
SOFTWARE VISUALIZATION TOOLS FOR JAVA

STEPHEN FILSON SAMPÇON

B.Sc., Mount Saint Vincent University, 1995
B-C-S., Acadia U n i v e r s i t y , 1998

Thesis
submitted in partial fulfillment of the requirements for the

Degree of Master of Science (C o r n p u t e r Science)

Acadia University
August 2000

O Copyright by STEPHEN F I L S O N SAMPSON, 2 0 0 0

National Library Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellingtm Street 395, rue Wellingtan
Ottawa ON K1A O N 4 Ottawa ON K1A ON4
Canada Canada

Your fi& Votre réference

Our Ne Notre rdldwnce

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des exmtraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Table Contents

1 . INTRODUCTION ..*... 1

2 . AN OVERVIEW OF SOFïWARJ3 VISUALIZATION ... 3

2.1 DEFINITION OF SOFIWARE VISUALIZATION ... 3
.. 2.2 PROGRAM VISUALIZATION 3
.. 2.3 ALGORITHM VISUALIZATION 3

.. 2.4 ALGORlTHM ANIMATION 4
2-5 PROGRAM ALJRALIZATION ... 5

... 2.6 VISUAL PROGRAMMING 5
.. 2.7 B R E F EVOLUTION OF MODERN SOFTWARE VISUALIZATION 6

... 2.8 JAVA 7

.. . 3 SURVEY OF VISUALIZATION WORK 8

3-1 SEE .. 9
3 2 POLKA .. 10
3.3 BALSA and BALSA-II ... 12
3.4 TANGO ... 14
3.5 LENS .. 15
3.6 ZEUS ... 16
3.7 NV3D ... 18
3.8 AMETHYST ... 20
3.9 CAT ... 21
3.18 PROGRAM EXPLORER .. 23
3.1 1 VISUALMDA .. 25
3.12 ZSTEP 95 .. 26
3.13 VIPS .. 27
3.14 PIE .. 28

.. 3.15 FIELD 29
3.16 LARGE DATA SETS AND SEMANTIC ZOOMING .. 31
3.17 SEESOET .. 32
3.18 PLRMVLS .. 35
3.19 ELIOT ... 36
3.20 EVA ... 37

... 3.21 FISHEYE-VIEW 35
3 . 22 PROGRAM AURALIZATION .. 40
3.23 SURVEY SUMMARY ... 42

4 . A VISUALIZATION TOOL FOR JAVA ... 45

.. 4.1 MOTNATION 45
.. 4.2 DESIGN GOALS 45

4.2.1 EASY TO USE ... 46
... 4.2.2 MULTI-THREADED 47

4.2.3 GENERICALLY APPLICABLE AND SOFIWARE-PROBES 47
... 4.2.4 NO CUSTOM ANIMATIONS 48

... 4.2.5 MTEGRATED WIW A SYSTEM DEBUGGER 49
4.2.6 ANIMATION ... 49
4-27 TEXT VIEW .. 50
4.2.8 CLASS VZEW 51

.. 4.2.9 SEEVIEW 53

5 . IMPLEMENTATION: FEATURES AND ARCHITECTURE .. 55

5.1 THE JAVA DEBUGGER ,... .. 55
5.1.1 TERMINOLOGY .. 56
5.2 THE SOFIWARE VISUALIZER - SSV ... 56
5.3 SEEVLEW ... 59

5.4 CLASSVIEW .. 62
5.5 TEXTViEW .. 65
5.6 ANIMATION .. 66
5-7 ARCHITECI'URE ... 66

... 6 USER TESTING ., 68

6.1 PCTRPOSE OF TWE STUDY .. 69
6.2 RESULTS .. 69
6.3 SURVEY CONCLUSIONS .. 71

.. 6.1 PARALLEL DEBUGGING 73
6.2 PROFIWNG .. 74

... 6.3 IMPROVED CLASS V E W 74
6.4 SEARCHiNG ... 75

. 7 CONCLUSION ., 76

.................................. O APPENDE B USER QUESTIONNAIRE RESULTS ...,,,.......... 82

................................... FURTHER RIEADING NOT DIRECTLY REF'ERENCED ,. 87

List of ~ i g u r e s

.... Figure 3 . 1 POLKA animation of towers of Hanoi,.. .., 11

Figure 3 . 2 NV3D .. 19

.. Figure 3 . 3 CAT 22

... Figure 3 . 4 Program Explorer 24

Figure 3 . 5 Seesof t- .. 3 4

........................... Figure 3 . 6 Normal Network, Fisheye-View Networ k. 39

... Figure 4 . 1 Class view of ShapeDriver 52

.................. Figure 4.2 Exampie of line oriented Seeview ,., 54

..................... Figure 5 -1 Implementation of a software visualizer 57

Figure 5.2 Four example files displayed through by SSV 60

Figure 5 . 3 Seeview selection of a line ... 61

........................ Figure 5 . 4 Classview of class Simple 63

Figure 5.5 Classview of a class with 3 level of hierarchy64

........................ Figure 5.6 Textview of an executing piece of code 65

Figure 5 . 7 Basic architecture of SSV ... 67

vii

Software Visualization Tools for Java

Abstract

The field of software visualization exists to

facilitate both the human understanding and effective use of

computer software. This thesis surveys over twenty modem

software visualization systems to acquire information about

the current state of software visualization systems. This

knowledge is then used in the design and implementation of a

new system called Steve's Software Visualizer (SSV) .

SSV is a program visualizer. SSV has al1 the

functionality of a debugger, for example, setting break

points, a cal1 stack and evaluation of variables. SSV also

uses generic software visualization tools: Seeview,

Classview, Textview. These tools cari be operated

interactively by the user, or viewed passively as an

animation. By using al1 three views in combination, certain

aspects of the software can be "visualized". This is not

possible through traditional text based debugging methods.

1. INTRODUCTION

Modern software visualization began in the early 1980's

with the introduction of the bit-rnapped display and window

interface technology [Price 19931. Graphical workstations

allowed researchers to create systems for visually exploring

graphical representations of software. For the first time,

dynamic, as opposed to static, representations of software

and data structure were available allowing researchers to

better understand and see the structure of their programs.

Software is generally created using textual symbols to

signify data and operatioris, These representations, known

as source code, are translated into a form the computer can

understand. Software visualization tools, such as the one

built for this thesis, put the source code in a form that a

programmer can better understand by displaying the structure

and true dynamic nature of the program.

Currently most source code is created, edited, and

displayed £rom within an integrated development environment

(IDE). Modem IDES have the ability to maintain an enormous

amount of source code and text that must be analyzed to

detemine what the symbols represent. The use of a software

visualization tool makes the meaning of the code more

apparent and concrete, while making the overall structure of

the program easier to grasp.

This thesis describes a software visualization tool for

Java, named Steve's Software Visualizer or SSV. The

visualizer has the functionality of a debugger as well as

having two new software visualization tools. The debugger

allows setting of break points and evaluation of variables,

while the software visualizer displays program structure

using graphical visualizations. Also, SSV is able to

animate and step through a running program free of user

interaction.

The remainder of this thesis is organized as follows-

Chapter 2 presents an overview of software visualization.

Chapter 3 reviews various related research and applications.

Chapter 4 presents a proposed visualization tool for Java

called Steve's Software Visualizer (SSV) . Chapter 5 presents

an implementation of this proposed tool. Chapter 6 presents

proposed future work on the visualization tool. Chapter 7

summarizes the results of user testing of the SSV system.

Chapter 8 is the conclusion of the thesis.

2, AN OVERVIEW OF S O M A R E VISUALIZATION

2.1 DEFINITION OF SOFTWARE VISUALIZATION

Software Visualization is the use of the crafts of

typography, graphic design, animation, and cinematography

with modem human-cornputer interaction and computer-

graphics technology to facilitate both the human

understanding and effective use O£ computer software [Price

19981 .

2.2 PROGRAM VISUALIZATION

Program visualization is the visualization O£ actual

program code or data structures in either static or dynamic

form [Price 19981. This thesis primarily deals with this

branch of Software Visualization. NV3D is an example of a

program visualization system [Parker 19981.

2.3 ALGORITHM VISUALIZATION

Algorithm visualization is the visualization of the

higher-level abstractions which describe software [Price

19981. Algorithm visualization deals with showing an

abstract representation of an algorithm. Visualizations

usually show the data and the effect on that data as the

algorithrn m s . It is high level in its representation of

the algorith, but at a lower level in that it shows only a

specific aspect of a program. Algorithm visualization use

is primarily in teaching environments. However several

applications exist for experienced programmers. Generally

rnuch work is required to create algorithm animations or

abstract views because a generic view can not be used for

al1 algorithms.

2.4 ALGORITHM ANIMATION

Algorithm animation is dynamic algorithm visualization

[Price 19981 . It is any mechanism which presents the

running of an algorithm as a rnovie where the visual

representation of objects of the program smoothly change

their location and appearance, according to a script

determined by the algorithm [Lahtinen 19981. The algorithm

visualization is created and then put into motion based on

time or events within the algorithm. The algorithrn

animation is o£ten similaw to watching a cartoon- BALSA is

an example of an algorithrn animation system [Brown, 19841.

2 . 5 PROGIUW AURALIZATION

Program auralization is the use of sound to assist in

the formation of mental images of the behavior, structure

and function of a program or algorithm. Sound is used

instead of painting an abstract picture with the

arrangements of pixels and colour on the computer monitor

[Francioni 19911. Different tones, pitches

represent events within a program. Program

traditionally used in combination

computer graphics. An example of

SonicFinder [Gaver, 1989 3 .

with

such

and volumes

auralization is

visual displays

a system is the

Visual programming is a field of software

visualization. It is a type of programming, which uses

graphical objects to build software [Price 19981. The

visualization is built first, and then the executable code

is derived from the abstraction. Either source code is

derived £rom the representation and then compiled, or the

graphical representation is compiled directly with no

generation of textual source code. An example system is

Prograph [Cox 1989 1 .

2.7 BRIEF EVOLUTION OF MODERN SOFTWARE VISUALIZATION

The first major work of modem software visualization

research was in 1981 [Baecker, 19811 . The work was a 3 0 -

minute, narrated, colour motion picture displaying how nine

different sorting algorithms manipulate their data, entitled

"Sorting Out Sorting". In 1984, the most well known and

important early interactive system, BALSA [Brown, 19841 , was

amounced. This was followed by BALSA-II [Brown, 19881.

BALSA is an algorithm animation syst~m that allows the user

to create real-time simulations of programs (as opposed to

movies) using high-resolution graphics. BALSA'S interactive

capabilities inspired the development of many other systems.

During this same era, Myers [Myers 19881 carried out

pioneering work in automatic data visualization, which

integrated debugging capabilities with software

visualization tools.

