
Distributed Information System (DIS)

RMï and Java 1.2 Implementation

by

Vicky Shiv

B. Tech. (Bachelor of Technology Computer Science)

Harcourt Butler Technological Institute. 1995. India

Thesis

subrnitted in partla1 fiilflllment of the requirements for

the Degree of Master of Science (Computer Science)

Acadia University

Spring Convocation. 2000

Oby Vicky Shiv, 2000

National Library Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques
395 Wellington Street 395. rue W ~ i g t o r ,
OMwaON KlAON4 -ON K l A W
Canada canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sel1
copies of this thesis in microform,
paper or electronic formats.

L'auteur a accordé une Licence non
exclusive permettant a la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur consewe la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels
may be printed or othenirise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

CONTENTS ... IV
LIST OF FIGURES ...

ACENOWLEDGIYEWT8VIIl
ABSTRACT ... IX

CHAPTER 1 .. 1

1 INTRODUCTION ... 1

1 - 1 OVERVIEW OF THE THESIS ... 4

... CHAPTER 2 ... 5

2 CLIENTfSERVER ARCHITECTURE ... 5

2 . i CLIENT/SERVER MODEL .. 6
2.1.1 Client ... 7
2.1.2 Servicerequest .. 7
2.1.3 Clientlserver interaction .. 7
2.1.4 Server ,.. .. 8
2.1.5 Service instance ... 8
2.1.6 Service interface 8
2.1.7 Service reference 8

2.2 CLIENT/SERVER COMMUNICATION .. 9
.. 2.3 CLIENT/SERVER RESPONSiBLïiïES 10

2.3.1 Client Responsibilities: .. 10
2.3 -2 Server Responsbilities: 10
2.3 -3 Middleware Responsibilities: ... 10

2.4 TIERS, ... II
2.4.1 Two-tier Architecture .. 12
2.4.2 Three-tier architecture ... 14

.................... ... 2.5 E X P E ~ D BE NEF^ OF CLIENT/SERVER COMPU~CNG ... 16
2.6 SUMMARY ... 17

3.1 ADVAMAGES OF DISTRIB~ED COMPUTING ... 20
... 3.2 T~cmoux;ns OVERVW 21

... 3.2.1 DCOM - Distributed Component Object Mode1 23
3.2.2 C O D A - Common Object Request Broker Architecture ... 24
3.2.3 Java RMI - Remote Method Invocation .. 25

3.3 ADVANTAGES OF RMI ... 27
3.4 S ~ I M A R Y ... 29

4 INTRODUCTION OF DIS ... 31

4.1 PUSH AND PULL MODEL ... 32
.. 1.2 .MA M F W ~ O N A L I T Y -.. -32

4.3 COMPONENT OF DIS 34
4.3.1 Local Information S ystem (LIS) ... 34

1.3.1 - 1 File ... -34
4.3.1 -2 Folders ... 35

... 4.3.1.2.1 Workspace Folder- 35
4.3. I .2.2 Downloadspace folder ... 36

.. 4.3. I .2.3 Connected workspace folder 36
4.3.2 DIS Name Server .. 37

.. 4.4 OPERATIONS 38
.. 4.4.1 On-line operations 38
.. 4.4.2 On-line operations -40

... 4.5 S ~ c u m MODEL 42
... 4.5.1 Name server Security mode1 42

... 4.5.2 LIS Security mode1 42
4.6 OBJEC~ PERSISI-ENCE .. 43

.. 4.7 EXCEPTION HANDLING 43

... CHAPTER 5 -44

5 IMPLEMENTATION OF DIS ... 44

5.1 ANALYSE .. 44
5.1 . 1 Strategy 44

... 5.1.2 Analysis 45
5.2 DESIGN .. 47

... 5 .2.1 Architecture 47
.. 5.2.2 Mode1 48

5.3 I M P L E M ~ A T ~ O N .. 50
.. 5.3.1 View Mode1 1
.. 5.3.2 Data Mode1 54

.. 5 .3.3 Communication Mode1 56
.. 5.3.3.1 NmeServer 56

5.3.3.1.1 Rernote Intaface ... 56
.. 5.3.3.1.2 Implernenting the name servcr 57

5.3.3.1.3 Starting the name sema ... 58
5.3.3.2 LIS Sema .. 59

5.3.3.2.1 Remote Interface ... 59
5.3.3.2.2 Implementing the LIS S e m ... 59
5.3.3.2.3 Starting the LIS Serva 59

.. 5.3.3.2.4 Connecting to the narne serva 61

5.3.3.2.5 Connecting to the other LIS .. 62

... CHAPTER 6 6 3

6 APPLICATION OF DIS: DRPE 63

6.1 NAME SERVER,.......... ,... ... 65
6.2 DRPEC 66

6.2.1 Workspace Tab .. 66
6.2.2 Download Space Tab .. 69
6.2.3 Name Server Tab .. 7 0
6.2.4 Security Management Tab .. 71
6.2.5 User Management Tab ,, .. 72

6.3 SUMMARY ... 73

7 CONCLUSIONS 7 4

.. DIS INSTALLATION GUIDE 81

1) SOFIWAREW INSTALLATION ... -81
Il) RUNNING LIS ON-LINE .. -82
III) RUNMNC LIS 0 m . m ... &
II) RUNNING NAME SERVER &

List of Figures

Figure 2.1 . Client/server Mode1 .. 6
Figure 2.2 - Two-tier Architecture ,.... ... 12
Figure 2.3 - Three-tier architecture ... 14
Figure 3.1 - Distriiuted Architecture .. 21
Figure 4.1 - Sarnple On-line operations .. 40
Figure 5.1 - Mode1 View Controiler ... 45
Figure 5.2 - Architecture of DIS ... 47
Figure 5.3 - Model-Delegate Design Mode1 ... 48
Figure 5.4 - Implementation Mode1 of DIS ... 50
Figure 5.5 - UML of View Mode1 ... 53
Figure 5.6 - UML of Data Mode1 ... 54
Figure 5.7 - UML of Data Mode1 ... 55
Figure 6 . t - Name Server ... 65
Figure 6.2 - DRPEC Workspace Tab ... 66
Figure 6.3 - DRPEC workspace (ExporMg a î le) ... 67
Figure 6.4 - DRPEC File Preview Diaiog .. 68
Figure 6.5 - DRPEC Dowmioad Space ... 69
Figure 6.6 - DRPEC Name Server Tab .. 70
Figure 6.7 - DRPEC Security Management Tab .. 71
Figure 6.8 - DRPEC User Management Tab .. 72

Acknowledgments

1 would like to express my sincere thanks to my supervisor Dr. T.

Muldner for his precious guidance. inspiration and valuable time

throughout this work. Thanks also extend to Dr. Ke Qiu for king m y

interna1 examiner and Dr. Carolyn R Watters for being my extemal

examiner.

Finally. 1 wodd like to express my greatest gratitude to my brother

and wife for their love. support. and encouragement.

This thesis describes an integrated Distributed information System (DIS).

The Brst objective of my thesis is to buiid a portable and distributed

information system based on a domain of homogenous and persistent

objects. In order to meet this objective. we designed and implemented

Distributed lnfonnation System (DIS). DIS is a general-purpose

environment for the self-sustaining information systems. Software

developers can use DIS to create a concrete idormation system without

having to deal with networking and distribution details such as remote

access. migration. replication and distributed transactions.

Implementation of DIS is based on a chent/senrer paradi- that uses

Java 1.2 and RMI to provide network and operating system

independence. Persistent storage on the server is provided through a file

systern or JDBC.

The second objective of my thesis is to create an experimental system

that can be used for the example-based leaming. This objective has been

met by using DIS to buiid Distributed Repository of Programrning

Examples (DRPE) .

Chapter 1

1 Introduction

Distributed Monnation System (DIS) is a general-purpose

environment for self-sustaining information systems. DIS enables

software developers to create an information system without havw to

deal with networldng and distribution detalls such as remote access.

migration. replication and distributed transactions.

Distributed systems have evolved because the source of the data is

centralized and there is ofien a need for frequent and immediate access

to locaily generated data. Centralized systems have a potential single

point of fadure. Distributed systems offer higher overall fault tolerance

such that in the event of a failure some or al1 of the fiinctions of an

organization can continue to a greater or lesser degree.

A distributed information system can be defined as a system where

documents containing information are distributed across multiple

machines connected by a network. Therefore. data (or. documents) are

accessible as a shared resource. see [Booth 811. These systems are useful

because the coiiective storage of multiple cornputers provides a more

powerhrl system. Additionaliy. with the dupikation of resources the

failure of one component does not necessarily imply losing the entire set

of data. Thus. distributed systems provide parallelism and fault

tolerance, making them potentidy much more powerful than their

individud components. see [Muilender 891.

