
A Collaborative Oocurnent Development Environment
Using XML and Mobile Agents

Timothy Donald Newell

B.C.S.H., Acadia University, 1996

Thesis
subrnitted in partial fuifiIlment of the requirements for

the Degree of Masters of Science (Cornputer Science)
Acadia University

Spring Convocation, 2000

O by Timottiy Donald Newell, 2000

National Library 1S.I of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395, nie Wdlingtori
OttawaON K 1 A W ûttawa ûN K 1 A W
Canada CaMda

The author has granted a non- L'auteur a accordé une Licence non
exclusive licence ailowing the exclusive permettant a la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or seii reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Table of Contents

List of Tables .. v
List of Figures .. vi .

Abstract .. vii ... Acknowledgernents ... viii
Chapter 1 - Background and Overview .. 1

1.1. Background .. ,. 1
1 .2 . Overview ... 6
1.3. Architecture ... 7

.. 1.4. Operations .., 13
... 1.5. Summary 17

Chapter 2 - Relevant Technologies ... 18
2.1 . Voyager DXML .. 18
2.2. JSDT ... 18
2.3. JNDl .. 19
2-4- JAAS ... 19
2.5. 3CE ... 20
2.6. JSSE ... 20
2.7. Java API for XML Parsing ... 20
2.8. GSS-API .. 21
2.9. SASL ... 21
2.1 O . XML Parser for Java ... 21
2.1 1 . Log for Java,.. ... 22
2.12. Xeena .. 22
2.1 3 . XMLTreeDiff .. 23
2.14. ObjectSpace Voyager ... 23
2.1 5 . XML Security Suite ... 23

Chapter 3 - Requirements and Basic Functionality ... 24
3.1. Design Goals ,. ... 24
3.2. Supported Operations ... 26
3.3. Description of Components ... 30
3.4. Required Infrastructure ... 38
3.5. Usage Scenarios ... 39
3.6. Security Comments ... 45
3.7. lmplemented Features .. 47

Chapter 4 - Design .. 48
4.1. General Design - Techniques Applied ... 48
4.2. Basic Components and Infrastructure .. 52
4.3. Specific Components ,...... ,.. 59
4.4. Design Summary .. 65

Chapter 5 - Implementation ... 69
5.1. General lmplementation Considerations .. 69
5.2. lmplementation Process ... 72
5.3. Issues Encountered .. 81
5.4. ObjectSpace Voyager - Concepts and Comments .. 88
5.5. Modifications to Original Plans .. 93
5.6. Required f nfrastructure ... 95

Chapter 6 - Summary and Conclusions .. 97
6.1. Results .. 97
6.2. Application Improvements ... 98
6.3. Analysis and Measurement ... 99
6.4. Further Investigations ... 102
6.5. Conclusions ... 103

Bibliography ... 106

List of Tables

Table

Table 1 : XMLTreeDiff Testing

Table 2: Packages and Environment Variables

List of Figures

Table

Figure 1 : Component Overview

Figure 2: Directory Service

Figure 3: Core System Classes

Figure 4: Document Directory Classes

Figure 5: Document DTD

Figure 6: Main User Interface

Figure 7: Document Browser

The purpose of this thesis is to explore the use of autonomous mobile agent and Extensible

Markup Language (XML) technologies for collaborative document development. The application

of these technologies for collaborative environmen!s is investigated to support cornputen

permanently connected to a network, as well as intermittenüy connected devices such as laptops.

A prototype environment has been implemented as an experiment to detemine the feasibility of

this model and facilitate further investigation. Support is provided for disconnected operation,

distributed development of documents, local executiacr of mputation-intensive operations, and a

'pushW model of information shanng. The more traditional 'pull' rnodel of sharing is also

implemented. There are a number of collaborative environments currenüy available, but it is

believed that the merging of mobile agent and XML technology for such applications is a relatively

new domain. The intent is to explore this top* as a new collaboration paradigm, and make

observations conceming its usefulness.

vii

I would like to take this opportunity to thank my wife Heidi for al1 of her love, patience, and support

throughout this degree, and most especially during these last few rnonths. This would not have

ken possible without her. I would also like to thank my children, Katie and Man, for putting up

with Daddy having to work al1 the time instead of playing with them.

My supervisor, Dr. Tomasz MOîdner, has been very accommodating thmghout this process. He

was ahways willing to work amnd rny schedule and go above and beyond in supporting me, for

which I am grateful.

f woufd Iike to thank rny employer, xwave solutions, for their support and sponsonhip of my

pursuit of this degree.

Heather Laine graciously assisted me by proofreading and correcüng the grammar of this

document. Her comments and suggestions added greatly to the quality of the final paper.

Finally, I would like to thank Tim Beamish for his assistance during the prototype implementation.

viii

Chapter 1 - Background and Ovewiew

1.1. Background

The terni 'collaborative environrnenr signifies many different technologies to different people.

These technologies range from simple messaging environments that use e-mail and similar

applications to share information, through tebnferencing and related applications allowing the

real-tirne exchange of audio, video, and data. Sctieduling and contact management applications

provide basic information sharing capabilibjes, and are the next Hep in complexity from

messaging environments. Document-sharing and document-management applications extend the

complexity of scheduling and contact management applications further, Mi le remaining less

comprehensive than teleconferencing systems.

Collaborative document environments are used to allow multiple users to share documents.

Some environments allow simuitaneous access to documents, while others simply provide a

central document store which documents can be 'checked out" from for modification. Revision

tracking and control facilities are commonly provided by these applications, to alfow participants

in the development of the document to review previous iterations and tfack progress. Two general

categofles of collaborative document environments are synchronous and asynchronous systems.

Synchronous systems propagate document changes to al1 participants immediately. This allows

'real time" collaboration. Asynchronous systems do not immediately update al1 copies of the

document k i ng worked on, but provide some mechanism for periodically updating or

synchronizing each copy. The approach to collaborative environments described in this document

is based on an asynchronous collaborative document model. The implernentation of this mode1

uses mobile agents and the Extensible Markup Language (XML).

00th mobile agents and XML are relatively new technologies. These technologies offer significant

and useful benefits, as well as some drawbacks to be considered. Active research is k ing

conducted to resolve many of these drawbacks. Others drawbacks anse from a lack of completed

standarduation efforts. The rest of this section will discuss some of the relevant benefits and

weaknesses of both mobile agents and XML.

1.1.1. Mobile Agents

Mobile agents, or agents, can be thought of as threads or processes which migrate from machine

to machine during execution. They are autonomous, in that they can interact with their

environment and initiate actions independently. Agents typically travel to various hosts in the

performance of some task, such as visiting a number of difTerent travel agents to obtain the

lowest price on a particular flight They cany both their execution state and data along with them

when they migrate. in most cases, they can carry their code along with them, enabling them to

execute on hosts that did not already contain their classes.

Agents can continue to execute on remote machines even if their original host disconnects from

the network or crashes. When the original host is available again, the agent can retum to or

contact it with the results of its operations. Agents are useful for offioading processing to more

powerful servers. They can be launched from very simple client devices, such as Personal Digital

Assistants (PD&), which might not be capable of providing much functionality normally. They can

distrÏbute the processing of a problem among muitiple machines (in parallel or in serial), utilize

specialized services or hardware at a remote location to perform a particular operation, or travel

to a meeting site to interact and collaborate wiai other agents.

One of the major benefits of agent technology is the ability to rnove the processing of an

operation to the location of the required data, rather than transfemng al1 of the required data to

the local host for processing. This ability can yield very substantial gains when working with large

data sets, i-e. when the overhead for transferring an agent to a remote site and retuming its

results is lower than the overhead of transferring al1 of the required data. Agents fom the primary

transport mechanism for data in the prototype collaborative system. That is, they are responsible

for distributing data to participating systems and canying out operations on data locally.

l l e r e are many different applications quoted as exampies of how mobile agents cm provide

benefik over existing methodologies. At the same time, 'Mobile agent proponents will

begrudgingly admit that the problems for w h M their systems are appropriate can also be solved

with normal distributed computing technologies like RPCs and distributed abjects." [Kiniry et

a1.199V That is, there is no single major application enabled by mobile agents that could not be

impiernented using other technologies. Hamson, Chess, and Kershenbaum summarize the issue

by stating that, "whereas each individual case can be addressed in some (ad hoc) manner

without mobile agents, a mobile agent frarnework addresses al1 of them at once.' [Hamson et al.

1995]

Mobile agents are subject to a number of limitations. These limitations rnay influence their

effectiveness for this type of application. Agents typically operate within a restn'cted 'sandbox"

environment, sirnilar to Java applets. Restrictions may be placed on the operations which agents

are permitted to execute. These restrictions may require changes in the types of operations

conducted by agents, or the manner in which they are perfomied. For example, an agent may be

prevented from opening network sockets. This would prevent an agent from connecting to its

source host to report its findings remotely. An altemate mechanism for retuming resutts would

have to be chosen. Fortunateiy, these restrictions are often configurable. However, this issue

brings up one of the major weaknesses of current agent technologies, which is security.

Agents require different security measures than traditional computing models, both to pratect

themselves from malicious hosts or agents, as well as to protect hosts against agents. Although

some of the issues sumunding security and agents have k e n resohred, problems still remain.

Agent security is discussed further in the security section presented below.

Agents require that an agent execution environment be available on each host which they are to

visit The execution environment is typicaliy a server process that sends and receives agents, as

well as providing services to them. Provision of this facility requires sorne configuration effort on

each destination system. It should be noted that this administrative overhead is similar to most

traditional applications, which require that software be installed or similar steps taken in advance

of using an application. Unlike most traditional applications, however, once a mobile agent

execution environment is available on a host, many different types of agents and agent

applications can share the same environment Configuration of the execution environment then

becornes a one-time effort for a number of applications, rather than a recumng task for each new

application or upgrade.

As agents remain a relativeiy new technology, there are few general standards for agents. This

leads to dificulties when trying to get agents from different vendors or which were M e n in

different languages to interoperate, or even share execution environrnents.

1.1.2. XML

XML is a subset of SGML, the Standard Generalued Markup Language. It is a 'meta" language

that is used as a tool for specifying new languages. These new languages are generalfy dornain-

specific grammars. XML might be us&, for example, to create a standardired language defining

data formats for filing insurance daims with various insurance carriers. XML twls can compare a

document with the h u m e n t Type Definition (DTD) defining the proper format of cornpliant

documents and verify that the document's format is valid. Thus, document formats can be

standardized and easily venfied.

XML is a markup language. Elements of documents are identified using special tags. Tags are

enclosed in angle brackets and are used to mark the start and end of a particular elernent Tags

can be nested. The possible tags for a document type, as well as their relation to other tags, are

specified as part of the DTD. When viewing the contents of an XML document, the tags and

forrnatting typically look very much like the HyperText Markup Language (HTML). One important

difference is that XML is concerned with data content and the relationships among elernents,

while HTML is just a presentation bnguage. Other tools, such as the XML Style Language (XSL),

are used to control the presentation of XMC data. A single XML document can be presented in

many different formats through the use of different XSL style sheets. These style sheets can

control how much of the data is displayed, such as when presenting a sumrnary of a document

XML parsers are applications which process and manipubte XML documents. Parsers can

validate that documents are fonned correcüy based on the document's DTD. Documents can be

edited and individual document elements accessed using parsers. There are two wideiy used

standards for XML processors, the Simple API for XML (SAX) and the Document Object Model

(DOM). SAX uses an event-driven rnodel in which applications receive notification of events as

documents are parsed. Examples of events incfude reaching the start of a new element or the

end of the current one. SAX is an efficient rnechanism, especially for scanning documents for

specific fields. DOM is an altemate specification that processes XML documents by creating a

tree of objects in mernory representing a complete document DOM is well suited for operations

based on entire subtrees of the model, such as rnoving a section from one part of a document to

another.

The use of tags to identify difFerent data elements provides a number of benefits for automated

processing of documents. Tags add context to data. Specific types of tags can be searched for

rather than doing simple text string matches such as those done for HTML data. Since tools can

be wntten which are generic to XML, much of the work required to u t i l ~e such a rich and flexible

language can be avoided by using standard, off-the-shelf utilities. Finally, using XML documents

as a standardùed language for communication may help facilitate the interaction of different

types of agents from multiple vendors, as well as processing by more traditional applications.

SGML, on which XML is based, is a technology that has k e n in use for many years. However,

some of the more advanced operations on XML documents are relativeiy new facilities still

undergoing standardization and finalizatiom As a result, some operations are proprietary to

certain tools, or not well supported yet In addition, the various tags used by an XML document

can add extra bulk to a document, beyond what the raw text of the document would require. (This

tends to Vary based on the DTD and purpose of the document) Finally, there can be signifiant

overhead in processing and validating XML documents. This avertiead rnay be higher in some

cases than that required for special-purpose formats, but is mitigated somewhat by factors such

as the productivity and reliability gains to be found ffom using standardized bols and utilities.

1.2. Ovewiew

A sample implementation providing operations b r both offline and networked funcüonality b m s a

part of this investigation. Both 'push' and 'pull" models of communication are supported. Users

can choose to select and download documents and updates as well as autornatically receive

pushed document updates. The current implementation provides the ability for documents to be

shared among a group of users, each of whom can add to or modify the original document as

desired. Changes are propagated to other users at the modifier's discretion. Modifications from

other users can be rnerged into the local copy of the document An interface is provided to

support the use of extemal tools for creating and modifying XML documents.

Support for style sheets and the Extensible Stylesheet Language (XSL) was not included as part

of this work. Such features are used to control the presentation of XML documents. Since these

features do not affect the core parameters k i ng examined, and there will soon be a variety of

third-party tools available to easily provide such funcüonality , they were not implemented.

The current implementation uses a standard XML Oocurnent Type Definition (Dm) for al1

collaborative documents. The initial DTD support was kept simple, as the focus of this

investigation is on the use of agents and XML together. A minimal DTD is al1 that was required for

such purposes. In implernenting a more featue-rich system, the ability to employ arbitrary DTDs

would be useful. This ability could incfude nin-tirne negotiation of DTDs to use, as well as

conversion between different DTDs using technologies such as XSL Transformations (XSLT) if

desired.

1.3. Architecture

The basic components of this system include a user interface. a local system manager at each

node, mobile agents, and a directory server. The user inteffaœ provides facilities for the user to

invoke the various operations of the system; dit, manage and distribute documents; and control

the various configuration parameters of the system. The local system manager serves as the

coordinator of operations. It implements most of the core system functionality, and interfaces

among the user interface, mobile agents, and underiying operating system. Mobile agents are

used to implernent al1 remote operations. They are responsible for distributing and requesting

updates, publishing documents, and so on. Finally, the directory server is a key piece of

infrastructure which allows users to locate other users, detemine what documents are available,

and control access to their own documents. The rest of this &on will provide a more detailed

discussion of these key componerits, as well as other relevant architectural considerations.

1.3.1. Graphical User Interface

A simple Graphical User Interface (GUI) is provided to allow the user to select from the various

operations. The GUI allows the user to access functions to create, modify, search for, and share

documents. A list of available local documents can be browsed, including information about the

document such as author, version, and modification date. Documents that are ready to be

distributeci can be published to the directory service, allowing other users to discover them.

Permissions and access wntrol lists for documents can be manipulated. Operations such as

checking for updated copies of documents can also be managed fiom the GUI.

1.3.2. Local System Manager

Each node's execution environment inciudes a local system manager. This system manager

provides services to mobile agents. and essentialty serves as the interface to the host system for

mobile agents. New mobile agents are created to carry out any remote operations required by the

manager. The local system manager also senres as the rnechanism by which a user's commands

are carried out The user interface invokes operations on this comporient The local system

manager then services the request itself if appropriate or works with mobile agents as necessary.

1.3.3. Mobile Agents

As described above, mobile agents are used to perform remote operations. These agents travel

to the workstation of one or more other users involved in a collaboration. Upon anival, they

interact with the destination system's stationary agent. Interactions can invofve: requests for

document information; identifying differences between documents; pushing updates to the

destination system; and carrying the results of operations back to the originating client for

exampte, a client would dispatch an agent in order to distribute a new section for a shared

document. The agent would travel to each user invofved with the system's computer. On anival, it

would invoke an operation on the local manager to notify it that a new section was available, and

pass it the document update. The stationary agent would then take responsibility for actually

adding the changes to its existing copy of the document. Once it had delivered its data. the

mobile agent could proceed to the next host or retum to its point of origin with the results of its

actions.

Although this approach may seem to be a simple variation on standard Remote Procedure Cal1

(R PC) or Remote Meoiod Invocation (RMI) clienüserver programming , there are several benefits.

AI1 dialogs between the mobile agent and stationary agent at the target are local. Complex

interactions can be encapsulated within a single agent, which is capable of making a series of

difirent calls to the stationary agent and taking independent action based on the results. Such

operations could include a mobile agent collaborating with the local system manager to traverse

the DOM tree of an XML document to compare or merge differences, invoiving a significant

amount of processing within the mobile agent. The client machine can crash or disconnect from

the network as soon as the agent has beerr sent, and the operation can still continue-

l .3.4. Directory Senrice, Useers, and Groups

A directory service provides information to locate users, list their available documents, and

manage access permissions for these documents. Operations could be supportecl to locate a

user's computer, search for documents by name or author, or check for access nghts to a

particular document Directory entries can also be added, deleted, or rnodified. Users must be the

owner of an entry to delete or rnodify it Identification of users is done through the use of a unique

user name and cryptographie signature.

The directory service is also used to maintain group membership Iists identifying the users

collaborating on each document Group membership can change during the life of a collaborative

effort, as participants join or leave the group. Gmups can be associated with more than one

document at a time. More than one group can collaborate on a document Groups conbin one or

more users. Groups may be nested; that is, one group may wntain another group.

Access permissions can be specified for each entity associated with a document, whether that

entity is a single individual or a group. Access permissions specified for a group apply to al1

rnembers of that group. If a user is identified individually and as part of a group, the group

permissions may be consulted for permission to operate on the document if the individual's own

permissions are insufficient Oniy the m e r of a document may delete the document, or change

the document's access permissions. The specific user who creates a document iniüaliy owns it

The existence of the document is published to the directory service. Other users may indicate to

the document owner that they are interested in collaborating on the document The document

owner may then decide whether to aliow the user to participate or not, and under M a t initial

access permissions. The initial owner of a document may choose to give ownership of the

document to another user or group. If a gmup is specified as the new owner of a document, al1

users in that group have owner priviieges on the document

1.3.5. Document Management and Storage

Documents are stored in a set of directories. These directories are used to identify documents to

be pushed to other usen, oMer versions of documents, and to separate documents belonging to

different groups. Copies of difhxent venions of documents are maintained with older versions of

documents k ing stored in an archival directory. Storage of old document versions is done both

for backup purposes, as well as to simplify the identification of document changes. Documents

are stored as fat text files containing XML rnarkup.

