TASK

A Framework for Collaboratuve Workspaces in Java

by
Kenneth Earle Hussey
BCSH, Acadia University, 1997
Thesis

submitted in parnal fulfillment of the requirements for
the degree of Master of Science (Computer Science)

Acadia Universiry
Fall Convocation 1999

© by Kenneth Earle Hussey, 1999

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fiie Voire référence
Our file Notre rétdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-45370-7

Canada

TABLE OF CONTENTS

TADIE Of COMEENLS corvvrerenerermsenssesesisesesmiesesmsemssasscsetsessenssrssisessssssarsrssansasssssssssasssasesasessssss sssst s sss s s masens v
LiSt Of FIGUIES.......courrmrrrremsrecr e cosmssscnmissses s seseses v
ADSIEACE . ettt e bbb a e e s bbb RSR SRR R b bn Vi
Glossary rerrere s ses s s b b s et R e s s r bt Vi
AcKNOWledgmEntscvuveevvreeererrermsessceseeesi e sisscnsissnnes ceeemsesssne s xi
1 Introduction......... resrecReeR Rt emRer s paRR e ORR RO AR PO SRS RS L SR PR R RSRS8O R 0005 1
2 Conceptual Model .veveveeererecriirnne. ceeraeererasere s e b b e et 7
2.1 Objects N TASK it msssssases s bib st e 8

211 ACHOLS ettt -9

2.1.2 Scopes setsaer st e ee bR b SRR R AR SRAS RS RS SR s m s s e et 10

213 TOOIS cooeererimcnensssessireecsnseeensrarsareraens S

21 KEYSuommimrirsnssses ettt R R b 14

2.2 Constraints in TASK ... t5

2.2.1 Constraints on Actors 18

2.2.2 CONSIIAUNLS ON SCOPES «.ccovmvrmrremscremsrmsssensissessssssssssssisssesssmssssssessasssssssisssssssssssssinsssess 21

2.2.3 Constraings 00 TOOIS ...ttt snssessansaness 24

2.2.4 Constrainrs 0N KeYS ..o 27

3 DeSIGN SPECHICAON. ...vueeerressmsrsrrererasissssss s assssssss s st ses s s e 29
3.0 TASK and the UMttt ssastsssssessssee s sisses e e enes 29

3.1.1 Use Case Diagrams............ cevereres st R s bR SRR R ARt R b snre 30

3.1.2 Class DIagrams.....ocuuecvvecvusecerivssssissssssssssesssssenssses s cssssin s ssssesssss s ness 35

3.1.3 Sequence DIagramsvevevvoereersssssssninsnecens .39

3.2 Design Patterns in TASK et asssss s 52

3.2.1 MEIAOL v st seseses 53

3.2.2 ODBSEIVEL .covuirurimeirsisssisssssssaesscsecasessessssssssnsssassasssasasenssns 55

3.2.3 Event Notifier eeetueesss e R st e e b e sn b et en 57

4 IMPIEMENIALON . coesrrrerrrsresvrerssssssssssecssesrssmsisssssesssessssssssssssassssassssssssses vererresmessrmsssaraniens 61
4.1 JDK Collections APT ...oeeeeriiieeeiensisenssresissisesessissens reresssensenaoraesassassaens 63

4.2 Implementing CONSLIAINS N JAVA ceccrrerrmmnreimmmsisinssecnsssssssssssussissssss s sssssssssssisss 69

4.3 Remote Objects in Java........... cere v st AR e AR AR e b e 74

4.3.1 Remote-Enabling a Classrrienrrenressssensssssssesnsesmssescnsisssnens .75

4.3.2 Exporting a Named Object.. .78

4.3.3 Obraining a Reference to a2 Remote Object 81

4.3.4 Invoking a Method Remotely....... . 82

4.4 Object Seralization 1n Javaoeceenerenenn. 84

5 Conclusion 87
BIbHOGEAPNY c.ccoce e sssssssesssse sttt s enss st s 89
Appendix A: Object Reference 91

LIST OF FIGURES

Number Puge
Figure 1 Objects In TASK. oot s ssnsesesrssssns b 16
Figure 2 Use cases involving objects.........ieeeaa 31
Figure 3 Use cases involving contextual objects.cocoreeicurminennscesennns 32
Figure 4 Use cases MNVOIVING ACTOLS. ... vuurcruimrmmsirmnsmssisssrssrsmssseessmns s srmesssssssssssesssssssessassssmsecssnossss 33
Figure 5 Use cases INVOIVING SCOPES. ..ouuuvurmnrerrctensssncrsssss s ssssrssssesssssessessssssisssssssassssssssssses 33
Figure 6 Use cases INVOIVING tOOLS........ it svinsessensssssess s ssess s ssssess s crenane 34
Figure 7 Use cases involving keys. - .35
Figure 8 Classes and interfaces in TASK. ..o seesssennsenisans 37
Figure 9 Interfaces in TASK. oot sssssensass 38
Figure 10 Classes in TASK. oottt b st 39
Figure 11 Message sequence for the describe action..... . eceecennes : .. 40
Figure 12 Message sequence for the lock acton.)
Figure 13 Message sequence for the unlock action. e 42
Figure 14 Message sequence for the create acton. ... enreeensicinesiseniscninne .42
Figure 15 Message sequence for the destxoy action (ACIOLS).......eervenermerireeesesisneceiseessraseennese 43
Figure 16 Message sequence for the £0Calize acton...eerereeeeccrereeecesssescsisssinns 44
Figure |7 Message sequence for the de@SEXOY action (SCOPES)....wrrermmerverrurerereereressserssasssrssenesnns 45
Figure 18 Message sequence for the @NEEY ACHON. ...t snanesessssans 46
Figure 19 Message sequence for the @X1t aCtON. .ottt ssncncansanienes 46
Figure 20 Message sequence for the destroy action (t00ls)...ewmerurrrerseesnsssies i 47
Figure 21 Message sequence for the ALOD CHON. c...u.cucerrevrnsrersseissn e e essesssnssessssssssnes 48
Figure 22 Message sequence for the taKe action..... s recssresssssies s 49
Figure 23 Message sequence for the destroy action (keys). .50
Figure 24 Message sequence for the GXant action. ... iesssssisss s s eenee 51
Figure 25 Message sequence for the Y@VOKE aCtON. ... cvveeerrsreereei s seesiessosiesssasiosnen 51
Figure 26 The Mediator design Pattern. ...ttt sssssesssesssesons 54
Figure 27 Applicaton of Mediator in TASK. ...ttt e 55
Figure 28 The Observer design PAtE.cermrcmmmrimmssississsisessss s ssssssssssssssssssenssssesssss 55
Figure 29 Applicaton of Observer in TASK.........cornenecen. 57
Figure 30 The Event Notifier design pattern. 58
Figure 31 Application of Event Notifier in TASK. oottt 60
Figure 32 The TASK browser. .62

ABSTRACT

Several attempts have been made in recent years to develop a useful environment to support
collaboranve work. The success ot failure of these environments can perhaps be atmbuted in
part to the degree to which they suppott a small number of desirable features. The purpose of
this thesis is to describe the conceptual model, design specification, and implementaton of a
framework that, through its support for these features, facilitates the development of

collaborative workspaces in Java.

GLOSSARY

action. An operation that can be directly invoked by actors in TASK
activation. The execution of 2 compurational or algorithmic procedure

actor. An individual who collaborates, or coacts, within TASK; an ennity outside a system that
interacts with use cases

aggregation. A form of association that represents a whole-part relaionship berween an
aggregate and its component part(s)

API. Application Programming Interface

assertion. A statement that should always be true and can only be false in the event of an
error

association. A conceptual relatonship berween classes in which each class plays a disunct role
and for which each role has its own multiplicity; a relationship that describes a set of semantc
connections among tuples of objects

association class. \ modeling element that has both association and class properties

association role. The end of an association where it connects to a class

asynchronous interaction. /\n interaction in which actors are not simultaneously involved in
an action

attribute. A property possessed by a class

behavioral pattern. A design pattern that deals with communication between objects and
classes

CGI. Common Gateway Interface
class. A description of all objects with similar structure, behavior, and reladonships

class pattern. A design pattern that is concerned with static relanonships (associations and
subtypes) between classes

coaction. A synonym for collaboration

collection. A single object representing a group of other objects, referred to as elements of the
collection

constraint. A restriction on one or mote values of (part of) 2 model or system
context. The scope within which an actor is engaged in actions at a given point in ime
CORBA. Common Object Request Broker Architecture

CPU. Central Processing Unit

creational pattern. A design pattern that abstracts the instantiation process

DCOM. Distributed Component Object Model

design pattern. A descripton of communicating objects and classes customized to solve a
general design problem in a specific context

direct interaction. An interacdon between actors in which an intermediate object is not
involved

down-calling. \ technique for ensuring that both the synrax and the semantcs of an interface
are consistent

focus. The collection of scopes with which an actor is associated

generalization. An inheritance relatonship berween a more general element and a more
specific element

groupware. Computer systems designed to support groups of people working towards a
common goal

GUI. Graphical User Interface
HTTP. Hypertext Transfer Protocol
ITIOP. Internet Inter-ORB Protocol

implementation method. A method that is restricted to the inheritance hierarchy but can be
overridden to provide the implementation for an interface method

indirect interaction. An interacion between actors in which an intermediate object is
involved

interface. A collection of operations used to specify a service provided by a class or
component

interface method. A publicly accessible method that can be directly invoked but cannot be
overridden

invariant. A restriction on a class, type, or interface that specifies conditions which must hold
true for all instances of that class, type, or interface

JDK Java Development Kit

key. A mechanism of limiting the behaviors of actors within TASK

LAN. Local Area Network

lifeline. A dashed vernical line representing an object in a sequence diagram
message. .\ communication between objects which results in some acuvity
MUD. Mulu-User Dungeon

object. An instance of a class with a well-defined idenuty

object pattern. \ design pattern that involves dynamic relatonships, which can be changed at
run-ame

object serialization. A technique in Java that converts data structures into a common data
stream that 1s independent of processor or operating system

OCL. Object Constraint Language

OMT. Object Modeling Technique

one-to-many interaction. \n interaction between one actor and many other objects
one-to-one interaction. \n interaction berween one actor and one other object
OOSE. Object-Onented Software Engineering

operation. A process that a class knows how to carry our

ORB. Object Request Broker

PC. Personal Computer

persistence. The ability of an object to save its state so that it can be restored and used at a
later ume

postcondition. A condition that must be true immediately after the execution of an operation

precondition. A condition that must be true before an operation can be executed

x

purpose. What a design partern does

realization. A semanuc relationship between an interface and a class that realizes or
implements it

RMI. Remote Method Invocation

scope. A frame of reference for the actions that actors engage in as they collaborate in TASK;
whether a design pattern applies to classes or objects

structural pattem. \ design pattern that deals with the ways in which classes and objects are
combined to form larger structures

subtype. A\ generalizaton reladonship in which an instance of the subtype (or child class) is
also, by definition, and instance of the supertype (or parent class)

synchronous interaction. :\n interaction in which actors are simultaneously involved in an
action

TASK Tools, Actors, Scopes, and Keys

tool. A means by which actions are performed in TASK
UML. Unified Modeling Language

URL. Uniform Resource Locator

use case. A\ sequence of actions performed by a system that vields an observable result to an
actor

ACKNOWLEDGMENTS

[wish to thank the following people, without whom this thesis would not have been possible:

® my thesis supervisor, Tomasz, for his patience and understanding
e my family, for their love, encouragement, and support
e my wife, Angela, for believing in me even when [didn’t

® the lirtle train that could, for inspiring me to think [can

1 INTRODUCTION

Computers have been used in educational settings for many years, but unal recently, they have
been used mostly in labs rather than in the classroom. Over the past few years, several
universities have introduced the concept of electronic classrooms, in which each student has
access to a netwotked computer. Some insturutions have also experimented with “studio”
classrooms, where teams of students sit around a table and collaborate to solve problems given
by the instructor. The instructor is often supported by teaching assistants who supervise
students by physically moving around the classroom and joining student teams. Providing
these facilities is a very expensive initiaave, and ts only feasible if it is cost-effective. In an

educatonal settng, this translates to increased cfficiency of leaming.

Perhaps the best learning processes are those that emphasize interaction and teamwork.
Computer systems designed to support groups of people working towards a common goal are
referted to as gmupware. Unfortunately, in existing electronic classrooms, typically the only
form of computer-based communication is through the use of standard Internet facilities, such
as Web browsers or specialized client applications. While these systems may prove to be
useful for the overall coordinaton and administraton of courses, they will ulnmately be found

lacking.

These issues affect not only educational institutions but any organization that can benefit from

the use of groupware, such as a software development team. Software development is a

process that consists of a well-defined set of activities involving roles played by actors with a
common goal. Formality of, and adherence to, the structure of these activities varies, but in
general the process is iteratve and incremental, and typically involves specification, analysis,
design, implementation, testing, and evaluation. Quality software development results from
successful modeling, monitoring, and managing of these actvities. Several attempts have been
made to provide automated support for this endeavor, but with only limited success. In
particular, existing tools lack explicit support for teamwork across geographical boundares,
formal and informal communicatdon, team cooperation and coordination, problem reporting

and resolution, and quality assurance.

Much success using the LambdaMOO environment (see [Curts 1993], [Curts & Nichols
1993], and [Evard 1993|), among others, indicates thar developing a framework for creating
useful collaboradve environments is possible. The base functionality provided by
LambdaMOO is relatvely minimal. [ts udlity results from its extensibility. \s a framework
for software development, however, it does sull suffer from the legacy of spatal metaphors.
What is needed is a fully extensible environment that is similar to LambdaMOQO, but which
relaxes the concept of space. Such a framework would provide a more convenient forum for
communication and development, and give more freedom to developers to do what they do

best - develop software.

Too much effort is being spent by researchers to develop environments from the client or user
interface perspective. What will be achieved by these acuvities is merely a more convenient
interface to features that could have been provided by an environment like LambdaMOO in

the first place. This is not acceptable. We must change our focus to address the fundamental

ways in which we communicate and interact while acting within the roles we play, in order to
develop a framework that can be later complemented with a useful client interface which will

(and should) be modified by users of the system anyway.

Virtual environments such as Muln-User Dungeons (MUDs) change a user’s sense of
orientation, ime, presence, awareness, movement, and actions. Spatal metaphors are suirable
(and even useful) in a role-playing environment, and indeed this was the target domain of the
first MUD. The noton of space is perhaps too restrictive within the context of sofrware
engineering, or any social work environment for that matter. In the past, collaboratve virrual
environments have been designed to mimic the noton of space, hoping to improve usability
based on users’ familiarity with the physical nature of the real world. However, these
environments have missed out on one of the most useful aspects of virtual environments,
where spatal limitations are simply not necessary. Conversely, the notion of social context is a
necessity in these environments. Whar is needed is a relaxadon of the traditonal views of
virtual space, to give way to a metaphor which encompasses both spatal (to a limited extent)

and social aspects.

