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Abstract 

On the Development of B bck-Cip hem and Pseud4tandom Function Generators Using 

the Composition and XOR Operators 

Steven A. Myers 

Master's Of Science 

Graduate Department of Cornputer Science 

University of Toronto 

1999 

We attempt to provide evidence for the security of block-ciphers which are constructeci by 

taking the composition and exclusiveor of non-secure function generators. We provide 

this evidence by showing that such construction can be used to combine parti* secure 

pseuderandom function generators into generators with stronger security properties than 

any of their constituents. We extend results of Luby and Rackoff, and show that there are 

constructions based on the composition and 0 operators which can be used to combine 

1 - 6 secure pseuderandom permutation and function generators, where O < d < 1, to 

achieve a 1 - l secure generator, for any c > O. We then give the f i s t  proof that 

there is a natural construction which combines together 1 - S secure function generators 

to form a pseuderandom function generator. 
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Chapter 1 

Introduction 

The field of cryptography has a long and rich history, yet it is ody  in the past few 

decades that work in the field has become more of a science then an art. Previously, 

cryptographic systems were developed based on heuristics, and the cleverness of their 

designers. However, the designers gave no evidence that the techniques or operators they 

used in the development of their systems were actudy increasing security. 

Two operators which have consistently been used in the development of block ciphers 

are the composition and exclusive-or (XOR) operators, for i t  seems to have been taken 

for granted in the cryptograp hic c o ~ l l ~ ~ ~ u n i  ty t hat these operators increase security. This 

belief seems to stem from empirical evidence that cryptographic systems based on these 

operators have remained fairly secure, under the scrutiny of very intense and extensive 

cryptanalysis. One such example is the Data Encryption Standard (DES), in which 16 

permutations generators, which are "completety insemen individually, are composed and 

combined together with the composition and XOR operators, to give what appears to be 

a remarkably secure block cipher. 

Since the development of DES, in the early 19709, it has undergone extensive public 

cryptanalysis, and during the p s t  30 years only two forms of cryptanalysis have sug- 

gested attacks which require significantly fewer than the 2'' cails to the DES algorithm 



which are necessary to break it by a bruteforce attack on its 56 bit key. The two forms 

of cryptanaiysis which have performed reasonably well are linear, and differential crypt- 

analysis developed by M. Matsui in [16]; and E. Biham and A. Shamir in [3], respectively. 

Using the techniques of linear cryptanalysis, PT executions of DES on known plain texts 

are required to break it; where as in differential cryptanalysis, Y' executions on chosen 

plain texts are required. In either case, the attacks are not sigdcantly stronger than a 

brute force attack on the keys of DES, and the empirical evidence seems to suggest that 

DES is a very secure cryptographic system. 

Fùrther evidence of the pervasiveness of the use of composition and XOR as operators 

for augmenting the security of block ciphers is the fact that MARS, TWOFISH, RC6 

and most of the other Advanced Encryption Standard (AES) candidate ciphers seem 

to rely on these operators to increase their security. All of the candidate ciphers are 

currently in a cornpetition to become the Advanced Encryption Standard. The AES WU 

replace DES as the standard block cipher used by the U.S. Government, and therefore the 

candidate algorithms are expected to be very secure, given the current state of knowledge 

in cryptology. 

The purpose of this thesis is to provide evidence which supports the use of comp* 

sition and XOR operators in the development of block ciphers. We will not be able to 

demonstrate that their use in the development of a cryptographic system can result in a 

provably secure cryptographic system, as such a proof would imply P # NP, and thus 

soIve one of the most important open questions in cornputer science. Instead, we have 

much more modest goals, and will demonstrate that there are constructions based on 

composition and XOR which combine function and permutation generators which are 

ahady partially secure, and which result in fùnction or permutation generators which 

are more seme. This will be used to give evidence to suggest that composition improves 

security, and partially justifies their use in the design of block ciphers. 



1.1 Overview of the Thesis 

W e  will now provide a brief outline of the thesis. We begin, in Chapter 2, by introducing 

some standard definit ions of cryp tographic primitives. We also explain the relationships 

that exist between these primitives. Then in Chapter 3 we look at some previous work 

which has been done on constructions which increase the security of different types of 

cryptographie primitives. We will look at work which has been done in both complexity 

and information t heoretic models. 

In Chapter 4, we wiU then develop a List of possible constructions which use compo- 

sition and XOR operators to combine partidy secure fimction generators into another 

b c t i o n  or permutation generator. In the mode1 we will work in, our definition of security 

wiil be based on complexity theoretic notions. We wiiI show that most of our proposed 

constructions result in a function or permutation generator which is at best as secure 

as its constituent generators. Therefore these constructions are not usefid for increasing 

security in the construction of block ciphers, but based on some work done by Luby and 

Rackoff in [12], in Chapters 5,6 and 7 we will prove that three of the constmctions result 

in generators which have st ronger securi ty than any of t heir constituent generators. 

The first secuity increasing construction is based on the composition operator. Previ- 

ously in [12], Luby and Rackoff have shown that composing part idy secure permutation 

generators a constant number of times results in generator with stronger security prop 

erties than any of the constituents. By making some modifications to their argument, 

by making it less dependent on sampling different distributions of functions, we wiU ex- 

tend t heir result to show that we can compose a O(log log n) number of par t idy  secure 

permutation generators. This will result in a construction wbich is more secure than 

the constructions which are provably secure from the initiai r d t  by Luby and Rackoff. 

These results are presented in Chapter 5. 

The second security increasing construction is based on the O operator, proposed by 

Luby and Rackoff in [13], which is a combination of the composition and XOR operators. 



Given two functions fi and fi such that fi : {O, 1)" -t {O, 1In, for i E {1,2), d e h e  the 

operator O (read as box) as: 

By proving two technical arguments about this operator, we will show that we can use 

the arguments previously presented for the composition operator acting on permutation 

generators, and apply them to the case of the 0 operator acting on function genera- 

tors. Therefore, it will foliow that we can wmbine O(log logn) funetion generators using 

the O operator, and achieve the same security as was achieved by composing together 

permutation generators. These results are presented in Chapter 6. 

The third security increasing construction is based on the O operator generator. We 

define the O operator generator (read as Diamond) as O = {0:l,r2 ln E W h ri, rz E 

{O, ln} .  Let fi and f2 be two functions such that fi : {O, 1)" -t (O, l)", for i E {1,2). 

For each rl , r2 E {O, 1)" we define the operator ,, , which acts on the functions fi 

and f2 as: 

We will show that by combining function generators using randornly chosen operators 

from the O operator generator, we can combine any polynomial number of function 

generators, and the result will be a completely secure1 function generator. This proof 

will be based on the proof by Luby and Rackoff, but we wiU observe that this construction 

allows us to short-circuit a key section of the proof. This in turn is what dows  us to 

combine together maay more function generators than in the previous cases. We will 

then observe that while the third construction improves security significantly, there is no 

reason to suspect that it will be useful in the design of block ciphers. These results are 

presented in Chapter 7. 

