
ThSK

A Framework for Collabomave Workspcrs in Jwa

Eienncth E d e Hussev

BCSH, Acadll Lrnivcrsiq-, 1997

'fiesis
submitred in p h a i hiultillment of the requirements €or
die degrce O€ bhstcr of Science (Cornputer Science)

Q by Kenneth E d e Hussey, 1999

National Library I * m of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques
395 Wetlington Street 395, rue Wellingtorr
OlrawaON K I A M ûttawaON K1AON4
Canada Canada

The author has granted a non- L'auteur a accordé une Licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or seil reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or elecîronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts 6om it Ni la thèse ni des extraits substantiels
may be printed or othemke de celle-ci ne doivent être imprimés
reproduced without the author' s ou autrement reproduits sans son
permission. autorisation.

TABLE OF CONTENTS

.. Table of Contents iv
List of Figures .. v
Abstract .. "
Glossary ..-....................... "
Acknowledgments ... "
1 Introductiûn .. 1
2 Conceptual Mode1 ... 7 . P Objects in Tibh .. 8

3.1.1 Actors ... 9
1.1.3 Çcopcs .. 10

.. 3.1.3 Tools 13
2.1.4 Keys .. 14

... Constrakts in T;\S K 15
... 2.3.1 Consuaints on Actors 18
.. 1.2.2 ConsuaLin on Scopes II

... 2.2.3 Constraints on Tools 24
.. 72.4 Consrraints on Keys 27

3 Design Specification .. 2 9
.. 3.1 'I'i\S I.; and the UhlL 29

... 3.1.1 L'se Case D h g r m s 30
... 3.1.2 Class Diagrams 35

3.1.3 Sequencc Diagnms ... 39
... 3.2 Design Patterns in T;UK 52

3.2.1 htediator .. 53
3.3.2 Observer .. 55
3.2.3 Event Notifier .. 57

4 Implementation .. 61
.. 4.1 JDK Collections :\PI 63

.. 4.2 Impiemen~g Constraints in Java 69
1.3 Remote Objects Li Java .. 74

4.3.1 Remote-Enabhg a Clms .. 75
4-32 Esporthg n Narned Object ... 78
4.3.3 Obtaining a Reference ro a Remote Object ... 8 1
1.3.4 Invoking n Method Rernotely .. 82

.. 4.4 Obiect Seallizntion in Java 84
5 Condusion ... 8 7
. . BibLopnphy~.. 89

.. hppendiv A: Object Reference 91

LIST OF FIGURES

iVl/mber P q e
Figure 1 Objects in TASK .. 16
F i p 7 Use cases involving objects ... 31
Figure 3 Use cases involving contexmai objects ...-. 3 2
Figure 4 Lise cases Livoking actors ...-... 33

... Figure 5 Use cases involving scopes 33
... Figure 6 Use cases involving tools 34

.

.. Figure 7 Cse cases hvolving keys 35
, r .. Figure 8 Classes and interfaces m L'SK 37

.. Figure 9 Interhces in TiiSK 38 . - 7 ... Figure 10 Classes in T . - h h 39
Figure I 1 Message sequence for the descr ibe action ... 40
Figure 12 hlessagc sequencc for the lock action .. 41
Figure 13 Message sequence for the unlock action .. 42

........................... Figure 14 Message srqucnce for the crea t e action 42
Figure 15 hlessage ssequence for the des t r o y action (actors) .. 43

.. Figure 1 6 hlessagc sequence for the focal i z e action 44
Figure 17 hlessage sequrnce for the des troy action (scopes) ... 45
Figure 18 Message sequencc for the enter action .. 16
Figure 13 blessage sequcnce for the e x i t action ... 46
Figure 20 Message srqrience foc the des troy action (rools) .. 47
Figure 21 Message sequcncc for the drop acaon ... 43
Figure 33 Message sequencr for the take action ... 49
Figure 23 tvlessage sequence for the des t r o y action (kcys) .. 50
Figure 24 hlessngc sequence for the grant action ... 51
Figure 25 Message sequence for the revoke action ... 51

.. Figure 76 The Mcdiator design pattern 54
7 .. Figure 27 App iicntion of Mediator in TA\SL 55

Figure 28 The Obsenw design pattern .. 55
Figure 29 Application of Obsenrer in TASK .. 57
Figure 30 The Event Noàfier design pattern .. 58
F i 31 Applicaaon of Event Noafia in TASK ... 60

* 7 Figure 32 The TAbh browser ... 6 2

Several attempts have been made in recent years to develop a usehl envkonment to support

collaborative wvork. The success or failure of thesc environrnents c m perhnps be attributed in

part to the degree to which they support a s m d nnumber of desirable fatues. The purpose of

this thesis is to describe the concepnial model, design speuhaon, and irnplementauon of a

Eramework thar, through its support for these fcntures, facilitates the development of

collaborau~e wvorkspacices Li Java.

GLOSSARY

action. An openaon that c m be dkectly invoked by actors in TASK

activation. n i e evecution O€ a computational or algoridirnic procedure

actor. An individual who coüaborates, or coacts, within TASK; an entity outside a system that
interacts wvith use cases

aggregation. A form of association char represents n whole-part relaaonship bcnvçen an
aggregate and its component part(s)

APL Application Programming In ter face

assertion. A statemrnt that should alwavs be truc and c m oniy bc fdse in die ment of an
error

association. -1 concepmd relationshp benveen classes in which each class plays a distinct role
and for which each role has its own mukplicity; a relationship thac desuibes a set of semmtic
connections m o n g mples of objects

association class. .-\ modehg element that has both associaaon and class propetries

association role. 'Che end of an association whcrc it connccts ro a class

;isynchronow interaction. An intenction in which ncrors are not simultaneousty involvcd in
an action

amibute. A property possrssed by a class

behaviod pattern i\ design pattern that deals Mth communication benveen objects and
classes

CGI. Comrnon Gateway Interface

class. A description of dl objects with similar structure, behavior, and rdationships

class pattern. h design pattern t h t is concerned with static relationships (associations and
subtypes) benveen dasses

coation. A spnonyrn for coilaboration

collection. A single object representing a group of o t h a objects, refened to as elements of the
coilection

vii

consaaint A restriction on one or more values of (put of) a mode1 or system

context The scope within which an actor is engaged in actions at a given point in time

CORBA Comrnon Object Requcst Broker i\rchitecture

CPU. Centrai Processing Unit

creational pattern. A design pattern thnt abstracts che instantiation process

DCOM. Dismbuted Component Object Mode1

design pattern. A description of communicating objects and classes customized to solve a
genenl design problrm in a specific contevt

direct interaction. An interaction benveen actors in which an intermedLzte object is not
involveci

dom-calling. h technique Cor ensuring thnt both the syntas and the semantics of an interface
are consistent

Cocus. The coUection of scopes with which an actor is a~sociated

generdkation. An inheritance rrlationship benveen a more generd element and a more
spdf ic elemenr

groupare. Cornputer systems designed to support groups of people working r o w ~ d s a
cornmon goal

GUI. Graphicd User Interface

HTTP. Hypertext Trms ler Protocol

IIOP. Internet Inter-ORB Protocol

bplementation method. h method rhat is resmcted to the inheritance hienrchy but c m be
overridden to provide the irnplementation for an interface method

indirect interaction. An interaction between nctotç in which an intennediate object is
involved

intedace. h collection of opentions used to speclfy a service provided by a dass or
component

inteiface rnethod. A publidy accessible melhd that can be directly invoked but cannot be
ovenidden

invariant. A resmcuon on a dass, type, or interface diat specifies conditions which must hold
mie for ail Listances of that dass, type, or interface

JDK Java Development Kit

key. A mechanism of L imi~g the behaviors of actors within TASK

LAN. Local Ares Nemork

üfeline. i\ dashed vertical 1Lie representing an object in a sequence diagram

message. A communication benveen objects which results in somr activity

MUD. hlulu-Cser Dungeon

object. An instmcc of a dass with a weU-drfmed identity

obiect pattern. :\ design partern thar involves dpamic relationships, which c m be changeci at

object seriakation. A technique in Java that converrs data strucnites into a comrnon data
strearn that is independent of processor or operathg system

OCL Object Constnint L a n p g e

OMT. Object hlodeling Technique

one-to-many interaction. ;\n interaction benveen one nctor and many other objects

one-to-one interaction. An Litencrion benveen one actor and one other object

opration. A process that a dass knows how to carry out

ORB. Object Request Broker

PC. Personai Computer

persistence. The ability of m object to Save its sme so that it can be restored and used at a
iater tirne

postcondition. A condition that must be tnie imme&tely afier the evecution of an opention

precondition. A condition that must be tw before an operation c m be =ecuted

purpose. What a design pattern does

redizatioa A semantic rehtionship benveen an interface and a dass that realizes or
implements it

RMI. Remote Mechod Invocation

scope. il kame of reference for the actions that actors engage in as they cohborate in TASE;;
whether a design pattern applics to classes or objects

s ~ c ~ a i pattern. ;\ design pattern that deals widi the ways in which dasses and objecrs are
combined to form larger smicnires

subtype. A generdkaaon rebtionship in which an instance of the subtype (or child class) is
also, by de finition, and instance of the supertype (or parent class)

synchronous interaction. An interaction in which actors are sirnultaneously invoived in an
action

TASK. Tools, rk toa , Scopes, and Keys

tool. A means by which acaons are pcrfomed in TASK

URL. C;'nifom Resourcc Locator

use case. A sequence of acaons performed by a systern that yields an obsenrable resuit to an
acror

I wish to thank the foilowing people, without whom thL; thesis would not have been possible:

my thesis supervisor, Tomasz, for h k patience and understanding

my faMly, for their love, encouragement, and support

my wile, Angelfi, for beiievhg in me even when 1 didn't

the little train that could, for inspinng me to think 1 c.m

1 INTRODUCTION

Cornputers have been used in educauond settings for mmy y-, but und recendy, thev have

been used mosdy in hbs nther than in the classroom. Over the past few years, severai

universities have Litroduced the concept of electronic classrooms, in which mch smdent bas

access to a nenvorked computer. Some institutions have aho esperimented with "studio"

classrooms, whrre teams of smdents sic around n table m d coiinborate to solve problcms given

by the Listructoc. The insmctor is often supportai by t e a c h g assistants who supervise

students by physicailv moving around the dassroom and joining smdent teams. Proviciing

these hcilities is a w r v espensive initiative, and is only feasible if it is cosr-effective. In a n

educauond setting, this tr;inslates to incrensed cffincncy o€l&g.

Perhnps the best leaming processes are thosc that cmphasisize interaction and teiunwork.

Cornputer systems desyied to support groups of people working towards a common god are

referred to as ~ " m p w m . Unfomately, in esisting clectronic classrooms, cypicaiiy the oniy

lorm of compter-bascd communication is through the use of standard Intemet faulities, such

as Web browsers or specialized dent applications.

u s e u for the o v e d coordination and administration

iacking.

L W e these systems may prove to be

of courses, they d ultitnarely be found

These issues affect not only educationai institutions but any orgdnizaaon that cm bene6t fiom

the use of groupware, such as a s o b a r e development team. Softwve devdopment is a

process that consisu of a well-defined set of actMties LivolWig roles phyed by actors with a

cornmon goal. Formality o c and adherence to, the structure of these activities varies, but in

generai the process is iterative and incremental, and typicdy involves spedcation, andysis,

design, irnplcment;iuon, tescing, and evduation. Quality sofnvare development results ~ o m

successfid modeiing, m o n i t o ~ g , and managing of these activities. S e v d attempts have been

made to provide automated support for rhis endeavor, but with only iimited success. In

partidar, e x i s ~ g tools lack expliut support for teamwork across geographical boundaries,

formai and infornial communication. team cooperation and coordliation, problem reponing

and resoluaon, and quality assurance.

Much success using the Lambdahl00 environment (see [Curtis 19931, [Curtis ÇYr Nichols

19731, and [Evud 19331), among ochers, indicates thar developing n hmework For creating

usefui collaborauve environments is possible. The base hncuondty prorided by

Lambdah[OO is rtrhtively minimal. Its unliry results frorn its esrensibility. A s a fnmework

for sofnvare development, however, it does s d suffer from the legacy of spatial metaphors.

What is needed is a €uiiy extensible environment chat is similnr to LambdaMOO, but wvhich

r e l ~ ~ e s the concept of space. Such a bewvork would provide a more convenient forum for

communication and development, and *e more Geedom CO developers to do whar thev do

best - develop s o f ~ a r e .

I

Too much effort is being spent by researchers to develop environments h m the dient or user

interface perspective. What will be adueved by these activities is merely a more convenient

interfice to feanires thnt could have been provided by an envirunment iike LambdaM00 in

the k t place. T'bis is not acceptable. We must change out focus to address the fundamental

ways in which we comunicate and Litenct while acting within the roles we phy, in order to

develop a framework thnt can be later complemented with a usehil client interface which will

(and should) be modified by users of the system anyrvay.

V h d environmena such as Multi-User Dungeons (bILrDs) change a uses's sense of

orientation, time, presence, awarcness, movement, and actions. Spaaal metaphors are suitable

(and even usriid) in a role-phylig rnvkonmenr, and Lidced this wns the tacget domain of the

k t hmD. The notion of space is perhaps too restrictive within the contest of sofnvare

enpeeling, or any socid ilvork environment for that matter. In the past? coliaboraave t.iminI

environrnents have bcen designed to mirnic the notion of space, hoping to improve usabdky

based on useu' famùiaritv with the physicd nature of the real wodd. Howcver, these

enrironrnents have missed out on one of the most usrtul aspects of WNal cnvironments,

whcre spatial h tac ions are simply not necessq. Converscly, rhe notion of social contest is a

necessiv in these rnvironments. Whnt is nceded is n telûsauon of the nadiaonai riews of

vimiai space, CO gtve wny to a metîphor which encompasses both spatial (to n h t e d estent)

md social aspects.

.ln iilustrativc erample of the inndequacy of the spatial metaphor is the use of esirs thar

represent the links benveen rooms in traditional coilabontive cnvironmcnts. In such

environrnents, the exit consmict introduced a logcal sepantion benveen spaces and provided

a doser mode1 of the physicd world thm rooms could done. However, after using such m

environment for some time (uid discovering its basic topology), the concept of an exit

becomes more of a hindrance than a help. Indeed, most users make much greater use of a

teleport (or equmalent) command, if one is available, to jump fiom room to room,

essentdy elLnLiating the need for exits. This phenornenon in nim l a d s to a more important

consequence,

Furthenno te,

the designers

the disinregration of the spaoal metaphor itself.

locusing on s p e d c artifacts to be manipdated by users is a waste of t h e for

of coilabonave virtual envlonments. Attempts to provide a set of tools with

the a h to solve di development problems dl resuit only in Eailure. This is evident in the

myriad OF r rsmch projrcts in the pas[thnt tricd to produce the miracle appiicaaon. W'hat is

clear, however, is that an environment needs to support certain feanues ro be useful in

collabonave work. Tliey inchde the lolIowing:

dits with the notion of rooms, but this is too simple a modcl. The frames of reference

that we h d oiirselves being involved with stem not from our physicd location, but

rather from the many roles we play within (and without) an organization. .\t any one

time, we mv f o a s on the context surrounding a particular role, with in d i s ~ c t social

(and cultuni) rnenning. In reality, howcvcr, we cemain responsible for ail of our roles,

irnplying char we need to bc part of more th;m one f m e of reference concurrendy.

T h i s is not possible using a spatial model, which iitnits our pmkipation in activities on

a per-room basis.

.cl mrrrrr* oj"on~~)~~~~ti~'rl~ing withi~i ami be~tuten th+ejrtrme~- oj'qtinn~z. This is typicdly done in

EvILTDs by representhg usas as objects, or players, in the environment and providing

commands to d o w these objects to intenct. Various forms of communication e x i s ~

such as ynchronous vs. asynchronous, public vs. private, coordinated vs.

uncoordinated, one-to-one w. one-CO-my, etc.. Another important issue is

awueness. In an envkoament that ladtates multiple fnmes of referuice containing

multiple users, a mechanism to provide feedback on the attentiveness of users Mthin

the environment is indispensable. Sevenl attempts have bem made to provide this in

traditiooal environments, but Mth only Illnited success.

