Distributed Information System (DIS)
RMI and Java 1.2 Implementation

by
Vicky Shiv
B. Tech. (Bachelor of Technology Computer Science)

Harcourt Butler Technological Institute, 1995, India
Thesis
submitted in partial fulfillment of the requirements for
the Degree of Master of Science (Computer Science)
Acadia University

Spring Convocation, 2000

©by Vicky Shiv, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale

du Canada

Acquisitions et

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fie Votre reférence

Our e Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propnété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-52001-3

Contents

CONTENTS...cccctettennctratssscrenrctacocsssscesssensevenassccss ceeeacescsessssecassrscsssrsscssancvosrssssesoses AV
LIST OF FIGURESccccoteteettscicastcecscssnsecrsssccssssssrasssssanss cossrvessacsscceascaasennsssnass VI
ACKNOWLEDGMENTS...... cttececttcacsacasntscacesassssssastatseessssncasasans teccescsccccsncancns cececees. VIII
ABSTRACT ...ccccececcccrcrrccccscrorassecsssasssascncas TR © . 4
CHAPTER 1 1
1 INTRODUCTION 1
[.1 OVERVIEW OF THE THESISoooieeiiceeceemteeecereeseeeeesatnsseseesssseseesasasesmesesssasssssosssssesasassnsssssnssnmasssnsmnsesns 4
CHAPTER 2 L
2 CLIENT/SERVER ARCHITECTURE s
2.1 CLIENT/SERVER MODELooaeeiceeveeeeeneeesseeensassssessessmsssossasnsesssssnssssssssssmmsstessssssessesssasessessmnssmssessnnsnns 6
2.1.1 CLICME ..ot eeccceeee s e e s eeesesseresessesesssnsssssssssnmbassabanassassasaasssssassrsssbassssmmnsmnssssenaseensnennnn 7
2.1.2 SEIVICE TEQUESEceeeevenreerereereicreernanseraasoreasessest e amessenseseseresrssoesesesseesssransasamsssee assssscrreraneresons 7
2.1.3 ClieNt/SErVET INLETACLONovveeeeerreerirereeeesressecsssesarsssssrassmmssssnssssssssssssrerrenssssnesssrassorssessasses 7
2.1.4 STV ceeeeeeeeeeeeeeeeeteereeeessessesessnsssssronsnsassssnsnsnssnsssassbasnsasasnssssnssasseessssssasnssssennssssnssnsasannsnnnnnn 8
2.1.5 SEIVICE INSIANCE.coeevveieeeeeeeeeeervrsretnnseesmmmmessssssssssasnsnsssnnnssmessennssssmressrsersesesssanessrernrnensssssannnes 8
2.1.6 S OIVICE IMEEITACEceeceeeeeeeeeeieaeeeeeeeneeeiesreeantnsnssnssnsssaensnsnsssasasremansensensseessssnenssssmsssnrnsnseonnereenses 8
2.1.7 SEIVICE TEECTEIICEeeeeeeeeeeeeeeeee e eeeiteeeeeeeeeeeeenesetssseasnsssssasassassssssosssssssssensrnenssnssensmnsnnnssnenn 8

2.2 CLIENT/SERVER COMMUNICATION ceeemecctrensecaratsstterasnteeresransranrreberrebsaaananannnsatar 9
2.3 CLIENT/SERVER RESPONSIBILITIESc..euveueieecrereeeeseeenmensseossssssmsmssenssssssssessessesssesssssssrassssrasssssnsssanns 10
2.3.1 Client ReSponSIibilities:.........coccnriiieeieeceetrecrrreneereececse sttt eeccssaceescnntresssnsuraeeessarasmesesanssnns 10
232 Server Responsibilities:..................... retreetenetes s e s s et e st s e et t e et e e e s s et e e bs e e easneerenes 10
233 Middieware ResponsibIIties:cccccriiiiiiiiiiineimiietiee et esses e scsesetsesaneesnnees 10

28 THERS o eeeeeeeeeeeeeeeeeeeeeeeteeetenssanntseeassssssssstestessaeasssaesetaenastaseassssataaaneeteeetssenerrssrasseenessasnrensarnssstssnssennstasn 11
24.1 TWO-HET ATCHITECIUTE «.....onveeeeeeeeieereceeessserssesssssssssessnnsnsesnssnsssnssssmsesessssssssssensessssmmsessemsssssssns 12

2.4.2 Three-tHer AICRIECIUTE.cooeececeeeereettereeeecereerereresnseserssnsnnnnssassssssesnnnsnnsrssssssessossssssnsnnns 14

2.5 EXPECTED BENEFITS OF CLIENT/SERVER COMPUTINGcccuvterenernenrieennnreneenerereseerarssessressrsssssnnsanes 16
2.6 SUMMARY coooiicietettiieemeeeceetassrrsenseeesssssessesseomsassssernsossssssssssanssasesassssssnsessasssenssessnssressssnssssssnnnsnnnsesnns 17

iv

3 DISTRIBUTED COMPUTING

19

3.1 ADVANTAGES OF DISTRIBUTED COMPUTING....cceomieericctirneneecneresensssaeaseaesascecscaseressssssmseansassarssssrrren 20
3.2 TECHNOLOGIES OVERVIEWuuuuuurierrsasasnssmssssssmememesesassassamsamtesastssessssssssssssssmssssnsmnsnssnnnssssansnmnssness 21
3.2.1 DCOM - Distributed Component Object Model ..o eeeeeeeee 23
3.22 CORBA - Common Object Request Broker ArchiteCture............ooeveeeriereeeeeccieeeerecneneceennne 24
3.2.3 Java RMI - Remote Method INVOCAUONcoiiirireceeeecenceeeieneraeesneesnneneessesosessecsressreasreennns 25
33 ADVANTAGES OF RMIL.....eoeeeeeeeeeeeeeeteersenonnceeanscncsssssessmcasanssnsmesssssassmsssnsessssssssssrassssnsnssnsrassnnsrnnee 27
3.8 SUMMARY eoeeeeeeeeieeeeeeeeseresseesseaesssenssnssnsssresessssssassomesesssmsstasstssmssseonesssnosesssssarmesasssssesssnnnsnnnsassssanse 29
CHAPTER 4 31
4 INTRODUCTION OF DIS 31
4.1 PUSH AND PULL MODELuueeeeeeeeeeeeeemeneeaseeeeeaesaniassorasssssorsmmseansrsrsnssssntssassssassssassiosssasssnsssnsesnsasaesesanss 32
4.2 MAIN FUNCTIONALITY eeeeeeteseesaseesrereeesssseteseeesassestesstvstetanerssnranteaneonetasessansenses 32
43 COMPONENT OF DS eeeeeeteeeteeerersentasnsreranasrnssesssssnsrrnsrnssenrasenassnsresmasnitnssssnsssnsssnassssnsnnsnnn 34
43.1 Local Information System (LIS)c..eoormmeeccen et e s s ssensctecsan s 34
4.3.1.1 FHl@ e eeeeeeeeeeeccceeeeeeninsrerrsssesaccssssesossessssssrsemnsssmmessmmsssrsssssnnssssasnnsssssnnsnnnnsen34
4.3.1.2 FOURTS cooaeeeeeeeeeeecceeereeneeceeerancssaoce e seeseecaesn s assstenaenacsansesetesbasasnssnsssssnnnnns35
4.3.1.2.1 Workspace FOolder....... sttt35
4.3.1.2.2 Downloadspace fOlder.......coumevemmmeeimeeeieeeee e36
4.3.1.2.3 Connected workspace folder36

4.3.2 DIS NAIMIE SEIVEToeeeeeeeeceeeeeerestssssssnsaesaaasasassassssssssesssessassentsssasesassessassssssasserssosssnmmsssnverennn 37
44 OPERATIONS ... cececeeteeeeeeeenceeeessrsssssrsassnsassesnsssssssassssssesmnsssserssssssessosssasasssssssnsesansesssssnnrassmanssesssanssssnse 38
44.1 OfT-1iNe OPETALONSocevceererinrriirenierieteeree e esetamesean e nsss st semtansasasstesmsssessaasnsssaes st asssrsassnes 38
442 ON-lNE OPETAUOMSooeeceneeiccnrinecetenrireeneeresnesesreinsssssme s asensssesmsnestntssassesssaransrronerosssanens 40
4.5 SECURITY MODEL ...eceeeaieeieievsescencesssrsssssesssssssrsassasasssssssssnsssssssassesssnssssnssasssmssnmmssosssnssnsmssssssssannnsnnes 42
45.1 Name server Security MOdel ...ttt 42
452 LIS Security MOAEk...ume ettt re e s s e e v sa e s st e s s e st e 42
4.6 OBJECT PERSISTENCE ...o.cnooeteiteeeieoreeenseesasesmssammssesessessssasnssnsansnssnacssnssessssoscsssesssssserraesssnssasnsnsssssasans 43
4.7 EXCEPTION HANDLING ... ooiieieiiieeeeenaeecamneceaeaesosesssssssssnnmsesstresosssssossnsstmonsssenessesssesrernresssarsassnssses 43
CHAPTER 5 4“4
5 IMPLEMENTATION OF DIS 44
5.1 AN ALY SIS coieeeieeeeiereeesesssssesemretessssonsessnnssssnsssesasrassssesssesenrensnssssssssesssarsssasssessessersesnsntsassaassesonssssssasers 44
S.1.1 SETALELY «..veveremerrererercrunerccestessssmesessasaasssestastatasssasasssssssasssssatsstaseas et ssssasaasssssrssnsssereransnsass 44
5.1.2 ADALYSIS ...ceeeeeeecereeceeeencasssississorssnssasssnsassasasatesstasesssssssstonasssrsssnssasansassatentersisnrrrsarrasssanes 45
5.2 DIESIGN coeeeeoeieeeeeeeeeeeetaeesaeeseseasasssseassssarssssnssmssssassssassmenasssnnnatsssmsessesassommenstsustesornsssnsansrrerssssnmrenten 47
5.2.1 ATCHIIECIUTC .. eoeoeeeeeeeeeeeeeeeeeeeemumessasssssasaressasassaasasssssssssnssnssassnssssssssnsnsssasnenonmmesnseessrnsrnrrrorsrane 47
522 IMOBEL ooeeeeeeeeeeeeeeeeeeeeeeeeseesaaasessassessssssssnsssnssnmssasesssressssssssesentssnsssnssssnssasensmmsanessessesssserssssnnnrnses 48
5.3 IMPLEMENTATION. ..o cceocooeeeeeeeeesesaeessssseaaeasesssaaassnsssasssasarsesssssnssnmnsammessatassssnsssssessorassnsrnsnsrsnnansrnrnnsoses 50
5.3.1 VECW MOACL .. ooeeoeoeeeeeeeeeeeeeeeeessssessasssnsassasesaasessrssesssessssassessensesesssansssssnsssssentesssssnsnrnnnmnnnntntss S1
53.2 D AL MOACL . coeeeeeeoeeeeeeeeeeeeeeeeeevsmsssssnssssssssasasssesersssasassanstesssssensassasesassasssssseaeseenrrsssssarsnsennnnnnsn 54
533 CoMMUNICATON MOAEL......oeeeeoeeeeieereetemcreeetetesrsareeaeeeesaesesasesressmnsssoomesssarseerssrrrasssrsrasasssens 56
5.3.3.1 Name Server e eeeeeesssneseseceseesesmseseeeteetesteterteissttnrnraaeeaastestareasteranasasessenstattans 56
5.33.1.1 Remote Interface eeseseseesetretaseasnrresnraaesnrtaeeae s rarrrserareaasssoneen .56
53.3.1.2 Implementing the NAME SETVET ..o cieeerrreecrr e rsentanrenesncessssinssas 57
533.1.3 SEArtiNG thE NAME SETVETooueeeerieerireeaeneesesemssssressaseressssssnarssasscsanancsceseesesntsssssssssassnstnsssnsassses 58