An illustrative example of the inadequacy of the spatal metaphor is the use of exits that
represent the links between rooms in traditional collaborative environments. In such
environments, the exit construct introduced a logical separation between spaces and provided
a closer model of the physical world than rooms could alone. However, after using such an
environment for some time (and discovering its basic topology), the concept of an exit
becomes more of a hindrance than a help. Indeed, most users make much greater use of a

teleport (or equivalent) command, if one is available, to jump from room to room,

essentially eliminating the need for exits. This phenomenon in tumn leads to a2 more important

consequence, the disintegration of the spatial metaphor itself.

Furthermote, focusing on specific artfacts to be manipulated by users is a waste of ume for
the designers of collaboratve virtual environments. Attempts to provide a set of tools with
the aim to solve all development problems will result only in failure. This is evident in the
myriad of research projects in the past that tred to produce the miracle application. What is
clear, however, is that an environment needs to support certain features to be useful in

collaborative work. They include the following:

® Erames of reference for collaborative activities. "I'raditional environments attempted to provide
this with the notion of rooms, but this s too simple a model. The frames of reference
that we find ourselves being involved with stem not from our physical locaton, but
rather from the many roles we play within (and without) an organizaton. .\t any one
time, we may focus on the context surrounding a particular role, with irs disunct social
(and cultural) meaning. [n reality, however, we remain responsible for all of our roles,
implying that we need to be part of more than one frame of reference concurrently.
This is not possible using a spatial model, which limits our participaton in activites on
a per-room basts.

o | means of communicating within and between these frames of reference. This is typically done in
MUDs by representing users as objects, or players, in the environment and providing
commands to allow these objects to interact. Various forms of communication exist,
such as synchronous vs. asynchronous, public vs. prvate, coordinated vs.
uncoordinated, one-to-one vs. one-to-many, etc.. Another important issue is
awareness. In an environment that facilitates multple frames of reference containing
multiple users, a mechanism to provide feedback on the attentveness of users within
the environment is indispensable. Several attempts have been made to provide this in

traditional environments, but with only limited success.

® Tools to support the activities we perform within these frames of reference. The exact nature of
these tools depends on specific acuvities and cannot be wholly determined at design
tme. This is an issue overlooked by many systems designers. In order for an
environment to be useful, it must be both general and specific at the same tme, but
more importantly, it must be exrensible and adaptable. Deciding which tools are
needed, and indeed which will be used, before an environment is deployed only makes
the environment more rigid. A structure which allows the integradon of new and

existing tools into the environment, however, is quite useful (but difficult to achieve).

Building on concepts developed in previous research (see [Hussey 1996] and [Hussey &
Tomek 1996]), I introduce a general framework to support collaborauve workspaces, called
TASK, which stands for Tools, Actors, Scopes, and Keys. Like LambdaMOO and other
existing collaborative virtual environments, TASK is an extensible environment thar facilitates
real-time communication between its users. In contrast to LambdaMOOQO, however,
communicadon in TASK is not text-based, but instead uulizes an event notification
mechanism that allows users to share and interpret information about the acuvites that take
place as a result of collaboration. Rather than attemptng to provide a complete set of
applications to solve a specific problem, as some of its predecessors did, TASK aims to be a

general foundation that can be extended with tools to suit any target domain.

This thesis will describe in detail the conceptual model, design specificaton, and
implementation of the TASK framework in an effort to demonstrate how it supports these
features, and in turn facilitates the development of useful environments for collaborative work.
More specifically, analysis of the conceptual model and its associated constraints (using the
Object Constraint Language), specification of the design (using the Unified Modeling

Language) and the application of patterns (Mediator vs. Observer vs. Event Notifier), and
5

implementauon of collections, assertions, remote objects (Remote Method Invocadon vs.
Voyager), and object senalization in Java will be discussed. It is assumed that the reader has a

basic working knowledge of Java and the object-onented paradigm.

2 CONCEPTUAL MODEL

[n this chapter, I present a specific example of a studio classroom at Acadia University, which
[believe applies equally well to any collaboratve working environment [Hussey & Miildner
1998). Consider a classroom in which the instructor and all partucipanng students have access
to networked computers and can interact, for example, through the use of downloadable files,
an e-mail facility, and a projector which can display images from a single computer. The
instructor is a member of the Faculty of Computer Scence, and the students are
undergraduates in the Bachelor of Computer Science program and enrolled in the introductory
programming course, COMP 1013. The students are organized into groups of four to
facilitate discussion of problems posed by the instructor. One expects that the following

hypothencal interactions would be possible:

. Instructor to students: The instructor gives a verbal introduction to the problem to be
solved during the day’s class.

2. Instructor to students: The instructor makes a file required to solve the problem available
for the students to read.

3. Student to students: A sudent discusses the problem proposed by the instructor within
his or her group of four students.

4, Student to student: A student sends an e-mail message to a student in another group

asking if she or he can clarify some aspect of the problem.

5. Instructor to student: The instructor gives a student exclusive access to the projector,
perhaps revoking other students’ access to the projector.
6. Student to instructor and students: A student shares her or his group's solution to the

problem with the rest of the class by displaying it on the projector.

2.1 Objects in TASK
Designing a framework to model a specific problem is somewhat similar to designing an

object-oriented computer program; it consists of idennfying the underlving objects and
interactions berween these objects. The collection of all objects relevant to a given problem
might be called a problem’s domain. In our electronic classtoom, the domain consists of

objects such as the following:

@ students and instructors
® facultics, programs, classrooms, and groups of students
® files, c-mail facilities, and projectors

e obijects providing access restrictions
)

In modeling interactions berween these objects, it is useful to consider different kinds of
objects. The TASK framewortk consists of four basic kinds of objects - actors, scopes, tools,
and keys. In the following sections, I brefly describe each of these concepts, and how they
can be used as a model of our case study. Note that TASK is a virtual setting, defined by the

learning activity rather than by the boundaries of a physical classroom.

2.1.1 Actors

Collaboration occurs when two or more individuals engage in actions that are directed toward
a common task (hence TASK). As such, I use the term actor to refer to the individuals who
collaborate, or coact, within TASK (coaction is actually a synonym for collaboration). An actor,
then, is the embodiment of a physical user and represents an entty involved in performing an
action, for example 2 student, an instructor, or a programmer. [will refer to an actor using the

impersonal "it", rather than she or he.

In our electronic classroom, there are # + / actors: # students and one instructor. The user
embodied by each actor has access to a computer, and the computers are nerworked. The
resulting interactions between actors are diret if no intermediate object is involved.
Interactions | and 3 above are examples of direct interactions. Indirect interactions, on the
other hand, involve a mediator object, such as a projector or an e-mail facility. Interactions 2,

4, 5, and 6 arc examples of indirect interactions.

In addition to being direct or indirect, interactions between actors can occur in one of two
modes. Synchronous interactions are those in which actors are simultaneously involved in an
action. Interactions 1, 3, and 6 above are examples of synchronous interactions. Tvpically,
synchronous interactions involve real-ime communication in a manner similar to using a talk
or chat program. This real-time aspect is the key distinction between TASK (among other
virtual collaborative environments) and currently available groupware facilities. <lsynchronous
interactions are those in which actors are not simultaneously involved in an acton.
Interactions 2, 4, and 5 are examples of asynchronous interactions. Asynchronous
communicaton is especially useful in a groupware application for situations where users are

separated by a (geographical) time difference.

Interactions can also be categonzed by cardinality. The two most common cardinalities in
TASK are one-to-one and one-to-muny, although others are possible. Interactions 4 and 5 above

are examples of one-to-one cardinality; interactions 1, 2, 3, and 6 are one-to-many.

2128 vopes

Another important aspect of collaboration is the context within which it takes place. Indeed,
our actons have little cohesive meaning unless they occur within some sort of boundary or
frame of reference. This frame of reference 1s determined not merely by physical ortentaton,
but also (more importantly) by the role we play in the collaboration. In our everyday lives, we
may be responsible tor many different roles, bur at any one tme we concentrate on the

context surrounding a particular role, with its disunct social (and cultural) meaning.

A scope is a frame of reference for the actions that actors engage in as they collaborate in
TASK. An actor enters a scope when it takes on a particular role associated with, or engages
in some action bounded by, that scope. Conversely, an actor exits a scope when it is no longer
interested in the actions that take place there. As a result, scopes are dynamic rather than static
in nature - as actors enter and exit a scope, it binds, or holds a set of actors interacting within
its boundary. In other words, a scope object consists of a number of actor objects (and other
objects introduced later); when actor \ enters a scope S, A 1s added to S, and when it exits S, A

is removed from S.

Several examples of scopes exist within our electronic classtoom case study. Acadia University
represents the scope of faculties and programs that form the unique environment commonly
associated with an insttution of higher learning. The Faculty of Computer Science is the

scope of all professors that research and teach computer science at the university, while

10

Bachelor of Computer Science is the scope of students that study computer science there (for
the sake of simplicity we ignore specializations of this program). COMP 1013 is also a scope;
it binds the instructor and student actors as they engage in the learning acuviges associated
with this course. Finally, the groups in which the students are arranged as part of the studio

classtoom format are also examples of scopes.

Just as we may play a number of different roles in everyday life, so too can an actor be a
member of more than one scope; in other words, an actor is associated with a collection of
scopes. Borrowing terminology from awareness theory (see [Rodden 1996]), this collection of
scopes can be called the actor's focus. In our case study, the instructor's focus consists of
Acadia University, Faculty of Computer Science, and COMP 1013. The focus of a student
consists of Acadia University, Bachelor of Computer Science, COMP 1013, and the group to
which the student belongs. An actor's focus changes every time it enters or exits a scope; for
example, when a student moves from one group to another. Note that an actor's focus
consists of all scopes that it may be interested in, but the actor concentrates on only one of
them at any given tume. [call this specific scope, within which the actor is engaged in actons
at a given point in time, the actor's cwmext. In our case study, the instructor's context is COMP
1013, and a student's context is the group to which the student belongs. :\s with its focus, an
actor's context changes every time it concentrates on a different scope; for example, the

instructor who moves on to teach another course will have a different context.

It is perhaps intuitive that scopes be nested to form a sort of hierarchy. A useful metaphor for
this is a file system of directories and files, in which directories contain files but can also

contain other directories. In the same sense, scopes can form the context for actors engaged

11

in actions but can also hold other scopes. Hence, a scope may consist not only of actors, but
also other scopes (and other objects described below). In the case of nested scopes, before

entering a parricular scope, an actor must first enter the scope in which it is held.

The hierarchical relationship berween the scopes in our electronic classtoom case study 1s
shown below. In partcular, the Acadia University scope holds the instructor and student
actors, and the Faculty of Computer Science, Bachelor of Computer Science, and COMP 1013
scopes; the Faculty of Computer Science scope holds the instructor actor; the Bachelor of
Computer Science scope holds the student actors; the COMP 1013 scope holds the instructor
and student actors, and the group scopes; the group scopes each hold four student actors. The
focus and context of each actor can also be clearly scen below. For example, while the
instructor actor appears under the Acadia University, Faculty of Computer Science, and
COMP 1013 scopes (together comprising its focus), it is concentrating on the COMP 1013

scope (its contexr), under which it appears in bold typeface.

Acadia University
Instruccor
Student 1
Student n
Faculty of Computer Science
Instructor
Bachelor of Computer Science
Student 1
Student n
COMP 1013
Instructor
Student 1
Student n
Group 1
Student 1
Student 4
Group n/4
Student n-3

Student n
12

2.1.3 Tools

In describing interactions between actors, it is useful to introduce the concept of a rool Tools
are the primary means by which actions are performed in TASK and, as with actors, they are
bounded by scopes. This has two consequences. First, the actions provided by a tool can only
be performed by actors bounded by the scope in which it is held. Second, only the actors held
by this scope are aware of the results of the performed action(s). Another aspect of tools is
that they can be taken or dropped by actors, thus providing a means for their displacement
between scopes. That is, an actor can take a tool from one scope, change its context, and then
drop the tool in another scope. An actor that has taken a tool becomes a frame of reference
for the tool unal it is dropped. In this sense, an actor represents a kind of private scope for

tools in TASK.

Within our electronic classroom, the files, e-mail facility, and projector represent examples of
tools. The files are bounded by the COMP 1013 scope, and might provide actions to read (as
in interaction 2 above), write to, and execute the file. The e-mail tool is bounded by the
Acadia University scope, and might provide actions to check for, or send (as in interaction 4
above), new messages, and to read, reply to, or forward existing messages. The projector tool
is bounded by the COMP 1013 scope, and might provide actions to turn on, or turn off, the

projector, and to display an image from a single computer (as in interaction 6 above).

Although tools are the primary means of performing actions, other objects in TASK can
provide actions as well. For example, actions exist to create and destroy every kind of object
within the framework, and scopes provide actions to enter and exit their frames of reference

(as alluded to earlier). However, a complete set of actions required by actors in TASK cannot
13

be wholly determined at design time. In order for a virtual collaborative work environment to
be useful, it must be both general and specific, but more importantly it must be extensible and
adaptable. Itis through the integration of new tools and actions that TASK will truly support

collaborative work.

2.1.4 Keys

Clearly, unrestricted access to all tools by all actors may not be desired, and therefore [define
the notion of a key to facilitate access restricions within TASK. Keys are assigned on a per-
action basis; that is, in order to perform a locked acton on an object, an actor must hold the
key with which it has been locked. In the event that an action is locked by more than one key,
only one of these keys ts needed to invoke the action. Actons can be locked or unlocked, and
keys can be granted or revoked, dynamically according to specific permission or prvilege
needs. For example, the actions to destroy and to lock an acton of an object could be locked,
and the key granted to an actor when the object is created. This key could then, in a sense,
represent a form of ownership within the framework, where the holder of the key is implicity

the object’s "owner".

Interactions 2 and 4 from our electronic classroom case study illustrate the use of kevs. It can
be assumed that the instructor was the actor that created the file and projector objects, and
hence represents their "owner”. In interaction 2, the instructor gives all of the students access
to the file by unlocking its read action, thus making it available for download. In interaction 4,
the wnstructor gives one student exclusive access to the projector by locking its actions and
granting the key to the student. In both cases, the instructor may also have to modify

previously granted privileges by revoking keys from other actors. The use of keys in this

14

manner provides a flexible, yet powerful, mechanism of limiting the behaviors of actors within

TASK.