Tod- to ripporl fbe u ~ t i d h JW pe?,fom ldhiiri fhese /kmze~- oj' n/mnrr. The exact nature of

these tools depends on speafic activiaes and cannot be wholly d e t e h e d at design

time. This is an issue overlooked by many systems designers. in order for an

environrnent to be usehi, it must be both general and speafic at the same the , but

more irnpornntly, it must be extensible and adaptable. Deciding which took are

needed, and indeed which will bc used, before an environrnent is deployed O+ m&es

the environrnent more rigid. h structure which allows the inteption of new and

esisting tools into the environment, howrver, is quite usehl @ut diffiadt to achieve).

Building on concepts developed in pretkus resexch (sec [Hussey 1996] and [Hussey Xr

Tomek 19961), I inuoduce a genenl framework to support collaborative worksplices. cded

TAS& which stands For Tools, + h o r s , Scopes. and Keys. Like Lambdab100 and other

exisàng cohboncive virtual envùonments, -l':\SI; is m rvtensible environment that lacilicites

red-tirne communication benveen its users. In contrast to LambdahlOO, howcvcr,

communication in S is not test-bascd, but instad utilizes an cvent notification

mechanism that dows users to share and interpret information about the acavities rhnt take

place as a result of coiiaboration. Rather than attempting to pro~lde a complete set of

applications to solve a sspecific problem, as some of its predecessors did, TASK aims to be a

generai loundation chat c m be ertcnded with tools to suit any targct domain.

This thesis di describe in detd the concepnial model, design speafication, and

knplementaaon of the TASK Gamework in an effort to demonstrate how it supports these

fanues, and in mm facilitates the development of useM environments for coiiaborative work.

More specificdy, mdysis of the conceptuai model and its associated consaaints (using the

Object Constra.int hguage), spedcation of the design (ushg the Uni6ed b i d e h g

L3nguage) and the application of patterns (hiediator vs. Observer vs. Event Nodier), and

implementation of coilections, nssertions, remote objects (Rernote Method Invocation vs.

Voyager), and object seEalization in Java d be discussed. It is assumed that the reader has a

basic working knowledge of Java and the object-onented para+.

In this chapter, I present a specific esample of a studio classroom nt hcadia Universiry, which

I believe applies cqudy well to any collaborative working cnvironment [Hussey & hliiidner

19981. Consider a chssroom in which the instnictor and di pamcipating smdents have access

to nenvorked cornputen and can interact, for esample, dirough the use of dodoadable files,

an e-mail hcilirv, nnd n projector cvhich c m display images from a single computer. The

insmctor is a mcmber of the Faculty of Computcr Science, and the students are

undergraduates in the Bnchclor of Cornputer Science program and enroUed in the inuoductory

programming coiusc, C0R.P 1013. The snidents :ire organizcd into groups of Four to

facilinte discussion of problems poscd by the insüuctor. One cqxcts that the following

hypothetical interactions would be possible:

1 . Irr~~ntcfoor 10 J'IMC~~IZIJ: The insmictor gves a verbai introduction to the problem to be

solved during the dny's dass.

2. In~-tmcfor 10 JWICIZIJT The insmictor makes n tile required to solve the problem atdable

for the students to read.

3. Sizuieni /O ~~~tdenfr~: h student discusses the problem proposed by the instructor withli

his or her group of four students.

4. S~udent to rludnt: A student sends an e-mail message to a student in another group

asking if she or he c m c k f y some aspect of the problea

5. lti.r-~m-ior ro i ~ d e n ~ : The instructor gives a student exciusive access to the projector,

puhaps revoking other students' access to the projector.

6. S~~~detit /O in~~nttfor und JYIICI~~~J*: LA student shares her or his group's soluaon to the

problem with die rest of the ciass by disphying it on the projector.

2.1 Objects in TASK

Designing a framework to model a spedfic ptoblem is somewhat simi1a.r ro designing an

obiect-oriented cornpurer p ropm; it consists of identifylig the underlying objects and

interactions benvern thcse objects. The collection of di abjects relevant CO a given pmblem

rnight bc caiied a problcm's domain. In our electronic clssroom, the domnin consists of

objects such as die following:

+ snidents and instructors

fadaes, prognms, chssrooms9 and groups of students

fidiles, c-mail iilaciliàes9 and projectors

objccts providing access restricaons

In modehg interactions benveen these objects, it is usehl to consider ciiffirent kinds of

objects. The Ti\SK framework consists of four basic khds of objects - nctors, scopes, tools,

and keys. In the loîlowing sections, I buefly describe each of these concepts, and how they

c m be used as a model of our case study. Note that TASK is a v h d setting, dehed by the

learning nctiviry nther than by the boundmies of a physical dassroom.

2. /. / ;4d0 FJ.

Cohboraaon occurs when nvo or more iudividuals engage in actions chat are directed toward

a common task @ence TASK). As such, 1 use the r e m acrorto refer to the individuais cvho

collaborate, or coact, within Ti\SK (sou~tion is actudy a synonym for coll?bonaon). An actor,

then, is the embodirnent of a physical user and represents an entity involved in performlig an

action, for esample a student, an insrnictor, o r a programmer. 1 dl refer to an actor using the

impersonal "it", rather than she or he.

In o u electronic classroom, there ;ire n + / actors: 11 students and one instnictor. 'i'he user

embodied by each actor has access ro a cornputer, and the cornputers are ncnvorkcd. The

r e s d ~ g interactions benveen actoe are d h t if no intemediate objecc is involved.

Intcncaons 1 and 3 abovc are exunples of ditect interactions. Idimt interactions, on the

other band, involve a mcdiator object, such as a projector or an e-m'd f ad ry . Inrcnctions 2,

4, 5, md G arc esamples of indirect interactions.

In addition ro bcing direct or indirect, interactions benveen nctors c m occur in one of nvo

modes. S~IIC~TDIIOHJJ interactions are those in which actors are simultaneously involved in an

action. lnteracaons 1, 3, and 6 above arc e~,ampIcs of ynchronous interactions. Typicdy,

synchronous interactions involve real-tirne communication in a mannet sirnilar to using a taik

or chat program. This cd-tirne aspect is the key distinction between TASK (among other

vimial coiiabontive environrnents) and currently avdilable groupwlre f d a e s . /l:'ync~mnous

interactions are those in which actors are not simultaneously involved in an action.

Interactions 7, 4, and 5 are e~iimples of asynchronous interactions. Asynchronous

communication is e s p e d y usehi in a groupware application for situations where users are

separated by a (geopphicai) t h e difference.

Interactions can dso be categorized by carhaiity. The tsvo most common cardinahties in

TASK are one-Io-one and une-tu-muq? although others are possible. Intenctions 4 and 5 above

are esamples of one-to-one cardinality; interactions 1,2,3, and 6 are one-to-many.

7 1 .? S L D / ~

hoche r important aspect of coUabontion is the contesr widun which it cakes place. Indeed,

our actions have linle cohesive meanhg iuilrss chev ocau within some sort of boundy or

G m e of reference. This Game of refcrence is determineci not mcrely by physical orientation,

but h o (more importantly) by the role we play in die collabonaon. In our everyday Lves, we

mav be responsible tot man? differcnt roles, but at m y one t h e we concentrate on the

contexr surroundhg a p d d a r role, Mth its disûnct social (and cultural) meaning.

:\ scope is a framc of ceferencc for the actions that mors engage in as they collaborare in

TASK. .\n actor cnters a scope whcn it rakes on a particular role associated wirh, or engages

in somc action boundrd by, chat scope. Conversely, an actor cuits a scope when it is no longer

interested in the actions that take place therc.

in nature - as actors enter and esir a scope, it

;\s a resulr, scopes are dvnamic nthcr than static

binds, or holds a set of actors i n t e n c ~ g within

its boundarv. In ocher words, n scope object consists of n number of actor objeca (and other

objects introduced hter); when actor A enters a scope S, A is added to S, and when it exits S, A

is removed from S.

Seveml examples of scopes exist within out electronic dasstoorn case study. hcadia Universitg

represents the scope of f d t i e s and programs that focm the unique enviromnent commonly

associated with an institution of higher leaming. The F d t y of Cornputer Science is the

scope of a i l professors that research and teach cornputer science at the university, while

10

Bachdor of Computer Science is the scope of students that study cornputer saence there (for

the sake of simpiicity we ignore specializations of this program). CObP 1013 is also a scope;

it bkids the instructor and student actors as they engage in the levning activities assockited

widi this course. Finally, the groups in which the smdents are arnnged as part of the studio

dassroom format are also examples of scopes.

Jusr as rvr may play a number of diffrrnt rolrs in evçlydny Lifr, so too c m an actor be a

member of more than one scope; in other words. an actor is associated with a collection of

scopes. Borrowing temiliology €rom awareness rheory (see [Rodden 1996J), dus coiiecuon of

scopes can be cded the actor's jom. In our case study, the Listructor's focus consists of

.\cadis Cniversity, Faculty of Computer Science, and COhIP 1013. The Eocus of a student

consists of Acadia University, Bachelor of Cornputcc Science, COMP 1013, and the group to

which the studcnr belongs. .-in actor's focris changes every t h e it enters or e i t s a scope; for

examplc, when a snidcnt moves from one group to another. Note chat an actor's focus

consists of all scopes that it may be interestrd in, but the actor concentrates on oniy one of

them at any givcn t h e . I c d this specific scope. ividiin which the actor is engaged in actions

at a given point in tirne, the actois L'O~IICXI. In our case study, the insauctor's context is COh,P

10,13, and a smdent's contevt is the group to wvhch the snidenc belongs. A s with its focus, an

actor's context changes every M i e it concentrates on a different scope; for esnmpk, the

instmctor who moves on to teach mother course wd have a différent contex,

It is puhaps intuitive that xopes be nested to f o m a son of hiemchy. il useM metaphor foc

diis is a tile system of âirectories and files, in which directories contain files but c m aiso

contai. other directories. In the same sense, scopes cm fomi the context for acton engaged

Li actions but cm also hold other scopes. Hence, a scope may consist not only of acton, but

dso other scopes (and other objects desaibed below). In the case of nested scopes, before

entering a pmicu1a.r scope, an actor must h t enter the scope in which it is held.

The hieruchicd rdationship between the scopes in our elecnonic dassroom case studv is

shown below. In particular, the hca& Universinr scope holds the instructor and student

acrors, and the Faculty of Cornputer Science, Bnchelor oCCornputer Saence, and COhP 1013

scopes; the Facuin. of Computer Science scope holds the instnictor actor; the Bachelor of

Computer Science scope holds the snident actors; the COhP 1013 scope holds the instructor

and student actors, and the group scopes; the group scopes each hold four student nctors. The

focus and contcst of each actor cm also be clearlv scen below. For esample, while the

insuucror actor appexs under the Acndin Universitu, Faculty of Computer Science, and

COMP 10 13 scopes (rogether comprising its focus), it is concenrncing on the C O h P 10 13

scope (its contexr), under which it appears in bold qxface.

Acadia Unfverrity
Ins tructor
Student 1
. . -
Student n
Facu l ty of C o i ~ p u t e r Scionce

Ins t r u c t o r
B a c â e l o r of Ca8pUt.r S c i e n c e

Studen t 1
* . .

Studenr n
CO#P 1013

mtructor
Student 1
. * .

Studen t n
Oroup 1

studmnt 1

a..

Studr i l t n

3 1.3 Tooh

In desaibing interactions benveen actors, it is usehil to introduce the concept of a iool Tools

are die primary means by which actions are perfomed in TASK and, as urith actors, they are

bounded by scopes. This has nvo consequences. Firsr, the actions provided by a tool c m ody

be performed bu actors bounded by the scope in which it is held. Second, only the mors held

by this scope are m a r e of the tesults of the perforrned action(s). hnother aspect of tools is

that they cm be taken or dropped by acton. thus providing a means for thrk displacement

benveen scopcs. Thar is, an actor cm take a tool €rom one scope, change irs contest, and then

drop the tool in another scope. An actor that hns taken a tool becomrs n Game of ceference

foc die tool und ir is dropprd. In this sense, iui acror reprcsents a kind of private scope for

t001s in 'TASK.

Within our clecuonic dassroom, the Gles, e-mail f a d t y , and projector represcnt esamples of

tools. 'The mes are bounded by the COMP 1013 scope, and might provide actions to r a d (as

in interaction 2 nbore), wnte to, and csccutc the Me. The e-mail iool is boundrd by the

kad ia University scope, and mighr providc actions to check for, or send (as in interaction 4

nbove), nrw messages, and to read, reply to, or foward esking messages. The ptojector mol

is bounded by die COMP 10'13 scope, and might provide actions to tum on, or tum off, the

projector, and to display an image fiom a single cornputer (as in intencaon 6 above).

hlthough tools are the ptimary means of performing actions, other objecn in TASK c m

provide actions as w d For =ample, actions evist to aeate and destroy every kind of object

wichin the b e w o r k , and scopes provide actions to enter and exit th& b e s of refisence

(as aiiuded to eafiier). However, a complete set of actions required by actors in TASK m o t

13

be whoily determined at design t h e . In order for a v i d collaborative work environment to

be u s e w it must be both generd and speufic, but more impomndy it musc be extensible and

adaptable. It is rhrough the inregration of new tools and actions that TASK d nuiy support

coilaborative work.

2.1.4 Ky

Cleady, unrestricted access to d tools by di actors may not be dcsired, and thercfore I define

the notion of a key to hciiitate access restrictions within TASK. Keys are assigned on a per-

action basis; that is, in order to perforrn a locked action on an object, an actor musr hold the

key with which it has been locked. In the event that an action is locked by more than onc tey,

only one of thcse keys is needed to invoke the action. Actions cm be locked or unlockrd, and

keys cm be gmred or revoked, dynamicdy accorciing CO speufic permission or privikgc

needs. For esnmplc, the actions to destmy and to lock an action of an object could be locked,

and the kcv granted to an actor when the object 1s creatcd. This key could then, in a sense,

represent a form of owncrship within the framework, where the holdrr of the key is implicitly

the object's "owner".

Interactions 3 and 4 from out electronic chssroom case sniciy illustrate the use of keys. It c m

be nssurned thnt the instructor was the actor that crented the file and projector objects, and

hence represents thek "ownerl'. In interaction 2. the instructor gives dl of the snidents access

to the file by unlocking its cead action, thus making it available for d o d o a d . In Literaction 4,

the insmctor @es one smdent evdusive access to the projector by locking its actions and

p t i n g the key to the smdent. In both cases, che insmctor may dso have to modify

previously granted pritrileges by r e v o h g keys Gom orher actors. The use of keys in chis

manner provides a flesible, yet powerhi, mechanism O € iimiting the behaviors of actors within

TiUK

2.2 Consttaints in TASK

In desuibing concepnid models, it is helphl to use dass diagnms (described in more d r d in

Chapter 3) to show the rehtionships that esist among the types of objects in a system. In

genenl, there are ~ v o kinds of rehtionships: assockaons and subtypes. a & s ~ & ~ i ~ ~ ~ ~ . represent

conceptual rchaonships benveen classes in which nch dass plays n distinct role and for which

each role has irs own rndtiplicity (Le. how man! objects participate in the given relationship).

J I ~ ~ ~ c J - represcnt generalization relationships in which instances of the subrype (or child dass)

are also, by dehnition, instances of the supertype (or parent chss). Chss diagrams also

describe the amibutes and opentions for the various kinds of objects. .-l/,nlt,/trr rrpresent

propettics possessed by the dass, whcrcas uper~ztiio~z~. represent the processes chat a class knows

how ro c m out. [Fowler 1907

Figure 1 presents n class diagram using the Cnified Modehg L û n p g e (sec Chapter 3). which

shows the rehtionships, attributes, and opentions for actocs, scopes, tools, and keys. Note

that threc s u p e q e s (Ob ject , Contextual Ob ject, and Context) have been

introduced to factor out chvactaistics that are common to two or more types of object.