An interface is provided which allows the user to browse a list of the various documents avaifabie.

This interface provides details for each document such as its owner, size, version, and date and

tirne of last modification. Further information, such as access permissions and a list of

participating group members can be obtained by querying the directory service using the file

browser interface. The interface can also be queried to show the locally available versions of a

particular document Document editing and access control operations can be invoked from the

browser interface.

1.3.6. Security

Any collaborative system faces a number of different security concems and possible attacks.

Such systems must take steps to protect against the subversion of remote commands by

mal icious parties. User identities must be pmtected against masque fading attacks. Denial of

service attacks, such as deleting data or shutting down services, must be considered. The

integrity and confidentiality of important data, both hi le in storage and during transmission, must

be protected. Some of these concerns are generic security concems which any significant

application must deal with while others are inherent to nehivorked and distributed systems.

Any application that interacts with a computer network is inherentiy exposed to greater risks than

one existing on an isolated system. Networked applications are subject to rernote attacks.

Remote attacks are more dficuft to defend against, as they may corne from any point within the

network (subject to various bam'ers such as firewalls). Such attacks may originate from systems

outside the control of the owners of the local application, making it easier for a malicious party to

stage an incident

The situation is further complicated by the fact that although it may not be feasible to compromise

an application's host direetly, it may be possible to successfully atbck a system indirectty.

Gaining control of a host trusted by the application's system would be the first step of such a

process. The trust relationship between the two hosts might then be exploited to attack the

application host. Essentialty, a system is only as secure as the least secure system it trusts.

Issues such as these, and solutions for many of them, are well known and dexribed in much of

the network and security literature. These issues will not be discussed further except to note that

they serve as important information to consider when evaluating the security risks of any new

system.

The mobile agent paradigm introduces a number of new security issues. These issues are

discussed in detail by [Famer et al. 19961. The main problems are associated with the issues of

allowing unknown (and thus untnisted) agents to safely utilue a host for sorne activity, and for an

agent to use an untnisted host for perfonning its work. Ailowing untnisted agents to utilize a

cornputer system may allow them to steal information or othewise abuse their access. Hosts

have cornplete wntrol over the execution of agents. Malîious hosts rnay steal or alter data

carried by agents. For the purposes of this investigation we will rnake the assumption that agents

and their hosts are known to each other. The set of users participating in a collaborative effort are

a set of known entities whose identities can be accurateîy determined through the application of

cryptographie techniques such as digital signatures. Users are associateci with hosts (stationary

agents) and mobile agents- It is thus possible to determine whether any agent or host is

associated with a trusted user. Access to the system can then be restricted to the set of known

and properly authorized users. As long as the communication mechanisms and user identification

process are properly protected, a reasonable level of security can be rnaintained. Since the

system uses ctyptographic techniques to protect data and identify users within a closed user

base, rnost of the major security issues that anse when considering mobile agent technology are

mitigated.

Security concems are addressed in two ways. Permissions of physical files can be set to provide

basic protection while in storage, and protect the system from other components of the system. In

addition, encryption and/ or digital signatures can be used to provide enhanced security for stored

documents if desired. Digital signatures are a simpler fom of protection used to detect tampering

(protect document integrity), while encryption can be used to ensure confidentiality of documents.

60th techniques are used during communication and transmission in order to protect against

snooping and detect any atternpts at altering the agents or their data. Two common methods of

securing transmissions can be used. Encrypted transport tunnels, such as Secure Sockets Layer

(SSL), can be used to protect communications between execution environments. Alternately,

public key encryption can be used to encrypt agents and data with the destination's public key.

In general, the collaboration system adopts a consenrative, fail-ciosed approach to security. It is a

comrnon security requirement that in the event of a failure associateci with a service, that service

should refuse access. For example, if a directory senrice is unavailable to venfy a user's

credentials, the user shouid be denied access to the service. Firewalls are another good

example. In the event that a firewall fails, the default systern state shouki be such that access to

the resources k i n g protected by the firewall is denied, so that an attacker cannot gain access to

the resources simpîy by crashing the firewall. Although a simple and obvious principle, it is

common to see many systems designed with a fail-open approach mat is generaliy more

convenient to wor)c Wh. Such systems allow access unless given a reasoci to refuse it

1.3.7. Administration

It can be argued that any significant system requires an administrative interface of some sort.

Control over advanced configuration options is only given to users with administrative access.

Such users can also ovemde access controls in certain situations. Facilities to control the

directory service, including user and group maintenance, should be available to administrators.

1.4. Operations

There are several classes of operations supported by this system. Local, or dixonnected,

operations can be perfomied using a system not currently connected to the network. Local

operations include viewing or rnodifying existing documents, creating new documents, preparing

mobile agents for tasks to be initiated at a later time (such as when reconnecting to the network),

and controlling the access permissions of documents. Remote. or connected, functions require

that a valid network connedion be available in order to communicate with a separate system.

They include searching for (retrieving) remote documents, publishing the availability of a new

document, and pushing updates to interested parties. Administrative functions such as managing

users and groups can also be provided. Where appropriate, functionality is provided by

interfacing with or extending existing third party products, such as those available from IBM's

AlphaWorks web site (http:/hivww.alphaworlrs.ibrn.com).

1.4.1. Local Operations

Local operations are those functions that do not require interaction with another system, and thus

do not need a network connection. Note that although a network connection is not required, the

presence of such a facility does not prevent local operations from functioning. Local operations

generally aliow a user to continue to develop documents independentty, even when not

connected to the network Specific useful operations indude:

directory service on reconnection.

Browse Documents - The document browsing interface described above is available for use

even when ornine. Certain functions, such as those relying on the directory service, are

unavailable mi le not cannected to the network. Fumer local operations can be invoked from

the document browser.

View - Existing documents could be viewed using a standard text editor or third party XML

document viewer. Advanceû features such as formattecl display using style sheets are

possible through such third party applications. In some cases, document viewing operations

may feature more advanced display options than editing tools, or may even involve

converting the XML content into a more easily displayed format, such as HTML. Access

permissions may require that a user only be given read access to a docurnent, and not be

permitteci to modify it. View mode can be useful in such situations.

Create / Edit - Documents can be created or updated while offiine. Notification of updates will

not be available to other group members until the system is reconnected to the network,

however. As with viewing documents, editing operations can be performed using a text editor

or third party tool such as an XML editor.

Control Access Permissions - Usen can manipulate the permissions of documents which

they control while disconnected. Any changes to permissions can be propagated to the

5. Schedule Remote Operations - Operations that require network connectivity to complete can

be prepared and scheduled mi le offiine. Basic scheduling functionality might include the

ability to initiate scheduled operations automatically on reconnection to the network. More

advanced capabilities would feature a combination of time-based scheduling and checking of

connectivity status.

1.4.2. Remote Operations

Remote operations require network access in order to perfonn their task. Mobile agents

dispatched from the requestofs systern cany them out The mobile agent then travels to one or

more remote hosts to perfonn its task. Rernote operations cou@ be scheduled for later execution

in the event that a network connection is not imrnediateiy available. Possible remote operations

include:

1. Push Updates - Updates made locally to documents a n be pushed to other participants in

the group. Documents to be pushed are identified using a file selector dialog. The update will

be pushed to al1 members who have registered for membership in a group having access to

the document The directory service is also notified of changes so that the summary

information for the document can be updated.

2. Publish Document Availability to Directory - When new documents are created, their

existence can be published to the directory. By default, only the document creator has access

to the document Other users can access the directory server and register an interest in the

document The owner will be notified and given the opportunity to accept or reject the

membership application. Information published to the directory includes the document title,

owner, last modification date, and group associations.

3. Search for Document - A mobile agent may be dispatched to visit the participants in a group

in order to search for a document or document fragment In some cases, a search might be

done to explicitiy obtain a new or modifiecl document &on. It may also be used to obtain a

complete copy of a document Iisted in the directory service. When the mobile agent arrives at

the remote destination, it interacts with the stationary agent at the location to obtain a copy of

the requested document or document fragment

4. Merge Differences - Two different versions of a documnt can be merged. These differences

may have b e n identified by a previous operation to identify the specific changes, or that

operation can be invoked automatically as part of the merge. If the set of differences is

already available from an eariier identification operation, it is possible to merge them into the

local document with no further remote interaction. In either case, once the differences are

identified, the rest of the merge can be compieted offline.

5. Extendeci Document 8rowsing - Aithough basic operations to review the locally available

documents are available while offline, extended operations require network connectivity.

Online browsing operations include the ability to identify changes to the participant Iist for a

document. A check can be perfomied to determine whether updates are available which have

not k e n received yet The user can browse a Iist of available documents from the directory

service and identify which are available locally. Operatioris requiring the directory service,

such as joining or leaving a group, can be performed.

1.4.3. Administrative Operations

A set of basic administrative operations should be provided for system maintenance. These

operations include the ability to manage user and group Iists. Users could be added and deleted,

and their properties updated as required. Groups could be created, deleted, or rnodified. Directory

service data and configuration parameters could be updated. In general, control of basic system

parameters and ovemides for standard restrictions should be accessible throug h a protected

administration facility.

This chapter has identified the intent and scope of this thesis. The intent of the project is to

develop a prototype system to support collaborative development of documents using XML and

mobile agents as undertying technobgies. Information was presented which describes the

justification and technologid background for the investigation. An ovefview of the prototype

system, including its basic architechire and operations, was provided. The scope of the initial

irnplernentation has k e n restrïcted to the core functionality necessary to demonstrate the

concepts k i n g explored. As much as possible, the design presented in this document includes

expanded capabilities expected of a fully functional system.

The next chapter presents the general design of the system. The supporthg infrastructure, both

for development and operation, is described. The tools used and the reasons they were chosen

are discussed. A high level design of the vanous major system components is followed by a

presentation of the detailed design decisions made and implementation process. The final

chapter discusses the conclusions reached from the implementation of the system, including

detailed cornmenti describing potential future investigations.

Chapter 2 - Relevant Technologies

There were a number of potential technologies investigated dunng the research phase of this

thesis. Each of these technologies is discussed in tum, including their strengths and weaknesses.

Some of the products and libranes discussed are included or planned for the implementation of

this thesis, while others were determined to be unsuitable. The reasons for these decisions are

also discussed.

2.1. Voyager DXML

ObjectSpace Voyager now ofkrs a facility to manipulate and process XML documents called

ObjectSpace Dynamic XML (DXML). The documentation for this technology prornotes its ease of

use. M i l e interface appears simple to use, the actual functionality supported by Voyager's DXML

is still rather limited. At the cunent time, the parser support is non-validating only. It seems to be

in a very early state, perhaps even an early access or beta stage, based on the scop? of

functionality provided. Future releases will Iikely expand the capabilities of this product

significantly. Once aie product has further matured, it will likely be very useful.

One other drawback observed is that the API provided does not appear to be standards-based.

Most XML parsers tend to support either the DOM or SAX standards, if not both. ObjectSpace's

DXML appears to be a replacement interface for these technologies. Although it appears to be

simpler to perfonn common tasks using DXML, the fact that it is not a standard interface is

something of a concem, as code developed using it will be incompatible with other XML parsers.

2.2. JSDT

The Java Shared Data Toolkit is a Java API providing services for shanng data arnong multiple

participants in a collaboration. Support for various communications mechanisms for distributing

shared content among multiple participants using a standard interface is provided. The emphasis

of this toolkit is on supporting communications protocols to simplify the shanng of data among

members of a group. Group rnembership operations are also supported. Although group-based

communication and rnembership operations are important parts of the system discussed, the

JSDT was not used in this implernentation. The faciliies provided by the JSOT offer a more

traditional disûibuted computing mode1 of group communication, rather than an agent-based

approach.

The Java Naming and Directory Interface is one of the Java 2 Enterprise Edition technologies. It

provides an object-oriented and consistent interface to various naming and directory services.

Support is induded for Cightweight Directory Application Pmtocol Version 3 (LDAPv3) directory

servers, DNS, and other standard services. ObjectSpace Voyager provides its own set of

wrappers for standard naming and directory services, as well as JNDl support in the Voyager Pro

package- JNDt appears likely to become a well-accepted Java standard. One of its advantages is

that it provides transparent support for various directory service products. The same code can be

used to interface with a variety of different products. JNDl is a useful technology for implementing

the interface to the directory service discussed in this document

2.4. JAAS

The Java Authentication and Authorkation Service (JAAS) provides extensions to the standard

Java security model to support the concept of user-based security protections rather than code-

based. Abstractions for security concepts such as principals and various types of credentials are

supported. Access conbol mechanisms based on user identity are also provided. Although Java

is touted as a secure programming language, the previous lack of user-based security

mechanisms was a real weakness. JAAS helps to fiIl this gap in a flexible and genenc manner.

The facilities provided by JAAS are considered key to the planned support for user-based access

controls and authentication.

2.5. JCE

The Java Cryptography Extension (JCE) is a standard Java extension pmviding support for

cryptographie operations to the Java environment Facilities provided by this extension include

encryption operations, key management and manipulation facilities, and message digest

catculations. It forms a core part of the security infrastructure of the Java 2 platform. The services

of the JCE and related security products for Java would provide support for the protection

rnechanisms designed for this thesis.

2.6. JSSE

The Java Secure Sockets Extension (JSSE) is a standard extension of the Java 2 platform. JSSE

provides support for encrypted communications channels using Secure Sockets Layer (SSL) and

Transport Layer Security (TSL) technologies. JSSE pmvides a useful tool for encrypting

communications between systems. as well as authentication of communication endpoints. This

tool could be useful for providing SSL services to the cotlaborative document system, such as

encrypted channels through which agents can ûavel.

2.7. Java API for XML Parring

The Java API for XML Paning (JAXP) is an early access Java technology providing a standard

Java interface through which to access the functionality of difkrent XM t parsers. Both SAX 1 .O

and DOM Level 1 Core are supported. Various XML parsers can be plugged into the architecture.

This API is a technology Iikely to prove very valuable as it matures. At the cuvent time it is not

k i n g planned for use due to its status as an eady access technology and lack of support for

some of the more advanced DOM Level2 operahjons.

2.8. GSS-API

The Generic Secunty Services API, Version 2 (GSS-API), is an interface defining mechanisms to

access standard security services. It is a standard devebped under the lntemet Engineering Task

Force (IETF). GSS-APl offers services similar to JAAS and other Java security interfaces. Of

interest is the fact that it is being proposed as an Intemet standard, and as such is not specrfic to

a particular language. It is a standard that appears to be useful. Due to the better implementation

support for JAAS, however, GSS-API was not selected for the design of this system.

2-9- SASL

The Simple Authentication and Security Layer (SASL) is another lntemet standard '... for adding

authentication support to connedon-based protocols.' (SASL 1997) As such, it relates to both

JAAS and GSS-API. SASL is not specific to a particular implementation language, and supports

standard authentication mecfianisms. Like GSS-API, this technology overlaps witf~ the facilities

provided by JAAS. JAAS was selected to provide authentication services rather than SASL due to

its current implernentation and documentation support.

2.10. XML Parser for Java

The XML Parser for Java is an XML parser implemented in Java by IBM. It is a popular XML

parser and offers support for advanced XML features. This parser is a faim mature product, and

has been favorably received by the industry. Support for features such as DOM Level2, SAX 2.0,

and XML Schema is being developed and is available through an early access release of the

software (some of aiese feahires are still in an incomplete state). This tool has been selected as

the XML parser to be used.

2.11. Log for Java

Log for Java is a bgging facility for Java developed by 1BM and available through its AlphaWoks

program. Powerful support for logging operations is provided. Messages can be categorized and

prioritized. Control over the types of log messages output is accomplished at fun time via

configuration files. The bgging facility has been optimized to incur very little averhead for

processing log statements whose output to disk is not cunently enabled by the logging

configuration. This tool could be used to provide logging support to the document development

environment

2.12. Xeena

Xeena is a Java-baseci XMC document editor from IBM's AlphaWorks program. It parses the DTD

being used and provides syntax checking during editing operations. Xeena provides a Iist of

currently valid elernent choices dunng editing based on the rules in the DTD for the cunent part of

the document Different modes of operating on documents are supported. Although some

customization of the editor is available, it would be useful to be able to more fully control the user

interface of the tool, including which operations are enabled. It is distributed as a command-line

binary tool. Programmatic access to Xeena would allow improved integration with the

collaborative document development environrnent Despite these minor shortcomings, Xeena has

been selected as the document editor for use in this thesis.

2-13. XML TreeDiff

XMLTreeDiff is a tool produceci by the AlphaWorks program at IBM. It provides facilities to

compare XML documents and merge the differences identified. DOMHASH and some advanced

comparison techniques are used in the implementation of XML. Differences are identified using

DOM trees, rather than direct comparison of file contents. This technique provides much more

accurate results since the same DOM tree can be represented by a number of different text

representations (whitespace, entity references, etc. wouM not be processed pmpedy by doing a

simple text cornparison). XUL, the XML Update Language, is used to describe the diffkrences

between documents. Both command-line and programmatic access to XMLTreeDiff is provided.

This toot was selected to provide support for comparing and updating documents.

2.14. ObjectSpace Voyager

O bjectspace Voyager is a Java framework for distnbuted and agent-based computing. It supports

traditional distnbuted systems such as CORBA, DCOM, and RMI, as well as mobile agents. It is a

system being activefy developed and promoted, with new features k ing released frequently.

Voyager is used to provide the mobile agent infrastructure used by this system.

2.15. XML Securiry Suite

The XML Security Suite is a set of XML security-related components from IBM's AlphaWorks

program. It is intended to provide facilities such as element-wise encryption of XML documents

and document fragments, digital signatures of XML documents, access control funcb'ons, and an

implementation of the DOMHASH specification. Cunently , DOMHASH is supporteci but the other

functions are largely incomplete. XMLTreeDiff utilizes the XML Security Suite's DOMHASH

functionality. This product is used to perfom DOMHASH calculations by the collaborative system.

Some of its facilities that are under development are very interesting.

Chapter 3 - Requirements and Basic Functionality

3.1. Design Goals

There were a number of goals that shaped the design of the collaborative environment prototype.

The general intent was to design a prototype system that couM serve as a platform for further

investigation of the collaboration paradigm discussed in the previous chapter. This prototype

could serve as a proof of concept by demonstrating the feasibility of the proposed technologies.

The intention is that the design and impiementatior, of mis system shouM provide a sdii

infrastructure upon which to base future research. The design must therefore be both flexible and

extensible to support the easy integration of new features and refinements.