5332 LIS ST VOTceeeeeeiieeireecereannresrstrsssesssosssssssssenesssassnrinsaseesennsinsssssssssasssrrvessansenssnsssansesssinnssisssssssssssnsans 59
53.3.2.1 REMNOLE INLETTACE ...eeooeeenereerirereeaemreerectnrnstisonraessassssesessesssssssssssasssssssssassssassasssanseassennsnrersossie 59
53322 Implementing the LIS SETVETvoworeieiinineinsces st sttt tenne s s ess s sssssassnensessac s 59
53323 SLArting the LIS SEIVET ... oo rneccstosess st sbes s st s s ns st bans e oes 59
53324 CONNECHNE tO thE NAIME SETVEToovvreeercreeercenrssrsseresartonssrissasssasessasssaranensansssssesssssasons 61

5.3.3.25 Connecting to the other LIS 62

CHAPTER6 63
6 APPLICATION OF DIS: DRPE 63
6.1 NAME SERVER........coreeeeecrerrenscernnnnes resversirereestrressttssss s an st arnsn essssrsressssnnrnnnre 65
6.2 DIRPEC ...ttt et et e ts st oo o s sr e et s e s es e s et e e ee b e st e e s e s et s snanes 66
6.2.1 Workspace Tab................. eeerteeeetesireee st et e s s et e s st e e s e s et e e b e s b et s e e s e s et ens s ents 66
6.2.2 Download Space Tab eeetesbienienes et see e s s e s s e e e b te e b an s e san e e s anrren 69
6.2.3 NAME SEIVET TAD.....eooeriererireeeerei ittt ee e eeee e st s e e s cesssessain s se e essaneanneessnssnsss 70
6.24 Security Management Tabc.ccccorriinenninesniietesensscseesrnerseneserssesssssanssnnnes 7t
6.2.5 User Management Tabc....oiriieiimieciniecnreeccccccttenstseesas e s e rre s messess e s s s mnseananas 72

6.3 SUMMARY ...ooiiiiiiicieeeicc et et cersceeee st s e s e e e r s ae et e e s et e e et et e s e s s se e A e s st e s e b an s s ansennaeen 73
CHAPTER 7 74
7 CONCLUSIONS 74
7.1 CONCLUDING REMARKS ceveveerenenninnnaannaneas OOt 74
7.2 FUTURE WORKSoooeereeevvmtmiaiiecteecesssnsssssissasessosestssessssseseesessonsstessuesonese st sessssmrn sseresseerssasssrnrsrssess 76
Bmumml.‘. (IR PR RN R R R R R L L D L R Y A R TR ALY) atsose Seoscnsassanree'.l.'...?s
mENDm A e8sccnsssnsosensse .‘....‘0.'..'0.“.!.'0.Ql..'..l.'.l'....C.l....’l..'.’.'.l...'.sl
DIS INSTALLATION GUIDE 81
I) SOFTWAREW INSTALLATION ..ouvvtiiiccreeaaeeesncoreransrmcnsasesasssssastassssaassnssssserassenscccnsscnsaranss 81
IT) RUNNING LIS ON-LINE ...c.uturtutuiituireenrereeettteemtireetieresessesteesasasssstnerssssasssnsssesassarnsss 82
III}) RUNNING LIS OFF-LINE......ccceevutteriruteraraonsserrmnraressrssssesanssessssnsnnassesasatasssssssssasnsresns 84
II) RUNNING NAME SERVER.....c.ccrituiitetiamerernserrnsiietirtereenssesrtoressssensorsesasssanssanssnsassssses 84

List of Figures

Figure 2.1 — ClienVUserver Model. teeeersceeteseesseseeessmsseeseseassemseeeseeseeseeesanarnreranans 6
Figure 2.2 — Two-tier ATCRItECTUTE.ccoeieececeieeeeeeeseoece e eesresses s es s aessarresssesmsanssassetasnssrenes 12
Figure 2.3 — Three-tier architecture........ eeeeeeeeearannnne . ereateemteeeseeeseeeesessenraanraean 14
Figure 3.1 — Distributed ATCRITECIUTE.............oooriimiireeeeeeeeeeceeeeceeereeseeene e e e e reesterssesseassessasenssrersssesnsenmnns 21
Figure 4.1 — Sample On-liN€ OPETALONS.oirerreeerceeiieaeieacsreeeeeeceeeareeeseeeessmnssenssestenessessssnsseess40
Figure 5.1 — Model VIEW COMMTOLET.o. oo ieeeeee e eeeeseeeemeeencsosnecsssossasssasssassesessssssssnssmnnsrans 45
Figure 5.2 — Architecture Of DIS..........o ettt ree e e e s s e e aesm s seesessm e s s ee e sensnnes 47
Figure 5.3 — Model-Delegate Design Model.ooeoericeeeeceeeeeeeeeececceer e e st mse s s mns e snsans 48
Figure 5.4 — Implementation Model of DIS. ... ettt e e nsa e s e e ve s e esnens 50
Figure 5.5 — UML of VieW MOdeL. ...ttt s se e et ssae e 53
Figure 5.6 — UML of Data MOdELo.oirriiiececeitcctaareerseessesnsan s sessmessasessssssesn s snssassosascensessnnnns 54
Figure 5.7 — UML of Data MOdEL ... ceeeeecteeeeee e crrccen e reetrsaras s o sevosessesnssseastes e srnsnsmemeenassens 55
Figure 6.1 — NAME SEIVEL. ...ttt e et et e st e s e s s ecatess e enate s as e e e neeesssssasessases 65
Figure 6.2 — DRPEC WoOrkspace Tab.cco ot crreeroas e sesesssetsase s e e ssesseseasesnensnnnsans 66
Figure 6.3 — DRPEC workspace (Exporting @ file).ccocooeooiiiiciiiceanectecectreteerteecesececeeeesecrancenenes 67
Figure 6.4 — DRPEC File Preview DHalOg.ccooorioeeeieeceereceeeeeaeeee e senesteaone s e sesaseesasresmnesrannnas 68
Figure 6.5 — DRPEC DOWnIoad SPACE.cco et seeee e e an e e scaesae et esntesseasesesssassssssnnsnsssos 69
Figure 6.6 — DRPEC Name Server Tab. ... oeereeeccevitrvvert e see e s enssaesseses e sssassssnesssannes 70
Figure 6.7 — DRPEC Security Management Tab.cccoruiiireiiieiietececectereterecenmeeneesecsseacsascesaseeoes 71
Figure 6.8 — DRPEC User Management Tab..........cccccvrcirerernmncornerecveriesimcetccenanssnescnsssnensescesanes 72

Acknowledgments

I would like to express my sincere thanks to my supervisor Dr. T.
Muldner for his precious guidance, inspiration and valuable time
throughout this work. Thanks also extend to Dr. Ke Qiu for being my
internal examiner and Dr. Carolyn R. Watters for being my external

examiner.

Finally, I would like to express my greatest gratitude to my brother

and wife for their love, support, and encouragement.

viii

ABSTRACT

This thesis describes an integrated Distributed Information System (DIS).
The first objective of my thesis is to build a portable and distributed
information system based on a domain of homogenous and persistent
objects. In order to meet this objective, we designed and implemented
Distributed Information System (DIS). DIS is a general-purpose
environment for the self-sustaining information systems. Software
developers can use DIS to create a concrete information system without
having to deal with networking and distribution details such as remote

access, migration, replication and distributed transactions.

Implementation of DIS is based on a client/server paradigm that uses
Java 1.2 and RMI to provide network and operating system
independence. Persistent storage on the server is provided through a file

system or JDBC.

The second objective of my thesis is to create an experimental system
that can be used for the example-based learning. This objective has been
met by using DIS to build Distributed Repository of Programming

Examples (DRPE).

CHAPTER 1. INTRODUCTION

Chapter 1

1 Introduction

Distributed Information System (DIS) is a general-purpose
environment for self-sustaining information systems. DIS enables
software developers to create an information system without having to
deal with networking and distribution details such as remote access,
migration, replication and distributed transactions.

Distributed systems have evolved because the source of the data is
centralized and there is often a need for frequent and immediate access
to locally generated data. Centralized systems have a potential single
point of failure. Distributed systems offer higher overall fault tolerance
such that in the event of a failure some or all of the functions of an

organization can continue to a greater or lesser degree.

CHAPTER 1. INTRODUCTION

A distributed information system can be defined as a system where
documents containing information are distributed across multiple
machines connected by a network. Therefore, data (or, documents) are
accessible as a shared resource, see [Booth 81]. These systems are useful
because the collective storage of multiple computers provides a more
powerful system. Additionally, with the duplication of resources the
failure of one component does not necessarily imply losing the entire set
of data. Thus, distributed systems provide parallelism and fault
tolerance, making them potentially much more powerful than their

individual components. see [Mullender 89).

In this thesis, we describe the design and implementation of a robust,
integrated, persistent distributed information system (DIS). A DIS
consists of a number of local information systems (LIS). Each LIS can
work locally as a stand-alone application managing its own data, or in
conjunction with the name server sharing its data. Each LIS in a DIS
provides high-level services to the other LIS, which can be either a client
or server. Since each LIS consists of a client and a server, they can join
and leave the DIS dynamically. When an LIS comes on-line, it registers
its services with a DIS name server, which itself is a special kind of
server. The DIS name server is an essential component of DIS that
enables information systems to become self-sustaining. The name server
is used to dynamically locate other users on the network. It is also used

for authenticating other local information systems.

CHAPTER 1. INTRODUCTION

Key responsibilities of the DIS are storage, retrieval and distribution
of information and efficient access to the distributed information. The
DIS components will communicate with each other via the existing
hardware and software network.

A number of applications can be implemented using DIS. Some of
them are a virtual office, shared text space, distributed repository of
programming examples and virtual class environment.

The second objective of my thesis is to design and implement
Distributed Repository of Programming Examples (DRPE). The
communication layer is based on RMI and the system is portable, and
can be re-implemented using any other distributed technology. The
application also provides an efficient and effective way to store, retrieve
and manipulate the information.

The GUI is designed and implemented in such a way that it is not
only efficient and effective but also easy to learn and use. Dynamic
Internet Protocol (IP) addressing is the key concept, enabling a user to
connect from virtually anywhere. In my thesis, I show how DRPE can be
used to teach programming in C. This part of the thesis has also been
described in a separate paper [Muldner, Shiv 00].