Finally, in Chapter 8 we will suggest future research directions and goals which are 

' ~ h e  notion of completely secure will formally be define in the sequel 



similar but more ambitious than those presented in this document. In particular, we 

suggest the deveIopment of a theory for the development of block-ciphers. Ln this theory 

we would conjecture that completely insecwe function generators could be combined in 

different constructions -such as the ones ment ioned above- to forru secure generators. 

We would Say that a construction was secure if the initial, insecure generators, and the 

constructed generator had certain cornbinatorial properties. The motivation for such a 

t heory is that it would d o w  for the cornparison of different resource and design trade-offs 

which are made during the deveiopment of different ciphers. 

1.2 Notation & Terminology 

Below we introduce some notation and terminology which will be used throughout the 

rest of the thesis. 

Terminology 1.1 For p, v E (O, l) ' ,  let p a v denote their concatenation. 

Terminology 1.2 Let P denote the set of al1 permutations, and let Pn denote the set 

of all permutations u : {O, 1)" + {O, 1)". 

Terminology 1.3 Let 3 denote the set off all functions, F'+P denote the set of al1 

functions f : (0,l)' -ï {O, 1}P, and let 3" be the set P+". 

Terminology 1.4 For a, p E {O, iln, let a $ P denote the bit-6y-bit ezclusive-or of a 

and p. For f, g E F, let ( f  @ g ) ( a )  denote f (a) @ g(rr). 

Terminology 1.5 For any two functions g and h, let g o h ( x )  = g(h(x)). When we n f e r  

to the composition f O g(x) = f ( g ( x ) )  of two functiotlg f(x) and g(z), we =fer to f as 

the outer function, and g as the i ~ e r  function. 

Terminology 1.6 For any set A, let x E A be the action of unifomfy at mndom choos- 

ing an element x from A. It wàll be clear from contezt when E is wed to refer to an 

element in a set, and when it refers to choosing uniformly from a set- 



Terminology 1.7 Let Dl, D2, .... be a sequence of distributions, and let e m p m e n t  a 

series of events el, e2, .... such that for al1 i, ei is an event of Di. W e  say that e occurs 

with significant probability if for some constant c > O and for infinâtely many  n the 

l We say that a n  euent e occurs wàth negligible probability if, for al1 Pro, e, L ;;é* 

constants c > O and for ail sugieiently large n, Pro,, e,, < 5. 

Terminology 1.8 M e n  we M e r  to a function poly(n) we are mfemng t o  any function 

in the set Uz, O(ni). 

Terminology 1.9 When we tefer to a f inetion poly-log(n) we are refemng to any func- 

tion in the set Ubl O(logi n). 

Terminology 1.10 Let A be an  algorithm o r  Turing Machine, and let a be an  orcale. 

W e  denote by A" the algorithm or  Turing Machine A, with access to the oracle n. 

Terminology 1.11 We cul1 a circuit C a probabilistic circuit, if it requims as  inputs a 

string of random bits. 

Terminology 1.12 Let C 6e a circuit whose outputs are in the range {O, 1). Then we 

say C is a decision circuit. Let x be an input t o  C .  Then we say C accepts x if C ( x )  = 1, 

and we say that C rejects x i /  C ( x )  = O .  

Terminology 1.13 Let D be a distribution over the inputs of a decision circuit C .  Then 

we dejine 

and we say that C accepts a fraction Prc(P) of its inputs, and rejects a fiaction 1 - 
Prc('D) of its inputs. 

Terminology 1.14 Let a E {O, ..., 2" - 11, then let a be the bit-mise binary npresenta- 

tion of a in {O, 1)". 



Terminology 1.15 Given two pairs (a,  b) and (c, d) ,  where a, b, c, d E N, we Say that 

(a,b)  < (c ,d)  i f f a < c  o r a = c  a n d b ~ d .  

Terminology 1.16 We cul1 G : {O,  1}̂  x {O, 1)" + {O,  1)" a f inction generator in- 

stance. We say that k E {O, 1)" is a key of G, and we m i t e  G(k, *) as gk(*), and Say 

that key k chooses the function gk. Let g E G reprtsent the act of u n i f o m l y  at random 

choosing a key k h m  { O ,  ljC, and then using the key k to  choose the function gk. 

Let m and .t be polynomials, and let N c N be an  infinitdy large set. For each 

n E N, let Gn : {O, 1)'(") x {O, 1)" -+ { O ,  ljrn(") be a function generator. We  cal2 

G = {Gn ln E N) a function genemtor. 

In an abuse of notation, we often refer to both specificfinction generutor instances 

and function generators os funetion genemtors. We hope it will be clear from the contezt 

which t enn  is actually being referred to. 



Chapter 2 

Cryptographic Primitives 

Cryptographers have developed a series of conjectured primitives which can be used in 

the development of cryptographic protocols. Due to a lack of progras in complexity 

theory, no one has been able to prove the existence of these primitives. In fact , as will 

be show in the sequel, such a proof would imply that P # NF, and would close the 

largest open question in computer science. Io this chapter we present the definitions for a 

number of cryptographic primitives and some theorems which represent the relationships 

between them. However, in the definition of every cryptogaphic primitive there is the 

notion of an adversary. Therefore, we begin the chapter with a discussion of the two 

standard adversarial models, and the relationships that exist between t hem. 

2.1 Uniform vs. Non-Uniform Adversaries 

In the definition of each cryptographic primitive there exists the notion of an adversary. 

Abstractly, its purpose is to break an effect that a primitive is trying to achieve. Resource 

bounds are imposed on the adversaries, so that they mode1 the wmputational power " r d  

world" adversaries might feasibly have access to, were they trying to break existential 

instances of primitives. There are two standard computational models which are used to 

d e h e  resource bounded adversaries. 



Uniforrn Adversaries 

A uniform adversary is a Turing Machine which nuis in time bounded by a polynomial 

in the size of its input. In practice we know of algorithms which run more quickly using 

randomization then the best known non-randomized versions, so we allow the Turing 

machine to be probabilistic and have access to an infinite string of random bits. h order 

to model the adversaries of certain primitives, we d o w  that the Turing Machines have 

access to one or more oracles, which answer queries. Unless otherwise stated we assume 

t hat the oracles respond to a query in unit t h e .  

Non-Uniforrn Adversary 

A non-uniform adversary is an infinite set of circuits (Ci, Cz, ...}, where circuit Ci is used 

on inputs of size i. We wish to model efficient computation on part of the adversary, so 

we assume that the size of each circuit Ci is bounded by p( i ) ,  for some polynomial p. 

The size of a circuit is defined to be the number of gates, and the number of connections 

between gates in the circuit. 

Unlike the uniform adversary we do not need to allow our circuits to be probabilistic. 

Given a probabilistic circuit which takes a string of random bits as part of its input, we 

c m  use the non-uniformity of the circuits to fix a specific set of bits as the random-input 

of the circuit. Normally, a simple averaging argument d l  show that such a string exists. 

We refer the interested reader to [7] for a further discussion of this topic. 