In the early 1990rs, more research was done on

algorithm animation systems such as TANGO [Sasko, 19901,

Zeus [Brown, 19911 and the LENS system [Mukherjea, 19941.

In the late 1990rs, research has focused on parallel

programs because software visualization lends itself nicely

to the complexity of parallel programs. Systems such as

VisuaLinda [Kaoike, 1997] , or Program Explorer [Lange, 19971

are examples of parallel visualizers- Other recent work

includes the development of interactive software

visualization environments for teaching [Merlini, 19991, as

well as commercial applications for viewing class structure

and interactions [NVision, 19991 .

2 - 8 JAVA

Java, is an object-oriented progrdng lang-uage released by

Sun Microsystems, Inc. The Java software development kit

was originally released with a comand line interface.

However, many integrated development environrnents for Java

have been developed since. M a n y IDE support the addition or

CO-existence of third party tools. This thesis introduces a

tool for representing abstract automatic program

visualization for Java.

This chapter reviews twenty-two software visualization

applications and related research. This previous work is

reviewed to help understand the current state of software

visualization and to apply that information to the creation

of a new system which contributes to the understanding of

software.

In the chapter, three concepts are reviewed: the

f isheye-view, program auralization, and semantic zooming .

Al1 of these can be applied to both algorithm animation or

program visualization systems. Six algorithm animation

systems are reviewed: BALSA, Tango, Zeus, CAT, ARMVLS and

EVA. The Eliot system can be classified as both an

algorithm animation system and a data visualization system,

whereas Lens is both algorithm animation and program

visualization system. Nine program visualization systems

are reviewed: See, Polka, NV3D, Program Explorer,

Visualinda, ZStep 95, Pie, Field, and SeeSoft. As well as

two data visualization systems: AMETHYST and VIPS.

Before the survey begins, three terms must be made

clear: user, animator, and programmer. A user is a person

who uses visualization, or a visualization package, to

better understand and visualize a particular piece of

software- An animator is a person who builds the software

visualization for the user. However, the animator role may

be further subdivided into scriptwriter, algorithm designer,

graphics programmer, etc., which differ £rom system to

system. For that reason, and for the sake of clarity and

simplicity, a person who builds visualizations will be

henceforth known as an animator. The word programmer can

be applied to both the user and animator, depending on the

context or current role of the individual. Therefore, when

the word programmer is used in this thesis, it will be made

clear which role is being played.

3.1 SEE

Baecker developed the SEE visual compiler [Baecker

19981 as an aid to communicating information about programs

and comprehension of programs by paying attention to the

visual schema embodying the program and the visual

appearance of programs. Baecker believes the presentation

of program source text rnatters and that effective program

presentation portrays program structure, helping the user

deal with its complexity.

SEE is a prototype that uses graphic design principles

to create a project manual. SEE takes unmodified C source

text as input, and produces high quality typeset

presentations on a laser printer. This output includes

headers, footnotes, metadata, different indices, fonts and

annotations. This automated program presentation is

intended to produce a significantly better program

presentation. The compiler is heavily parameterized to

allow the customization of text display to suit individual

tas te.

A drawback of a system such as SEE is that the project

manual that is created is out of date as soon as any changes

are made to the project. For large projects that are

modified daily, persona1 experience has shown that an

updated manual is rarely available because of the time and

expense of creating the manual. Also there is a great waste

of paper that occurs because the manual will be out of date

again as soon as the source code changes. However, once a

project is complete, a comprehensive manual is invaluable.

SSV addresses this downside by reading the current

files directly and giving an on-line representation of the

code. Therefore, the reporting of information is always

current .

POLKA

Stasko and Kraemer [Stasko 1993] developed a

visualization methodology to address requirements for

application-specific viewing of parallel programs. The

methodology is called POLKA (Parallel program-focused

Object-oriented Low Key Animation) and it is an object-

oriented basis of visualization and animation that includes

high-level graphical object and motion primitives.

Figure 3.1 POLKA animation of towers of Hanoi

POLKA is a general-purpose animation system that is

particularly well suited to building animations of programs,

algorithms and computations, especially parallel

computations. POLKA supports colour, real-time, 2

dimensional, smooth animations. The focus of the system is

on a balance of power and ease-of-use. POLKA provides its

own high-level abstractions to make the creation of

animations easier and £aster than with m a n y other systems.

Programmers need not be graphics experts to develop their

own animations. POLKA also includes an interactive front-

end called SAMBA that can be used to generate animations

£rom any type of program that can generate ASCII text.

3.3 BALSA and BALSA-II

The Brown University Algorithm Simulator and Animator

(BALSA) [Brown, 19841 and its descendant BALSA-II [Brown,

19881 were among the first interactive algorithm animation

systems. BALSA creates real-time simulations of programs

(as opposed to movies) using high-resolution graphics [Brown

19841. A n animator interactively creates a simulation

through the BALSA interface. The user simply initiates the

desired simulation and interacts with or watches the

simulation. "Essentially, BALSA may be thought of as a

laboratory for experimentation with dynamic real-time

representations of algorithrns" [Brown, 19841 .

From the user perspective, he or she selects an

algorithm £rom the pull d o m menu. Users are able to start

and stop execution, as well as select different views for

the algorithm. Brown states, "A fundamental thesis of an

algorithm animation system is that a single view of an

algorithm or data structure does not tell a complete story"

[Brown 19881. Therefore the user is able to select

different view, such as point or bar displays.

BALSA is noteworthy for two capabilities.

1) Interpretive runtime system - which allows a user to

start, stop, or even run a simulation backwards. 2) Cornmand

shell - which allows a user to Save, restore or invoke

scripts on the current executing algorithm simulation. The

greatest drawback of B X S A , which Brown admits, is the

overhead required to build a visualization.

To animate an algorithm, the algorithrn is annotated

with "interesting events" that identify its fundamental

operations that are to be displayed. Interesting events are

triggers that are placed within the algorithm that lead to

changes in the image being displayed. m e n an algorithm is

run under BALSA, an interesting event is fired which

instructs the graphics package to change the image.

Brown admits the learning curve for a BALSA programmer

is probably a bit steeper than that of other algorithm

animation system, however the extra effort seems defensible

given Balsa's facilities for manipulating program displays

and execution, and for scripting.

SSV strongly addresses the issue of the learning curve.

Al1 that is necessary to use the SSV system is the operator

of the system must compile his or her programs to generate

al1 debugging information. Then the user simply utilizes

the mouse and the keyboard to interact with SSV.

3 - 4 TANGO

Tango [Stasko 19901 is a popular framework and system

for algorithm animation. Tango was designed to pxovide a

clean, powerful, and flexible algorithm animation system

with formal models and precise semantics. Tango makes

iterative design easier by separating program abstraction

from animation design and making animation actions easily

and directly accessible. Using Tango, a programmer can

create a new animation in a few hours or days rather than

m a n y days or weeks.

To produce an animation with Tango, an animator must

annotate the program with the necessary algorithm

operations. Animation scenes to implement the animation

actions must be designed by assembling collections of image,

location, path, transition and association operations-

Finally a control Eile must be created to specify the

mapping £rom the algorithm operations to the animation

scenes .

TANGO'S most outstanding feature is its ability to

produce gath-transition paxadigm animations. That is,

animations that use smooth transitions instead of

instantaneous swaps. For example, in a sorting algorithm

visualization, instead of two elements instantaneously

swapping, the objects of the sort physically move along

their own path, pixel by pixel, until the objects have

traded places.

SSV does not support path-transition. While the

paradigm is sound, it is more appropriate at the algorithm

level and not at the class or program level which SSV

targets .
The largest drawback of Tango is the time it takes to

create animations. SSV addresses this by providing generic

views instead of requiring the user to create his or her own

views .

3 - 5 LENS

Lens [Mukherjea 19941 is a combination of algorithm

animation and program visualization systems. Lens has the

capability to build and display animator created simulations

and has the ability to automatically display data

structures. Lens is implemented on top of UNIX, the X

Window System, the XTango animation system, and the debugger

dbx. This integration with a system debugger promotes

iterative design and exploration. There are capabilities

for setting break points, and viewing variable values.

Interacting with the system creates animations, and some

coding is needed, but the amount of work required by the

animator to achieve a visualization is less than coding an

animation £rom scratch, which is most corrimon with algorithm

animation.

The purpose of the Lens system is to bridge the two

domains of program visualization and algorithm animation.

Lens can provide application-specific animation views for

debugging purposes. Programmers are encouraged to design

animations, but should not be troubled by learning a

graphics toolkit and writing code to use it.

SSV follows the design of the Lens system in that it is

implemented on top of a debugger. The ability to set a

break point and then proceed with self-exploration is

critical in learning a new piece of software.

3.6 ZEUS

Zeus [Brown 19911 is noteworthy for its use of objects,

strong typing, parallelism, and gxaphical development of

views. It was one of the first visualization systems to use

sound and colour in algorithm animation,

From the user's perspective, invoking the Zeus

application opens a control panel on the screen. The

control panel provides the user with configuration and

interpretive facilities, The configuration facilities allow

the user to select which algorithm to m, which view is to

be used and the data for the algorithm. The interpretive

facilities allow starting, stopping, and single-stepping an

algori thm -

To a programmer, Zeus is a framework for associating

multiple client-defined views with a set of client-defined

events- Zeus is a set of classes written in a in-house

dialect of Modula-2.

Zeus does not have any sophisticated graphies, or

specially built graphical editors, but it does allow the

algorithm animator to gra~hically demonstrate how an

instance of an object used by a view should look.

Brown states in [Brown 19911 that "constructing

animations in Zeus appears to be as easy and straightforward

as iri, any other algorithm animation system".

Zeus can generate some utility views automatically

based on a set of interesting events that an algorithm

generates. Frorn the user's perspective, Zeus is similar to

other algorithm animation systems in that an animator is

needed to create visualizations, while a user simply runs

and interacts with the animator's creation. The animator

must associate a set of interesting events with multiple

graphical views.

NestedVision3D (NV3D) is a system for visualizing large

nested graphs using interactive 3D graphics [Parker 19981.

NV3D is available commercially and in different flavors.

The version of interest to this thesis is the object-

oriented software-visualizing package, which does program or

class visualizations. Nodes in the graphs represent

entities, such as methods, modules, or objects, while arcs

represent relationships between entities, such as

inheritance, or usage.

NV3D uses 3D representation, rapid navigation

techniques and nested graphs to help visualize the software.

A user is able to see as much or as little information as

desired by rotating, zooming, expanding or minimizing nodes.

A single class, for example X, can be selected and explored

alone (Le. X is the only class on the screen) or class X

can be viewed and explored in relation to al1 or some of the

other classes.

An iriteresting feature of a different version of NV3D

[Parker 19981 is the "snake" . D y n a m i c behavior is shown as

a snake, which is animated and travels from one end of an

arc to the other.

