user to select the level of detail displayed.

75

The user could be given the choice of displaying only the
current method, or only the current method with any possible
superclass methods the current method is derived from, or
limit the display to a certain number of superclasses or

methods as specified by the user.

7.4 SEARCHING

Search capability for SSV was suggested during user
testing. Allowing searching of source code gives the user
the opportunity to easily satisfy a need for information.
Searching provides information that the user desires, yet
only when he or she requests it, therefore the user is not
overwhelmed with too much information. Consequently

searching would fit nicely into the SSV system.

76

8. CONCLUSION

The building of software has become complex.
Software visualization tools have the potential to make the
meaning of the code more apparent and concrete, while making
the overall structure of the program easier to grasp.

This thesis has created a visualization tool for
Java. This tool helps show the structure of the Java code
with minimal work required by the user. Views are automatic
and effortless allowing the user to concentrate on the
problem and not on creating debugging information. User
testing shows that users like using the system and, overall,
find SSV useful.

The visualization tool has been built on top of a

debugger to promote iterative design and exploration. The
tool is intended to be an add-on to a user’s existing

arsenal of programming tools.

77

APPENDIX A

Task Questions

1. List the class hierarchy for class Shape and its
superclass and its descendants.

2. Trace the execution of totalArea. Show the values of the
local variables “total” and “area” during each iteration of
the for loop. Show the return value of totalArea.

Questionnaire

Identification

Identification Number

Gender
Female Male

Age

Background

University Degree of Study

Current University Year of Study
1 2 3 4

University Level Computer Half Courses (completed or taking)
None
lor2
3 or more

Used on-line debugger software
Yes
No

78

3. Learning to use the system
Learning to use the system was
Difficult1 2 3 4 5 6 7 8 9 Easy

Getting started was
Difficult1 2 3 4 S 6 7 8 9 Easy

Exploration of features by trial and error was
Discouragingl 2 3 4 5 6 7 8 9 Encouraging
4. The Screen

Were the characters on the computer screen
Hardtoreadl 2 3 4 5 6 7 8 9 Easy to read

Was the use of colour helpful
Notatalll 2 34 5 6 7 8 9 Verymuch

Were the screen layouts helpful
Notatalll 2 3 4 5 6 7 8 9 Very much

Was the amount of information displayed
Inadequate 1 2 3 4 5 6 7 8 9 Adequate

Was the arrangement of information
lllogical1 2 3 4 5 6 7 8 9Logical

5. Using the System

Remembering how to use the system was
Difficult1 2 3 4 S 6 7 8 9Easy

Could you do the task in a straight forward manner
Neverl1 2 3 45 6 7 8 9 Always

Number of steps per task was
Toomany 1 2 3 4 5 6 7 8 9 Justright

The steps required to complete a task follow a logical sequence
Notatalll 2 34 5 6 7 8 9 Verymuch

6. Overall Assessment

Overall I liked using Steve’s Software Visualizer
Notatalll 234567 8 9Alot

Overall I found it easy to use
Hardtousel 2 3 4 5 6 7 8 9 Easytouse

Overall I found it useful
Notatalll1 234567 89Alot

Was the line representation of the Java file helpful
Notatalll 234 5 6 7 8 9 Very much

Was the 3D class representation helpful
Notatalll 23456 7 8 9 Very much

80

Comments

How easy was this system to use?

Would you prefer a standard debugger? Yes

No

Why?

Which features did you like?

Which features did you not like?

What features do you wish the system had?

Other comments?

31

APPENDIX B

82

PoINTsS OF EVALUATION

INDIVIDUAL SUBJECT

SCORE*

Subject Number:

1[2]3]4]s5] 6] avyg

3. LEARNING TO USE THE SYSTEM

3a. Learning to use the system was

Difficult = Easy 212|331 2
3b. Getting started was
Difficult < Easy 21| 1[3]3]1f 1.8
3c. Exploration of features by trial and error was sl1]1]3]3l1 2
Discouraging 2 Encouraging
4. THE SCREEN
4a. Were the characters on the computer screen 213l 1l2l2l1] 1.8
Hard to read - Easy to read .
4b. Was the use of colour helpful
Not at all = Very much 33| 1)3(3]3] 2-6
4c. Were the screen layouts helpful
Not at all < Very much 212|113 2)2 2-2
4d. Was the amount of information displayed 3l 3l 1l 3l 2] 2] 2.5
Inadequate < Adequate
4e. Was the arrangement of information
Illogical = Logical 312123313 27
5. USING THE SYSTEM
5a. Remembering how to use the system was
pifficult > Easy || 2| 3] 3|?]|?]| 2-3
5b. Could you do the task in a straight forward
manner 3121i31212] 2.2
Never 2 Always
S5c. Number of steps per task was 3l 2l20313]1] 2.3
Too many »? Just right *
5d. The steps required to complete a task follow a
logical sequence 313] 1133 2.3
Not at all 2 Very much
6. OVERALL ASSESSMENT
6a. Overall I liked using Steve’s Software
Visualizer 3122131311 2.3
Not at all 2 A lot
6b. Overall I found it easy to use af2i1l2l2]1] 1.8
Hard to use 2 Easy to use
6c. Overall I found it useful
Not at all = A lot 313]12]3]3]3]| 2-8
6d. Was the line representation of the Java file
helpful 21 1| 1(313{1| 1.8
Not at all -2 Very much
6e. Was the 3D class representation helpful 21111l213l1] 1.6

Not at all -2 Very much

* Data has been normalized from a subject score between 1 and 9

to a score between 1 and 3, where subject scores of 1, 2 and 3

have been folded into a normalized score of 1, scores of 4, 5 and

6 into 2, and scores of 7, 8 and into 3.

83

BIBLIOGRAPHY

[Baecker 1981] Baecker R., “Sorting Out Sorting,” (£ilm),
Dynamic Graphics Project, University of Toronto, Toronto,
1981.

{Ball 1996] Ball T. and Eick S., “Software visualization in
the large,” Computer, Vol.29, No.4, 1996, pp. 33-43.

[Blackwell 1996a] Blackwell A.F., “Metacognitive theories of
visual programming: What do we think we are doing?”, IEEE
Symposium on Visual Languages, 3-6 September 1996, pp. 240-
246.

[Brown 1984] Brown M.H. and Sedgewick R., “A System for
Algorithm Animation, ” Computer Graphics, July 1984,
pp. 177-186.

[Brown 1988] Brown M.H., “Exploring algorithms using Balsa-
II,” Computer, Vol.21, No.5, 1988, pp. 14-36.

[(Brown 1991] Brown M.H., “Zeus: a system for algorithm
animation and multi-view editing, ” Proceedings of the IEEE

Workshop on Visual Languages. Kobe, Japan, October 1991,
pp. 4-9.

[Brown 1996] Brown M. and Najork M., “Collaborative Active
Textbooks: a Web-Based Algorithm Animation System for an
Electronic Classroom”, Proceedings of the 1996 IEEE
International Symposium on Visual Languages, Boulder, CO,
September 18896, pp. 266-275.

[Bykat 1996] Bykat A., “Visualizing program concepts using
EVA”, Energy Conversion Engineering Conference, 1996. IECEC
96., Proceedings of the 31lst Intersociety, Vol. 1, 1996, pp.
271-276.

[Cox 198%8] Cox P., Giles F., and Pietrzykowski T.,
“Prograph: a step towards liberating programming from
textual conditioning”, IEEE Workshop on Visual Languages,
1989, pp. 150-156.

[De Pauw 1998]De Pauw W., Kimelman D., and Vlissides J.,
“Visualizing Object-Oriented Software Execution,” Software
Visualization — Programming as a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 329-346.

84

[Eick 1992] Eick, S., Steffen, J., and Sumner, E. (Jr),
“Seesoft—A Tool For Visualizing Line Oriented Software
Statistics”, IEEE Transactions on Software Engineering, Vol.
18, No. 11, November 1992, pp. 957-968.

[Francioni 1991] Francioni J., "Debugging parallel programs
using sound, " SIGPLAN Notices, Vol. 26, No. 12, December
1991, pp. 68-75.

[Furnas 1986] Furnas G., “Generalized Fisheye Views, ”
Proceeding of CHI’86, Boston, April 1986, pp. 16-23.

[Gaver 1989] Gaver W., “The Sonic Finder" An Interface That
uses Auditory Icons," Human-Computer Interaction, Vol. 4,
No. 1, Spring 1989, pp. 67-94.

[Kaoike 1997] Kaoike H., Takada T. and Masui, T.,
“VisualLinda: A Framework for Visualizing Parallel Linda

Programs, ” IEEE, 1997, pp. 174 - 178.

[Lahtinen 1998] Lahtinen S., Sutinen E., and Tarhio J.,
"Automated Animation of Algorithms with Eliot, ” Journal of
Visual Languages and Computing, Vol. 9, No. 3, 1998,

pp. 337-349.