Specificdy, Key is a subwe of O b j ec t, Tool is a s u b w e of Contextual O b j ect,

and A c t o r and Scope are subtypes of Context, which is Li mm a subtype of

Contextual Ob j ec t. Associations e i s t between Contextual O b j ec t and Key

(via n Lock association type), between Contextual Ob j ect and Context, between

A c t o r and Scope, and between AC t o r and Key. Ail objects have avne and description

atmbutes. Operations for A c t o r indude create, describe, des troy, focal ize,
25

l o c k , and unlock Operations for Scope indude describe, destroy, enter,

exit, lock, and unlock. Opexations for Tool indude describe, destroy, drop,

l o c k , take, and unlock. Operations for Key indude describe, destroy, grant,

and xevoke.

kIuch of what a dass diagram does is indicate consuaints. A romh-rnht is a restriction on one or

more values of (part ol) a mode1 or system. The most cornmon types of consaaincs are

invariants, preconditions, and postconditions. An invrirunt represents a resmction on a ciass,

type, or interface, and specifies couditions that must h a y s hold tue for ail instances of that

ciass, qTe, or interface. Both preconditions and postconditions represent restrictions on

opentions or methods. Pncondilim speufy conditions that must be mie before an operaaon

c m be executed, whereas po~-t"o~~dtioio- speafy conditions dint must be mie immediately afier

the esecution of an opention. hVamiet & Kleppe 1999al

,Uthough relationships and associations do much in the rvay of specifyuig constraints, they

cannot possibly indicate r v q consua.int. The Objrct Constnint Language (OCL) is an

indusuy-standard textual language for desuibing constraints on object-onented models. Csuig

objccts and objcct propemes as its building blocks, the OCL detines basic types and

operauons thar cm be combined with user-dehed mode1 wpes to speciff invariants,

preconditions, and postcondiaons of a system. ;\il OCL espressions are d e h d within a

specific contest: the context of an invarîant is a dass, intcrfnce, or Npe, whernï the contest

for preconditions and postconditions is an operation or a method. [\Varmer cYr Meppe 1999bl

In TASK, operations thas cm be dlectiy invoked by acton are referrrd ta as actions. i\ctions

are the unit of event atornicity in T:\SK. .-i serics of ncaons requcsted of actors, scopes, tools,

and keys by an actor represents an activity in which thrr nctor is engaged. Actions wiu be

d e h e d for the vuious kLids of objects by applications that estend the T;\SK framework.

The foilowing sections desuibe the invariants of, and constnints on the predehed acaons

for, actors, scopes, tools, and keys in OCL using the followlig conventions:

O U kepvords are in bold, although this is not part of the fomd synm

Tbe h s t iine denotes the contest of the coastraint (ype, h s s , intetface, or

opention).

The second and subsequent lines contain the a d consnaint(s) being descn'bed.

Invatiant, precondition, and postcondition expressions are preceded by idenafiers

invariant : , pta : , and post : , respectively.

32 / Co r t~krr j r l t~ or1 ALYOFJ'

Since an actor is a kLid of contexnid objcct, its context (a scope) must indude the actor as one

of its objects; an actor is also a kind of context, so the context for dl of its objecrs (rools) must

be the xtor; di of an actor's keps must indudc the actor as one if its holders; an actor's focus

must includc irs contest; d of the scopes in an actor's locus must indude the acror as one of

its objects. Thcse invNlants can be espressed using O U as foiiows:

context Actor
invariant: context.objects->includesI self 1 and objects->for~ll(oclIsKind~f(
Tool) and context = self) a d keys->forAll(holders->includes(self 1 1 aad
focus->includeç(context 1 and focus->forAll(objects->includes(self) 1

n i e create action on mors dows the requester CO crcntc a new nctor, scope, rool, or kcy

In order for this action to be invoked, thc actor rnust either be the requestcr irsclf or its focus

must includc the requester's contest, the requesrer musc hold at least one of the keys chat locks

the create action (if any), and the given name must br different from diat of nny esisring

actor, scope, tool, or k e . LIS a remit, a new objcct with the given name and descripaon is

added to T:\SK; if it is a key, its owner is the requester, ohenvise (if it is an actor, scopc, or

rooi) its context is the s m e as the requester's contest. These preconditions and

postconditions cm be e-xpressed using OCL as follows:

c o n t e Actor: :create(aRequestex : Actor, aClassName : String, aName : String,
aïlescription : String)
pra: (self = aRequester or focus->includes(aRequester.context 1 1 and (lock-
>select(action = 'create')->notEmpty *lies lock->exists(action = 'create'
and key-holders->inchdes(aRequester 1)) rnd 0clType.allInstancss->exists(
n m e = aClassName) rnd ~ool.allfnstances->forAll(name o aName 1 and
Actor.allInstances->forAIl[name o aName) 8ad Scope.allInstances->forAIl(name
<> aName 1 and Key.allInstances->foral(name <> aName)
port: if OclType~allInstances->select(name = aClassName)->allSupertypes-
>includes(Key) th- (0clType.allInstances->select(name = aClassName) -

>allInstances->exists(name = aName and description = aDescripcion and owner =
aRequester)) else (0clType.allInseances->select(name = aClassName) -

>allfnstances->exists(name = aName and description = aDescription and context =
aRequester.context 1) andif

The describe action on acrors allows the requesrer ro change the desaiption of an actor.

In order for this action to be invoked, the actor must eichcr be the requester itseif or its focus

must include the requester's conteut, the requester must hold at lcast one of the keys rhat locks

the describe action (if any), and the new description must be different [rom the actor's

e s i s ~ g description. As a result, the actor's description is changed to the new desaiption.

Thcse precondirions and postconditions c m be espressed using OCL as foilows:

contmrt Accor::describe(aRequester : Actor, aDescripcion : String 1
pra: (self = aRequester or focus->includes(aRequester.concexe) 1 and (lock-
>select (acrrion = 'describe' 1 ->notErnpty iaqplies lock->exis ts (action =
'describe' and key.ho1dez-s->includes(aRequester 1 1 1 and description o
aDescription
port: description = aDescription

The des troy action on actors d o m the requester to destroy an actor. In order for this

action to be invoked, the actor must not be the requester itself and its focus must indude the

requester's contest, the requester rnust hold nt lenst one of the keys thnt locks the des troy

action (if any), the actor's objects must be empty, and the actor's keys must be empty. As a

result, the actor (and any associations Nith it) is removed fiom TASK. These pteconditions

and postcondirions can be evpressed using OCL as folows:

conto~t Actox::destroy(aRequester : Actor 1
pro: (self o aRequester .nd focus->inchdes(aRequester.context 1) anà (

lock->select[action = 'destxoy')->notE~npty implias lock->exists(action =
'destroy' and key. holders->includes (aRequester) and ob jects->isErnpty anâ
keys->isEmpty
pont: not Actor,allInstances->includes(self) and Scopes.all1nstances->for~ll(
not objects. includes (self 1 1 a d Key-allInstances->forAll(rurt lock->exists (
object = self 1 1

The f ocalize action on actors d o w s the requester to change the contest for an actor. In

order for this action to be invoked, the actor must either be the requester itsell or its Cocus

musr include the requester's context, the requcster musr hold nt leasr one of the keys char lodw;

the f ocalize acuon (if my), the acror's focus must indude the new contest, and the new

conrest musr be different from the actor's csisting contest. As a result, the actor's contest is

changcd to the new contest. These preconditions and postconditions can be espressed ushg

OCL as foilows:

contowt Actor::focalize(aRequester : Actor, aContext : Scope)

pro: (self = aRequester or focus->includes(aRequester.context) 1 and (lock-
>select(action = 'focalize')->notErnpty *l ia i lock->exists(action =
' focal ize ' and key-holders->includes(aRequester 1 1 1 uid focus->includes(
aContext) and conrext aContext
part: context = aContext

The lock acuon on actors dows the requestcr ro lock one of an actor's actions with a kcv.

In order for this action to be invoked, the actor must either be the requester itself or its focus

must hclude the requester's contexr, the requester musr bold at lmst one of the keys that locks

die lock acaon (if any) as wel as the key bekig used to lock the specified action, and the

action must nor dready be locked by the given key. As n result, a

on the actor is added with the given key. These preconditions

Io&

and

for the s p e d e d action

postconditions can be

expressed using OCL as follows:

contaxt ~ctor::lock(aRequester : Actox, anAction : String, aKey : Key)
Dra: (self = aRequester or focus->includes(aRequester.context)) and (lock-
>select(action = 'iock')->notErnpty implima lock->exists(action = 'lock' a&
key.holders->includes(aRequester) 1) rnd aRequester-keys->includes(aKey)

and not lock->exists(action = anAction and key = aKey
post: lock->=ists(action = anAction and key = aKey 1

The unlock action on actoa dlows the requester to unlock one of an acror's actions Mth a

key. In order for rhis action to be invoked, the actor must either be the requester itself or its

focus must include the requester's contest. the requester must hold nt least one of the keys that

locks the unlock action (if any) as WU as the key being used to unlock the speciued action,

and the action must be locked hy the given key. As a result, n lock for the specified action on

the actor is removed with die given key. These precondiaons and postconditions can bc

expresscd using OCL as lollows:

contmct Actor::unlock(aRequester : Actor, anAction : String, aKey : Key 1
pro: (self = aRequester or focus->includes(aRequester.context 1 and (lock-
>select(action = 'unlock' 1->notEmpty *liari lock->exists(action = 'unlock'
and key-holders->includes(aRequester 1 1 and aRequester.keys->inchdes(aliey
1 a d lock->exists(action = anActian and key = aKey 1
pont: not lock->exists(action = anElcrion and key = aKey 1

Since a scope is a h d of contesnid object, its contest (a scope) must indude the scopc as one

of its objects; a scope is dso a kind of context, so for di of its objects (actots, scopes, or tools),

if the objecr is an actor irs focus musc indude the scope, orhenvise its context must be the

scope. These invariants cui be evpressed ushg O U as foilows:

contuet Scope
invariant: context,objects->indudes(self and objects->forAil(i f
oclIsKindOf (Actor) thin focus.include~~ self) l a context = self d f 1

The describe action on scopes d o w s the requester to change the desmption of a scope.

In order for this action to be invoked, the scope's contevt must be the svne as the requestds

21

context, the requester must hold at least one of the keys that locks the describe action

any), and the new description must be different Gom the scope's evisting description. As a

resuit, the scope's description is changed to the new description. These preconditions and

postcondirions c m be espressed using OCL as loUows:

c o n t e Scope::describe(aRequester : Actor, aDescription : String 1
pro: context = aRequester,context aad (Lock->select(action = 'describe') -

motEmpty imp1i.a iock->exists(action = 'describe' and key.holders->includes(
aRequester)) 1 and description <> aDescripcion
port: description = aDescription

The des troy nction on scopes dows the requcstcr to destroy a scopc. In ordcr for this

action invo ked, scope's mus t as the reques ter's context, the

requester must hold at least one of the keys that locks dic des troy nction (if any), and the

scope's obiects must bc empty. :\s a resulr, the scope (and an' associations with it) is removed

from TASK. 'niese preconditions and postconditions c m be espressed using OCL as foilows:

context Scope::destroy(aRequester : Actor 1
pro: context = aRequester.context and (Iock->select(action = 'destroy' 1 -
>notEmpty -1i.s lock->exists(action = 'destroy' and key.holders->includes(
aRequester 1 and objects->isEmpty
poit: aot Scope.allInstances->inchdes(self) and Scope.a111nstances-~forA11~
net objects->includes(self 1 1 and Key.all1nstances->forAll(not Lock->exists(
object = self 1 1

The enter action on scopes dows the requester to enter a scope. In order for chis action to

be invoked, die scope's contest must be the same as the requester's conteut, the requcster

musc hold at least one of the keys that locks the enter action (if any), and the scope's objects

must not aiready indude the requester. As a r e d t , the reqeuster is added as one of the scope's

objects. These preconditions and postconditions c m be elpressed using OCL as foilows:

contmct Scope: :enter (aRequester : Actor 1
pro: context = aRequester.context aad (lock->select(action = 'enter') -

>notEmpty Sniplimi lock->exists(action = 'enter' and key-holders->indudes(
aRequester)) 1 and mot abjects->inchdes(aRequester 1
gost: objects->indudes(aRequester 1

The exi t action on scopes allows the requester to esit a scope. In order for this action to be

invo ked, the scope's contest must be the same as the reques ter's con text, the reques ter mus t

hold at least one of the keys that locks the exit action (if any), the scope's objects must not

include any of the scopes in the requester's fonis, and the scope's objects must indude the

requester. As a resuit, the requester is rernoved as one of the scopr's objects. These

precondiuons and postconditions can be cspressed using OCL as follows:

contoxt Scope::exit(aRequester : Actor 1
pro: context = aRequeçter.context aad (lock->select(action = 'exit' 1 -
>nocEmpty buplies lock->exists(action = 'exit' and key-holders->includes(
aRequester))) and aRequestex.focus->forAll(scape 1 aot objects->incluci!es(
scope 1 and objects->includes(aRequester 1
poat: not objects->includes(aRequester 1

The lock action on scopes dows the requester to lock one of n scope's actions with a key.

action ta be invoked, the scope's contest must bc the reques ter's

contest, the requester musc hold ar least one of the keys that locks the 10ck action (if any)

well as die key being used to lock the sp<rified action, and the action must nor & ~ d y be

locked by the given key. As a result, a lock for the specified action on the scope is added with

the given key. These preconditions md postconditions c m be espressed using O U as

c o a t u t Scope::lock(aRequester : Actor, anAction : String, aKey : Key)

pro: context = aRequester.context .nd (Iock->select(action = 'lock* 1 -
>notEmpty *Xias lock->exists(action = 'lock'
aRequester 1) 1 .Pd aRequester-keys->indudes(
action = anAction rad key = aKey 1
mit: lock->exists(action = anAction uaâ key =

aad key.hoiders->indudes(
aKey and not lock->exists (

The unlock acaon on scopes allows the requester to unlock one of a scope's actions with a

key. In order for this action to be invoked, the scope's contesr must be the same as the

requester's contex, the requester must hold nt least one of the keys that loch the unlock

action (if any) as well as rhe key being used to unlock the speu6ed action, and the action must

be locked by the given key. As a result, a lock for the speafied action on the scope is removed

with the givcn key. These preconditions and postconditions can be expressed using OCL as

fo~ows:

contsxt Scope::unlock(aRequester : Actor, anAction : String, aktsy : Key)

p z : context = aRequester.context and (lock->select(action = 'unlock' 1 -
>nocEmpty implies Lock-'exists(action = 'unlock' and key.holders->includes(
aRequester 1 1 and aRequester.keys->includes(aKey 1 and lock->exists(action
= anAction a d key = aKey 1
mit: not lock->exists(action = anAction and key = aKey)

3.2 3 COIIJJI~CI~IIIJJ 011 -f00h

Since a tool is a kind of contexid objecr, its contest (an actor or scope) must indudc the cool

as one of its objects. - f i s invariant can br esprcssed using OCI. w foilows:

C o n t e T O O ~
invariant: context.objects->includes(self 1

The describe action on tools d o w s the requester to change the description of a tool. In

order for this action to be invoked, the contest of the tool must either be the same as the

requester's contevt or the requester itself, the requester must hold at least one of the keys that

locks the describe action (if any), and die new description must be different Gom the

tool's evisting description. As n result, the tooPs description is chmged to the new description.

These preconditions and postconditions c m be expressed using OCL ns follows:

contuet Tool::describe(aRequester : Actor, aDescription : String)

pr8: (context = aRequester or context = aRequester.context) urd (lock-
>select(action = 'describe' 1->notEmpty -lies lock->exists(action =
'describe' and key.holders->includes(aXequester 1 1 and description o
mescript ion
mit: description = aDescxiption

The des troy action on tools dows the requester to destroy a tool. In order for this acaon

to be invoked, the contest of the tool must either be the same as the requester's context or the

requester itself, and the requester must hold at least one of the keys that locks the des t roy

actioii (if any). A s a rcsult, the tool (and my associations wirh it) is removed from TASI;.