Figure 3.2 NV3D

As mentioned above, NV3D provides generic class and

program views. Animators and programmers are not needed and

therefore NV3D provides no programming or view editing

capabilities, The generic views provide a common interface

for al1 classes and prograrns that are viewed with NV3D.

This common interface promotes familiarity between different

programs being visualized and therefore lowers the learning

curve when compared to other systems with custom views for

each new algorithm, class or program. SSV attempts to

capture the essence of NV3D by using generic 3D class views.

Amethyst [Myers 19881 stands for - A MacGNome -

(programming) - Environment - That - Helps - You - See - Types.

Amethyst was designed for use in an instructional

environment to help the students visualize and understand

data structures. Therefore Amethyst is designed with

students in mind and is easy to use. The representations

Amethyst creates are similar to those found in popular data

structure textbooks and are created automatically with no

animator or progrdng required. However programming

facilities exist to create advanced, custom views.

The primary focus of Amethyst is to provide appropriate

displays of data structures automatically. These views are

updated continuously, so the user never sees an inconsistent

view of the data. Users can display a graphical view of the

data simply by selecting a variable in the program text and

issuing the "Show Value" command £rom a menu-

The visualizations are integrated into an advanced

programming environment that provides a structure editor

interface, which automatically inserts the appropriate

syntax when the user specifies the type of program structure

desired. The integrated system also provides multiple views

of the program being edited, such as an outline view, run-

time cal1 stack, two different tree-structured decomposition

views, and the standard linear program views. A user is

also able to set breakpoints.

Amethyst is a mode1 for SSV. Amethyst provides ease of

use and automatic data visualization, while SSV is easy to

use and provides automatic class in£ormation.

3.9 CAT

CAT [Brown 19961, short for Collaborative Active

Textbooks, is a web-based algorithm animation system for an

electronic classroorn- CAT is a collection of web pages that

contain text and passive multktedia as well as 'active

objects" (which are like Java applets). The system can be

active, so that a reader can interact with parts of the

textbook or the system can be collaborative in that a group

of people, such as a teacher and a set of students in an

"electronic classroom" setting can share a cornmon

interactive experience. The instructor can control the

animation for all, or the students can run their own.

Figure 3 . 3 CAT

The algorithm and the views are implemented in Obliq,

which is an interpreted object-oriented language. CAT runs

through a browser which is capable of displaying multiple,

simultaneously animated views of an algorithm.

Cat follows the BALSA approach: strategically important

points of an algorithm are annotated with procedure calls

that generate "interesting events". The interesting events

are then passed to each view that responds to the event by

drawing appropriate images.

3.10 PROG- EXPLORER

Progwam Explorer [Lange 19971 is a tool to reduce the

amount of information presented to a debugging programmer,

and is also as an aid to i m p r o v i n g a programmerf s

understanding of the system of interest. Program Explorer

reduces the amount of information by merging, pruning or

slicing away information. This allows the user to

concentrate on only relevant information. Once the data is

obtained, Program Explorer has a very advanced visualization

display and interface that allows the user to interact with

the system.

Program Explorer is very interactive and powerful with

m a n y low-level data collection features. It i s based on

IBM's xlC compiler and uses IBMrs Heapview Debugger to

monitor objects.

Figure 3.4 Program Explorer

Program Explorer reduces the amount of information

presented to a user. SSV was designed to be simple, yet

powerful. However, during user testing (see chapter 7)

users complained there was too much information presented in

the 3D class view. Future work will strive to include

reduction facilities such as those found in Program

Explorer.

3.11 VISUALINDA

The VisuaLinda system [Kaoike 19971 is an integration of

a Linda serrer and a visualizer of parallel Linda programs.

The visualization module is built in the Linda server,

therefore programmers do not need to put additional

visualization primitives (i-e. indicate "interesting

events") in their client programs in order to visualize

behavior. This integration helps the programmer debug

parallel Linda programs by minimizing the "probe ef f ect , "

which is one of the main concerns in monitoring parallel

programs. Also, VisuaLinda uses automatic three-dimensional

views to display the relationship between the Linda server

and the client programs, as well as the execution of client

programs .
VisualLinda was designed so programmers can find a bug

simply by seeing the visualized output. Programmers can

observe inter-process cornunications as well as other

information to see when an error occurs. The framework can

also display each processts state in addition to an overview

of program execution.

SSV does not use probes similar to VisuaLinda.

Laboriously adding "interesting events" and then removing

them once a bug is found is not efficient. This is

especially significant if a similar bug is found and the

events have to be re-entered.

3.12 ZSTEP 95

ZStep 95 [Lieberman 19981 is a program-debugging

environment designed to help the programmer understand the

correspondence between static program code and dyna-mit

program execution. ZStep 95 was designed to support the

problem-solving methodology of matching the expectations of

a programmer concerning the behaviow of code to the actual

behavior of the code.

ZStep 95 is notable for its animated view of program

execution using the very same display used to edit the

source code, one-click access £rom graphical objects to the

code that drew them and as well as one-click access £rom

expressions in the code to their values and graphical

output. However, ZStep 95's most interesting feature is its

ability to incrementally generate a complete history of

program execution and output. With this history, ZStep 95

has the ability to run a program in forward and reverse

directions while controlling the speed and level of detail

displayed. This reversible control structure allows the

user to temporarily ignore the details of a particular

expression, however if the need presents itself, ZStep cari

be backed up to look at the details.

The reversible control structure also effectively handles

the common software visualization pxobl~m of too much

detail. Using ZStep, a user can quickly skim over code

until an error or bug occurs. Once found the user can back

up slightly and explore in more detail potential trouble

spots in the code,

3 -13 VIPS

VIPS [Shimomura, 19901 is a visual debugger for list

structures. It makes use of the Sun Microsystems dbx

debugger to help visualize the execution of programs written

in the C language, VIPS implements a multiple window/view

mechanism to realize such facilities as: (1) displaying the

control flow in both the program text and a module structure

chart, (2) displaying the cal1 stack as graphical objects,

and (3) displaying data structures as images which represent

data semantics.

The VIPS system (version 2) , unlike earlier versions of

the same system, can acquire data type information necessary

£or automatic display of data structures. However, the only

constructs VIPS can display are list structures because the

authors thought that list structures are the most difficult

type of data structure to debug. VIPS displays these

structures as rectangles containing text and arrows pointing

from one rectangle to the next.

Debugging is further aided through the use of multiple

windows displaying program information such as a monitor,

program-text, list, input-output, editor, variable display

and stack display windows. As well, m a n y different views of

the list are available such as whole or partial l is ts ,

element display and opening multiple views of the same list

from different aspects.

Unlike VIPS, SSV does not do any data visualizations.

However like VIPS, SSV has multiple views of the source code

£rom different aspects. This gives the user the same

information, but with a different presentation.

3.14 PIE

The Parallel Programming and Instrumentation Environment

(P I E) [Lehr 19891 is a parallel programming environment

designed for developing performance-efficient parallel and

sequential computations. PIE provides programmers ways to

observe how computations execute by making use of special

development and runtime visualization tools. These tools

allow for automatic assistance for visually projecting

performance data onto prograrruning constructs. For example,

a user c m indicate, through the use of a gxaphical

representation of the code, where the operations that

enforce mutual exclusion occur, The system then

automatically observes the execution by using multiple forms

of instrumentation to gather statistical information. PIE

presents the performance information irr a variety of ways,

including graphical representations of program constructs

showing the progression of each process, histograms of

process activity and event tirnelines.

PIE is designed to be an environment that presents

information it retrieves about computations in forms that

assist users in rnaking their o m qualitative judgements

about how their computations behave. The framework helps

develop techniques to predict, detect, and avoid performance

degradation. PIE supports languages such as C r MPC, C-

threads, Ada and Fortran.

It is the hope that SSV, like PIE, will assist users in

rnaking their own cpalitative judgements about new source

code

3.15 FIELD

FIELD, the Friendly Integrated Environment for Learning

Development was created in an attempt to use workstations

effectively for UNIX-based programming [Reiss 19971. FIELD

integrates a wide variety of UNIX tools into a cornmon

framework. This framework uses ordinary UNIX tools with

graphical user interface wrappers around them, as well as

new tools to support both programming and program

visualization- Ail these tools are co~ected by way of a

message passing system comected to a database of program

information

The UNIX tools in FIELD include configuration management

(make), version control (rcs), as well as profiling tools.

The visualization tools include a text editor that is

augmented with a window that has clickable descriptive icons

that give additional information. Other tools include

graphical versions of a cal1 graph browser, a class

hierarchy browser, a data structure viewer, and a make

dependency browser .
FIELD has a wide variety of visualizations for different

applications- FIELD is able to show visualizations that

represent the static structure of a system, and

visuaiizations to show a system in action. FIELD

effectively displays this information using limited screen

space to display the large quantities of information

inherent to a programming environment.

Unlike FIELD which has multiple, wesizable, independent

windows, SSV is designed as a single window application,

which has multiple views of the program contained within the

main window. SSV would benefit £rom a design similar to

FIELD allowing better screen allocation and easier addition

of new views.

3.16 LARGE DATA SETS AND SEMANTIC ZOOMING

One of the key open problems in software visualization is

that most software visualizations are of srnaller,

laboratory-created programs [Stasko 19961 . That is,

software visualizations do not scale up well, and they

poorly portray large systems or program executions on large

data sets. One proposed solution is the concept of semantic

zooming. In brie£, semantic zooming allows the user to zoom

in/out or focus on a particular portion of the program or

data set. Unlike a standard zoom, the presentation style of

the view adjusts at the different zoom levels.

In the context of software visualization, [Stasko 19961

defines semantic zooming as follows:

Al1 visualizations begin showing a view of the entire
data set of the program, usually at an abstract level due
to the data size

At some level, al1 of the program data should be visible
without falling back on the use of scrolling and panning.
That is, the presentation of al1 program data should fit
within one window. -

Viewers interact with a view and zoom in on a portion of
the pxogram data by interactively selecting a graphical
object representing that portion of the data.

*O Different zoom levels or perspectives on the program data
are show either in the same window or in separate
windows -

me At the lowest, most detailed view level, the
visualizations should use recognized algorithm animations
or program visualization presentation styles.

mm Al1 views update concurrently and always portray the
current state of the prograrn execution.

Stasko presents helpful and useful ideas for dealing with

large amounts of information. In the design of SSV, some of

Stasko's principles of semantic zooming were adopted with

slight modification. For example all views update

concurrently, zooming is possible, but sometimes the program

image does not fit in one window therefore scrolling the

image is necessary.