2.2 Constraints in TASK

In descnbing conceprual models, it is helpful to use class diagrams (described in more detadl in
Chapter 3) to show the relanonships that extst among the types of objects in a system. In
general, there are two kinds of relationships: associations and subtypes. Lisocations represent
conceptual relatonships berween classes in which each class plays a disunct role and for which
each role has its own muluplicity (i.e. how many objects participate in the given relanonship).
Subtypes represent generalizaton reladonships in which instances of the subtype (or child class)
are also, by definiton, instances of the supertype (or parent class). Class diagrams also
describe the atributes and operations for the vanous kinds of objects. .-lttrzbutes represent
properties possessed by the class, whercas operutions represent the processes that a class knows

how to carry out. [Fowler 1997)

Figure | presents a class diagram using the Unified Modeling Language (sce Chapter 3), which
shows the relanonships, attributes, and operadons for actors, scopes, tools, and keys. Note
that three supertypes (Object, Contextual Object, and Context) have been
introduced to factor out characteristics that are common to two or more types of object.
Specifically, Key is a subtype of Object, Tool is a subtype of Contextual Object,
and Actor and Scope are subtypes of Context, which is in mm a subtype of
Contextual Object. Associations exist between Contextual Object and Key
(via a Lock association type), between Contextual Object and Context, between
Actor and Scope, and between Actor and Key. All objects have name and description

attributes. Operations for Actor include create, describe, destroy, focalize,
15

lock, and unlock. Opertions for Scope include describe, destroy, enter,
exit, lock, and unlock. Operations for Tool include describe, destroy, drop,

lock, take, and unlock. Operatons for Key include describe, destroy, grant,

and revoke.
Object
name : String !
description : String
describel()
destroy()
Key Contextual Object Q..*
9..- |granc() Q.. F g..« |lock() cbjects
revoke() - unlock()
Lock
keys 0. action : String
‘/
Tool
context
Context
drop()
rake() L
holders
1..*
1 Actor focus Scape
owner |create() 0. L. enser()
focalize() . - exitc()

Figure | Objects in TASK.

Much of what a class diagram does is indicate constraints. A\ constraint is a restriction on one or
more values of (part of) a model or system. The most common types of constraints are
invartants, preconditions, and postconditions. An /nvartant represents a restriction on a class,

type, or interface, and specifies conditions that must always hold true for all instances of that

16

class, type, or interface. Both preconditions and postconditions represent restrictions on
operations or methods. Preconditions specify conditions that must be true before an operation
can be executed, whereas postonditions specify conditions that must be true immediately after

the execution of an operation. [Warmer & Kleppe 1999a|

Although relationships and associations do much in the way of specifying constraints, they
cannot possibly indicate every constraint. The Object Constraint Language (OCL) is an
industry-standard textual language for describing constraints on object-oriented models. Using
objects and object properties as its building blocks, the OCL defines basic types and
operadons that can be combined with user-defined model types to specify invariants,
preconditions, and postconditions of a system. All OCL expressions are defined within a
specific context: the context of an invanant is a class, interface, or type, whereas the context

for preconditions and postconditions is an operation or a method. [Warmer & Kleppe 1999b|

In TASK, operations that can be directly invoked by actors are referred to as actions. Actons
are the unit of event atomicity in TASK. .\ series of actions requested of actors, scopes, tools,
and keys by an actor represents an activity in which that actor is engaged. Actions will be
defined for the various kinds of objects by applications that extend the TASK framework.
The following sections descnbe the invanants of, and constraints on the predefined actions

for, actors, scopes, tools, and keys in OCL using the following conventions:

e OCL keywords ate in bold, although this is not part of the formal syntax

® The first line denotes the context of the constraint (type, class, interface, or

operation).

® The second and subsequent lines contain the actual constraint(s) being described.

17

e [nvarant, precondition, and postcondition expressions are preceded by identifiers

invariant:, pre:, and post:, respectively.

2.2.1 Constraints on ctors

Since an actor is a kind of contextual object, its context (a scope) must include the actor as one
of its objects; an actor is also a kind of context, so the context for all of its objects (tools) must
be the actor; all of an actor’s keys must include the actor as one if its holders; an actor’s focus
must include its context; all of the scopes in an actor’s focus must include the actor as one of

its objects. These invanants can be expressed using OCL as follows:

context Actor

invariant: context.objects->includes{ self } and objects->forAll(oclIsKindOf(
Tool) and context = self)} and keys->forAll(holders->includes(self)) and
focus->includes(context) and focus->forAll(objects->includes(self))

The create action on actors allows the requester to create a new actor, scope, tool, or key.
In order for this action to be invoked, the actor must either be the requester itself or its focus
must include the requester’s context, the requester must hold at least one of the keys that locks
the create acton (if any), and the given name must be different from that of any existung
actor, scope, tool, or key. s a result, 2 new object with the given name and description is
added to TASK; if it 1s a key, its owner is the requester, otherwise (if 1t is an actor, scope, or
tool) its context is the same as the requester’s context. These preconditons and

postconditions can be expressed using OCL as follows:

18

context Actor::create{ aRequester : Actor, aClassName : String, aName : String,
aDescription : String)

pre: (self = aRequester or focus->includes(aRequester.context) } and (lock-
>select(action = ‘create’)->notEmpty implies lock->exists(action = ‘create’
and key.holders->includes(aRequester })) and OclType.alllInstances->exists(
name = aClassMame) and Tool.allInstances->forAll(name <> aName) and
Actor.alllInstances->forAll(name <> aName) and Scope.alllnstances->forAll(name
<> aName) and Key.alllInstances->forAll{ name <> aName)

post: if OclType.alllnstances->select(name = aClassName)->allSupertypes-
>includes(Key) then (OclType.alllInstances->select(name = aClassName)-
>allInstances->exists({ name = aName and description = aDescription and ovner =
aRequester)) else (OclType.alllnstances->select(name = aClassName)-
>allInstances->exists(name = aName and description = aDescription and context =
aRequester.context)) endif

The describe action on actors allows the requester to change the description of an actor.
In order for this acton to be invoked, the actor must either be the requester itself or its focus
must include the requester’s context, the requester must hold at least one of the keys that locks
the describe acdon (if any), and the new descripton must be different from the actor’s
existing descripton. As a result, the actor’s descripion is changed to the new description.

These preconditions and postconditions can be expressed using OCL as follows:

context Actor::describe(aRequester : Actor, aDescription : String)

pre: (self = aRequester or focus->includes(aRequester.context)) and (lock-
>select(action = 'describe’)->notEmpty implies lock->exists{ action =
‘describe’ and key.holders->includes(aRequester))) and description <>
aDescription

post: description = aDescription

The destroy action on actors allows the requester to destroy an actor. In order for this
action to be invoked, the actor must not be the requester itself and its focus must include the
requester’s context, the requester must hold at least one of the keys that locks the destroy
acdon (if any), the actor’s objects must be empty, and the actor’s keys must be empty. As a
result, the actor (and any associations with it) is removed from TASK. These preconditions

and postconditions can be expressed using OCL as follows:

19

context Actor::destroy(aRequester : Actor)

pre: (self <> aRequester and focus->includes({ aRequester.context }) and (
lock->select(action = ‘destroy’)->notEmpty implies lock->exists(action =
‘destroy’ and key.holders->includes(aRequester))} } and objects->isEmpty and
keys->isEmpty

post: not Actor.alllnstances->includes(self) and Scopes.allInstances->forAll(
not objects.includes(self }) and Key.allInstances->forAll(mot lock->exists(
object = self) }

The focalize action on actors allows the requester to change the context for an actor. In
order for this action to be invoked, the actor must either be the requester itself or its focus
must include the requester’s context, the requester must hold at least one ot the keys thar locks
the focalize action (if any), the actor’s focus must include the new context, and the new
conrext must be different from the actor’s existing context. As a resule, the actor’s context is

changed to the new context. These preconditions and postconditions can be expressed using

OCL as follows:

context Actor::focalize(aRequester : Actor, acContext : Scope)

pre: (self = aRequester or focus->includes(aRequester.context))} and (lock-
>select({ action = 'focalize’)->notEmpty implies lock->exists(action =
‘focalize’ and key.holders->includes(aRequester })) and focus->includes(
aContext) and context <> aContext

post: context = aContext

The lock action on actors allows the requester to lock one of an actor’s actions with a key.
In order for this action to be invoked, the actor must either be the requester itself or its focus
must include the requester’s context, the requester must hold at least one of the keys that locks
the lock action (if any) as well as the key being used to lock the specified action, and the
action must not already be locked by the given key. As a result, a lock for the specified action
on the actor is added with the given key. These preconditions and postconditions can be

expressed using OCL as follows:

20

context Actor::lock{ aRequester : Actor, anAction : String, aKey : Key)

pre: { self = aRequester or focus->includes(aRequester.context)) and (lock-
>select({ action = ‘'lock’)->notEmpty implies lock->exists(action = ‘lock’ and
key.holders->includes(aRequester))) and aRequester.keys->includes(aKey)

and not lock->exists(action = anAction and key = aKey)
post: lock->exists{ action = anAction and key = aKey)

The unlock acton on actors allows the requester to unlock one of an actor’s actions with a
key. In order for this action to be invoked, the actor must either be the requester itself or its
focus must include the requester’s context, the requester must hold at least one of the kevs that
locks the unlock action (if any) as well as the key being used to unlock the specified action,
and the acton must be locked by the given key. As a result, a lock for the specified action on
the actor is removed with the given key. These preconditions and postconditions can be

expressed using OCL as follows:

context Actor::unlock(aRequester : Actor, anAction : String, aKey : Key |}

pre: (self = aRequester or focus->includes(aRequester.context })} and (lock-
>select(action = ‘unlock’)->notEmpty implies lock->exists(action = ‘unlock’
and key.holders->includes(aRequester))) and aRequester.keys->includes{ aKey
) and lock->exists{ action = anAction and key = aKey)

post: not lock->exists(action = anAction and key = aKey)

Since a scope is a kind of contextual object, its context (a scope) must include the scope as one
of its objects; a scope is also a kind of context, so for all of its objects (actors, scopes, or tools),
if the object is an actor its focus must include the scope, otherwise its context must be the

scope. These invariants can be expressed using OCL as follows:

context Scope
invariant: context.objects->includes(self) and objects->forAll(if
oclIsKindOf(Actor) then focus.includes(self) else context = self endif)

The describe action on scopes allows the requester to change the description of a scope.

In order for this action to be invoked, the scope’s context must be the same as the requester’s

21

context, the requester must hold at least one of the keys that locks the describe action (if
any), and the new description must be different from the scope’s existing description. As a
result, the scope’s description i1s changed to the new description. These preconditions and

postconditions can be expressed using OCL as follows:

context Scope::describe(aRequester : Actor, aDescription : String)

pre: context = aRequester.context and (lock->select(action = ‘describe’)-
>notEmpty implies lock->exists(action = ‘describe’ amd key.holders->includes|(
aRequester))}) and description <> aDescription

post: description = aDescription

The destroy action on scopes allows the requester to destroy a scope. In order for this
action to be invoked, the scope’s context must be the same as the requester’s context, the
requester must hold at least one of the keys that locks the destroy acton (if any), and the
scope’s objects must be empry. As a result, the scope (and any associatons with it) is removed

from TASK. These preconditions and postconditions can be expressed using OCL as follows:

context Scope::destroy(aRequester : Actor)

pre: context = aRequester.context and (lock->select(action = ‘destroy’)-
>netEmpty implies lock->exists(action = ‘destroy’ and key.holders->includes(
aRequester })) and objects->isEmpty

post: not Scope.alllInstances->includes(self) and Scope.alllnstances->forAll({(
not objects~->includes{ self)) and Key.alllInstances->forAll(not lock->exists(
object = self))

The enter action on scopes allows the requester to enter a scope. In order for this action to
be invoked, the scope’s context must be the same as the requester’s context, the requester
must hold at least one of the keys that locks the enter acton (if any), and the scope’s objects
must not already include the requester. As a result, the reqeuster is added as one of the scope’s

objects. These preconditions and postconditions can be expressed using OCL as follows:

context Scope::enter(aRequester : Actor)

pre: context = aRequester.context and (lock->select(action = ‘enter’)-
>notEmpty implies lock->exists(action = ‘enter’ and key.holders->includes(
aRequester))) and not objects->includes(aRequester }

post: objects->includes(aRequester)

The exit action on scopes allows the requester to exit a scope. In order for this action to be
invoked, the scope’s context must be the same as the requester’s context, the requester must
hold at least one of the keys that locks the exit action (if any), the scope’s objects must not
include any of the scopes in the requester’s focus, and the scope’s objects must include the
requester. As a result, the requester is removed as one of the scope’s objects. These

preconditions and postconditions can be expressed using OCL as follows:

context Scope::exit(aRequester : Actor)

pre: context = aRequester.context and (lock->select(action = ‘exit’)-
>notEmpty implies lock->exists(action = ‘exit’ and key.holders->includes(
aRequester))) and aRequester.focus->forAll(scope | not objects->includes(
scope) } and objects->includes(aRequester)

post: not objects->includes(aRequester)

The lock action on scopes allows the requester to lock one of a scope’s actions with a key.
[n order for this action to be invoked, the scope’s context must be the same as the requester’s
context, the requester must hold at least one of the keys that locks the 1ock acton (if any) as
well as the key being used to lock the specified action, and the action must not already be
locked by the given key. As a result, a lock for the specified action on the scope is added with
the given key. These precondidons and postconditions can be expressed using OCL as

tollows:

context Scope::lock(aRequester : Actor, anAction : String, aKey : Key)}
pre: context = aRequester.context and (lock->select(action = ‘lock’)-
>notEmpty implies lock->exists(action = ‘lock’ and key.holders->includes(
aRequester))) and aRequester.keys->includes(aKey) amd not lock->exists|{
action = anAction and key = aKey)

post: lock->exists(action = anAction and key = aKey)

23

The unlock action on scopes allows the requester to unlock one of a scope’s actions with a
key. In order for this action to be invoked, the scope’s context must be the same as the
requester’s context, the requester must hold at least one of the keys that locks the unlock
action (if any) as well as the key being used to unlock the specified action, and the action must
be locked by the given key. As a result, a lock for the specified action on the scope is removed
with the given key. These precondinons and postconditions can be expressed using OCL as

tollows:

context Scope::unlock{ aRequester : Actor, anAction : String, aKey : Key)

pre: context = aRequester.context and (lock->select(action = ‘unlock’ }-
>notEmpty implies lock-rexists(action = ‘unlock’ and key.holders->includes(
aRequester)})) and aRequester.keys->includes(aKey) and lock->exists(action

= anAction and key = aKey)
post: not lock->exists(action = anAction and key = aKey)

2.2.3 Constraints on Tools

Since a tool is a kind of contextual object, its context (an actor or scope) must include the tool

as one of its objects. This invariant can be expressed using OCL. as follows:

context Tool
invariant: context.objects->includes(self)

The describe action on tools allows the requester to change the descripton of a tool. In
order for this action to be invoked, the context of the tool must either be the same as the
requester’s context or the requester itself, the requester must hold at least one of the keys that
locks the describe acton (if any), and the new description must be different from the
tool’s existing description. As a result, the tool’s description is changed to the new description.