There are several existing systems that support example-based
learning, see [Neal 89] [Ulf, Raymond 97]. However, our system is
innovative because it supports example-based learning in a distributed

environment, such as the electronic campus at Acadia University. DIS is

CHAPTER 1. INTRODUCTION

also better than other technologies; for example a File Transfer Protocol
(FTP) does not support the same security model as DIS, and does not
provide an individual user authentication. There is no way to share some
part of the information with a particular client. All the information in an
FTP client is accessible either to everybody or to nobody. Web would be
useful to implement the DIS, but in this case to download information
from the client one would need a digital signature installed on the each
and every client.

We assume that the reader has a basic knowledge of Java and RMI
{Sun 98, RMI 97]. In my thesis, I used a Courier font for the Java classes

and their implementation.

1.1 Overview of the Thesis

The organization of the thesis is as follows. Chapter 2 gives an overview
of client/server technology. Chapter 3 gives an overview of distributed
technologies, such as CORBA and RMI. Chapter 4 describes the
functionality of the DIS. Chapter 5 describes in detail the design and
implementation of the DIS. Chapter 6 describes a application of DIS for
teaching programming in C: Distributed Repository of Programming
Examples (DRPE) and provides several screenshots of DIS. Finally, in
Chapter 7, we sum up the conclusions and recommendations for future

work.

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

Chapter 2
2 Client/Server Architecture

The term “client/server” [Adler 95] was first used in the 1980s in
reference to personal computers (PCs) on a network with the actual
client/server model gaining acceptance in the late 1980s. The
client/server software architecture is a versatile, message-based and
modular infrastructure intended to improve usability, flexibility,
interoperability and scalability as compared to centralized, mainframe,
time sharing computing. A client is defined as a requester of services and
a server is defined as the provider of services. A single machine can be
both a client and a server depending on the software configuration

[Schussel 96, Edelstein 94]. When a client needs information from a

5

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

server, it requests the information from the server by sending the server
a service request. The server processes the request and provides the

requested information back to the client.

2.1 Client/server Model

S S

E E| S

R R| E

v v| R

: 1

. R
Client R |

5 Client Server Interaction ¥ g‘ Server

U E| S

E R T

: Ak
LA

C

E| E

Client Server Model

Figure 2.1- Client/server Model.

The client/server model provides a way for different devices to work
together, each doing the job for which it is best suited. The role is not
fixed, however. A workstation can be a client for one task and a server for
another. The client/server model represents various components and
interaction procedures (see Figure 2.1) and offers the potential to use

resources to their fullest while also facilitating resource sharing. The
6

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

client/server model fits well in an environment of diverse computing
needs that are distributed throughout an organization. In today’s
business environments, it is expected that client/server architectures
will continue to increase in popularity and sophistication. The following

subsections describe the components of client/server model.

2.1.1 Client
The client process is usually the front-end of the application that

interacts with the users and manages local resources such as the
monitor, keyboard, and mouse. Client is also defined as a requester of
the services. The client process also contains solution-specific logic and

provides the interface between the user and the application system.

2.1.2 Service request

The client makes the service request, a server performs it and the
result is returned to the client. Service request sends messages to a
server process (program) requesting the server to perform a specific task
(service). Service request operates on the user's machine and takes care

of the interactive processing driven by the user.

2.1.3 Client/server interaction

Client/Server interaction consists of one or more service requests.

e e

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

2.1.4 Server

The server performs a function at the request of other application
components. A server provides services to other clients that may be
connected to it via a network. The connection between client and server
is normally by means of message passing, often over a network, and uses
some protocol to encode the client's requests and the server's responses.
The server may run continuously (as a daemon), waiting for service
requests to arrive or it may be invoked by some higher level daemon

which controls a number of specific servers.

2.1.5 Service instance
Service Instance is a combination of software and data that

provides services and maintains the context and state specific to it. A
service instant may be statically defined or dynamically created and
destroyed at run-time. Its life-time may be long (years) or short (sub-

seconds).

2.1.6 Service interface
This is an abstraction that represents externally visible behavior of

a service instance.

2.1.7 Service reference
A service reference points to a service instance.

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

2.2 Client/server Communication

To ensure proper interaction between clients and servers a new type
of software called “middleware” [Benda 97] has been developed.
Middleware is also referred to as communication layer. One of its
purposes is to translate client requests into a form that servers can
understand and then translate server responses for clients. Middleware
is the key to delivering resilient, secure and transparent services to
users. It is a layer of software that runs between the client and the server
processes. It shields the client from the complexity of underlying
communications protocols, network operating systems and hardware
configurations. Several types of middleware services are available such
as RMI, RPC, RDA, CORBA and DCOM.

RPC, RMI, DCOM, CORBA or some other variant is widely used for
client/server communication in a distributed systems environment. The
format of communication between clients and servers takes in the form
of message exchanges. The simplest exchange consists of a request
message from a client to a server and a reply message from the server to
the client. Each communication takes the form of a single message

transmitted between processes.

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

2.3 Client/Server responsibilities

Client/server responsibilities can be defined into three different
groups. These groups identify the responsibilities of client, server and

middleware as follows:

2.3.1 Client Responsibilities:

€ Provide user Interface.

@ Translate the user's request into the desired protocol.

e Transmit the request to the server.

@ Wait for the server's response.

e Translate the response from the server back to the client.
2.3.2 Server Responsibilities:

@ Listen for a client's request.

® Process that request.

@® Return the results to the client.

2.3.3 Middleware Responsibilities:

® Middleware forwards the client's request such that the server can

understand and translate server responses for the clients.

10

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

2.4 Tiers

In general client/server architectures now have three tiers. The first-
tier, or top-tier, includes a client with user system interface where user
services (such as session, text input, dialog, and display management)
reside [Louis 95]. The middle-tier, or middleware, provides process
management services (such as process development, process enactment
and process monitoring) that are shared by multiple applications. The
third-tier provides database management functionality and is dedicated
to data and file services that can be optimized using any proprietary
database. The data management component ensures the data is
consistent throughout the distributed environment through the use of
features such as data locking, consistency, and replication. It should be
noted that connectivity between tiers could be dynamically changed
depending upon the user's request for data and services.

In the two-tier client/server model, the middle-tier services are
usually moved onto the client side. This is a typical two-tier client/server
architecture, fat client and thin server. For three-tier client/server
architecture, we move the functionality part from the client to another

platform, leaving it as a thin client and a thin server.

11

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

2.4.1 Two-tier Architecture

Front End

Front End

Front End |

Second Tier

First Tier

== Client/Server Request &
Reply

Two-Tier Client Server Architecture

Figure 2.2- Two-tier Architecture.

With two-tier client/server architecture (see Figure 2.2), the first-
tier, or system interface, is usually located in the user's desktop
environment and the second-tier, or database management services, are
usually at a server. The processing management, is split between the
user system interface and the database management tier.

The two-tier client/server architecture is a good solution for

distributed computing when work groups are defined as a dozen to 100

12

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

people interacting on a LAN simultaneously. It has, however, a number of
limitations. When the number of users exceeds 100, performance begins
to deteriorate. This limitation is a result of the server maintaining a
connection via "keep-alive" messages with each client, even when no
work is being done. A second limitation of the two-tier architecture is
that implementation of processing management services by using vendor
proprietary database restricts flexibility and choice of DBMS for
applications. Finally, current implementations of the two-tier
architecture provide limited flexibility in moving (repartitioning) program
functionality from one server to another without manually regenerating

procedural code [Schussel 96, Edelstein 94].

13

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

2.4.2 Three-tier architecture.

Front End
N Dat;base
Busin :
Front End nriness Logic
[Front End
First Tier Middle Tier Database Server

P> Client/Server Request & ~ Database Request and
Reply Reply

Three-Tier Client Server Architecture

Figure 2.3- Three-tier architecture.

The three-tier architecture (see Figure 2.3) emerged to overcome

the limitations of the two-tier architecture. In the three-tier architecture,

a middle-tier was added between the user system interface and the

database management server. There are a variety of ways of

implementing this middle-tier, such as transaction processing monitors,

message servers, or application servers. The middle-tier performs various

services like queuing, application execution, and database staging. For

example, if the middle-tier provides a queuing service, the client can

14

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

deliver its request to the middle layer and disengage because the middle-
tier will access the data and return the answer to the client. The three-
tier client/server architecture has been shown to improve performance
for groups with large numbers of users (in the thousands) and improves
flexibility when compared to the two-tier approach. Flexibility in
partitioning can be as simple as "dragging and dropping" application
code modules onto different computers in some three-tier architectures.
A limitation with three-tier architecture is that the development
environment is reportedly more difficult to use than the development of

two-tier applications [Schussel 96, Edelstein 94].

15

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

2.5 Expected Benefits of Client/Server

Computing

The client/server model provides many benefits. An explanation of
those benefits follows:
Adaptability: - Client/server computing has the ability to adapt to the
changing needs of the business environment, to ease up or downsize the
computing resources to match the business needs.
Reduced Operating Costs: - Client/server computing reduces hardware
and software costs which means real computing power is increased.
Client/server computing means large expensive systems can be replaced
by lower cost smaller ones, networked together.
Platform Independence: - The trend to client/server computing goes
hand in hand with the push towards open systems and industry
standards. No one wants to be locked into a single vendor's propriety
hardware or software. Users want to be able to freely interchange
components.
Better Return on Computing Investment: - A client/server
environment provides vendor independence and allows computing
resources to be purchased freely.
Improved Performance: - Client/server processing power spreads

through-out the organization giving users faster response times. Using

16

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

open networked systems and lower component costs, new resources can
be added quickly where needed to improve performance bottlenecks.
Decentralized Operations: - A client/server decentralized IT operation
puts computing power and data access in the hands of the users. This
increases the productivity of MIS staff by reducing trivial requests.
Client/server architectures can improve the service provided to
customers by supplying information at the point where it is required for
customer requests.

High Reliability: - Client/server operations require highly reliable
systems, with high transaction rates, timely and continuous data access,

data integrity and corporate security.

2.6 Summary

A client is defined as a requester of services and a server is defined
as the provider of services. A single machine can be both a client and a
server depending on the software configuration.

The Client/Server architecture model is a versatile, message-based
and modular infrastructure intended to improve usability, flexibility,
interoperability and scalability as compared to centralized, mainframe,
time sharing computing. The Two-tier client/server architecture is used
extensively in non-time critical information processing where

management and operation of the system are not complex. The two-tier

17

CHAPTER 2. CLIENT/SERVER ARCHITECTURE

architecture works well in relatively homogeneous environments where
processing rules (business rules) do not change often and workgroup size
is expected to be fewer than 100 users. The three-tier architecture
improves performance, flexibility, maintainability, reusability and
scalability by centralizing the process logic. The centralized process logic
makes administration and change management easier by localizing
system functionality so that changes must only be written once to be
available throughout the system. With other architectural designs, a
change to a function (service)] would need to be written into every

application [Eckerson 95].

18

CHAPTER 3. DISTRIBUTED COMPUTING

Chapter 3
3 Distributed Computing

Today's software development projects are targeted for heterogeneous
computing environments that integrate new systems with legacy
components. The distributed computing architecture enables application
developers to benefit from the use of this technology.