I n this thesis. we describe the design and implementation of a robust.

integrated. persistent dlstributed information system (DIS). A DIS

consists of a number of local information systems (LIS). Each LIS can

work locdy as a stand-done application managing its own data. or in

conjunction with the name server sharing its data. Each LIS in a DIS

provides high-level services to the other LIS. which can be either a client

or server. Since each LIS consists of a client and a server. they can join

and leave the DIS dynamically. When an LIS cornes on-Une. it registers

its seMces with a DIS name server. which itself is a specid klnd of

server. The DIS name server is an essential component of DIS that

enables information systems to become self-sustaining. The name server

is used to dynamically locate other users on the network. It is also used

for authenticating other local information systems.

CHAPTER 1. INTRODUCTION

Key responsibiiities of the DIS are storage. retrieval and distribution

of information and emcient access to the distributed information. The

DIS components will cornmunicate with each other via the existing

hardware and software network.

A number of applications can be implemented using DIS. Some of

them are a virtual office. shared text space. distributed repository of

programming examples and virtual class environment.

The second objective of my thesis is to design and implement

Distributed Repository of Programming Examples (DRPE) . The

communication layer is based on RMI and the system is portable. and

can be re-implemented using any other distributed technology. The

application also provides an efficient and effective way to store. retrieve

and manipulate the information.

The GUI is designed and implemented in such a way that it is not

only efficient and effective but also easy to learn and use. Dynarnic

Intemet Protocol (IP) addressing is the key concept. enabling a user to

connect kom virtually anywhere. In my thesis. 1 show how DRPE can be

used to teach programming in C. This part of the thesis has also been

described in a separate paper [Muldner. Shiv 001.

There are several existing systems that support example-based

learning. see [Neal 891 [W. Raymond 971. However. our system is

innovative because it supports example-based leaniing in a distributed

environment. such as the electronic campus at Acadia University. DIS is

also better than other technologies: for example a File Tkmsfer Protocol

(FIT') does not support the same security mode1 as DIS, and does not

provide an indMdual user authentication. There is no way to share some

part of the information with a particular cïient. Ail the information in an

FTP client is accessible either to everybody or to nobody. Web would be

useful to implement the DIS, but in this case to download information

from the client one would need a digital signature installed on the each

and every client.

We assume that the reader has a basic knowledge of Java and RMI

[Sun 98, RMI 971. In my thesis. 1 used a Courier font for the Java classes

and their implementation.

1.1 OverPiew of the Thesis

The organization of the thesis is as foilows. Chapter 2 gives an overview

of client/server technology. Chapter 3 gives an overview of distributed

technologies. such as CORBA and RMI. Chapter 4 describes the

functionaiity of the DIS. Chapter 5 describes in detail the design and

implementation of the DIS. Chapter 6 describes a application of DIS for

teaching programming in C: Distributed Repository of Programming

Examples (DRPE) and provides several screenshots of DIS. FinaUy. in

Chapter 7. we sum up the conclusions and recommendations for fbture

work.

Chapter 2

2 Client/Server Architecture

The term "ciient/serverm [Adler 95) was first used in the 1980s in

reference to personal computers (PCs] on a network with the actual

ciient/server mode1 gaining acceptance in the late 1980s. The

client / server software architecture is a versatile. message-based and

modular infiastructure intended to improve usabiiity. flexibility.

interoperability and scalability as compared to centralized. mainhme.

time sharing computing. A client is defined as a requester of services and

a senrer is defined as the provider of semices. A single machine can be

both a cïient and a server depending on the sohare cox@pration

[Schussel 96, Edelstein 941. When a client needs information nom a

server. it requests the information nom the server by sending the server

a service request. The server processes the request and provides the

requested information back to the client.

2.1 Client/server Model

Server

Client Server Model

cl ient

Figure 2.1- Client/server Model.

-
S
E
R
v
E
R '

R

8
U
E
S
T

-

is

The client/server model provides a way for Merent devices to work

)E

Client Server Interaction

together. each doing the job for which it is best suited. The role is not

E
R
v
R

I
N
T
E
R
F
A
C
E

fixed, however. A workstation can be a client for one task and a server for

another. The client/server model represents various components and

interaction procedures (see Figure 2.1) and offers the potential to use

resources to their fullest whiie also faciIitating resource sharing. The

6

client/server model Bts weli in an environment of diverse computing

needs that are dismbuted throughout an organization. in today's

business environments. it is expected that client/server architectures

will continue to increase in popularity and sophistication. The following

subsections describe the components of ciient/senrer model.

2.1.1 Client
The client process is usually the front-end of the application that

interacts with the users and manages local resources such as the

monitor. keyboard. and mouse. Client is also defined as a requester of

the services. nie client process also contains solution-specific lo@c and

provides the interface between the user and the application system.

2.1.2 Service request
The client makes the service request. a server performs it and the

result is returned to the client. Service request sends messages to a

semer process (program) requesting the semer to perform a specific task

(service). Service request operates on the user's machine and takes m e

of the interactive processing driven by the user.

2.1.3 Client/semer interaction
Client/Sexver interaction consists of one or more service requests.

- .c-

2.1.4 Semer
The server performs a function at the request of other application

components. A server provides services ta other ciients that may be

connected to it via a network. The connection between client and server

is normaily by means of message passing. often over a network. and uses

some protocol to encode the ciient's requests and the server's responses.

The server may run continuously (as a daemon). waiting for service

requests to anive or it rnay be invoked by some higher level daemon

which controls a number of specific sexvers.

2.1.5 Sendce instance
Service Instance is a combination of software and data that

provides services and maintains the context and state specisc to it. A

seMce instant may be staticaily defined or dynamicdy created and

destroyed at nin-time. Its Me-time may be long (years) or short (sub-

seconds).

2.1.6 Service interface
This is an abstraction that represents externally visible behavior of

a service instance.

2.1.7 Semice reference
A service reference points to a service instance.

2.2 Client /semer Communication

To ensure proper interaction between ciients and servers a new type

of software called 'rniddleware" [Benda 971 has been developed.

Middleware is also referred to as communication layer. One of its

purposes is to translate client requests into a fom that servers can

understand and then translate semer responses for clients. Middleware

is the key to delivering resilient. secure and transparent services to

users. I t is a layer of software that runs between the client and the server

processes. It shields the ciient h m the complexity of underlying

communications protocols. network operating systems and hardware

configurations. Several types of middleware services are avdable such

as RMI, RPC, RDA, CORBA and DCOM.

RPC. RMI. DCOM, CORBA or some other variant is widely used for

client/server communication in a distributed systems environment. The

format of communication between clients and servers taices in the form

of message exchanges. The simplest exchange consists of a request

message fkom a client to a server and a reply message fkom the server to

the client. Each communication takes the form of a single message

transmitted between processes.

CHAP7'ER 2. CLJENT/SERVER ARC-

Client/server responsibilities can be deîmed into three Merent

groups. These groups identi@ the responsibllities of client. server and

middleware as follows:

2.3.1 Ciient Responsibilities:
Provide user Interface.

Translate the user's request into the desired protocol.

Transmit the request to the server.

Wait for the semer's response.

Translate the response from the server back to the ciient.

2.3.2 Semer Responsibiiities:
Listen for a client's request.

4 Process that request.

Return the results to the client.

2.3.3 Middlewam Responsibilities:
Middleware forwards the client's request such that the sewer can

understand and translate server responses for the clients.

2.4 Tiers

In general client/server architectures now have three tiers. The first-

tier. or top-tier. includes a client with user system interface where user

seMces (such as session, text input. dialog. and display management)

reside [Louis 951. The middle-tier. or rniddleware. provides process

management services [such as process development. process enactrnent

and process monitoring) that are shared by multiple applications. The

third-tier provides database management functionaiity and is dedicated

to data and flle services that can be optimized using any proprietary

database. The data management component ensures the data is

consistent throughout the dismbuted environment thmu@ the use of

features such as data locking, consistency. and replication. It should be

noted that comectivity between tiers could be dynamicaiiy changed

depending upon the user's request for data and sewices.

In the two-tier cUent/server model, the middle-tier services are

usualiy moved ont0 the client side. This is a typical two-tier ciient/server

architecture, fat client and thin semer. For three-tier ciient/se~ver

architecture. we move the functionality part nom the cîient to another

platform. leaving it as a thin ciient and a thin semer.

2.4.1 no-tier Architecture

First Tier Second Tier

Two-Tier Client Server Architecture

Figure 2.2- Two-Uer Architecture.

With two-tier client/server architecture (see Figure 2.2). the fkst-

tier. or system interface. is usudy located in the user's desktop

environment and the second-tier. or database management senrices. are

usudy at a sexver. The processing management. is spiit between the

user system interface and the database management tier.

The two-tier cilent/server architecture is a good solution for

distributed computing when work groups are deflned as a dozen to 100

people interacting on a LAN simultaneously. It has. however. a number of

limitations. When the number of users exceeds 100. performance begins

to detenorate. This limitation is a result of the server maintaining a

connection via "keep-alive" messages with each client. even when no

work is being done. A second limitation of the two-tier architecture is

that implementation of processing management services by using vendor

proprietary database restricts flexibility and choice of DBMS for

appLications. Finally. current implementations of the two-tier

architecture provide limlted flexibility in moving (repartitioning) program

functionality fkom one semer to another without manually regeneratlng

procedural code [Schussel96. Edelstein 941.