The architecture and design discussions presented in this chapter include some advanced

features not forrning part of the actual implementation. They are included to highlight useful

features, which could be added at a later tirne. Those features implemented as part of the proof of

concept are outiined later in this paper. Features that could be anticipated for future revisions

should be included in the initial design, even if they were not imrnediately implemented. Such

features could include those expected of commercial productionquality software or desirable

enhancements. An emphasis has k e n placed on identifying and discussing areas likely to

benefit fmm fumer investigation and developrnent

One of the benefits of using mobile agent technology is the ability to minimue the requirements

placed on the underlying communications infrastructure, both in temis of bandwidth and

connection reliability. These features are certainly desirable in a collaborative environment A

design goal of this project was to use agents to minimue both the frequency of interaction arnong

components, as well as the amount of bandwidth consurned by interactions. It should be feasible

to utilize the systeirr over relatively low-bandwidth communications channels or channels which

are not very reliable. Such a goal helps to facilitate disconnected operations. It also tends to yield

"well-behaved' applications, in the sense that they do not overuse relaüvely expensive networlc

resources.

The final goal of the design is in two parts. The first part is that existing tools, Iibraries, and

standards should be leveraged as much as possible. Tools and components are readify available

to implement many common operations or provide the basic infrastructure to utilize advanced

technologies. Little is to be gaineâ or leamed by redeveloping common infrastructure or complex

tools. Most of these utilities and Iibraries have been tested and reviewed by many knowledgeable

individuals, and are Iikely more complete and robust than those which might be quickly developed

in support of a larger project The cost of using 'home-grown' components in terrns of future

maintenance requirements should not be underestimated. The use of extemal components can

thus save time and effort both in ternis of an initial development as well as during the

maintenance portion of the software Iifecyde.

The second part of this final design goal is that tools and Iibraries requiring proprietary interfaces

should be avoided. Wherever possible. existing standards should be adhered to. Interfaces

supporting open standards and protocols are to be prefened. Use of such standards makes the

substitution of alternative implementations of a particular feature simpler. Information about, and

people with, experience using published standards are typically easier to obtain than when

proprietary producl are used. The Iife span of standard interfaces is generaliy longer than that of

nonstandard interfaces, as there are usually alternative implementations available as well as

wider industry support.

3.2. Supported Operations

3.2.1. Agent Creation and Dispatch

Agent creation and dispatch operations provide functionality to create the various supported types

of rnobiie agent and assign tasks to them.

A specialized agent class is available for each task to be perfonned. Each agent supports a

method used to initialize it with its assigned task. Task information is generally expressed as an

ordered collection of URLs to visit, and the callback fundion to invoke at each destination.

Additional parameters required to define a particular type of task Vary according to the type of

agent.

Once created and initialized with a task, agents can be dispatched to begin their work Upon

completion, agents retum to their original host and invoke a callback function to retum their

results. Functionality to allow an agent's owner to check its status and generally monitor it is also

useful.

3.2.2. Agent Registration and Monitoring

Agent registration and monitoring operations encompass the functionality required to allow

administrative and monitoring components to track the actnrities of agents active in the system.

These facilities provide valuable information and statistics when analyzing the performance and

general behavior of the system.

Local agents are those created within the local node. These agents register their existence with

the local system manager prior to departure, and deregister upon their retum. Agents originating

from remote systems and currenüy perfoming sorne task within the execution environment of the

local system are refend to as visiting agents. Visiting agents register on arriva1 and deregister on

departure. The times of these events can be useful for monitoring system performance. Other

useful statistics include: the number of agents created; number of visiting agents; number and

identities of documents requested; and which operations are commoniy perfomied. The ability to

query agent status on dernand is useful. Active monitoring of the status of agents, pefhaps using

a heartbeat-monitoring algorithm, is also beneficial.

Al1 of the information dixussed should be availabie to users or administrators via an interfaçe.

Much of it should al= be available to other components of the system.

3.2.3. Document Management and Storage

The core of the system is the creation, modification, and distribution of documents. Operations

must be provided to create, edit. and store documents. Support for downloading remote

documents is required. Version management faciMies are needed in the fom of tmls to associate

version infomation with documents, as well as compare and rnerge different document versions.

3.2.4. Logging

Logging facilities are an important part of any signifiant system, whether for debugging program

behavior, collecting statistics, or monitoring system status in production. Analysis of log data is

generatly facilitated through the use of some mechanism to consolidate logs fmm various system

components. Flexible logging which supports the prioritization and categorization of log

messages is also highly desirable. The arnount of logging performed should be configurable at

nin time.

3.2.5. Configuration

In general, parameters that control the run time behavior of applications should be placed in

configuration files. These parameters include those that might Vary from environment to

environment, as well as those which enable and disable varbus features. Parameters subject to

change should not be harâ-coded within applkation code. Such facilities help to increase

application flexibility and general usability. It is useful to be able to reconfigure applications dun'ng

execution, especially long running programs such as networlc daernons.

3.2.6. Permission Management

Documents should be protected frorn unauthorized access. Facilities must be supplied to manage

access to documents. Permissions should be baseâ on the identity of the end user requesting

access and any groups in which they are rnembers. The document owner is given control over

who is allowed access to the document (subject to administrative ovemde). The document owner

or other authorized party should be able to assign or revoke privileges for individual users or

groups of users. Permissions include the ability to read, modify, change the ownership of, or

delete documents. The ability to participate in a coilaborative development effort and receive

pushed updates should also be controlled. S o m users may be allowed to download static copies

of documents but not receive updates automatically.

It should be possible to assess whether a user requesting a document has access to it even if the

document owner is not connected. Verification of such permissions requires that the access

permissions for documents be stored separately from the document owner's system. This

information could be shared among al1 participants in a collaborative effort, stored in a central

server, or both. For now, usage of a central server will be assumed, but fumer development

efforts may wish to investigate the reliability benefits of using a supplernental peer-baseâ

distribution of access permissions.

3.2.7. Publishing and Collaboration

Publishing and collaboration operations are those used to distribute documents and document

updates, as well as to çontml participation in a collaborative effort. These operations include

publishing information about new documents to interested parties. Other users must be able to

register their interest in document updates or simply request a copy of the document without

receiving updates. These other usen should be able to specify whether they want the ability to

modify the document, or just view it Facilities to push updates to registered users must be

provided. Support should be pmvided to request any ouktanding updates, or even specific

document portions.

3.2.8. Seaiching

Facilities allowing users to search for particular documents, document versions, or document

fragments (sections or chapters, for example) should be provided. A flexible mechanism for

specifying search criteria shouM be employed, to allow complex queries using combinations of

properties such as author, titie, and version. A directory service is recomrnended to enable this

type of functionality, as useful search facilities can be complicated and time consurning to

implement Once a set of matching documents and their locations have been identified, mobile

agents can be used to gather and return them.

3.3. Description of Components

This section presents the various components of the collaborative environment Figure 1, below,

illustrates the various core components of the system. Significant interactions amng components

are identifid using arrows.

Figure 1 - Component Overview

Figure 2 shows the basic structure and elements of the directory service.

t

. -

Figure 2 - Directory Service

3.3.1. User Interface and Menu

The User lntefface and Menu presents the user with a means to utilue the various facilities of the

system. Use of the User Interface requires mat a successful user authentication occur. Once

authenticated ail actions perforrned by the system are done using the credentials of the cunent

user. This component foms the initial system interface seen by the user. Using the menus

provided, the user can access the document browser as well as dire* invoke various other

operations. It is desirable to use a standard representation for the various operations available to

the user in order to keep the programming of the interface generic and easily extend it to include

new functionality.

3.3.2. Document Browser

The Document Browser is the heart of the user interface to the system. It provides users with

access to the various document developrnent and distribution operations. Existing documents,

both locally available and on remote systems, can be listed and their properties reviewed. New

documents can be created and published. Existing documents can be edited and the changes

made distributed to other participants in the colfaborative effort Updates can be requested,

received and processed.

A cornmon class called doclnfo is shared among the directory service, document browser, and

other system components to encapsulate the useful properties of documents- The information in

this class includes the document author, unque identifier, DOMHASH digest value, date and time

of last modification. size, Dm, title, version, whether it has been published yet or not, and

filename if the document is available on the local system. The unque identifier might be created

by wncatenating information such the author's user identifier, URL of the system creating the

document, and date/time of creation. The contents of these doclnfo objects are stored in the

directory service to provide information about published documents. The document browser uses

the doclnfo class to display summary information about documents, as well as detaiied properties

on request Many other system comwnents and operations use the doclnfo class to identify

documents or document properties.

The Document Browser provides a graphical interface that summarizes information about

documents for users. Essentially, it obtains a collection gf doclnfo objects describing al1 of the

local documents. These doclnfo objects can be assembled dynamically by scanning the available

files or may be created sbtically and kept in persistent storage. This information can also be

requested from the directory sewice to obtain a Iist of published documents. Search criteria can

be used to restRct the set of documents retumed from the directory service to those of interest

Functionality supported by the document browser includes the ability to:

List local and remote documents.

Edit or view the selected local document

Obtain the selected remote document

Create a new document

Publish a new document to the directory service.

Request updates for the selected local document

Obbin a sumrnary of the differences between two documents.

Apply a set of differences to an existing document in order to update it to a new version.

Obtain a list of the detailed properties of the selected local or rernote document

Review history information for the selected local document.

3.3.3. Document Editor

The Document Editor provides a convenient environment within which to create, view, and edit

documents. A third-part' application is used to provide this functionality. Use of an abstraction

layer to separate the system from the details of any particular editor impiementabion minimues

de pendence on specific third-part' products.

3.3.4. Document Comparison and Merge

A third-part' utifity is used to provide document comparison and merge functionality. As with the

document editor, an abstraction layer is employed to isolate the system fmm the details of the

tool in use. This component provides facilities to identify the differences between documents, as

well as to apply a set of differences to a selected document in order to update it to match the

other document. Difference summaries can be calculated locally and sent to a remote node,

which can use the set of differences to update its copy of a document to the cunent version. Use

of these summaries provides a rneans of eficiently distributing document updates.

3.3.5. Documents

A Document in this system is an XML document and its a-ated DTD. The initial system

implementation uses a single DTD. Future expansion will likely add the ability to utilize a variety

of different document types. Therefore, the design and implementation should take this into

accaunt Document fragments, or partial documents, generally exist within the system as

document difference surnmaries. These difbrence summaries are expressed using the XML

Update Language (XUL), an XML language used by the XMLTreeOiff tool.

3.3.6. Local System Manager

The Local System Manager is the coordinator of the system. It provides services to the various

other components. It is invohred in the active management of a local node in the system, and

provides the point of contact for remote nodes. Agent operations and coordination, including

services to visiting agents, are provided through the local system manager. General

administrative tasks are performed through this component as well.

3.3.7. Mobile Agents

There are a number of specialued mobile agents used to cary out vanous remote tasks. Update

agents push document updates to al1 those registered to receive them. Seam agents locate and

retn'eve documents according to user-specified criteria. Directory agents are used to publish and

retneve document surnmary information from the directory service. Permission requestor agents

are used to request access to a particular document from the directory service. Requestor proxy

agents are used by the directory service system to request access to a document from the

document owner on behalf of another user.

3.3.8. Third-Party Cornponents

Several third-party components are used by the system to provide useful functionality- It is

important to keep the implementation of the system flexible, so as not to couple the

implementation too tightly to a specific tool. In general, the system should not need to care what

tool is k i ng used to implement an operation. This separabion is typicalty obtained by empkying

an abstraction layer for operations using isolating the system from the tool in use. The system

operates in tems of the abstract operations. The abstraction layer handles the details of how to

use the tool to accomplish the operation. By abstracting from the specific tool, it becomes

possible to easily add and remove different components which perform the same types of task.

3.3.9. Document Storage and Management

The document storage and management interface of the system is used to manage the local

storage of documents. Functionality required includes managing the versioning of documents,

archiving old versions of documents, and coordination of document update fragments. The

interface must also be able to manage updates to local documents which have not k e n

processed yet, as well as those which require manual intervention to resolve versioning conflicts.

In general, document versioning is accomplished using the DOMHASH [DOMHASH 1999) value

of the document It is also useful to associate symbolic version tags with a particular document

state. Copies of old versions of documents should be stored in an archive for later use in

preparing and applying document updates.

Although some consideration has been given to creating a directory hierarchy for each document

in the system to accommodate the various history and update files, it seerns more reasonable to

use a set of shared repositories for these things. Repositories can be created for pending

updates, document archives, outgoing updates, and updates which require manual intervention to

~ P P ~ Y -

3.3.10. Users and Groups

Permissions within the system are based on user identity. Support for permissions and the Java

Authentication and Authorüation Service (JAAS), an extension to the Java security rnodel, can

provide user identities. Traditional Java security was based on the author of the code being

executed, rather than the identity of the user running the code. JAAS extends this rnodel to

include both types of security. It also provides a standard way to access a variety of standard

security mechanisms. The concepts of Principals and Groups, as well as credentials and access

controls, are provided by JAAS. Principals represent a name associateci with a user (the concept

being that a single user can have multiple user narnes associated with them, and a Principal

represents a single user n a m or its equivaient). Credentials are verification of a user's identity,

and can include X509 certificates and public keys, among others. Support for groups of users is

also provided. These facitities can be used to authenticate and authorize users of the system.

User credentials are delegated to mobile agents who perfom remote actions on their wner's

behaff. This delegation allows remote systems to make access decisions based on the user

controlling an agent

3.3.1 1. Administration

The administration component supports management of the directory sewice and general system

configuration. It can provide access to monitoring information, such as agent status and activities.

Historical information can also be provided, including statistics and logs. The administration

interface can also be used to ovemde default systern behavior when necessary. Users must have

administrative access rights to utilize this interface.

3.3.1 2. Logging

A centralized logging facility is an important feature. This facility should be accessible to local

components and visiting agents through the local system manager. A standard logging package

is useful to provide flexible and configurable logging. Individual components rnay also use the

logging facilities independently for debugging purposes.

3.3.1 3. Directory Service

The directory service is used to share inbrmation about published documents, as well as to store

access permission data for documents. Document information is stored based on document

identifier with the vanous document properties containeci in the doclnfo dass stored as attributes

of the entry. Standard JNDl searching facilities may be useful to empby when searching for

documents. Initially, the directory structure is a simple Iist of documents and their properties.

Future investigation may explore more sophisticated stnicturing, such as an arrangement based

on document author and author's group, or the document subject

Access permissions for documents are also stored with the directory service. By default, only the

owner of a document has the authority to allow other users to have access to the document This

default constraint can be changed when publishing a document or at a later time by specifying the

additional access permissions to allow. Permissions include the type of access (read onfy or read

and write permissions) as wetl as whether registration for updates is allowed. Only usen given

write and update registration permission are allowed to publish updates to a document If

permission is not given to register for updates, simple downloads of the published document are

al1 that is allowed. The user will not receive updates, and cannot publish their own updates. It

should be noted that users can modify documents iocally regardless of whether they have wnte

access, but they will not be alkwed to push their updates to others. Group membership is

evaluated when assessing a user's access permissions. If permissions allowing a user access to

a document have not been explicitly granted, a request may be sent to the docurnent owner to

explicitly request access. The document orner may then accept or reject the request If the

application is accepted, the requestof s access rights are updated in the directory service and the

user is then free to download the document.

One drawback of using a directory service as a centralized repository for document and access

contml information is that it represents a single point of failure in the system, This issue is a

common cnticism of directory services. To alkviate such problems, many directory senrices

support replication, in which a set of directary services duplicate each other's information and

automaücally propagate updates made to one diredory service to the others. \hMh the addition of

automatic load balancing technologies, diiectory service replication can allow a cluster of different

directory services to appear to be a single service. The members of the cluster can often be

geographically disperseci to further impmve reliability. It is expected that the use of replication and

load balancing techniques could be used to alleviate potential problems with the use of a

centralueci directory senrice in this system.

3.a Required lnfrastrucfure

Development of this system is bas& on the Java 2 PlatfOnn (JDK 1.2). Java was chosen as the

implementation language for several reasons. Many of the available packages for working with

XML documents are written in Java. Standardued Java packages are available to support much

of the required infrastructure of a distributed system and work with standard protocols and

algorithms. Java is also one of the most çommon languages used for mobile agent development

A Java 2 run-time environment is required in order to use the prototype system. ObjectSpace

Voyager 3.2 is used to provide mobile agent support. A numûer of XML tools from IBM are also

used. The XML Parser for Java Version 2.0.15 is used for XML paning support Xeena 1.1 is

used as the document editor. XMLTreeDiff is used for document difference calculations and

merging updates. A working TCPIIP stack and network connectivity are required for remote

operations.

3.5. Usage Scenarios

This section describes a series of cornmon tas& and how they are implemented by the system.

The intent is to provide a clear description of how these tasks are perfomied.

3.5.1. Create a new document

lnitiated from document browser or user interface.

User is prompted for document name and directory if necessary.

The document management interface is invoked with the document name, location, and

DTD to use.

The document management interface creates the new (ernpty) file and a doclnfo object to

represent the document

The Xeena editor is then invoked on the specified file.

The user edits and saves the file using Xeena.

Once Xeena is closed, the doclnfo object for the document is updated.

If the document is empty (nothing done to it by the user), then the file is deleted and the

doclnfo object is destroyed.

3.5.2. Edit a local document

1. Initiated from document browser.

2. The doclnfo object for the document to be operated on is provided by the document browser

when initiating the operation.

3. The document management interface is used to archive the current (existing) version and

update the doclnfo object

4. Xeena is invoked on the specified file.

5. The user dits and saves the file using Xeena.

6. Once Xeena is closed, the doclnfo object for the document is updated.

3.5.3. Publish a new document to the directory senrice

1. In itiated from document bmwser, which provides the docl nfo object for the document

2. A publisher agent is created and tasked with publishing the document

3. The agent is dispatched to the directory service.

4. The document information is transfened from the doclnfo object camed by the agent into the

directory service if the user has permission to publish documents. If the user is not allowed to

publish documents, the request is refused.

5. The agent retums to its host with the results of the operation.

6. The status information in the local doclnfo object is updated as necessary.

3.5.4. Publish a document update

Obtain the doclnfo object for the document that has been updated.

Store the updated version of the document in the archive.

Retrïeve the doclnfo object for the last version published.

Use XMLTreeDiff to calculate the changes from the last published version of the document to

the new version.

Package the differences and other relevant information.

Create an update agent to update the directory service with information concerning the new

update (modification date and tirne, new size, etc.) and distribute the update package to al1

partici pan ts.

Dispatch the update agent to the directory service to publish the new infomiation. If the user

does not have permission to publish updates, the request will be refused.

Obtain a Cst of participants in the collaboration who have registered to receive updates.

9. Once the update agent retrieves the Iist of participants from the directory service, it visîts

each one in tum to pmvide the document updates.

10. Wait for the agent to return.

3.5.5. Browse local documents

1 . All appropriate docl nfo objects are collectecl, either from a repository or dy namicaliy .

2. The collection of objects îs passed to the graphical interface.

3. The selected attributes of each doclnfo object are added to a seledion lis: This initialues the

interface.

4. Buttons are provided to:

Edit or view the selected document

Create a new document

Browse the locally avaîlabk documents.

Obtain the detailed properties for the selected document

Publish the selected document or distribute local changes to others in the collaboration.