[Lange 1997] Lange D. and Nakamura Y., “Object-Oriented
Program tracing and Visualization,” Computer, May 1997,
pp. 63-70.

[Lehr 1989] Lehr T., Segall Z., Vrsalovic D.F., Caplan E.,
Chung A.L., and Fineman C.E., “Visualizing performance
debugging, ” Computer, Vol. 22, No. 10, 1989, pp. 38-51.

[Lieberman 1998] Lieberman H. and Fry C.,

“ZStep 95: A Reversible, Animated Source Code Stepper, ”
Software Visualization - Programming as a Multimedia
Experience, MIT Press, 1998, pp. 277-292.

[NVision 1999] NVision Software Systems Inc. “NV3D for
Visual Studio - User‘s Guide (beta),” 1999.

[Merlini 1999] Merlini D., “A System for Algorithms’
Animation,” IEEE, 1999, pp. 1033-1034.

[Muchaluat 1998] Muchaluat D., Rodrigues R. and Soares L.,
“WWW Fisheye-View Graphical Browser,” IEEE, 1998, pp. 80 -
89.

[Mukherjea 1994] Mukherjea S. and Stasko J., “Toward Visual
Debugging: Integrating Algorithm Animation Capabilities

85

within a Source Level Debugger,” ACM Transactions on
Computer-Human Interaction, Vol. 1, No. 3, September 1994,
pp. 215-244.

[Myers 1988] Myers B.A., Chandhok R. and Sareen A.,
“Automatic data visualization for novice Pascal
programmers, ” Proceedings of the IEEE Workshop on visual
Languages, Pittsburgh, Pennsylvania, 1988, pp.192-198.

[Parker 1998] Parker G., Franck G., and Ware C.,
“Visualization of Large Nested Graphics in 3D: Navigation
and Interaction,” Journal of Visual Languages and Computing,
Vol. 9, No. 3, 1998, pp. 299-317.

[Petre, 1993] Petre M. and Green T.R.G., “Learning to read
graphics: some evidence that ‘'seeing’ an information display
is an acquired skill”, Journal of Visual Languages and
Computing, Vol. 4, No. 1, 1993, pp. 55-70.

[Price 1993] Price B., Baecker R. and Small I., “A
Principled Taxonomy of Software Visualization, ” Journal of
Visual Languages and Computing, Vol. 4, No. 3, 1993,

pp. 211-266.

[sarkar 1994] Sarkar M. and Brown, M., “Graphical Fisheye
Views,” Communications of the ACM, Vol. 37, No 12, Dec 1994,

pp. 73-84.

[Shimomura 1990] Shimomura T. and Isoda S., “VIPS: a visual
debugger for list structures,” Computer Software and
Applications Conference, 1990. COMPSAC 90, Proceedings,
Fourteenth Annual International, 1990, pp. 530-537.

[Stasko 1989] Stasko J.T., “TANGO: a framework and system
for algorithm animation,” IEEE Computer, Vol. 23, No. 9,
1989, 27-39.

[Stasko 1990] Stasko J.T., “Simplifying Algorithm Animation
with TANGO,” IEEE, 1990, pp. 1-6.

[Stasko 1993] Stasko J.T. and Kraemer E., “A Methodology for
Building Application-Specific Visualizations of Parallel
Programs, ” Journal of Parallel and Distributed Computing,
Vol. 18, 1993, pp. 258-264.

86

[Warendorf 1997] Warendorf K., Wen Jing Hsu, and Poh Yeen
Seah, “ARMVLS-atomic reaction model visual language system-a
new way of animating algorithms, * Proceedings of 1997
International Conference on Information, Communications and
Signal Processing, vol.2, 1997, pp. 939-943.

87

FURTHER READING NOT DIRECTLY REFERENCED

[Averbukh 1997] Averbukh V., “Toward Formal Definition of
Conception “Adequacy in Visualization”,” IEEE Proceedings of
VLL’97, September 23-26, 1997 in Capri, Italy, 1997,

pp. 46-47.

[Baecker 1998a] Baecker R., “Sorting Out Sorting: A Case
Study of Software Visualization for Teaching Computer
Science, ” Software Visualization - Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 369-382.

[Baecker 1998b] Baecker R., and Price B., “The Early History
of Software Visualization,” Software Visualization -
Programming as a Multimedia Experience, Cambridge,
Massachusetts, MIT Press, 1998, pp. 29-34.

[Baecker 1998c] Baecker R., and Marcus A., “Printing and
Publishing C Programs, ” Software Visualization - Programming
as a Multimedia Experience, Cambridge, Massachusetts, MIT
Press, 1998, pp. 45-62.