In correspondence with the oracles in the unifonn model, we assume that circuits 

can have oracle-gates, which respond to inputs in the same m u e r  an oracle would. We 

assume that the gates are of unit size, and are otherwise treated like any other gate. We 

stress that the description of the circuit family need not be efficiently cornputable even 

though each circuit is of s m d  size, relative tu the size of its input. 

Terminology 2.1 We write C(f) to represent a cinuit C which has access to the oracle 



Notice that in an abuse of notation, circuit inputs and circuit oracles are represented 

in the same manner. This is done because in this thesis, in most cases of interest, our 

circuits will not have inputs in the standard sense. Rather, they will be umstructed to 

differentiate between different oracles, and therefore, in some sense, we are considering 

the oracle as an input. Notice that when we treat oracles as inputs to circuits we consider 

the size of the oracle query to be the size of input of the circuit. We hope that this abuse 

of notation will not cause confusion, and that we have made it c1ear from context whether 

or not the input to a circuit is an oracle or a traditional input bit string. 

Terminology 2.2 Let Z) be a distribution over oracles of an oracle-decision-circuit C .  

Then we define 

and we say that C accepts a fraction Pr@) of its inputs, and rejects a traetion 1 - 

Prc(P) of its inputs. 

In the sequel we present the primitives in the uniform model, but note that it is easy 

t O determine the corresponding defini tions for the non-uniform model. 

2.2 Prirnit ives 

The first primitive we consider is the pseudo-random number generator, which takes a 

random sequence of bits and extends them into a much longer sequence of random looking 

bits. 

Definition 2.1 (Pseudo-Random Number Generator - P R N G )  Let p be a poly- 

nomial where p(n) > n for every n. For each n let CL : {O, 1In + {O, 1 ) ~ ( ~ )  be a 

function cornputable in a fime bounded by a polynomial in n .  Then G = {@ln E PI} is a 

pseuderandom number generator i/, for al1 aduersaries A, running in time bounded by 

a polynomial in n, and for al1 polynomials q, and for ail suficiently large n: 



Theorem 2.1 If there ezists a PRNG G, then P #NP. 

Proot: Let L = (y 13n, 32 E {O, 1)" s.t. @(x) = y). Observe, there exists a non- 

detenninistic machine M which decides L; given an input y, of size p(n) ,  M guesses a 

string x E {O, 1)" and accepts if G" ( x )  = y. However, by the definition of G, there exists 

no polynomial tirne bounded machine which decides t, and therefore P # NP. ...O 

An other natural primitive to consider is the pseudo-random function genemtor, which 

given a random string of bits generates a random looking fùnction f. 

Definition 2.2 (Pseudo-Random finction Generator - PRFG) Let rn and l be 

polynornials. For each n let G" : {O, 1)'(") x {O,  1)" -t {O,  l)m(n) be a function generator 

instance, comptable in time bounded by a polynornàal in n. Define G = {Pin E N) to 

be a function generator. For k E {O, 1)'("), let Gn(k,  .) l e  dtten as g;(-) or gk(-) when 

the value of n is clear, and referred to as the function g; or gk respectively. If Ah iS an 

adversary which queries a function h, then we Say it is capable of c distinguishing g fiom 

random if, for e : W + [O, 11, some polynomial p and infinitely many n: 

1 I,EP,:,in [A': = 11 - Pr [AI = 11 1 > r(n) + m. 
/~p(") --(") 

We say that G is ( 1  - ~ ( n ) )  secure ij there e2i5ts no function querying adversary A, 

bound to m n  in time polynomial in n, tohich can c distinguish G /mm rundom. 

We Say that G is a pseudo-random function generator i f  it is 1 secure. 

If G is a (1 - c(n))  secure PRFG, and if it is the case that for all n, and for all 

k E {O, I)~(") that g; is a permutation, then we cal1 g a (1 - r(n))  secure pseudo-mndom 

permutation genemtor. We Say that G is a pseudo-random permutation generator 

(PRPG) , if G is 1-secure. 



Terminology 2.3 If G is a 1-secure generator, we say it is completeiy secure. If G is 

a O-secure generator, we Say it is inseare, and if G is neither completely secure nor 

insecure, then we Say that it is partially secure. 

It was shown by Goldreich et. al., in [5], that the existence of a PRNG is a necessary 

and s d c i e n t  condition to enswe the existence of a PRFG. 

Theorem 2.2 PRNGs ezist if PRFGs ezist. 

We will demonstrate the constructions, and refer the reader to the original paper for 

the proof of correctness. 

Construction: To construct the PRFG, we consider a PRNG G = {gn : {O, 1)" + 
{O, 1}*" ln E N). For any z E {O, 1)" we will consider gn(x) as g(x)g g(x) ; ,  where 

1 g ( ~ ) ~ l  = I ~ ( X ) ~ I  = n. We will construct a PRFG, F = IFn : {O, 1)" x {O, 1)" -t 

{O, l}"ln E PI). For each key x E {O, 1)" will d e h e  the function Fn(x, -) = f=. 

Ln order to compute f: (y), for y E {O, 1)" , we define a complete binary tree of dept h 

n. We label the root with the empty string A, and assign it the value x. We then 

recursively apply the following d e  to assign a label and d u e  to ad other nodes, v ,  in 

the tree. Let L,, and hW be the respective label and d u e  of v's patent. 

If v is a left child set i = O, otherwise set i = 1. 

Let the label for node u be i L,, . 

Let the value for node u be gn(h,)i. 

We d e k e  the value of f=(y) to be equal to the value of the leaf node labeled y. 

The construction in the other direction is much simpler. Let H = (P : {O, 1)" x 

{O, 1)" -t (0,l)"ln E W) be a PRFG. We construct a PRNG G = {gn : {0,1}" + 
{O, 1)" ln E as follows. For each n and each z E {O, 1)" let gn(x) = H=(O) a Hg(i). 

... a 



It was shown by Luby and Rackoff in [14] that the existence of PRFGs is a necessary 

and sufficient condition to ensure the existence of PRPGs. Their construction is based 

on a generalization of DES which uses independent keys in each of the sixteen rounds of 

the DES protocol, rather than using a key scheduling algorithm to generate a new key 

in each round. This generalization of DES is commonly referred to as MDES. 

Additionall~~ Luby and Rackoff demonstrate how to construct a PRPG which is secure 

against an adversary which not only has access to an oracle which computes a permutation 

a, but which also has access to an oracle which computes the inverse of the permutation 

0 .  We c d  a generator a super pseudo-random permutation generntor (SPRPG) if, it 

is considered a PRPG under a modXed version of the PRPG definition, in which each 

adversary Au, is replaced by a stronger adversary AO~-' .  

Theorem 2.3 PRFGs ezist ifl PRPGs ezfst. 

Construction: Let F = {Fn : {O, 1)" x {O, 1)" + (O, 1)"ln E PI} be a PRFG. W e  

wiii demonstrate the Luby-Rackoff construction, which produces a PRPG H = {Hn : 

{O, 1)" x {O, 1j2" _+ {O, 1)2nln E N). For each n we perform the following construction. 