3.17 SEESOFT

The SeeSoft [Eick 19921 visualization tool displays line-

oriented source code statistics by reducing each file and

line into a compact representation. SeeSoft displays

statistics using a rectangle to represent each file and

coloured rows within the rectangle to represent the

statistics associated with the lines of code. The position

of the rows corresponds to the position of the lines within

the file and the size of the rectangles to the size of the

file. The resulting display looks like a very srnall

representation of a code printout. See Figure 3.5.

Individual statistics are displayed with colour. These

colors, chosen by the user, represent information stored in

an elaborate database, For example, i£ the user wants to

see information on what lines were added on a certain date,

the user could have those line appear in red, while having

al1 lines associated with a bug fix appear in a yellow

colour .
Using high-interaction graphics and direct manipulation

techniques, the user manipulates the display to discover

interesting patterns in the code and statistics. U s e r s of

the system are irnmediately able to recognize the files and

lines of code because the display looks like a text listing

viewed £rom a distance.

Figure 3.5 Seesoft

Seesoft is an effective tool because the display is

informative and clear, Statistics are obvious from the row

colours; code windows enable source code to be read, as well

as provide an intuitive human interface. SeeSof t is capable

of real-time screen updating in response to mouse actions.

Moving the mouse over a file representation activates a menu

of other statistics associated with the line or file. This

technique works well because it allows the user to have both

an overview of the statistic and also read the interesting

parts of the code.

With SeeSoftrs compact representation of data it is

possible to comfortably display 35 files containing 50,000

lines of code on a 1280x1024 pixel display. As many as

200,000 lines can be displayed but the representation is

tiny .

SSV uses the idea of an iconic file representation, not

to display statistics, but to convey iriformation about

program flow.

ARMVLS [Warendorf 19971, which stands for Atomic

Reaction Model Visual Language System, is a visual language

algorithm animator. ARMVLS is a system that allows the user

to create images to visually demonstrate or to assist in the

description of how a cornputer algorithm works by m e a n s of

drawing and moving images on screen. The authors daim that

the system bridges the fields of visual language programming

and algorithm animation however ARMVI;S would be better

classified as a program by demonstration system.

ARMVLS is a visual programning system to animate

algorithms that are themselves programmed in ARM (Atomic

Reaction Model). ARMVLS can animate most of the algorithms

tsaditionally done by textual coding. -S is easy to use

and does not require an expert user. Programming

illiterates can use the system and quickly create prototypes

or useful algorithrn animations. There are no special modes

or specifically catered for types of animations. Al1

features and constructs of ARM are generic and cari apply to

al1 algorithms that it can animate,

What distinguishes ARMVLS £rom other algorithm

animation systems is that visual techniques, instead of

textual codes, are employed to specify the animation

sequence .

3.19 ELIOT

Eliot [Lahtinen 19981 can be used in algorithm design,

visual debugging and learning programming. Eliot animates

algorithms written in the C programming language by

visualizing data structures as smoothly moving graphical

objects. Al1 the movements are connected with the

operations of the data structures. The user selects a

visual object £rom a pre-defined library of visual data

types. The library includes basic types, like integer, and

structured data types, like tree. Each visual data type has

a set of visualizatioris associated with it. The user

selects one visualization for each data object he or she

wants to animation. Based on these selections, Eliot

automatically constructs an animation where the objects as

well as their operations are animated. The input C code and

selected animation types are then compiled into an

executable program.

Eliot was created as a tool for generating bnimations.

The need for Eliot arose because Eliot's authors were

spending 100+ hours creating simple animations using the

tools that were available to them at the time. The result

is a system which reduces the reqyired work time dom to

just a few minutes.

Eliot makes two contributions to the field of program

visualization. These are ease of use and an innovative

implementation technique. However, the system requires an

animator to create the visualizations, which is a step that

SSV is able to skip.

EVA [Bykat 19961 was created to reduce the effort

required in the production of software visualizations. EVA

is an interactive Environment for Visualization and

Animation of Programming Concepts. EVA was designed with

the goal of providing an authoring environment for

visualization and animation of programming concepts. The

systern integrates authoring, display and control system for

the specification and execution of visualizations.

N A has four distinct players that are involved in

animation design, the teacher, the anirnator, the programmer,

and the user. These players use the system in different

ways. For example the teacher creates an analogy which

means he or she must invent an effective and informative

visualization. The animator must then produce the

animation, and then the programmer incorporates the

animation into a viçualization. The user then studies and

uses the visualized concepts to understand and generalize

the meaning. To assist in these activities EVA provides an

object editor and picture description language, as well as a

rnouse sensitive visualization interface which offers

functions such as setkhange parameters, redo, what-if,

explain and trace.

The Fisheye-View is a strategy proposed by Fumas [Fumas

19861 that imitates a fish eye in order to display

potentially huge structures on one computer monitor, and al1

associated information. Graphical representation of objects

which are cursently of interest appear focused and clear,

while objects not directly in focus, around the outside are

displayed successively smaller and less detailed. It

achieves a smooth integration of local detail and global

context by repositioning and resizing elements of the graph

[Sakar 19941 . See Figure 3.6,

The following analogy was put forth by Fumas [m a s

19861 as a way to explain the fisheye-view: When drawing a

map, humans represent their own "neighborhood" in great

detail, yet only major landmarks further away. The

neighborhood is said to be in "focus", therefore many

building, signs and roads are presented and visible, while

the next tom over may only be represented as a labeled dot.

Normal Fisheye

Figure 3.6 Normal Network Fisheye-View Network

The Fisheye-View has gained popularity [Sakar 1994 and

Muchaluat 19981 as a way of displaying huge arnounts of

information. This type of view lends i t se l f nicely to the

huge amount of information available on the World Wide Web.

See [Noik 19931 for more information on fisheye views of

hypertext networks.

The fisheye-view has the potential to change the way

large amounts of data are viewed in software visualization

as well as in other fields. However, fisheye technology is

still emerging and is not universally accepted-

3.22 PROGRAM AURALIZATION

Program auralization is the process of forming mental

images of the behavior, structure and function of a program

or algorithm using sound. Researchers have identified a

number of reasons for using sound [Francioni 19911 :

Visualization is highly subjective, and what is

insightful for one person is meaningless to someone else.

Program Auralization provides yet another "viewrr of a

program; a view that might make some things obvious to

some people. Furthemore, some types of information

might just be difficult to represent graphically.

Listening can be done passively. That is, one does not

have to be paying strict attention listening to the

normal behavior of a program in order to notice that sorne

exceptional event has happened. Moreover, listening can

be done in parallel with viewing.

People have remarkable abilities to detect and remember

patterns in sound (indeed, most people remember the

melody of a Song much sooner than he or she learns the

words) .

Sound is a powerful medium for delivery of large amounts

of dsta in parallel. This aspect of sound is especially

useful for visualizing parallel programs; but even a

sequential program can contain an enomous amount of

data.

Sound is inherently temporal, as are cornputer programs

during execution ,

A l 1 of the above reasons for using sound seem self-

evident, yet sound is a rarely used method of visualization.

While more software visualization system are beginning to

incorporate sound, such as Zeus [Brown 19911, there is

promising work in parallel computing [Jackson 19311, sound

is not the nom. Visualizing software using sound is a

slowly emerging field and as of yet there is not an

abundance of research.

Other researchers [Brown 19971 have found that sound

is more difficult to use than, Say multiple views or colour,

srnooth animation, or even 3D graphics. Perhaps this is

simply because we have less practice (and training)

composing music than àrawing diagrams. Perhaps we are

unaccustomed to using sound as the primary input for problem

solving. Or perhaps it is because sound is a more difficult

medium to master.

3.23 SURVEY SUMMARY

Table 3.1 is a summary of the systems and research

reviewed in this chapter. The abbreviations used in the

"System Type" column are as follows: PV stands for "program

visualization" , DV stands for "data visualization" and AA

stands f o r "algorithm animation".

Table 3.1 - Survey Summary

or
Area of
Research
See

Polka

Balsa and
Balsa II
Tango

Lens

System
m e

Features

AA & PV

quality typeset project manual £rom
unmodified C source code.
General-purpose animation system
targeted towards viewing of

AA
parallel programs.
Among the first interactive

AA
algorithm animation systems .
Designed to pwovide a clean,

AA & PV

1

powerful, and flexible algorithm
animation system with formal models
and precise semantics.
Combination algorithm animation and
program visualization system.
Implemented on top of the dbx
debugger .

-

PV ICornpiler that creates a high

-

-

-

-

-

Arne thys t

Explorer

Vips

Zooming

Noteworthy for its use of objects,
strong typing, parallelism, and
graphical development of views.
One of the first systems to use
colour and sound.
Uses 3D representation, rapid
navigation techniques and nested
graphs to help visualize the
software.
Designed for use in an
instructional environment to help
the students visualize and
understand data structures.
A web-based algorithm animation
system for an electronic classroom.
A tool to reduce the amount of
information presented to a
debugging programmer.
Designed so programmers can find a
bug by seeing the visualized
output. Programmers can observe
inter-process communications as
well as other information to see
when an errox occurs.

-- --

Program-debugging environment
designed to help the programmer
understand the correspondence
between static program code and
dynarnic program execution. C a n run
a progxam in forward and reverse
directions.
Vips is a visual debugger for list
structures.
A parallel programming environment
designed for developing
performance-efficient parallel and
sequential cornputations.
FIELD integrates a wide variety of
UNIX tools into a cormnon framework.
The framework uses ordinary W T X
tools with graphical user interface
mappers around them, as well as
new tool to support both
programming and visualization.
Semantic zoorning allows the user t o
zoom in/out or focus on a
garticular portion of the program
Dr data set. Unlike a standard
zoom, the presentation style of the
riew adjusts at different zoom

levels .
Displays line-oriented source code
statistics by reducing each file
and line into a compact
representation.
A visual language algorithm
animator. ARMVLS allows the user
to create images to visually
demoristrate or to assist in the
description of how a computer
algorithm works by means of drawing
and rnoving images on the screen.
C a r i be used in algorithm design,
visual debugging and leaming
prograrcuning . Visualizes data
structures as smoothly moving
graphical objects.
EVA integrates authoring, display
and a control system for the
specification and execution of
visualizations.
A stxategy that imitates a fish eye
in order to display potentially
huge a structures on one computer

-

monitor, and al1 associated
in£ ormation.
T h e process of forming mental
images of the bebavior, structures
and function of a program or
slgorithm using sound.

4. A VISUALIZATION TOOL FOR JAVA

4.1 MOTIVATION

Software visualization produces a mental picture. A

programmer mites a piece of code, and in the "minds eye" he

or she understands what it does and how it is supposed to

work. Software visualization helps the prograrrimer get a

better understanding what a piece of software is doing by

showing a graphic representation of the code.

The following quote semes as motivation and a goal in

the design and implementation of a visualization tool for

Java.