As networks of computing resources have become prevalent, the
concept of distributing computing over multiple resources has become
increasingly viable and desirable. Over the years, several methods have
evolved to enable this distribution, ranging from simplistic data sharing

to advanced systems supporting a multitude of services. This chapter

19

CHAPTER 3. DISTRIBUTED COMPUTING

presents an overview of distributing computing, covering core

technologies and their benefits.

3.1 Advantages of Distributed Computing

Distributed computing supports development in heterogeneous
environments. Today's software applications have complex requirements
often requiring the use of many types of computers and tools such as
GUI builders, desktop computers, servers, etc. Distributed computing
provides a foundation for using these tools and systems together. It
provides freedom to select from a wide range of hardware, software and
networking components. Here are some of the advantages of distributed
computing:

@ A greater cost-effectiveness through sharing of computing resources

and implementations of heterogeneous open systems.
e [t provides collaboration through connectivity and internetworking.
@ Better perfornance through parallel processing.

e Scalability and portability through modularity. Distributed computing
allow corporations to deliver fully scalable, completely networked
applications that can be delivered on any type of network. including
LANs, WANs and the Internet. This capability allows an application to
be utilized in a variety of ways. One of the most popular methods of

using distributed applications is via a browser-based interface,
20

CHAPTER 3. DISTRIBUTED COMPUTING

because it allows access at any time from virtually anywhere in the

world.
e Increased reliability and availability through replication.

e Extensibility through dynamic configuration and reconfiguration.

3.2 Technologies Overview

Front End
Dat_a_base ,
Front End Bustness Logic

Front End

First Tier Middle Tier Database Server

D Client Side Server Side
COM/ CORBA/RMI . COM/CORBA /RMI

=P RPC,COM,CORBA,RMI “ ODBC /JDBC -ODBC
Distributed Three-Tier Client Server Model

Figure 3.1 — Distributed Architecture.

The research for heterogeneous computing environments led to the
development of distributed computing standards such as the Distributed

Computing Environment (DCE). The DCE specification is among the
21

CHAPTER 3. DISTRIBUTED COMPUTING

most widely implemented in the industry, providing consistent behavior
across heterogeneous execution environments. The DCE architecture
also defines thread, time, authentication & security and directory &
naming services. These standards are followed by the Distributed
Component Object Model [DCOM 97] from Open Software Foundation
and Open Group [Microsoft 97], the Common Object Request Broker
Architecture [CORBA 97) from the Object Management Group [OMG 98]
and Remote Method Invocation (RMI 97) from Sun Microsystems [{Sun
98]. Each has its own advantages and disadvantages. In the rest of this
chapter, a brief overview is given for each of these technologies with

regards to choosing a particular technology for building DIS.

22

CHAPTER 3. DISTRIBUTED COMPUTING

3.2.1 DCOM - Distributed Component Object
Model

Microsoft's core object distribution protocol is DCOM [DCOM 97],
an extension of Microsoft's Component Object Model [COM 95]
integration architecture, permitting interaction between objects executing
on separate hosts in a network.

In order to address the rising need for distribution of objects
across multiple hosts (i.e. multiple physical address spaces), Microsoft
developed DCOM as an extension to COM. As an extension rather than a
separate architecture, DCOM inserts a stub interface between the calling
application and the actual implementation of that interface. In this
manner the architecture strongly resembles an RPC-based model,
although the implementation is still based on a binary integration
scheme, rather than a more abstract model.

The DCOM does not support distributed naming services, rather it
is based on the NT registry. Configuring and installing DCOM is tedious
and labor intensive job. Although, DCOM is well suited on a Microsoft

platform, it is not for the other vendor's platforms.

23

CHAPTER 3. DISTRIBUTED COMPUTING

3.2.2 CORBA - Common Object Request Broker
Architecture

CORBA is a standard maintained by the Object Management
Group [OMG 98] for the distribution of objects across heterogeneous
networks. Designed as a platform-neutral infrastructure for inter-object
communication, it has gained widespread acceptance. CORBA allows
applications to use a common interface, defined in an Interface Definition
Language (IDL), across multiple platforms and development tools. OMG
IDL is designed to be platfornm and language-neutral; data and call
format conversions are handled transparently by the Common Request
Broker (ORB). All interfaces to CORBA objects, and the data types used
in those interfaces, are specified in the IDL. This common definition
allows applications to operate on objects without concern for the manner
in which the object is implemented.

CORBA also provides some capabilities for runtime object interface
identification and invocation through its Interface Repository (IR) and
Dynamic Invocation Interface (DII). While these have the potential to
allow {almost)} complete runtime configuration to access CORBA objects,
in practice there may be very few cases where such capabilities are
actually workable due to semantic issues. The implementation of CORBA

is a tedious job and requires lot of development time.

24

CHAPTER 3. DISTRIBUTED COMPUTING

3.2.3 Java RMI - Remote Method Invocation

Java Remote Method Invocation {RMI 99a] is a distributed object
model for the Java platforrmn. RMI is unique in that it is a language-
centric model that takes advantage of a common network type system. In
a nutshell, RMI [RMI 99b] extends the Java object model beyond a single
virtual machine (VM) address space. Object methods can be invoked
between different VMs across a network and actual objects can be
passed as arguments and return values during method invocation. Java
RMI uses object serialization to convert object graphs to byte-streams for
transport. Any Java object type can be passed during invocation,
including primitive types, core classes, user-defined classes, and
JavaBeans™. The ability to pass actual objects enables clean system
design, allowing system designers to focus on the overall object model,
not the plumbing of an application. Java RMI could be described as a
natural progression of procedural RPC, adapted to an object-oriented
paradigm. Java RMI can dynamically resolve method invocations across
VM boundaries and it also provides a fully object-oriented (OO)
distributed environment. Developers can implement classic OO design
patterns for distributed programming just as they would in local
programming. Because RMI operates naturally in the Java domain,
developers work within a single object model (the Java model) instead of

working with multiple object models (Java, CORBA IDL, and others). This
25

CHAPTER 3. DISTRIBUTED COMPUTING

removes a great deal of complexity. Unlike language-neutral object
models, RMI requires no mapping to common interface definition
languages. The syntax of remote method invocations is almost exactly
the same as local method invocations. RMI removes the burden of
memory management from the programmer because the underlying
system provides distributed garbage collection. All of these
characteristics make programming in simple and natural, an obvious
choice for developing 100% pure Java client/server, peer-to-peer, or
agent-based applications.

RMI also exhibits some distinctive new capabilities. Executable code
can be dynamically distributed on demand, including all necessary code
for distributed applications (client objects, remote interfaces, and remote
object stubs). This means that no code needs to be preinstalled on client
machines, greatly reducing the burdens of software distribution and
system maintenance. Because the common type system is the Java VM
and language environment, RMI works reliably across different operating
systems where a Java-compatible VM is available. The RMI system also
takes advantage of the secure nature of the Java environment. The
combination of Java technology’'s automatic bytecode verification, secure
loading of classes at runtime and disallowing access to memory pointers,

makes Java RMI secure from the ground up.

26

CHAPTER 3. DISTRIBUTED COMPUTING

3.3 Advantages of RMI

This section describes some of the advantages associated with RMI:
Object Oriented: RMI can pass full objects as arguments and return
values, not just predefined data types. This means that we can pass
complex types, such as a standard Java hashtable object, as a single
argument. In existing RPC systems the client would have to decompose
such an object into primitive data types, ship those data types and then
recreate a hashtable on the server. RMI lets you ship objects directly
across the wire with no extra client code.

Mobile Behavior: RMI can move behavior (class implementations) from
client to server and server to client. For example, we can define an
interface for examining employee benefit reports to see whether they
conform to current company policy. When a benefit report is created, the
client can fetch an object implementing the report from the server. When
the benefits policies change, the server will start returning a different
implementation of the interface using the new policies. The constraints
will therefore be checked on the client side, providing faster feedback to
the user and less load on the server, without installing any new software
on the user's system. This provides maximum flexibility, since changing
policies requires us to write only one new Java class and install it once

on the server host.

27

CHAPTER 3. DISTRIBUTED COMPUTING

Safe and Secure: RMI uses built-in Java security mechanisms that allow
your system to be safe when users download the implementations. RMI
uses the security manager designed to protect systems and networks
from hostile applets and from potentially hostile downloaded code. In
severe cases, a server can refuse to download any implementations at all.
Easy to Write/Easy to Use: RMI makes it simple to write remote Java
servers and Java clients that access those servers. A remote interface is
an actual Java interface. A server has roughly three lines of code to
declare itself a server and otherwise is like any other Java object. The
simplicity allows for quick and easy writing of servers for full-scale
distributed systems quickly. It also permits rapid prototyping and
designing early versions of software for testing and evaluation. Finally,
because RMI programs are easy to write they are also easy to maintain.
Connects to Existing/Legacy Systems: RMI interacts with existing
systems through Java's native method interface JNI. Using RMI and JNI
we can write the client in Java and use the existing server
implementation. When we use RMI/JNI to connect to existing servers we
can rewrite any parts of the server in Java. Similarly, RMI interacts with
existing relational databases using JDBC without modifying any existing
non-Java source that uses the databases.

Write Once, Run Anywhere: RMI is part of Java's "Write Once, Run

Anywhere" approach. Any RMI based system is 100% portable to any

28

CHAPTER 3. DISTRIBUTED COMPUTING

Java Virtual Machine. If you use RMI/JNI or RMI/JDBC to interact with
an existing system, the code written using JNI or JDBC will compile and
run with any Java virtual machine.

Distributed Garbage Collection: RMI uses its distributed garbage
collection feature to collect remote server objects that are no longer
referenced by any clients in the network. Analogous to garbage collection
inside a Java Virtual Machine, distributed garbage collection lets you
define server objects as needed, knowing that they will be removed when
they are no longer needed.

Parallel Computing: RMI is multi-threaded, allowing servers to exploit

Java threads for better concurrent processing of client requests.
3.4 Summary

Certainly, of the three frameworks discussed, CORBA provides the
greatest flexibility with its language and platform neutrality. There are, of
course, some costs associated with this neutrality, both in deployment
and runtime overhead.

Microsoft's COM/DCOM solution is the Windows operating system
installed base providing a compelling argument for its use in Windows
only environments.

Java RMI provides a language-specific architecture allowing Java-to-

Java distributed applications to be built easily. The main advantage to
29

CHAPTER 3. DISTRIBUTED COMPUTING

using Java RMI when designing a pure Java distributed system is that
the Java object model can be taken advantage of whenever possible. Of
course, this precludes using Java RMI in multilingual environments.
Java's inherent platforn independence, however, still allows deployment
in heterogeneous environments.

Many of the above concepts are shared across distribution
architectures. Some technologies, yet old, still offer compelling reasons to
use them. However, where ease and cost of deployment are larger factors,
RMI is generally a good choice.

The three-tier architecture has improved performance and flexibility
as compared to the two-tier approach and Java RMI is the best-suited

distributed environment for use in the distributed information system.