These preconditions and postconditions c m be expressed using O U as follows:

contact Tool::destroy(aRequester : Actor)

pre: (context = aRequester or context = aRequester.context 1 and (lock-
>select(action = 'destroy' i->notEmpty *lias lock->exists(action = 'destroy'
and key.holders->includes(aRequester) 1 1
port: not Tool.all1nstances-)includes(self 1 and Actor.allInstances->forA11(
aot objects-;.includes(self)) and Scope.al1Instances->forAll(not objects-
>inchdes (self)) and Key.allInstances->forAll(not lock->exists(object =
self 1 1

The drop action on tools allows the requester to put a tool d o m . In order for chis action to

be invoked, rhe contest of the cool must be the requester itself, and the requester must hold at

lenst one of die kevs that locks the drap action (if any). As a result, the contest for the tool is

changrd to be the samc as the requesrer's context -&se preconditions and postconditions

can be evpressed using OCL as foiiows:

corito%t Tool::drop(aRequester : Actor)

pra: context = aRequester lad (lock->select(action = 'drop' 1->notEmpty
fpiglims lock->exists(action = 'drop' and key.holders->inchdes(aRequester 1
1
post: context = aRequester.context

The lock action on tools dows the requester to lock one of a cool's actions with a key. In

order for this action to be invoked, the context of the tool must either be the same as the

requester's context or the requester itself, the requester musr hold at l e s t one of the keys that

loch the lock action (if my) as weil as the key being used to lock the speafied action, and

the action must not akeady be locked by the given ke. As a result, a lock for the specified

action on the tool is added Nith the given key. These ptecondiaons and postconditions c m be

esptessed using O U as bllows:

caatext Tool::lockI aRequester : Actor, a c t i o n : String, aKsy : Ksy 1
prm: (context = aRequester or context = aRequester.context 1 and I lock-
>select(action = 'lock')->notErnpty impUos lock-=.exists(action = 'lock' and
key-holders->indudes(aRequester 1 1 1 and aRequester.keys->includes(d e y 1
and not lock->exists(action = anAction and key = aKey 1
mit: lock->exists(action = anAction and key = sKey 1

The take acaon on tools ailows rhc requrrstct ro pick n tool up. In order for rhis action ro be

invoked, the context of the cool must be the snme as die requesrer's contest, and the requester

must hold at least one of the kcys thar locks the take acaon (if anv). As a result, the contest

for the rool is changed to bc the rcqucsrer irsrlf. These precondiaons and postconditions can

be espresseci using OCL as follows:

context Tool::take(aRequester : Actor)
pro: context = aRequester,context and (Lock->select(action = 'take' 1 -
>notEmpty iiapli.8 lock->exists(action = 'take' and key.ho1ders->includes(
aRequester 1 1 1
pomt: context = aRequester

nie unlock action on tools ailows the requester to d o c k one of a tool's actions with a kq.

In ordcr for this action CO be invoked, the context of the tool must either be the same as the

requester's context or the requester itself, the requester must hold nt least one of rhe keys thnt

locks the unlock action (if any) as wel as the key being used to unlock the speded action,

and the action must be locked by the @en key. As a result, n lock Qr the specified action on

the tool is removed arith the given key. These preconditions and postconditions c m be

expressed using O U as follows:

c o n t e Tool::unlock(aRequester : Actor, anAction : String, aKey : Key)

prm: (concext = aRequester or context = axequester-context) rnb (lock-
>select(action = 'unlock')->notEmpty inplien lock->exists(action = 'unlock'
aad key-holders->includes(aRequester and aRequester-keys->includes(aKey
) and lock->exists(action = anActi.cn and key = aKey)

pose: nat lock->exists(action = anAction and key = aKey)

22.4 Constrciintls Ky

h kefs holders must Liclude its owner; dl of a key's holders must indude the key as one of irs

keys. These imaianrs can bc espressed rising OCL as foiiows:

contmct Key
iavariant: holders->includes(owner 1 and holders->forAll(keys->includes(self
1 1

The describe action on kcys dows the rcquester to change the description of a key. In

order for this action to be invokcd, the owner of the kcy must be the requester itself, and thc

new description must be different from the key's esisting dcscnption. As a result, the kq's

desuipuon is changed to the new description. Thcse prccondiaons and posrcondiaons c m be

coatoxt Key::describe(aRequester : Actor, aDescription : String)
prm: owner = aRequester .ad description o aDescription
pont: description = aDescription

The des troy action on keys allows the requester to destroy a key. In order br this action to

be invoked, the orner of the key must be the requester itselE As a result, die key (and any

associations with it) is removed korn TASK. These precondiüons and postcondicions c m be

expressed ushg O U as folows:

conturt Key::destroy(aRequester : Actor)

prm: owner = aRequester
mat: not Key.al1Instances->includes(self 1 and Too1.allInstances->foral(aat
lock->exists(key = self 1) and Actor.allInstances->forAll(not lock->exists(
key = self) urd not keys->inchdes(self 1 1 and Scope,allInstances->forAl1(
not lock->exists(key = self 1

The grant acaon on keys d o w s the requester to gant a key to m actor. In order for dus

acaon to be invoked, the owner of the key must be the requestm itself, the actor's focus must

include the requester's contcist, and the holders of the key must not &eadv indude the acror.

hs n result, the requester is added as onc of the key's holders. These preconditions and

postconditions c m be espressed using OCL as follows:

conteact Key::grant(aRequester : Actor, aGrantee : Actor)

prs: owner = aRequester and aGranree.focus->includes(aRequester.context 1 and
not holders->includes(aGrantee 1
port: holders->includes(aGrantee 1

The revoke action on kcys nllows the requester to revoke a key lrom an actor. In order for

rhis action to be invoked, the owvner of the key must be the requester itself, the actor's focus

must indude the requester's context. and the holders of the key m u t include the actor. As a

rcsult, the requester is removcd as one of the kefs holders. These preconditions and

postconditions can be esprcssed using OCL as biiows:

contuct Key::revoke(aRequester : Actor, aRevokee : Actor)

prm: owner = aRequestex .pb aRevokee.focus->includes(aRequester-context) and
holders->includes(aRevokee 1
port: not holders->includes(aRevokee 1

3 DESIGN SPECIFICATIO N

The conceprual model of TASK, as kitroduced Li Chapter 2, c m be used to describe rwious

scenarios of teaching in an electronic ciassroom. However, the frarnework L: quite genaal; the

case snidy presented here was meanr to show its usefùlness tvirhli a specific domain

(education). Other applicnaons of TASI; range from simple ones such as tilc permissions on a

Cniv operating sysccm, to rather complev ones such as coUaborative work in a solnvare

development org3Nliation. This chapter presen ts the

describing its object mode1 using the L'ML and esploring

hcditate object interactions widiin TASEC

design specifcaaon for T.\SK by

the application of design patterns to

3.1 TASK and the UML

The Cnified hIodehg Languagc (ChLL) is the industry standard lmguage for visualizing,

spedfjmg, consuuc~g , and documenthg the artiLxts of a sohvue system. It fuses thc

concepts of the Booch, OhlT (Object Modeling Technique), OOSE (Objecr-Orienred

Sofnvare E n g h e e ~ g) methodologies, among others. Crated by the primary authors of the

origind methods (Grady Booch, Jim Rumbaugh, and Ivar Jacobsen, respectively), the L h i L

focuses on a standard modeiing lmgwge nther than a standard for tools and processes. It

provides a common metlunodel (a language for speafjmg n model) and notation which,

togethet with guidelines for usage, integrate best indusay practices to support any use-case

dtiven, architecture centric, itemive md inaementai approach. [Booch et aL 19991

A UhIL &gram is a gmphical projection of a coiiection of model elements, typicdy

represented as a c o ~ e c t e d p p h of arcs and vertices. Types of &grams d e h e d by the UML

indude dass dhgrams, object diagrams, use case diagrams, sequence dhgrams, coilabonaon

diagrams, statechart d i a p s , activity diagrams, component diagmns, and deployment

&grams. [Boodi et al. 19991

Various aspects of the TASI.; Gamework's design will now be esposrd using dure of the

pphicd diagram Npes d e h e d by the LML (use case diagrams, class diagrms, and sequence

&grms). Or$ elements of the L'ML semantics and notation that apply to these diagrams

w i l l be discusscd herc. For more information on the semantic and notational elements a€ the

CWL, die reader k referred to [Booch et al. 19991.

3.1.1 CJY Cut D ~ C ~ ~ C I ~ I J J

A ChIL use case cliqprn is a risud represcntation of the relationships beween model

dements such as use cases and nctors. A ;/sr rZIJJt' is a sequencc of actions performed bu the

system that yiclds an observable result to an actor. ;in mtor in C h L is an enaty outside die

system diar Uitcracts wlth use cases. L'se case diagmms are used to spe* or chmcterize the

Funcrionality and behavior of interactions benveen n system and estemai actors. [Booch et al.

h use case is represented as 3 holiow ellipse, below which the n m e of the use case is phced.

,Gi actor is represented by a stick figure, typicdy Mth the name of the actor located below the

figure. Interactions between mors and use cases are represented as (unidirectional)

associations bemeen their respective represenntions. Use case d q p m s for use cases

invohnng the various kïnds of objects in TASK d now be considered Poo& et aL 19991

Figure 2 presents a use case diagram for use cases involving objects. Use cases in diis diagnm

indude Dewibt un O&~LI and Dr~~iniy ml oLyie~t These correspond to the descr ibe and

destroy actions dehed on actoa, scopes, tools, and keys, the semantics for which were

described in Sections 2.2.1, 2.7.2,2.2.3, and 2.2.4 of Chapter 2.

Describe an abject Destroy an object

User

Fi~urc 3 LTsc C~SCS involvins objccts.

Figure 3 presents a use case diagram for use cases involving contexmai objects. L'se cases in

this diagram indude La& LUI d i o n and U I I I O L ~ LW utfioa These correspond to the lock and

unlock actions dehed on actoa, scopes, and tools, the srmantics for which were described

in Sections 2.2.1,2.3.2, and 2.2.3 of Chapter 2.

Lock an action Unlock an action

User

Figure 4 presents a use case diagram for use cases involving actors. Use cases in chis diagram

include C N ~ P rrtz oLj4t"~ and Frwr& u ~ïopr. These correspond CO the crea t e md foc al i z e

acaons dehed on nctors, the semntics for which werc described in Section 1.2.1 of Chnpter

3 -.

Create an objecc Focalize a scope

User

Figurc 4 Lrsc cascs involvuig actors.

Figure 5 presenrs a use case diagram for use cascs involving scopes. Use cases in th& diagram

inchde E/,/rr tr ~ q b t and E ~ i f u J'L'O~C. These correspond ro the enter and exit actions

detîned on scopes, the semnnucs for whch werc described in Section 2.2.2 oflhaprer 7.

Enter a scopr Exi t a scope

User

F i i c 5 Urc cascs invoIviag scopes.

33

Figure 6 pcesents n use case diagram for use cases in involving tools. Use cases in this diagram

Lidude Dmp rr fdand Tuke o f d These correspond to the drop and take actions defuied

on tools, the semantics for ivhich were desaibed in Section 2.2.3 ofchapter 2.

Drop a moi Take a cool

Figurc 6 Usc cascs involving tools.

Figure 7 presents a use case diagram for use cases in involving keys. Use cascs in dus dkgnrn

include Grmi u kry and R r d e o kty. These correspond to the grant and revoke actions

dehed on keys, the semmtics for which were desuibed in Section 2.2.4 of Chapter 7.

Grant a k e y Revoke a key

User

3 . 1 2 Chus D i q n i ~ ~ +

-4 L M , dnss d i a p m is a visual representation of the relationships benveen mode1 elcments

such as classes, intcrhces, associations, aggreptions, and generalizncions. A t h - s is the

desaipaon of di objects with s i d a r strucnire, behavior, and relationships. A n i~ / i e$w is a

collection of opentions used ro speu$ a service provided by n class or component. A

mi/ir;:u~ior~ is a semmtic rehaonship benveen an interface and a dass that reallies or implements

i t An u ~ ~ i ' o ~ i ~ h n in UML Îs a reiaàonship that descnbes a sct of semmtic comecaons nmong

tuples of objects. An a~'~'ot.iuttoIt dm is a modehg element thnt has both assodation and class

properties; it c m be seen as either 3 dnss with asso&tion propesties or an asso&tion with

&ss propemes. An ugngafib is Form of association that represents a whole-part rehtionship

between an aggregate and its component put(s). A genmrl;ution is an inheritance rehtionshîp

between a more general element and a more specific eiement. Class dingrams are used to

provide generic descriptions of systems. [Booch et al. 19991

h ciass is represented as a solid rectangle with three compamnents sepanted Mth horizoncd

liaes. The top cornpartment contvns the name of the &ss, following the syntas Puchge-

r~~t~ne~.-CIrz~w~um~, of which the package name is optional. The middle compamnent Lists the

amibutes of the dass, fouowhg the syntav vi~ibifify)Idnie : lyprt'xpm~ion = initiihdw { p w -

rf~~rrg), of which the visibility, type expression, initial value, and property suing are opnonai.

The bottom compamnent lists thc operations of the class, foilowhg the syntax vi~-ih/i~ rwne (

pttrwneter-li~'~) : ret~~nt-@t-e.xp~~~io~t { pmperty-j-fn;g), of which the visibility, parameter List, return

type expression, and propcq string are opaond. An interface is represented as a s m d circle

labeled with its n m c , or dtematively as a dass with an <<inl~>@e>> stereotype Li the nnme

compment . A realization is represented as a solid iine c o n n e c ~ g a class to an interface in

its normal form (as il cirde) or âs a dotted m o w benvern n dass and an interfacc in iirs

eapanded form (as a class)). An association is reprcscntcd as a solid h c connccting nvo class

symbols with an opcion:il namc. The end of an association where it connects to a chss is

cded an rz~xorzrrlion mft, md may or may not have n nmr. r\n assocku.ion role may dso have a

mu1 tip licity, which foiloivs the syn tax lower-Iroiincf .. y p r - b o d . .-in association class is

reptesented as a class qrnbol attached by n dashed iine to an association. An aggregation is

represented by anaching a hoiiow diamond wherc an association meets the class dint

represents the aggregate. A genenlization is represented as a solid ILie from the more speafic

eiement to the more gcncrd element, with a hoilow trimgle wherc the line meets the more

genenl element. Chss d q p m s for the ciasses and interfaces in ThSK dl now be considered.

Poo& et ;il. 19991

Figure 8 presents a &ss diagram depicting the intdaces in TASK and the &ses that r&e

them. Intdaces indude TAçKûb j ec t, TASKCont extualob j ec t, TASKContext,

36

Actor, Scope, Tool, and Key. The chsses chat realize these interfaces are

TASKObjectXmpl, TASKContextualObjectImpl, TASKContextImpl,

Ac tor Impl, ScopeImpl, Tool lmpl, and KeyImpl, respectively.

TASK0b j ect fmpl EzEEl=
L,

Xe y

TASiiContextualObjaccInpl TAsf

TASKContextu
a1Object

Too 1 Impl

Too 1
1

TASKCon r ext I m p 1

I
I Scope I

Actor

Figurc 8 C13sscs and intcrfaccs in ï:\SK.

Figure 9 presrnts a d a s s diagram depicüng the interfaces and associated operations in TASL

These interfaces correspond directly to the objects descnied as part of the concepnial mode1

presented in Chapter 2. L.ikewise, hdf of the operations provided by these iaterfaces

correspond nrith the actions introduced in Chapter 2. The description () and name ()

operations are induded to ptovide access to the values of description and name

37

ntmbutes of objects. The isActor () , isScope () , isTool () , and isKey()

opentions indicate whether an object is an actor, scope, tool, or key. The actions ()

operation r e m s the names of the actions dehed on a given object The context () and

ob j ec t s () operations are included to provide access to the roles of the associaaon benveen

contemiai obbjects and contests. The f OCUS () opention provides access to the role played

by scopes in rheir association with îcrors. Finaiiy, the keys () , holders () , and

owner () opentions provide access to the roles in the associations benveen acrors and keys.

d e s c r ibe 1)
d e s c r o y (1
a c t i o n s (
d e s c r i p t i o n i)
name (1
iuActor (
isKey i 1
i s s c o p s i 1

revokè i) isTool(1 1
ho lders i 1

<<Interface>>
Ac tor

l c r e a t e i l
f o c a l i t e (1
keys (1
f o c u s (1

l a c k i 1
u n l o c k f 1
c o n t e x t (1

drop i 1
take (1

c c r n t e r f ace>>
TASKCon text -

o b j e c t s (1 <<Interface>>
Scape

Figure 9 Intcrfaccs in TASK.