"A programmer will not u s e a tool for debugging whose
d e v e l o p m e n t t ime ou t w e i g h s that t o simply debug a program
wi th t r a d i t i o n a l t e x t - b a s e d m e t h o d s . " [Mukherj ea 19941

4.2 DESIGN GOALS

Any tool will not be used if it creates more work than

it saves. Some of the animation packages such as BALSA

[Brown 19881, Tango [Stasko 19901 and Polka [Stasko 19931

require laboriously hand created animations. This may be

acceptable for an algorithm animation system but not for

program visualization. A visualization tool must be simple

to use as well as easily and generically applied if it is to

be useful to a developer.

The prirnary goal of this thesis is to define a tool

that needs minimal user intervention to create a software

visualization display and wfiich shows both the dynamic and

static behavior of the software being developed. As well,

the visualization system is interactive to promote iterative

design and exploration. Interaction is provided by debugger

technology integrated with the visualization system.

4 , 2 , 1 EASY TO USE

A major goal of the system is ease of use. SSV

provides predefined graphical views of the software. The

user is able to sirnply point and click to see a visual

representation of a generic (Java) program. No programming

is required. This is in contrast to systems such as BALSA

[Brown 19881 or Tango [Stasko 19901 , which can be source

code lsvel intensive when building animations or using the

system. These systems require user programming to create

algorithm specific animations and views. However, in

defense of these systerns, they are designed for algorithm

and not program visualization.

Al1 that is required on the part of the user to utilize

the system is use of the mouse or keyboard to interact with

generic predefined views. Also, the user of the system must

compile his or her programs to generate al1 debugging

information. This debugging information embeds itself

within the Java class file, enabling the debugger part of

the visualizex to read extra information about the source

code.

The tool supports rnulti-threaded programs insofar as

parallel programs run under SSV. However, the multi-

threaded nature of the program is not apparent in the visual

display- Nonetheless, the implemented program could easily

be modified to include graphical views of a concurrent

nature.

4.2.3 GENERICALLY APPLICABLE AND SOFTWARE-PROBES

The software-probe approach requires programmers to

insert function calls at various points within a program

which allows interaction with the software visualization

system. Once the bug is found, these procedures must be

deleted. However. if another bug is found, programmers must

insert them again and also delete them again after the

debugging is finished- Most progrmers have had similar

experiences inserting many output procedures (e .g , "printf")

into their programs while debugging and then deleting them

afterwards [Koike, 19971. Also, at the multi-threaded level

of debugging, software probes can affect or change the

outcome of rurining program. Therefore, no probes are

introduced to existing code in this implementation. It is

the job of the visualizing system to create the interesting

events and generate a visualization. The system does not

change any source code or class files. It only reads them

and generically generates visualizations.

4.2.4 NO CUSTOM ANIMATIONS

The visualization system does not support custom user

animations. Automatic visualization is paramount in this

thesis. In this context, creation of custom animations and

custom views distracts the developer £rom the goal of

understanding the software. While a system such as Tango

[Stasko 19901 is an algorithm animation system and was built

for a different purpose than our implementation, it is the

extra work of coding or learning of a graphic library that

we wish to avoid in this thesis. Therefore, while these

custom views do promote understanding, the time required to

build these views is costly and would be better spent

elsewhere.

4.2.5 INTEGRATED WITH A SYSTEM DEBUGGER

The visualizer is integrated with a system debugger to

prornote iterative design and exploration- The user is able

to set breakpoints, animate the program, step through the

program line by line, start or stop the software, as well as

inspect variables-

The idea of integration with a system debugger is

borrowed £rom the Lens system [Mukherjea 19941. Lens is a

cornbination of algorithm animation and a program

visualization system that is built on top of the UNIX

debugger dbx. It is the power the debugger gives to Lens

that we want in this thesis.

4.2.6 ANIMATION

The use of animation in a software visualizer is

extremely important because programs are fundamentally

dynamic. The user is able to start the visualizer, sit back

and watch an animated Text View, a three dimensional

abstract class view, as well as an abstract two dimensional

view at the method level of a chosen piece of executing

software -

Animation is included in most modem software

visualizers such as Zeus [Brown 19911, Lens [Mukherjea

19941, Cat [Brown 19961, as well as SSV. There are benefits

to allow the user of the system to be a passive viewer of a

running visualization system. Software visualization is

highly subjective. What is obvious for one user is not f o r

another. Therefore by allowing the user to sit back and

watch a movie-like software visualization, he or she will

gain insight into the software because of the different

perspective.

The text view of the source code is the traditional

text view provided by standard debuggers. The text view has

a cursor or indicator at the begi~ing of the currently

executing line and updates itself as the program executes.

If the program f l o w leads to a different file, the text view

switches to reflect the change.

4 - 2 - 8 CLASS VIEW

The class view is the quintessence of the visualizing

system. It is a three-dimensional representation of a

loaded class. The generic view displays a class by showing

al1 the methods associated with the class as well as al1 the

methods of its super class(es). The current class is

displayed closest to the user with a black color, while

subsequent super classes appear further into the screen with

a unique color. One exception to the way classes are

coloured is the method that is currently executing. This

executing method always glows with a yellow color. For

example in Figure 4.1 the main method in ShapeDriver is

currently executing. Furthemore, methods of different

classes that share the same name, for example "String

tostring () " , al1 appear vertically aligned. See Figure 4.1,

Figure 5.4 and Figure 5.5 for examples of the class view.

java. lanq
java. lang
java. lang
java. -. lang .

. . .- 7 . - . *> - =>.A

.+':&:;,l. =r....:

java. lang
java. lang

.Dbject

. Obj e c t
eqwls (java
finalize ()

Figure 4.1 Class view of S h a p e D r i v e r . Method main is
currently executing.

The idea £or the classview is taken £rom NV3D [NVision

19991. NV3D uses 3 dimensional boxes and textual labels to

represent classes and methods within the class. NV3D is

able to display a great deal of information. However,

because of the textual label for each rnethod and class, the

box is redundant and therefore is a waste of space since the

label of the method provides an adequate object of

representation- Also, the scenes within NV3D can be zoomed

in or out and are highly interactive so our irnplementation

copies this. See Figure 3.2. However what NV3D is

noticeably lacking is dynamic interaction, It does not

provide run-time information; NV3D provides only static

information based on a database of information about the

program structure.

As interesting and informative as these views axe, it

is the addition of animation that makes the visualizer truly

powerful. As a program executes, and classes are displayed,

the currently executing method "glows".

This three dimensional class view gives the user a

different look at the code, hopefully allowing for greater

insight into any relationships or problems.

4.2.9 SEEVIEW

The Seeview is the other major view of the SSV systern.

The general idea for the Seeview cornes £rom the Seesoft

system [Eick 19921. See Figure 3.5. Seesoft interactively

displays line-oriented statistics by colours as iconic views

of a file. It is informative to display an iconic view of

the file as the program executes showing the current line of

execution because it gives a global view of the file, This

This global view gives the user a sense of program flow.

Therefore the view is an abstract line oriented view of a

file showing the current line of execution (Figure 4 . 2) .

Like the Method view, the currently executing line of code

glows to indicate it is the current point of execution.

5.1.

when

For each line of text within a source code file, there

corresponding graphic line. See Figure 4 - 2 and Figure

However, figure 4.2 is somewhat misleading because

Seeview is displayed, each line is only one pixel high.

for (i =O; i < 5; i++)

Figure 4.2 Example of line oriented Seeview

5. IMPLEMENTATION: FEATURES AND ARCHITECTURE

Stevef s Software Visualizer (SSV) is platform

independent. The Java compiler and interpreter are £rom the

~ a v a ~ 2 SDK Version 1.2.2-001 Standard Edit ion released by

Sun Microsystems. Sun's ~ a v a ~ Platform Debugger

Architecture (JPDA) provides debugging support. Three-

dimensional graphies are provided through a package called

Magician (an OpenGL implementation) released by Arcane

Technologies Ltd.

5.1 THE JAVA DEBUGGER

The Java Debugger, jdb, is a simple command-line

debugger for Java classes. The core of the jdb used in the

SSV implementation is part of a demonstration package of the

JPDA that provides inspection and debugging of a local or

remote Java Virtual Machine, The jdb relies on the Java

Debugging Interface (J D I) , which is a high-level Java API

providing information for debuggers and similar systems that

require access to the running state of a virtual machine.

The foundations for this implementation are the J D I

package and a debugger that is included. The example

debugger includes a working Graphical User Interface.

- The debuggee is the process or application being

debugged .

- The debugger, or visualizer, is a tool used to view and

step-wise run the debuggee.

5 . 2 THE SOFTWARE VISUALIZER - SSV

The software visualizer created for this thesis, named

Steve's Software Visualizer or SSV, is a fully automated

software visualization tool for Java. See Figure 5.1 for a

sample screen shot.

Figure 5.1 Implementation of a s o f t w a r e visualizer

Al1 available source code - a display of al1 available
source code.

Source code - currently executing Java source code -
highlighted line is currently line of execution.

cal1 stack - shows program control flow.

variable monitor - displays user specified variables and
updates them as the program runs.

Messacre window - displays any system information,

Command promDt - a commarid line interface to the system
- also available through menu and tool bar.

Out~ut w i n d o w - where System.out.println is displayed.

8. Seeview - a line representation of the Java source file.
There is one line for every line of code in the Java
source file. The black line indicates the current line
of execution,

9. Classview - a 3D Class viewer that displays a class and
al1 of its super-classes.

10. Menu and system buttons - the buttons
the user to interact with the system.

and menus allow

SSV displays a three-dimensional representation of a

loaded class, while highlighting the currently executing

method. See the right most windows of Figure 5.1 (labeled

' 9 ") and Figure 4.1. SSV displays the source code of the

loaded class, provided it is available, in two forms:

1) The actual text (see window labeled '2" in Figure

5.1).

2) An abstract view of the entire file from which the

source code originated (see window labeled '8" in

Figure 5.1) .

Operation of SSV requires the debuggee be generated

with al1 debug information set to be included within the

executable class file. This enables the debugging side of

the visualizer to access the debug information and provide

the unique views. Also, some configuration of SSV is

required. For example the user of the system is expected to

give the CLASSPATH and location of any additional source

code.

SSV has a view known as Seeview which displays the

source code of a loaded class, provided it is available, as

a compact representation of the entire file £rom which the

source code originated. Seeview simultaneously maps lines

of code into thin rows. Each row is coloured light orange,

while the currently executing line is coloured black. See

Figure 5.2 for four examples of loaded classes displayed by

Seeview .
As the visualizer executes, the debuggee program steps

through and executes line-by-line. As each line executes,

Seeview changes to the currently executing file, as well as

updating the black coloured current line indicator.