For any strings x E {O, 112" and k E {O, l)", let L: a = z, where ILEI = = n and 

let $(z) = a (LE @ fi(&)). We will define hhobok (2) = 92, O g& O gz3 (1). Further, 

to constmct a SPRPG define H = {ZF : {O, 1)'" x {O, 1)*" -t {O, l)2nln E PI}, we let 

k1.,,,,, (11 = 9z1 gh O 9; O 94 ( X I -  ... a 

Recent work by Naor and Reingold [18] has shown that these constructions can be 

modified to be less dependent on c d s  to the PRFG. This is desirable because calls 

to a PRPG can consume a considerable amount of resources. Their construction re- 

quires pair-wise independent permutation generators, and while these generators are not 

cryp tographic primitives, t hey are used extensively in cryptography. Therefore, we will 

present a definition of pair-wise independent permutation generators, and then present 

the construction of Nwr and Reingold. 



Definition 2.3 (k-wise Independent Permutation Generator) Let C be a polyno- 

miai. For each n let Gn : {O, 1}'(") x (O, 1)" + {O, 1)" be a function, computable in 

time bounded by a polynomial in n, when for each n and each k E { O ,  1}'(") the func- 

tion C ( k Y  -) is a permutation. We unite G!"(k, -) as g;(-), and the function is r e f e n d  

to as the permutation gz, or gk if the value of n îs clear /rom the contezt. We define 

Gn = (Gn ln E N}, and say that G ïs a k-wise independent permutation generator, 

if for each n and for al1 XI, --.,X>C E {O, ljn, where xi # xj for i # j; and for al1 

YI, -.-, yk E {O, l)", where Yi # yj for i # j: 

If G is a 2 - wise independent permutation generator then we Say that it is pair-wise 

independent. 

We now show how Naor and Reingold simplifv the construction of a PRPG from a 

PRFG origindy presented by Luby and Rackoff. Naor and Reingold show that if we 

consider the construction of the functions hn and hn proposed by Luby and Rackoff, then 
A 

the first permutation g& in hn, and the first and last permutations, gzL and g&, in hn can 

be replaced by permutations chosen from a pair-wise independent permutation generator 

. Thus if P = {P" : {O, 1}*" x {O, 1)" + {O, l jn ln  E N} is pair-wise independent 

permutation generator, t hen t hey replace the definition of h& ,k2,h (x) = gEl O g& o gh (x) 

with h&,h,, = gZl O g& o p:, where n3 f {O, 1)*", to construct a PRPG. Similady, 

- they replace the definition of h~L.h.b.4 (x) = g& O & 0 g& o g& (2) with h:l.h.b.ç. - 

p:l O g& O g& O pz-1, where nt, tc4 E {O, 1}2n, to constmct a SPRPG. 

Note that no construction was given to produce a PRFG from a PRPG, this is be- 

cause any PRPG is a PRFG. This is due to the fact that in order to differentiate a 

random function f E 7" from a random permutation g E Pn, it would be necessary 

'Their results are actudy slightly stronger, but we refer the reader to the original paper for the exact 
results 



to demonstrate that f is either not ont0 or one-to-one. It can easily be shown, by the 

birthday attack argument2, that the probability of finding a pair (a$) E {O, 1)nX2 s-t. 

f (a) = f (P ) ,  with at most p(n) queries to f is exponentidy small, and therefore no ad- 

versary, bounded to run in polynomial time, would be able to distinguish a permutation 

from a function with a significant probability. 

We now consider a primitive which at fust glance seems unrelatecl t o  the primitives 

which have previously been seen. 

Definition 2.4 (One-Way Functions) For each n, let f n  : {O, 1)" + {O, 1)'(") be a 

function cornputable in time bounded by a polynomial in  n. Define F = {p ln E N}. We 

say that an aduersary is capable of c(n) inverting F i f  for some some polynomial p, and 

al1 sugiciently large n: 

We say that F is a S(n)-weak one-way function, i f  no adversary A is capable of 1 - S(n)  

inverting F .  W e  say that F is a one-way function if  it is 1-weak. Finally, i f  F is a 

permutation, then it rnay be refemd to as a J(n)-weak oneway permutation, or one- 

way permutation respectiuely. 

Intuitively, a a(n)-weak one-way function is a function which is easy t o  compute, but 

which is hard to invert on a 1 - c(n) fraction of its range. Similady, a one-way hinction 

is easy to compute, but hard to invert. It may seem that assuming the existence of a 

weak one-way function is a weaker assumption than assuming the existence of a one-way 

function. This however is not the case, given a weak oneway function f ,  it is possible to 

construct a oneway function g. 

Theorem 2.4 There ezists a S(n)-weak one-way function iff there exits a one-way func- 

tion. 

2See [4] for a description of the birthday attack argument. 



We refer the interested reader to [7, 151 for a proof of the above theorem. 

AIthough one-way functions appear to have little in common with the pseuderandom 

primitives, it can be shown that the existence of one-way functions is a necessary and 

sufficient condition for the existence of PRNGs. 

Theorem 2.5 There ezkt PRNGs ifi there ezïst one-way functions. 

Although producing a one-way function from a PRNG is a relatively trivial task, pro- 

ducing a PRNG from a one-way function is much more dificuit. We refer the interested 

reader to [7, 151 for a proof of the above theorem. 



Chapter 3 

Relat ed Work 

In this thesis we are trying to show that there are constructions based on composition and 

XOR which can be used to take function and permutation generators with relatively weak 

securi ty properties and use them to constmct function and permutation generators wit h 

strengthened security properties. In this chapter we will review some of the work which 

has ben done which has a relation to constructions based on XOR and composition, and 

which increase the securi ty of weak primitives. 

3.1 Complexity Theoretic Mode1 

We wili first consider the work which is based in complexity theory. This means that the 

security definitions in this section wili rely on the fact that our adversaries are computa- 

t iondy limited in perfonning their tasks. 

3.1.1 Yao's XOR Lemma 

If we are given a predicate which is weakly unpredictable in some resource bounded 

computational model; then a natural question to ask is whether it is possible to constmd, 

by some "natual" method, a new predicate which amplifies the unpredictability of the 



original function. Ultimately, the constructed predicate should be intract able to predict , 

better than at random, under a resource bounded computational mode1 which is similar 

-if not identical- to the one given for the weakly unpredictable predicate. In [21], Yao 

postulated that the answer to this question was positive and suggested a solution that 

is both simple and intuitive: if p(x)  is weakly unpredictable then s d y  P ( x i  , ..., zt) = 

@~==,p(x; )  is almost completely unpredictable for large enough t. Yao did not present a 

proof, and the f is t  proof presented was by Levin in [Il]. Since then alternative proofs 

have appeared from Impagliazzo [8] and fÎom Goldreich, Nisan and Wigderson [6]. In 

addition to giving their own proof of the lemma, Goldreich, Nisan and Wigderson [6] 

provide a s w e y  of Levin and Impagliazm7s results. 