These preconditions and postconditions can be expressed using OCL as follows:

24

context Tool::describe(aRequester : Actor, aDescription : String)
pre: (context = aRequester or context = aRequester.context) and (lock-

>select(action = ‘describe’)->notEmpty implies lock->exists(action =
‘describe’ and key.holders->includes(aRequester) }) and description <>
aDescription

posat: description = aDescription

The destroy action on tools allows the requester to destroy a tool. In order for this action
to be invoked, the context of the tool must either be the same as the requester’s context or the
requester itself, and the requester must hold at least one of the keys that locks the destroy
acton (if any). As a resulr, the tool (and any associanons with it) is removed from TASK.

These preconditions and postconditions can be expressed using OCL as follows:

context Tool::destroy(aRequester : Actor)
pre: [context = aRequester or context = aRequester.context) and (lock-

>select(action = 'destroy’)->notEmpty implies lock->exists(action = ‘destroy’
and key.holders->includes(aRequester)}))

post: not Tool.alllInstances->includes(self) and Actor.allInstances->forAll(
not objects->includes(self)) and Scope.allInstances->forAll(not objects-
>includes(self)) and Key.alllInstances->forAll{ not lock->exists(object =
self })

The drop acton on tools allows the requester to put a tool down. In order for this action to
be invoked, the context of the tool must be the requester itself, and the requester must hold at
least one of the keys that locks the drop acton (if any). As a result, the context for the tool is
changed to be the same as the requester’s context. These preconditons and postconditions

can be expressed using OCL as follows:

context Tool::drop(aRequester : Actor)

pre: context = aRequester and (lock->select(action = ‘drop’)->notEmpty
implies lock->exists(action = ‘drop’' and key.holders->includes(aRequester))
)

post: context = aRequester.context

The lock action on tools allows the requester to lock one of a tool’s actions with a key. In

order for this action to be invoked, the context of the tool must either be the same as the

25

requester’s context or the requester itself, the requester must hold at least one of the keys that
locks the lock action (if any) as well as the key being used to lock the specified action, and
the action must not already be locked by the given key. As a result, a lock for the specified
action on the tool is added with the given key. These preconditions and postconditions can be

expressed using OCL as follows:

context Toocl::lock{ aRequester : Actor, anaAction : String, aKey : Key)

pre: (context = aRequester or context = aRequester.context) and (lock-
>select(action = ‘lock’)->notEmpty implies lock->exists(action = ‘lock’ and
key.holders->includes(aRequester) }) and aRequester.keys->includes(aKey)
and not lock->exists({ action = anAction and key = aKey)

post: lock->exists(action = anAction and key = aKey)

The take acton on tools allows the requester to pick a tool up. In order for this action to be
invoked, the context of the tool must be the same as the requester’s context, and the requester
must hold at least one of the keys that locks the take action (if any). As a result, the context
tor the tool is changed to be the requester itself. These preconditions and postconditions can

be expressed using OCL as follows:

context Tool::take{ aRequester : Actor)

pre: context = aRequester.context and (lock->select(action = ‘take’)-
>notEmpty implies lock->exists(action = ‘take’ and key.holders->includes{
aRequester)))

post: context = aRequester

The unlock action on tools allows the requester to unlock one of a tool’s actions with a key.
In order for this action to be invoked, the context of the tool must either be the same as the
requester’s context or the requester itself, the requester must hold at least one of the keys that
locks the unlock action (if any) as well as the key being used to unlock the specified action,

and the action must be locked by the given key. As a result, a lock for the specified action on

26

the tool is removed with the given key. These preconditions and postconditions can be

expressed using OCL as follows:

context Tool::unlock(aRequester : Actor, anAction : String, aKey : Key)

pre: (context = aRequester or context = aRequester.context)} and (lock-
sselect{ action = ‘unlock’)->notEmpty implies lock->exists(action = ‘unlock’
and key.holders->includes(aRequester) }) and aRequester.keys->includes(aKey
) and lock->exists(action = anAction and key = aKey)

post: not lock->exists(action = anAction and key = aKey)

2.2.4 Constraints on Keys

A key’s holders must include its owner; all of a key’s holders must include the key as one of its

keys. These invariants can be expressed using OCL as follows:

context Key
invariant: holders->includes(owner) and holders->forAll(keys->includes(self

))

The describe action on keys allows the requester to change the description of a key. In
order for this action to be invoked, the owner of the key must be the requester itself, and the
new description must be different from the key’s existing description. As a result, the key’s
description is changed to the new descripton. These preconditions and postconditions can be

expressed using OCL as follows:

context Key::describe{ aRequester : Actor, aDescription : String)
pre: owner = aRequester and description <> aDescription
post: description = aDescription

The des troy action on keys allows the requester to destroy a key. I[n order for this action to
be invoked, the owner of the key must be the requester itself. As a result, the key (and any

associations with it) is removed from TASK. These preconditions and postconditions can be

expressed using OCL as follows:

27

context Key::destroy(aRequester : Actor)

pre: owner = aRequester

post: not Key.allInstances->includes(self)} and Tool.allInstances->forAll(not
lock->exists(key = self)) amd Actor.alllInstances->forAll{ mot lock->exists(
key = self) and not keys->includes(self))} and Scope.alllnstances->foraAll(
not lock->exists(key = self })

The grant acdon on keys allows the requester to grant a key to an actor. In order for this
action to be invoked, the owner of the key must be the requester itself, the actor’s focus must
include the requester’s context, and the holders of the key must not already include the actor.
As a result, the requester is added as one of the key’s holders. These preconditions and

postconditions can be expressed using OCL as follows:

context Key::grant(aRequester : Actor, aGrantee : Actor)

pre: owner = aRequester and aGrantee.focus->includes(aRequester.context } and
not holders->includes(aGrantee)

post: holders->includes(aGrantee |}

The revoke acton on keys allows the requester to revoke a key from an actor. In order for
this action to be invoked, the owner of the key must be the requester itself, the actor’s focus
must include the requester’s context, and the holders of the key must include the actor. As a
result, the requester is removed as one of the key’s holders. These preconditions and

postconditions can be expressed using OCL as follows:

context Key::revoke{ aRequester : Actor, aRevokee : Actor)
pre: owner = aRequester and aRevokee.focus->includes(aRequester.context) and

holders->includes(aRevokee }
post: not holders->includes{ aRevokee)

28

3 DESIGN SPECIFICATION

The conceptual model of TASK, as introduced in Chapter 2, can be used to describe various
scenarios of teaching in an electronic classroom. However, the framework is quite general; the
case study presented here was meant to show its usefulness within a specific domamn
(education). Other applications of TASK range from simple ones such as file permissions on a
Unix operating system, to rather complex ones such as collaboranve work in a sofrware
development organizadon. This chapter presents the design specificanon for TASK by
describing its object model using the UML and exploring the applicaton of design patterns to

facilitate object interacdons within TASK.

3.1 TASK and the UML
The Unified Modeling Language (UML) is the industry standard language for visualizing,

specifying, constructing, and documentng the artfacts of a software system. [t fuses the
concepts of the Booch, OMT (Object Modeling Technique), OOSE (Object-Oriented
Software Engineering) methodologies, among others. Created by the primary authors of the
original methods (Grady Booch, Jim Rumbaugh, and [var Jacobson, respectively), the UML
focuses on a standard modeling language rather than a standard for tools and processes. It
provides a common metamodel (a language for specifying a2 model) and notaton which,
together with guidelines for usage, integrate best industry practices to support any use-case

dnven, architecture centric, iterative and incremental approach. [Booch et al. 1999]

29

A UML diagram 1s a graphical projection of a collecion of model elements, typically
represented as a connected graph of arcs and vertices. Types of diagrams defined by the UML
include class diagrams, object diagrams, use case diagrams, sequence diagrams, collaboranon
diagrams, statechart diagrams, acuvity diagrams, component diagrams, and deployment

diagrams. [Booch et al. 1999]

Varous aspects of the TASK framework’s design will now be exposed using three of the
graphical diagram types defined by the UML (use case diagrams, class diagrams, and sequence
diagrams). Only elements of the UML semantcs and notation that apply to these diagrams
will be discussed here. For more information on the semantic and notatonal elements of the

UML, the reader is referred to [Booch et al. 1999).

3.1.1 Use Cuse Diagrams

A UML use case diagram is a visual representaton of the relatonships between model
elements such as use cases and actors. A wse case 1s a sequence of actions performed by the
svstem that vields an observable result to an actor. An aor in UML is an endty outside the
system that interacts with use cases. Use case diagrams are used to specify or characterize the
functonality and behavior of interactions between a system and external actors. [Booch et al.

1999

A use case is represented as a hollow ellipse, below which the name of the use case is placed.
An actor is represented by a stick figure, typically with the name of the actor located below the
figure. Interactions between actors and use cases are represented as (unidirectional)

associations between their respective representatons. Use case diagrams for use cases

involving the varous kinds of objects in TASK will now be considered. [Booch et al. 1999]

30

Figure 2 presents a use case diagram for use cases involving objects. Use cases in this diagram
include Deseribe an object and Destroy an object. These correspond to the describe and

destroy actions defined on actors, scopes, tools, and keys, the semantcs for which were

Describe an object Destroy an object

\/

User

Figure 2 Use cases involving objects.

Figure 3 presents a use case diagram for use cases involving contextual objects. Use cases in
this diagram include Lock an action and Unlock an action. These correspond to the lock and

unlock actions defined on actors, scopes, and tools, the semantcs for which were described

31

Lock an action Unlock an action

\/

Figure 3 Use cases involving contexmual objects.

Figure 4 presents a use case diagram for use cases involving actors. Use cases in this diagram
include Create un object and Focalize a scope. These correspond to the create and focalize
actions defined on actors, the semantcs for which were described in Section 2.2.1 of Chapter

2

32

Create an object Focalize a scope

\/

User

Figure 4 Use cases involving actors.

Figure 5 presents a use case diagram for use cases involving scopes. Use cases in this diagram
include Enter a scope and Exit a seope. These cotrespond to the enter and exit actons

defined on scopes, the semantics for which were described in Section 2.2.2 of Chapter 2.

Enter a scope Exit a scope
User

Figure 5 Use cases involving scopes.

33

Figure 6 presents a use case diagram for use cases in involving tools. Use cases in this diagram
include Drgp « tool and Take a teol. These correspond to the drop and take actions defined

on tools, the semantics for which were described in Section 2.2.3 of Chaprer 2.

O OO

Drop a tool Take a tool

\/

Usger

Figure 6 Use cases involving tools,

Figure 7 presents a use case diagram for use cases i involving keys. Use cases in this diagram
include Grant 4 &¢y and Remwke a kgy. These correspond to the grant and revoke actons

defined on keys, the semantics for which were described in Section 2.2.4 of Chapter 2.

34

Grant a key Revoke a key

\/

User

Figure 7 Use cases involving keys.

3.1.2 Class Diagrams

A UML class diagram is a visual representaton of the relatonships between model elements
such as classes, interfaces, associations, aggregations, and generalizations. \ s is the
description of all objects with similar structure, behavior, and relationships. An interfuce is a
collecton of operations used to specify a service provided by a class or component. .\
realization 1s a semantic relationship between an interface and a class that realizes or implements
it. An association in UML is a relationship that describes a set of semantic connections among
tuples of objects. An assoczation class is a modeling element that has both associaton and class
properties; it can be seen as either a class with association properties or an association with
class properties. An aggregation is form of association that represents a whole-part relationship
between an aggregate and its component part(s). A generalization is an inhentance relatonship
between a more general element and a more specific element. Class diagrams are used to

provide generic descriptions of systems. [Booch et al. 1999]

35

A class is represented as a solid rectangle with three compartments separated with horizontal
lines. The top compartment contains the name of the class, following the syntax Package-
name::Class-name, of which the package name is optonal. The middle compartment lists the
attributes of the class, following the syntax vatbility nume : type-expression = initial-valne { property-
string }, of which the visibility, type expression, inital value, and property string are optional.
The bottom compartment lists the operations of the class, following the syntax visibility name (
parameter-list) : return-type-expression { property-string }, of which the visibility, parameter list, rerurn
type expression, and property sting are optional. An interface is represented as a small circle
labeled with its name, or altermatively as a class with an <<inferfuce>> stereotype in the name
compartment. A realizagon is represented as a solid line connecting a class to an interface in
its normal form (as a circle) or as a dotted arrow between a class and an interface in its
expanded form (as a class). \n association is represented as a solid line connecting two class
symbols with an optional name. The end of an associaton where it connects to a class is
called an assoczation role, and may or may not have a name. :An association role may also have a
multiplicity, which follows the syntax bwer-bound .. upper-bound. An association class is
represented as a class symbol attached by a dashed line to an associatdon. An aggregation is
represented by attaching a hollow diamond where an associaion meets the class that
represents the aggregate. A generalization is represented as a solid line from the more specific
element to the more general element, with a hollow triangle where the line meets the more
general element. Class diagrams for the classes and interfaces in TASK will now be considered.

[Booch et al. 1999]

Figure 8 presents a class diagram depicting the interfaces in TASK and the classes that realize
them. Interfaces include TASKObject, TASKContextualObject, TASKContext,

36

Actor, Scope, Tool, and Key. The classes that realize these interfaces are
TASKObjectImpl, TASKContextualObjectImpl, TASKContextImpl,

ActorImpl, ScopelImpl, ToolImpl, and KeyImpl, respectvely.

TASKObjectImpl

:Z /7 TASKObject

KeyImpl

O

Q
O—o

Key

TASKCon cexcu-alObj ectImpl

K TASKContextu
alObject
ToolImpl [ﬁ

TASKContexcImpl

R v TASKContext

-

Scopelmpl O/ A
t

Actorimpl

Actor

Figurce 8 Classes and interfaces in TASK.