The user is not involved with or distracted by the

syntax of the code, instead the user sees a "high level",

syntax free view of the code. This is useful because it

gives the user a global view of the file. A large amount of

source code is displayed and program flow is easily

followed.

Objectjava

Figure 5 - 2 Four example files displayed using Seeview

Seeview can also display the actual line of text

represented by the thin rows. The user uses the mouse

pointer and clicks on a line in the Seeview. Instantly the

textview changes showing a highlighted line of text

displaying the source code which the thin line represents.

See Figure 5.3 for an example.

Figure 5.3 Seeview selection of a line

Seeview is particula~ly useful in helping the user spot

patterns within the code. For example, the execution of a

loop under Seeview is very noticeable. The repeated pattern

of execution of a block of code or the lack of movement of

the current line indicator draws the attention of the user.

SSV has a view known as Classview, which displays the

currently executing class and its inherited hierarchy in a

3-dimensional marner, For example, in Figure 5.4, a class

called Simple is displayed. Simple is derived £rom

java.lang.object. The methods of simple are displayed in

the foreground, while the methods of object are displayed in

the background. Figure 5.5 shows an example that has three

levels of inheritance. The lowest class is TPrim and is

displayed in front. TPrim inherits £rom DrawPrim, which is

displayed in the middle, and finally DrawPrim inherits £ r o m

java - lang. obj ect, which is displayed furthest £rom the

viewer .

As the visualizer executes, the debuggee program steps

through and executes line-by-line. As each line executes,

Classview changes to reflect the currently executing class.

If the current class changes, for example, the code steps

into a string output routine, the Classview display changes

to reflect the string class structure. When the string

routines complete and execution retums to a different

class, the Classview display adjusts automatically and

displays the current class.

method to a blinking yellow colour and ensuring that the

method is always visible. This draws the user's attention

to the method. See Figures 5.4 and 5.5.

javab Lang. abject "~tiS O
java .lang.Dbje~t notifyAll

1 g.Obe t registerNatives [)
~~risrati#i! tj!
~~rimirabf$ibtltiwiaig (ko~tring O

java. Lang.Object wait [)
java.Lang.0b~ect wait[long)
java. Lang. Dbject wait (long, int)

Figure 5.5 Classview of a class with 3 levels of hierarchy

5 . 5 TEXTVIEW

SSv has a view known as Textview, which displays the

actual source code of a loaded class if it is available.

The Textview has many uses including highlighting the

current line of execution (which changes as the program

runs), indicating breakpoints or displaying different files

and specific lines. See Figure 5.6.

Figure 5.6 Textview of an executing piece of code

S. 6 ANIMATION

SSV is useful if it helps the user understand the

software. To aid in this recognition process, the ability

to animate SSV is included; where animation is defined as

the automatic and repeated stepping through of source code

while the visualization displays are sirnultaneously updated.

The period of time a visualization can be animated for is

determined by the user. The user cari choose any time

period, for example, a thirty second interval.

5 .7 ARCHITECTURE

SSV has al1 the functionality of a debugger, for

example, setting break points, a cal1 stack and evaluation

of variables. SSV also has the software visualization tools

added for this thesis: Seeview, Classview, Textview and

animation. Each is interesting and useful by itself however

when used in combination SSV becomes a powerful

visualization tool. By using the views in combination,

certain aspects of the software can be "visualized" that

would not be possible through traditional text based

debugging methods.

SSV is part software visualization tool and part

debugger because the software vis~alization tools are built

on top of a Java debugger. See figure 5.7 for an

illustration of the architecture.

M agician 1 Swing

Figure 5 . 7 Basic architecture

30 Clam-ew

Jdb

Seeview

(A command line debugger)

JPDA
(Sun's Java Platform Debugger

Architecture)

of SSV

6. USER TESTING

A pilot study involving six Acadia University cornputer

science students was conducted to test the benefits of the

SSV tool. Subjects were given two tasks to perform with

SSV. The first task was relatively simple. The subjects

were asked to determine the hierarchy (both superclass and

descendants) of a class called "Shape". There are three

possible avenues to find the answer: source code

explorations using the text view, a command line function,

or program stepping. The second task was more challenging.

Subjects were asked to trace through the execution of a

function showing the value of two local variables during

each iteration of a loop and the final return value. The

function is called "totalAreau which is passed a List of

£ive Shape objects which are a combination of Shape derived

classes called Circle, Triangle and Rectangle. The two

local variables are "total" and "area" which accumulate the

area of the Shapes and report the current Shape's area

respectively. The subjects were then given a survey to

complete. See Appendix A for details of the tasks and for

the questionnaire. Appendix B contains the individual

responses ,

6.1 PURPOSE OF THE S!MJDY

The purpose of the study was to test if SSV gives users

insight to Java source code and the execution of the

compiled byte code. That is, does SSV deliver on the ideals

of its design? For example, does the global view of the

file (Seeview) help the user follow program flow? Or does

the three-dimensional class view help the user understand a

new class? Also, the survey was used to gather general

feedback and comments about the system-

6.2 RESULTS

As a whole the feedback £rom the questionnaire was

positive. In addition there were some valuable and valid

cxiticisms and suggestions. Overall the system was found to

be useful (Appendix B r 6 and respondents generally like

using the system (Appendix B I 6a) .
The survey has four points of evaluation: 1) learning

to use the system, 2) the screen, 3) using the system, and

4) an overall. assessment. On average respondents were

indifferent about learning to use the system (Appendix B r

3). However, individual responses concerning Learning to

use the system were either difficult or easy. Responses

concerning the screen layout, color, and arrangement of

information were positive (Appendix B r 4) - However several

users cornplained that the source code window font was too

small, or suggested that the window be larger. Responses

concerning using the system (Appendix B, S) , such as the

number of steps per tasks, or remembering how to use the

system are positive.

The overall assessment had mixed scores (Appendix B r

6). Overall users liked using SSV, but gave it low marks

for ease of use. However, the question "Overall 1 found SSV

usefulw received the highest positive average response of

al1 survey questions. Despite this, the overall

helpfulness of the line representation of the Java file was

rated low, but not as low as the 3D representation- Yet the

individual responses were either very high or very low.

Comrnents concerning the systern were mixed. Some

respondents liked the line representation but others did

not. Some respondents found the system easy to use, while

one subject wrote, 'it wasn't the rnost intuitive". However,

with one exception, most found that the three-dimensional

class hierarchy (Classview) contains too much information.

One subject responded, "the new 3D hierarchy is a good idea,

it just needs a bit of work". While another wrote, "the 3D

class representation is cool, but ... it is too busy". The

comments included, "the 3D class view is bewildering and

intimidating" and "the 3D class hierarchy was frustrating".

General comments about the SSV system include

improvernents to rnoving, resizing, or toggling of certain

windows. One respondent suggested that keyboard short cuts

would make the system easier to use. Also, several

respondents suggested the system should hzve source code

search capabilities. Users wanted to be able to search a

single file, al1 files, or locate a certain class.

6.3 SURVEY CONCLUSIONS

The pilot study was the first public showing of SSV.

Based on user testing, more work is needed on screen layouts

and the three-dimensional class representation before SSV is

ready for general use.

Blackwell [Blackwell, 1996a] presents an assessrnent of

visualization tools that focuses on the way computer

scientists think that visual programming assists the thought

processes of the programmer, with a list of twelve

categories of possible benefit.

One of Blackwellts categories is abstraction, where,

despite agreement that abstraction is an important issue,

the author remarks that some computer scientists believe

that pictures are good at showing abstraction, while others

Say that abstract data is challenging. This difference of

opinion is shown by our own user testing with clear

separation of abstract usefulness (Appendix B, 6d and 6e) -

Cognitive resources is another of Blackwell's

categories. The author mites, "cornputer scientists claim

that the hman mind is optimized for vision, making shapes

easier to process than words." However, Petre [Petre, 19931

presents evidence that leaming to read graphics and

'seeing' an information display is an acquired skill. SSV

is tawgeted towards those individual who like abstract

representations of their code and after a little training

and practice, SSV could be a useful visualization tool.

Animated visual displays let the user assimilate

information rapidly and help identify trends and anomalies.

However academia seems to be further ahead than the real

world in software visualization. In [Price, 19931, the

author suggests that software engineers (and their

employers) have not seen demonstrable gains £rom using this

technology. It is clear that if SV systems are to make a

contribution to software engineering then solid results

proving their benefits will be necessary." Hopefully in the

future more companies will find results that lead to

integration of more software visualization tools into their

sys tems .

7.1 PARALLEL DEBUGGING

Future work on SSV should include true support for

parallel processes. In the current form SSV visualizes a

parallel program but the concurrency is not irnrnediately

apparent. visualization of al1 threads and the state of

those threads would be interesting and informative, as well

as any message passing that occurs.

7 . 2 PROFILING

Future work on SSV should include profiling such as

that seen in [De Pauw 19981- Histograms displaying method

time lengths, method usage or histograms of instances would

be interesting and useful debugging information, as well as

giving insight into program execution.

7.3 XMPROVED CLASS VIEW

Future work on SSV should involve the class view. The

NV3D system can display multiple classes on the screen at

the same time. This multiple display allows the user to

explore and investigate with less screen switching and

therefore a smoother, more pfeasant experience. Therefore

adding this ability to SSV would give the user easier access

to information. Multiple classes on the same screen lends

itself nicely to the proposed future addition of parallel

program support.

Based on user testing (Chapter 6) , some respondents

felt too much information is currently displayed by the 3D

class view. A possible solution to this problem could be

allowing the user to select the level of detail displayed.

The user could be given the choice of displaying only the

current method, or only the current method with any possible

superclass methods the current method is derived from, or

limit the display to a certain number of superclasses or

methods as specified by the user,

7.4 SEARCHING

Search capability for SSV was suggested during user

testing. Allowing searching of source code gives the user

the opportunity to easily satisfy a need for in£omation.

Searching provides information that the user desires, yet

only when he or she requests it, therefore the user is not

overwhelmed with too much information. Consequently

searching would fit nicely into the SSV system.

8. CONCLUSION

The building of software has becorne cornplex.

Software visualization tools have the potential to rnake the

meaning of the code more apparent and concrete, while rnaking

the overall structure of the program easier to gxasp.

This thesis has created a visualization tool for

Java. This tool helps show the structure of the Java code

with minimal work required by the user. Views are automatic

and effortless allowing the user to concentrate on the

problem and not on creating debugging information, User

testing shows that users like using the system and, overall,

find SSV useful.

The visualization tool has been built on top of a

debugger to promote iterative design and exploration. The

tool is intended to be an add-on to a user's existing

arsenal of programming tools.

Task Questions

1, List the class hierarchy for class Shage and its
sugerclass and its descendants.

2. Trace the execution of totalArea, Show the values of the
local variables "totalm and "arean during each iteration of
the fox loog, Show the return value of totalArea.