Before the XOR Lemma there had b e n  many proofs which showed that certain 

cons t mct ions maint ained the security of their cornponents. However, the t me importance 

of this result is that it was the ground breaking work which shows that there exist 

constructions based on partially secure components, but which are strictly more secure 

then any of their components- 

3.1.2 PRPGs and Cryptographie Composition 

Cryptographers have noted that DES is effectively the composition of 16 completely 

insecure permutation generaton. Because DES has withstood much cryptandysis it 

is often both considered to be secure and conjectured to be a PRPG. This led Luby 

and Radcoff to define the notion of a partially secure PRPG and conjecture that the 

composition of several par t idy secure PRPGs resulted in a PRPG with stronger security 

then any of its cornponents. They proved this conjecture to be true in [12]. Later we will 

use their notion of par t idy secure generators to study other constructions which appear 

to be security increasing. Additiondy, many of the proofs in this thesis will be based on 

the proof that Luby and Rackoff presented in [12]. 



3.2 Perfect Cipher Mode1 

Previously we have seen work where the composition and the XOR operators have been 

used to increase the security of parti* secure cryptographic primitives. In this section 

we assume that block-ciphers (or just cipher for short) exist. A cipher is simply a function 

generator F : {O, 1)' x {O, 1)" + {O, l}", which generates functions which intuitively are 

supposed to look random to computationdy limited adversaries. Note that there is no 

notion of asymptotic security, as opposed to the definitions of PRFGs and PRf Gs. The 

notion of ciphen corresponds to red world cryptographic functions such as DES, and 

AES which are just specific function generators, and not defined asymptotically for every 

n. In this section we present some work which asks the question of how secure ciphers can 

be combined so that the minimum number of resources needed to break the construction 

is more than the number of resources necessary to break the individual cipher. 

3.2.1 DES Transforms & Generic Attacks 

When DES was first introduced it came under criticism for its smail 5ô-bit key length. 

People feared that it would be feasible to mount an attack on DES by performing a brute 

force search on the key space of DES. As the speed of cornputers has greatly increased 

since the release of DES, in 1975, this attack has become a serious threat, and in 1993 

Weiner provided an estimate that for $1,000,000 someone could build a machine which 

broke DES in an average time of 3.5 hours. In 1999 the cost of such a machine has 

surely decreased, and the average amount of time needed to break DES is probably much 

smaller, given the fas ter processors currently available. 

Cryptographers questioned if it was possible to increase the key-length of DES while 

maintaining the time-tested security of the DES cipher. One solution which was proposed 

by Rivest, in 1984, is c d e d  DESX. We define DESX as DESXs,h,k(z) = kl @ DESk(k2 @ 

x ) ,  where kt, kz E {O, 1lM and k E {O,l)Sp. Of course this is easily generalized to 



rtrbitrary fimction and permutation geneators. If F : {O, 1)' x {O, 1)" -+ {O, 1)" is a 

function generator then define FXc,,h,i(x) = ki @ Fk(kz @ x), where now k,, k2 E {O, 1)" 

and k E {O, 1)". 

In [IO], [20] and [9] Kilian and Rogaway show that FX does in fact inmease the effective 

key length of a cipher F. However, it is not easy to defme a model in which brute- 

force key-searches on a cipher and a transformation of the cipher can be quantifiecl and 

compared, and so the model they have developed is as important of a contribution as 

their result of the effective extendeci key-length of the FX cipher, as compared to the F 

cipher. A final observation made by Aiello et. al in [Il is that the model is not only 

useful in measuring the effect of a cipher transform on key-search attacks, but rather it 

is useful in modeling the eRect of any cipher-transform on any generic attack. A generic 

attack is one which does not take into account the combinatorid structure of the initial 

cipher, and therefore a generïc attack can only exploit the structure resulting fiom the 

transform itself, and information learned from the function in a black-box model. 

The Kilian-Rogaway Mode1 

For presentation purposes we present a simplified version of the model originally presented 

by Kilim and Rogaway in [IO]. 

Let F : {O, 1)' x {O, 1)" -t {O, 1)" be a block-cipher. Let p be a polynomial, and 

let TF : {O, 1)~(") x {O, 1)" + {O, 1)" be the cipher which results from opplying the 

transformation T to F. 

Definition 3.1 A generic-attack adversary A is an algorithm which h a  unlimited com- 

putational power and has access to two oracles: 

F (k ,  x) Oracle - The adversary supplies a k E {O, 1)" and an x E {O, l)", and the o r d e  

retums F ( k ,  x) . 

E (x) Oracle - The adversary supplies an z E {O, 1)" and the omcle consistentiy responds 



as if it were in one of the following manners: 

World 1 - T Fg(x), for a L E {O, l)p(̂) 

World 2 - sr(z), for a n E Pn. 

The adversary will be placed in one of the two worlds uniformly at random. Later we 

wili d e h e  the security of a function transform as an upper bound on the ability of all 

adversaries to distinguish between which of the two worlds they were placed. However, 

an adversary which can query F and E at all possible locations wiil never have any 

diEculty distinguishing between worlds. Further, one might argue that in the "real 

world" no adversary truly has the ability to query each oracle at  every point of its 

respective domain. In practice there are limitations on the number of k e n  cipher 

texts that an adversary has the ability to request. This selection of chosen cipher texts 

corresponds to queries to the E oracle. AdditionaUy, time restrictions would limit the 

effective number of queries to F which could be made. 

Definition 3.2 An (m, t )  generic attack adversary, A(m, t ) ,  is  a generic-attack adver- 

sary, A, which makes ezactly m queries of the E oracle, and ezactly t queries to the F 

oracle. 

Kilian and Rogaway point out that when considering bmte-force key searches we 

must disallow the adversary fiom considering any internd combinatorial structure of 

the primitive cipher F. This is because we are interested in the effect of the specific 

transformation of a cipher F on the key length, and not the weaJulesses of any particular 

cipher to combinatorial attack. Therefore, rather than using a specific cipher we draw 

F uniformly at random from B, the set of all function generators. SpecXcally, if we are 

interested in a function generator F : {O, l)= x {O, 1)" -t {O, 1)" chosen uniformly at 

raadom from set P t n  of all generators of the same form, then we can choose a random 

fimction generator F in the following manner. For each k E {O, 1)" we associate fk E P, 



and we define F = {(k, fk)lk E {O, 1)=). Observe that by choosing F in this fashion we 

prevent an adversary fiom making use of the combinatorid structure of F by ensuring 

that it bas no structure. 

We c m  now formally defme what it means to break the cipher TF, which is the result 

of applying the transform T on a cipher F. 

Definition 3.3 A generic attack adversary A(m, t )  is said to €-break the TF function 

fransfom on parameters K,  n iJ: 

We refer to the above diference as the advantage of A, unitten ADVA. 

Observe that this notion of breaking TF is very weak. There is no requirement 

of determining the key, k, nor a requirement of producing a previously unknown pair 

(x, T &(x)), and therefore any upper bound results in this model are very strong. 

The Security of DESX 

Using the model dehed above Kilian and Rogaway, it is possible to show that the 

effective key length of a cipher FX : {O, 1)2"+C x {O, 1)" -+ {O, 1)" resulting from the 

application of the DESX transfonn to a cipher F : {O, 11% x {O, 1)" + {O, 1)" is longer 

than K.  