Figure 9 presents a class diagram depicting the interfaces and associated operations in TASK.
These interfaces cotrespond directly to the objects described as part of the conceptual model
presented in Chapter 2. Likewise, half of the operations provided by these interfaces
correspond with the actions introduced in Chapter 2. The description() and name ()

operations are included to provide access to the values of description and name

37

attnbutes of objects. The isActor (), isScope(), isTool(), and isKey()
operations indicate whether an object is an actor, scope, tool, or key. The actions()
operation returns the names of the actions defined on a given object. The context () and
objects () operations are included to provide access to the roles of the association berween
contextual objects and contexts. The focus () operation provides access to the role played
by scopes in their associaton with actors. Finally, the keys (), holders(), and

owner () operations provide access to the roles in the associatons between actors and keys.

<<Interfaces>>
TASKQObject

describel)
destroy(}
actions(}
description()

<<Interface>> name ()
Key /v isAccor()
isKey()
granc() isScope()
revoke (} isTool ()
helders()
owner{)
<<Interface>>
TASKContextualObijecs
lockt) <<Interface>>
unlocl() AN L Tool
context{)
drop()
take()
<<Interface>>
<<Iaterface>> TASKContext
Actor
/D objects() W\ <<Interface>>
create() Scope
focalize()
keys () encer(}
focus() exit()
Figure 9 Interfaces in TASK.

38

Figure 10 presents a class diagram depicting the classes in TASK, along with their attributes
and operations. Most of these classes, along with their associated operations, realize the
interfaces that are described above. One additonal class, the TASKLock class, with
action, key, and object arttibutes, i1s introduced to model the associaton between

contextual objects and keys.

TASKObjectImpl
TASKLock description : String
action : String name : String
key : KeyImpl
object : TASKContextualObjectImpl| 19Cks addLock()
getDescription(}
0..*
getaction() getLocks ()
gecName()
getKey ()
etObject () removel.ock ()
= setDescription()
secName ()}
KeyImpl
0..° |addHolder() objects TASKContextualObjeccImpl
[———‘ getHolders()
getOwner () Q..+ |getContexc()
removeHolder() setContext (}
secOwner() L/} K
keys | ?--
TASKContextiImpl ToolImpl
holders j 1, L
context addObject ()
ActorImpl i getObjectsi)
removeObject ()}
owner |addKey()
addScope!) focus Scopelmpl
1 |getFocus() 1...
getKeys ()
removeKey ()
removeScope ()

Figure 10 Classes in TASK.

3.1.3 Sequence Diagrams
A UML sequence diagram is a visual representation of the relationships between model

elements such as objects, messages, and acavations. An ofject is an instance of a class with a

well-defined identity. A message is a communication between objects which results in some
39

activity. An activation is the execution of a computational or algorithmic procedure. Sequence

diagrams are used to trace the execution of an interaction in time. [Booch et al. 1999]

An object is represented as a dashed vertical line called the /feine. A solid rectangle containing
the name of the object, following the syntax object-name : cluss-name (of which the object name is
optional) is placed at the top of the verrical line. A message is represented as a solid horizontal
arrow benween the lifelines of the sender and receiver objects. The arrow is labeled with the
name of the message along with the values of its arguments, and may also include a sequence
number indicatng its order in the overall sequence. An activation is represented as a tall
narrow rectangle on an object’s lifeline, whose top 1s aligned with its inidation time and whose
bottom is aligned with its completion time. Sequence diagrams for the pre-defined actons in

TASK will now be considered. [Booch et al. 1999]

Figure 1l presents a sequence diagram for the describe action defined on Actor,
Scope, Tool, and Key. Assuming the preconditions have been met, the object being
descnbed sends the setDescription () message to itself with the given description as an

argument, thus changing the value of its description attribute to the specified description.

: TASKObjectImpl

setDescription(}

Figure 11 Message sequence for the describe action.

40

Figure 12 presents a sequence diagram for the 1ock action defined on Actor, Scope, and
Tool. Assuming the preconditions have been met, the contextual object whose acton is
being locked creates a new lock with itself, the name of the given action, and the given key as
atributes. [t then sends the addLock () message to itself with the new lock as an argument,
thus adding the lock to its set of locks. Finally, it sends the addLock () message to the given

key with the new lock as an argument, thus adding the lock to the key’s set of locks.

: TASKContextualObjectImpl : TASKLock : KeyImpl
‘ <<create>> l
~,
addLock()
addLock()

Figure 12 Message sequence for the Lock action,

Figure 13 presents a sequence diagram for the unlock action defined on Actor, Scope,
and Tool. Assuming the preconditons have been met, the contextual object whose action is
being unlocked send the removeLock () message to the given key with the particular lock
as an argument, thus removing the lock from the key’s set of locks. It then sends the
removeLock () message to itself with the particular lock as an argument, thus removing the

lock from its set of locks.

41

: TASKContextualObjectImpl : KeyImpl

removelock() |
~

removelock({)

P

Figure 13 Message sequence for the unlock acoon.

Figure 14 presents a sequence diagram for the create action defined on Actor. Assuming
the preconditions have becen met, the actor creatng the object creates a new object of the
specified kind with the specified name and description as attributes. [f the new object is a key,
its owner is initialized to the creating actor itself, otherwise the context of the new object is

initialized to the actor’s context.

: Actorimpl : : TASKObjectImpl

<<create>> }
Ny

Figure 14 Message sequence for the create action.

Figure 15 presents a sequence diagram for the destroy acton defined on Actor.
Assuming the preconditions have been met, the actor being destroyed sends the

getFocus () message to itself to retrieve the set of scopes representing its focus. It then
42

sends the removeObject () message to each of these scopes with itself as an argument,
thus removing itself from the scope’s set of objects. Next, it sends the getLocks ()
message to itself to retrieve its set of locks. Finally, it sends the getKey () message to each
of these locks to retrieve the key associated with the lock, and subsequenty sends the

removeLock () message to the key with the lock as an argument, thus removing the lock

from the key’s set of locks.
:_ActorImpl : Scopelmpl : TASKLock : KeyImpl
| gecFocus|()

<

' removeObject()
~,

1

getLacks()
<]

¢ getKey()

vV

* removeLock()

=Y

Figure 15 Message sequence for the destroy action (actors).

Figure 16 presents a sequence diagram for the focalize acton defined on Actor.
Assuming the preconditions have been met, the actor being focalized sends the
setContext () message to itself with the given scope as an argument, thus changing its

context to the specified scope.

43

: _ActorImpl

secContexc!)

1

<

Figure 16 Message sequence for the focalize acnon.

Figure 17 presents a sequence diagram for the destroy action defined on Scope.
Assuming the preconditions have been mer, the scope being destroyed sends the
getContext () message to itself to retrieve the scope representing its context. It then
sends the removeObject () message to this scope with itself as an argument, thus
removing itself from the scope’s set of objects. Next, it sends the getLocks () message to
itself to retrieve its set of locks. Finally, it sends the getKey () message to each of these
locks to retrieve the key associated with the lock, and subsequendy sends the
removeLock () message to the key with the lock as an argument, thus removing the lock

from the key’s set of locks.

:_ Scopelmpl : ScopeImpl : TASKLock : KeylImpl

getContext(}

<]

removeObject()

getLocks()

p-m—

* getKey()

* removeLock{) -~

Figure 17 Message sequence for the destroy action (scopes).

Figure 18 presents a sequence diagram for the enter acton defined on Scope. Assuming
the preconditions have been met, the scope being entered sends the addObject () message
to itself with the given actor as an argument, thus adding the actor to its set of objects. It then
sends the addScope () message to the given actor, thus adding itself to the set of scopes

representing the actor’s focus.

45

: Scopelmpl : ActorImpl

addObject()

p—

addScope()

gl

Figure 18 Message sequence tor the enter acrion.

Figure 19 presents a sequence diagram for the exit acdon defined on Scope. Assuming
the preconditions have been met, the scope being exited sends the removeScope ()
message to the given actor, thus removing itself from the set of scopes representng the actor’s
focus. [t then sends the removeObject () message to itsclf with the given actor as an

argument, thus removing the actor from its set of objects.

: Scopelmpl : ActorImpl

removeScope(} '
S

removeObject()

p—

Figure 19 Message sequence for the exit action.

46

Figure 20 presents a sequence diagram for the destroy action defined on Tool. Assuming
the preconditions have been met, the tool being destroyed sends the getContext ()
message to itself to retrieve the actor or scope representing its context. It then sends the
removeObject () message to this actor or scope with itself as an argument, thus removing
itself from the actor’s or scope’s set of objects. Next, it sends the getLocks () message to
itself to retrieve its set of locks. Finally, it sends the getKey () message to each of these
locks to retreve the key associated with the lock, and subsequenty sends the
removeLock () message to the key with the lock as an argument, thus removing the lock

from the key’s set of locks.

: ToalImpl : TASKContextImpl : TASKLock : Keylmpl

i getContext()
<

removeObject()

getLocks{ }

p=—

v getKey()

* removelock({)

=Y

Figure 20 Message sequence for the destroy action (tools).

Figure 21 presents a sequence diagram for the drop action defined on Tool. Assuming the
preconditions have been met, the tool being dropped sends the removeObject () message

47

to the given actor with itself as an argument, thus removing itself from the actor’s set of
objects. It then sends the setContext () message to itself with the actor’s context as an
argument, thus changing its context to the actor’s context. Finally, it sends the
addObject () message to the scope representing its context with itself as an argument, thus

adding itself to the scope’s set of objects.

: ToollImpl : ActorImpl : ScopeImpl

) removeQbject{) I
~,

secConcexc{)

pa—

addObject()

=Y

Figure 21 Message sequence for the drop action.

Figure 22 presents a sequence diagram for the take acton defined on Tool. Assuming the
preconditions have been met, the tool being taken sends the removeObject () message to
the scope representing its context with itself as an argument, thus removing itself from the
scope’s set of objects. [t then sends the setContext () message to itself with the given
actor as an argument, thus changing its context to the actor. Finally, its sends the
addObject () message to the given actor with itself as an argument, thus adding itself to

the actor’s set of objects.

48

: Toollmpl :_Scopelmpl :_ActorImpl

removeCbject{)
~,

—J

secContexc()

addObject{ }

Figure 22 Message sequence for the take action.

Figure 23 presents a sequence diagram for the destroy acton defined on Key. Assuming
the preconditions have been met, the key being destroved sends the getHolders()
message to itself to retrieve the set of actors representng its holders. It then sends the
removeKey () message to each of these actors with itself as an argument, thus removing
itself from the actor’s set of keys. Next, it sends the getLocks () message to itself to
retrieve its set of locks. Finally, it sends the getObject () message to cach of these locks
to retrieve the contextual object associated with the lock, and subsequenty sends the
removeLock () message to the contextual object with the lock as an argument, thus

removing the lock from the contextual object’s set of locks.

49

: KeyImpl :_ActorImpl : TASKLock : TASKContextualObjectImpl

getHolders({)

<1

* removeKey{)

U

gecLocks()

<

* getCbjecc()

Y

* removelock()

Figure 23 Message sequence for the destroy action (keys).

Figure 24 presents a sequence diagram for the grant actuon defined on Key. .\ssuming the
preconditions have been met, the key being granted sends the addHolder () message to
itself with the given actor as an argument, thus adding the actor to the set of actors
representing its holders. It then sends the addKey () message to the given actor with itself

as an argument, thus adding itself to the actor’s sct of keys.

50

: KeyImpl : ActorImpl

addHolder({ }

P

addKey{)

7

Figure 24 Message sequence tor the grant action.

Figure 25 presents a sequence diagram for the revoke acton defined on Key. Assuming
the preconditions have been met, the key being revoked sends the removeKey () message
to the given actor, thus removing itself from the actor’s set of keys. It then sends the
removeHolder () message to itself with the given actor as an argument, thus removing the

actor from the set of actors representng its holders.

: KeyImpl : ActorImpl
K
removeKey() \[

=

removelolder()

p=a—

Figure 25 Message sequence for the revoke action.

51

3.2 Design Pattems in TASK

Design patterns are descriptions of communicating objects and classes customized to solve
general design problems in specific contexts. A pattern systematically names, inspires, and
explains a design that addresses recurring issues in object-oriented systems. Typically, it
includes a descripton of the problem, the solution, when to apply the pattern, and the
consequences of doing so. The inclusion of hints and examples of its application aids in the
customization and implementadon of the solution to solve the problem in a particular context.

[Gamma et al. [995]

Parterns can be classified in two ways: by purpose and by scope. Purpose reflects what a pattern
does, and can be one of creational, strucrural, or behavioral. Creational patterns abstract the
instantation process, making a system independent of how its objects are created, composed,
and represented. Strmctural patterns deal with the ways in which classes and objects are
combined to form larger structures, and are especially useful in helping independently
developed class libraries work together. Behavioral patterns deal with communication between
objects and classes and focus on algonthms and the assignment of responsibilities to objects.
The seope of a pattern refers to whether it applies to classes or objects. Clasy patterns are
concerned with static relatonships (association and subtype) between classes whereas object

patterns involve dynamic relationships, which can be changed at run-time. [Gamma et al. 1995]

The use of patterns in the design of the communicaton mechanism in TASK is described in
detail below. The goal here is to communicate the execution of actions on a given object to
other objects in the environment. In general, when an acton is invoked on a contextual
object, each of the objects in the object’s context need to be notified of the event’s occurrence.

To help accomplish this, I introduce an event class, TASKEvent, which setves as the abstract
52

parent for all events in TASK. Concrete subclasses of TASKEvent correspond to the
actions in TASK, and include ObjectDescribeEvent, ObjectDestroyEvent,
ContextualQbjectLockEvent, ContextualObjectUnlockEvent,
ActorCreateEvent, ActorFocalizeEvent, ScopeEnterEvent,
ScopeExitEvent, ToolDropEvent, ToolTakeEvent, KeyGrantEvent, and
KeyRevokeEvent. The suirability of three design patterns that could be used to model the

desired communication mechanism will now be considered.

5.2. / s‘v Iﬂ'{/j[l’ﬂr

The Mediator design pattern is an object behavioral pattern that defines an object to
encapsulate how a set of objects interact, promoting loose coupling by preventing objects from
teferring to each other explicitly and allowing their interaction to vary independently.
Participants in the pattern include the Mediator, which defines an abstract interface for
communicating with Colleague objects, a ConcreteMediator, which implements
cooperative behavior by coordinating its Colleague objects, and Colleague classes,
each of which knows its Mediator and communicates with it whenever it would have
instead communicated with another Colleague object. Figure 26 presents the generic

structure of the Mediator design pattern. [Gamma et al. 1993]

53

Mediacor
ConcreteMediator
addColleaque (aColleague : Colleague) <::P
removeColleague (aColleague : Colleague)
noctify{anObject : Object}
mediator
colleagues
Colleague /
- ConcreteColleaque

updatel{aColleague : Colleague, anObject : Objecrt)

Figure 26 The Mediator design pattern.