Questionnaire

Identification

Identification Number

Gender
Female Male

Age

Background

University Degree of Shidy

Current University Year of S tudy
1
A- 2- 3- 4-

University Level Cornputer Half Courses (completed or taking)
None
1 or2
3 or more

Used on-line debugger software
Yes
No -

3. Learning to use the system

Leaniing to use the system was
Difficult 1 2 3 4 5 6 7 8 9 Easy

Getting started was
Difficultl 2 3 4 5 6 7 8 9Easy

Exploration of features by tnal and error was
Discouraging 1 2 3 4 5 6 7 8 9 Encouraging

4. The Screen

Were the characters on the computer screen
Hard to r a d 1 2 3 4 5 6 7 8 9 Easy to read

Was the use of colour helpful
Not at al1 1 2 3 4 5 6 7 8 9 Verymuch

Were the screen layouts helpful
Notatall 1 2 3 4 5 6 7 8 9 Verymuch

Was the amount of information displayed
hadequate 1 2 3 4 5 6 7 8 9 Adequate

Was the mangement of information
Illogical 1 2 3 4 5 6 7 8 9 Logical

5. Using the System

Remembering how to use the system was
Difficult 1 2 3 4 5 6 7 8 9 Easy

Could you do the task in a straight fonvard manner
Never 1 2 3 4 5 6 7 8 9 Always

Number of steps per task was
Tao many 1 2 3 4 5 6 7 8 9 Just ri&t

The steps required to complete a task follow a logical sequence
Notat al1 1 2 3 4 5 6 7 8 9 Verymuch

6. Overall Assessrnent

OverallI Liked using Steve's Software Visualizer
Not at al1 1 2 3 4 5 6 7 8 9 A lot

Overall 1 found it easy to use
Hard to use 1 2 3 4 5 6 7 8 9 Easy to use

Overall 1 found it useful
Not at al1 1 2 3 4 5 6 7 8 9 A lot

Was the fine representation of the Java file helpful
Notata111 2 3 4 5 6 7 8 9 Veryrnuch

Was the 3D class representation helpful
Not at dl 1 2 3 4 5 6 7 8 9 Very rnuch

Comments

How easy was this system to use?

Would you prefer a standard debugger? Yes No
m y ?

Which features did you Like?

Which features did you not like?

What features do you wish the system had?

Other cornrnents?

APPENDIX B

Subject -or:
3 - LE?UWING TO USE THE SYSTEM -
)3a. Learning to use the system was

D i f f i c u l t 9 Easy
3b. Getting started was

D i f f i c u l t 9 Easy
3c. Exploration of features by trial and error was

D i s c o uraging i Encouraging
4 - THE SCREEN
4a. Were the characters on the cornputer screen

Hard t o read Easy t o read
4b. Was the use of colour helpful

Not a t a l 1 + Very much
4c. Were the screen layouts helpful

Not a t a l 1 .3 Very much
4d. Was the amowit of information displayed

Inadequate i Adequate
4e. Was the arrangement of information

I l l o g i c a l Logical
5 - USING THE SYSTEM

1 Sa. Remembering how to use the system was
Difficult -;) Easy

5b. Could you do the task in a straight forward

Never Always
Sc. Number of steps p e r task was

Too m a n y -) J u s t right
5d. The steps required to complete a task follow a

Not a t a l 1 Very much
6 . OVERALL ASSESSMENT

16a. Overall 1 liked using Steve's Software
1 Visualizer

Not a t a l 1 i A l o t
6b. Overall 1 found it easy to use

Hard to u s e 9 Easy t o use
6c. Overall 1 found it useful

Not a t a l 1 A l o t
6d- Was the line representation of the Java file

1 helpful
Not at a l 1 9 Very m u c h

6e. Was the 3D class representation helpful l

1 Not at al1 i V e r y m u c h 1
* Data has been normalized £rom a subject score 1
to a score b e t w e e n 1 and 3, whexe subject scores of 1, 2 and 3
have been folded into a nonnalized score O£ 1, scores of 4, 5 and
6 into 2 , and scores of 7 , 8 and i n t o 3 .

[Baecker 19811 Baecker R. , "Sorting Out Sorting, " (film) ,
Dynamic Graphics Project, University of Toronto, Toronto,
1981.

[Ball 19961 Ball T. and Eick S., "Software visualization in
the large," Computer, Vo1.29, No.4, 1996, pp. 33-43.

[Blackweil 1996al Blackwell A.F., "Metacognitive theories of
visual programming: What do we think we are doing?", IEEE
Symposium on Visual Languages, 3-6 September 1996, pp. 240-
246.

[Brown 19841 Brown M.H. and Sedgewick Et., 'A System for
Algori thm Animation, " Compu ter Graphics, July 19 84,
pp. 177-186.

[Brown 19881 Brown M.H., "Exploring algorithms using Baisa-
II," Computer, Vol.21, No.5, 1988, pp. 14-36.

[Brown 19911 Brown M.H., "Zeus: a system for algorithm
animation and multi-view editing, " Proceedings of the IEEE
Workshop on Visual Languages. Kobe, Japan, October 1991,
pp. 4-9.

[Brown 19961 Brown M. and Najork M., "Collaborative Active
Textbooks: a Web-Based Algorithm Animation System for an
Electronic Classroom", Proceedings of the 1996 IEEE
International Symposium on Visual Languages, Boulder, CO,
September 1996, pp. 266-275.

[Bykat 19 9 6 1 Bykat A. , "Visualizing program concepts using
EVA", Energy Conversion Engineering Conference, 1996. IECEC
6 , Proceedings of the 31st Intersociety, Vol. 1, 1996, pp.
271-276.

[Cox 19891 Cox P., Giles F., and Pietrzykowski T.,
'Prograph: a step towards liberating programming from
textual condi tioning" , IEEE Workshop on Vi sua1 Languages ,
1989, pp. 150-156.

[De Pauw 1998lDe Pauw W., Kimelman D., and Vlissides J.,
"Visualizing Object-Oriented Software Execution," Software
Visualization - Programming as a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 329-346.

[Eick 19921 Eick, S., Steffen, J., and Sumner, E. (Jr) ,
"Seesoft-A Tool For Visualizing Line Oriented Software
Statistics" , IEEE Transactions on Software Engineering, Vol.
18, No. Il, November 1992, pp. 957-968.

[Francioni 19 911 Francioni J. , "Debugging parallel programs
using sound, " SIGPLAN Notices, Vol. 2 6, No. 12, December
1991, pp. 68-75.

[Fumas 19861 Fumas G., "Generalized Fisheye Views,"
Proceeding of CHI'86, Boston, April 1986, pp. 15-23.

[Gaver 19891 Gaver W., "The Sonic Finder" An Interface That
uses Auditory Icons , " Human-Cornputer Interaction, Vol. 4,
No. 1, Spring 1989, pp. 67-94.

[Kaoike 19971 Kaoike H., Takada T. and Masui, T.,
"VisuaLinda: A Framework for Visualizing Parallel Linda
Programs, " IEEE, 1997, pp. 174 - 178.

[Lahtinen 19981 Lahtinen S., Sutinen E., and Tarhio J.,
"Automated Animation of Algorithms with Eliot, " Journal of
Visual Languages and Cornputing, Vol. 9, No. 3, 1998,
pp. 337-349.

[Lange 19971 Lange D. and Nakamura Y. , " O b j ect-Oriented
Prograrn tracing and Visualization, " Cornputer, May 1997,
pp. 63-70.

CLehr 19891 Lehr T., Segall Z., Vrsalovic D.F., Caplan E.,
Chung A. L. , and Fineman C . E. , "Visualizing performance
debugging," Computer, Vol. 22, No. 10, 1989, pp. 38-51.

[Lieberman 19981 Lieberman K. and Fry C.,
"ZStep 95: A Reversible, Animated Source Code Stepper,"
Software Visualiza t i o n - Programming as a Mu1 timedia
Experience, MIT Press, 1998, pp. 277-292.

[NVision 19991 NVision Software Systems Inc. 'NV3D for
Visual Studio - User's Guide (beta) , " 1999.

[Merihi 19993 Merlini D . , \'A Sys tem for Algorithms '
Animation," IEEE,. 1999, pp. 1033-1034.

[Muchaluat 19981 Muchaluat D., ~odrigues R. and Soares L.,
'WWW Fisheye-View Graphical Browser," IEEE, 1998, pp. 80 -
89.

[Mukherj ea 19941 Mukherjea S. and Stasko J. , "Toward Visual
Debugging: Integrating Algorithm Animation Capabilities

within a Source Level Debugger, " ACM Transactions on
Cornputer-Human Interaction, Vol. 1, No. 3, September 1994,
pp. 215-244.

[Myers 19881 Myers B.A., Chandhok R. and Sareen A.,
"Automatic data visualization for novice Pascal
programmers , " Proceedings of the IEEE Workshop on visual
Languages, Pittsburgh, Pennsylvania, 1988, pp. 192-19 8 .

[Parker 19981 Parker G., Franck G., and Ware C.,
"Visualization of Large Nested Graphics in 3D: Navigation
and Interaction," Journal of Visual Languages and Computing,
Vol. 9, No. 3, 1998, pp. 299-317.

[Petre, 19931 Petre M. and Green T.R.G. , "Learning to read
graphies: some evidence that 'seeing' an information display
is an acquired skill", Journal of Visual Languages and
Computing, Vol. 4, No. 1, 1993, pp. 55-70,

[Price 19931 Price B. , Baecker R. and Small 1. , \'A
Principled Taxonomy of Software Visualization," Journal of
Visual Languages and Computing, Vol. 4, No. 3, 1993,
pp. 211-266.

[Sarkar 19941 Sarkar M. and Brown, M., "Graphical Fisheye
Views, " Communications of the ACM, Vol- 37, No 12, Dec 1994,
pp. 73-84.

[Shirnomura 19901 Shimornura T. and Isoda S., "VIPS: a visual
debugger for list structures," Computer Software and
Applications Conference, 1990. COMPSAC 90, Proceedings ,
Fourteenth Annual International, 1990, pp. 530-537.

[Stasko 19891 Stasko J . T , , "TANGO: a framework and system
for algorithm animation," IEEE Computer, Vol. 23, No. 9,
1989, 27-39.

[Stasko 19901 Stasko J.T., "Simplifying Algorithm Animation
with TANGO," IEEE, 1990, pp. 1-6.

[Stasko 19931 Stasko J.T- and Kraerner E., 'A Methodology for
Building Application-Specific Visualizations of Parallel
Programs , " Journal of Parall el and Dis tribu ted Compu ting,
Vol. 18, 1993, pp. 258-264.