We first note that, for a l l  t ,  there exists an adversary A(m, t) which which can c break 

the cipher F, for r = 1: (note that breaking F corresponds to breaking TF, where T is 

the identity transformation). In order to $ break F, the adversary simply performs a 

brute force key-search. Kilian and Rogaway show the same attack cannot be as effective 

for the DESX trknsform, by proving an upper bound on the advantage of any A(m, t )  

adversary against F X .  



Theorem 3.1 (Kilian-Rogaway) Let A(m,t) 6e a generic attack adversary which r- 

breaks the DESX transfonn applied to a cipher F with parameters K and n,  then c 5 
t 

p+n-1-Log m - 

The theorem implies that, with the exception of adversa,ries which have the ability to 

query the E oracle on close to its entire domain, adversaries perform significantly worse 

on the FX then they do on F. 

The Security of Composition and Triple-DES 

Aielio et. al were able to show in [l] that under the Kilim-Rogaway model, composition 

increases security against generïc at tacks. 

They define the m-fold cascade transform which given the cipher F : ( O , l ) K  x 

{O, 1)" -+ {O, l)", produces the cipher mF : {O, lImc x (0,l)" + {O, l)", where 

mF',. .... k&) = Ftl O - - - O Fk&) and lkl= n- 

Theorem 3.2 (Aiello et. al) Let A(m, t )  be a generic attack adversary which a-breaks 

the rn-fold cascade transform applied to a cipher F ununth parameters n and n, then e 5 

($)"- 

The result is tight for m = 2, as a variant on the meet in the middle attack achieves 

the bound. For the the cases where m > 3, Aiello et. al were not able to show that the 

bound is tight, and they conjecture that the actual bound is much smder.  

For historical reasons Aiello et. al also give an upper bound for the advantage of 

adversaries on the triple-DES transform, which given F as a cipher outputs a cipher 

3DES-F, where 3DES-Fc,.b(x) = Fk, O F;' O FI, (x) and lkil = K. Note that in the 

transform the inverse of the second fimction is done for historical reasons, and bas no 

security related purpose. 

Theorem 3.3 (Aiello et. al) Let A(m, t )  be a generic attack adversary which c-breaks 



the triple-DES transfoma applied to the cipher F wàth parnrneters r and n, then 

% (&)*. 

This is the same bound as for the 2-fold cascade transfo= and effectively follows 

from the same proof, but the authors were not able to prove that this bound was tight, 

and they conjecture that smder upper bounds do exist. 



Chapter 4 

Proposed Operators Relating to 

Composition and XOR 

Our primary goal is to consider constructions which combine function and permutation 

generators into a resulting funct ion or permutation generator which has increased security 

over its component generators. In particular we will be interested in constructions which 

use partially s e w e  PRPGs and PRFGs to produce new PRPGs and PRFGs. Further, 

we want to consider constructions where the security of the resulting generator is stronger 

than that of its component generators, assuming none of the component generators were 

perfectly secure to begin with. FinaUy, we want the constructions to be scalable, so 

that as we scale the construction to be larger, we improve the security of the resulting 

generators. 

In this chapter we wiU present a list of possible constructions which might be used to 

combine function and permutation generators in a security increasing fashion. W e  will 

consider some of the more obvious constructions which are based on the composition and 

XOR operators. Again, we consider these operators, as historicdy they have been two 

of the most widely used operators in the development of cryptographie systems. W e  will 

show that some constructions can be discarded as they either do not increase the security 
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of the resulting generator, or in some cases the security of the component generators is 

not even maintained. In subsequent chapters we will show that three of the proposed 

constructions do increase the security of the resulting generator, but unfortunately we 

are onty able to prove that one of them can be used to achieve 1-security by scaling the 

size of the generator. 

Before describing the constructions, we will first formally describe how to combine 

two function generators using a generic operator, and whst it means for the security to 

be necessarily increasing. 

Definition 4.1 Let G = {Gn : {O, l}'(") x {O, 1)" -t {O, 1)"ln E Ed) be a 1 - 6(n) secure 

PRFG. Let H = {Hn : (0, l)dn) x (O, 1)" + (O, l lnln E N) be a 1 - e(n) secure PRFG. 

Let op = (op" : {O, 1)'(") x F x F -t Fin E N} be a n  operotor generator, and m i t e  

opn(s, a,  b) as 'fa op: b". Then let F = {Fn : {O, l)'(n)+"(n)+r(n) x {O, 1)" + (O, l}"ln E N} 

be the f inc t ion  genemtor defined by Fn(kl 0 k2 0 k3,x) = (gtl op& h g )  (z), where IkII = 

.f?(n), lbl = n(n) and [k31 = r(n). This is written i n  short-hand as F = G op H. W e  say 

that op is security increasing if, for al1 polynomial t ime cornputable fvnction generators G 

and H, the generator G op H is a 1 - B(n) secure PRFG; where for some constant c > 0, 

and for al1 suf icient ly  large n: min{c(n), b(n)} - B(n) > 5.  Similarly, we sa y that op is 

security preseruing if  for al1 sugiciently large n we know that min{c(n), b(n)}  -B(n) 5 5, 
for al1 c > O .  Finafly, i f  op is neither security increasing or preserving then  we say that 

it is possibly security dirninishing. 

We wiii now present an operator and an operator generator which are are used in the 

constructions below. 

We define the O operator (read as box) on two functions fl and fi, where fi : 

{O, 1)" + {O, l)", for i E {1,2), as: 

The O operator was origindy defined in some working notes by Luby and Rackoff [13]. 
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W e  next define the O operator generator (read as Diamond), as O = (0: ,, ln E 

W A rl , r2 E {O, lin) - For each ri, r2 E {O, 1)" we define the operator OR,, which acts 

on the functions fi and f2 as: 

4.1 Constructions with Known Properties 

In this section we present the constructions which we were able to classify as either 

security increasing, preserving or possibly diminishing. We present each construction 

followed by an explanation of the security properties it has. In some cases the properties 

are stated, but the explmations are put off for a later, more in depth discussion. 

In the constructions below we will assume that G = Gi = Ci for i # j .  Wë assume 

that G a partiaily secure PRPG or PRFG, depending on the context. The indices are 

only there to help in describing to constructions in a clear and precise manner. 

The composition of permutation generators results in a permutation generator. There- 

fore, we will consider the cases when the generators Ci are PRPGs and PRFGs separately. 

We will see that the outcornes are very dXerent . 

G is a PRPG 

It was shown by Luby and Rackoff in [12] that the composition of partidy secure PRPGs 

results in a PRPG of increased security when m(n) = c for some constant c. In Chapter 

5 we will discuss this resuit and show how to extend the result to permit any m E 

O(1og log n). 
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G is a PRFG 

The composition operator is possibly security diminishing when it acts on PRFGs. The 

composition of a constant number of 1 - b secure PRFGs, for some constant 6, can be 

Iess secure than any of its component generators. Let G = {Gnln E PI) be a 1 - 6 secure 

PRFG1, where for each n the probability PrgEECnpx g;(x) = O] = 6. 