CIlAPTER 2. CLIENT/SERVER ARC-

2.4.2 Three-tier architecture.

Middle Tier

J

Figure 2.3- Three-tier architecture.

L

Daîabase

First Tier Database Semer

ClieaVSaver Requat & 1 Database Request and
~ P I Y ~ P I Y

Three-Tier Client Server Architecture

The three-tier architecture (see Figure 2.3) ernerged to overcome

the limitations of the two-tier architecture. In the three-tier architecture,

a rniddle-tier was added between the user system interface and the

database management server. There are a variety of ways of

implementing this rniddle-tier. such as transaction processing monitors.

message servers. or application servers. The middle-tier performs various

services like queuing. application execution. and database staging. For

example. if the middle-tier provides a queuing service. the client can

14

deliver its request to the middle layer and disengage because the middle-

tier will access the data and return the answer to the client. The three-

tier ciîent/server architecture has k e n shown to improve performance

for groups with large numbers of users (in the thousands) and improves

flexibility when compared to the two-tier approach. Flerdbility in

partitioning can be as simple as "dragging and dropping" application

code modules ont0 Merent cornputers in some three-tier architectures.

A limitation with three-tier architecture is that the development

environment is reportedly more difflcult to use than the development of

two-tier applications [Schussel96. Edelstein 941.

2.5 Expected Benefits of Client /Semer
Cornputhg

The client/server mode1 provides many benefits. An explanation of

those benefits follows:

Adaptability: - Ciient/server computing has the ability to adapt to the

changing needs of the business environment. to ease up or downsize the

computing resources to match the business needs.

Reduced Opera* Cos-: - Client/server computing reduces hardware

and software costs which means real computing power is increased.

Client/server computing means large expensive systems can be replaced

by Iower cost smaller ones, networked together.

Platform Independence: - The trend to client/sexver computing goes

hand in hand with the push towards open systems and indus*

standards. No one wants to be locked into a single vendor's propriety

hardware or software. Users want to be able to fkeely interchange

components.

Better Return on Cornputhg Investment: - A client/server

environment provides vendor independence and dows computing

resources to be pwchased fkeely.

Improved Performance: - Client/server processing power spreads

through-out the organization giving users faster response times. Using

open networked systems and lower component costs. new resources can

be added quickly where needed to improve performance bottlenecks.

Decentraïized Opcratio~: - A ciient/server decentraiized IT operation

puts computing power and data access in the hands of the users. This

increases the productivity of MIS s t d by reducing trivial requests.

Client/sexver architectures can improve the service provided to

customers by supplying information at the point where it is required for

customer requests.

High Reïiabiïity: - Client/senrer operations require highly reliable

systems. with high transaction rates. timely and continuous data access.

data integrity and corporate security.

A client is deflned as a requester of services and a server is defined

as the provider of services. A single machine can be both a client and a

server depending on the software configuration.

The Client/Server architecture mode1 is a versaffle. message-based

and modular infrastructure intended to improve usabiiity. flexibility.

interoperabillty and scalability as compared to centralized. mainframe.

time sharing computing. n i e Two-tier cUent/server architecture is used

extensively in non-tirne critical infoxmation processing where

management and operation of the system are not cornplex. The two-tier

17

architecture works weii in relatively homogeneous environments where

processing rules (business rules) do not change often and workgroup size

is expected to be fewer than 100 users. The three-tier architecture

improves performance. flexibility. maintainabiiity. reusabiiity and

scalability by centraking the process logic. The centrahed process logic

makes administration and change management easier by localizing

system fûnctionality so that changes must only be written once to be

avaüable throughout the system. With other architectural designs. a

change to a h c t i o n (se~vice) would need to be written into every

application [Eckerson 951.

Chapter 3

3 Distributed Computing

Today's software development projects are targeted for heterogeneous

computing environments that integrate new systems with legacy

components. The distributed computing architecture enables application

developers to benefit from the use of this technology.

As networks of computing resources have become prevalent, the

concept of distributing cornputhg over multiple resources has become

increasingly viable and desirable. Over the years. severai methods have

evolved to enable this distribution. ranghg from simplistic data sharing

to advanced systems supporting a multitude of services. This chapter

presents an ovenriew of distributlng computing. coverlng core

technologies and their benefits.

3.1 Advantages of Distributed Computing

Distributed computing supports development in heterogeneous

environments. Today's software applications have complex requirements

often requiring the use of many types of cornputers and tools such as

GUI builders. desktop cornputers. sewers. etc. Dismbuted computing

provides a foundation for using these tools and systems together. It

provides freedom to select fkom a wide range of hardware. software and

networking components. Here are some of the advantages of distributed

computing:

A greater cost-effectiveness through sharing of computing resources

and implementations of heterogeneous open systems.

I t provides collaboration through comectivity and intemetworking.

Better performance through paralle1 processing.

* Scalability and portability through modularity. Distributed computing

aüow corporations to deliver fully scalable. completely networked

appiications that can be deiivered on any type of network. including

LANs. WANs and the Internet. This capabiiity aiiows an application to

be u W e d in a variety of ways. One of the most popular rnethods of

using distributed applications is via a browser-based interface.
20

CHAITER 3. DISTRR3UTEZD COWUrmrG

because it d o w s access at any time kom virtually anywhere in the

world.

Increased reiiabillty and availability through replication.

Extensibility through dynamic configuration and reconfiguration.

Burinas Data base a
First Tier Middle TKc Database Server

Distri buted Three-Tier Client Server Model

Figure 3.1 - Distributed Architecture.

The research for heterogeneous computing environments led to the

development of distributed computing standards such as the Distributed

Computing Environment (DCE). The DCE specification is among the
2 1

most widely irnplemented in the industry. providing consistent behavior

across heterogeneous execution environments. The DCE architecture

also defines thread. tirne. authentication & security and directory &

naming services. These standards are foilowed by the Distributed

Component Object Mode1 [DCOM 971 from Open Software Foundation

and Open Group [Microsoft 971. the Common Object Request Broker

Architecture [CORBA 97) kom the Object Management Group [OMG 981

and Remote Method Invocation (RMI 97) fi-om Sun Microsystems [Sun

981. Each has its own advantages and disadvantages. In the rest of this

chapter. a brief ovexview is given for each of these technologies with

regards to choosing a particular technology for building DIS.

3.2.1 DCOM - Distributed Component Object
Model

Microsoft's core object distribution protocol is DCOM [DCOM 971.

an extension of Microsoft's Component Object Model [COM 951

integration architecture. permitting interaction between objects executing

on separate hosts in a network.

In order to address the rising need for distribution of objects

across multiple hosts (Le. multiple physical address spaces), Microsoft

developed DCOM as an extension to COM. As an extension rather than a

separate architecture. DCOM inserts a stub interface between the calling

application and the actual implementation of that interface. In this

manner the architecture strongîy resembles an RPC-based model.

although the implementation is stili based on a binaxy integration

scheme. rather than a more abstract model.

The DCOM does not support distributed namfng services. rather it

is based on the N T registry. Codguring and installing DCOM is tedious

and Labor intensive job. Although, DCOM is well suited on a Microsoft

platform. it is not for the other vendor's platfoxms.

3.2.2 CORBA - Common Object Request Broker
Architecture

CORBA is a standard maintained by the Object Management

Group [OMG 981 for the distribution of objects across heterogeneous

networks. Designed as a platfonn-neutral infkastnicture for inter-object

communication. it has gained widespread acceptance. CORBA ailows

applications to use a comrnon interface. defhed in an Interface Deanttion

Language (IDL). across multiple platforms and development tools. OMG

IDL is designed to be platfonn and language-neutral: data and call

format conversions are handled transparently by the Common Request

Broker (ORB). Ail interfaces to CORBA objects. and the data types used

in those interfaces. are speciaed in the IDL. This common deanition

aliows appiications to operate on objects without concern for the manner

in which the object is irnplemented.

CORE3A also provides some capabiiities for runtime object interface

identification and invocation through its Interface Repository (IR) and

Dynarnic Invocation Interface (DII). While these have the potential to

allow (almost) complete runtime coIifiguration to access CORBA objects.

in practice there rnay be very few cases where such capabilities are

actudy workable due to semantic issues. nie implernentation of CORBA

is a tedious job and requires lot of development tirne.

Java RMI - Remote Method Invocation

Java Remote Method Invocation (RMI 99a] is a distributed object

model for the Java platform. RMI is unique in that it is a laquage-

centrlc model that takes advantage of a common network type system. In

a nutsheli. RMI [RMI 99bJ extends the Java object model beyond a single

virtual machine address space. Object methods can be invoked

between Merent VMs across a network and actual objects can be

passed as arguments and retum values during method invocation. Java

RMI uses object serialization to convert object graphs to byte-streams for

transport. Any Java object type can be passed during invocation.

including primitive types. core classes. user-defined classes, and

JavaBeansm. The abiiity to pass actual objects enables clean system

design. aüowing system designers to focus on the overd object model,

not the plumbing of an application. Java RMI could be described as a

natural progression of procedural RPC. adapted to an object-oriented

paradigm. Java RMI can dynamîcaily resolve methnd invocations across

VM boundaries and it also provides a fully object-oriented (00)

distributed environment. Developers can irnplement classic 00 design

patterns for distributed programming just as they would in local

programming. Because RMI operates naturally in the Java domain.

developers work within a single object model (the Java model) instead of

working with multiple object models (Java. CORBA IDL. and others). This

25

removes a great deal of complexity. Unlike language-neutral object

models. RMI requires no mapping to common interface deanldon

languages. The syntax of remote method invocations is almost exactly

the same as local method invocations. RMI removes the burden of

memory management from the programmer because the underlying

system provides distributed garbage collection. AU of these

characteristics make programrning in simple and natural, an obvious

choice for developing 1W/o pure Java ciient/server. peer-to-peer, or

agent-based applications.