Figure 27 shows how the Mediator pattern could be applied in TASK. The TASKMediator
and TASKColleague interfaces play the roles of the Mediator and Colleague
participants, respectvely. Through realizacion of these interfaces, the TASKContextImpl
and TASKObjectImpl «classes correspond to ConcreteMediator and
ConcreteColleague. Using this mechanism, objects would be added and removed as
colleagues of contexts as follows: actors would be added or removed as colleagues of scopes
whenever scopes were entered or exited; scopes would be added or removed as colleagues of
scopes whenever scopes were created or destroyed; tools would be added or removed as
colleagues of actors and scopes whenever tools were dropped or taken; keys would be added
or removed as colleagues of actors whenever keys were granted or revoked. A contextual
object’s mediator would be its context whereas a key’s mediator would be its owner. Any time
an action on an object ts invoked, an event is created, and the object notifies its mediator,
which in trn updates all of its colleagues with the event. One problem with this strategy,
however, is that all colleagues of a particular mediator are notified of events regardless of

whether they are interested in them.

54

<<Interface>>
TASKMediator
<::}_ TASKConcexcImpl
addColleague(aColleague : TASKColleague)
removeColleague(aColleague : TASKColleague)]
notify(anEvent : TASKEvent) mediacor
colleagues
<<Interface>>
TASKColleague j TASKObject Impl
update (aColleague : TASKColleague, anEvent : TASKEvent)

Figure 27 Application of Mediator in TASK.

3.2.2 Observer

The Observer design pattern is an object behavioral pattern thar defines a one-to-many
dependency between objects, ensuring that when an object changes its state, all of its
dependents are notified and updated. Participants in the pattern include the Subject, which
knows its observers and provides an interface for attaching and detaching Observer objects,
and an Observer, which defines an interface for updating it based on changes in the
Subject. Figure 28 presents the generic structure of the Observer design pattern. [Gamma

etal. 1995]

Subject
ConcreteSubject
addObserver (anObserver : Observer) <::}
removeObserver (anObserver : Observer)
notify(anObject : Object)
observers
Observer
A ConcreteObserver

update(aSubject : Subject, anObject : Object)

Figure 28 The Observer design pattemn.

55

Figure 29 shows how the Observer pattern could be applied in TASK. The TASKSubject
and TASKObserver interfaces play the roles of the Subject and Observer
partcipants, respectively. Through realizanon of these interfaces, the TASKObjectImpl
and TASKContextualObjectImpl classes correspond to ConcreteSubject and
ConcreteObserver. Using this mechanism, contextual objects would be added and
removed as observers of objects as follows: actors, scopes, and tools would be added or
removed as observers of actors whenever scopes were entered or exited; actors, scopes, and
tools would be added or removed as observers of scopes whenever scopes were created or
destroved; actors and scopes would be added or removed as observers of tools whenever tools
were dropped or taken; actors would be added or removed as observers of keys whenever keys
were granted or revoked. Any time an action is invoked on an object, an event is created, and
the object updates each of its observers with the event. One problem with this strategy,
however, 1s the burden placed on subjects of maineaining a list of observers and hence the

coupling berween subjects and observers.

56

<<Incerface>>
TASKSubject

4 TASKObjectImpl

addObserver (anObserver : TASKObserver)
removeObserver (anObserver : TASKObserver)
notify(anEvent : TASKEvent)

<<Interface>>
TASKObserver

update (aSubject : TASKSubject, anEvent : TASKEvent)

N

.

™~

~. abservers

TASKContextualObjeccImpl

Figure 29 Application of Observer in TASK.

3.2.3 Evemt Notifter

The Event Nodifier pattern is an object behavioral pattern that enables components to react to
the occurrence of events in other components without knowledge of one another, while also
allowing dynamic component participation and introducton of new types of events.
Pardcipants in the pattern include Event, which represents the ancestor for all event types,
ConcreteEvent objects, which represent specific events, Publisher objects, which
publish the occurrence of events, Subscriber, which defines an abstract interface for all
objects that are interested in events, ConcreteSubscriber objects, which register
interest in particular events, Filter, which is responsible for weeding out events that are not
of interest to a subscnber, and an EventService, which acts as an event broker berween
publishers and subscribers. Figure 30 presents the generic structure of the Event Notfier

design pattern. [Gupta et al. 1998]

57

i Subscriber
Publisher 1 ConcreteSubscriber
inform(anEvenc : Event)
subscribers
sventService eventService
EventService
publish(anEvent : Event) <o

subscribe({aClass : Class, aFilter : Filter, aSubscriber : Subscriber)
unsubsecribe(aClass : Class, aFilter : Filter, aSubscriber : Subscriber)

)

filrers J/ eventClasses
Filcer
Class |
apply(anEvent : Event) : boolean i
<<ingtanciates>> |
ConcreteEvent Event
L

Figure 30 The Event Noufier design pattern.

Figure 31 shows how the Event Noufier pattern could be (and actually is) applied in TASK.
Interfaces TASKPublisher, TASKSubscriber, TASKFilter, and
TASKEventService play the roles of the Publisher, Subscriber, Filter, and
EventService partcipants, respectively. Through realization of the TASKSubscriber
interface, the TASKContextualQObjectImpl class corresponds to
ConcreteSubscriber and TASKEvent, along with all of its subclasses, cotresponds to
Event and ConcreteEvent. The TASKSubcription class is introduced to model
the associations between EventService and Subscriber, Class, and Filter.
Using this mechanism, contextual objects subscribe and unsubscribe to events dispatched by

coatexts as follows: actors subscribe or unsubscribe to events dispatched by scopes whenever

58

scopes ate entered or exited; scopes subscribe or unsubscobe to events dispatched by scopes
whenever scopes are created or destroyed; and tools subscrbe and unsubscribe to events
dispatched by actors or scopes whenever tools are dropped or taken. In general, a contexrual
object’s event service would be its context, an actor’s event services would be the scopes in its
focus, and a key’s event services would be its holders. Any time an action on an object 1s
invoked, an event is created, and the object publishes the event with its event service(s), which
in turn informs all of its subscrbers of the event. Event Notifier uses a best of both worlds
approach that overcomes the problems of the previous two strategies — it facilitates
subscription based on event type rather than publisher and allows publishers and subscribers

to be varied independently of each other.

59

<<Interface>>

TASKPublisher |« I——— TASKObjeccImpl

eventService

<<Incerface>>
TASKEventService

publish(anEvent : TASKEvent)
subscribe (anEventClass : Class, aFilter : TASKFilter, aSubscriber : TASKSubscriber)

unsubcribe (anEvencClass : Class, aFilter : TASKFilter, aSubscriber : TASKSubscriber)

TASKConrexcualObjeccimpl

T
! TASKContextImpl
I TASKEvent
V 0 :
<<Interface>>
TASKSubscriber . .
<<instantiates>>
inform{anEvent : TASKEvent) s
subscriptions
subscriber —— -
TASKSubscription Class
eventClass
filrer

<<Interface>>
TASKFilter

apply{anEvent : TASKEvent) : boolean

Figure 31 Application of Event Notifier in TASK.

60

4 IMPLEMENTATION

In early days, known as the mainframe cra, many users interacted with a single machine. Less
expensive computing brought about the Personal Computer (PC) revolution, with computers
on every desk, connected by a Local Area Network (LAN). Now, with the convergence of
increasingly inexpensive computing and widespread connectivity through the Internet, we have
entered the world of network compunng, where every user will have access to many CPUs.
With this shift in computng paradigm from host-centric to desktop-centric to network-centric
came the evolutdon of the workspace. In the beginning there was little or no notion of
workspace. PCs introduced the concept of a stand-alone, user-specific workspace. The advent
of the nerwork-centric age brought the shared wotkspace. From its inception, the Java
language (see [Morrison 1997]) has embraced this network-centric view of the world, and as

such, is an ideal platform for shared workspaces.

The Java programming language was used to implement TASK as per the design specified in
Chapter 3. In additon to the framework itself, a simple GUT client, presented in Figure 32,
was developed as a “proof of concept” for TASK. Modeled after the noton of a file browser,
the TASK browser consists of a scopes pane (top left), which contains the hierarchy of scopes
in TASK; a context pane (top nght), which contains the objects in the user’s current context;
an actor pane (middle nght), which contains the keys and tools currently held by the user; and
a console pane (bottom), which contains a transcrpt of events. The TASK browser allows the

user to interact with objects in TASK by invoking actions from pop-up menus associated with

61

selected objects. For example, to grant the Key to Projector key to the Student 1
actor, the user (connected to TASK as the Instructor actor) would select the key in the
actor pane, click the right mouse button, and select the grant opton. A dialog would
appear, into which the user would enter the name of the grantee (Student 1). Upon
accepting the entered value by clicking the OK button, the key would be granted to the

Student 1 actor and a description of the event would be appended to texr in the console

panc.

= “ytask

"} Group 1
= _\lAcadia University -T File
= T Projector
* __|Group1
% __] Facuity of Computer Science =/ Student 1
+ __] Bachelor of Computer Science 2, Student 2
=) Student 3
<y Student 4
. Keyto File

Y Keyto Projector

Object 'Student 4' has been created.
Objact 'File' has been created.
Object 'Projector' has been created.
Object 'Key to File' has been created.
Object 'Key to Projector' has been created.

Figure 32 The TASK browser.

This chapter presents various aspects of the implementation of TASK in Java that proved
both interesting and challenging to the author. More specifically, the JDK Collections API,
implementation of constraints, object serializaton, and remote objects will be considered in

detail.

4.1 JDK Collections API
The Java Development Kit (JDK) Collections Application Programming Interface (API) is a

new set of collecnon classes introduced as part of JDK 1.2 to be used as the basis for data
structures in java. A\ collction is a single object representing a group of other objects, referred
to as elements of the collection. The new classes and interfaces, the root of which is the
Collection interface, extend the facilities provided by the previously available uality
classes such as Vector and Hashtable. The API can perhaps be partitioned as follows:
collecdon interfaces, abstract implementatons, concrete implementatons, the

Collections class, iteranon, and array sorting and searching. [Hunt 1999]

Four interfaces, namely Collection, Set, List, and Map, comprse the cote of the
Collections API. The Collection interface defines the methods that all collections (except
for Map collections) must implement and as such acts as the ancestor for virtually all collection
objects. The Set interface is essendally the same as Collection, except that duplicates
are not allowed in the set. The List interface represents a collection of elements in a specific
sequence, whose order is defined by the order in which they are added to the list. The Map
interface represents a set of associations, the elements of which may be unordered but must

have a definite name or key.

63

The Collections API includes a set of abstract classes that provide basic implementations of
many the methods defined in the interfaces they realize. The AbstractCollection dass
provides a skeleral implementation of the Collection interface, representing a collection
of unordered objects, commonly referred to as a bag or muluset. The AbstractSet class,
a direct subclass of AbstractCollection, realizes the Set interface and provides
implementations for the equals () and hashCode () methods. The AbstractList
class is also a direct subclass of AbstractCollection, and uses an array that is
opumized for sequennal access to maintain its intermal data. The
AbstractSequentialList class is basically the same as AbstractList except that
its internal dara structure is optumized for sequential rather than random access. The
AbstractMap class, subclasses of which must implement the entries() method,

provides an abstract implementation of its corresponding interface, Map.

The HashSet, ArraySet, ArrayList, LinkedList, HashMap, ArrayMap, and
TreeMap classes provide general-purpose concrete implementations of the core interfaces in
the Collecdons API. Each one inherits from an abstract implementation class, providing an
example of the proper way to create concrete subclasses of the varous collection types.
Unlike their predecessors, Hashtable and Vector, these classes are unsynchronized,

which results in greater performance (discussed in more detail later).

The Collections class was included in the Collections API to provide a range of static
factory methods enabling data structures to be efficientdy and effectively converted into

collections. It also includes useful methods to sort and search collections, to find the

64

minimum and maximum value in a collection, and to create immutable versions of modifiable

collectons.

The Enumeration interface is superceded by the more powerful Iterator interface in
JDK 1.2. Together with the ListIterator interface, Iterator makes it possible to
iterate over the contents of any of the collection classes, possibly modifying the collection
while iteration is in progress. The hasMoreElements () method of Enumeration has
been replaced by hasNext () defined on Iterator, just as the nextElement ()

method has been replaced by next ().

Collections are used extensively throughout the implementation of TASK. Objects have a
collection of locks, contexts (actors and scopes) have a collection of contextual objects (actors,
tools, and scopes), actors have a collection of keys and a collection of scopes (representng
their focus), and keys have a collection of actors (representng their holders). [n partcular,
instances of the HashSet class are used to maintain the objects in these collections. For
example, an instance of HashSet representing an actor’s focus is created in a constructor for

the ActorImpl class as follows:

focus = new HashSet():

The add () and addAll () methods are optional operations that are implemented by the
HashSet class to add the specified element or elements to the set. The add () method is
used in TASK any tme a lock is added to an object’s set of locks, a contextual object is added

to a context’s set of objects, a key is added to an actor’s set of keys, a scope is added to an

65

actor’s focus, or an actor is added to a key’s holders. For example, a scope is added to the
instance of HashSet representing an actor’s focus in the addScope () method of the

ActorImpl class as follows:

public void addScope(ScopelImpl aScope)
{

focus.add(aScope);

return;

The remove () and removeAll () methods are optional operations that are implemented
by the HashSet class to remove the specified element or elements from the set. The
remove () method is used in TASK any ame a lock is removed from an object’s set of locks,
a contextual object is removed from a context’s set of objects, a key is removed from an
actor’s set of keys, a scope is removed from an actor’s focus, or an actor is removed from a
key’s holders. For example, a scope is removed from the instance of HashSet represennng

an actor’s focus in the removeScope () method of the ActorImpl class as follows:

public boolean removeScope(Scopelmpl aScope)
{
return focus.remove(aScope);

)

As with any object that conforms to the Collection interface, the iterator for an instance
of HashSet can be obtained via the iterator () method. The iterator () methodis
used in TASK any ume each of the elements in one of an object’s collections needs to
accessed in sequential order. For example, the scopes stored in the instance of HashSet
representing an actor’s focus are iterated over in the destroyImpl () method of the

ActorImpl class as follows:

66

for (Iterator i = focus.iterator(); i.hasNext();)

{
ScopeImpl scope = (ScopelImpl) i.next();
scope.unsubscribe(TASKEvent.class, null, this);
scope.removeObject(this);

One of the more useful aspects of using a HashSet to maintain the collections of objects in
TASK is that, like the other concrete collection classes, it implements the Collection
interface, and hence can be accessed in a generic way. That is, although the implementaton of
a class uses a HashSet to store objects in the collection, any access to the collection by
clients of the object can be controlled by rerurning an immutable Collection object rather
than the HashSet itself, hence promoting data encapsulaton. For example, although the
ActorImpl class uses an instance of HashSet to store its focus internally, access to the
collecion via the focus() method (defined by the Actor interface) returns a