Check for updates to the selected document

Compare the selected document with another.

Manage access permissions for the selected document

3.5.6. Browse remote documents

1. Ail appropriate doclnfo objects are collecteci from the directory senrice.

2. The collection of objects is passed to the graphical interface.

3. The selected attributes of each doclnfo object are added to a selection list This initializes the

interface.

4. Buttons are provided to:

Register for collaboration on a document (Le. register to receive and / or produce

updates).

Download the selected document

Obtain the detailed properties for the seiected document

Manage access permissions for the sekcted document.

3.5.7. Request access to a document

1. Get the doclnfo object for the document of interest

2. Create a requestor agent

3. Give the requestor agent the doclnfo object and requested access permissions.

4. Dispatch the requestor agent to the directory service.

5. Once the agent arrives at the directory service and submits the request, the documents

access permissions are consuttecl.

6. If the document permissions albw the requested access, the requestor is registered with the

document's collaboration list as appropriate. The agent then returns to its host with the

results.

7. If the document permissions do not albu the requested access, a request proxy agent may

be created and dispatched from the directory service to the document owner to explicitly

request the desired access.

8. When the request proxy agent arrives at the owner's system, the owner is notified of the

request (either immediately or by suspending the agent in a holding area until the owner

checks for requests).

9. The owner eventually approves or rejects the request.

10. The request proxy agent retums the response to the directory service.

11. The directory service updates the requestor's status as appropriate.

12. The response is retumed to the requestor.

3.5.8. Receive a document update

1. lnitiated by the anival of an update agent The update agent cames an update package

which includes doclnfo objects descnbing the 'old' (previous) and 'new* versions of the

document k ing updated, as well as an XUL file deswibing the changes to be made.

2. Vem the credentials of the agent

3. Check if the 'old' version of the document update package is available locally.

4. If the current local version is the *oMm version, check the local update policy.

a) If the local update policy allows updates to be applied automaticaliy, appty the update

package.

b) Otherwise, put the update in the holding area and optionally signal the user that a new

update is available.

5. Else (the local version is not the 'oldm version),

If the 'old' document is available in the archive, apply the update to the archived version,

yielding a full copy of the 'ne& document

Eise request a full copy of the 'new' document from the originator of the update.

Calculate the diflerences between the 'new" document and the local document

Either merge the two documents together to fom a copy of the local document with the

updates, or place the new set of updates in the holding directory (depending on local

update policy).

3.5.9. Request and receive a new document

1 - ldentify the document to receive (obtain its doclnfo object)

2. Request access to the specified document (see above).

3. Once access is approved, create a document download agent

4. Task the agent with obtaining the document (along with any criteria, such as a version to

request) and give it the URL of the document owner as its primary destination. Also provide

URLs for other collaborators on document if available in case document owner is not

availa ble.

Dispatch the requestor agent to get the document The requestor will first try to contact the

document owner. if the document owner is not availabie, traverse any altemate sources

(other collaborators on the document) until the document is found or no options remain. If

none remain, retum failure.

Requestor retums with document attached on success.

lnstall the new document locally- (Register doclnfo object locally, archive initial version, etc.)

The following steps could be used to accomplish this task and reuse existing fundions:

a) Request that the document management interface create a new empty doc with the

specified properties.

b) Perfomi an update with the full document text

Notify the user that the document is available.

3.5.10. Compare two local documents

t . Identify the two documents to compare by providing their doclnfo objects.

2. Retrieve the filenames of the two documents from the doclnfo objects.

3. lnvoke XMLTreeDiff on the two files to generate a difference summary.

4. The difference summary can be used to update one of the documents, or used to prepare an

update package for distribution.

5. An update package consists primarity of the two doclnfo objects (used to identify the original

and modifiecl documents) and the difference summary (expressed in XUL by XMLTreeDiff).

3.5.1 1. Manage access permissions for a document

1. Receive a permission request proxy agent

2. Assemble relevant information about the requestor.

3. Signal the user or place the request in a holding area until the user checks for new requests.

4. User can review available information and choose to accept or reject the request.

5. The result is retumed to the directory service.

3.6. Security Commenfs

The basic responsibilities of the security infrastructure of this system are to:

1. Ensure that documents can only be access by authorized users.

2. Protect the integrity of documents and information.

3. Protect the confidentiality of documents and information.

The first point implies support for authentication of users and an access control mechanism to

authorize access is in place. The second point implies that digital signatures be employed to

detect changes made to documents. The third point generally invohfes employing encryption and

file system permissions to ensure that only authorized parties can access the data.

The Java Authentication and Alrthorization Service (JAAS) can be used to provide facilities to

authenticate and authorüe users using standard cryptographie tools, such as certificates and

public key cryptography. By combining the services of JAAS with a centralized policy server

(located with the directory service), users can be identified and their access rights checked from

any of the nodes in the system. The Java Cryptography Extensions (and possibly Java Secure

Sockets Extension) can be used to provide encryption services, including message signatures,

encryption of files, and encrypted communications channels.

The Java 2 Platforni allows developers to create customued access permissions. Applications

can require that their associated user possess the specified permissions for the opefation to

complete successfully. These facilities can be used to create new permissions goveming:

Read access to documents.

Write access to documents.

Ability to receive document updates.

Ability to mate and distribute document updates.

Who has the ability ta manage the rnembership in a collaborative effort

Who has the ability to change document access permissions.

These new permissions can be used to provide effective and efficient access control fe~tfktions.

One of the important benefits of using some of the standard Java security interfaces is the ab i l i

to keep the security infrastructure flexible and easiiy adapt it to changing requirements. In

addition, the security intedkes are generaliy designed to alkw new security mechanisms and

providers to be added to the system easity.

The document directory could be extended to include tracking user identities and associated

credentials, such as certificates. Access rights possessed by the user for each document they are

collaborating on cou@ be tracked as part of the list of document participants. Agents would carry

the certificate or other credentials of the user they teptesent as they carry out operations,

providing accountability and a way to track their origins. Access decisions can be based on an

agent's credentials, and thus the identity of the end user making the request Finwrained access

con trol decisions can be made using customued security permissions, as described above.

Data camed by agents can be encrypted for the end recipient using the recipient's public key,

retrieved f m n the agent's certificate. This would help to prevent the data from being viewed by

others during transit Further protection usirig IPSec- or SSL-based encrypted tunnels for agents

to travel through could be provided. This would protect the agents themselves from tampering, in

addition to the data. Although such a step would render encryption of the data payload somewhat

redundant, it should be kept in mind that an agent may travel to a number of other hosts before

retuming to its point of ongin. In many cases, it may be prudent to ensure that none of the

intemediate hosts can access the agent's data, while still protecting the agent from third parties

using encrypted tunnels for travel.

In some environments, it may be considered unnecessary or too çomputationally expensive to

make such extensive use of encryption. In such situations, digital signatures can be u s d to venfy

that data has not been tampered with. Sensitive document prtions could be encrypted using the

facilities of the XML Secunty Suite if protection of the entire document was unnecessary. \NSth the

exception of IPSec, al1 of these security rnechanisms are supported directly by various Java

packages, as described in the previous chapter. lPSec is a ber-level facility that requires a

supporting network protocol stack

3.7. lmplemented Featums

The functionality presented is intended to describe a reasonably complete implementation of a

collaborative document development system. Sorne of the features describeci are not

implemented for the initial proof of concept system. Specifically, security features such as

encryption, authentication, and access control do not form part of the initial developmnt effort.

Searching operations are not implemented either. The intention is to implement sufficient

functionality to support the usage scenarios described earlier in this chapter (with the exception of

security and possibly seamhing funcb'onality). It is feit that this level of functionality should suffice

to demonstrate the concepts k i n g explored. Tools to implement the security and searching

operations have been identifid and described in this chapter, and should prove relatively simple

to implement at a later tirne if desired.

Chapter 4 - Design

4.1. General Design - Techniques Applied

Three general design techniques were applied when implementing the prototype collaborative

document environment These design approaches are dexribed in greater detail by design

pattems texts, such as [Gamma et al., 1994). The core Java libraries u t i l ~e a number of these

patterns, and they were found to be beneficial when applied to this design.

4.1 .1. Model 1 View 1 Controller

The Model / Vrew 1 Controlkr (MVC) pattern is used to separate the formatting and display of

data from the underlying data model, and the operations performed upon it Java's Swing libraries

support the use of MVC in many of its classes. Of particular note is the use of the JTable ciass.

This class provides a way to display a table of data, and was used as the basis of the document

browser component

The JTable class can be used to display a simple data set by loading the data to be displayed

direcüy. Of more benefit is the ability to specify a separate data mode1 class which is responsible

for maintaining the data set being displayed. The d e l class irnplements an interface used by

the JTable class to obtain the data to display. This interface allows the mode1 to selectively

display only certain parts of the total data set

In the case of Vie document browser, the data model stores a Vector of doclnfo objects. By

implementing the data tmdel interface, this class can cause the table to display data directly from

the underlying doclnfo objects without requiring that a separate set of data be maintained for

display. The model has complete control over what fields are provided for display. This contml

allows summary information from each doclnfo object to be displayed. M e n the contents of the

model are updated, the graphical JTable object can automatically update itself to refiect the

changes. The d e l contmls the dispiay of table headers and advanced capabilities such as

displaying images to represent data can also be utilized.

To summarize, the JTabie class provides a window for viewing a custom data structures. Fieids

within the data structure can be selectively shown or hidden. The underiying mode1 controls how

each field is displayed- The data d e l is not concemed with the display of data, except for

implernenting the basic d e l interface. Data can be changed in the d e l , and the changes will

be propagated to the display. This dass and design pattern in general can add a great deal of

flexibility to the dispiay of custom data, while greatly simplifying the mechanics of pmviding such

a display.

4.1.2. Publish / Subscribe

The Publish / Subscribe mode1 allows for flexible interactions among loosely wupled

components. The basic concept is useful when a particular object must notify one or more other

objects of particular events. Each subscriber must implement a common interface, which

specifies callback methods used to receive the event or events of interest Subscribers invoke a

registration method in the publisher object. This method adds them to a list of event Iisteners,

which are notified when a new event occurs by invoking the appropriate callback method.

Different types of events can be signaled using either different callbacks or different arguments to

a standard function. The sarne basic facilities and techniques are used for the different evenk,

and the number of subscribers k ing supported does riot affect how the events are

communicated.

Publishers and subscribers are only loosely coupled through the use of a standard interface.

Many different types of objects can be used as subscribers. The publisher object does not have

to be aware of al1 of the different types of subscriber, as the oniy communication is through the

subscriber interface. Typically, the subscriber interface is relatively simple. Therefore, it is easy to

add support for a particular publisher to an object The original publisher does not have to be

modified to support the new subscriber's underlying type.

This design pattern is useful for flexibty supporthg varying numbers of clients who are interested

in parb'cular events, especially if the clients are of various othewise unrelated types. Publish 1

Subscribe can be used to avoid cyclic referenœs and tight coupling of objects even when there is

only a single subscriber.

The document manager and data mode1 classes utilize a publisher 1 subscriber relationship to

communicate. The document manager serves as a publisher that announces events such as the

creation of new documents or updates to existing ones. The data rnodel subscribes to these

events, updating its data structures to reflect the changes. The data mode1 then notifies the

JTable object of changes that need to be displayed, using a similar mechanism, but in the role of

publisher. Events are reused by different parts of the document manager implementation. For

example, the creation of a new document and the download of a remote document both cause a

new document event to be generated. The same infirasttucture in both the document manager

and data rnodel is employed to create and process the event Edits, updates, and publishing of a

document al1 generate a document change event, which is part of the same subscriber interface.

4.1 -3. Interfaces and Wrappers

The third technique employed in the design of this system was the use of interfaces and wrappers

to decouple the system from the implementation details of particular components. These

techniques are also useful when it may be desirable to substitute different implementations of a

particular solution during the life cycle of a program, or even at nin tirne. An interface is a

mechanism specifying the operations supported by its implementers. It is a 'Iightweight"

mechanism, in that no particular implementation is associated with an operation. By interacting

with objects using only interfaces, any dass implementing that particular interface may be used

without tequiring changes to the code utilizing the interface.

Wrappers are very similar to interfaces. Interfaces may be used in the implementation of

wrappers. A wrapper allows a component or tool to be accessed using an altemate mechanism

from the normal one. For example, a wrapper rnay provide a set of methods implemented using

the facitities of the wrapper component Typicalty, the processing perfonned by a wrapper is

minimal. The basic intent is to translate calls to the wrapper into the appropriate underlying

invocations on the underlying objed The wrapper acts a façade, providing an altemate interface

to a component which can be used by the rest of the systern- Wrappers are typically employed to

adapt and reuse existing tools.

Several instances of the application of interfaces to add tlexibility to Bis design have been

described above. In addition, a combination of interfaces and wrappers are used to good effect in

order to interface with third party tools. These tools are used to provide enhanced functionality to

the rest of the system. It is anticipated that there rnay be a requirement to also support other tools

in the future, either as replacements or as alternatives to the original selections* In order to shield

the rest of the system h m the details of which utility is k i ng used, and to adapt existing tools to

the purpose, a combination of standard interfaces and wfappers is employed.

Third party tools are employed for editing documents and for preparing or applying updates to

documents. It is expected that altemate tools might be desired for these functions. It should be

possible to reconfigure the system to use these new tools with minimal impact, and ideally at nin

time. In order to provide this functionality, simple interfaces were developed which specify how

edit and update operations are to be invoked. All a-s to this functionality by the system is

camed out using these interfaces. Wrappers are then employed to implement ttie interfaces and

invoke the underlying tools in the appropriate rnanner. For example, the wrapper created for the

Xeena editor implements the 'edr interface. The wrapper simpiy extracts the required

information from the method invocation, and runs Xeena with the appropriate parameters. Other

editors could be su bstiMed by simply providing and registefing an appropriate implementation of

the interface.

4.2. Basic Components and Infrastnrcture

4.2.1. Document Repositories

Document repositofies are used to store and retrieve files as part of a collection. These files c m

be documents or update packages. Basic operations supported include storing, rebieving,

removing, and listing documents. Muîüple revisions of each file can be accommodated and

tracked. Files in a document repository are identified by the document identifier of the document

or update package they represent Diirent revisions of a particular document are identifiecl by

their DOMHASH digest value.

The general concept of document repositories lends itself to several possible implernentations,

including both collections of simple files as well as databases. This design employs collections of

files in a single directory for each repository instance. Files are stored using randorn filenames, in

order to accommodate different revisions of the same file, or files with the sarne name but from

different directories. Mappings are maintained to ûack which repository files are associated with

each document A database implementation could be accommodated with liffle impact on the rest

of the system.

The document repository design consists of four main components. A base class,

basicRepository, provides the main infrastructure for the repository implementation. Operations

are perfomed on XML documents and doclnfo objecti. The basicRepository class relies on a

helper class called repDirectory, which maintains the mappings of files within a repository

directory to documents. Operations to provide flexible searching and retrieval capabilities are

implemented by these two classes. These capabilities include identifying al1 revisions of a

paRicular document, as well as the oldest or most recent revision. Exact matches for a particular

revision are also supported.

Document mappings managed by the repOirectory class are stored in a hash table. These

mappings are persistecl to disk using Java's object seriakation capabilities. Each entry in the

hash table represents the data for a particular document identifier. Entries consist of a vector of

doclnfo objects, each of which describes a specific revision of a document The local filenarne of

each doclnfo object is set ta its assocMed file in the repository, allowing efficient retrkval of

specific document revisions by searching the repository mappings. Much of the searching

capabilities of the document repositories are based around the facilities of the repOirectory class.

Two specializations of basicRepository are used to pmvide task-specific operations based on the

facilities of their superclass. These are the classes historyRepository and updateRepository.

Class historyRepository pmvides functions for tracking revisions of a document Cornplete XML

documents are stored as fiat files. In rnany ways, the functionality provided is similar to that of a

revision control system, aithough storing the complete text of each document is somewhat

inefficient for that purpose. The main intent of this class is to store snapshots of each published

revision of a particular document, for use in preparing and applying updates. It is also used for

tracking local edit histories for documents, or unpublished document revisions. The use of this

class for the latter purpose has not k e n fully exploited at this time. The operations supported by

this class include storing documents, as well as retrieving the oldest, most recent, or specified

revision of a particular document.

The sibling of historyRepository is updateRepository, which stores and manages update

packages. This class is typically used to queue update packages waiting to be pmcessed.

Updates packages are broken into two files each. One file is a flat file containing the update

document itself. The second file stores the update package header as serialùed objects. The

header file is narned the same as the update document file, but with an extension of '.hdf.

Operations to retrieve the oldest, most recent, or al1 pending updates for a particular document

are provided. New updates can be stored, and processed updates rernoved. Updates are

typically processed one at a tirne, beginning with the oldest

4.2.2. Document Directory

The document directory provides a œntralized facility to track published documents. In addition to

tracking documents, rnembership Iists identifying al1 users who are coilaborating on each

document are rnaintained. An LDAP directory servîce couM be used to provide much of the basic

fundionality required. It was decided to instead impiement a customized document directory.

There were several reasons for this decision. There would be a requirement for documnt-

specific processing to interpret the data in a directory service. Although an LDAP directory could

forrn part of the underlying implementation of a document directory, custom processing and

communication with agents would still be required. The installation and configuration of an CDAP

directory service was felt to be a rather t i m n s u m i n g activity of Iittle direct benefit to the design

of this system. m e data storage and tracking requirements for this system's directory were of a

simple nature compared to that which LDAP directory services typically manage. The core

functionaIity required to track documents exists within the repDirectory class. Reuse of the

repDirectory class provided the core of a document-aware directory service, or document

directory. S o m basic capabilities such as agent pmcessing and tracking of participants in a

collaboration were added to wmplete the required functionality.

The basic purpose of the document directory is to track al1 published documents, updates to

these documents, and those interested in each document Operations required to fully implement

these functions include: publishing a new document; listing users invoived with a document;

identifying the owner of a document; registering for a collaboration; and listing al1 documents.

Othzr options such as removing a user from the collaboration k t for a document and retracting a

previously published document are also desirable, but do not fom part of the prototype design.

The document directory maintains document details and collaboration membership information

using two separate data structures. The two types of data are logically separate, and existing

classes could be reused with no modification to provide the document detail tracking capabilities.

It was felt that the beneiits of integrating al1 data in one structure were outweighed by the

minimization of impact on existing components, as well as the advantages of reusing existing

classes. Document owner and membenhip data are basically static, while documerit information

can change relativeiy frequently as documents evolve. Sepration of the two types of data helps

to minimue duplication or complexity which would arise from merging al1 functionality into a single

representation. It should be noted that this separathri is not visible to clients of the document

directory, as the directory class managing the two data stores presents a unified interface to

them. The details of manipulating the two classes which manage the data, repDirectory and

colla bTa ble, are encapsulated by the main directory class, docDirectory .