RMI also exhibits some distinctive new capabwties. Executable code

can be dynamicaily distributed on demand. including all necessary code

for distributed applications (client objects. remote interfaces. and remote

object stubs). This means that no code needs to be preinstalled on client

machines. greatly reducing the burdens of software distribution and

system mairitenance. Because the common type system is the Java VM

and language environment. RMI works reliably across different operating

systems where a Java-compatible V M is avaüable. The RMI system also

takes advantage of the s e c w nature of the Java environment. The

combination of Java technology's automatic bytecode verifkation. secure

loading of classes at runtime and disallowing access to memory pointers.

makes Java RMI secure fkom the ground up.

This section describes some of the advantages associated with RMI:

Object Oriented: RMI can pass full objects as arguments and retum

values. not just predefhed data types. nils means that we can pass

complex types. such as a standard Java hashtable object. as a single

argument. In existing RPC systems the client would have to decompose

such an object into primitive data types. ship those data types and then

recreate a hashtable on the server. RMI lets you ship objects directly

across the wire with no extra client code.

Mobile Behavîor: RMI can move behavior (class implementations) from

client to semer and server to client. For example, we can define an

interface for examining employee benefit reports to see whether they

conform to current Company poiicy. When a benefit report is created. the

client c m fetch an object irnplementing the report n.om the senrer. When

the bene& policies change. the semer wfll start retuming a Werent

implementation of the interface using the new poiicies. The constraïnts

will therefore be checked on the client side. providing faster feedback to

the user and less load on the semer. without installing any new software

on the user's system. This provides maximum flexibiUty. since changing

policies requires us to write only one new Java class and install it once

on the server host.

SPte and Secure: RMI uses built-in Java security mechanisms that allow

your system to be safe when users download the implementations. RMI

uses the security manager designed to protect systerns and networks

from hostile applets and nom potentiaiiy hostile downloaded code. In

severe cases. a sewer can refbse to download any implementations at ali.

Easy to Write/Easy to Use: RMI makes it simple to write remote Java

servers and Java clients that access those servers. A remote interface is

an actual Java interface. A semer has roughly three lines of code to

declare itself a server and otherwise is like any other Java object. The

simplicity aliows for quick and easy writing of servers for full-scale

distributed systems quickly. I t also permits rapid prototyping and

designing early versions of software for testing and evaluation. FinaJly,

because RMI programs are easy to write they are also easy to maintain.

Connects to Ed.ting/Legacy Systems: RMI interacts with existing

systems through Java's native method interface JNI. Using RMX and J N I

we can write the client in Java and use the existing server

irnplementation. When we use RMI/JNI to connect to e.xisting servers we

can rewrite any parts of the server in Java. Similarly, RMI interacts with

existing relational databases using JDBC without modifjdng any existing

non-Java source that uses the databases.

Write Once. Run Anywhere: RMI is part of Java's 'Write Once. Run

Anywhere" approach. Any RMI based system is 1Wh portable to any

28

Java Virtual Machine. If you use RMI/JNI or RMI/JDBC to interact with

an existing system. the code written using JM or JDBC will compile and

nui with any Java vlrtual machine.

Distributed Garbage Collection: RMI uses its distributed garbage

collection feature to coiiect remote server objects that are no longer

referenced by any clients in the network. Analogous to garbage coilection

inside a Java Virtual Machine. distributed garbage collection lets you

define semer objects as needed. knowing that they will be removed when

they are no longer needed.

Parallel Computing: RMI is multi-threaded. allowing semers to exploit

Java threads for better concurrent processing of client requests.

Certainly. of the three ~ e w o r k s discussed. CORBA provides the

greatest flexibility with its language and platform neutrality. There are. of

course, some costs associated with this neutrality. both in deployment

and runtime overhead.

Microsofk's COM/DCOM solution is the Windows operating system

installed base providing a compelling argument for its use in Windows

only environments.

Java RMI provides a language-speclflc architecture allowing Java-to-

Java distributed applications to be built easily. The main advantage to

29

using Java RMI when designing a pure Java distributed system is that

the Java object mode1 can be taken advantage of whenever possible. Of

course. this precludes using Java RMI in multilingual envlronrnents.

Java's inherent platform independence. however. stüi aliows deployment

in heterogeneous environments.

Many of the above concepts are shared across distribution

architectures. Some technologies. yet old. stiU offer compelliog reasons to

use them. However, where ease and cost of deployment are larger factors.

RMI is generally a good choice.

The three-tier architecture has improved performance and flexibility

as compared to the two-tier approach and Java RMI is the best-suited

distributed environment for use in the dismbuted information system.

CNAPTEfR 4. DESCRPTION & FUNCTION- OF DIS

Chapter 4

4 Introduction of DIS

The main objective of this project is to build a portable. distributed.

persistent information system. A distributed Lnformation system can be

defined as a system where documents containing information are

distributed across multiple machines connected by a network. Therefore,

data (or, documents) are accessible as a shared resource.

Our most basic objective is to exchange and share idormation. From

now on, we wiii assume that the information is stored in a document,

which serves as a persistent medium for this information (we will use the

the term 'document" interchangeably with the tenn 'informationw). A

CHAPTER 4. DESCRlPTION & FUNmonrm OF DIS

document is not necessariiy the same thing as a file: it could be a me. a

nurnber of files logically grouped together. or an entry in the database.

4.1 Push and pull model

DIS is based on the puil model. In order to describe the task of

exchanging and sharing information in a pull model. we consider two

kinds of applications. here cailed providers and fetchers respectively. A

provider application gives access to the avaiiable information for

authorized users: a fetcher appiication is designed to fetch or browse

information from one or more providers. mically. a provider is

implemented as a semer. and a fetcher as a ciient. For more information

about clients and servers see [Mdiender 891. A single application may be

both a provider (server) and a fetcher (ciient) at the same time. In DIS

each client is a provider as weU as a fetcher. Further extention can

provide the pull model.

4.2 Main Functionality

DIS is a collection of documents (files). in which every user can

d e h e her or his classiecations (folders). Each document rnay be stored

or classified within one or more classifications. and class~cations may

be nested. nierefore, in a classical Ble system. classifications resemble

folders. or directories. and documents resemble files. The entire system

C m E R 4. DESCRIPTION & FUNCTIONAUTY OF DIS

can be seen as a tree; leaves. howwer. may have more than one parent

(classification). The user wiil be able to make a part of his or her system

available to other users and puii (download) a classiacation from another

user [this classification corresponds to the node of the tree and the entire

subtree rooted at this node may be pulied). Permissions may be set so

that only selected users will have access to some documents.

DIS is an appïication designed to satisfy the above requirements. In

this system. a single unit that resembles a file represents each document

and a folder represents a classiilcation. DIS documents are stored

separately f?om the 81e system, but they can be easily imported fkom and

exported to that system.

DIS is a program that can operate both in off-Une mode or in on-

line mode, and in the latter mode as a semer or as a client. AU of the

operations that can be performed in off-line mode can also be performed

in on-iine mode.

CNAPTER 4. DESCRlPTlON & F U N C T I O N . OF DIS

4.3 Component of DIS

DIS is a coliection of various local information systems (LIS) and a

name server. DIS works in conjunction with the services provided by the

various Local Information Systems (LIS) and a name semer. The different

components of the distributed information system (DIS) are as follows:

DIS Name Server

Local Information System (LIS]

4.3.1 Local idormation System (LIS)

Local Idormation system is an individual entity that can work

locally by itself (Off-line Mode) or in conjunction with other LIS and a

name semer (On-he mode). LIS works both as client and sewer when it

works in on-Une mode. LIS can leave and join the DIS environment

dynamicaliy.

Components of the local information system (LIS) are as foliows:

File

Folder

4.3.1.1 File

A File represents a document in a distributed information system.

A File is Che srnaJiest atornic structure stored in the local information

system. A DIS M e is stored separately h m the fle system.

CNAPTER 4. DESCRPTJON & F V N C T I O N m OF DIS

Various operations that can be performed on the file are as follows:

Adding a new file.

Deleting an ds t ing file.

Mo-g an dsting file.

Copying the me to a folder.

Exporting a Me to DIS.

Importing a file kom DIS.

Moving the file.