Figure 10 presents a &s diagram d e p i c ~ g the classes in TASIS, along with th& amibutes

and operacions. Most of these classes, along Mth thek associated operations, r&e the

interfaces that are described above. One additional dass, the TASKLock dass, \Ki&

action, key, and ob j ec t amibutes, is intt:oduccd to model the association benveen

contexcil objects and keys.

-- . -.

TASKLock

action : String
I description : String

name : String i
key : KeyIrnpl

grtDescription0

ge t A c c ion (1
getlocks i i
gecName (1

getKey i)
getobjecr (1

removetock ()
setDescription (1

Key Imp L La--''

3.1.3 &quemr Diugrum-

A Isx\IIL sequence dugram is a visual representation of the relationships between model

demenu such as objects, messages, and activations. An o 6 j e ~ ~ is an instance of a class with a

wel-dehed identitg. A message is n communication between objects which results in some

39

acuvity. An u~fiuatio~i is the evecution of a compumtiond or dgonthmic procedure. Sequence

diagrams are used to a c e die evecution of an interaction in the . Poo& et al. 19991

An object is represented as a dashed vertical LLie cded the Yë/ii,rr. h solid rectangle containhg

the name of the ob ject, foiionring the syntav obirf-nmm : c/Yw~-,irrme (of which the ob ject name is

optional) is pliiced nt the top of die verticai h c - .4 message is represented as a solid horizontal

anow benwen the tifches of the sender and ceceiver objects. The 3now is labelcd with the

name of the message dong wvith the d u e s of its arguments, and may dso include a sequence

nurnber indicating its order in the overd sequence. An activation is reprrsentrd as a r d

nmow rectangle on an objcct's lifeiine, whose top is aligned with irs initiaaon time and whose

bottorn is altgned with its completion timc. Sequencr &gmms for the pre-dehed actions in

ThSK will now be considered. [Booch et al. l9!W1

Figure 1 1 prcsents a sequence diagram for the describe action detined on Actor,

Scope, Tool, euid Key. hssumlig the preconditions have been met, the object being

described sends the se tDescription () message to itself with the given description as an

argument, thus changing the value of ia description atuibute to the spccified description.

Figure 11 hIrysagc ~cqucncc for thc describe acaon.

Figure 12 presents a sequence &gram for the lock action defined on Actor, Scope, and

Tool. Assuming the preconditions have been me\ the conrestud object whose action is

being locked crares a new lock nrith itseli the narne of the given action, and the given key as

amibutes. It then sends the addlock () message to itself with the nenr lock as an argument,

thus adding the lock to its set of locks. FLidy, it sends the addlock () message to the gîviven

key with the new iock as an argument, chus ad- the lock to the key's set of locks.

Figure 12 Mcssagc scqucncc for the lock nctiriri.

Figure 13 presents a sequence diagram for the unlock action dehned on Ac to r , Scope,

and Tool. Assurning the preconditions have been met, the contexmal objcct whose action is

being unlocked send the removeLock () message to the given key with the partida lock

as an argument, chus cemolkg the lock from the key's set of locks. It then sends the

removeLock () message to itseif with the p d c u l v lock as an argument, chus removing die

Iock fiom its set of locks.

Figurc 13 hicssagc scqucncr: for rhc unlock acrion.

Figure 14 presents a sequrnce diagram for the crea te action de fincd on Ac tor . :\ssuming

die preconditions have bcen met, the actor c r e a ~ g die object creates a new object of the

apecified kind with the speùfied name and descripaon as attributes. If the new object is ;i key,

its owner is initiabcd to the c r e a ~ g actor itself, ocherwiïe the context of the new object is

initidked to the acto Js contcst.

Figurc 14 hksagc scqucncc for chc crea te acaon.

Figure 15 presents a sequence diagmm for the destroy action dehed on Actor.

Assuming the precondiuoos have been met, the actor being destroyed sends the

getFocus () message to itseif to remeve the set of scopes represen~g its focus. It then

42

sends the removeOb j ec t () message to each of these scopes with itself as an argument,

thus removing itself Erom the scope's set of objects. Next, it sends the getlocks ()

message to itself to remeve its set of locks. Findy, it sends the getKey () message to each

of these locks to reuieve the key assouated with the lock, and subsequently sends the

removelock () message to the key with the lock as m argument, thus removlig the lock

Gom the key's set of Io&.

Figure 15 hlcssagc sçqucncc for thc des t r o y action (mors).

Figure 16 presents n xquence diagnm for the f ocalize action dehed on Actor.

Assuming the precondiuons have been met, the actor being f o c ~ c d sen& the

se tContext () message to itself with the given scope as an argument, thus changing its

context to the specified scope.

t.'igurc 16 hlessagc sscqucncc for chc focal ize mion.

Figure 27 prescrits a sequence diagram for rhe destroy action definrd on Scope.

;\ssuming the preconditions have becn met, the scope being destroyed sends the

getcontext () message to itself to retneve the scopc representing its contesr. It rhen

sen& the removeOb j ec t () message to this scope with itself as an argument, chus

removinç itself from the scope's set of objects. Nest, ir sends the ge t Loc k s () message to

itself to retricve its set of locks. Fin&, ir sends the getKey () message to cach of these

lo&s to retrievc die key nssoaated with the lock, and subsequently scnds the

removeLock () message to the key with the lock as an argument, thus removing the lock

fiom the key's set of locks.

gecContext t 1

I
removeOb ject i

gecLocks(1

Figurc 17 Mcssagc scqucncc for thc des troy action (scopcs).

Figurc 18 presents a sequence &gram for the enter action d c h e d on Scope. Assurning

the preconditions hm-c been met, the scope bcing cntercd sends the addOb j ec t () message

to itself wvith the givcn actor as an argument, thus adding the actor to its set of objccts. It thcn

sends the addscope () message to the given actor, thus ndding irself to the set of scopes

representing the actor's Cocus.

Figurc 18 Mcssngc scyucncc fur the enter action.

Figure 19 presents n secpiencc diagram for die exit action dehed on Scope. Assurning

the preconditions have bren met, the scope bcing esited sends the removeScope ()

message to die gwen actor, thus removing itsclf from the set of scopes representing the actor's

focus. I t rhcn sends thc removeobjec t () message to itsclf with the givcn nctor ns an

argument, thus rcmovinç the acror from its set o f objccrs.

removeScope i 1

removeOb ject (I

I

F i p c 19 Message rcqucncc for thc exi t action.

Figure 20 presents a sequence diagram for the des troy action dcfined on Too 1. Assuming

the preconditions have been met, the cool behg destroyed sends the getcontext ()

message to itself to remeve the actor or scope represen~g its contexte It then sends the

removeOb j ect () message to this acror or scope with itsdf as an argument, thus removing

itself fiom the actor's or scope's set of objects. Nest, ir scnds the getLocks () message to

itself to renieve its set of locks. Finally, it sends the getKey () message to each of these

locks to tetricm the keg assochted with the lock, and subsequently sends the

removelock (1 masage to the key wvith the lock as an argument, thus removing the lock

€rom the kcy's set of locks.

Fiurc 20 hlcssagc scqucncc for thc des t r o y action (tools).

Figure 11 presents a sequence diagram for the drap action defhed on Tool . Assuming the

preconditions have been met, the tool being dropped sends the removeOb j ec t () message

47

to the given actor with itself as an argument, thus removing itseif Lom the actor's set of

objects. It rhen sends the setcontext () message to itself Nith the actor's contest as an

argument, thus changing its contcvt to the actor's contevt. Findy, it sends the

addOb j ec t () message to the scope representing its context with itself as an argument, thus

adding itself to the scope's set of objects.

Figurc II Mrnjsagc squcncc for thc drop action.

Figure 32 presents a sequence &gram for the take action dehed on Tool. .\ssurning the

prcconditions have been met, the cool behg taken sends die removeOb j ec t () message to

the scope representing its context with itself as an argument, thus removing itself From the

scope's set of objects. It dien sends the setcontext () message to itself with the given

actor as an argument, chus changlig its context to the actor. Finaily, its sends the

add0b j ec t () message to the given actor with itself as an argument, thus adding itself to

the actor's set of objects.

seccon texc ()

Figurc 21 M~?isngc scqucncc iiir thc take action.

Figure 23 presents a sequence diagram for the des troy action d e h e d on Key. Assuming

the prcconditions have been met, the key bring destroyed sends the getsolders ()

message to itself ro reuieve the set of mors representing its holders. Ir then scnds the

removeKey () message to each of these actors with irself as an argument, thus removing

itself from the accor's ser of keys. Nest, it scnds thc get locks () message ro itself to

retrke its set of locks. Findy, it sends the ge t O b j ec t () message ro each of thrse locks

to reteeve the contestual object associated with die lock, and subsequently sends the

removelock () message ro the conteunid object with the lock as an argument, thus

removing the lock from the contextual object's sec of locks.

Fiaurc 23 XIcss3gc scqucncc for thc des t r ay action (kcys).

Figure 24 presents a sequence diagmm for the grant action defined on Key. .\ssurning the

preconditions have been met, the key being granted scnds the addliolder () message to

itself with the g v e n actor as an argumcnr, thus adding the actor to die set of actors

representing its holders. It then sends die addKey () message to the g i ~ n actor with itsdf

as an inargument, thus adduig itself to the actor's set of keys.

Figure 24 Slcssagc scqucncc for the grant action.

Figure 15 presenrs a sequence diagram for the revoke action dehed on Key. hssuming

the preconditions have been met, the key bring rcvoked sends the removeKey () message

to thc gvtm nctor, thus removing itself Lom the ncror's set of keys. Ir thcn sends the

removeHolder () mcssagc to irself wirh thc giwn actor as an argument, thus removing the

ncror from the set of actors representing its holders.

F i c 25 ilicssqc scqucncc for thc revoke action.

3.2 Design Patterns in TASK

D~J&II putftmlr are descriptions of communica~g objects and dasses custornized to solve

general design problems Li speci£ic contests. il pattern systematicdy names, inspires, and

esplains a design thar addresses recurring issues in ob ject-oriented sys tems. Typicdy, it

includes a description of the problem, the solution, when to apply the pattcm, and the

consequenccs of dohg so. The inclusion of hints and evamples of its application aids Li the

customization and implementation of die solution to solvr the problem in a particdar contest.

[Gamma et al. 19951

Parrems can be clnssified Li nvo ways: by purpose and by scope. Purposr reflccts whnt n pattcm

does, and c m be one of creationd, structurai, or behavioral. Cmufiond patterns absuact die

i n ~ t a n ~ t i o n process, making a system independent of how its objects are created. composed,

and represented. Sfn i~ tml patterns dcd with thc ways in which classes and objrcts are

combincd ro form Iarger stnicnircs, and are espec~dy useful in helping indeprndrndy

developed class iibmies work togethcr. Brl~c~zionif patterns dcal with communication benvccn

objects and classes and focus on algorithms and the assignment of responsibilities to objecrs.

The ~zopr of n pattern refcrs to wbcther it appiies to classes or objects. C ~ J Y patterns are

concemed with stauc relaaonships (association and subtype) benveen ciasses wherens o 6 j e ~ t

patterns involve dynrunic rdiitionships, which c m bbe changed at ru-tirne. [Gamma et al. 199q

The use of patterns in the design of the communication mechanism in TASK is desuibed in

detd below. The goal here is to communicnte the execution of actions on a given object to

other obiects in the envkonment In generai, whm an action is iovoked on a conteutual

object, each of the objects in the object's contevt need to be notiiied of the event's occurrence.

To help accomplish this, 1 introduce an event dass, TASKEvent, which s w e s as the absact

52

parent for ÛU cvents in TASK. Concrete subdasses of TASKEvent correspond to the

acaons in TASK, and include ObjectDescribeEvent, ObjectDestroyEvent,

ContextualObjectLockEvent, ContextualObjectUnlockEvent,

ActorCreateEvent, Ac torFocalizeEvent, ScopeEnterEvent,

ScopeExitEvent, ToolDropEvent, ToolTakeEvent, KeyGrantEvent, and

KeyRevokeEvent. The suitability of three design patterns thnt could be used to mode1 the

desired communication mechanism \viU now be considered.

3.2. / &'" l~~/.utor

The Medintor design pattern is an objecr behaviord pattern that dehcs an objecr to

encnpsulnte how a set olobjccts inrenct, p r o m o ~ g loose coupling by preventing objects from

ceferring to each othcr rxplicitly and dowing their interaction to varv independently.

Participants in the pattern hclude the Media tor, whch defuics an abstmct interface for

communica~g wvith Co 1 league objrcts, a ~ o n c r e teMedia tor, which impiements

coopentive behavior by coord ina~g its Colleague objects, and Colleague ciasses,

w c h of which knows its Mediator and communicates with it whcnever it would have

insread communica ted 4 t h another Co l league ob jcct. Figure 26 presents the genexic

structure of the hlediator design pattern. [Gamma et al. 199q

1 .Yedia cor 1
ConcxeteMediacor

addColleague(aCoLleague : Colleague)
removeColleague(aCoI1eague : Colleague) I

Inocify(anObject : Object) 1

P mediator

Figurc 36 'i'hc Mcdinror dcsign pmcrn.

Figure 27 shows how the hlediator pattern could be appiied in TASK. The TASKMediator

and TASKCoiieague interfaces pl;iy the roies of the Mediator and Colleague

pamcipanrs, respecavely. Through rcalizntion of thesi: hterhces, the TASKContextImpl

and T A S K O ~ ~ ec t Imp1 dasses correspond to Concre teMedia tor md

ConcreteColleague. Using rhis mechanism, objects would be addcd and rrmoved as

coiicagues of contests as toliows: actors would bc added or rcrnoved as coiicagucs of xopes

whcnever scopes were entercd or exitrd; scopes wvould bc added or removed as colieagues of

scopes whenever scopes wvere created or destroyed; tools would be added or removed as

colleagies of actors and scopes whenever tools \vue dropped or raken; keys would be added

or removed as collmgues of actors whenever keys were gnnted or revoked. A contesnid

object's mediator would be its context whereas a key's mediator would be its owner. Any time

an action on an object is invoked, an evenc is ueated, and the object notifies its rnedhtor,

which in tum updates dl of its coileagues Mth the event One problem with this sategy,

however, is thnt dl coUeagues of a partîcuia~ mediator are notified of events regardless of

whether they are interested in them.

colleagues
<<interface>>
TASKColleague

updace(aCol1eague : TASKColleague. anEvent. : TASKEvent)

TASKMedia tor

TASKCon cexr lmpl
addColleague(aCo1league : TASKColleaguel f

Figurc 37 Applicatirm of h[cdiaror in T;\SK.

reinoveColleague(aCol1eague : TASKColleaguel
notify(anEvent : TASKEventl

3.37 OL~wer

The Observer design pattern is an object behaviord pattem rhnr detmes a one-to-many

mediacor

dependen- brnveen objects, ensuring char when an object changes its stare, di of its

dependcrits are notified and updated. Participants in the pattern include the Sub j ec t, which

P

knows irs obscnws and provicies an interface for attachmg and detaching Observer objects,

and :ln Observer, which dehes an interface for updating ir based on changes in the

Sub j ec t. Figure 28 presents the gcncnc structure of the Observer design pattern. [Gamma

et al. 19951

O bservers I

Observer 1
ConcreteObserver

update(aSub-ject : Subject. anObject : Object)

addobserver (anobserver : Observer)

Figurc 78 'ïhc Observcr design pattern.