Users who participate in a document collaboration are identified in the document directory using

the URL of their amputer. lntegration of the Java Authenkation and Authorkation Service would

allow for more accurate tracking of users in this case. The collabTable class is quite similar in

basic design to repDirectory. A hash table is used to store membership data, with an entry in the

table for each document A vector of participant URLs is maintained for each document Object

senalization is used to maintain data in a persistent rnanner. The docDirectory class ensures that

the senalized copies of both the repDirectory and collabTable objects are updated following any

changes. Registration for a collaboration is implicitly carried out when a client requests a

document for download or publishes one. The document owner is identified as the first user in the

collaboration list. Agents used to push updates to participants update the document infornation

stored in the directory service. When providing a list of published documents to clients, the most

recent revision of each document is presented. The document directory object is exported to a

standard URL using Voyager in order to allow agents to travel to it and communicate locally.

Remote communications are also possible.

4.2.3. Agent Infrastructure

Voyager provides very flexible and easy to use facilities for developing both distn'buted and

agent-based systems using Java. In order to promote reuse of code and further simplify the

development of different types of document-related agents, a cornmon base dass and several

helper classes were designed for this project Class docAgent serves as the agent base cbss. It

provides scheduting and travel control logic which can be ieveraged by subclasses, which are

then responsibk for application iogic, rather than agent mechanics.

Mitsubishi's Concordia agent system uses the concept of agent 'itineraries." [Walsh et al. 199q

Itineraries are essentialiy tables of destinations to which an agent is to travel, along with the

callback fundon to invoke at each point As Voyager, like most Java-based agent systems, is

also based on callbacks, it was felt that the itinerary abstraction was a useful tool to use in

developing this system. Two classes were designed which provide basic itinerary functionality.

These classes, itinerary and itineraryElem, are used by the docAgent class and its subclasses to

specify destinations and operations to be perfomied. The itinerary class contains a collection of

itineraryElem objects. Each itineraryElem object specifies a destination as a URL, a callback

function to invoke, whether the callback function requires any arguments, and an Object amy

containing any arguments to be passed to the callback.

The docAgent class contains an itinerary object specifying the tasks to be performed. Subclasses

of doagent typicaliy populate the itinerary with tasks during construction. One of the interesting

abilities of agents is their ability to control and change their acüvities in response to events that

occur. To that end, agents may adapt their itinerary at run tirne. This ability is used in a nurnber of

situations by this system. For example, when distributing updates, an agent's initial task list is

simply to visit the document directory, and then return home. While at the document directory, the

agent obbins a list of participatïng users. The agent then updates its ih'nerary to visit each of the

users to deliver the update, prior to returning home. More advanced uses of this algorithm could

include resequencing the order in which clients are visited, in order to exploit locality of client

clusters and cuvent network conditions. Advanced error handling and recovery techniques couM

also leverage this capabiiity. These decisions can al1 be made without requinng the agent to

contact its home system, optirniring use of bandwidth and facilitating weak (low bandwidth or

poor quality) network connections for the host from which the agent originated.

The basic mechanics of processing itinerary elements and invoking agent travel methods frorn

Voyager are encapsulateci within the docAgent class. This encapsulation serves to simplify agent

subclasses, as well as helping to isolate them from Voyager-specific processing. Once the

itinerary for an agent is set, it can simply invoke the travel() method of docAgent to piocess the

next itinerary element and tmvel to a new destination.

A specific design decision to note at this point is the use of URLs to identify destinations. Voyager

supports the use of both string URLs as well as actual destination objects when specifying where

to travel. The use of destination objects, obtained through naming service lookups, is often more

convenient for processing. M e n URLs are used, agents must typically then invoke naming

service lookups upon arriva1 in order to access the local object which it to be operated on. Object-

based travel does suffer from some drawbacks, however. Specification of URLs as destinations is

typically easier to understand and is more generic to other agent systems. In order to effectively

use objects as destinations, casting from the generic Proxy class used by Voyager to the specific

object type being manipulated must be perfomied. It was felt that this casting, required with any

narning lookup, shouid be localized to the end object which is actually rnanipulating it This

casting requirernent was felt to conflict with using a common base class for encapsulating travel

and scheduling activities, or at least add more risk to the approach, as there was an increased

chance of performing incorrect casts during the life cycle of the systern. Although a narne lookup

is required using either approach, by deferring the lookup until the agent had achially arrived at

the end system, there were some performance and bandwidth consenration gains to be obtained.

Finally, some additional flexibility is realoed by using URLs instead of objects for spesifying

destinations, as the agent can select a different object to communicate with at the site, or change

the order in which objects are used, wiaiout requiring changes to the underlying xhedule of

actiwities. Only the application logic requires adaptation in this case.

4.2.4. Core Data Elernents

There are three basic data eiements utilüed in this system. All other data structures and

operations are based on these three elements or their manipulation. The first of these elements is

the doclnfo class. This class represents the summary information for a particular document This

information indudes the filename, size, author. titie, unique identifier, DOMHASH digest value,

modification time, and version tag information for a specific document This class is used in most

operations. It is used to identify actual documents, and thus sentes as a convenient 'key" to

documents. A doclnfo object identifies a specific version and copy of a document CIass doclnfo

is basically a passive object, in that it serves as a container for data, but perfomis very little

processing on that data. Aside from accessor funcüons, the only other operations supported are a

cornparison function to detemine whether another doclnfo object describes the same document

and a deep copy method to replace a doclnfo abject's contents with the data contained in another

object.

Generation of doclnfo objecti, as well as the manipulation of doclnfo object contents, is normally

controlled entirely by the document management system component Part of this responsibility

includes ensuring that document identifiers are unique within the scope of the entire distributed

system. The mechanism must be capable of funcüoning while disconnected from the network in

order to allow users to create new documents while offline. The initial mechanism for constnicting

these identifier's consists of cornbining a random string with the local host identifier at time of

creation. Although not guaranteed to be unique in al1 cases, chances of a duplicate idenhifier are

sufficiently remote for this prototype. Use of public key ayptography might provide a more robust

mechanism for uniquely identifying documents, by cornbining a user's keys with time and possibly

host information.

The second elernent is the Document class. This class is achrally a standard Document Object

Modei (DOM) interface which defines an XML documemt Specific XML parsers, such as the XML

Parser for Java, provide implementations of Ulis intedace and its operations. Processing is

nonnally done using the standard Document interface, however. The Document interface is used

by this system to manipulate XML documents in rnemory. Documents are processeci using the

functionality of the XML Parser for Java. fhese operations include constnicüng doclnfo objects to

represent documents dy namically , as well as storing, retrieving , and u pdating documents.

The final core element of the three is the updatepkg class. Although it is in reality an

encapsulation of doclnfo and Document objects, this cfass is fundamental to much of the

operation of the system and so is worth discussing here. The purpose of class updatePkg is to

encapsulate the differences between two versions of a particular document. To accomplish this

purpose, updatePkg contains two doclnfo objects and an update Document The two doclnfo

objects form the header of the package, idenüfying the new and previous versions of the

document to which the update pertains. The update Document contains the differences beniveen

the two and can be used to update a copy of the old version with the new changes. All document

updates are stored and communicated as updatePkg objects. The update tool is responsible for

generating these objects, as well as for processing them.

4.3. Specific Components

The local manager is represented by class localMgr. This dass is responsible for the basic

operation of the system. It allocates and initialues the other key system components such as the

user interface, document manager, and agent manager. It is responsible for general

housekeeping and maintenance operations. The initial system design requires a fairly minimal

implementation of localMgr that processes and applies basic configuration parameters, initialues

the rest of the system, and establishes relationships arnong the other components. m e n the

application exits, localMgr performs basic cleanup tasks such as shutüng down the Voyager

environment

Class MainMenu provides the initial user interface into the system- It consists of a simple window

with buttons to activate other cornponents of the system. Operations are supported to cteate new

documents, access the document browser, invoke administrative options, or exit the system. The

administrative options are intended for a future update to the system. MainMenu is the launching

point for the test of the user interface, which is primarily pmvided by the document browser.

Initialization of the document browser, including providing a referenœ to the document manager

object to interact with, is the responsibility of class MainMenu.

The docBrowser class implements the document b m s e r component The core of this class is a

table of document sumrnary information, obtained frorn a collection of doclnfo objects. Menus and

buttons to perforrn various operations on documents are providecl. These operations are typicalty

camed out through the browser's associated document manager object. The document browser

is tightly coupled to the document management object. It is also loosely coupled to the document

data model, which interacts with the JTable object encapsulated within the document browser.

The document browser operates in two modes. Local mode is used for operations on documents

available locally on the system. These operations, although based on local documents, rnay

involve the use of agents to perform remote functions involving these documents, such as

pushing local updates to others or publishing new documents. The other supported option is

remote mode. Rernote mode is used for operations on documents not necessarily available on

the local system. Typically, local mode is used to display the documents available in a directory

on the local system, mi le remote mode displays the collection of documents accessible via the

document directory. Operations which do not require an existing document to operate on, or

which can be applied to both types of document, are available in both modes. Other operations

are enabled or disabled based on the cunent state. Operations supported in both modes include

creating new documents, viewing detailed document properties, accessing a list of fernote

documents from the document direcfory, and browsing a new local directory. Downloading a

selected document is the only additional operation available in remote view. Local mode does not

allow documents to be downloaded, but instead allows the user to edit documents, publish new

documents, push updates, request any updates not received, and appiy updates.

The data mode1 object is impiementeci by class doclnfoTableModel. This class extends the basic

irnplementation of bbie interface methods provided by class AbstractTableModel. The data

model serves as the main run time data collection of the system. The core of doclnfoTableModel

consists of a vector of doclnfo objects. The class implements the document event Mener

interface to receive and process document events from the document manager. Interactions with

the JTable object consist of providing table headers and individual cell contents to the table on

request A vector of doclnfo objects is indexed into in order to provide the specific field requested

by the table in order to identify cell contents. The data mode1 publishes events to notify the JTable

display of changes that occur. This pushing of events has the conceptual effect of forwarding

event notifications from the document manager to the user interface.

The document manager is responsible for controlling al1 document processing. This responsibility

includes rnanaging the repositories, handling and application of updates, implementing operations

invoked from the document browser, and interfacing with the agent manager. lt is the core of the

document system. It is used by virtually al1 of the other components, or uses thern to perform its

own operations. Class docMgmt encapsulates two instances of historyRepository, and one of

updateRepository. The first historyRepository object is used to track al1 revisions to documents,

regardless of whether they are published or not The second historyRepository stores snapshots

of each document as it is published or as updates are applied to it It maintains a history of each

revision of every document circulateci a among the collaboration group. The updateRepository is

used as queue for incoming update packages awaiting processing. The document manager is the

only interface between the main document processing system and the agent manager. This

interface is a bi-directional relatbnship. The document manager utilizes the services of the agent

manager to dispatch agents to perforrn remote tasks. The agent manager invokes methods in the

document manager to retum the results of operations, as well as to service requests from visiting

agents. The docMgmt dass is responsible for creating and manipulating doclnfo objects, as well

as update packages. The edit and update tools are acçessed through the document manager.

Services to create and edit documents are provided by the document manager. These senrices

automatically update the edit history repository and notify components such as the data mdel of

document events when invoked. Unique document identifiers are allocated to documents during

creation. The document manager will update any document following editing to ensure that the

system generated document identifier is not changed by the end user, as it is the basis for al1

document identification. Tools are invoked as required. The document manager can scan a

specified directory for existing documents, based on file extension. Documents located are

summarized with new doclnfo objects, which are communicated to the data model, which adds

them to the documents displayed. Lists of documents available fmrn the directory service are

assembled in a similar rnanner, except that the doclnfo objects are obtained through the services

of the agent manager, which dispatches an agent to the document directory to assemble the

doclnfo collection. Other operations implemented by docMgmt include: publishing documents to

the document directory; creating, distributing, receiving, and applying document updates;

downloading specified documents; and providing documents to visiting agents requesting them

for download.

The agent manager controls al1 agent operations. It is the only part of the core system which

directly works with agents. The agentMgr class is responsible for creating, dispatching, receiving,

and providing services to agents. These operations indude both agents which local and visiting

agents. In order to carry out an operation, the agent manager creates a new instance of the

appropriate agent type, providing it with information about its task during construction. The agent

is then dispatched and rehims later with the resuits of its operations. Class agentMgr serves as

the extemal interface into the lacal system from the network. This class functions as an

intermediary between he document manager and the agents themselves. lt provides a task-

oriented interface to the document manager and translates these requests into specifc

operations using agents. Since agentMgr is the only part of the system using agents and uses a

relatively high-kvel interface, aitemate rnechanisms for piovîâing remote operations cou# easily

be subsütuted in this dass without impacb'ng the rest of the system. The agent manager also

accesses the document manager's rnethods to report the results of earlier requests in an

asynchronous manner and service requests from visiting agents, such as receiving update

packages or providing requested documents for download.

It is important to note that the interaction between the document and agent managers is

asynchronous in nature, due to the use of callbacks for agent operation. Since remote agent

operations may be tirne consuming, it is best not to block while waiting for the results of an

operation. Even if blocking for results was desired, it is somewhat complicated to implement,

since agent invocations are essentially one-way rnethods which retum imrnediately, without

waiting for the action to complete. Agents require a separate rnethod which can be invoked to

return their results. Retuming resuits to the next point in the calling fundion is not an option. Use

of an intermediary object that blocks until the retuming agent invokes a notification method to

resume processing could simulate this behavior if required. This intermediary would add a fair

amount of complexity to the model, and does not fit well with the typical design style used in both

agent and user interface programming. The basic paradigm used is that the document manager

may invoke an operation using the agent manager, and then resurne n o m l pmcessing. At sorne

later time, the agent manager invokes a separate method in the document manager to cause the

results to be processed. Operations such as publishing a document are implemented by the

document manager as two separate rnethods. The first rnethod initiates the publishing action. The

agent manager calls aie second when the publishing agent retums. This second method then

perfoms actions such as updating the published status of the document in question and notifying

the rest of the system using the document event interface.

The agent manager supports hivo types of operation. These two types are often the mirror images

of each other. Outgoing operations are those which are initiated by agenwgr, and include

distributing updates, requesting updates, requesting document lists, publishing documents, and

initiating document downloads- Incorning opefations are often üte retuming haif of a previously

initiated operation. Other incoming operations are invohred with servicing the requests of visiting

agents. lncorning services include receiving document updates, requested downloads, document

lists, update requests, and status resuits fmm returning agents.

Specialuations of the base docAgent class are used for each type of operation. Each subclass is

designed to carry out a particular type of task, and utilùes the facilities of docAgent to manage

the mechanics of travel. Download agents, implernented as class dJAgent, are provided with a

doclnfo object and file name dunng creation. The doclnfo object identifies a document to be

obtained by the agent, while the file name is the name of the file the user wants the document

stored in on retum. The agent travels to the document directory to locate the owner of the

document. Once the owner's address is obtained, the agent travels to the owner's system and

requests the document. It then retums the requested data to its original agent manager.

Publish agents are responsible for publishing new documents to the directory. lmplemented by

class pubAgent, they are given a doclnfo object describing the document on creation. They

convey this information to the directory, where it is stored in the list of available documents. The

agent's home URL is stored as the document owner's location. Once its task is wmpleted, the

agent retums the results of the operation to its home agent manager.

Class updtAgent is used to distribute update packages. Update agents are initially dispatched to

the document directory. Upon arrival, they obtain a Iist of al1 participants in the document

collaboration, and update the published information for the document They then visit each

participant's agent manager in turn, delivering the new update package. Once al1 participants

have been visited, the agent retums home to notify its agent manager of whether it was

successful and how rnany participants received the update.

Update request agents are used to check if there are any updates which have not k e n received

by the local system- This functianaiii is intended largely for use when the bcal system has been

disconnected from the networlt for a period of tirne and has just remnectecl. Class upreqAgent

travels to the document directory with a copy of the doclnfo object for the last published version of

the specified document availabie on the system, It then determines if the current document

information availabie from the document directory has been rnodified more recently than the local

document If the information is more recent, the agent obtains the document owner's URL and

requests an update package fmm the document owner's agent manager. By providing the

doclnfo object for the most cunent local copy, the document owner's system can provide a

specific update package to patch the local document to the new revision directfy. If the user

requesting the updates is the document owner, an alternate member of the collaboration should

be queried for the update package instead.

The last type of agent is the directory agent, or dirAgent This class is responsible for traveling to

the document directory and requesting a list of al1 available documents. It then retums this

collection of doclnfo objects to its home agent manager.

4.4. Design Summary

A number of useful design patterns and techniques have been empbyed to create this system.

Application of techniques to prevent tight coupling of components would benefit the current

interaction between the document and agent managers in particular, as they are cunenüy quite

tightly coupled.

One design decision that was made to simplify the developrnent of the prototype was the

integration of the user interface with the agent manager and other system components. Although

effective and useful for demonstrating the collaboration paradigm being explored, a more robust

solution would be to separate the user interface from the core infrastnicture. This separation

would ailow the core infrastructure to execute as a daernon process which couid fun in the

background on the host system at al1 times. A daernan process couM help to keep documents up

to date and help to ensure that visiting agents could obtain documents when desired, rather than

being unable to communicate with the local system. With the interface part of the sarne program,

this cannot be supported uniess the user wishes to have the interface ahivays running. If the

interface was separated, a client-server rnodel could be employed within the local system for

communication beniveen the two parts of the system. The current communication rnodel between

the components would require sorne updating to accommodate this. As mentioned above, this

separation is not a requirement to dernonstrate and explore the technology, but may be a

usability and robustness issue if putting this system into more general use.

A class diagram illustrating the relationships among the core system classes is presented as

Figure 3, below. S o m relationships have k e n simplified to avoid cluttering the diagram

unnecessarily. For example, rnost classes use the doclnfo class. Only those classes having

significant interactions with class doclnfo show an association with it, such as those responsible

for creation or display of doclnfo objects-

Figure 3 - Core System Classes

Figure 4 shows the classes associated with the document directory. Classes foming part of the

document directory are shown, as well as the agent classes which interact with the directory.