A Folder represents the classification in a dismbuted informal3on

system. A Folder is the collection of sub folders and Mes. Folders are

used to deflne the classiacation within the system. InitiaJly at the top

level there exist three placeholders (downloadspace folder. connected

workspace folder and workspace folder). These are explained below:

4.3.1.2.1 Workspace Folder

This is one of the main folders that contains other subfolders. This

folder participates in the on-line mode of operations of the DIS. This

folder provides the classifications that are accessible fkom the other

users based on user privileges. Each subfolder can contain additional

files or sub folders. Each folder in a workspace folder has an attribute

attached to it. a permission attribute. Permissions are the U s t s of users

CHAPT'ER 4. DESCRlPTION & FUZVCTIONAllTY OF DIS

that have rights to see aU Bles in a curent folder but not necessarily in

any subfolders. The owner of the system sets these permission

att'i_butes.

4.3.1.2.2 Dodoadspace folder

This is a temporary workspace folder. Ali the classiacations within

this folder are not accessible to any other users.

4.3.1.2.3 Connected mrbpace folder

The connected workspace folder is used when the user wants to

fetch documents or classifications fi-om the network on his or ber local

system. The user gets comected to the other user(s) on the network and

loads the information into his or her comected workspace area.

The following operations can be performed on the folders:

Add a new folder.

Delete a folder.

Move a folder and ail its sub components to another location.

Modify the permission ambutes of a folder.

CNAPTER 4. DESCEUPTION & F U N C T I O N ~ OF DIS

DIS Name Semer

The DIS name server is the central repository for storing user ID

and password for every user. It is also used to store the dynamic IP

address of the user. For an application 'Aw to communkate with another

appiication 'Bw. "A* must be able to locate 'Bw using some kind of

namLng system. The standard convention used by the internet is the

Universal Resource Locator (URL). When 'Aw provides "B's" URL. the

Domain Name Server, DNS, finds "B'sw IP address and now "Aa can use

this address to cornmunicate with 'Bw. Unfortunately. this technique

does not work if 'Bw is off-iine or if "Bw uses an Internet Service Provider

(ISP) which provides dynamic IP addresses. Therefore. often we assume

that there exists an additional name server residing at a 'Weil-knownw

static IP. When the application 'Ba goes on-Une, it c o ~ e c t s to the name

server which then retrieves "BW's current IP and associates it with that

application's name. When appkation -A" wants to comect to application

'B". it does so through the name server. which guarantees that -Bm is on-

line and its current IP address is known.

The main h~tionalities of the name server are user validation.

dynamic IP addressing and hancihg client requests. Since a user can

virtuaily login from any terminal, he or she has to update their current IP

address and download all the active users. After downloading the actîve

C-ER 4. DESCRLPITON & FUNCTIONAUTY OF DIS

users. the user can login to any active user after connecting to its IP

address obtained from the name server.

An administrator of this name server manages users. (Le. registers

the users. assigns passwords. etc). The name server is nrnning on a

computer with a 'weii-knownw static IP address. which is provided in the

con6guration file read at the application startup. The administrator

manages the name server inciuding adding and removfng users. and

settuig their passwords.

The current implementation of the name semer has one major

drawback as we have only one name server ninning. and if this name

sever is down the user wodd not be able to comect to other LIS'S. We

will address this issue in our future work.

4.4 Operations

Off-Line operations facilitate organizing a repository (i.e. creatfng

new classifwations, modifying and deleting existing classifkations.

importing and êxporting. and browsing and vlewing documents). The

user achieves this through the use of menus. right button. or drag and

drop for these operations.

C W E R 4. DFC,T'MION & F U N C T I O N W OF DIS

Also in off-Une mode, the user may specify 'permissions" (Le. give

or revoke the right to access documents to other users). Here, a

classiûcation is the srnalest unit the user can grant permission to then

these users can view and possibly puil ail documents in this

classification. However. their ability to view the contents of any nested

classifications depends on their permissions for these nested

classifications.

On-Une operations

Client 1 I
LFS @ ,,Name

sewer

1 IrOgin to s e r v a
2 Downioad all active clients
3 Rquest for a IP address

Client 2 for an active client

LFS
4 Get the IP address for the active

client fiom name server
5 Request to download the work

6 Download the work spafe to your
local systan

Online Operations

Figure 4 .1 - Sample O n h e operations.

On-Une operations can be divided into two types: interactions wlth

the name server and interactions with other users. In order to interact

with the name server the user must logln to the name server by providing

valid name and password. Upon successful login the name sexver

retrieves the current IP of this user and saves this Snformation. DIS,

therefore. supports users who have dynamic IP addresses such as those

using ISPs. n i e user may perform the foliowing operations that interact

with the name server: change the password. retrieve the iist of ai l

CNAPTER 4. DESCRiPïïON & FUNCTIONALJTY OF DIS

registered users. or retrieve the Ust of aii active users (i.e.. users who are

currently on-Une). The iist of active users is used to start an interaction

with another user. Comecting to another user is accomplished sirnply by

selecting the user fkom the active user Ust. Note that this connection

does not require an authentication because both users must have

current comection to the name server and, therefore. have both already

been authenticated. Also, the name semer provides the current dynamic

IP addresses of a i i users. The list of currentiy active users can be used to

select one user and then comect to her or him.

User *Aw. upon co~ec t ing to another user '8". may browse and

download the classifications pennltted by the user 'B" speciecally for

user ^Aw.

CHAFïER 4. DESCRDTFON & F U N C T I O N ~ OF DIS

4.5.1 Name semer Security model
The name server security model describes the security model on the

name server. There are two basic types of accounts on the narne semer:

Other users

The adminfstrator can add, modify and delete any user accounts. A

user is only permitted to change the password and IP address of his or

her account.

4.5.2 LIS Secdty mudel

The security model chosen for DIS is a mixture of me level security

and the folder level secwity for the DIS. This means the user is alïowed

to view and download ail the files within folder but not the files in the

sub folders or in the parent folder. To achieve this we have a permission

attribute attached to every folder which is a list of users. This iist of

users in the permission attribute is a subset of authentic users on the

name server. The users in the permission attribute of folders are

authentic to view and download all the files within the folders. The user

of LIS can set the permission attxibute of his or her own folders. If

another user is in the iist of the permission attribute of the folder then

he or she can view and download the contents of that folder.

CNAPTER 4. DESCRlPlïON & FVNCTIONALlTY OF DIS

4.6 Object Persistence

Object instance needs to persist over time beyond the Me cycle of an

application. DIS and name server support persistent instance by

converting a sequence of bytes stored in a form of long term media. The

restoration process creates an environment identical to the original one.

The current persistent form in LIS and the name server is a flle in a

local flie system. but we have a generlc interface to provide the flexibiiity

to upgrade to another implementation in the future. This can be a

relational database or object oriented databases.

4.7 Exception Handling

Different kinds of error checking and exception hancihg are king

incorporated in DIS. The low-level hinctions deduce the errors. which are

passed to the high-level user interface for display. Some of these

exceptions and errors are:

Trying to perform on-Une operations (such as downloadlng active

users. comecting to another user or changing the password) whiie

you are off-Une.

Inactive name server instance.

User authentication such as invalid user id and password.

Chapter 5

5 Implementation of DIS
In this chapter we will discuss the design and implementation of DIS.

We will go into difTerent phases of the implementation process by using

class diagrams and code fragmentation.

5.1 Analysis

5.1.1 Strategy

We define our strategy for building DIS based on the domain of

distributed persistent object mode1 of Java 1.2. The system is

independent of any particular technology such as computer hardware.

operating system. databases or distributed technology. The graphical

CNAPTER 5. IUPLEMENTATION OF DfS

user interface is designed and implemented in such a way that it is not

only efficient and effective but also easy to leam and use. We try to instill

ali the application fhctionaiity in one main frame with dinerent tabs

rather than having separate appiications with rnany screens. This makes

the user understand the system easily without extra effort.

5.1.2 Analpis

Figure 5.1 - Model View Controiier.

The standard design pattern, Model View Controiier (MVC). i s used

in building the graphitai user interface. Putting this in the paradigm of

DIS. the data (Data Model) in the appiication is kept separate from the

CHAP7ER 5. fMPLEMENTAïïON OF DIS

rendering of the data (View Model) and the manipulation of the data

(Controller Model). (see Figure 5.1). The goal is to separate the

application object (model) from the way it is represented to the user

(view) and eom the way in which the user controls it (controlier).

CHAPTER 5. IMPLXMEIVTATION OF DIS

5.2 Design

6.2.1 Architecture

/ [Client

First-tier Second-tier
(Client) (Server)

Architecture of DIS

Figure 5.2 - Architecture of DIS.

DIS is a three-tier client semer architecture as shown in Figure

5.2. The Brst-tier represents the Local Information System (LIS). LIS

queries the Name server (second-tier) to Bnd the IP of the other registered

LIS by sending the service request to the name server. When the name

server processes the request. the output values are returned to the

requestor LIS. After retrieving the IP. the LIS client object locates the

appropriate implementation of the remote object and transmits

parameters and control to the object implementations. Senrice objects on

the server side of the name server or the ciient may use JDBC/ODBC to

communicate with the third-tier, the database server.