[Warendorf 19971 Warendorf K., Wen Jing Hsu, and Poh Yeen
Seah, "ARMVLS-atomic reaction mode1 visual language system-a
new way of animating algorithms," Proceedings o f 1997
In terna t iona l Conference on Information, Cornmuni ca t ions and
Signal Processing, vol.2, 1 9 9 7 , pp. 939-943.

FURTHER READING NOT DIRECTLY REFERENCED

[Averbukh 19971 Averbukh V., "Toward Formal Definition of
Conception "Adequacy in Visualizationw," IEEE Proceedings of
VLL'97, September 23-26, 1997 in Capri, Italy, 1997,
pp. 46-47.

[Baecker 1998a1 Baecker R., "Sorting Out Sorting: A Case
Study of Software Visualization for Teaching Cornputer
Science, " Software Visualization - Programming as a
Mu1 timedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 369-382.

[Baecker 1998bl Baecker R., and Price B., "The Early History
of Software Visualization, " Software Visualization -
Programming as a Mu1 thedia Experience, Carribridge,
Massachusetts, MIT Press, 1998, pp. 29-34.

[Baecker 1998~1 Baecker R., and Marcus A., "Printing and
Publishing C Programs , " Software Visualiza tion - Programming
as a Multimedia Experience, Cambridge, Massachusetts, MIT
Press, 1998, pp. 45-62.

[Bazik 19981 Bazik J., Tamassia R,, Reiss S. P. and van Dam
A., "Software Visualization in Teaching at Brown
University," Software Visualization - Programming as a
Mu2 timedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 383-398.

[Berner 19981 Berner S. , Joos S. , and Glinz M. , "A
Visualization Concept for hierarchical O b j e c t Models," IEEE,
1998, pp. 225-228.

[Blackwell 199 6b] Blackwell A. F . and Green T. R. G, "Does
metaphor increase visual languages usability?", IEEE
Symposium on Visual Languages, 13-16 September 1999, pp.
246-253.

[Brown 1998al Brown M. H., 'A Taxonorny of Algorithm
Animation Displays , " Software Visualiza tion - Programming as
a Mu1 timedia Experience, Cambridge, Mas sachuset ts , MIT
Press, 1998, pp. 35-42,

[Brown 1998bl Brown M. H., and Hershberger J., 'Fundamental
Techniques for Algorithm Animation Displays," Software
Visualization - Programming as a Mu1 timedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 81-102.

[Brown 1998~1 Brown M. W., and Hershberger J., "Program
Auralization, " Software Visualization - Programming as a
Mu1 timedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp- 137-144-

[Brown 1998dl Brown M. H., and Najowk M. A., "Algorithm
Animation Using Interactive 3D Graphics," Software
Visualization - Programming as a Iul timedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 119-136.

[Brown 1998el Brown M, H., and Sedgewick R., "Interesting
Events, " Software Visualization - Programming as a
Mu1 timedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 155-172.

[Burkwald 19981 Burkwald S., Eick S., R i v a r d K., and Pyrce
J., 'Visualizing Year 2000 Program Changes," IEEE, 1998,
pp. 13-18.

[Bykat 19961 Bykat A., "~isualizing program concepts using
EVA, " Proceedings of the 31st Intersoclety Energ-y Conversion
Engineering Conference, Vol. 1, 1996, pp. 271-276.

[Chuah 19971 Chuah M,, and Eick S., " G l y p h s for Software
Visualization," IEEE, 1997, pp. 183-191.

[Domingue 19981 Domingue J., "Visualizing Knowledge Based
Systems," Software Visualization - Programming as a
 MU^ timedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 223-236.

[Eick 19981 Eick S. G., "Maintenance of Large Systems"
Software Visualiza tion - 2rogramming as a Mu1 timedia
Experience, Cambridge, Massachusetts, MIT Press, 1998, pp.
315-328.

[Eisenstadt 19981 Eisenstadt M., and Brayshaw M., "The Truth
about Prolog Execution, " Software Visualization -
Programmfng as a Mu1 timedia Experience, Cambridge,
Massachusetts, MIT Press, 1998, pp. 207-222.

[Franck 19941 Franck G., and Ware C., "Representing Nodes
and Arcs in 3D Networks " , IEEE Conference on Visual
Languages Conference Proceedings, 1994, pp. 189-190.

[Gaver 19911 Gaver W. W., Smith R. B., and OtShea T.,
"Effective sounds in complex systems: the ARKOLA

simuiation, " Human Factors In Compu t i n g Sys tems Conference
Proceedings O n Reaching Through Technology, 1991, pp . 85-9 0.

[Gloor 1998al Gloor P. A., "Animated Algoxithms," Software
V i sua l i za t i on - Programming a s a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 409-416-

[Gloor 1998bl Gloor P. A.. "User Interface Issues for
Algorithm Animation, " Software Visual i z a t i o n - Programming
as a Mu1 t i m e d i a Experience, Cambridge, Massachusetts, M I T
Press, 1998, pp. 145-152.

[Green 19961 Green T.R.G. and Blackwell A.F., "Thinking
about visual programsu, I E E Colloquium on Thinking with
Diagrams (Digest No: 1996/010), 1996, pp. 5/1-5/4.

[Heath 19981 Heath M. T., Maiony A. D., and Rover D. T.,
'Visualization for Parallel Performance Evaïuation and
Optimization, " Software Visua l i za t i on - Programming a s a
Multimedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 347-366.

[Jackson 19911 Jackson J.A., and Francioni J.M., "Aura1
Signatures of Parallel Programs," Proceedings of the Twenty-
F i f th Hawaii International Conference on Sys tem Sciences,
1992, Vol. 2, 1992, pp. 218-229.

[Javasoft] Javasoft Inc, Home Page, http: //java. Sun. corn

[Jayaraman 19961 Jayaraman B., and Baltus C., "Visualizing
Program Execution, " IEEE, 1 9 9 6, pp . 3 0-37.
[Jeffrey 19981 Je£ frey C. L., "Visualizing Graph Models of
Software, " Software V i sua l i za t i o n - Programming as a
Mu1 timedia Ewerience, Cambridge, Massachusetts, M I T Press,
1998, pp. 63-72.

[KimeZrnan 19983 Kirnehan D., Rosenburg B.,and Roth T.,
"Visualization of Dynamics in Real World Software Systems"
Software Visualization - Programming as a Mu2 timedia
Experience, Cambridge, Massachusetts, MIT Press, 1998, pp -
293-314.

[Kraemer 19931 Kraemer E., "The Visualization of Parallel
Systems: An Overview," Journal of Parallel and Distributed
Computing, Vol. 18, 1993, pp. 105-117.

[Kraemer 19981 Kraemer E., "Visualizing Concurrent
Programs" Software Visualization - Programming as a
Mu1 timedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 237-256-

[Mulholland 1998a1 Mulholland P., 'A Principled Approach to
the Evaluation of SV: A Case Study in Prolog," 1998,
pp. 439-452,

[Mulholland 1998bl Mulholland P. and Eisenstadt M., "Using
Software to Teach Cornputer Programming: Past, Present and
Future, " Software Visual i z a t i o n - Programming as a
Mu1 timedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp. 399-408.

[Noik 19931 Noik E.G., "Exploring large hyperdocuments:
fisheye views of nested networks", Conference on Hypertext
and Hypermedia, Proceedings of the fifth ACM conference on
Hypertext, Seattle, WA, USA, November 14-18, 1993.

[North 19981 North S., "Visualizing Graph Models of
Software," Software Visualization - Programming as a
Mu1 t imedia Experience, Cambridge, Massachusetts, MIT Press,
1998, pp, 63-72.

[Osawa 19961 Osawa N . , Hisano K., and Yuba T., "A Visual
Performance Debugging System for Parallel Programs," IEEE
Proceedings of the 29* Annual Hawaii International
Conference on System Sciences, 1996, pp. 300-308.

[Petre 19981 Petre M., Biackweïl A., and Green T.,
"Cognitive Questions in Software Visualization," 1998, pp.
453-480.

[Preece 19941 Preece J . , Rogers Y. , Sharp H. , Benyon D. ,
Holland S. and Carey T,, Human-Cornputer Interaction,
Addison-Wesley Publishing Company, 1994.

[Price 19981 Price B., Baecker R. , and Small 1. , "An
Introduction to Software Visualization," Software
Visualization - Programming as a ultimed dia Experience
Cambridge, Massachusetts, MIT Press, 1998, pp. 3-28.

[Reiss 19971 Reiss S.P., "Cacti: a front end for program
visualization, " Proceedings of the IEEE Symposium on
Information Visualization, 1997, pp. 46-49, 120.

[Reiss 19981 Reiss S - P., "Visualization for Software
Engineering -- Programming Environments , " Software
Visualization - Programming as a Multimedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 259-276.

[Roman 19931 Roman G. C., and Cox K., 'A Taxonomy of Program
Visualization Systems, " Computer, Vol. 2 6, No. 12, December
1993, pp.11-24

[Roman 19981 Roman G. , "Declarative Visualization, " Software
Visualization - Programming as a ~ u l timedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 29-34.

[Seemann 19981 Seemann J., and Gudenberg J. , 'Visualizatio~
of Differences between Versions of Object-Oriented
Software, " IEEE, 1998, pp. 201-204.

[Stasko 1996al Stasko J., "Smooth Continuous Animation for
Portraying Algorithms and pro cesse^,'^ Software Visualization
- Programming as a Mu1 timedia Experience, Cambridge,
Massachusetts, MIT Press, 1998, pp. 103-118.

[Stasko 1996bl Stasko J. , and Muthukumarasamy J. ,
"Visualizing Program Executions on Large Data Sets," Visual
Languages, 1996. Proceedings., IEEE Symposium on , 1996, pp.
166-173.

[Stasko 19981 Stasko J., "Building Software Visualizations
through Direct Manipulation and ~emonstration," Software
Visualiza tion - Programming as a Mul timedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 187-204.

[Stasko 19981 Stasko J., and Lawrence A., "Empirically
Assessing Algorithm Animations as Learning Aids," Software
Visualization - Programming as a ~ u l timedia Experience,
Cambridge, Massachusetts, MIT Press, 1998, pp. 419-438.

[Storey 19971 Storey M. A. D., Wong K., and Muller H.A.,
"Rigi: A Visualization Environment for Reverse Engineering,"
Proceedings o f the 199 7 Internat ional Conference on Software
Engineering, 1997, pp. 606 -607.

[Ware 1994al Ware C., and Franck G., "Evaluating Stereo and
Motion Cues for Visualizing Information Nets in Three
Dimensions " , ACM Transactions on Graphi C S .

[Ware 1994bl Wawe C I , and Franck G., "Viewing a Graph in a
Virtual Reaiity Display is Three Times as Good as a 2D
Diagram", IEEE Conference on V i sua l Laquages Conference
Proceedings, October 1994, pp. 189-190.