Figure 4 - Document Directory Classes

Chapter 5 - lmplementation

5.1. General Implemenfation Considerations

An iteraüve development methodokgy was employed in the developrnent of the collaborative

system, following initial requirements definition and high-level design phases. The spiral life cycle

model, as described in (Ghezzi et al. 19911, and the star mode1 [Preece et al. 19941 are examples

of this development philosophy. In both of these approaches, the basic principle is that

- - -
requirements definition, design, pmtotyping, implementation, and t e & ~ are actnrrties that recur

throughout the life cycle of a system. These approaches çontrast with the traditional waterfall

model, in which development is conducted in a monolithic rnanner. Each phase in the waterfall

model is conducted in a linear sequence and is not repeated. Although reasonable for relatively

simple systems which can be grasped in their enürety from the outset, the waterfall approach is

not well suited for high-risk, poorly defined, or experimental systems.

lterative models attempt to minirnize risk and develop systems in a phased approach. Atthough

requirements, design, prototyping , developrnent, and testing phases are generally followed in

logical sequence, the xope of each phase is restricted to a subset of the total problem. By

iterating through the basic development process, the system can be refined a step at a time-

Since the scope of each iteration is restricted to a subset of the overall problem (often a specific

high-risk issue which must be dealt with), complexity is minimued. In rnany cases, a specific

feature or component may be developed during an iteration. Subsequent iterations build on the

previous steps. This approach allows a complete system to be developed gradually, wiai the

ability to produce a functional, though limited, system at the completion of any particular iteration.

It is not necessary to complete the entire development cycle before a working system can be

shown, or testing and verifcation can begin. Generaliy, the output of any particular iteration can

be tested as a piece of the whole system, with new pieces added as iterations progress. This

approach helps to avoid situations where eighty percent of the development is complete, but

there is nothing functional to show. Development can be phased to focus on core requirements,

exploration of alternatives, or refinement and resolution of particular issues.

One of the drawbacks with iteratnre developrnent is that if there is not a clear vision of the desired

result, at least in high-level temis, it is easy to becorne sidetracked and allow the system to

evolve in an uncontrolied manner. For this reason, the rnethodology followed after the initial

research and investigation was compieted began with a phase devoted to defining the purpose of

this system. Requirements for a useful and functional prototype were identified next The system

architecture and high-level design was produced. Once these activities were cornpiete, a more

iterative approach was follawed. This appmach put a guiding structure in place, m i le allowing

flexibility in refining the detailed design and expbring issues and aiternatives As there were a

number of different technologies and tools to investigate and integrate, the iterative rnodel

allowed each system component to be examined in phases. Often the initial iteration for each

wmponent might only produce a simple rnock-up, with operations defined as simple skeletons.

The general interactions could then be examined and explored without an extensive investment

of development time- Rapid prototyping could be employed to quickly refine the mode1 to be

implemented. Successive iterations then resulted in the refinement of the initial skeletons. This

approach allowed a great deal of flexibility to adapt as a greater understanding of the system

requirements, issues, and general infrastructure emerged.

Several issues arose during and after the development of the prototype related to design

tradeoffs and areas in which the system design could be improved. Optimitation of the system

was not a specific objective of this investigation. However, revisions to the design to optimize the

reading and writing of documents would be quite beneficial. Parsing XML documents is a

relatively expensive task. Many of the current operations are based on doclnfo objects. In some

cases, the full document must be read and parsed in order to complete the operation. As other

operations may already have been performed on the same document, analyring these linkages

and passing in-memory documents to operations where possible could enhance the efiïciency of

the system. This anaiysis is not as trivial as it rnay appear, as there rnay not be a clear

connection between two operations at first examination. An in-rnemory caching mechanisrn might

be employed, but mmory consumption for large documents would have to be taken into account

Another approach might be to devebp variations of a number of common operations that accept

a parsed document when availabk, or read in the document themsehres when necessary.

An effort was made to keep processing functionality separate from the user interface, and

specifically the document browser. It often becornes very dficult to manage modifications and

enhancements to user interfaces if ote interface cade is intennixed with processing furrctionality.

This intent was successful to a large extent, by relying on functionality in the document manager.

Som additional benefits could be obtained by fumer separating the user interface h m

processing. There is some basic preprocessing perforrned by the document browser. By

employing an intermediary object to perform this basic preprocessing, the code within the

document browser module itself couid be reduced to simple user interface operations and calls to

the interrnediary. This technique is similar to the mechanism used by the JTable cfass and its

underlying data rnodel.

Design patterns and other techniques were employed dunng the design to minimize coupling

between some of the major components. The maintainability of the document and agent manager

components could be improved by reducing the current amount of direct interaction beîween

them. This separation may prove difficult, but one technique that might be employed would be to

register callbacks as part of each operation. The cunent design requires both a service invocation

methods and a result retuming method for most actions. By registering the resutt method to use

as part of the invocation, the number of concrete method invocations between the îwo

components could be reduced. Separation of the document manager into smaller subcomponents

would also be helpful, as it is cumntly somewhat monolithic. Application of the Singleton design

pattern [Gamma et al. 19941 mght be also appropriate for both the document and agent

managers.

5.2. Implementation Process

An important side benefit of this investigation was the opporhrnity to refine and employ design

and implernentation skills using advancecl technologies. Details conceming the development

process used to implement systems are often difficuit to obtain. In an effort to provide a concrete

example of such development, a discussion of the process by which the collaborative document

environment was created following the initial design follows. Issues and difficutties encountered

are dixusseci in greater detafil in the next sections, induding changes made &O the original

system plans. There were mistakes made during this process. It is not intended that this should

be a perfect example of systems development, but m e r a practical discussion that might be

helpful for others.

5.2.1. Infrastructure and User Interface

The first step to implementing the system was to develop greater familiarity with the Java

language and twls k i n g employed. Some basic classes such as doclnfo were created, as well

as some simple screens to fom the basis of the user interface and document browser. This

approach provided an initial iteration that allowed for exploration of Java's Swing user interface

classes, with which the author had been unfamiliar, Concentrating on such simple tasks was a

very practical starting point for the development effort, and provided some core functionality upon

which to base further development. The JTable class was identified during this phase. The next

iteration built on the basic Graphical User Interface (GUI) by implementing the doclnfoTableModel

class and using it to populate the document browser with some trivial doclnfo objects. These two

initial iterations provided the basic user interface and the ability to display doclnfo objects, as well

as an opportunity to become familiar with the development environment.

A skeleton for the document manager was designed and implemented next The user interface

was then updated to access the skeleton methods, which typicaliy output a simple message

showing that they had been invoked. This mock-up allowed the basic interactions and required

operations to be identified and explored. It also served as a useful frarnework for tracking fumer

development requirements- Functions could be filled in and rapidiy tested, without requiring the

complete development of the component The intent of these first few phases was to focus on

developing aie core infrastructure required by the overall system. More advanced functionality,

such as XML processing and agents, was saved for the later phases. This approach was useful in

lirniting the scope of each iteration, so that there was a limited set of new technologies to ieam at

each step. It also simplified the addition and testing of the XML and agent components, as they

could quickly be plugged into the waiting infrastructure following initial prototyping.

The final step in implementing the core infrastructure was to develop the document repository

classes. Although these classes are heavity invohred with XML Document objects, the core

operations were defined, inciuding the repDirectory class. These classes could then be tested

using doclnfo objects and simulating Documents with simple strings.

5.2.2. XML Support

Once the basic infrastructure was in place, supporl for using the XML Parser for Java was added.

The initial goal was to add ttie ability to read and write simple XML documents. This facility was

added quite easily, especially with the very clear descriptions of using the XML Parser for Java

found in [Maniyama et al. 19991. With the ability to read and wnte XML documents, the repository

implementation could be completed.

The initial intent of the basicRepository class was to provide the basic mechanics of storing

arbitrary files in a repository. It was responsible for naming and tracki-ng files, regardiess of the file

content It was intended that the historyRepository would use these basic capabilities to store

Documents, while updateRepository would store update packages. Each of the subdasses would

format their data in buffers, which were passed off to basicRepository for storage. Although this

technique worked for handling simple Document objects, update packages proved more difficult

Seriaking the update headers and then writing out the contents of the XML Document as text to

the sarne buffer proved difficuk This mode1 also seemed wasteful, as data was first written to a

buffer in mernory, then passed off to the base class to be written to disk. The work of writing

documents was being duplikated in the two specializations of basicRepository.

These issues led ta two decisions. The first was ta store the update package headen separateiy

from the update document The same base filename was used, but the file to which the header

objects were serialized used a different extension fmm the update document text By separating

the update document, it could be processeci in the sarne way that the history repository stored

basic documents. The second decision was to update basicRepository class to continue to

provide generic naming and lookup operations, but store and retrieve XML Oocuments rather

than simple buffers. Most of the functionality required by historyRepository was then provided

within its parent class, and it could be used simply to offer a task-based wrapper around the basic

storage facilities. Class updateRepository was also simplified, as it oniy needed to add

processing of update package headers to its inherited capabilities.

Interfaces for the edit and update tools were designed next lmplementation of an edit wrapper for

the Xeena XML editor proved simple, though inefficient Xeena was selected as it seemed to be a

stable, weH-supported graphical environment for creating and editing XML documents based on

user-specified DTDs. The intent of induding Xeena was to provide an easy to use document

editor that provided validation of document formats and guidance in manipulating document

elements. One factor that was not given adequate consideration during the initial seledon

process was the fact that programmatic access to Xeena is not available, nor is source d e . It is

thus not possible to simply nin Xeena as part of the calling program. Instead, Java's Runtime

class must be used to exec() Xeena as a separate process. This separation means that a

separate Java Virtual Machine rnust be executed. The result is very high processor and rnernory

requirements, and significant performance degradation. Correspondence with Xeena's authors

indicates that programmatic access is planned for an upcoming release.

Access to the Xeena Application Programming Interface (API) might also have allowed greater

customization of Xeena's behavior. This access wouid be of use in restncting options such as the

"Save As.. . " feature, whicti might allow a user ta save the document in a location mat the

collaborative environment wouM not be aware of, and thus unable to track imrnediatefy. An

interesting idiosyncrasy of Xeena and the XML Parser for Java is that Xeena will allaw ekment

attributes with default values to remain null. The XML Parser siknüy inserts these attn'butes when

pracessing documents, even if the document was created with Xeena and did not include the

attributes originally. This difference caused some confusion when copies of the same document

started showing different sues in the document browser. Upon examination, copies processeci by

the parser contained the default attributes from the DTD, while those oniy manipulated using

Xeena did not

lnterfacing with Xeena was inefficient, but did not pose any implernentation problems. The update

tool selected, XMLTreeOiff from IBM, did. XMLTreeDiff does support programmatic access and

seems to be ideal for creating and appiying 'patchas,' or descriptions of differences between

documents. It uses an XML-based language for dexribing differences, and so patches are

expressed as XML documents themselves. This format provides a reasonably compact

description of document difbrences requiring no new infrastructure beyond the XMLTreeDiff

libraries themselves. Since the tool works at the XML level, textual differences between

documents that generate equivalent XML structures can be accounted for, which is one of the

main shortcomings of standard text-based cornparison tools.

The complication that arose when atternpting to integrate XMLTreeDiff was in many ways the

opposite of what happened with Xeena. Xeena had k e n tested, but its usage had not be@n

examined as carefulîy as it should have. XMLTreeDiff tumed out to be incompatible with the other

tools k ing used. It was thought that the tool had been tested before seiecüon, but if so, it was

tested using older versions of the other components of the collaborative environment which were

no longer options to use. The details of the conditions encountered and tested are provided in the

next -on. The end result was that there was no aitemative toal available. In order to preserve

the semantics of processing and appiying updates, and provide some means of sharing changes

to documents, a simpk implernentation of the update tod interface was developed. Since an

interface was used, the rest of the system perfomied operations using oniy the interface. By

simply using a different consûucbn command, the new impiementabion could be deployed- This

simplified update class, calied fakeDiff, simpty replaces the existing document with the new

version. The processing mode1 remains the same, with the drawback that any local changes

made since the fast published version of the document are iost when the upôate is applied. There

is also a loss of bandwidth efficiency since entire documents are transmitted rather than just

differentials. This approach does serve to simulate the required processing. When a compatible

version of XMLTreeDiff or a similar tool is released, it should prove trivial to deploy using the

standard interface and should not disrupt the rest of the system.

Creation of doclnfo objects to represent documents had used default values and very simple

calculations for most data elements. With the basic ability to create, parse, save, and edit XML

documents in place, the infrastructure was availabk to begin populating doclnfo objects with

properties extracted directly from the XML documents using the parser. The basic requiremnt

was to read some of the basic document fields such as author, tiffe, document identifier, DTD,

and version. Most of these pmperties were readiiy obtained. Retrieving the DTD tumed out to be

complicated. Aithough the name of the DTD can be obtained using standard DOM operations,

support within the DOM specification for obtaining the narne of the extemal DTD being used

[XML4J]. As the extemal DTD rnust be specified to Xeena at starhip, it became necessary to

hard-code the DTD being used within the doclnfo generation code.

The current implementation of dynamic doclnfo generation is sornewhat proprietary to the DTD

used during developrnent Fields such as <author>, <docurnentlD~, cversionTag> and <title> are

required. This requirernent is not a major restricb'on, however, as these are largely cornmon

concepts in most documents, and the exact fields being examined can be updated relatively

easily in the code. A more flexible approach might invohfe rnaintaining rnappings of supported

DTDs and the appropriate fields to consutt in each. Another improvement that could be made

would be to employ SAX for generating doclnfo objects. The current methoci uses DOM parsing,

which reads and parses the entire document before the data can be accessed. SAX allows

processing of document eîements as they are mcountered within the data. As there are only a

small number of fields near the start of the document which need to be accessed, SAX might

prove more efficient This approach was not taken in the prototype in order to avoid introducing

another technology to integrate, especially as SAX appears more complicated to utilPe than

DOM. A second improvement wouid be the automatic creation of an initial document skekton by

the sy stem, incorporating the sy stem generated docurnen t identifier and user-selected DTD to

employ. This automation would provide conml over the document identifier and DTD. A final

option to consider would be the use of processing instructions or comments, rather than full

elements, for important system information such as the document identifier.

Once the ability to generate doclnfo o b j e for documents dynamicalty was implemented,

scanning of directories for documents to be displayed by the document browser was added. The

basic capabilities of the Java File class, combined with a filename filter which uses the extension

".xdocW to identify supported XMt documents, was used to provide this capability. The document

browser uses this feature to select documents to display when operating in local mode. The last

part of dynamic doclnfo operations required was the calculation of DOMHASH digest values. The

XML Security Suite is used to implement this funcüonality. DOMHASH values can be used to

identify documents in an essentially unique manner, and are similar to standard message digests

except for the fact that they are calculated on processeci DOM trees rather than plain text

Document identifiers are used to identify a document, while DOMHASH digests are used by the

system to uniquely identify an exact document revision.

Completion of the core update processing implemenîation was the last piece of functionality

required for the basic infrastructure prior to the implemntation of mobile agent support The

basic logic had been mapped out previousiy, while developing the basic document manager

functionality. Completion of this functionality involved appiying the update interface to generate

and apply patches as required, as wel as utiluing the various repositories. For testing, receipt of

new updates was sirnulated by causing aie update push functiorr store the update packages it

generated in the upûate repository as inwming packages. By changing the document k ing used

between generating the update and applying it, tesüng could be performed.

5.2.3. Mobile Agent fmplementation

The final set of iterations was devoted to implementing mobile agent operations. This phase

began with an initial exploration of the Voyager example programs. Once the correct operation of

these programs was wnfirmed and the basic mechanisrns employed understood, a design cycle

began. This design phase focused on the detailed design of the agent manager. The specifics of

how it would interface with the document manager were deterrnined, and required operations

were identified. Specific agent requirernents could then be derived frorn the supported operations,

as well as the basic behavior and general processing performed by each type of agent In order

to effectively irnplement agent operations, the document directory service was required. The data

to be stored and managed was detemined. The basic design was detemined, including specific

operations and methods.

At this point, some reorganization of the main routine and system startup processing took place.

Initially, the main routine was part of the MainMenu class. MainMenu simply initialized the

document browser and manager, then displayed itself. The local manager was developed

instead. The functionality of class localMgr is more Iimited than aie initial architechire had

intended. Its responsibilities include configun'ng the basic system parameten, initial~ing the

Voyager service, and creating the core system components such as the user interface, document

manager, and agent manager. It exports the agent manager on a URL accessible to other nodes

in the system as part of its system initialkation responsibilities. Once the system is running, the

local manager waits for the user interface to ciose and then teminates the Voyager service.

In order to provide infrastructure and support for fumer agent development, the document agent

base class and supporting itinerary representations were designed and devekped next The

publish agent was the first actual agent developed. Its task of registering a new doclnfo object

with the document directory and retuming the resub was the simplest of the agent operations. In

addition, published documents were required for al1 of the other agent operations. The initial

implementation was nothing more than a shell which used the docAgent facilities and output

some debug messages to signal where specific processing steps would m u r . This shell was

used to test the docAgent infrastructure and general agent operations.

lmplementation of the document directory followed the initial agent experimenk. The core

operations were implemented, with some refinement occumng later in development Further

refinement of the features of this service could include more sophisticated up-to-date checks

when update requests are received, as well more sophisticated collaboration tracking.

Once the document directory was available, the functionality of the publish agent could be

completed and tested against the directory. A simple test program was employed to exploit this

f~n~onal i ty . Once venfied, the agent manager skeleton was implemented. The required

operations were simulated, with only the document publishing funcüons implemented initially. The

publish agent and agent manager were then integrated with the main system for testing. Although

the initial agent framework had appeamd to funetion properly, further testing with the completed

agent and document directory revealed that only the initial hop of the agent was executing

propetiy. A discussion of this situation, the reasons it was not noticed immediately, and general

comments conceming Voyager are presemted later in the chapter.

Development of the directory agent was the logical extension of the funcbjonality provided by the

publish agent lts responsibilities were also simple, and provided a means of confinning that the

publish agent and document directory were functioning correcüy. A local list of the available

documents was also required in order to select a document for download. It should be noted that

development of each agent type was performed as a complete iteration of the development cycle.

The specific fundioriality and functiorrs required for the document manager, agent manager.

document directory, and agent were detemined first Development of the required methods, or

refinement of existing ones, was camed out End-to-end testing of the completed functionality

was then possible. The order in which agents were developed was chosen both to minimue the

additional compiexity at each step, develop required infrastructure for the next iteration, and to

allow mis phased testing approach.

The download agent added the ability to obtain documents which had been first published by the

publish agent and then Iisted by the directory agent This agent was the first requiring the addition

of support in the agent manager for visiting agents. The agent manager was responsible for

providing copies of documents to visiting agents trying to perfom downloads. A second new

capability introduced by this agent was that of changing a task itinerary while at a remote site.

Previous agents had only k e n required to set up a simple itinerary to travel to the document

directory and back, which was done at initialization. The download agent was required to

determine where to obtain the document from once it had contacted the directory, then travel to

the rernote site and retum the document. The update agent was developed using similar facilities

as the download agent Distribution of updates also required visiting agent support in the agent

manager and itinerary updates while at remote sites. In this case, the itinerary changes tend to be

more extensive in order to visit al1 of the participants in the collaboration, rather than just the

document owner. This agent pmvides sorne of the core functionality of the collaborative system.