30

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

Chapter 4
4 Introduction of DIS

The main objective of this project is to build a portable, distributed,
persistent information system. A distributed information system can be
defined as a system where documents containing information are
distributed across multiple machines connected by a network. Therefore,
data (or, documents) are accessible as a shared resource.

Our most basic objective is to exchange and share information. From
now on, we will assume that the information is stored in a document,
which serves as a persistent medium for this information (we will use the

the term “document” interchangeably with the term “information”™). A

31

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

document is not necessarily the same thing as a file; it could be a file, a

number of files logically grouped together, or an entry in the database.

4.1 Push and pull model

DIS is based on the pull model. In order to describe the task of
exchanging and sharing information in a pull model, we consider two
kinds of applications, here called providers and fetchers respectively. A
provider application gives access to the available information for
authorized users; a fetcher application is designed to fetch or browse
information from one or more providers. Typically, a provider is
implemented as a server, and a fetcher as a client. For more information
about clients and servers see [Mullender 89]. A single application may be
both a provider (server} and a fetcher (client) at the same time. In DIS
each client is a provider as well as a fetcher. Further extention can

provide the pull model.

4.2 Main Functionality

DIS is a collection of documents (files), in which every user can
define her or his classifications (folders). Each document may be stored
or classified within one or more classifications, and classifications may
be nested. Therefore, in a classical file system, classifications resemble

folders, or directories, and documents resemble files. The entire system

32

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

can be seen as a tree; leaves, however, may have more than one parent
(classification). The user will be able to make a part of his or her system
available to other users and pull (download) a classification from another
user (this classification corresponds to the node of the tree and the entire
subtree rooted at this node may be pulled). Permissions may be set so
that only selected users will have access to some documents.

DIS is an application designed to satisfy the above requirements. In
this system, a single unit that resembles a file represents each document
and a folder represents a classification. DIS documents are stored
separately from the file system, but they can be easily imported from and
exported to that system.

DIS is a program that can operate both in off-line mode or in on-
line mode, and in the latter mode as a server or as a client. All of the
operations that can be performed in off-line mode can also be performed

in on-line mode.

33

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

4.3 Component of DIS

DIS is a collection of various local information systems (LIS) and a
name server. DIS works in conjunction with the services provided by the
various Local Information Systems (LIS) and a name server. The different
components of the distributed information system (DIS) are as follows:

e DIS Name Server

¢ Local Information System (LIS)

4.3.1 Local Information System (LIS)

Local Information system is an individual entity that can work
locally by itself (Off-line Mode) or in conjunction with other LIS and a
name server (On-line mode). LIS works both as client and server when it
works in on-line mode. LIS can leave and join the DIS environment
dynamically.

Components of the local information system (LIS) are as follows:

e File
e Folder
4.3.1.1 Flile

A File represents a document in a distributed information system.
A File is the smallest atomic structure stored in the local information

system. A DIS file is stored separately from the file system.

34

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

Various operations that can be performed on the file are as follows:
e Adding a new file.

e Deleting an existing file.

e Modifying an existing file.

e Copying the file to a folder.

e Exporting a file to DIS.

e Importing a file from DIS.

e Moving the file.

4.3.1.2 Folders

A Folder represents the classification in a distributed information
system. A Folder is the collection of sub folders and files. Folders are
used to define the classification within the system. Initially at the top
level there exist three placeholders (downloadspace folder, connected

workspace folder and workspace folder). These are explained below:

4.3.1.2.1 Workspace Folder

This is one of the main folders that contains other subfolders. This
folder participates in the on-line mode of operations of the DIS. This
folder provides the classifications that are accessible from the other
users based on user privileges. Each subfolder can contain additional
files or sub folders. Each folder in a workspace folder has an attribute

attached to it, a permission attribute. Permissions are the lists of users

35

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

that have rights to see all files in a current folder but not necessarily in
any subfolders. The owner of the system sets these permission

attributes.

4.3.1.2.2 Downloadspace folder
This is a temporary workspace folder. All the classifications within

this folder are not accessible to any other users.

4.3.1.2.3 Connected workspace folder

The connected workspace folder is used when the user wants to
fetch documents or classifications from the network on his or her local
system. The user gets connected to the other user(s) on the network and
loads the information into his or her connected workspace area.

The following operations can be performed on the folders:

e Add a new folder.

¢ Delete a folder.

e Move a folder and all its sub components to another location.

e Modify the permission attributes of a folder.

36

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

4.3.2 DIS Name Server

The DIS name server is the central repository for storing user ID
and password for every user. It is also used to store the dynamic IP
address of the user. For an application “A” to communicate with another
application “B”, “A” must be able to locate “B” using some kind of
naming system. The standard convention used by the Internet is the
Universal Resource Locator (URL). When “A” provides “B’'s” URL, the
Domain Name Server, DNS, finds “B’s” IP address and now “A” can use
this address to communicate with “B”. Unfortunately, this technique
does not work if “B” is off-line or if “B” uses an Internet Service Provider
(ISP) which provides dynamic IP addresses. Therefore, often we assume
that there exists an additional name server residing at a “well-known”
static IP. When the application “B” goes on-line, it connects to the name
server which then retrieves “B™s current IP and associates it with that
application’s name. When application “A” wants to connect to application
“B", it does so through the name server, which guarantees that “B” is on-
line and its current IP address is known.

The main functionalities of the name server are user validation,
dynamic IP addressing and handling client requests. Since a user can
virtually login from any terminal, he or she has to update their current IP

address and download all the active users. After downloading the active

37

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

users, the user can login to any active user after connecting to its IP
address obtained from the name server.

An administrator of this name server manages users, (i.e. registers
the users, assigns passwords, etc). The name server is running on a
computer with a “well-known" static IP address, which is provided in the
configuration file read at the application startup. The administrator
manages the name server including adding and removing users, and
setting their passwords.

The current implementation of the name server has one major
drawback as we have only one name server running, and if this name
sever is down the user would not be able to connect to other LIS's. We

will address this issue in our future work.

4.4 Operations

4.4.1 Off-line operations

Off-line operations facilitate organizing a repository (i.e. creating
new classifications, modifying and deleting existing classifications,
importing and exporting, and browsing and viewing documents). The
user achieves this through the use of menus, right button, or drag and

drop for these operations.

38

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

Also in off-line mode, the user may specify “permissions” (i.e. give
or revoke the right to access documents to other users). Here, a
classification is the smallest unit the user can grant permission to then
these users can view and possibly pull all documents in this
classification. However, their ability to view the contents of any nested

classifications depends on their permissions for these nested

classifications.

39

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

4.4.2 On-line operations

1 Login to server

2 Download all active clients

3 Request for a IP address
for an active client

4 Get the IP address for the active
client from name server

5 Request to download the work
space

6 Download the work space to your
local system

Online Operations

Figure 4.1 — Sample Online operations.

On-line operations can be divided into two types: interactions with
the name server and interactions with other users. In order to interact
with the name server the user must login to the name server by providing
valid name and password. Upon successful login the name server
retrieves the current IP of this user and saves this information. DIS,
therefore, supports users who have dynamic IP addresses such as those
using ISPs. The user may perform the following operations that interact

with the name server: change the password, retrieve the list of all

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

registered users, or retrieve the list of all active users (i.e., users who are
currently on-line). The list of active users is used to start an interaction
with another user. Connecting to another user is accomplished simply by
selecting the user from the active user list. Note that this connection
does not require an authentication because both users must have
current connection to the name server and, therefore, have both already
been authenticated. Also, the name server provides the current dynamic
IP addresses of all users. The list of currently active users can be used to
select one user and then connect to her or him.

User “A", upon connecting to another user “B", may browse and
download the classifications permitted by the user “B” specifically for

user “A".

41

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

4.5 Security Model

4.5.1 Name server Security model
The name server security model describes the security model on the

name server. There are two basic types of accounts on the name server:
e Administrator
e Other users
The administrator can add, modify and delete any user accounts. A
user is only permitted to change the password and IP address of his or

her account.

4.5.2 LIS Security model

The security model chosen for DIS is a mixture of file level security
and the folder level security for the DIS. This means the user is allowed
to view and download all the files within folder but not the files in the
sub folders or in the parent folder. To achieve this we have a permission
attribute attached to every folder which is a list of users. This list of
users in the permission attribute is a subset of authentic users on the
name server. The users in the permission attribute of folders are
authentic to view and download all the files within the folders. The user
of LIS can set the permission attribute of his or her own folders. If
another user is in the list of the permission attribute of the folder then

he or she can view and download the contents of that folder.

42

CHAPTER 4. DESCRIPTION & FUNCTIONALITY OF DIS

4.6 Object Persistence

Object instance needs to persist over time beyond the life cycle of an
application. DIS and name server support persistent instance by
converting a sequence of bytes stored in a form of long term media. The
restoration process creates an environment identical to the original one.

The current persistent form in LIS and the name server is a file in a
local file system, but we have a generic interface to provide the flexibility
to upgrade to another implementation in the future. This can be a

relational database or object oriented databases.

4.7 Exception Handling

Different kinds of error checking and exception handling are being
incorporated in DIS. The low-level functions deduce the errors, which are
passed to the high-level user interface for display. Some of these
exceptions and errors are:

e Trying to perform on-line operations (such as downloading active
users, connecting to another user or changing the password) while
you are off-line.

e Inactive name server instance.

e User authentication such as invalid user id and password.

43

CHAPTER 5. IMPLEMENTATION OF DIS

Chapter 5

5 Implementation of DIS
In this chapter we will discuss the design and implementation of DIS.

We will go into different phases of the implementation process by using

class diagrams and code fragmentation.

5.1 Analysis
5.1.1 Strategy

We define our strategy for building DIS based on the domain of
distributed persistent object model of Java 1.2. The system is
independent of any particular technology such as computer hardware,

operating system, databases or distributed technology. The graphical

44

CHAPTER 5. IMPLEMENTATION OF DIS

user interface is designed and implemented in such a way that it is not
only efficient and effective but also easy to learn and use. We try to instill
all the application functionality in one main frame with different tabs
rather than having separate applications with many screens. This makes

the user understand the system easily without extra effort.

5.1.2 Analysis

change Comtroller change
change
notify Model notify
¥ 4
View update update View

Figure 5.1 — Model View Controller.

The standard design pattern, Model View Controller (MVC]), is used
in building the graphical user interface. Putting this in the paradigm of

DIS, the data (Data Model) in the application is kept separate from the

45

CHAPTER 5. IMPLEMENTATION OF DIS

rendering of the data (View Model) and the manipulation of the data
(Controller Model), (see Figure 5.1). The goal is to separate the
application object (model) from the way it is represented to the user

(view) and from the way in which the user controls it (controller).

46

CHAPTER 5. IMPLEMENTATION OF DIS

5.2 Design
5.2.1 Architecture

—

Client —

. LIS N

Cllent<:m> <JDBC/JDBC/FILE f
LIS V]

Name

e File ||

First-tier Second-tier Third-tier
(Client) (Server)

Architecture of DIS

Figure 5.2 - Architecture of DIS.