5.2.2 Model

the user Usa Input

Model-Delegate Model

Figure 5.3 - Model-Delegate Design Model.

DIS uses a common variant of MVC where the view and the

controiier are merged into one piece. the delegate. In practice. the view

and the controiier are too closely related to be treated separately so

merging the view and the controlier greatly simplifies the development.

CNAPTER 5. IlMPLEUENTATION OF DIS

This variant is called the Document-View (see Figure 5.3). I t is also

known as the Model-Delegate design.

In this Model-Delegate design. the delegate updates the mode1

through the known interface and the model informs the delegate when to

update information through an event iistener. n i e delegate then retrieves

the updated information through the same known interface.

Separating the data h m the display of the data leads to a great deal

of flexibility in the development of the user interface. A major advantage

of this model is that a single delegate class c m display and update the

data kom several different models with the oniy restriction king that the

models support a common interface. Another benefit is reduced memory

management as only one copy of the data is m-tained.

CNAPTER 5. IMPtEMENTATION OF DIS

5.3 Implementation

In the discussion of implementation of DIS it is important to

distinguish between distributed object programming which allows the

methods of the object to be invoked across Merent address space and

simple object oriented programming where the objects are assumed to

share the same address space.

-
Data mmunicZZn\

~ o d e l ~ b
Mode1 TO o t b ~

dieab and
name Server

To the
I User

Various model of DIS

Figure 5.4 - Implenientation Model of DIS.

The hmework of DIS M e s to put the issues discussed in the

analysis and design phase into three Merent models which are the view

model. the data model and the communication model (see Figure 5.4).

CHAP'TER 5 . l M P " N T A ï 7 0 N OF DIS

Here the view model represents the delegate and the data model

represents the model of the traditional model-delegate design patterns.

The view and data model in DIS help in managing off-he operations

whereas the communication model helps in managing on-line operations.

Whenever the communication model cornes into play we are taiking

about the distributed object programming where we are calling the

remote objects on difTerent vlrtual machines. niese models are separate

from each other and it is very easy to change any one of them. This helps

to create a core functionaiity that can be reused by the multiple

appiications across heterogeneous networks. Each model is further

decomposed into the set of related entities that interact with each other

to perform the task.

5.3.1 View Mode1

In the distributed environment of DIS, most of the user's

interaction takes place thmugh this model. The view model uses the

query methods of the data model to obtain information and displays this

information. We can have multiple views of the same data. The view

rnodel contains the delegate part of the model-delegate design patterns

that is the View and the controller.

The controller object receives mouse clicks or keyboard events from

the user. It then translates these events into the rnanipulator method

CHAPTER 5. iMP'MENTATION OF DIS

which the model understands. In our GUI, views and controllers work

very closely together. For example. a controller is responsible for

updating a particdar parameter in the data model that is then displayed

by a view. in some cases a single object fimetion works both as a

controlier as weii as a view. In some situations the controiler interacts

directly with the view without passing via the model.

GUI is the central class. It listens and handles the interactions

from the user dong with various GUI classes such as WorkSpaceGui,

UserManagementGui, SecurityManagementGui, NameServerGui, and

DownloadSpaceGui . Each of these classes represents a different view of

the data model. The GUI'S classes have rnany low-level components

added to it wbich deiineate the user with the data from the data rnodel

[see Figure 5.5).

Various controilers have been implemented by the GUI'S classes

and other low-level components using various interfaces such as

~ree~xpansiofiistener, MouseListener, ~reeSeïectionListener,

ActionLis tener, etc. Whenever a user presses the mouse or keypad

the appropriate listener handles the request and passes the response to

the data model.

JPfirmt 1 1 Gui
<3

; A

Figure 5.5 - UML of View Model.

CHAPTER 5. RKPLEMENTATFON OF DIS

5.3.2 Data Model

The data mode1 shows how data is stored in the distributed

information system. The basic structure is in the form of the tree. At the

top level we have three folders viz. workspace. downloadspace and

connected workspace (see Figure 5.6). These folders are like a place

holder for the other folders and files.

Figure 5.6 - UML of Data Model.

Each folder can be nested further to have folders and files. In the

on-line operations of DIS the folders used are the workspace folder and

the connected workspace folder. The connected workspace folder acts as

CNAPTER 5. IMPLElMENTATION OF DIS

a fetcher and the workspace folder acts like a provider to other ciients.

You can perform various operations on the folders and files such as

deleting. adding and modifying them. These operations are king

captured fkom the user through the view model and then passed to the

data model.

Figure 5.7 - UML of Data Model.

I n order to achieve the desired secwity model discussed in Section

4.5.2 we have a permission ambute attached to each folder. This is a

List of ail the users that have permission to download the Bles content oi--

a specific folder (see Figure 5.7).

CHAPTER 5. lMPLEMEliKAATION OF DIS

5.3.3 Communication Mode1

The communication mode1 cornes into play whenever a user

desires to perform on-Une operations. We divide the communication

mode1 into two parts. the name server and LIS server.

The name server is the standdone server c d e d ServerAdrnin

which runs on a networked computer that has a static IP and provides

various services to the user. It implements the interface iserverAàxnin

that provides fùnctionality to the remote users.

5.3.3.1.1 Remote Intefice

The remote interface is stored in a separate file called

iServerAdmin. The remote user objects on a different virtual machine

invoke methods from this interface. It supports methods to register a

client. remove a ciient. get the IP address of a user. set the IP address of

a user. ver@ an authentic user. set a password. etc. It also handles

various remote exceptions.

The following is the code listed for the iServerAdmin interface:

public interface iServerAdmin extends java.rmi.Remote(

void registerClient(String s) throws RemoteException;

void removeClient(String s)throws RemoteException;

56

CHAPTER 5. IMPLEMENTAîïON OF DIS

void setPassword(String userid,String password)throws

RemoteException;

String getIp(String userid) throws RemoteException;

void setIp (String userid t String ip t h r o w s

RemoteException;

Vector getA11User () throws RemoteException;

Vector getA11ActiveUser () throws RernoteException;

boolean validate~ser(String userid, String password) throws

RemoteException;

boolean isActive(String userid) throws RemoteException;

1

5.3.3.1.2 Implementhg the name semer

The narne semer, ServerAdmin, is a hashtable of the entry class where

each entry has the following attributes: user-name , user-ip ,

userqassword and active-f lag. nie SemerAhin object imp1ernents

the interface iSeroerAdmin which provides the fûnctionaiity of retxieving

and setting enby information from the remote user's objects.

CNAPTER 5. IMP'MENTATION OF DIS

5.3.3.1.3 Stuting the name -mer

The MainPanel class provides the basic functlonality of the user

interface for the name server. MainPanel caUs the constructor of the

server. ServerAdmin. to start the server and regïster itself as a remote

object.

The following code shows the initiaiization of the name server:

/ / C r e a t e one or more instances of a remote object

server = new ServerAdmin();

//Loading the variable parameters from the try.ini f i l e such

//as the static IP and the port for the name server so that

//you can change these parameter without compiling the code

/ / T h e name server try.ini file look like this

/ / {

/ / variable = "<IP>:<Port number>"

/ / load the IP and the port from the try.ini file into the

/ / hash table

Hashtable ht = (Hashtable)

ZZParserUti~.convertToDictionaryFro~e("try.inin);

//Register as a remote object

Naming.rebind("//" + (String)ht.get("adminn) +

" / ServerAdminn , server) ;

CNAPTER 5. LMPLEMEnmATION OF DIS

5.3.3.2 LIS Semer

As in DIS, each LIS is a client as well as server. So we can have

various cases to handle its different scenarios.

5.3.3.2.1 Remote Interface

The LIS server implements the remote interface iserver to provide the

functionaiity to the remote users. The remote objects can invoke methods

fkom this interface after being authenticated by the name server.

The foilowing is the code iisted for the iserver interface:

public interface iServer extends java.rmi.Reniote{

DefaultMutableTreeNode getTree0 throws RemoteException;}

5.3.3.2.2 Implementing the LIS &mer

The LIS semer implements the interface iserver to provide other LIS

on different virtual machines with the facilities to download information.

The information is serialized and sent to the LIS in the form of a tree

stxucture Defaul tMutableTreeNode .

5.3.3.2.3 Stuting the LIS Semer

DIS is the main class that initl;lli5rRd the LIS server. If the 'ip" field in the

'try.iniW file is "locaihostw it gets the local IP fkom the system that is

running the LIS otherwise it will use the value of the 'ip" field in 'tx-y.inT

file. After that is initiallzed. the server object registers it as a remote

CHAPTER 5. WLEMENTATION OF DIS

object using the IP and the port number nom the try-M Ble. Once the

LIS semer is registered to the name server other on-iine LIS objects can

lookup for this server and invoke methods fkom the iserver intedace.