55

ConcreteSubject

rernoveObserver(an0bserver : Observer) - ,

nocify (anobject : Objecc)
1 l

I

Figure 29 shows how the Observer pattern could be applied in TASK. T h e TASKSub j ec t

and TASKObserver interfaces play the roles of the Subject and Observer

participants, respectively. Through realization of these interfaces, the TASKOb j ec t Impl

and TASKContextualObj ectImpl classes correspond to ConcreteSub j ec t and

ConcreteQbserver. Using dus mechanism, contexnial objects would be addcd and

removed as observers of objects as follows: actors, scopes, and tools would be added or

rrmoved as obscn-ers of actors whenever scopes were entered or esitcd; acroa, scopes, and

tools would be added or removed as obsen-ers of scopes whenever scopes wvere created or

destroycd; acrors and scopes would be added or removed as observea of tools whenevcr tools

were dropped or raken; m o r s would be added or removed as observers of keys whcnever keys

were granted or rcvoked. Any tirne an mion is invoked on an object, an cvent is creared, and

the object updatcs each of its obsenws with the event. One problem with t h i s suatcgy,

howvevcr, is the burden placed on subjccts of mainraining a list of obscn-ers and hence the

couphg benvcen subjects and observers.

TASKSubjecc

TASKOb jec t Impl
addobserver (anobserver : TASKObserver 1

abservers

3.73 E w i %iiJier

The Elvenr Notifier pattern is an object behnviord pattern that enables components to rwct to

TASKCon c exc ua IOb j ecr Impl

the occurrence of ercnts in ocher cornponcnts without knowledge o l one another, whik a i s 0

ailoiving dynnMc component participation and introduction of ncw 9pcs of events.

~f-

Partiapanrs in the pattern inciude Event, which represents the ancestor for di event types,

Concre teEven t objects, which represent specifk events, Publisher objects, which

publish the occurrence of events, Subscriber, which defines an abstract interface for dl

objects that are interested in events, Conc re teSubscr iber objects, which register

interest in partidar events, Filter, which is responsible for weeding out events that are not

of interest to a subsaiber, and an EventService, which acts as an event broker bemeen

publishers and subscriieis. Figure 30 presents the generic structure of the Event Nodier

design pattem. [Gupta et al. 19981

Pub1 isher Subscriber
ConcreteSubscriber

inform(anEvenc : Event)

subscribers T
EventSr rvice

1 subscribe (a~lass : Class. aFil ter : F i l ter. asubscriber : Subscriber 1 1
unsubscribe(aClass : C l a s s , aFilter : Filter. aSubscriber : Subscriberl

Fi 1 t è r

Figtuc 30 Thc Evcnt NOttficr dcsrgn pattcm.

Figure 31 shows how the Evcnt Notifier parrem could be (and actuaiiy is) npplied in 'TASK.

Interfaces TASKPublisher, TASKSubscriber, TASKFil ter, and

T~SKEventService play the roks of the Publisher, Subscriber, Fil ter, and

 vents service participants, respectivel. a o u g h redzntion of the TASKSubscriber

interface, the TASKCont extualOb j ec t I m p l dass corresponds to

ConcreteSubscriber and TASKEvent, dong with d of its subdasses, corresponds to

Event and ConcreteEvent- The TASKSubcription &ss is introduccd to mode1

the associations benveen Event Service and Subscriber, Class, and F i l ter.

Using this mechanism, conteunial objects subscribe and unsubscribe to events dispatched by

contexts as CoUows: acton subsmbe or unsubscnbe to events dispatched by scopes whenever

scopes are entered or exited; scopes subscribe or unsubscribe to events dispatched by scopes

whenewr scopes are created or destroyed; and tools subscribe and unsubscribe to events

dispatched by actors or scopes whenever tools are dropprd or taken. In gened, a contemiai

object's event seMce would be iu contest, an actor's event senices wouid be the xopes in its

focus, and a key's event services would be its holders. Any time an action on an object is

invoked, an ewnt is created, md the object publishes the arent with its event service(s), nrtiich

in nun informs al1 of its subsuibcrs of the event. Event Notifier uses a best of both worlds

approach that overcomes the problems of the previous nvo strategies - it f d t a t e s

subscripuon basrd on event type radier than publisher and dows pubiishers and subsciibea

to be vacicd independently of each other.

publish(anEvenc : TASKEventl
subscrLbe(anEvencC1ass : Class. aFilter : TASKFilter, asubscriber : TASKSubscriber)
unsubcrFbe(anEvencC1ass : Class. aFilter : TASKFilter, asubscriber : TASKSubscriber)

Interface>,
TASKFi L cer

,

inEormianEvenc : TASKEvenc) I
subscriptians

subscriber
TASKSubscripcion ,

t -i I

eveneClass

Class

I

In early days, known as the rnainframe cra, mmy users interacted with a single machine. Less

expensive cornputhg brought about the Persond Cornputer (PC) revolution, with computerj

on ev-erv desk, comected by a Local . i r a Nenvork &,-IN). Now, with the convergence of

increasingly inexpensive computing and widesprend connectiviry through die Interner, we have

enrcred the world of nenvork compuàng, whcrc every user will have access to mmy CPCs.

With this shifr in c o m p u ~ g pandigm Erom host-centric ro desktop-centric to ncnvork-cenuic

came the cvolution of the workspnce. In the beginnlig there was littlc or no noaon of

workspnce. PCs introduced the concept of a sti~nd-alone, user-speu6c workspacc. The advent

of the nenvork-cenuic age brought die shared workspnce. From its incepaon. the Java

language (sec [hIorrison 1997) has embraced dus nenvork-cenuic view of the world, and as

such, is an ideal piatfom for shared workspaccs.

The Java propmming lvge \vas used to implement TASK as per the design specifkd in

Chapter 3. In addition to the Gamework itself, a simple GUI dent , presented in Figure 32,

was developed as n "proof of concept" for T:\SK. ïLIodeled afier the notion of a £de browser,

the T:\SK browser consists o f a scopes pane (top left), which contains the hieracchy of scopes

in TASIC; a contevt pane (top right), which connlis the objects in the user's ninent conrext;

an actot pane (rniddle right), mhkh contains the keys and tools cunently held by the user; and

a console pane (bottom), which conrakis a anscr ipt of events. The TASK browser dows the

user to Literact with objects Li TASK by invoking actions kom pop-up menus associated with

61

sdected objects. For esample, to gant the Key to P r o j ector key to the Student 1

actor, the user (comected to TASK as the Instructor actor) would select the key in the

actor pane, dick the cight mouse biitton, md select the grant option. h ddog would

appear, into which die user would enter the name of the grantee (student 1). Cpon

accepting the entered d u e by clicking the OK bunon, the key would be granted to the

S tudent 1 actor and a description of the event would be appended to text in the console

pane.

? '.ltask
Z 9 Acadia University

2 AB
z 1 Group I

K _1 Faculty of Computer Science
t 1 Bachelor of Computer Science

Object IFile1 has been creaud.

_I) Group 1

T File
T Projector
2 Student 1
3 Student 2
=J Student 3
'& Student 4

. C l Key to File
:i Key to Projectar

Ob ject 'Pro jector l hés been created.
Object IKey to File1 has been creaced.
Object 'Key to Projectort has been created.

.-. - - - -

Figurc 32 Thc TASK browscr.

This chapter presents various aspects of the implementation of TASK in Java chat proved

both i n t e r e s ~ g and chdenging to the author. More specificaliy, the JDK Collections API,

implementation of constraints, object seriahacion, and remote objects will be considered in

detail.

4.1 JDK Coilections API

The lava Development Kit (JDK) Coilections .-\pplication P r o g r d g Interface @PI) is a

new set of collection classes introduced as part of JDK 1.7 to bc used as the basis for data

structures in Java. -4 ~ollrc/io/l is a single objecr representlig a group of other objects, referred

ro as elements of the collection. The new dasses and interfaces, the root of whch is the

Co 1 lec t ion interface, extend thc hcilities provided by the previously avdable u d t y

classes such as V e c t o r and Hashtable. The API can perhaps be partitioned as follows:

C O U ~ C ~ ~ O ~ interfaces, absuact implementntions, concrete implcmentaaons, rhc

Co 1 lec t ions dass, ireration, and a r n y sorting and searclung. [Hunt 19991

Four interfaces, nmeiy Collection, Set, List, and Map, comprise the core of the

Collections API. The Collection interface d e h e s the methods thnt PU coUcctions (CSCCP~

for Map collections) must implement and as such acts as the ancesror for rirtually all coilection

objects. The S e t interface is essenually the same as C o l l e c t i o n , except chat duplicates

are not aiiowed in the set. The List interface represents a collection of eiements in a specific

sequence, whose order is dehed by the order in which they are ndded to the List. The M a p

interface represents a set of associations, the elements of which may be unordered but must

have a definite n m e or key.

nie Collections API indudes n set of abstract ciasses that provide basic hplementations of

many the methods defined in the interfaces they realize. n i e Abç trac t C o 1 lec t ion ciass

provides a skeletd implementation of the Co 1 lec t i on interface, representing a collection

of unordered objects, commonly refened to as a bng or mdtiset. The Abs tract Set dass,

a direct subdass of Abs trac tCo 1 lec t ion, realUes the Set interface and provides

implemenrations foc the equals () and hashcode () methods. The Abs tract Lis t

class is also a direct subclass of A b s t r a c t C o l l e c t i o n , and uses an m a y that is

optimized for sequentkù nccess ro maintain its intemal data. The

AbstractSequentialList class is basicdy the snme as Abs tractLiç t escept that

its inremai dam smcnire is optimized for sequential nther than random acccss. The

Abs trac tMap dass, subclasscs of which must irnplement the entries () mrthod,

providcs an abstracr implemenmuon of irs corresponding interhcc, Map.

The HashSe t, ArraySe t, ArrayLis t, LinkedLis t, HashMap, ArrayMap, and

TreeMap classes provide genenl-purpose concrete implernentations of the corc interfaces in

the Cokctions .-\PI. Each one inherits Lom an abstract implementation dass, providing an

mample of die proper way to create conucte subdasses of the various coilecrion q e s .

UnWre th& predecessors, Has h t ab 1 e and Vec t or, these classes are unqmchronized,

which results in grenter performance (discussed Li more detail hter).

The Collections dass was indudcd in the Collections API to provide n range of static

factory methods enabiing dan structures to be effiaentiy and effectiveiy converted into

collections. Tt also kidudes useW methods to son and search colletions, to b d the

minimum and maximum value in n collection, and to create immutable versions of mocWable

collections.

The Enurneration interface is superceded by the more powerful Iterator interface in

JDK 1.2. Together widi the Lis t ï terator interface, 1 terator m&es it possible to

iterate over the contents of anv of the collection ciasses, possibly modifjmg the collecaon

whde itenuon k in progress. The hasMoreElemen ts () method of Enurnerat ion has

bern replaced by hasNext () dc6nrd on 1 t e r a t o r , just as rhe n e x t E l e m e n t ()

method has been replaced by next () .

Collections are used extensively throughout the impiemenration of TASIC. Objects have a

coilection of locks, contests (acrors and scopes) have a collecaon of conrestual objects (acrors,

rools, and scopes), mors have a coilection of keys and a collecuon of scopes (rcpresen~g

their focus), and keys have n coiiection of acton (represen~g their holdcrs). In panicuhr,

instances of the HashSet class arc used to maintnin the objects in these coilecuons. For

esample, an instance of HashSe t representhg an actor's focus Li created in a consnuctor for

the A c t o r I m p l chss as loiiows:

* . .
focus = new HashSetO;
. * .

The add () and addAll () methods are optionai operations that are irnplemented by the

HashSet dass to add the spedied element or elernents to the set. The add () method is

used in TASK any âme a lock is added to an object's set of locks, a conteunial object is added

to a conteut's set of objects, a key is added to an actor's set of keys, a scope is added to an

actor's locus, or an actor is added to a key's holders. For example, a scope is added to the

instance of HashSet representing an actor's focus in the addscope () method of the

Ac t or Imp 1 class as foUows:

public void addScope(ScopeImpl aScope 1
{

focus. add (aScope) ;

xetuxn;
1

The remove () and removeAl 1 () methods are optionai operations rhat are irnplemented

by the HashSet dnss to remove the speufied element or elements from the set. The

remove () mrthod is uscd in TASK anv tirnc a lock is removed from an object's set of locks,

a contesnial object is removed lrom n contest's set of objects, a key is removed from an

actor's set of keys, a scope is removed fiom a n actor's focus. or an actor is removed from a

key's holders. For example, n scope k removed from thc inscince of HashSe t represen~g

an actor's focus in the removeSc ope () method of the Ac t o r Impl class as foUows:

public boolean removeScope(Scopefmpl aScope 1
{

return focus.remove(aScope 1 ;
1

As with any object that conforms to the Collection interface, the itentor for an instance

of HashSet can be obtained via the iterator () method. The iterator () method is

used in TASK any t h e each of the elements in one of an object's coilections needs to

accessed in sequential order. For example, the scopes stored in the instance of HashSe t

representing an actor's focus are itemted ovex in the des t r o yImp 1 () method of the

Ac torïmpl dass as foilows:

...
for (I t e r a t o r i = focus. i t e r a t o r (1 ; i. hasNext (1 ; 1
{

ScopeImpl scope = (ScopeImpl) i.next0;
scope.unsubscxibe(TASKEvent,class, null, this 1 ;
scope,rmoveObject(this 1 ;

1

One of the more useful aspects of using a HashSet ro maintain the collections of objects in

Ti\SK is that, k e the other concrete coilecuon classes, ir implements the Collection

interface, and hence can be accesscd in a generic way. That is, drhough the implemenraaon of

a clnss uses o HashSet to store objects in the collection, an. access ro thc collecaon by

clients of the object can bc controiIed by reniming an Lnmurable Collection object radier

dian the HashSet icsclf, hencc promoang dota encapsuinaon. For example, dthough the

A c torImpl class uses an instance of HashSe t to store its focus internally, access to the

collecaon ~i? the f ocus () method (dehed bv the A c tor interface) r e m s a

Collection as loUo\vs:

public Collection f ocus (1
(

return Collections.unrnodifiableCollection(focus 1 ;
1

One of the p r L n q motivators for introducing the CoUections API was to provide a set of

uniform behaviors and interfaces for groups of objects. The foct that these new chsses

provide unsynchronized access to di& data structues is seen by mony as a benefit. Although

synduonuiation dows multiple thrends to sddy access an object Nithout corruptkg the

internd state of the object, it cornes with a penalty - reduced pedonnmce. The new

collection classes offer developers greater control over whether îccess to th& collections is

synchronized or not. Despite this argument, however, it is n good ide? to aiways d e dasses

67

dueadsafe. This c m be accomplished for unsynchronized classes by using sraac methods

ofkred by the Collections dass that take an arbitrary collection and tum it into n

synchronized cokcaon. Cnfortunately, the r e s u l ~ g coilecaons do not correcdy synchronke

access to methods that involve iteration, so blocks of code that use itemtors miist be

synchronized esplicitlg using the synchroni z ed statrment. [Oaks 19981

In TASK, instances of the unsynchonized HashSe t class are used instead of insrances of

the synchtonized Vector class to represcnt collecaons of obiects. In order to guarantcc

mumal exclusion of changes to thcse collections, the codc for the AC tor Impl construcror

presenred above must br modificd as follows:

. . .
focus = Colleccions.synchronizedSet(new HashSecO 1 ;

Sirmlarlv, due to the unsvnchronized nacure of mrthods involving ireration, chc codc for the

des troylmpl () method of the A c torImpl dnss presented above must be modifiecf bv

synchroni zed s tatement follows:

S . .

synchronized (focus)

(
for (Iterator i = focus.iterator0; i.hasNext0; 1
(

ScopeImpl scope = (Scopelmpl) i.next0;
scope.unsubscribe(TAçKEvent.class, n u l l , this 1 ;
scope.removeObject(this 1 ;

4.2 Implementiag Constrain ts in Java

One method of imp lemen~g consmaints in a p r o g r d g language is to use the Design by

Contracc technique developcd by Bemand Meyer that allows designers and programmers ro

specify the semantics of a dass's interfice. .-it the h a r t of dus technique is the concept of

~ ~ ~ t r t z ' o m - starements that should always be mie and can O+ be Olse in the event of an error,

in which case an exception is nised. Design by Contract uses three kinds of assertions which

correspond to die types of constrûints described in Chûpter 2 - invariants, preconditions, and

postconditions. m l e r 1997

Lrsing assertions to d e h c the nbstmct behavior of sofnviue elemenrs has several advantages.