DIS is a three-tier client server architecture as shown in Figure
5.2. The first-tier represents the Local Information System (LIS). LIS
queries the Name server (second-tier) to find the IP of the other registered
LIS by sending the service request to the name server. When the name
server processes the request, the output values are returned to the
requestor LIS. After retrieving the IP, the LIS client object locates the

appropriate implementation of the remote object and transmits

47

CHAPTER 5. IMPLEMENTATION OF DIS

parameters and control to the object implementations. Service objects on
the server side of the name server or the client may use JDBC/ODBC to

communicate with the third-tier, the database server.

5.2.2 Model

Delegate

Display to

the user User Input

Model-Delegate Model

Figure 5.3 — Model-Delegate Design Model.
DIS uses a common variant of MVC where the view and the

controller are merged into one piece, the delegate. In practice, the view
and the controller are too closely related to be treated separately so

merging the view and the controller greatly simplifies the development.

48

CHAPTER 5. IMPLEMENTATION OF DIS

This variant is called the Document-View (see Figure 5.3). It is also
known as the Model-Delegate design.

In this Model-Delegate design, the delegate updates the model
through the known interface and the model informs the delegate when to
update information through an event listener. The delegate then retrieves
the updated information through the same known interface.

Separating the data from the display of the data leads to a great deal
of flexibility in the development of the user interface. A major advantage
of this model is that a single delegate class can display and update the
data from several different models with the only restriction being that the
models support a common interface. Another benefit is reduced memory

management as only one copy of the data is maintained.

49

CHAPTER 5. IMPLEMENTATION OF DIS

5.3 Implementation

In the discussion of implementation of DIS it is important to
distinguish between distributed object programming which allows the
methods of the object to be invoked across different address space and
simple object oriented programming where the objects are assumed to

share the same address space.

Communication
Model Model : .
o other

clients and
name Server

—

) .

View model
To the
User

controller

Varnous model of DIS

Figure 5.4 — Implementation Model of DIS.
The framework of DIS tries to put the issues discussed in the

analysis and design phase into three different models which are the view

model, the data model and the communication model (see Figure 5.4).

50

CHAPTER 5. IMPLEMENTATION OF DIS

Here the view model represents the delegate and the data model
represents the model of the traditional model-delegate design patterns.
The view and data model in DIS help in managing off-line operations
whereas the communication model helps in managing on-line operations.
Whenever the communication model comes into play we are talking
about the distributed object programming where we are calling the
remote objects on different virtual machines. These models are separate
from each other and it is very easy to change any one of them. This helps
to create a core functionality that can be reused by the multiple
applications across heterogeneous networks. Each model is further
decomposed into the set of related entities that interact with each other

to perform the task.

5.3.1 View Model

In the distributed environment of DIS, most of the user’s
interaction takes place through this model. The view model uses the
query methods of the data model to obtain information and displays this
information. We can have multiple views of the same data. The view
model contains the delegate part of the model-delegate design patterns

that is the View and the controller.
The controller object receives mouse clicks or keyboard events from

the user. It then translates these events into the manipulator method

51

CHAPTER 5. IMPLEMENTATION OF DIS

which the model understands. In our GUI, views and controllers work
very closely together. For example, a controller is responsible for
updating a particular parameter in the data model that is then displayed
by a view. In some cases a single object function works both as a
controller as well as a view. In some situations the controller interacts
directly with the view without passing via the model.

GUI is the central class. It listens and handles the interactions
from the user along with various GUI classes such as WorkSpaceGui,
UserManagementGui, SecurityManagementGui, NameServerGui, and
DownloadSpaceGui. Each of these classes represents a different view of
the data model. The GUI's classes have many low-level components
added to it which delineate the user with the data from the data model
(see Figure 5.5).

Various controllers have been implemented by the GUI's classes

and other low-level components using various interfaces such as
TreeExpansionListener, Mouselistener, TreeSelectionListener,
ActionListener, etc. Whenever a user presses the mouse or keypad

the appropriate listener handles the request and passes the response to

the data model.

52

CHAPTER 5. IMPLEMENTATION OF DIS

JFrame 1 1 Gui

1

1 1 1 1 1
WorkSpace .
Cui DownloadSpace User Security NameSaver
a Gui Mayenent Managsa et Gu
Gu Gui
|
Q 1
1 Jlree JDialog
DefaultMuatable
TreeNode
Tl..’ L.t 0.t .t |
<<[nterface>> DraggableIree JCompenet FileViewDialeg SmpleCenfirm SimpleMessage
Dialeg Dialog
DragGestureListner
DropTragetListoer

Figure 5.5 - UML of View Model.

53

CHAPTER 5. IMPLEMENTATION OF DIS

5.3.2 Data Model

The data model shows how data is stored in the distributed
information system. The basic structure is in the form of the tree. At the
top level we have three folders viz. workspace, downloadspace and
connected workspace (see Figure 5.6). These folders are like a place

holder for the other folders and files.

<<[nterface>> g
e
Serializable
Q1
1 1 i
reet_node Dewnlsad_node cemmected_node

Folder

Figure 5.6 - UML of Data Model.

Each folder can be nested further to have folders and files. In the
on-line operations of DIS the folders used are the workspace folder and

the connected workspace folder. The connected workspace folder acts as

54

CHAPTER 5. IMPLEMENTATION OF DIS

a fetcher and the workspace folder acts like a provider to other clients.
You can perform various operations on the folders and files such as
deleting, adding and modifying them. These operations are being
captured from the user through the view model and then passed to the

data model.

User limis
_.-Ahep amission
= sttribute
¢J/f
Fealder

Name:String
date: Stnag
owner Stnng <<Interface>>

userlist Vector
DefaultMutableIreaNode Serialissble
: Tramsierable

Name Stnng
date: Stming
owner Sting

Figure 5.7 — UML of Data Model.

In order to achieve the desired security model discussed in Section
4.5.2 we have a permission attribute attached to each folder. This is a

list of all the users that have permission to download the files content o1 ™~

a specific folder (see Figure 5.7).

55

CHAPTER 5. IMPLEMENTATION OF DIS

5.3.3 Communication Model

The communication model comes into play whenever a user
desires to perform on-line operations. We divide the communication

model into two parts, the name server and LIS server.

5.3.3.1 Name Server

The name server is the standalone server called ServerAdmin
which runs on a networked computer that has a static IP and provides
various services to the user. It implements the interface iServeradmin

that provides functionality to the remote users.

5.3.3.1.1 Remote Interface

The remote interface is stored in a separate file called
iServerAdmin. The remote user objects on a different virtual machine
invoke methods from this interface. It supports methods to register a
client, remove a client, get the IP address of a user, set the IP address of
a user, verify an authentic user, set a password, etc. It also handles
various remote exceptions.

The following is the code listed for the iServerAdmin interface:

public interface iServerAdmin extends java.rmi.Remote({

void registerClient(String s) throws RemoteException;

void removeClient (String s)throws RemoteException;

56

CHAPTER 5. IMPLEMENTATION OF DIS

void setPassword (String userid, String password) throws

RemoteException;

String getIp(String userid) throws RemoteException;

void setIp(String userid , String ip) throws
RemoteException;

Vector getAllUser () throws RemoteException;

Vector getAllActiveUser() throws RemoteException;

boolean validateUser (String userid, String password) throws

RemoteException;

boolean isActive(String userid) throws RemoteException;

}

5.3.3.1.2 Implementing the name server

The name server, ServerAdmin, is a hashtable of the entry class where
each entry has the following attributes: user_name, user_ip,
user_password and active_flag. The Serveradmin object implements
the interface iServerAdmin which provides the functionality of retrieving

and setting entry information from the remote user’s objects.

57

CHAPTER 5. IMPLEMENTATION OF DIS

5.3.3.1.3 Starting the name server

The MainPanel class provides the basic functionality of the user
interface for the name server. MainPanel calls the constructor of the
server, ServerAdmin, to start the server and register itself as a remote

object.

The following code shows the initialization of the name server:

//Create one or more instances of a remote object

server = new ServerAdmin();

//Loading the variable parameters from the try.ini file such
//as the static IP and the port for the name server so that
//you can change these parameter without compiling the code

//The name server try.ini file look like this

/7 {

// admin = "missys42:1111";

// variable = “<IP>:<Port number>"
/7 };

// load the IP and the port from the try.ini file into the
// hash table

Hashtable ht = (Hashtable)
ZZParserUtil.convertToDictionaryFromFile("try.ini");
//Register as a remote object

Naming.rebind("//" + (Sstring)ht.get("admin") +

“/Serveraddmin",server) ;

58

CHAPTER 5. IMPLEMENTATION OF DIS

5.3.3.2 LIS Server

As in DIS, each LIS is a client as well as server. So we can have

various cases to handle its different scenarios.

5.3.3.2.1 Remote Interface

The LIS server implements the remote interface iServer to provide the
functionality to the remote users. The remote objects can invoke methods
from this interface after being authenticated by the name server.

The following is the code listed for the iserver interface:

public interface iServer extends java.rmi.Remote{

DefaultMutableTreeNode getTree() throws RemoteException;}

5.3.3.2.2 Implementing the LIS Server

The LIS Server implements the interface iServer to provide other LIS
on different virtual machines with the facilities to download information.
The information is serialized and sent to the LIS in the form of a tree

structure DefaultMutableTreeNode.

5.3.3.2.3 Starting the LIS Server

DIS is the main class that initialized the LIS server. If the “ip” field in the
“try.ini” file is “localhost” it gets the local IP from the system that is
running the LIS otherwise it will use the value of the “ip” field in “try.ini"

file. After that is initialized, the server object registers it as a remote

59

CHAPTER 5. IMPLEMENTATION OF DIS

object using the IP and the port number from the try.ini file. Once the
LIS server is registered to the name server other on-line LIS objects can

lookup for this server and invoke methods from the iServer interface.

Try.ini file at the LIS:

{ip = “localhost”;<IP address of the LIS server>

port = "2222"; <the port where the client server is running>
admin = "missys42:1111"; < IP of the name server>

user = "vicky"; <user login id> };

The following code shows the initialization of the server:
//Getting the local IP or user defined IP and port from the

//try.ini file

int i = ((String)Global.hashserver.get ("ip")).compareTo
("localhost");

if (i ==0)

ipaddress = 1ip.getHostAddress() + ":" + (String)Global.

hashserver.get ("port");

else

ipaddress = (String)Global.hashserver.get("ip") + ":" +
(String)Global.hashserver.get("port");

// Starting the server at the local host

Global .my_server = new Server{ipaddress ,user);

//Register as the remote object

Naming.rebind (serverName, this) ;

CHAPTER 5. IMPLEMENTATION OF DIS

5.3.3.2.4 Connecting to the name server

Whenever LIS wants to go on-line it has to register itself with the name
server. Here we see some of the remote function calls LIS can make to

the name server:

// Getting the IP address of Name Server from the try.ini
file

String sa = (String)Global.hashserver.get("admin"};

String serverName ="//" + sa + "/ServerAdmin";

//Look up for the name server remote object
Global.admin_server=(iServeradmin)Naming.lookup (serverName) ;
//Setting user IP address and port at the name server. Here
//we are getting the IP from the machine or user defined IP
//and the port from the user try.ini file.
Global.admin_server.setIp(user.user_id, ipaddress):;

// Getting all user with-in the system from the name server
Global.all_user = Global.admin_server.getAllUser ()
//Getting all the active user from the name server

Global .active_user = Global.admin_server.getAllActiveUser() ;

61

CHAPTER 5. IMPLEMENTATION OF DIS

5.3.3.2.5 Connecting to the other LIS

If you want to connect to LIS other than your own, then the one you wish
to connect to must be on-line. First retrieve the IP address of LIS you
want to connect to from the name server. Once you retrieve the IP you

can then connect to the LIS and retrieve the information tree depending

upon your privileges as set by the LIS owner.