Try.ini file at the LIS:

(ip = "localhostn;<IP address of the LIS semer>

port = "2222"; <the port where the client server is running,

admin = "rnissys42:1111"; < IP of the name sesver>

user = "vicky"; cuser login id> 1 ;

The following code shows the initiakation of the server:

//Getting the local IP or user def ined IP and port f rom the

//try.ini file

i n t i = ((String}Global.hashse~~er.get (" i p ") 1 .compareTo

("localhost") ;

if (i ==O)

ipaddress = ip. getHostAddress () + " : " + (String) Global.

hashserver.get("portW);

else

ipaddress = (String) Global. hashserver . get (" ip") + " : " +

(String)Global.hash~e~er.get(~port");

/ / Starting the server at the local host

Global.rny-server = new Server{ipaddress ,user);

//Register as the remote object

Naming . rebind (serverNarne , this) ;

CWWTER 5. MLjEMENTATEON OF DIS

5.3.3.2.4 Connectbg to the name semer

Whenever LIS wants to go on-iine it has to register itself with the name

server. Here we see some of the remote fùnction calis LIS can make to

the name server:

/ / Getting the IP address of Name Server £rom the try. ini

file

String sa = (String)Global.ha~hserver.get(~admin");

String ServerName = V / " + sa + "/ServerAdminn;

//Look up for the name server rernote o b j e c t

Global. admin-semer= (iServerAdmin) Naming . lookup (semerName) ;
//Setting user XP address and port at the name server. Here

//we are getting the IP from the machine or user defined IP

//and the port from the user try.ini file.

Global.admin4semer.set~p(user.user~id, ipaddress);

/ / Getting al1 user with-in the system from the name server

GlobaLall-user = 01obal.admin-server.getAllUser();

//Getting al1 the active user £rom the name server

Global-active-user = Global-admin-server.getAllActiveUser0;

CHAPïER 5. iMPLEMENTATION OF DIS

5.3.3.2.5 Connecting to the other US

I f you want to comect to LIS other than your own. then the one you wish

to connect to must be on-Une. First retrieve the IP address of LIS you

want to comect to kom the name server. Once you retrïeve the IP you

can then connect to the LIS and retrieve the information tree depending

upon your privileges as set by the LIS owner.

//Getting the I P frorn the Name server for the active

/ /selected user

String t = " / / " + (String)Global.admin,server.getIp

((String)list.getSelectedValue()) + "/MyServern;

//Looking for the remote object for the selected user

Global. comected-semer = (iServer) Naming . lookup (t) ;
//Retrieving the information tree £rom the comected LIS and

//adding ta the comected workspace node

connected~node.add(Global.connectedconnected_node.add(Global.connected_sexvse~er.getTreeO 1 ;

Chapter 6

6 Application of DIS : Distributed Repository
of Progtamming Examples(DRPE)

Example-based leaming. see [Neal 891. promotes the idea of using

numerous examples to help understand concepts and to move these

concepts fkom short-term memory to long-term memory. Examples are

useful if they can be easily browsed and searched and shared by various

users. When le-g programming. examples are particularly useful

because one can always learn fkom examples of small programs.

Consider. as an example. a speciec class for teaching programming

in the C programming language. taldng place in an electronic classroom.

Before the beginning of the class the instmctor (provider) rnakes

available examples of programs in C to aii students in the classroom. (As

an alternative. the instructor may W d e students into groups by giving

each group a dinerent example.) Now the students can pull these

examples on to the* cornputers. They can view these examples. export

them to a favorite compiler. modify them by creating new versions and

making these versions available to aU students or to just speci6lc

students. The entire process can result in a collaborative development of

a useful repository of code that can be used not oniy for learning but also

for red every-day programming.

DIS is an ideal candidate to implement Distributed Repository of

Programmfng Examples with a hierarchicai tree structure. I t has been

used to implement DRPEC (Distrlbuted Repository of Rogramrning

Examples of 'Cg). In this chapter. we iilustrate the DIS implemented

system in action by studying an example of DRPEC. Throughout the

description. we use screenshots to illustrate the interfaces that users will

typically encounter while using the system.

Figure 6.1- Name Semer.

The main functionality of the name server fkom the user's point of

view is to handle user requests and nom the administrator's point of

view is to manage user accounts. Whenever an administrator tries to

create a new user account. the system wfil prompt for the user name to

check whether the account already exists or not. I t will also check for the

blank password. Figure 6.1 shows the name semer administrator screen.

The admïnïstrator uses the same screen to add. modify and delete users.

6.2 DRPEC

6.2.1 Workspace Tab

As you see in Figure 6.2. the left pane shows the repository of 'C'

programs, the rniddle pane shows the current state of the download

space and the right pane shows the content of the ffle (in case the ffle is

selected). The user can perform various operations such as creating.

deleting. moving. and copying classification or document in DRPEC using

the workspace tab menu or drag and drop features.

The user can import data kom a text Ble into the DRPEC and

export DRPEC documents into a text me. These options are available

through the workspace tab menu 'Export/Importa. In order to export a

document fkom the DRPEC, the user has to choose the DRPEC document

first and then select the 'Exporta menu item kom the 'Export/Importa

menu which then prompts for the Save dialog box (see Figure 6.3). After

this he or she can enter the file name in which the selected document fs

to be saved.

Figure 6.3 - DRPEC workspace (Exporthg a file).

In the case of importing a Ble a prompt for the 'open" dialog box

wili appear where you can select any text Ble to be imported into DRPEC.

CHAPTER 6. APPLICATION OF DIS:DRPE

The left pane will show the content of the file if the file is selected.

I f we wish to modifL the file just double click it. A file preview dialog will

show up where the Ble can be modieed and saved (see Figure 6.4).

efine N U U O
enne TRUE 1
efine F A S E O
edef struct noai votnt ir .

motnrer I.(tCntld. r(gntChnd:

* Inoraar trea lnwrsal

id InorcleWolntor ph)

inorder(nQ---i.ltCn,i<0.
PrInW'lblU. ptr--d.t.);
lfIOme~-vIghfChild):

Figure 6.4- DRPEC File Preview Dialog.

6.2.2 Download Space Tàb

Once connected to the other on-Une user you can download the

classtecation in your connected workspace pane. AU operations in the

workspace pane can be performed here using the tab menu. Here user

'vicky" has connected to the DRPEC of user 'shiv" and has downloaded

the classification tree into his comected workspace (see Figure 6.5).

Figure 6.5 - DRPEC Download Space.

6.2.3 Nanie Semer Tab

The DIS user uses the name server tab to connect and talk to the

narne server (see Figure 6.6). VarIous operations can be performed here

such as logging into the narne server. downloading ail users.

downloading active users, logging off kom the name server. changing

your password and pinging the name semer. Some of these operations

require authentication.

- --

Figure 6.6 - DRPEC Name Server Tab.

6.2.4 Security Management Tab

To manage permissions. the user selects the Security Management

Tab (see Figure 6.7). Here. a classification is the smallest unit that the

user can grant permissions to. The left pane show the classification tree.

the middle pane (User List) shows the k t of registered users in the

system and the rightmost pane (Selected List) shows the user(s) that c m

access the selected classification. In order to &sign and revoke

permissions. the user must fh t select the classification in the left pane.

After selecting the classiecation the user can add and remove users h m

the selected iist using the bottom pane.

.: :, v,? ,!-,!<< :I,C C . , : > t . ~ f d q or >y$:&?

Figure 6.7 - DRPEC Security Management Tab.

6.2.5 User Management Tab

Figure 6.8 - DRPEC User Management Tab.

The list of active users is used to start an interaction with another

user. To comect to another user it is simply enough to select this user

from the active user list (see Figure 6.8). Note that this comection does

not require an authentication because both the users must currently be

connected to the name server and therefore have already k e n

authenticated by it. The iist of currently active users can be used to

select one user and then comect to her or him using the IP address

provided by the name server. We can also download the current active

user by ciicking the 'Download Usersw button. Once user 'vïcky" is

connected to the another user "shivw. then user Mcky" WU be able to

browse user " s W ' s classiacation in his or her comected workspace

pane (Download Space tab) (see Figure 6.5) depending upon the

permission privfleges set by user 'shiv".

Here are the steps for connecting to user 'shivw workspace fkom user

"vicky".

Step for w r 'shiv"

a Login to the name server (see the name semer tab section 6.2.3).

0 Set up the 'shiv" user repository (see workspace tab section 6.2.1).

Set up the security mode1 for the 'shiv" workspace (see security

management tab section 6.2.4).

Step for user 'vickyw

Login to the name sewer (see the name server tab see section 6.2.3).

Download the active client fkom the narne server (see name server tab

section 6.2.3).

Select the 'shivw fkom the iist of active client and download the

workspace (see the user management tab section 6.2.5).

View the connected user 'shivw workspace (see the download space

tab section 6.2.2).

CHAPTER 7. CONCWSION

Chapter 7

7 Conclusions

7.1 Concluding Remarks

Working on this thesis we has experimented with some core areas of

object technology such as dismbuted objects. Java Foundation Classes.

and Remote Method Invocation and showed how they work together to

build an extensible. portable distributed Lnforrnation system across a

heterogeneous network.

Our primary objective is to not only buiid a system providing

distributed data access but to also develop reasonably sophisticated

client/server software that does not Mt us to specific hardware or

CNAPTER 7. CONCLUSION

operating system. The architecture must be robust. scalable and must be

accessible fkom multi platforms. For example. we wanted to be able to

accommodate a user -Aw who uses Unix on a PC and a user 'B" using a

Macintosh. We illustrated that our Java based system used with RMI

provides a powerful environment for developing and deploying dismbuted

system over various platforms.