Cornponent developers, or suppliers, c m be assurcd that sofhvwe will not be abused as long as

correct usage 1s clearly d e h e d using assertions. In r e m , components uses, or clients,

benrfir €rom a precise descripaon of how ro use a scmicc muid what it d l do. Rigorous use of

Design by Contract hns the potentid to also improve the softivarc devciopment cycle as a

whole. It represents biisiness d e s hom the problem domain directly in code thereby

contirmlig that a sofnvare s p m obrys those d e s , which leads to uacrnbility. It helps others

understand what a dass does and builds confidence in the dass's performance, which leads to

reuseability. I t helps uncover code defects d e r by providing n solid foundation for unit

t e s ~ g , which lads ro robusaiess. It dows n module to be considered dosed @y speafjmg

ia interface M y) whde nt the same t h e leaving it open for future chmges (assuming the

concract is ntlintained), which lads to extensibility. FIannion & Phillips 19981

Invariants, preconditions, and postconditioos c m easily be implemented Li Java by i n t r o d u ~ g

additionai ciasses that eraiuate Boolean statements muid throw an appropriate exception when

an assertion is fdse. This is accomplished in TASK with three such ciasses, namely

TASKInvariant, TASKPrecondi tion, and TASKPOS tcondi tion. The

TASKAssertionException dass, dong wvith its subci~sses,

TASKInvariantException, TASKPreconditionException, and

TASKPos tcondi tionException, are used to mode1 the associated exceptions. Since

the structure of these classes is similar, code for ody the TASKInvariant d a s s is presented

as an esrmple beiow:

public class TASKInvariant
I

pxivate static boolean enabled = crue;

public static void assert(String description, boolean expression 1
throws TASKInvariantException

if (onabled 1
if (! expression 1

throw new TASKInvariantE%ception(description 1 ;
re turn ;

1

public static void assert(boolean expression 1
throws TASKInvariantExcep tion

{
if (enabled 1

if (! expression)
throw new TASKInvariantExceptionO;

return ;
3

public static
C

enabled =
return;

void setEnabled (boolean isEnabled 1

isEnabled;

Enforcement of invariants Li TASK can be nimed on or off by sen* the setEnabled ()

message ro the TASKInvariant dass with a Boolean vgument Operations in TASK for

70

which invariants are to be checked simply send the assert () message to the

TASKInvariant class with a Boolean statement and an optional description as arguments.

For esmple, the invariant for the K e y I m p l chss, conespondlig to the O U description

provided in Section 2.2.4 of Chapter 2, is checked ar the beginning and end of the

describe () method as follows:

where die implementntion of the invariant () method of rhe KeyImpl clrss looks Ne:

public boolean invariant (1
{

if (! holders.contains(orner 1 1
return false;

€or (Iterator i = holders.iterator0 ; i.hasNext0 ; 1
i f (! ((ActorImpl) i.next0).getKeysO.contains(t h i s 1 1

return false;
return super. invariant (;

1

Enforcement of precondiuons in TASK can be ~ r n e d on or off by senduig the

se tEnabled () message to the ~ ~ ~ ~ P r e c o n d i t ion class w i t h a Boolean argument.

Operaaons in TASI; for which preconditions arc to bc checked simply senci the assert ()

message to the TASKPrecondition dass with a Boolean statemenr and an optionai

description as arguments. For euample, the preconditions for the describe () method of

the KeyImpi dass, conespondhg to the O U description of the describe action

provided Li Section 2.2.4 of Chapter 2, ;ire checked at the beginnlig of the method as foiiows:

* . .

TASKPrecondition.assert(owner.equals(requester 1 1 ;
TASKPrecondition.assert(! description.equals(aDescription 1 1 ;

Enforcement of postconditions in TASK c m be tumed on or off by sending the

setEnabled [) message to the TASKPostcondition dass with a Boolean argument.

Opentions in TilÇK for which postconditions are to be checked shply send the assert ()

message io the TASKPOS tcondit ion class with a Boolcan statement and an opaonal

description as arguments. For exarnple, the postcondition for the describe () merhod of

the KeyImpl class, corresponding to the OCL description of the describe action

providrd in Section 2.24 of Chapter 2, is checked at the end of the methoci as folows:

Wirhin the contest of Dcsign by Conw~cr, interfaces represent a concnct benveen the client

and supplier of a scmicc, the conditions of which are specified by assertions. Through its

direct support for interfaces via the interface consuucr, the Java language has no doubt

conmbuted to die growlig popularity of the pMapai of prognmming to interfaces in recent

years. By reahing an interface, a ciass provides an implementaaon for the methods it dehes;

this sepanaon of declantion and implementaaon forces sofnvme developers to think in ternis

of interfaces, mhich in mm lends CO p a t e r flexibility and case of reuse. LTnfomuiately,

ho=-er, the interface consuuct done cannot provide a complete spedcation for an

interfice becaiuse, dthough it places a syntactical consmint on the signature of a method, it

cuinot enforce the semantics of the interface. FIannion & Phillips 19%]

One way of ensuring that both the synn?~ ?ad the semantics of a n intedace are consistent is a

technique referred to os dom-cal. also known as the TempIate Method design pattern (see

72

[Gamma et al. 1995j). This technique addresses problems that polymorphic methods, or

methods for which derived classes c m provide n different implementation than their ancestors,

present with respect to preserving the semantics of ui interface. In paxticulat, daived classes

may fail to correc. re-*lement the assertions in the method, peer derivations of a dass mav

anempt to enforce different assertions for the s m e method, or ovenidden methods rnay omit

the check for assertions entirely. The d o m - c h g approach resolves these issues using nvo

types of methods - interface and implementation. h k $ k - e mrfhoh are publidy accessible

methods that c m be direcdv invokcd but cannot be overridden; this can br accomplished

using the f i n a l kepvord in Java. Inp/~nic~~~t~t i i l i nit>tI~il,; on the other hand, are nor pubiiclv

nccessible, but are restricted CO the inhentance herarchy and c m be overndden to proride the

implementation for an intercice method. k i n g this mcchmism, interface methods manage

the en forcement of assertions whereas irnplemcntation mcchods provide a suitable confomiing

implementation. [Payne 19971

The down-calling technique is used in TASK ro help ensure that the assertions on the actions

are preserved when the fmework is extended. Just as cach kind of object hns an interface

and a corresponding implementation dm, each action hm an interface method and n

corresponding implementaaon method For esample, the interface for keys is Key, and the

corresponding implementation &ss is Key Imp 1. Similady, the interface method for the

describe action on keys, as desmied in Section 2.2.4 of Chapter 3, is describe () , and

the associated implementaaon method is describeImpl() . The describe () method

is impiemented as follows:

public final void describe(Actor ailequester, String aDescription 1
thrùws TASKE.~ception

{
ActorImpl requester = (ActorImpl) aRequester;

T~SKPrecondition.assert(owner.equals(requester) 1 ;
TASKPrecondition.assert(! description.equals(aDescription 1 ;

this .describeInpl (requester, aDescription) ;

and the des cribeImpl() method (overridden lrom TASKOb j ec t Impl) look like:

protected void describeIrnpl(ActorIrnpl aRequester, String aDescription 1
throws TASKException

{
this.setDescxiption(aDescription 1 ;

/ / send event notification

return;
1

4.3 Remote Objects in Java

Various implcrnentation alternatives esist for clîent/server applications in the wodd of

nenvork-cenuic compucing. Among these distributed object technologies are CORBA/ I IOP,

DCOh.1, RhII, Voyager, HTTP/CGI, and sodiets. This section id es~lore the use of two

forms of middleivare designed spedcally for Java - RhLI, fiom Sun Microsystems, Inc. and

Voyager, fiom ObjectSpace, Inc..

mfI (Remote Method Invocation) is an intepted dismbuted object mode4 that supports

inter-process cornmuniation berneen Java Wnial ~llilcbines. It enables a method of an object

in one address space to invoke a method of an object in anolher address space with the same

74

synuv as a local method cd. In addition to allo~ving the nansfer of control benveen vimiîl

machines and the passlig of objects by reference or copy, Rh.n also supporn dvnamic c h s

loading and callbacks to appiets. Rh11 is a corc part of the Java progrmmkg laquage which

dl iicensees are required to support. PIomson 1397

hhch likr RMI, Voyager is a Full-featured, i n ~ t i v e object request broker that \vas designed to

providr a Java-centric computing phtform. In addition to supporthg d y n h c dass loading

and callbacks to applets, among other Rh11 fcanires. Voyager supports mobile objects and

nutonornous agents and also indudes services for persistence, scalable goup communication,

and federated directories. [ObjectSpace 19971

In ha, nvo different Unplementations of TASK were actudy developed, in an effort to

explore the practical differenccs benveen RN1 and Voyager. In the followving sections, seserai

aspects of thesr cwo technologies are cornparcd in rems of how they are used in T'.-\SI;.

4.3. / R ~ O I ~ - E I I L I & / ~ I ~ ~ d C h

Rcmote-enabling a class using MI requires scverd stcps. Fust, a remote interface must be

dehned, which sprcifies the signature for every method that is to be invoked remotely. This

interface musr either ditectly or indirectly cstend the Remote interface, and each of its

methods must dedare that they throw the Remo t eExcep t ion exception. Nest, the dass

must be made to reahilizr the remote interface and provide m implementation for each of its

methods. The &ss must also either directly or indirectly extend (inherit kom) the

UnicastRemoteObject ckss or provide its onm implementation of budt-in remote

object behavior. Nat, the dass must be compiled, and dica stubs and skelctons for the dass

must be generated using the RMi post-compiler, rmic. Skdetons are suver-side references

to remote objects whexeas snibs represent dient proies for remote obje- tùac reside on the

semer. Finaily, the resdting stub &ss mes, dong with the remote interface &ss files, must be

placed on the dient to be used in Lnplementing an application chat uses the remote objects.

This c m either be done manudy, by copyhg the chss files to the client machme, or

automated using a technique called d y n k c dass loadlig, which tnnshrs classes from the

semer to the client on an as-needed basis via an H m process on the serrer machlie.

In the Ri111 implementation of TASK, the TASKOb j ec t interface directly estends the

Remo te interfxe, and hence it and each of its sub-interfaces is implicidv a remote interface.

Classes chat rcalizc thesc interfaces also estend thc TASKObjectImpl class, a direct

subdass of UnicastRemoteObj ect, and hcnce inhent d e f d t remote objrct behavior.

The TASKObj ec t interface, dong Mrh its remotc merhod signatures, is d e h e d as follows:

public interface TASKObject extends Remote, TAçKPublisher
C

public Collection actions0 throws RemotÊException;

public void ad&ock(TASKLock dock) throws RemoteException;

public void descxibe(Actor aequester, String ailescription 1
throws RanoteException, TASKException;

public String description0 throws RemoteException;

public void destroy(Actor aRequester 1
throws Rsmo teException, TASKException;

public String getDescription (throws RemoteException;

public Set gerLocks0 throws RemoteException;

public String getName0 throws RsmoteException;

public boolean isActor0 thraws RemoteException;

public boolean FsKeyO throws RemoteException;

public boolean isScope0 throws RemoceException;

public boolean isTool(1 throws RemoteException;

public String name0 throws RernoteException;

public boolean removeLock(TASKLock aLock 1 throws RernoteException;

public void setDescription(String aDescription 1 throws RernoteException;

public void setName(String aName 1 throws RemoteException;

.\ similu sstntegy c m dso be used to remote-enable classes using Voyager. However, remote

interfaces must direcdy or indirectiy estend die I R e m o te interface nther than the Remo te

intedacc. Cnlike RMI, methods that are to be invoked remoteiy need noc declare that th.

h o w a remote exception, and &ses that re&e the remote interface necd not extend m y

s p e d c dass CO inherit remote object behavior. Instead of requinng a developer to mmually

generate stubs and skeletons, Voyager automaticdy genentes dient proxies for remote objects

ou a dyn;imic, as-needed bnsis. Client applicîtions need only have access to the remote

interface dass fües, and Voyager takes care of the rest. As Mth RMI, these d a s s files can be

physicdy copied to the d e n t machine, or dynamically transfened using a remote dass-loading

mechuiism that is b d t into the Voyager semer (desuibed later).

In the Voyager knplementauon of TASK, the TASKObj ect interface directly ertends the

IRemo t e interface, and hence it and each of its sub-interfaces is hplicitly a remote interface.

Classes chat realize thesc interfaces iutomaacdy become remote objects as a result of

Voyager's p r o q generation mechanism. The TASKOb j ec t inrrrhce, dong with its rrmote

method signatures, is detined as folows:

public interface TASKObject &,utends IRernote, TASKPublisher
(

public Collection actions0;

public void describe(Actor aRequester, String aDescription)

thxows TASKException;

public String description0;

public void destroyI Actor aRequesrer thxows TASKException;

public boolean isActor (1 ;

public boolean isKey(1 ;

public boolean isScope (1 ;

public boolean isTool(1 ;

public String name (1 ;
1

4.32 E\por/izg rr ~Vu~ned Objc'd

Once a dass has been rernote-enabled, instances of the class must be made avdable to client

applications by exporting named references to them. RCI.11 indudes an object regisay service

that c m be used to bind a remote object to a name, thus eyorting the object for use by

remote dents. Once the remote registy has been started on the semer either from the

commmd iine or programmatically, an object c m be bound to a URL-based name by sendlig

the rebind () message to the Naming class.

In the Rh11 implernentation of TASK, the TASK class is innoduced to cennalize the s-g

of the regisq as well as the binding and unbliding of remote objects. For esample, the

s tartup () method srarrs the W1I registry on a specific nenvork port as foiiows:

private static void startup0
{

try

. . .
LocateRegistry.createRegistry(PORT 1 ;

1
catch (Exception e 1
{

. . -
1
retuxn;

Ench rcmote-ennblcd class in the ILMI implcmentation of TASK esports its insranccs bu

bindmg them to narnes in die object registry in one of its constructors. This is accomplished

using the crea t e () method of the TASK class, which binds remote obiects by sending the

rebind () message ro the Naming class with the desked namc and die object as arguments,

as foUows:

public static void createt TASKObjectImpl object)
throws TASKExcep tion

try
C

Naming.rebind(üRL + object.getName0, object 1 ;
1
catch (Exception e
i:

throw new TASKException (e 1 ;

Voyager also provides an integrated aamlig senice that can be used to expon references to

remote objects. This namïng service is part of the Voyager semer, which must be started on

both the server and client machines before objecrs c m send and receive messages benveen

thcm. Once the Voyager server process has been started either kom the command h e or

prognmmaticdv, an object c m be bound to a CRL-based name bv sending the rebind ()

message ro the Namespace clnss.

The Voyager implcmenrauon of TASM dso uses one clnss to centrake the starting of the

Voyager senFer as weli as the binding and unbinding of remote objects. For esample, the

s tartup () mcthod of the TASK dnss stans tbc Voyager sen-et on a specific nenvork port

3s Iollows:

private static void staxtup0

...
Voyager. s t a r t up (PORT 1 ;

1
c a t c h (Exception e
{

Each remote-enabled dass in the Voyager implemenrauon of TASK expons its instances by

binding them to names in the namhg service in one of its constructors. This is accomplished

using the create () method of the TASK dass, whidi binds remote objects by sending the

rebind () message to the Namespace &ss with the desked naine and the object as

arguments, as follows:

public static void create(TASKObjectImpl object 1
throws T~~KException

t
try
E

Namespace.rebind(URL .t object.getName0, object } ;

1
catch (~xception e 1
{

throw new ~~~KException (e) ;

1
ENVIRONMENT. add (abject 1 ;
return;

1

4.3.3 O h r h t i ~ ~ @fim~-e fa u h z o k objed

.-\ssuming n client application has nccess ro the interface and stub class hles for 3 remote class,

it c m obtain a remore refercnce to Listances o f the clnss by loohg up its name in the rcmore

registn. l h s c m be accomplished by sendlig thc lookup () message to the Naming class

rvith the object's CRL-based name as an argument, and c a s ~ g the result to the rspected type.