For each polynornial in n sized circuit f d y  (C,}, for all c > O and for all sutliciently 

large n let 

Clearly, for any function fil ,..,k(, = g ~ ( ~ ,  O - - -O gk l  if there exists an i s.t. gkï is the 

zero function, then h is a constant hc t ion .  However, for each i ,  gkï is the zero function 

with probability 6, and indistinguishable from random with probability 1 - 6. Therefore, 

if we randomly choose functions fiom Gn we expect to choose the first zero h c t i o n  on 

draw ). Thus, by using a simple Markov Bound we can show that for as few as c 2 r&] 
composition of 1 - 6 secure PRFGs, the construction is less than 1 - 6 secure. Therefore, 

the const ntct ion is possibly security diminishing. 

The XOR of two permutations does not result in a permutation, and therefore we will 

oniy consider the construction when G is a parti* secure PRFGs. We show that the 

XOR operator is at best security preserving. 

Let G = (2" : {O, i)'(") x {O, _t {O, lin) be a PRF'G. W e  rnodify S to form G as 

follows: for each n and each r; E {O, I)~(") we set gz = 5: and then we set the first bit of 

gZ(0) to be O. Notice that G is f secure, as the  PI^:^^^ ( g z ( ~ ) ' s  ht bit is O) = 1, while 

'A PRFG such as G is constmcted by taking a 1-secure PRFG and modifying it so that the first 6 
fraction of the keys correspond to the zero function, and the remabhg keys correspond to the same 
function as they did in the 1-secure PRFG. 
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PrpEm (f"(6)'s first bit is O) = i. Eowever, for aU Q E G @ G it is the case ij(O)'s first 

bit is O. Therefore, it is clear that if we let G; = G, for all i, then for aU c the construction 

G, @ - - - @ Ci is stiil f secure. 

Unfortunately this example is not very robust. In particular, the example clearly 

generalizes for PRFGs which are 6 secure, where 6 = 2-' for some positive integer i. 

However, we are not aware of any examples of PRFGs which are 1 - b secue when 

6 = 2-', which when used in the construction above are security preserving. AU examples 

we have tried have been semrity increasing. This leaves us with the following question. 

Open Question 4.1 1s the construction F ( a )  = (Cm(,) @ - - @ G i ) ( a )  security inmas-  

ing, when the generators G; are restrieted to being 1 - 6 secure for d < f. 

When the 0 operator is applied to two permutations the resulting generator is not a 

permutation, and so we consider only the case in which G is a PRFG. The O operator 

is a security increasing operator, when applied to PRFGs. The proof of this is shown in 

Chapter 6, and so we do not discuss it further here. 

For the same reason as in section 4.1.3, we consider only the case in which G is a PWG.  

This construction is not even security preserving for PRFGs, for the same reasons as 

those presented in section 4.1.1. 

Let G = {Gnln E N) be a 1 - 6 secure PRFG, where for each n the probability 

P T ~ ; ~ ~ " ~ x  ggL(x) = O] = 6. For each polynomial in n sized circuit famiiy {Cm), for d 

c > O, and for all sufficiently large n let 
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Notice that with probabiiity 6 the generator (Gi+loGi) is the zero fundion. Now 

following the same argument made in section 4.1.1, we see that the security of the con- 

struction for size m(n) 3 rftl is l e s  than 1 - 6 secure. Therefore, the construction is 

possibly security diminishg. 

When the O operator generator is applied to two permutations the result is not a permu- 

tation, and so we consider only the case in which G is a PRFG. The O operator generator 

is a security increasing operator generator, when applied to PRFGs. The proof of this is 

shown in Chapter 7, and so we do not discuss it further here. 

4.2 Constructions with Unknown Properties 

Below we give a list of constructions for which we are unaware of their status as either 

security increasing, preserving or possibly diminishing. However, for aJi but one of the 

constructions, we will give reasons to suggest that these operators are not interesting, 

and therefore not worth future study. We list the constructions below, and then discuss 

them. 

We suspect that construction 1 in the List above is probably security increasing, for 

it is similar in concept to the construction in section 4.1.5 which uses the O operator. 

This is because we can view the expression HOC as (H O R) @ (G O R) where Rn : {O, 1)" x 

{O, 1)" -t (O, 1)" is a generator, where for aii k E (O, 1)" we define rk E Rn as r i ( x )  = 
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x @ k. However, the d e c t  of construction 1 on security is probably weaker than that 

of the construction presented in section 4.1.5. Further, the constructions wodd have 

slower running times, and be harder to implement. Findy, due to the structure of 

the constructions, we believe that any proof that the construction is secutih increasing 

wodd be much more technically cornplicated then the proof which will be presented for 

construction 4.1.5. Therefore, we suspect that further research into these construction 

will fail to provide any insight which has not previously b e n  seen in considering other 

constructions, and thus we wiII not mention them further in this work. 

Progress in determining the security related properties of construction 2 from the list 

has been stifled for many of the same reasons we were stifled from making progress in 

answering Open Question 4.1. We suggest that the solution to this problem is closely 

related to the solution of previously mentioned open question. 

Open Question 4.2 1' the construction F ( a )  = ((G2m(nl~G2n(n)-l) $ - -  - $ (GaoGi)) (a) 

secu rit y increasing, securit y presenn-ng or seeurit y decreasing. 

Finally, construction 3 may be siightly security increasing. However, we will show 

that, even if the construction is security increasing, there is maximum security of 1 - 6 

which can be achieved if G is a 1 - b secure generator. Therefore, we cannot use this 

construction to try and create 1 secure generators, and thus it is of limited use. 

To observe the upper bound of 1 - 62 security, we d e h e  G = {Gn(n E N} to be a 

1 - 6 secure PRFG, where for each n the probability P r g p p w ~  gc(x) = O] = b. For 

each polynomial in n sized circuit family {C,}, for aU c > 0, and for all suaiciently large 

n let 

We observe that with probability 6 the generator G @ G is the zero hinetion. Therefore 

with probability 6 the generator (GÎm(n) @ G2ni(n)-l) is the zero hinetion, and therefore 

with probability at least 6 construction 3 is the zero fundion. Therefore, the security of 
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the construction can never be higher than 1 - 6, and thus we cannot use it to develop 

a 1-secure generator. 



Chapter 5 

The Composition Operator 

Luby and Rackoff [12] were the first to prove that the composition of two partially 

secure PRPGs results in a PRPG which has stronger security than either of the initial 

primitives. In [12] they gave an outline of the proof, and later Akcoglu and Rackoff in 

[2] filled in the missing details. It would be convenient if, by inductively repeating the 

argument many times, it could shown that a partially secure PRPG could be composed 

with itself many times, and result in a completely secure PRPG. Unfortunately due to 

technical restrictions, which will be explained in the sequel, the given proof only works 

for a constant number of compositions. 