The architecture and mode1 described in this thesis demonstrates

the value of layering existing technologies. With very iittle effort, any

other appiication can beneat from distributed information. We also

demonstrated that a dismbuted information system provides a solid base

on which various information services can be built.

We iiiustrated how DIS provides ditrerent services such as acting as

both a client and a server. DIS is not oniy independent of the host

architecture and operating system. but it can be deployed to any

plafform where a Java-compatible VM is available. nie power of the Java

object mode1 is being utlllzed to produce a lOû% pure Java client/server

solution. So we concluded that our approach to building distributed

information system is not only practical, but is in some ways superior to

the other widely used systems.

CHAPTER 7. CONCWSION

7.2 Future Works

We demonstrated that DIS provides a good appiication to share data

over the network. Our fiiture efforts will extend the system to provide

more functionality such as sending notifications to users and versioning

files. If there is a change in the local information system such as a new

file, rnodified file or a new version of the file, a notifkation is sent to the

notification server for aii users who have registered for that notification.

The users can login to the notüication server and retrïeve its

notifications. There is a üme out for any given notification. after which

the notification is deleted fkom the notification semer.

The criteria used for the evaiuations include user satisfaction and

cornparison of the student marks after using DRPE. In our future works.

we can use annotations with the classifications and provide groups of

users for the security model. We will also implement a more scalable

name server so that if one of the name servers is down. the user can

comect using the another one.

Currently the system supports point to point connections. but in the

future version it will support multi-cast where one LIS should be able to

connect to more than one LIS at the same time. The system supports

only a puil model in its current version. In the near hiture. the push

model will be incorporated into the system using the notiacation server.

CONCLUSION

Fhaily, we would Uke to inàicate that in DIS database side can be

re-irnplemented to use JDBC to connect to desired databases which

would not require any changes in either the semer or client sides. In the

curent irnplementation Drag and Drop is implemented in the first tab:

this is related to the problem described in Java Forum [Java 991 where

the drag and drop operation if implemented in the tabbed pane works

only in the ikst tab.

BIBLIOGRAPHY

Bibliography

[Booth 811

[Muilender 89)

[Louis 951

[Eckerson 951

[Microsoft 971

[Orfali 97aJ

[Rational 98)

[Edelstein 94)

[Schussel96]

[Sun 981

[COM 951

Booth. Grayce M. The DisMbuted System
Environment. New York: McGraw-Hill. 198 1

Muilender. Sape. Dtsbibuted Systems. New York:
ACM Press. 1989.

huis [on-linel.
Available WWW: han:/ /www.çoftis.i~ (1995).

Eckerson. Wayne W. 'Three mer Client/Server
Architecture: Achieving Scaiability. Performance.
and Efiiciency in Client Server Applications." Open
Information Systems 10. 1 (January 1995): 3(2O).

Microsoft (1997). COM/DCOM Specification.
Available
httD://~~~.microsofi.com/oledw/olecom/title. htm

Robert. Orfidi: Dan Harky (1997). Client/Sever
Programming with JAVA and CORBA. Wiley &
Sons: New York. NY.

Rational Software (1998). The Unified Modeling
Lang-ge (m l .
Available WWW: h m : / /www. rational. corn /

Edelstein. Herb. "Unraveling Client/Senrer
Architecture." DBMS 7, 5 (May 1994): 34(7).

Schussel. George. Clknt/Server Pas& Resent. and
mture [on-line] .
Available httn: //www.dciex~o.com/geos/ (1995).

Sun Microsystems. The Java Laquage
Environment.
Available
http:/ /~~~.iavaçofi.com/docs/white/lan~nv/ (1 1
September 1998).

'The Component Object Mode1 SpeclBcationf'
(Microsoft Corporation. Digital Equipment
Corporation. October 1995)

[CORBA 971

[DCOM 971

[OMG 981

[Neal 19891

[RMI 97)

[RMI 99a]

[RMI 99b]

[Muldner,
Shiv 00)

[Java 991

'The Common Object Request Broker: Architecture
and Specffication. Version 2.1" (Object Management
Group, et al. August 1997)

Microsoft Corporation. Distributed Component
Object Mode1 Proîoml-DCOM/ 1 .O. draft. November
1996 [on-Une]. AvaiiabIe WWW
http:/ /www.niicroso~.com/oledev/

ObJect Management Group home page Ion-Une].
Avaiiable WWW htt~>://www.omg.org (1998).

A System for Example-Based Programming. ACM,
H m - C o r n p u t e r Interactions, HCr89 Proceedings.
pp. 63-67.

"Java Remote Method Invocation" (Sun
Microsystems. Inc.. December 1 997)

RMI and Java Distributed Computing white paper
by Doug Sutherland System Architect JauaSoft~, A
Business Unit of Sun Micros ystems. Inc

Java remote method invocation - àistributed
computing for Java . White paper
h t t ~ : / /iava. - sun.com/marke~a/co~aterd/favarmi.html

Distributed Repository of hograrmning Examples
accepted for EDMEDIA 2000, Montreal. Canada
June 2000.

Prob1em implementing D&D in Tabbed Pane
Avaiiable
h t t ~ : //forum.iava.sun.com~forumî 140@.eeec5 19

[m. Raymond 971 Ulf Hermjakob. Raymond J. Mooney: Lmrnlng
Parseand Translation Decisions fkom Examples
with Rich Context. ACL 1997: 482-489

[Adler 951 Adler. R M. "Distributed Coordination Models for
CUent/Sever Computing." Cornputer 28. 4 (April
1995): 14-22.

BIBLIOGRAPHY

[Benda 971 Miroslav Benda: Architecture Perspective:
Middleware: Any Client. Any Server. IEEE Internet
Computing l(4): 94-96 (1997)

Appendix A

Appendix A

DIS Installation Guide

In this Appendix. we describe how to install and run the DIS name

server and client (Lis) software. Both name server and client installations

need Java Development Kit (JDK) version 1.2.

1) Software Installation

Here are the steps to install the DIS name server and make

available to clients:

STEP 1

STEP 2

Download the zip Ble 'dis . z ipw and unzip the 'dis . z ipw flle

in the desired destination directory ('D : \myf older" for

example).

mer unzipping to the 'myf older" it WU create the following

directory structure:

Appendix A

Runnîng LIS On-Une

Before you can run LIS you must have a user account on the name

server and you must kmw the static il? and port where the name server

is running. Here are foilowing steps to instd and run the LIS:

STEP 1 Set the Java classpath to the 'dis.jaf file and to your

current directory.

Format

set classpath=<Path name for the dis.jar me>;.:

Aictual Comniriind

set classpath=d:\dis\myfolder\dis.jar;.;

STEP 2 Open the try.ini fiie in the 'lisw directory and enter the IP

and the port number of the LIS server. name senrer and your

user id in the format gïven below:

Format

ip = "<IP address of the LIS serves or

"localhosta if you wish to grab the IP from the

sys teIn>" ;

p o r t = "<the port where the LIS server is

runnings " ;

user = "<user login id>";

A c t a File

ip = "localhost" ;

port = "2222";

user = "vicky";

STEP 3 Start the RMI registry for the LIS sewer at the desired port

('2222" for example) by execuüng the foliowing command:

start rmlregistry 2222

STEP 4 Run the following command to start the LIS.

Format (dî one Une)

java -classpath <jar file path name>

1is.viewpackage.Gui <zip folder path name or

nothing if the installation is on 'C:" Drive>

Actuai command (aU one line and use sloshea as uhoum)

j ava -classpath d: \rnyfolder\dis\dis. jar

1is.viewpackage.Gui D:/myfolder/dis/

Appendix A

111) Running LIS Off-line

STEP 1 Run the following command to start the LIS.

Format (aU one Une)

java -classpath <jar file path name>

1is.viewpackage.Gui <zip folder path name>

Actuai command (aU one Ilne and use shhes M shown)

j ava -classpath d:\,myfoIder\dis\dis. jar

1is.viewpackage.Gui D:/myfolder/dis/

IV) Running the Name Semer

STEP 1 Set the Java classpath to the 'dis.jaf me and to your

current directory.

Format

set classpath=<Path name for the dfs.jar file>:.:

A c t d Conunand

set classpath=d:\dis\myfolder\dis.jar;.;

STEP 2 Open the try.ini fiie in the 'name" directory and enter the

static IP and the port number where you wish to run the

Format

Appendix A

STEP 3 Start the RMI registry for the name server at the desired port

(' 1 1 1 1" for example) by executing the foiiowing command:

start rmiregistry 1111

STEP 4 Run the following command to SM the name server.

Format (ail one Une)

java -classpath <jar file path name>

name.viewpackage.MainPane1 c z i p folder path name>

A c t 4 c o m ~ ~ d (ail one Ilne and use slashes as mhom)

java -classpath d:\myfolder\dis\dis.jar

name.viewpackage.MainPane1 D:/myfolder/dis/