Collection as follows:

public Collection focus()
{

return Collections.unmodifiableCollection(focus };

}

One of the primary mouvators for introducing the Collections APl was to provide a set of
uniform behaviors and interfaces for groups of objects. The fact that these new classes
provide unsynchronized access to their data structures is seen by many as a benefit. Although
synchronization allows multiple threads to safely access an object without corrupung the
internal state of the object, it comes with a penalty — reduced performance. The new
collection classes offer developers greater control over whether access to their collections is

synchronized or not. Despite this argument, however, it is a good idea to always make classes
67

threadsafe. This can be accomplished for unsynchronized classes by using static methods
offered by the Collections class that take an arbitrary collecnon and wm it into a
synchronized collection. Unfortunately, the resulting collections do not correctly synchronize
access to methods that involve iteration, so blocks of code that use iterators must be

synchronized explicitly using the synchroni zed statement. [Oaks 1998]

In TASK, instances of the unsynchromized HashSet class are used instead of instances of
the synchronized Vector class to represent collecnons of objects. In order to guarantee
murual exclusion of changes to these collections, the code for the ActorImpl constructor

presented above must be modified as follows:

focus = Collections.synchronizedSet(new HashSet() };

Similarly, due to the unsynchronized natre of methods involving iteration, the code for the
destroyImpl () method of the ActorImpl class presented above must be modified by

adding a synchronized statement as follows:

synchronized (focus)

{
for (Iterator i = focus.iterator(); i.hasNext(};)

{
ScopelImpl scope = (Scopelmpl) i.next():
scope.unsubscribe(TASKEvent.class, null, this };
scope.removeObject(this);

68

4.2 Implementing Constraints in Java

One method of implementing constraints in a programming language is to use the Design by
Contract technique developed by Bertrand Meyer that allows designers and programmers to
specify the semantics of a class’s interface. At the heart of this technique is the concept of
assertions — statements that should always be true and can only be false in the event of an error,
in which case an exception is raised. Design by Contract uses three kinds of assertions which
correspond to the types of constraints described in Chapter 2 — invaniants, preconditions, and

postconditons. [Fowler 1997)

Using assertions to define the abstract behavior of software elements has several advantages.
Component developers, or suppliers, can be assured that software will not be abused as long as
correct usage is clearly defined using assertons. In return, components users, or clients,
benefit from a precise description of how to use a service and what it will do. Rigorous use of
Design by Contract has the potential to also improve the software development cycle as a
whole. It represents business rules from the problem domain directly in code thereby
confirming that a softwate system obeys those rules, which leads to traceability. It helps others
understand what a class does and builds confidence in the class’s performance, which leads to
reuseability. It helps uncover code defects earlier by providing a solid foundation for unit
testing, which leads to robustness. It allows a module to be considered closed (by specifying
its interface fully) while at the same time leaving it open for future changes (assuming the

contract is maintained), which leads to extensibility. {[Mannion & Phillips 1998]

69

Invanants, preconditions, and postconditions can easily be implemented in Java by introducing
additional classes that evaluate Boolean statements and throw an approprate exception when
an asserton is false. This is accomplished in TASK with three such classes, namely
TASKInvariant, TASKPrecondition, and TASKPostcondition. The
TASKAssertionException class, along with its subclasses,
TASKInvariantException, TASKPreconditionException, and
TASKPostconditionException, are used to model the associated exceptions. Since
the structure of these classes 1s similar, code for only the TASKInvariant class is presented

as an example below:

public class TASKInvariant
{
private static boolean enabled = true;

public static void assert(String description, boolean expression)
throws TASKInvariantException
{
if { enabled)
if (! expression)
throw new TASKInvariantException(description);
return;
}

public static void assert(boolean expression)
throws TASKInvariantException
{
if (enabled)
if { ! expression)
throw new TASKInvariantException();
return;

}

public static void setEnabled(boolean isEnabled)

{
enabled = isEnabled;
return;

Enforcement of invariants in TASK can be tumed on or off by sending the setEnabled ()

message to the TASKInvariant class with a Boolean argument. Operations in TASK for

70

which invadants are to be checked simply send the assert() message to the
TASKInvariant class with a Boolean statement and an optional description as arguments.
For example, the invariant for the KeyImpl class, corresponding to the OCL description
provided in Secton 2.2.4 of Chapter 2, is checked at the beginning and end of the

describe () method as follows:

TASKInvariant.assert(this.invariant(});

where the implementadon of the invariant () method of the KeyImpl class looks like:

public boolean invariant()
{

if (! holders.contains(owner))
return false;
for (Iterator i = holders.iterator(): i.hasNext();)
if (! ({ActorImpl) i.next{()).getKeys().contains(this))

return false;
return super.invariantc();

Enforcement of preconditions in TASK can be mrned on or off by sending the
setEnabled () message to the TASKPrecondition class with a Boolean argument.
Operatons in TASK for which preconditons are to be checked simply send the assert ()
message to the TASKPrecondition class with a Boolean statement and an opuonal
description as arguments. For example, the preconditions for the describe () method of
the KeyImpl class, corresponding to the OCL description of the describe action

provided in Section 2.2.4 of Chapter 2, are checked at the beginning of the method as follows:

TASKPrecondition.assert(owner.equals(requester });
TASKPrecondition.assert(! description.equals(aDescription));

!

Enforcement of postconditions in TASK can be tumed on or off by sending the
setEnabled () message to the TASKPostcondition class with a Boolean argument.
Operations in TASK for which postconditions are to be checked simply send the assert ()
message to the TASKPostcondition class with a Boolean statement and an opdonal
description as arguments. For example, the postcondition for the describe () method of
the KeyImpl class, corresponding to the OCL description of the describe action

provided in Section 2.2.4 of Chapter 2, 1s checked at the end of the method as follows:

TASKPostcondition.assert(description.ecquals(aDescription)});

Within the context of Design by Contract, interfaces represent a contract between the client
and the supplier of a service, the conditions of which are specified by assertions. Through its
direct support for interfaces via the interface construct, the Java language has no doubt
contributed to the growing popularity of the principal of programming to interfaces in recent
vears. By realizing an interface, a class provides an implementation for the methods it defines;
this separation of declaraton and implementation forces software developers to think in terms
of interfaces, which in wrn leads to greater flexibility and case of reuse. Unfortunately,
however, the interface construct alone cannot provide a complete specification for an
interface because, although it places a syntactical constraint on the signature of a method, it

cannot enforce the semantics of the interface. [Mannion & Phillips 1998]

One way of ensuring that both the syntax and the semantics of an interface are consistent is a

technique referred to as down-calling, also known as the Template Method design pattern (see
72

[Gamma et al. 1995]). This technique addresses problems that polymorphic methods, or
methods for which derived classes can provide a different implementation than their ancestors,
present with respect to preserving the semantics of an interface. In partcular, derived classes
may fail to correctly re-implement the assertions in the method, peer derivations of a class may
attempt to enforce different assertions for the same method, or overridden methods may omit
the check for assertions endrely. The down-calling approach resolves these issues using two
types of methods — interface and implementadon. [nterface methods are publicly accessible
methods that can be directly invoked but cannot be overndden; this can be accomplished
using the £inal keyword in Java. [mplementation methods, on the other hand, are not publicly
accessible, but are restricted to the inheritance hierarchy and can be overridden to provide the
implementation for an interface method. Using this mecharusm, interface methods manage
the enforcement of assertions whereas implementation methods provide a suitable conforming

implementation. [Payne 1997]

The down-calling technique is used in TASK to help ensure that the assertions on the actions
are preserved when the framework is extended. Just as each kind of object has an interface
and a corresponding implementaton class, each action has an interface method and a
corresponding implementation method. For example, the interface for keys is Key, and the
corresponding implementation class is KeyImpl. Similarly, the interface method for the
describe action on keys, as described in Section 2.2.4 of Chapter 2, is describe (), and
the associated implementation method is describeImpl (). The describe () method

is implemented as follows:

73

public final void describe(Actor aRequester, String aDescription)
throws TASKException

{
ActorImpl requester = (ActorImpl) aRequester;
TASKInvariant.assert(this.invariantc());

TASKPrecondition.assert(owner.equals(requester));
TASKPrecondition.assert(! description.equals(abescription));

this.describeImpl(requester, aDescription);
TASKPostcondition.assert{ description.equals(abDescription));
TASKInvariant.assert(this.invariant(});

return;

and the describeImpl () method (overridden from TASKObjectImpl) looks like:

protected void describeImpl{ ActorImpl aRequester, String aDescription)
throws TASKException

{
this.setDescription(aDescription);

// send event notification

return;

4.3 Remote Objects in Java

Various implementation alternatives exist for client/server applicatons in the world of
network-centric computing. Among these distributed object technologies are CORBA/IIOP,
DCOM, RMI, Voyager, HTTP/CGI, and sockets. This section will explore the use of two
forms of middleware designed specifically for Java — RMI, from Sun Microsystems, Inc. and

Voyager, from ObjectSpace, Inc..

RMI (Remote Method Invocation) is an integrated distributed object model that supports
inter-process communication between Java virtual machines. It enables a method of an object

in one address space to invoke a method of an object in another address space with the same

74

syntax as a local method call. In addition to allowing the transfer of control between virtual
machines and the passing of objects by reference or copy, RMI also supports dynamic class
loading and callbacks to applets. RMI is a core part of the Java programming language which

all licensees are required to support. [Morrson 1997

Much like RMI, Voyager is a full-featured, intwitive object request broker that was designed to
provide a Java-centric computng platform. [n addigon to supporting dynamic class loading
and callbacks to applets, among other RMI fearures, Voyager supports mobile objects and
autonomous agents and also includes services for persistence, scalable group communicadon,

and federated directories. [ObjectSpace 1997]

In fact, two different implementations of TASK were actually developed, in an cffort to
explore the pracncal differences between RMI and Voyager. [n the following sections, several

aspects of these two technologies are compared in terms of how they are used in TASK.

+.3.1 Remote-Enubling u Class

Remote-enabling a class using RMI requires scveral steps. First, a remote interface must be
defined, which specifics the signature for every method that is to be invoked remotely. This
interface must either directly or indirectly extend the Remote interface, and each of its
methods must declare that they throw the RemoteException exception. Next, the class
must be made to realize the remote interface and provide an implementation for each of its
methods. The class must also either directly or indirectly extend (inherit from) the
UnicastRemoteObject class or provide its own implementation of built-in remote
object behavior. Next, the class must be compiled, and then stubs and skeletons for the class

must be generated using the RMI post-compiler, rmic. Skeletons are server-side references

75

to remote objects whereas stubs represent client proxies for remote objects that reside on the
server. Finally, the resulting stub class files, along with the remote interface class files, must be
placed on the client to be used in implementng an application that uses the remote objects.
This can either be done manually, by copying the class files to the client machine, or
automated using a technique called dynamic class loading, which tansfers classes from the

server to the client on an as-needed basis via an HTTP process on the server machine.

[n the RMI implementadon of TASK, the TASKObject interface directly extends the
Remote interface, and hence it and each of its sub-interfaces is implicidy a remote interface.
Classes that realize these interfaces also extend the TASKObjectImpl class, a direct
subclass of UnicastRemoteObject, and hence inherit default remote object behavior.

The TASKObject interface, along with its remote method signatures, is defined as follows:

76

public interface TASKObject extends Remote, TASKPublisher
{
public Collection actions() throws RemoteException;
public void addLock(TASKLock aLock) throws RemoteException;

public void describe(Actor aRequester, String abDescription)
throws RemoteException, TASKException;

public String description() throws RemoteException;

public void destroy(Actor aRequester)
throws RemoteException, TASKException;

public String getDescription() throws RemoteExceptiocn;

public Set getLocks() throws RemoteException;

public String getName() throws RemoteException;

public boolean isActor() throws RemoteException;

public boolean isKey() throws RemoteException;

public boolean isScope() throws RemoteException;

public boolean isTool() throws RemoteException;

public String name() throws RemoteException;

public boolean removeLock(TASKLock aLock) throws RemoteException;
public void setDescription(String aDescription) throws RemcoteException;

public void setName(String aName } throws RemoteException;

A similar strategy can also be used to remote-enable classes using Voyager. However, remote
interfaces must directly or indirectly extend the TRemote interface rather than the Remote
interface. Unlike RMI, methods that are to be invoked remotely need not declare that they
throw a temote exception, and classes that realize the remote interface need not extend any
specific class to inherit remote object behavior. Instead of requiring a developer to manually
generate stubs and skeletons, Voyager automatically generates client proxies for remote objects
on a dynamic, as-needed basis. Client applications need only have access to the remote

interface class files, and Voyager takes care of the rest. As with RMI, these class files can be

77

physically copied to the client machine, or dynamically cransferred using a remote class-loading

mechanism that is built into the Voyager server (described later).

In the Voyager implementation of TASK, the TASKObject interface directly extends the
IRemote interface, and hence it and each of its sub-interfaces is implicitly a remote interface.
Classes that realize these interfaces automatcally become remote objects as a result of
Voyager's proxy generation mechanism. The TASKObject interface, along with its remote

method signatures, is defined as follows:

public interface TASKObject extends IRemote, TASKPublisher
(
public Collection actions();

public veid describe(Actor aRequester, String aDescription)
throws TASKException;

public String description();

public void destroy(Actor aRequester) throws TASKException;
public boolean isActor();

public boolean isKey():

public boolean isScope();

public boolean isTool(};

public String name();

+.3.2 Exporting a Named Object

Once a class has been remote-enabled, instances of the class must be made available to client
applications by exporting named references to them. RMI includes an object registry service
that can be used to bind a remote object to a name, thus exporting the object for use by

remote clients. Once the remote registry has been started on the server either trom the

78

command line or programmatically, an object can be bound to a URL-based name by sending

the rebind () message to the Naming class.

In the RMI implementation of TASK, the TASK class is introduced to centralize the starting
of the registry as well as the binding and unbinding of remote objects. For example, the

startup () method starts the RMI registry on a specific network port as follows:

private static void startup(}
{

try

{

LocateRegistry.createRegistry(PORT);
}
catch (Exception e)
{

}
return;

Each remote-enabled class in the RMI implementation of TASK exports its instances by
binding them to names in the object registry in one of its constructors. This is accomplished
using the create () method of the TASK class, which binds remote objects by sending the
rebind () message to the Naming class with the desired name and the object as arguments,

as follows:

public static void create(TASKObjectImpl object)
throws TASKException
{
try
{
Naming.rebind(URL + object.getName(), object);
}
catch (Exception e)
{
throw new TASKException(e);
}
ENVIRONMENT .add{ object);
return;

79

Voyager also provides an integrated naming service that can be used to export references to
remote objects. This naming service is part of the Voyager server, which must be started on
both the server and client machines before objects can send and receive messages between
them. Once the Voyager server process has been started either from the command line or

programmatically, an object can be bound to a URL.-based name by sending the rebind ()

message 1o the Namespace class.