The final piece of the system developed was the update request agent It required more

advanced processing and decisionmaking capabilities aian the other agents, as well as al1 of the

previous functionaiii. The update request agent is responsible for determining whether a local

document is up to date. If not, it must k a t e a participant in the collaboration who can provide an

update package to resynchronize the local document The initial implementation of these

capabilities is somewtiat simplistic, as described in the design chapter.

5.3. Issues Encountered

Some of the difkulties and issues that arose during development have been mentioned briefly

above. The intent is to discuss these issues in more depth. Topics discussed include

development tools used, Java pass by referenœ semantics for method parameters, and

XMLTreeDiff. Experiences with ObjectSpace Voyager are presented in a separate section.

5.3.1. Development Tools

Sun's Forte Java development environment was selected as the main development tool to be

used. I t is a full-featured commercial development environment, fomierly known as NetBeans.

which was acquired by Sun and is now available for use under Sun's community Iicense

arrangement Forte includes support for editing, compiling, executing, debugging, and browsing

code. It also features a GUI editor that can be used to create Advanced Wndowing Toolkit (AVVT)

and Swing foms. Templates for common types of source files are provided. The source editor

offers advanced features such as automatic completion of method names, based on a Iist of

alternatives valid for the object type k ing used. Output from program execution is captured and

can be reviewed later. Forte's feature and fundional completeness are very similar to

environments such as MicrosofYs Visual Studio. Forte is written entirely in Java, and so the

development environment itself is portable to essentially any platforrn supporting Java.

Unfortunately, Forte requires a huge arnount of overhead. Memory and processor requirements

are very steep. Although perfomiance is typicaliy poor at the start of a session, the usability of the

system rapiâly worsens as editing, compilation and test execution cycle are conducted. This

problem appears to be a memory usage issue, pmbabiy related to Java's garbage collection.

Forte executes a separate Java Virnial Machine when executing user code, wtiich appears to be

a large part of the overhead problem. Capture of output during execution is particulady slow. It is

often necessary to wait for significant periads of time just for output to appear. Running multiple

tools within environment, such as the GUI e d i i components as well as the Wi saurce editof,

also degrades performance. Unforhinately, closing these tools does not seem to recover any

resources. It is thus necessary to perioâically restart the Forte environment, and sometimes evem

the cornputer, just to bnng the environment back to a usabie kvel of responsiveness.

Since a new beta candidate of Forte was being used, an attempt was made to go back to the

older, stable release of the environment Unfortunately, this release pmved to not be an option.

One of the benefits for which Forte was originally selected was its GUI editor. It was felt that this

would help minimize the complexity of leaming Swing, allowing more focus on development of

wre functionality. Not surprisingly, in order to apply the GUI editor effectiveiy, the rnechanics of

Swing still had to be leamed. This kaming requirement was expected to a certain extent. What

was not anticipateci was that once the basics of Swing were understood, there was still another

leaming curve in order to discover how to use the GUI editor to achieve the desired behavior.

With the fairly plentiful sampie code availabie for Swing, it rnight have b e n easier to develop the

user interface manually. Forte embeds intemal information in special comments within the GU1

code. It does not allow direct editing of any interface code. A separate fom data file is maintainecl

which appears to be used as the basis of code generation. Manual changes to the interface code

made outside the environment are simply replaced with code generated from the form data file

the next time a change is made within Forte. The generated code is standard Java, and does not

require any special facilities fmm Forte to fun. However, if any changes to the user interface are

made outside Forte, either the changes must be abandoned or Forte cannot be used for any

further interface developrnent Unfortunately, the fonn data file used by the new version of Forte

is not backward compatible with the previous release. This lack of compatibility made going back

to the older version much less attracüve, especialiy as there was no guarantee that there would

be much impmvement in the performance of the envimnment

Despite its shortcomings, Forte was used for much of the development cycle. Once the basic

user interface was developed and it became necessary to start using extemal twls such as

Voyager's igen interface generation unjlity, it was decided to develop batch files to automate these

tools as well as compilation of the source code. W M batch files to assist with compilation and

interface generation, and basic GUI development complete, it was decided to abandon Forte and

use a different editor. The poor performance of Forte had k e n reaching the point of k ing a

significant hindrance to rapid development and testing.

An effort was made to identify an altemate, more efficient development tool. One promising

environment was Kawa. Kawa is a Java developrnent environment which, although not as

advanced as Forte, is much more efficient Unfortunately, only an evaluation copy of Kawa was

available. It had been installed earlier in the development cycle but not used. Within a day of

beginning to u w it, the evaluation p e M expired and the tool disabled itself. Attempts to install a

newer version were unsuccessful, and it was feit that the tirne to contact Kawa's producer could

not be afforded. The FreeJava tool was bfiefly evaluated. ARhough adequate, it seemed to have

some minor quirks. The final tao1 selected was Ultra-Edit Although not a Java-specific tool, Ultra-

Edit supports Java syntax highlighting and is a very easy to use and flexible editing envimnment

It was also one of the most efficient bols used. Combined with the batch compilation scripts and

basic DOS windows for testing and compilation, an effective and rapid development environment

was created.

5.3.2. Java Method Argument Semantics

One issue that was not well understood at the beginning of development was the exact semantics

of Java's pass-by-reference rnodel for method arguments. Meaiod parameters in Java are

references to objects, rather than objects thernsehfes. This approach allows objects passed as

arguments to be updated directiy dunng the execution of the method. The alternative to this

mode1 is to use pass-by-value, in which a copy of the object parameter is passed. The object can

then be updated localiy, but the updates do not affect the original object and are lost on retum

from the function. M a t was not recognized originally is that, aithough the object k i ng referenced

within a method can be updated, the reference itself is passed by value. Thus, changes to the

reference are lost when the method making the change completes.

The impact of this behavior is that a new object cannot be assigned to the reference from within a

method. Although there are ways around this in Java, they are rather awkward. In C or C++, the

same situation exists when passing pointers as arguments to functions. The variable pointed at

can be updated within a function. If a change to the pointer itself is desired, a pointer to the

pointer, or double pointer. rnust be employed. New objects can be created and retumed from the

function, but mis only allows a single new reference to be provided. In sorne of the methods

deveioped, it was desirable to retum two objects. Specifically, the repository methods typically

retumed both a Document and the doclnfo object describing that specific revision of the

Document

in order to accommodate this requirement without developing a new data structure to store botfi

objects on retum, a result doclnfo object must be allocated and passed into the method for

population with the appropriate data. The object is filled in by copying the contents of the doclnfo

object in the repository into the method argument The original intent was to simply set a

reference to the repository's copy. This technique works, but requires a bit more care when

invoking the method and is somewhat wasteful of mernory. The biggest drawback is that it took

some time to diagnose the exact cause of the problem and correct it.

XMLTreeDiff is frequenüy referenced in Internet discussion groups as the tool to use when

companson of different versions of XML documents, or related activities, is required. It appears to

be a very powerful and useful tool. In the wntext of this application, it is ideally suited for the

generation and application of XML document updates. It allows the creation of patch files and

their application as separate activities. Patch files can be disbibuted separately frorn the base

document, which is very useful for sharing updates to published documents. The update format

itself appears to be reasonably compact The problem with using XMLTreeOiff for this

development effort is that it is not compatible with the other tools employed.

lncompatibility of a core tool with the rest of the system wouM appear to be a glaring oversight

from a project's investigation phase. Although this accusation is likely valid, there are a number of

different factors that corn into play in this case. There were a wide variety of tools examined

during the research phase. Documentation was reviewed and brief testing conducted with rnost of

them. Many of the core Java and XML tools have undergone significant changes recently, and

there is a confusing array of options and versions to choose from in sorne cases. The XML

specifications appear to be evoiving at a fairty rapid rate. Sun released JDK 1.2 shodîy before this

project was begun. Three different major releases of the XML Parser for Java were available

while this sys!em was k ing investigated and developed, not including minor revisions and

patches. Some of these parser changes were reflections of updates to XML standards, while

others arose from the introduction of new features.

The documentation describing XMLTreeDifPs features and usage was examined quite carefuliy

during the investigation phase and again during design. lt was not until an attempt was made to

actually integrate and use the tool that the incompatibilities were discovered. At this point, an in-

depth review of the documentation and discussion group archives at IBM's AlphaWorks web site

was conducted. It became apparent from the discussion group that a number of other users had

encountered the same probiems. Unpacking and updating the archive corrected one or two

problems, such as the incorrect case of certain filenames in the XMLTreeDiff JAR file.

Unfortunately, only the binary class files were available. Many of the tools available from the

AlphaWorks web site are distributeci in binary class fom onty, XMLTreeDiff included. An attempt

to contact the author of the tod for an update or access to the source was unsuccessful. These

difficulties serve as a good exampie of why aie open source mode1 is very useful for infrastructure

and basic tools, as most of the issues couid probably be corrected fairly easily. Searches for

altemate tools were basicalty un3ucassful. Most suggestions found for this type of utility pointed

back to XMLTreeDiff, or papers desaïbing the theory behind it

One alternative identified during the research period was another tool from the AlphaWorks site,

called the Compare and Merge Tool for XML. This uülity was an interactive tool, however, whkh

could not be fun without user involvement It also does not generate patch files, but instead

merges two documents which are provided as input Although inferior for the purposes of this

project, the Compare and Merge Tool was reconsidered. Unfortunately, it suffers from the same

incompatibilities that XMLTreeDiff does. There are indications that this tool may be under more

active development than XMLTreeDiff and that an updated release may be compatible with the

newer tools in use currenüy, as well as supporüng features such as automated execution. These

indications have not k e n updated for some time, however, and so the current developrnent state

of both tools is questionable.

M i l e trying to detennine the problem with XMLTreeDiff, two different venions of the package

were obtained. The newer release, which was k i ng used, only advertises support for the XML

Parser for Java version 1.x and JDK 4.1.5 or higher. Many of the tools specify support for a

particular release such as these, or higher, which was the assumption until closer examination of

the requirements. In mis case, release 2 of the parser is speafically not supported. The older

release was retrieved from the CDROM accompanying [Maruyama et al. 19991. This version

specified that it required the XML Parser for Java version 1.1.4, JDK 1.1.5 or higher, and Swing

0.7. I t did not indicate the specific fack of support for reiease 2 of the XML Parser for Java. As

updated versions of most of the tools used were obtained before beginning the actual

development phase of this thesis, it is possible that it was this oider reiease of XMLTreeDiff which

was assessed. The other factor that mght have contributed was that an upgrade from JDK 1.1.6

to JDK 1.2.2 occuned on the development system at sorne point near the initial research phase.

The older JDK might have still been instafied when XMLTreeDifF was first examined.

The Swing ciasses appear to be used in same capacity by this tool, but Swing was moved from

the comsun dass hierarchy to javaxswing as part of the JDK 1.2 release. Other issues may also

be present with the new Java changes. The major problem is the rapid evolution of the XML

Parser for Java. Significant changes occurred between rekases 1 and 2 of this tool, and the

APl's do not appear compatible. Aithough the newer version of XMLTreeDiff States that version 2

of the XML Parser for Java is not supported, it does appear to rely on new features of the parser

not present in the at least some of the release 1 family of parsen. Perhaps it is a late revision of

release 1 of the parser which is required, although this requirement is not indicated by the

documentation.

Although reverting to JDK 1.1 might have allowed the use of XMLTreeOiff, it was felt that this

change might prevent the use of a nurnber of other tools, and possibly require significant changes

to the existing irnplementation. Other combinations of tools were tested to try to find a

combination that would allow al1 of the components to work together. Although release 1 of the

XML Parser for Java was no longer available from the AlphaWorks web site when mis problem

was discovered, [Maniyarna et al. 1999) also included a copy of release 1.1 -9 of this tool. XML for

Java 2.0.15 was the revision initially k i n g used- It had k e n selected as a reasonably cuvent

version that would be more stable than the brand new thifd release. The following table illustrates

the combinations of tmls which were tested using the sarnple XMLTreeDiff programs and the

outcome of each test:

Older XMLTmDHI

1 Child.getUserData() was not

XML Paner for Java 1.1.9

Swing error related to renaming of

New XMLTmeDHf

1 be a new feature of the XML Parun

package in JDK 1.2

Error message that method

for Java, version 2-

Table 1 - XMLTreeDiff Te8

XML Pamer for Java 2.0.15

Swing emr related to renaming of

package in JDK 1.2

Emr message conœming invalid

XML file, nuIl pointer in sampkjava

it is very disappointing that support for XMLTreeDiff appears to have been dropped. It appears to

be a very useful and widely respected tool which fills an important gap in the suite of XML tools

readily available at the present time. Hopefully support will be renewed as the XML specificôtions

solidify and the XML Parser for Java stabilues. In the meantirne, a simple substitution mechanism

was ernployed to simulate the processing of updates using the update wfapper. This

implementation should be simple to replace at a later date if XMLTreeDiff is updated or a suitable

replacement found.

5.4. ObjectSpace Voyager - Concepts and Commenfs

ObjectSpace Voyager is a useful and powerful tool. Application of this toof is intended to be

extremely simple and intuitive. Nthough the basics are quite simple, there are a several specific

concepts which are not necessarily intuitive.

5.4.1. Generat Issues

Several general issues were encountered while using Voyager. Some of these are cornments or

criticisms, while others could be considered bugs. The main issue identified was the fact that the

Voyager u t i l i i do not appear to deal well with mixed case CLASSPATH environment variables.

The java and javac tools are insensitive to the case of CLASSPATH specifications under

Windows 98. Mixed case, uppercase, and lowercase are al1 accepted as equivalent, which is how

the undertying operating system behaves. This behavior is consistent regardless of whether long

filenames or abbreviated eight character filenames are used. Voyager seems to require lower

case paths and filenames. Aithough not a big issue on the surface, this detail was somewhat

difficutt to identify, as al1 of the other tools used did not behave in this way. No mention of this

requirernent was observed in the documentation. Voyager also requires that the Java Runtime

Environment (JRE) JAR file be e x p l i y specified in the CLASSPATH variable. This is also

inconsistent with other bols. A second issue noticed is that error reporn'ng is very poor when

callback methods cannot be found or executed in some cases. Situations in which an exception,

or at least an enor message, wouM be expected appeared to fail silentiy, even with detailed

logging enabled.

Other concems noted were related to documentation and logging facilities. Earty versions of

Voyager placed a significant amount of emphasis on its support for mobile agents. As time has

passed and new versions of Voyager have been released, the initial hype over autonomous agent

technologies has faded somewhat Very little emphasis is now placed on support for agents,

although sorne very useful facilities for their development are provided. This lack of emphasis

leads to the next point, wtiich is hat the documentation for Voyager in generat is quite poor.

Agent support is documented even less than most Although the rnanual for Voyager is quite

thick, much of this bulk is empty space and formatting. This style is useful in rnany rnanuals for

simplifying digestion of the material. In this case, there is Iittle material to absorb, beyond general

or simplistic examples. Very little in-depth discussion, expfanation, background, or advanced

examples are available. The agent documentation is literally a few pages, with a single example

in the appendix. The example agent, although a useful starting point, does not demonstrate any

advanced f~n~onality, or even show how to contact an existing object within a new environment

It simply creates a remote object, interacts remotely with the object, and then moves to the object

to perfomi local interactions. Any other operations must be inferred frorn other parts of the

manual. A more cornpiete discussion of haw to apply Voyager and use its facilities would be very

useful, as well as some more advanced exampies.

A final note is in regard to the Voyager's logging. Voyager uses some logging faeilities intemally.

By default, no logging output is dispiayed to the user. This behavior can be changed to output

exceptions or verbose details. Alttrough useful on the surface, the Voyager appean to use

exceptions on a regular basis when operating. These do not appear to be emts, but rather a way

of deterrnining what actions to take. The resuit of this technique is that enabling output of

exceptions generates large amounts of stack trace output which appear to be rneaningless for

identifying sources of emr. Enabling verbose output, which is a superset of exception output,

adds only limited additional data, which is obscured by al1 of the exception messages and stack

traces. A mechanism to disable stack traces would make the output much more useful. Another

helpful change would be to expose the logging funcüons for application access. The logging

facilities seem to be a capability only accessible internalty to Voyager. Applications must then

employ their own separate logging mechanism.

5.4.2. Special Requirements

There are several specific requirernents that must be followed when using Voyager. These are

largely due to its advanced usage of Java facilities such as senalization and reflection. Although

mentioned at different points in the Voyager documentation, they were found to be easily

overlooked, and so are highlighted here.

Voyager makes extensive use of factory methods and similar facilities. Many of these operate

based on the name of the class used, which is expressed as a string. It is important to make sure

that these class names are fuliy qualified; that is, they must be expressed with their full package

prefix. This requirement includes both user-created classes and standard Java classes. A second

requirement is that primitive arguments to messages and callback functions must be wrapped in

their Object equivalents. For exampb, an int variable must be passed to these functions as an

lnteger object. Interfaces and proxies are used to access most objects which are rnanaged by

Voyager. This requirement applies particulariy to mobile agents and exported local services.

lt is important that proxies are used consistenüy. In one case during development, the agent

manager object was k ing exported directly, rather than exporting a proxy to it. M e n retuming

agents tried to access the agent manager, they conectly attempted to obtain a proxy to the

exported object, based on the agent manager's intedbœ. Since w b t had been exported was not

the interface. but was instead the object itself, a 'Class Not Found' exception was generated. The

final requirement is related to the rnoveTo() methad used for object and agent mobility. The

documentation indicates that onfy exceptionhandling code shouM follow calls to moveTo(). M a t

is not clear from the brief mention of this point is that any non-exception code which mght

happen to follow will still be executed nomliy, which rnay lead to sorne signifiant confusion,

especially if this basic behavior is not clearly understood.

5.4.3. Mobile Agent Concepts

The points discussed earlier in this section highlight some of the difkuities and mînor issues

which were encountered while developing mobile agents with Voyager. The moveTo() method,

which is Voyager's function for causing a mobile object or agent to change location, has some

unusual semantics which can cause confusion. The rnoveTo() fundon should be thought of as a

one-way method invocation. It is not a synchronous d l causing a move to occur, a callback to be

processed, and then retums to the next statement It is more of a scheduling mechanism used to

signal that a rnove should take place at the completion of the current method. There is no way to

retum from a callback to the exact point from which the moveTo() was issued, which results in the

requirement discussed in the design chapter for the results of operations to be returned using a

sepafate chah of method invocations h m the sequence which initiateci the move. If there is

additional code following the section in which the moveTo() is invoked, it is important that an

explicit retum statement be issued following the move instruction and any related exception

handling. As mentioned atmve, any such statements wouM be executed without an explicit retum,

which is not atways the desired effect

The initial intent of the docAgent base class was to provide a task scheduling mechanism which

handled the core agent movernent requirements of specific agent types. The original concept was

that an agent woulâ populate an itinerary, then invoke a traveiToAll() method. The intention of

traveïîollll() was to loop through the entries in the itinerary, traveling to each site and invdong the

appropriate callback at each. M o u g h seemingiy a valid approach, the semantics of moveTo() do

not permit this approach, sine the move does not occur imrnediately, perform its tasû, and retum

control to the calier.