[Bazik 1998] Bazik J., Tamassia R., Reiss S. P. and van Dam
A., “Software Visualization in Teaching at Brown
University,” Software Visualization - Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 383-398.

[Berner 1998] Berner S., Joos S., and Glinz M., “A
Visualization Concept for hierarchical Object Models,” IEEE,
1998, pp. 225-228.

[Blackwell 1996b] Blackwell A.F. and Green T.R.G, “Does
metaphor increase visual languages usability?”, IEEE
Symposium on Visual Languages, 13-16 September 1999, pp.
246-253.

(Brown 1998a] Brown M. H., “A Taxonomy of Algorithm
Animation Displays,” Software Visualization - Programming as
a Multimedia Experience, Cambridge, Massachusetts, MIT
Press, 1998, pp. 35-42.

[Brown 1998b]l Brown M. H., and Hershberger J., “Fundamental
Techniques for Algorithm Animation Displays,” Software
Visualization - Programming as a Multimedia Experience,

Cambridge, Massachusetts, MIT Press, 1998, pp. 81-102.

88

[Brown 1998c] Brown M. H., and Hershberger J., “Program
Auralization, ” Software Visualization - Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 137-144.

[Brown 1998d] Brown M. H., and Najork M. A., “Algorithm
Animation Using Interactive 3D Graphics,” Software

Visualization - Programming as a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 119-136.

[Brown 19%98e] Brown M. H., and Sedgewick R., “Interesting
Events, ” Software Visualization - Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
19988, pp. 155-172.

[Burkwald 1998] Burkwald S., Eick S., Rivard K., and Pyrce

J., “Visualizing Year 2000 Program Changes,” IEEE, 1998,
pp. 13-18.
[Bykat 19961 Bykat A., “Visualizing program concepts using

EVA,” Proceedings of the 31st Intersociety Energy Conversion
Engineering Conference, Vol. 1, 1996, pp. 271-276.

[Chuah 1997] Chuah M., and Eick S., “Glyphs for Software
Visualization,” IEEE, 1997, pp. 183-191.

[Domingue 1998] Domingue J., “Visualizing Knowledge Based
Systems, ” Software Visualization - Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 223-236.

[Eick 1998] Eick S. G., “Maintenance cf Large Systems”
Software Visualization - Programming as a Multimedia
Experience, Cambridge, Massachusetts, MIT Press, 1998, pp.
315-328.

{Eisenstadt 1998] Eisenstadt M., and Brayshaw M., “The Truth
about Prolog Execution, ” Software Visualization -
Programming as a Multimedia Experience, Cambridge,
Massachusetts, MIT Press, 1998, pp. 207-222.

[Franck 1994] Franck G., and Ware C., “Representing Nodes
and Arcs in 3D Networks”, IEEE Conference on Visual
Languages Conference Proceedings, 1994, pp. 189-190.

[Gaver 1991] Gaver W. W., Smith R. B., and O'Shea T.,
“Effective sounds in complex systems: the ARKOLA

89

simulation, * Human Factors In Computing Systems Conference
Proceedings On Reaching Through Technology, 1991, pp. 85-90.

[Gloor 1998a] Gloor P. A., “Animated Algorithms,” Software
Visualization - Programming as a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 409-416.

[Gloor 1998b] Glocor P. A., “User Interface Issues for
Algorithm Animation,” Software Visualization - Programming
as a Multimedia Experience, Cambridge, Massachusetts, MIT
Press, 1998, pp. 145-152.

{(Green 1996] Green T.R.G. and Blackwell A.F., “Thinking
about wvisual programs”, IEE Colloquium on Thinking with
Diagrams (Digest No: 1996/010), 1996, pp. 5/1-5/4.

[Heath 1998] Heath M. T., Malony A. D., and Rover D. T.,
“Visualization for Parallel Performance Evaluation and
Optimization,” Software Visualization — Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 347-366.

[Jackson 1991] Jackson J.A., and Francioni J.M., “Aural
Signatures of Parallel Programs,” Proceedings of the Twenty-
Fifth Hawail International Conference on System Sciences,
1992, vol. 2, 1892, pp. 218-229.

[Javasoft] Javasoft Inc, Home Page, http://java.sun.com

[Jayaraman 1996] Jayaraman B., and Baltus C., “Visualizing
Program Execution,” IEEE, 1996, pp. 30-37.

[Jeffrey 1998] Jeffrey C. L., “Visualizing Graph Models of
Software, " Software Visualization - Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 63-72.