The Voyager implementation of TASK also uses one class to centralize the starting of the
Voyager server as well as the binding and unbinding of remote objects. For example, the
startup () method of the TASK class starts the Voyager server on a specific network port

as follows:

privace static void startup()
{
try
(
Voyager.startup{ PORT)
}
catch (Exception e)
{

}

return;

Each remote-enabled class in the Voyager implementation of TASK exports its instances by
binding them to names in the naming service in one of its constructors. This is accomplished
using the create () method of the TASK class, which binds remote objects by sending the
rebind() message to the Namespace class with the desited name and the object as

arguments, as follows:

80

public static void create(TASKObjectImpl object)
throws TASKException
{
Lry
(
Namespace.rebind(URL + object.getName{), object };

}
catch (Exception e)

{
throw new TASKException(e);

}
ENVIRONMENT.add{ object);
return;

+4.3.3 Obtaining a Reference to a Remote Object

Assuming a client application has access to the interface and stub class files for a remote class,
it can obtain a remote reference to instances of the class by looking up its name in the remote
registry. This can be accomplished by sending the 1ookup () message to the Naming class
with the object’s URL-based name as an argument, and casting the result to the expected type.
Doing this, of course, may result in exceprions such as NotBoundException,
MalformedURLException, and RemoteException, all of which must be explicidy
caught or re-thrown. For example, a client applicadon could obtain references to a remote

scope and actor in the RMI implementation of TASK as follows:

try
{
{Scope) Naming.lookup(“//khussey:7000/cask”);

(Actor) Naming.lookup(*“//khussey:7000/kenn”);

Scope scope
Actor actor

}
catch (Exception e)
{

}

As with RMI, Voyager provides a means to look up remote objects by name using its naming
service. A reference to a remote object can be obtained by sending the 1lookup () message

to the Namespace class with the object’s URL-based name as an argument, and casting the

81

result to the expected type. Doing this may result in exceptions such as
NamespaceException, which must be explicitly caught or re-thrown. For example, a
client application could obtain references to a remote scope and actor in the Voyager

implementation of TASK as follows:

try

{

(Scope) Namespace.lookup{ "//khussey:8000/task” };
(Actor) Namespace.lookup("//khussey:8000/kenn”);

Scope scope
Actor actor

}
catch (Exception e)
{

}

+.3.4 [nvoking « Method Remolely

Invoking a method on a reference to a remote object using RMI is essentially no different
from invoking a method on a normal object in Java except that there is a possibility that the
RemoteException exception may be thrown. RMI substtutes a skeleton or smb for
every method argument, parameter, or return value that is an instance of a remote-enabled
class. One unfortunate limitation of RMI is that there is no way to get a reference to the
implementation object from its skeleton proxy. Consequently, any server-side method
invoked on an object that is passed as a remote parameter must still be declared as part of a
remote interface. For this reason, remote interfaces in the RMI implementadon of TASK
must, in general, define more methods than the corresponding interfaces in the Voyager
implementation. A client application could remotely invoke the enter () method on its

reference to the remote scope in the RMI implementation of TASK as follows:

82

scope.enter{ actor };

try
{
}

catch (Exception e }
{

}

Using Voyager, invoking a2 method on a reference to a remote object is essennally no different
from invoking a method on a normal object in Java except that there is a possibility that the
RuntimeRemoteException exception may be thrown. Voyager subsdtutes a proxy
object for all method arguments, parameters, and return values that are instances of classes
which implement a remote interface. The implementation object can be obtained from its
server-side proxy in Voyager by sending it the getLocal () message and castang the result
to the expected type. Consequently, server-side methods that won’t be invoked remotely need
not be declared as part of a remote interface. For this reason, Voyager provides better support
than RMTI does for encapsulation in the sense that only high-level, interface methods must be
exposed in remote interfaces while low-level implementation methods can be hidden in the
classes that realize these interfaces. A client applicadon could remotely invoke the enter ()

method on its reference to the remote scope in the Voyager implementation of TASK as

follows:

try
{
scope.enter(actor };
}
catch (Exception e)

(
}

83

4.4 Object Serialization in Java

Persistence is the ability of an object to save its state so that it can be restored and used at a later
ime. Persistence can be implemented in Java using a technique called object seriulization, which
converts data structures into a common data stream that is independent of processor or
operating system. Any class can take advantage of this mechanism simply by implemennng
Serializable, an interface that acrually has no methods but is used by Java as a marker to
determine whether an object can be serialized. By realizing this interface, a class implicidy

inherits the default algorithm for converting an object to and from a dara sueam. [Wong 1998]

All objects in TASK are implicity serializable because the TASKObjectImpl class
implements the Serializable interface. As a resulr, the server can easily store the state of
the environment by asking each of the objects in TASK to write themselves to an output
stream. This is done indirectly by writing out a collection containing the objects in the

save () method of the TASK class, as follows:

public static void savel)
throws TASKException
{
try
{
FileOQutputStream fos = new FileOutputStream(*task.dat*);
ObjectOutputStream oos = new ObjectOutputStream(fos)
oos.writeObject (ENVIRONMENT);
oos.close() ;
}
catch (Exception e)
{
throw new TASKException{ e);
}

return;

Similarly, the server can easily restore the state of the TASK environment by asking objects to
read themselves from an input stream. This done indirectly by reading in a collection

containing the objects in the restore () method of the TASK class, as follows:

private static void restore()
throws TASKException
{
txy
{
FileInputStream fis = new FileInputStream("task.dat* };

ObjectInputStream ois = new ObjectInputStream{ fis };
ENVIRONMENT = (Set) ois.readObject{();
ois.close():

}

catch (Exception e)

{
throw new TASKException{ e);
}

Although the default algorithm for object serialization in Java works for the majority of
objects, there are some cases where this mechanism is not sufficient. Fields in a class can be
excluded from the default senalization mechanism by declaring them wansient. Dara that sull
needs to be made persistent, however, can be senalized in a customized way by overnding the
writeObject () and readObject () methods. Combining use of the transient
keyword with implementation of the writeObject () and readObject() methods
retains the ease of use afforded by the Serializable interface while at the same ame

providing the flexibility of application-specific seralization. [Wong 1998]

In TASK, the subscriptions attribute of the TASKContextImpl class is declared
transient so that any subscriptions involving instances of classes that implement the

TASKSubscriber interface but do not inhent from TASKObjectImpl class are not
85

made persistent. In order to ensure that the remaining subscriptions can stll be stored to an

output stream, however, the TASKContextImpl class overndes the writeObject()

method, as follows:

private void writeObject(ObjectOutputStream oos)

{

throws IOException

oos.defaultWriteObject(};
Set s = Collections.synchronizedSet(new HashSet()):
synchronized (subscriptions) (
for (Iterator i = subscriptions.iterator(); i.hasNexc();)
(
TASKSubscription ts = (TASKSubscription) i.next();
if (TASKObjectImpl.class.isInstance(ts.getSubscriber() })}
s.add(ts);
}
}
oos.writeObject{ s };
return;

Similarly, in order to read serialized subscriptions from an input stream when instances of

TASKContextImpl are restored, the readObject () method must be overridden as

follows:

private void readObject(ObjectInputStream ois)

{

throws IOException, ClassNotFoundException
ois.defaultReadObject ()} ;

subscriptions = (Set) ois.readObject();
return;

86

5 CONCLUSION

This thesis has described TASK, a general framework for collaborative workspaces. In
particular, it has explored the conceptual model, design specification, and implementaton of
TASK, in an effort to demonstrate how it supports several desirable features of groupware to
support collaborative work. In conclusion, this chapter brefly reviews the specific aspects of
TASK that support these features and thus facilitate the development of useful collaboratve

environments.

Frames of reference for collaboratuve activites are represented by scope objects in TASK.
Unlike the simplisdc notion of rooms employed by traditional environments, scopes provide a
context for collaboration that transcends the limiratons of a spatal metaphor. TASK allows
actors to be part of more than one scope concurrently, which means that participation in

activites is not limited on a per-context basis.

Communication between and within these frames of reference is accomplished by representing
users as actors in TASK. Interactions between these actors and other objects can be direct or
indirect, synchronous or asynchronous, and one-to-one or one-to-many. Awareness in TASK
is facilitated through application of the Event Notifier design pattern. Using this mechanism,
the execution of actions on objects is communicated as events to other objects in the

environment, allowing users to be aware of the activities of other users.

87

Tools to support the actvities performed within these frames of reference are represented by
tool objects in TASK. The primary means by which activites are performed in TASK, tools
provide a simple foundation that can be extended and adapted to support a more complete
range of activides. The ability to integrate new tools and actions makes TASK an ideal

framework for developing environments to support collaborative work.

88

BIBLIOGRAPHY

Booch, G., Rumbaugh, |., and Jacobson, I.. 1999. The Unified Modeling Language User Guid.
Addison-Wesley Longman, Inc., Reading, MA.

Curtis, P.. 1993. LambdaMOOQO Programmer’s Manual (available from parcftp.xerox.com,
directory pub/MOO/papers).

Curds, P., and Nichols, D. A.. 1993. “MUDs Grow Up: Social Virtual Reality in the Real
World”. In Third International Conference on Cyberspace, Ausun, TX (available from
parcftp.xerox.com, directory pub/MOOQ/papers).

Evard, R.. 1993. “Collaboratve Nerworked Communication: MUDs as Systems Tools”. [n
Proceedings of the Seventh System Administration Conference (LIS.A 11I), Montery, CA (avaiable
from parcftp.xerox.com, directory pub/ MOO/ papers).

Fowler, M. with Scott, K.. 1997. UML Distilled: .-\pplying the Standerd Object Modeling Langnage.
Addison-Wesley Longman, Inc., Reading, MA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.. 1995. Design Patterns, Elements of Rensable
Object Ontented Software. Addison-Wesley Publishing Company, Inc., Reading, MA.

Gupta, 5., Hartkop, J., and Ramaswamy, S.. 1998. “Event Noafier: A Pattern for Event
Notification”. Juva Report, 3(7):19-36.

Hunt, J.. 1999. “The Collecton API”. Jura Report, 4(4):17-32.

Hussey, K.. 1996. Design and Implementation of a MUD Framework in Smalltalk. Undergraduate
honours thesis, Acadia University, NS, Canada.

Hussey, K. and Miildner, T.. 1998. “Virwal Collaboratve Working Environments”. In
Proceedings of ED-MEDL-1 98 - World Conference on Educational Multimedia and Fypermedia,
Freiburg, Germany.

Hussey, K. and Tomek, L. 1996. “Support for Cooperation in Smalltalk”. In Proceedings of ED-
TELECOM 96 - World Conference on Educational Telecommunications, Boston, MA.

Mannion, M. and Phillips, R.. 1998. “Prevention is Better Than a Cure”. Java Report, 3(9):23-
36.

Motrison, M. et al.. 1997. Java 1./ Third Edition. Sams.net Publishing, Indianapolis, IN.

Oaks, S.. 1998. “The burden of synchronization: Hashtable vs. HashMap”. Java Report,
3(8):78-80.

89

ObjectSpace, Inc.. 1997. “Voyager and RMI Comparison”. ObjectSpace, Inc., Dallas, TX.

Payne, J., Alexander, R., and Hutchinson, C.. 1997. “Design-for-Testabtlity for Object-
Oriented Software: Techniques for increasing software testability”. Object Magazine, 7(5):35-
43.

Rodden, T.. 1996. “Populatng the Applicaton: A Model of Awareness for Cooperatve
Applications”. In Proceedings of ACM CSCW96 Conference on Computer-Supported Cooperative
IWork, Cambridge, MA.

Warmer, J. and Kleppe, .. 1999a. “OCL: The Constraint Language of the UML”. The Journal
of Object-Oriented Programming, 12(2):10-13,28.

Warmer, J. and Kleppe, A.. 1999b. The Object Constraint Language: Precise Modeling with UML.
Addison Wesley Longman, [nc., Reading, MA.

Wong, H.. 1998. “What is Java bean persistence?”. Juva Report, 3(3):70-72.

90

APPENDIX A: OBJECT REFERENCE

Actor

An individual who collaborates, or coacts, within TASK.

Attributes

context

The frame of reference for actions invoked on the actor.

description

A rexrual description of the acror,

focus

The scopes which the actor has entered.

keys

The keys which have been granted to the actor.

name

The unique texeual wentifier for the acror.

objects

The objects (tools) for which the actor is a frame of reference.

Aletions

create

Allows the requester to create a new actor, scope, tool, or key.

describe

Allows the requester to change the description of the actor.

destroy

Allows the requester to destroy the actor.

focalize

Allows the requester to change the context for the actor.

lock

Allows the requester to lock one of the actor’s actions with a key.

91

unlock

Allows the requester to unlock one of the acror’s actions with a key.

Key

A mechanism of limiting the behaviors of actors within TASK.

Attrbutes

description

A wextual deseription of che key.

holders

The actors to which the key has been granted.

name

The unique textual idendfier for the key.

owner

The actor that has authority to grant or revoke the key.

~letions

describe

Allows the requester to change the descripdon of the key.

destroy

Allows the requester to destroy the key.

grant

Allows the requester to grant the key to an actor.

revoke

Allows the requester to revoke the key from an acror.

Scope

A frame of reference for the actions that actors engage in as they collaborate in TASK.

Abtributes

context

The frame of reference for actions invoked on the scope.

92

description

A textual description of the scope.

name

The unique textual identifier for the scope.

objects

The objects (actors, scopes, and tools) for which the scope is a frame of reference.

letions

describe

Allows the requester to change the descoption of the scope.

destroy

AMlows the requester to destroy the scope.

cnter

Allows the requester to enter the scope.

exit

Allows the requester to exte the scope.

lock

Allows the requester to lock one of the scope’s actions with a key,

unlock

Allows the requester to unlock one of the scope’s acdons with a key.

Tool

A means by which actions are performed in TASK.

Attributes

context

The frame of reference for actions invoked on the tool.

description

A texnual description of the tool.

name

The unique textual identifier for the tool.

93

Actions

describe

Allows the requester to change the description of the tool.

destroy

Allows the requester to destroy the tool.

drop

Allows the requester to put the ool down.

lock

Allows the requester to lock one of the tool’s actions with a key.

take

Allows the requester to pick the tool up.

unlock

Allows the requester to unlock one of the tool’s actions with a key.

94