//Getting the IP from the Name server for the active
//selected user

String t = "//" + (String)Global.admin_server.getIp
((String)list.getSelectedvalue()) + "/MyServer”;

//Looking for the remote object for the selected user
Global.connected_server = (iServer)Naming.lookup(t);
//Retrieving the information tree from the connected LIS and
//adding to the connected workspace node

connected_node.add(Global.connected_server.getTree());

62

CHAPTER 6. APPLICATION OF DIS:DRPE

Chapter 6

6 Application of DIS : Distributed Repository
of Programming Examples(DRPE)

Example-based learning, see [Neal 89], promotes the idea of using
numerous examples to help understand concepts and to move these
concepts from short-tertn memory to long-term memory. Examples are
useful if they can be easily browsed and searched and shared by various
users. When learning programming, examples are particularly useful
because one can always learn from examples of small programs.

Consider, as an example, a specific class for teaching programming
in the C programming language, taking place in an electronic classroom.
Before the beginning of the class the instructor (provider) makes

available examples of programs in C to all students in the classroom. (As

63

CHAPTER 6. APPLICATION OF DIS:DRPE

an alternative, the instructor may divide students into groups by giving
each group a different example.) Now the students can pull these
examples on to their computers. They can view these examples, export
them to a favorite compiler, modify them by creating new versions and
making these versions available to all students or to just specific
students. The entire process can result in a collaborative development of
a useful repository of code that can be used not only for learning but also
for real every-day programming.

DIS is an ideal candidate to implement Distributed Repository of
Programming Examples with a hierarchical tree structure. It has been
used to implement DRPEC (Distributed Repository of Programming
Examples of ‘C’). In this chapter, we illustrate the DIS implemented
system in action by studying an example of DRPEC. Throughout the
description, we use screenshots to illustrate the interfaces that users will

typically encounter while using the system.

64

CHAPTER 6. APPLICATION OF DIS:DRPE

6.1 Name Server

:~§Admsm-n.n..v Mo
vicky
thomas
{ajay
alka
shiv
neelu

Figure 6.1- Name Server.

The main functionality of the name server from the user's point of
view is to handle user requests and from the administrator’'s point of
view is to manage user accounts. Whenever an administrator tries to
create a new user account, the system will prompt for the user name to
check whether the account already exists or not. It will also check for the
blank password. Figure 6.1 shows the name server administrator screen.

The administrator uses the same screen to add. modify and delete users.

65

CHAPTER 6. APPLICATION OF DIS:DRPE

6.2 DRPEC
6.2.1 Workspace Tab

227 vicky (Download Space Oct 27 17:03.26 ADT 1999)]]
> f & 9 2awea 0ct 27 17:03:28 ADT 1999)

* 1099) 1 78
% ai(Weg Oct27 17:04:35 ADT 199} ZH
RWed Oct 27 17:04:35 AOT 1999) | Z
) maxtwed Oct 27 17-04:35 ADT 1889)
& () Arays(wed Oct 27 17:04:35 ADT 1999)
® (7 Programs(wWaed Oct 27 17°04:35 ADT 1999)
© [Strings(Wed Oct 27 17:04:35 ADT 1999)
© (9 Data Structures(waed Oct 27 17:04:35A0T
© (3 Aigorthmswed Oct 27 17:04:35 ADT 1399 7
© (] Signals(Wed Oct 27 17:04:35 ADT 1999)

TSR TR WUREZIER Y 44 =Y

-

-

2o emtsnantwe.

—
LA IAAY)

{_

YA YR Y TR T AT T O T T TR TR YT

Figure 6.2 - DRPEC Workspace Tab.

As you see in Figure 6.2, the left pane shows the repository of ‘C’
programs, the middle pane shows the current state of the download
space and the right pane shows the content of the file (in case the file is
selected). The user can perform various operations such as creating,
deleting, moving, and copying classification or document in DRPEC using

the workspace tab menu or drag and drop features.

66

CHAPTER 6. APPLICATION OF DIS:DRPE

The user can import data from a text file into the DRPEC and
export DRPEC documents into a text file. These options are available
through the workspace tab menu “Export/Import™. In order to export a
document from the DRPEC, the user has to choose the DRPEC document
first and then select the “Export” menu item from the “Export/Import”
menu which then prompts for the save dialog box (see Figure 6.3). After

this he or she can enter the file name in which the selected document is

to be saved.

kot 8 KORECN O | P b vl way or T M STy b L s S B et
" T vicky Work Space(Wed Oct 2 2 ey SRR e Y
‘{19 3 ¢ Exampres(vwed Oct 27
® (A Funchonsiwec Oct 279 java

PO S
: Facly 3 applicancn Data :
g D) Getinttwed Oct 2ir9 coaktes factintn)
D) MaxtWed Oct 27 9 pesitop 3
il

£75.)

i

;

ODMWSMMOG271 me! wmne‘}')]i
|

©- Programs(wed oct g 1uisto i

N 33

i @) Swings(Wed Oct 27 © o
:) NesHood B
i ® [Data Stuctures(Wec 9 Personal 3
1 @ (7] Agorthms(Wed Oct rson b
l; © (3} Signais(Wed Oct 2 %:‘
’ 3
) g
!~ :

e
5

L 4ITT

v ian gl D0 Senlent

Figure 6.3 - DRPEC workspace (Exporting a file).

In the case of importing a file a prompt for the “open” dialog box

will appear where you can select any text file to be imported into DRPEC.

67

CHAPTER 6. APPLICATION OF DIS:DRPE

The left pane will show the content of the file if the file is selected.

If we wish to modify the file just double click it. A file preview dialog will

show up where the file can be modified and saved (see Figure 6.4).

- Functions 10 Implement binary tre® cpearatons.

gefine NULL 0
TRUE 1

efine FALSE O
edefl struct node "gainter,
STUCt NOJe {

intdata;
toointer leftChila, nghtChiid:

13

-

* inoroer req travarsal
-y

ivo1d Inordertpolnter pt)

(ptr) {
Inordar(ptr-»leNChila),
PHNYC AT, plr->data);
inordernotr-»ngntChild);

}

i~
* Prearder traversal of ree
=

ey e g3 A ek i v 323 b T

R

i

LBl LT

=

CHAPTER 6. APPLICATION OF DIS:DRPE

6.2.2 Download Space Tab

Once connected to the other on-line user you can download the
classification in your connected workspace pane. All operations in the
workspace pane can be perforrmed here using the tab menu. Here user
“vicky” has connected to the DRPEC of user “shiv” and has downloaded

the classification tree into his connected workspace (see Figure 6.5).

"

At S SRS
B e AT S

toea o o m?

mm’!”"‘f’. “‘Tg‘ i IR d Rt bs i z LAY .
. 113 vicky (Downioad Space)(Man Nov 01 16:17:07 AST 1989]RIZS] vicky (Connectsd Space}(Mon Nov 01 18:17,
© [2(Mon Nov 01 16:17:07 AST 1988) H @ () ks Wik Bpocalitnn Rax 071821 20 AT 1000) 3
@ (53 C Exampies(Mon Nov 01 16:21:28 AST 1999) 2
@ 3 Functions{on Nav 01 16:21:28 AST 1999) =
D) FactonaiMon Nov 01 18:19:29 AST 1998) A
1 [} Gesntwon Nov D1 1619:29AST 1999) (4
[} max(mon Nav 01 16:12:29 AST 1999)
@ £ arrayson Nov 01 16:21:28 AST 1989)
@ 3 One Dimensionai(Mon Nov 01 16:21:28
[Binaey Searchitaratve)Mon Nov 01
[binary search (recursive)Mon Nov 01 1}
@ (3 Two Dimensional(Mon Nov 01 16:21:26 <7
{4 @ [Three Dimensronai(Mon Nov 01 16:21:28
© () Progeams(Mon Nov 01 16:21:28 AST 1899)
@ (3 Strings(Mon Nov 01 16:21:28 AST 1989)
@ [Data Structures(Mon Nov 01 16:21:28 AST 19
@ =3 Aigomnms (Mon Nov 01 16:21:28 AST 1899)

. @ [SignaisMon Nav 01 16:21:28 AST 1898) 1=
e ————— i el e D)

%G At AR Ny & R AR DA B S T kg L ST M AR T3 A SR A S RTINS e a3
— e

e Y

..;..‘.g.....'...

el ISl Seilern

Figure 6.5 - DRPEC Download Space.

69

CHAPTER 6. APPLICATION OF DIS:DRPE

6.2.3 Name Server Tab

The DIS user uses the name server tab to connect and talk to the
name server (see Figure 6.6). Various operations can be performed here
such as logging into the name server, downloading all users,
downloading active users, logging off from the name server, changing
your password and pinging the name server. Some of these operations

require authentication.

Figure 6.6 — DRPEC Name Server Tab.

70

CHAPTER 6. APPLICATION OF DIS:DRPE

6.2.4 Security Management Tab

To manage permissions, the user selects the Security Management
Tab (see Figure 6.7). Here, a classification is the smallest unit that the
user can grant permissions to. The left pane show the classification tree,
the middle pane (User List) shows the list of registered users in the
systemn and the rightmost pane (Selected List) shows the user(s) that can
access the selected classification. In order to éssign and revoke
permissions, the user must first select the classification in the left pane.

After selecting the classification the user can add and remove users from

the selected list using the bottom pane.

‘ :W Lt 59 X 43
! ™ wicky Work SpaceWad Oct 06 16:58:27 ADT 1989)
¢ 3 C Examples(wad Oct 06 16:59.59 ADT 1999)
€ [Functions(Wed Oct 06 17:00:11 ADT 1899)
D) Factontaltwed Oct 06 17:03:20 ADT 1999)
D Getinttwed Oct 06 17:03:53 ADT 1999)
D) maxtwvec Oct 06 17.02:50 ADT 1993)
@ I Arays(Wed Oct 06 17:00:22 ADT 1989)
© (9 One Dimensicnal(wed Oct 06 17:65:33 ADT 1949)
® 9 Two Cimensionai(wed Oct 06 17:08:15 ADT 1999)
@ [Three Dimensional(wad Oct 06 {7.06:39 ADT 1989)
© (3 Programs (Wed Oct 06 17:00:33 ADT 1989)
@[3 Strings(Wad Oct 06 17°00:43 ADT 1999)
© [Data Structures(wed Oct 06 17:01:28 ADT 1999)
D) Binary tree(wed Oct 06 17:14:28 ADT 1498) 3
) Agorthms(Wed Oct 06 17.01:49 ADT 1399) M
3 Signals(wed Oct 06 17:02.06 ADT 1999) W

frm e e

roSvEtFIT

Figure 6.7 - DRPEC Security Management Tab.