90

[Kimelman 1998] Kimelman D., Rosenburg B.,and Roth T.,
“Wisualization of Dynamics in Real World Software Systems”
Software Visualization — Programming as a Multimedia
Experience, Cambridge, Massachusetts, MIT Press, 1998, pp.

293-314.

[Kraemer 1993] Xraemer E., “The Visualization of Parallel
Systems: An Overview, ” Journal of Parallel and Distributed

Computing, Vol. 18, 1993, pp. 105-117.

[Kraemer 1998] Kraemer E., “Visualizing Concurrent
Programs” Software Visualization - Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,

1998, pp. 237-256.

[Mulholland 1998a] Mulholland P., “A Principled Approach to
the Evaluation of SV: A Case Study in Prolog,” 1998,
pp. 43%8-452.

[Mulholland 1998b] Mulholland P. and Eisenstadt M., “Using
Software to Teach Computer Programming: Past, Present and
Future, ” Software Visualization — Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,

1998, pp. 399-408.

[Noik 1993] Noik E.G., “Exploring large hyperdocuments:
fisheye views of nested networks”, Conference on Hypertext
and Hypermedia, Proceedings of the fifth ACM conference on
Hypertext, Seattle, WA, USA, November 14-18, 1993.

[North 1998] North S., “Visualizing Graph Models of
Software,” Software Visualization - Programming as a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 63-72.

[Osawa 1996] Osawa N., Hisano K., and Yuba T., “A Visual
Performance Debugging System for Parallel Programs,” IEEE
Proceedings of the 29® Annual Hawaii International
Conference on System Sciences, 1996, pp. 300-308.

[Petre 1998] Petre M., Blackwell A., and Green T.,
“Cognitive Questions in Software Visualization,” 1998, pp.

453-480.

[Preece 1994] Preece J., Rogers Y., Sharp H., Benyon D.,
Holland S. and Carey T., Human-Computer Interaction,
Addison-Wesley Publishing Company, 1994.

91

[Price 1998] Price B., Baecker R., and Small I., “An
Introduction to Software Visualization, ” Software
Visualization - Programming as a Multimedia Experience
Cambridge, Massachusetts, MIT Press, 1998, pp. 3-28.

[Reiss 1997] Reiss S.P., “Cacti: a front end for program
visualization, " Proceedings of the IEEE Symposium on
Information Visualization, 1997, pp. 46-49, 120.

[Reiss 1998] Reiss S. P., “Visualization for Software
Engineering -- Programming Environments, ” Software
Visualization — Programming as a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 259-276.

[Roman 1993] Roman G. C., and Cox K., “A Taxonomy of Program
Visualization Systems,” Computer, Vol. 26, No. 12, December
1993, pp.11-24

[Roman 1998] Roman G., “Declarative Visualization,” Software
Visualization - Programming as a Multimedia Experience,
Cambiridge, Massachusetts, MIT Press, 1998, pp. 29-34.

[Seemann 1998] Seemann J., and Gudenberg J. “Visualization
of Differences between Versions of Object- Orlented
Software,” IEEE, 1998, pp. 201-204.

[Stasko 1996a] Stasko J., “Smooth Continuous Animation for
Portraying Algorithms and Processes, ” Software Visualization
— Programming as a Multimedia Experience, Cambridge,
Massachusetts, MIT Press, 1998, pp. 103-118.

[Stasko 1996b] Stasko J., and Muthukumarasamy J.,
“Visualizing Program Executions on Large Data Sets,” Visual
Languages, 1996. Proceedings., IEEE Symposium on , 1996, pp.
166-173.

[Stasko 1998] Stasko J., “Building Software Visualizations
through Direct Manipulation and Demonstration, ” Software
Visualization - Programming as a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 187-204.

[Stasko 1998] Stasko J., and Lawrence A., “Empirically
Assessing Algorithm Animations as Learning Aids, ” Software
Visualization - Programming as a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 419-438.

92

[Storey 1997] Storey M. A. D., Wong K., and Muller H.A.,
“Rigi: A Visualization Environment for Reverse Engineering, ”

Proceedings of the 1997 International Conference on Software
Engineering, 1997, pp. 606 -607.

[Ware 1994a] Ware C., and Franck G., “Evaluating Stereo and
Motion Cues for Visualizing Information Nets in Three
Dimensions”, ACM Transactions on Graphics.

[Ware 1994b] Ware C., and Franck G., “Viewing a Graph in a
Virtual Reality Display is Three Times as Good as a 2D
Diagram”, IEEE Conference on Visual Languages Conference

Proceedings, October 1994, pp. 189-190.