This issue was not completety understood during the initial development This problem was made

more dificult to detect due to the fact that there was debugging code executed after the

moveTo(), as part of the processing bop. which seemed to indicate that al1 of the rnoves were

happening- The lack of verbose error reporting from Voyager further complicated the situation-

The observable behavior of the system made it appear that an agent was being dispatched to the

initial remote destination, where it performed ik task. The agent was then scheduted to f e t~m

home to report its resuits. Messages showing the result retum method's execution were displayed

in the home location, although the debug output generated during an actual move did not appear.

The results retumed were ahivays just the default results set in the constructor (nomially faIse,

although changing the constnictor to set the result to tnre resulted in success k ing reported).

The actual outcorne at the remote site was never reported correctiy, even when the result value

was checked imrnediately before retuming from the remote site. The actual behavior was

d iscovered after a significant arnount of debugging , research, testing, and code modification.

It woufd now appear that the successive rnoveTo() calls in the processing loop likely resulting in

multiple rnoves being scheduleâ. Separate copies of the agent were likely created and dispatched

in paraltel. One agent went to perfom its remote task, white the other copy immediately invoked

the results method with the defautt resufts. Since the results were retumed to the Voyager

instance from which the agent originated, no travel was invoîved, and so the debug output from

the travel functions was not obsenred. The remote agent never retumed since it did not explicitly

invoke a rnoveTo() operation, and its itinerary had been marked as complete due to the

processing loop.

To correct the problem, several changes were made. The traveiToAll() methoâ was droppeâ-

Each callback function within an application agent was responsibie for invoking the travel()

method of dodigent, which retrieves a single itinerary elernent and invokes rnoveTo() once. In

other words, the travel() method had to be called at the end of each callback function. This

requirernent included early temination of a callback, such as men an emr occuned. Rather

than just issuing a retum, the agent must cal1 travelo to go to its next destination, or update its

itinerary to handk the error. In either case. simply issuing a retum would essentially terminate the

agent, or at least becorne unrecoverable and inactive. Calls to travel(), especially when

processing errors in the middie of a callback, must be followed by an explicit retum statement to

ensure that further processing is discontinued.

5.5. Modifications fo Original Plans

The following Iist summarizes the changes in fundonaMy or behavior that arose during the

implementation phase. This Iist does not include features discussed in chapter two which were

not intended for implementation.

Automatic processing of new document updates was intended as an option. This option

is difficult to apply utilizing the cunent implernentation. Although automatic updates could

be applied to the most recent update in the edit repository, there is no reverse

association maintained in the repository to identify the actual file which the user normalîy

uses. Aiümugh traclcing of both the repository and extemal files could be implemented,

the intent of the system is to provide an environment that does not restrict the user to one

particular systern. Users should be free to create and edit documents using extemal

programs, and then utilize the collaborative environment for sharing and distribution.

Storage of user filenames with the repository entries would not guarantee that the user

would not rnodify the file extemaiiy or even rnove the document entirely. This couM cause

errors and even undesired behavior. The approach of manualîy initiating the application

of updates is corisidered to be a more flexible technique which facilitates the use of

altemate bols for basic document processing.

Replacement of existing documents with complete copies of updated documents was

used to simulate update processing, rather than using XMLTreeOiff to create and apply

diff'erentials.

Support for an application-wide logging facility based on the log4j logging package for

Java was originally planned. Time constraints and other priorities prevented these

facilities h m k ing impiemented.

Some hard-coding was used, the main instance of which is the DTD employed. The

Xeena wrapper h a r d d e s the basic command to be fun. All other hardd ing is for

configuration parameters rnanaged by the localMgr class. It is intended that these

parameters be moved to a separate configuration file in the future.

The traveiToAll() rneaiod which was intended to cause the docAgent class to initiate and

control al1 agent travel and pmcessing had to be abandoned. Expliut travel() calls are

now required at the end of each callback rnethod in application agents.

Table 2 summarizes the software packages used, including their installation locations. The values

of environment variables such as PATH and CLASSPATH are also presented as used during

development

Package

Java 2 Platform. Version 1.2.2

XML Parser for Java, Version

PATH

CLASSPATH

JAVA-HOM E
1

Table :

Cocrtion 1 Value

C:ÿdk1.2.2

C:UBM\xmi4j-22001 5

C:\voy ager

- Packages and Environment Variables

The contents of the simple Document Type Definition used for this project are shown in Figure 5:

<!ELEMENT doc (title, author, documentID, versionTag, toc?, chapter+,

index? >

< ! ELEPlENT

c ! ELEMENT

c ! ELEMENT

c ! ELEMENT

c ! ELEMENT

c ! ELEMENT

c ! ATTLIST

title (#PCDATA)>

author (#PCDATA) >

documentID (#PCDATA) >

versionTag (#PCDATA) >

toc (#PCDATA) >

chapter (section+) >

chapter

c!ELEMENT section (#PCDATA)>

c!ATTLIST section

title CDATA "section titlen>

<!EL- index (#PCDATA) >
I

Figure 5 - Document DTD

Chapter 6 - Summary and Conclusions

The implementation of the prototype collaborative document developrnent environment has been

successful. A functioning system has k e n created which supports the creation and editing of

XML documents. Local documents can be listed with summary information and operated upon.

Documents can be published to a central document directory. Availabk documents can be listed

and downioaded. Document updates can be pushed and requested, with some limitations on the

functionality of the achial update mechanism. The application demonstrates that the

implementation of collaborative environments using XML and mobile agent technologies is

feasible. Experience with the technologies used and this paradigm in general has been obtained

and presented in mis paper. A framework has been produced which should prove useful for

further development, expenmentation, and analysis of the parad~m.

Refinement of the prototype environment would allow the system to be used in a number of

different contexts. The system could support development and review of documents fmm

geographically dispersed locations. This might involve staff from different offices of a large

corporation assembling and reviewing a proposal, research teams from different institutions

cooperating in an investigation, or individuals collaborathg on an open source project, for

example. Distribution of course materials and updates could be performeâ by the system in an

educationat setting. This could be controlled to only allow the professor to push matenals and

updates to students. Altemately. students might be allowed to share their class notes and

comments on materials with other individual students, the class, their study group, or just the

professor.

Figures 6 and 7 show the main user interface and document browser, respectively:

Figure 6 - Main User Interface

361 Mon Mar 13 23:47:00 ...
; title2 auaior2 288 Fri Mar 03 23:t 1 :48 A..
j üüe3 aiAhor3 353 Sat Mar 04 14:54:50 A..
1 Me4 auth4 350 Sun Mar 05 12:31:30 ...

docS auîhS 283 Mon Mar 1 3 1 1 :O250 ... 1 tillel 1 authorî 361 Mon Mar 1 3 23:18:40 ...
1 titlel 397 Mon Mar 1 3 20:52:04 ,.

Figure 7 - Document Bmwser

6.2. Application lmprovements

There are a number of improvements that could be made to the existing prototype. These include

both new features and enhancements to existing ones. Techniques based on thin client

technology might be useful in separating the user interface from the core processing engine, in

order to facilitate operation of the manager components as background processes. Such a

separation would also serve to insulate the main system from changes to the user interface.

lmplementation of a full directory service, perhaps in combination with the existing document

directory, could be used to provide advanced searching capabilities basecl on author, title, or

other document properties. Another improvement would be to integrate a functional update tool.

This utility could be an updated version of one of the twls reviewed, an altemate twl, or a basic

tao1 developed for this system. A tool that identifiecl new nodes added to a document and

producecl update packages based on these new nodes would be a reasonable application to

develop.

The repository tools developed o&r signiiicant potential for offering advanced application

features. Cunent use of the repositofies is Iimited to intemal tracking of documents, with no

visibility to users. Although this transparency simplifies the system, several features could be

expanded to allow users to benefit fmm this funcüonality. The document browser cunently

supports local and remote modes for browsing documents. A third mode could be added to

support browsing the repositories. For exampie, this mode could be used to review previous

versions or recover from inadvertent changes. Much of the functionality of the repositories is

comparable to that of revision control systems used in code development By adding facilities to

compare revisions of documents and apply symbolic tags, repositories could be more acbjvely

used as document revision tracking systems. Repositories could also be extended to serve as

request queues between the document and agent managers. By monitoring a pair of queues for

incoming and outgoing requests, the two çomponents could be isolated from each other. The

existing repositones handle most of the data required. The addition of an operation identified

would be the main addition needed to implement this f~n~onal i ty .

6.3. Analysis and Measurement

The focus of this thesis has been on the initial investigation and prototyping of a document

shanng paradigm based on the use of XML and mobile agents. One important aspect of fumer

investigation in this area is the objective and subjective analysis of this paradigm, as well as

extensions to the basic mode1 developed. Development of facilities to monitor and back

operations would be essential for this type of investigation- Timing of operations should be

perfomied, and statistics describing how the system is used should be collected. Useful

parameters to track include: time required for repository and update operations; number of agents

active at difkrent times and locations; frequency and types of operations perforrned; documents

typically requested; use of network bandwidth; and disk space utilaatiori. Behavior of the system

under different types of load would be useful to analyze. Load could consist of large numbers of

users, documents, agents, or other parameters. Careful tracking of timing and resource

parameters during such experiments can help to identify bottlenecks in the system and general

performance degradation profiles.

Specific tests that would provide useful information include:

Developing a functionally equivalent environment using more traditional distributecl

system technologies such as CORBA or RMI. Remote operations using the same data

sets (same document, document Iists, number of users, system and network load) could

be wnducted and tirned using the hivo systems. The time to perform each operation,

amount of load placed on the system, and network bandwidth utilited by each could be

measured. Specific operations to analyze indude downloading documents and document

Iists. distributing document updates, and publishing new documents. These masures

would provide objective statistics to compare the performance and requirernents of the

two approaches.

A network packet sniffer could be employed to determine the bandwidth and number of

network connections required to perform various rernote operations. The number of

connections required to complete an operation would give an indication of how the

system would likely behave in unreliable network environments. Applications requiring

large numbers of connections, or interactions, to complete an operation would probably

be more heavily irnpacted by unreliabie network links than software not requiring as many

exchanges. Measurement of bandwidth consumption is useful to formulate a profile on

the networ'k impact of using different sues of documents, as well as the overhead

involving in using agents.

Timing and profiling could be used to measure the execution tirne and general

performance characteristics of operations. The creation and application of different types

and sues of document updates should be analyzed in îhis way. The overhead of parsing

and extracting header information from documents could be examined, as well as the

time to read, parse, and store different files of different sPes. These metrics would

identify which operations are the most computationally intensive. Performance

bottlenecks wouM be revealed and could be reviewed for potential optimizations.

General usage tracking statistics to monitor whkh operations were performed most

frequenüy would be useful. These statistics could also be used to identify patterns in

sequences of operations. Counters could be empioyed to t m k method invocations,

possibty with 'sessionm keys that identif'y related operations carried out to cornplete

higher-level tasks. Analysis of mis data would provide information which couid be used to

make common operations easier to use. Refated operations could be grouped or even

replaced with convenience funch'ons to simplify interactions. The data could also provide

a guide indicating which operations are executed most frequently, and ü~us should be

studied for possible optimization.

There are a number of variations on the basic rnodel implemented that wouM be interesting to

analyze. Different methods of formatting documents for local storage (such as storing a history of

differentials, rather than cornplete documents) could be explored. The cost of converüng from one

format to another could be examined. A cornparison of the costs of transfemng raw XML files

versus their logical representations (possibly including altemate logical representations) could be

made. The cost of creating the logical representation of the document from a raw data file, or of

creating the raw data file from a logical structure as part of the operation, could also be

considered. The analysis could be applied to a variety of document sues to identify trends in the

cost of the mechanism. Such metrics could be used to identify when there might be benefits to

using one approach instead of another, and optimization of the various operations perfomred by

applying these results based on fun time cnteria.

Future work may investigate the implications of shifting more of the computational burden from

stationary services such as the document manager ont0 the mobile agent This wouM be useful

to compare the overhead of the additional code size of the agent in such situations against the

benefits of simplifying the stationary services and increased mobile agent fiexibilii. The

performance impact due to the additional class loading activity during initial transfer of the agent's

supporting classes wauld a b be inte-ng to analyre, especially compared to the overhead of

subsequent vis6 by the same type of agent One could speculate that the first visit by an agent

from a particular client host would have a relativefy high amount of overhead for class loading,

while subsequent agents using the sarne classes and originating from the sarne host would

require significanüy less overheab. Measuring aie actual difference might prove useful,

particularfy if large libraries or low bandwidth networks were invoived.

6.4. Further Investigations

Throughout this effort, a number of areas for further research and development were identified.

Discussion of these areas has been presented as a separate section because either the s a p e of

the required developrnent effort is beyond basic enhancemenk to the existhg system or m ich

investigate changes to the basic architecture of the model. One area to be pursued is the design

and implementation of a security architecture for the system. Although general requirements for

this infrastructure have been presented in the first chapters of this document, there remains a

significant amount of investigation and impiementation. Abstractions representing users are

required. Access controls based on user identities, hosts, and credentials should be integrated

into the system. The application of cryptographie protections for agents and the data they carry

shoufd be investigated. Similar protections for local data could also be pursued. A flexible

mechanism for specifying and applying policies defining how requests and data from specified

users should be pmessed could be developed. Such a mechanism could be used to specify that

data from unknown users be plaœd in a hoMing area for manual review before processing, or

that updates from a research assaciate be immediatety merged with the local document

One of the advantages of agents is their flexibility and ability to adapt to changing conditions.

Exploration of the application of these pmperties to develop a system resilient to network

changes, failures, and congestion could be very interesting. Adaptation of travel to minimke

usage of bandwidth and optimize travel patterns wuM also be studied. The elimination of a

central document m e r in -or of pure p e e r m r collaboration couid be investigated. A

parallel environment devebped using RMI or more traditional distributeâ technologies could be

used for both subjective and objective cornparisons of the two techniques. Subjective anaiysis

could be performed to anaiyze fadors such as ease of use, ease of cornprehension, simplicity of

design, and so on could be done. Objective parameters such as the overhead of various

operations could also be compared.

Finally, variations on the collaborative mode1 discussed here which exploit some of the other

benefits of agents could be explored. One example of such a variation would be an environment

in which a large document storage environment was created. The focus of the collaborative

environment could shïft to the collection and tracking of documents at the central sites. Simple

facilities could be provided to agents which traveied to the document site to perform complex

searches and other operations locally. Much of this work could be built on the existing

infrastructure of this system.

6.5. Conclusions

This experirnent has successfully explored a new paradigm for collaborative systems

development Autonomous mobile agents have been used to develop a collaborative system that

is well suited for use by intemittentfy cannected clients, or environments where bandwidth

utilization and flexibility are important The flexibility afhrded to the system through the use of

agents cannot be achieved using standard technologies such as Remote Procedure Calls wîthout

a signifiant increase in the frequency of interactions between dients and the rest of the system.

The approach employed in mis pfoject may require additional processing resources over a more

traditional model, which is an issue which wuM be expbred using a parallel system and detailed

analysis, as describeci eartier in this chapter. Agent technologies introduce new secunty issues

not present in standard disttibuted systems. These issues are much less of a problem in

environments having a defined user group, which is where a collaborative environment would

ty pically be deployed.

The design goals stated at ttte outset induded devebpment of a framework from which the

collaborative paradgrn could be fumer explored; minimization of bandwidth consumption and

remote interactions; existing tools and infrastructure should be used where possible; and

proprietary interfaces and tools should be avoided. AI1 of these goals have k e n successfuliy met

A functional prototype has been implemented with consideration given for future expansion

throughout the investigation and deveiopment process. Client operations require only a single

agent transmission to initiate an operation, followed by receipt of the retuming agent to retrieve

results, regardless of the number of different systems utiliied in completing the task. Existing

tools which utilize published standards, such as the XML Parser for Java, have been utilized as

much as possible. Care has k e n taken to ensure that new toob and infrastnicture can be easily

added to the architecture. An initial assessrnent of the collaborative system indicates that it

should prove very beneficial. The particular environmen t and mode1 of usage being considered

may dictate whether this system is appropriate or not

Preparation of this thesis has been a valuable leaming experience. It has provided an opportunit'

to explore and utilize a number of interesthg new technologies. Practical and theoretical

knowledge of Java, XML, and mobile agent has k e n gained, including numerous related tools.

Research skills have been improved. The implications of decisions maâe during preliminary

investigations as well as system desgn have been experienced. lnsight into the value and

purpose of several useful desgn patterns and rnethodologies has been gained. In addition to the

benefits experienced by the author, it is hoped that this investigation will be useful in facilitating

further exploration of this topic.

[DOMHASH 1 9991 Maruyama, Hiroshi, Kent Tamura, and Naohiko Urarnoto. "Digest Values for
DOM (DOMHASH),' lntemet Draft, available at http://uMniv.ietf.org 1999.

[Fanner et al. 19961 Famr , William M. Joshua D. GumMn, and Vipin Swamp. 'Security for
Mobile Agents: Issues and Requirernents.' In: Proceedincrs of the 19 National
I nfomiation Systems Secuntv Conference Octo ber 1 996.

[Gamma et al. 19941 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Desitan
Patterns. Elements of Reusable Obii-Oriented Software. (Addison Wesley Professional
Corn pu ting Series, 1 994).

[Ghezzi et al., 1991] Ghezzi, Carlo, Mehdi Jazayeri, and Oino Mandrioli. Fundamentals of
Software En~ineering. (Engiewwd Cliffs, N J: Prentice-Hall, Inc., 1991).

[Harrison et at 1995) Hamson, Colin, David Chess and Aaron Kershenbaum. 'Mobile Agents: Are
they a good idea?' New York: T.J. Watson Research Center, IBM Research Division.
March 1995.

[Kiniry et al. 1997) Joseph Kiniry and Daniel Zimmerman, "A Hands-On Look at Java Mobile
Agents,' IEEE lnternet Comwting, Volume 1, Issue 4. July-August 1997: 29.

[Maruyama, 1999) Maruyama, Hiroshi, Kent Tamura, and Naohiko Uramto. XML and Java,
ûevelopina Web Ap~lications. (Reading, MA: Addison Wesley longrnan, Inc., 1999).

[Preece et al. 1994) Preece, Jenny, et al. Hurnan-Cornputer Interaction. (Addison Wesley
Pu blishing Company, 1 994).

[SASL 1997 Myen, J. 'Simple Authentication and Security Layer (SASL),' lntemet Request for
Cornments RFC 2222, available at http://www.ietf.org 1997.

[Walsh et al. 19971 Walsh, Tom, et al. 'Concordia: An Infrastructure for Collaborating Mobile
Agents." First International Workshop on Mobile Agents (MA'97) April 1997.

[XML4J] XML Parser for Java 2.0.1 5 API Documentation, available at