71

CHAPTER 6. APPLICATION OF DIS:DRPE

6.2.5 User Management Tab

Figure 6.8 - DRPEC User Management Tab.

The list of active users is used to start an interaction with another
user. To connect to another user it is simply enough to select this user
from the active user list (see Figure 6.8). Note that this connection does
not require an authentication because both the users must currently be
connected to the name server and therefore have already been
authenticated by it. The list of currently active users can be used to
select one user and then connect to her or him using the IP address
provided by the name server. We can also download the current active
user by clicking the “Download Users” button. Once user “vicky” is

connected to the another user “shiv”, then user “vicky” will be able to

72

CHAPTER 6. APPLICATION OF DIS:DRPE

browse user “shiv™’s classification in his or her connected workspace
pane (Download Space tab) (see Figure 6.5) depending upon the

permission privileges set by user “shiv”.

6.3 Summary

Here are the steps for connecting to user “shiv” workspace from user

“vicky".

Steps for user “shiv”

e Login to the name server (see the name server tab section 6.2.3).

e Set up the “shiv” user repository (see workspace tab section 6.2.1).

e Set up the security model for the “shiv” workspace (see security
management tab section 6.2.4).

Step for user “vicky”

e Login to the name server (see the name server tab see section 6.2.3).
e Download the active client from the name server (see name server tab

section 6.2.3).

e Select the “shiv” from the list of active client and download the

workspace (see the user management tab section 6.2.5).
e View the connected user “shiv” workspace (see the download space

tab section 6.2.2).

73

CHAPTER 7. CONCLUSION

Chapter 7
7 Conclusions

7.1 Concluding Remarks

Working on this thesis we has experimented with some core areas of
object technology such as distributed objects, Java Foundation Classes,
and Remote Method Invocation and showed how they work together to

build an extensible, portable distributed information system across a

heterogeneous network.

Our primary objective is to not only build a system providing
distributed data access but to also develop reasonably sophisticated

client/server software that does not limit us to specific hardware or

74

CHAPTER 7. CONCLUSION

operating system. The architecture must be robust, scalable and must be
accessible from multi platforms. For example, we wanted to be able to
accommodate a user “A” who uses Unix on a PC and a user “B” using a
Macintosh. We illustrated that our Java based system used with RMI
provides a powerful environment for developing and deploying distributed

system over various platforms.

The architecture and model described in this thesis demonstrates
the value of layering existing technologies. With very little effort, any
other application can benefit from distributed inforrmation. We also
demonstrated that a distributed inforrnation system provides a solid base

on which various information services can be built.

We illustrated how DIS provides different services such as acting as
both a client and a server. DIS is not only independent of the host
architecture and operating system, but it can be deployed to any
platform where a Java-compatible VM is available. The power of the Java
object model is being utilized to produce a 100% pure Java client/server
solution. So we concluded that our approach to building distributed
information system is not only practical, but is in some ways superior to

the other widely used systems.

75

CHAPTER 7. CONCLUSION

7.2 Future Works

We demonstrated that DIS provides a good application to share data
over the network. Our future efforts will extend the system to provide
more functionality such as sending notifications to users and versioning
files. If there is a change in the local information system such as a new
file, modified file or a new version of the file, a notification is sent to the
notification server for all users who have registered for that notification.
The users can login to the notification server and retrieve its
notifications. There is a time out for any given notification, after which

the notification is deleted from the notification server.

The criteria used for the evaluations include user satisfaction and
comparison of the student marks after using DRPE. In our future works,
we can use annotations with the classifications and provide groups of
users for the security model. We will also implement a more scalable
name server so that if one of the name servers is down, the user can
connect using the another one.

Currently the system supports point to point connections. but in the
future version it will support multi-cast where one LIS should be able to
connect to more than one LIS at the same time. The system supports
only a pull model in its current version. In the near future, the push

model will be incorporated into the system using the notification server.

76

CHAPTER 7. CONCLUSION

Finally, we would like to indicate that in DIS database side can be
re-implemented to use JDBC to connect to desired databases which
would not require any changes in either the server or client sides. In the
current implementation Drag and Drop is implemented in the first tab;
this is related to the problem described in Java Forum [Java 99] where
the drag and drop operation if implemented in the tabbed pane works

only in the first tab.

77

BIBLIOGRAPHY

Bibliography

(Booth 81]
[Mullender 89]
[Louis 95}

[Eckerson 95]

[Microsoft 97]

[Orfali 97a]

[Rational 98]

(Edelstein 94]

[Schussel 96]

[Sun 98]

[COM 95]

Booth, Grayce M. The Distributed System
Environment. New York: McGraw-Hill, 1981

Mullender, Sape. Distributed Systemns. New York:
ACM Press, 1989.

Louis [on-line].
Available WWW: http://www.softis.is (1995).

Eckerson, Wayne W. "Three Tier Client/Server
Architecture: Achieving Scalability, Performance,
and Efficiency in Client Server Applications.” Open
Information Systems 10, 1 (January 1995): 3(20).

Microsoft (1997). COM/DCOM Specification.

Available WWW:
http://www.microsoft.com/oledev/olecom/title. htm

Robert, Orfali; Dan Harky (1997). Client/Sever
Programming with JAVA and CORBA. Wiley &
Sons: New York, NY.

Rational Software (1998). The Unified Modeling
Language (UML).
Available WWW: http://www.rational.com/

Edelstein, Herb. "Unraveling Client/Server
Architecture.” DBMS 7, 5 (May 1994): 34(7).

Schussel, George. Client/Server Past, Present, and
Future [on-line].
Available WWW: http://www.dciexpo.com/geas/ (1995).

Sun Microsystems. The Java Language
Environment.

Available WWW:
http://www.javasoft.com/docs/white/langenv/ (11
September 1998).

"The Component Object Model Specification”
(Microsoft Corporation, Digital Equipment
Corporation, October 1995)

78

BIBLIOGRAPHY

[CORBA 97]

[DCOM 97]

[OMG 98]

[Neal 1989]

[RMI 97]

[RMI 99a]

[RMI 99b]

[Muldner,
Shiv 00]

[Java 99])

"The Common Object Request Broker: Architecture
and Specification, Version 2.1" (Object Management
Group, et al, August 1997)

Microsoft Corporation. Distributed Component
Object Model Protocol-DCOM/ 1.0, draft, November
1996 [on-line]. Available WWW
http://www.microsoft.com/oledev/

Object Management Group home page [on-line].
Available WWW http://www.omg.org (1998]}.

A System for Example-Based Programming. ACM,
Human-Computer Interactions, HCI'89 Proceedings.
pp. 63-67.

"Java Remote Method Invocation” (Sun
Microsystems, Inc., December 1997)

RMI and Java Distributed Computing white paper
by Doug Sutherland System Architect JavaSoft™, A
Business Unit of Sun Microsystems, Inc

Java remote method invocation - distributed
computing for Java , White paper
http://java.sun.com/marketing/collateral/javarmi.html

Distributed Repository of Programming Examples
accepted for EDMEDIA 2000, Montreal, Canada
June 2000.

Problem implementing D&D in Tabbed Pane
Available WWW:

http://forum.java.sun.com/forum?14@@.eecec519

[Ulf, Raymond 97] Ulf Hermjakob, Raymond J. Mooney: Learning

[Adler 95]

Parseand Translation Decisions from Examples
with Rich Context. ACL 1997: 482-489

Adler, R. M. "Distributed Coordination Models for

Client/Sever Computing.” Computer 28, 4 (April
1995): 14-22.

79

BIBLIOGRAPHY

[Benda 97] Miroslav Benda: Architecture Perspective:
Middleware: Any Client, Any Server. IEEE Internet
Computing 1(4): 94-96 (1997)

80

Appendix A

Appendix A
DIS Installation Guide

In this Appendix. we describe how to install and run the DIS name
server and client (LIS) software. Both name server and client installations

need Java Development Kit (JDK) version 1.2.

I) Software Installation

Here are the steps to install the DIS name server and make
available to clients:

STEP 1 Download the zip file “dis.zip” and unzip the “dis.zip" file
in the desired destination directory (“D:\myfolder” for
example).

STEP 2 After unzipping to the “myfolder” it will create the following

directory structure:

D: |_
\myfolder
l__ \dis
\config

,—try.ini

—\lis —Copy.sys

|_\name try.ini

dis.jar

81

Appendix A

II) Running LIS On-line

Before you can run LIS you must have a user account on the name

server and you must know the static [P and port where the name server

is running. Here are following steps to install and run the LIS:

STEP 1

STEP 2

Set the Java classpath to the “dis.jar” file and to your

current directory.
Format
set classpath=<Path name for the dis.jar file>;.;

Actual Command

set classpath=d:\dis\myfolder\dis.jar;.;

Open the try.ini file in the “1is” directory and enter the IP

and the port number of the LIS server, name server and your

user id in the format given below:

Format

ip = “<IP address of the LIS server

“localhost” if you wish to grab the IP from

system>"”;
port = “<the port where the LIS server
running>";
admin = “< IP name server>:<portname server>”";

82

or

the

is

Appendix A

STEP 3

STEP 4

user = "<user login id>";
Y

Actual File

{

ip = “localhost”;

port = "2222";
admin = "122.3.4.2:1111";

user = "vicky":;

};

Start the RMI registry for the LIS server at the desired port
(2222 for example) by executing the following command:

start rmiregistry 2222

Run the following command to start the LIS.

Format (all one line)

java —-classpath <jar file path name>
lis.viewpackage.Gui <zip folder path name or
nothing if the installation is on “C:” Drive>
Actual command (all one line and use slashes as shown)
java -classpath d:\myfolder\dis\dis. jar

lis.viewpackage.Gui D:/myfolder/dis/

83

Appendix A

III) Running LIS Off-line

STEP 1 Run the following command to start the LIS.
Format (all one line)
java -classpath <jar file path name>
lis.viewpackage.Gui <zip folder path name>
Actual command (all one line and use slashes as shown)
java -classpath :\myfolder\dis\dis. jar

lis.viewpackage.Gui D:/myfolder/dis/

IV) Running the Name Server

STEP 1 Set the Java classpath to the “dis.jar” file and to your
current directory.
Format
set classpath=<Path name for the dis.jar file>;.;

Actual Command

set classpath=d:\dis\myfolder\dis. jar;.;

STEP 2 Open the try.ini file in the “name” directory and enter the
static I[P and the port number where you wish to run the
name server:

Format
{
admin = “<IP>:<Port number>”";

};:
Actual File

84

Appendix A

STEP 3

STEP 4

{

admin = "122.3.4.2:1111";

}:

Start the RMI registry for the name server at the desired port
(“1111" for example) by executing the following command:

start rmiregistry 1111

Run the following command to start the name server.

Format (all one line)
java -classpath <jar file path name>
name .viewpackage.MainPanel <zip folder path name>

Actual command (all one line and use slashes as shown)

java -classpath d:\myfolder\dis\dis.jar

name .viewpackage.MainPanel D:/myfolder/dis/

85