Dohg this, of course, ma! resuit in esceprions such ns PJot~oundException,

 ai f ormedU~~~xception, and Remo teExcept ion, dl of whch must bc esplici$

caught or re-throrvn. For example, a &nt application could obtain references to a remote

scope and nctor in the RhfI Lnplementation of TLASK as Follows:

t w
{

Scope scope = (Scope) Naming.lookup("//khussey:7000/taskn 1 ;
Actor actor = (Actor) Naming.lookup("//khussey:7000/kennn 1 ;

1
catch (Exception e
{

As with RErlI, Voyager provides n means CO look up remote objects by name ushg its namhg

senrice. A reference to a remote objea c m be obaiined by sencihg the lookup () message

to the Namespace ù a s s mith the object's üRL-based name as an argument, and casting the

result to the cxpecied type. Doing this map result in exceptions sudi as

NamespaceException, which m u t be esplicidy caught or re-thrown. For esample, a

d e n t applicaaon couid obtain refetences to a remote scope and acror in the Voyager

implementation of T:\SK as follows:

trY
{

Scctpe scope = (Scope) Namespace. Lookup (" / /khussey: 8 O O O / task" 1 ;
Actor a c to r = (Accor) Namespace-lookupt "//khussey:8OOO/kennU 1 ;

1
catch (Ekcepcion e I
{

4.3.4 11rl~okin~ LI .\,le~hod Rrnroieb

Involiing a method on a refcrence to a remote object using RhII is essentiah no different

fiom invoking a method on a normal object in Java escepr chat there is a possibility that the

RemoteException escepaon mny be chrown. Rh11 substitutes a skcleton or stub for

even method argument, panmcter, or r e m value that is an instance of a remotr-enabled

dass. One unfortunate h t a t i o n of Ri111 is that thcre is n o wav to get a refcrence to die

Lnplementation object ftom its skeleton proy. Consequently, any semer-side method

invoked on an object that is passed as n rernotc panmeter must still be dcclared as part of a

remote interface. For this reason, remote interfaces in the RiUI irnplementation of TASK

must, in generai, d e h e more methods than the conesponding interfaces in the Voyager

irnplementation. A dient application could remotely invoke the enter (method on its

refetence to the rernote scope in the Rh11 implementation of TASK as follows:

txy
{

scope-enter { actor 1 ;
1
catch (Exception e 1
{

Using Voyager, invoking a method on n reference to a remote object is essenU,'LUy no different

fiom invoking a method on a n o d obiect in Java escepr that there is a possibility rhat the

 un t irne~emo teExcep t ion escepbon may be thrown. Voyager subsatutes a pro-

object for di method arguments, parameters, and r e m rrd~ies that are instances of clnsses

which implement a remotc interface. The implementation object cm br obtained from its

srrver-sidc p r o y in Voyager by senhg it the getlocal () message and casting the result

to the espected Npe. Conscquently, servcr-side methods that won't be invoked remotely need

not be d e c l ~ e d as part of n rrmote interface. For this teason, Voyager provides bettcr support

than does for encapsulacion in the xnse chat oniy htgh-level, interface mrthods must be

esposed in remote interfaces whde lotv-level irnplementauon methods can be hiddcn in the

classes chat reaiize these interfaces. A client npplicaaon could remotely invoke the enter ()

method on its reference to the remote scope in die Voyager implementation of T.UK as

foUows:

-Y
E

scope .enter (ac t o r 1 ;

catch (Exception e 1
{

4.4 Obiect Seriakation in Java

P e ï s r - ~ ~ ~ is the ability of m object to sîve irs statc so thac it cm be restored and used at a hter

cime. Persistence c m be implemented in Java using a technique c d e d ot!jec-f ~'en'~~/iiyuoion, which

converts data structures into a common data Stream diat is Lidependent of processor or

o p e r a ~ g system. Any class cm take advantage of dus mechanism simply by implementing

Serializable. an interface thnt actudy has no methods but is used by Java as a marker to

determine whecher an object c m be seri~tizcd. By rehlizlig this interface, a dass impliu$

inhrrits the dcfault aigorithm for converthg an object CO and Gom a data suaun. p o n g 1998)

;'UI objects in Ti\SK are implicidy scrializable because the TASKO~ j ec tImpl dass

irnplcmenrs die Serializable interface. ;\s a result. the server c m easily storc the state of

the environment by ashg a c h of the objccts in TASK to wrirc dicmselvcs to an output

strrum. This is done induectly by writiny out a collecaon containhg the objects in the

Save () method of the TASK class, as follows:

public static void save0
throws T~SKException

I
=Y
{

FileoutputStream fos = new FileOutputStream('task.datm) ;

ObjecrOutputStream oos = new Ob j ectOutputStream(fos 1 ;
oos .miteOb ject (ENVIRONMENT ;

00s. close (1 ;
1
catch (~xception e 1

throw new TASKException (e) ;

1
return;

Simiidy, the s w e r c m easily restore the state of the TASK environment by asking objects to

read themselves from an input stream. This done indirectly by readhg in a collection

containhg the objects in the res tore () method of the TASK class, as follows:

p r iva t e static void restore0
throws TASKException

C
trY
C

FileInputStream fis = ner& FileInputStream(" task. dat ") ;
ObjectInpurStxeam ois = new ObjectInputStream(fis 1 ;
ENVIRONMENT = (Set) ois.readObject0;
ois .close (1 ;
. * *

1
catch (=ception e)

E
throw new TASKException(e 1 ;

1
1

.\lthough the dcfault algorithm for obiecr serialization in Java works for the majority of

objects. thcre are some cases where th is mechmism is not suffiacnt Fields Li a dass can bc

escluded from the d e f ' t serializauon mechanism by d e c h ~ g them ansicnt. Dan that still

necds to be made persistent, howvever, c m be senalized in n customized way by ovenidhg the

wri te0b j ec t () and readOb j ec t () methods. Combining use of the transient

ke~word wvith implcmentation of the wri teOb j ec t () and read0b j ec t () methods

cetains the ease of use afforded by the Serializable interface while at the same M i e

providing the fleuibility of application-specific serialùation. wong 191)8]

ln TASK, the subscriptions atmbute of the TASKContextImpl ciass is dedved

transient so that my subscriptions involving instances of dasses that implement the

TASKSubscriber interface but do not inberit fFom TASKObjec t I rnp i chss are noc

85

made persistent. In order to ensure that the remaining subscriptions can s d be stored to ui

output stream, however, the TASKContextImpl chss ovemdes the writeOb j ect ()

method, as foiiows:

private void write~bject(ObjectOutputStream oos 1
throws IOException

{
oos.defaultWriteObject0;
Set s = Collections.synchronizedSet(new HashSetO) ;

Synchronized (subscriptions) [
f o r (Iterator i = subscriptions.iterator0; i.hasNext0; 1
(

~~~KSubscxiption ts = (TASKSubscript ion) i . next ( 1 ; 
if ( ~~SKObjectImp~.c~ass.isZnstmce~ ts.getSubscriber0 ) 

s.add( ts 1 ;  
1 

1 
oos .writeObject ( s 1 ; 
return; 

Suniluly, in order to read scri&ed subxriptions from an input suam when instances of 

TASKCont ext Impl are restored, chc readob j ec t ( ) method musc bt: overridden as 

private void readObject( ObjectInputStream ais ) 

chrows ~OException, ClassNotFoundException 
E 

ois.defaultReadObject0; 
subscriptions = (Set) ois.readObject0; 
return; 



5 CONCLCSION 

This thesis has describrd TASI.; a genrrd Gmework For coiiaborativc workspaces. In 

pmicular, it has esplored the concepnid model design speafication, and implementation of 

TASK, in an effort to demonsate how it supports sevetal desirable features of groupware to 

support coUabonave work. In conclusion, ths  chapter brie. reriews the specific aspects of 

T:\SK chat suppon these feanucs and thus faditate rhe development of uschil colabontive 

environrncnts. 

Fnmes of reference for coliaborative activities are represented by scope objects in T.-\SK. 

LTnlike the simplistic notion of rooms employed by traditional rnvir-ironmenrs, scopes provide a 

contest for collaboration thnt transcends the limitations of n spatial metaphor. 'TASI.: allows 

mor s  to bc part of more than one scopc concurrently, which means rhat participation in 

activities is not limited on a per-contest basis. 

Communicaaon benveen and lvithin these k a e s  of rcference is accomplished by represen~g  

users as actors Li TASK. Interactions benveen these mors and other objects cm be direct or 

indirect, synchronous or asynchronous, and one-to-one or  one-to-many .\wueness in TASK 

is hcilitated through application of the Event Notifier design pattern. Using this mechanism, 

the execuaon of actions on objects is communicated as events to other objects in the 

environment, aiiowing u s a s  to be aware of the activities ofother u s a s .  



Tools to support the activities perlormed Mthin these Games of refixence are represented by 

tool objects in TASR The prirnary means bp which activiaes are performed in TASK, tools 

provide a simple founciation that can be rxrended and adapted to support a more complete 

range of activities. The ability CO intepte new tools and ncaons makes TASK an ideal 

fimework for devdoping environments to support collaborative work. 



BIBLIOGRAPHY 

Booch, G., Rumbaugh, J., and Jacobson, 1.. 1990. The Lr/z~edMoJeliig Lvnguuge LhG~clr .  
Addison-Wsley Longman, Inc., Reading, hliL 

Curtis, P.. L993. Lambdahl00 Programmer's Manual (available from parcftp.seros.com, 
directory pub/MOO/papers). 

Curtis, P., and Nichols, D. :I.. 1993. "hlUDs Grow Up: S o d  Virtual Reality in the Real 
World". In Third l r ~ f ~ n z u ~ i a ~ ~ d  COI@IILY 011 q b e r ~ p c ~ ~ ~ ,  A USM, TS (aratla ble from 
parcftp.serox.com, directory pub/ XlOO/papers). 

E d ,  R .  1993. "Collaborative Networked Communication: bFDs  as Svstems Tools". In 
Pmr~ec/ings oJ-/he Srued .$~?tw.. . - l rhti~~i~~t'rrihc~ Co)@m (UJA ! 'if), hlon tery, Cr\ (available 
from parcfrp.xerox.com, directorv pub/hlOO/papers). 

Gamma, E., Helm, R., Johnson, R., and VLissidcs, J.. 1995. D ~ J ' I ~ I I  PLI~~Y~JJ- .  Ehrne~zf~. oJo/'kw~~zrblc 
Otbjt1-1 O~~i~ztr'dSuj~wtiun. Addison-YVeslesley Publishg Company, Inc., Reading, hL\. 

Gupta, S., Hartkopf, J., and Ramaswamy, S.. 1998. "Event Nodfier: A Pattern for Event 
Notifmuon". jm Rrpori, 330: 19-36. 

Hunt, J.. 1999. 'The Collection .-\PI". J m l  Rrpor, 4(4): 17-32. 

Hussev, K.. 1996. De~$?z rzrd inp/lm~r~it~Nlon oj'y iL.1 L'D Frz~~e~uoork ill Smi/ifci/k. Undergraduate 
honours thesis, Acadia Lhiversity, NS, Canada. 

hlannion, M. and Phillips, R.. IW8. 'Trevention is Better Than a Cure". ]mu Rrpod,3 (5923- 
36. 

iLIordsoa, M. et al.. 199% Java I .  I Thinl Edition* Sams.net Publishing, Indianapolis, IN. 

Oaks, S.. 1998. "The burden of spchronization: Hashtable vs. HashMap". Jau Rrpott, 
3(8):78-80. 



ObjectSpace, Inc.. 1997. 'Voyager and RMI Cornparison". ObjectSpnce, Inc., Dallas, TS. 

Payne, J., Alexander, R., and HutchLison, C.. 1997. "Design-for-Testab for Object- 
Onented So fhvare: Techniques for inueasing so h e  tesubility". 0Yei.1 ~ L I C I ~ C Z ~ ~ C ,  7(5):35- 
43. 

Rodden, T.. 1996. "PopSting the :\pplication: h Mode1 of A ~ v ~ e n r s s  for Coopentive 
Applications". In Pmeedi~gs q>lC\.I CSC1V"3 60~inm-e on Compct~er-Sqûpor/ect Cooperizfive 
IVork, Cambridge, MA. 

IVarmer, J . and Mep pe, A.. 1 999 b. T h  0b-t COIIJJI~U~II~ LII~IIU~:  P~nlf~'t> i\4ocit/ii,iy IMIl) UiLLL 
.\ddison Ivedey Longman, Inc., Reading, hL-i. 

LVong, H.. 1998. "What is Jwa bean pcnistence?".]~u~i R ~ M ,  3(3):70-72. 



APPENDIS A: OBJECT REFERENCE 

Actor 

An individual ilvho collaborates, or coacts, ilvithin TASIC 

The fmrne of reference for actions Livoked un the actor. 

description 

-4 tesnid descripaon of thr actor. 

focus 

m e  scopes whch rhe actor h:is entered. 

kcy 

'ihc k q s  whch hiive bcen gpnted to the actor. 

nilme 

The unrquc: tesnid identifier for the actor. 

objccts 

The objects (cools) for whch the actor is a frnme ofrcfercncr. 

crcatc 

:\iiows the requestcr co u m t r  a ncw actor, scope, cool, or kcy. 

Uotvs the requester to change the description of the actor. 

Allots the requrstrr to desuoy the actor. 

focalize 

..\ilows the reqwtrr  to change the context for the actor. 

lock 

,Uows the requester to lock one of the actols actions with a key. 

91 



.-Ulows the requester ro d o c k  one of the aaor's actions with a key. 

A mechanism of litnithg the behaviors of actoa within TASK. 

A texml descripuun of chc key. 

holdcn 

'fit: mors  co \duch the kry hm bbrcn pnrrd.  

n m c  

The uniquc texnul identiticr for chc key. 

owner 

Thc actor chat has u~thority to gant or  rrvokc the kry 

descnic 

;\Uows the cequeter to change the descripion of the kcy. 

des troy 

AIiows the rrqucster to dcsuoy the kry. 

F t  

;\llows the requester to gant  the key CO an actor. 

.-Uows the rrquçsnr to revoke the kry from an actor. 

A h e  of refetence for the actions that actors engage in as they coilaborate in TASK. 

context 

The h e  of reference for actions invoked on the scope. 



The unique tesnial identifia for the scope. 

The objeccs (acron, scopes, and tools) for which the scope is a f i m e  of refcrence. 

-Uows the requesrrtr to changc the description of the scope. 

dcs troy 

Allows the requcstcr ro dcsuoy the scope. 

cntcr 

.\llows the tequestcr ro enter the scupr. 

.\Uows thc requcsrer co estt the scopc. 

lock 

.\llows the requrster to lock one of the scope's actions with :i kcy. 

unlock 

;\Uows the requestcr to unlock one of the scope's nctions with ;i key. 

1 Tool 
- -  - -  -- - 

A means by which actions are perfomed in TASK 

The lnme of refereacr for actions invoked on the tooL 

desctiption 

A teund description of the tool. 

n;une 

The unique t e d  identifier for the tooL 

93 



desmie 

,Uows chc: crqurster to change the description of the tool. 

:Uows the requescer to cfestroy the tool. 

drop 

.-Uows rhe rcqucster to put the tool down. 

lock 

-Uows thc requrstcr CO lock one of the toaPs actions wirh 2 kcy. 

U o w s  the requcster to pick the cool up. 

d o c k  

.-Uows the rrqursrec ro unlock one ofrhr tool's acriuns with a kcy. 