In this chapter we will demonstrate that it is possible to mod* the argument pre- 

sented by Luby and Rackoff to permit a non-constant number of compositions. We will 

first give the framework for the original result by Luby and Radroff and explain its limi- 

tation to a constant number of compositions. Next, we will extend this result to allow a 

6(log log n) number of compositions, and in doing so we basically outline the proof given 

by Luby and Rackoff, but make it less dependent on sampling. This wili result in a more 

secure construction t hen was possible under the Luby-Rackoff result . 



5.1 The Luby-Rackoff Result 

The main result of Luby and Rackoff is to show that the composition of two partially 

secure PRPGs results in a PRPG which is provably more secure then either of the 

component generators. We present their theorem in a slightly different manner than it was 

onginally presented in [12] or in the unpublished manuscript [2]. This presentation makes 

the limitations of their results more immediate, and is comparable to the presentation of 

Levin's proof of Yao's XOR lemma in [6]. 

Lemma 5.1 (Composition Isolation Lemma - Luby & Rackoff's Version) - 

There exist Jized pofynomials pl and pz such that for al1 O 5 r ,b  ( 1; polynomiais 

CG, CH, and s ~ ;  and permutation genemtors H and G,  where y;(n) and ~ ( n )  bound f m m  

above the size of the circuits which compute Gn and H" respectiuely. Define F = G O H. 

Hypothesis: If there ezists a family of decision-circuits {C,), where for each n  the 

circuit C, is of size sF(n), and for some c > 0 and infinitely rnany n: 

Conclusion: Then for infinitely rnany n there ezL9ts either a deeision-circuit A, of sire 

pi(nc . - (n))sp(n)  for which: 

decision-circuit Y, of size p2 (nC - e ( n ) ) s ~ ( n )  for which: 

decision-circuit 5 of sire qi(n) + s ~ ( n )  for which: 

We can now show that by composing a partially secure PRPG with itself a constant 

number of times we get a significantly more secure .PRPG. This resdt follows from 



repetitively applying the Isolation Composition Lemma. We state this formally in the 

corollary below. 

Theorem 5.1 (Composition Theorem - Luby & Rackoff's Version) Let G be a 

1 - s secure PRPG. Then for each positive integer c, the generator F = \G O - - - O is 
1 

C l ima 

1 - B secure, where 0 = e(2 - C ) ~ - I .  

Proof(Sket&): Let {Cn} be a family of circuits. For each n let the size of C, be less 

than sF(n) ,  for a polynomial s ~ .  Let Cc and CH be polynomials which bound the size 

of the circuits needed to compute Gn and Hn respectively. Assume that, for infinitely 

many n, C, can distinguish between a random function in T" and a pseud~random 

permutation in Fn with probability at least e(2 - e)=-l + 5, for some constant d- 

Since F = G o (G o - - -  o G), we know by the Composition-Isolation The- - 
C times 

orem that there exits polynomials pz and pl;  and either a circuit of size 

max { ~ p ( n ) ~ I  (=(n)nd) , sF(n) - cH(n) )  which r distinguishes G; or a circuit of size 

( S ~ ( T Z ) ~  (% (n)nd))  which fC-'(2 - c)C-2 distinguishes (G O - - - O G). Since the former - 
C-1 timt. 

would contradict the fact that G is (1 - E )  secure, it must be the case that there is a cir- 

cuit which cC-l (2 - e)'-* distinguishes (G O - - O G )  . We can now re-apply t his argument 

C- 1 timu 

inductively c - 2 more times to show that there exists a polynomial pl, and a circuit of 

sire no larger than sF(a)  (p;(ec(n)nd' )) '-' , for some constant 6, which c distinguishes G 

from random functions. This contradicts the claim that G is 1 - s secure, and completes 

the proof. 

Notice that the prwf fails when the number of compositions, c, becornes non-constant. 

This is because the circuit which e distinguishes G, is of size sF(n) (p;(ec(n)nd'))c-l, but 

when c is constant this functions is asymptotically larger than any polynomial. It is this 

Limitation which prevents us from attaining a PRPG which is completely secure using 

the Isolation Lemma. In the sequel we will show that this limitation can be partially 



overcome, but while more security is attained the goal of cornplete security is still elusive. 

A natural question to contemplate is whether the upper bound of distinguishing F 

from TL is tight in the Isolation Lemma. Perhaps there are smaller bounds which codd 

replace the bound of d ( 2  - max{c, cf)), and otherwise leave the Iemma unchanged. In 

the next section we show that the Isolation Lemma is tight with respect to this bound. 

5.1.1 The Isolation Lemma is Tight 

We show that there exist PRPGs H and G which are respectively (1 - c) and (1 - 6) 

secureL, but when composed together the result is exactly (1 - 8 )  secure, where 8 = 

d ( 2  - mw{a, 6) ) .  

The Construction of H and G 

To simplie the presentation we assume that 6 and 4 me of the form or 1 - $, for 
h 

some constant c. Let G = {Sn : {O, 1}4") x {O, 1)" + {O, l}"ln E W) be a PRPG. We 

constmct G = (Gn : {O, 1)4")+~ x {O, 1)" + {O, l}"ln E N} to be 1 - 6 secure in two 

steps. We will describe the construction of Gn, and note that the construction of Hn is 

First we set a fraction 6 of the keys to correspond to the identity permutation, and the 
h 

remainder to correspond to permutations chosen from Gn. This is done in two different 

fashions dependent on the form of 6 as described below: 

Case 1 (6 = 1 - &) For each k E {O, l)C(n)+C we set the permutation g i  E Gn to be the 

identity permutation if the &st c bits of k are not d O; otherwise let & be the last 
A 

[(n) bits of k, and set g; = $, for 4: E Gn. 

Case 2 (6 = &) For each k E {O, l)f(n)+e we set the permutation g; E G" to be the 

'Of course we can't actually show that such generators exits, but we show that if PRPGs exist, then 
H and G exkit. 



identity permutation if the fiRt c bits of k are aU O; otherwise let k be the last ((n) 
h 

bits of k, and set gr = l$, for $ E Gn. 

The second step in the construction of Gn is to ensure that for each k E {O, l)c(n)+c 

we set the value of gz(O) in one of two manoen, depending on the form of 6. We describe 

this transformation below: 

Case 1 (6 = 1 - 8) For a l l  k set the first c bits of gg(0) to 0; the last n - c bits remain 

as t hey were in gz (O). 

Case 2 (6 = &) For all k ensure that not ali of the first c bits of g~(0) are 1. If they 

are, set them to be a member of the set {O, lIc \ {le) chosen uniformiy at random2; 

the last n - c bits remain as they were in gz(0). 

Notice that in order to maintain the permutation property of Gn we can simply store 

both the initial and modified value of g;(0). Should a query ever be made to the initial 

preimage of the modified value of @(O), then we respond with the initial value of g~(0). 

It remains to show that G and H are in fact 1 - 6 and 1 - r secure, and we refer the 

interested reader to Appendix A for a proof of this claim. 

The Adversary 

We now show that there exists an adversary which can 4 2  - max{e, 8) )  distinguish 

F = G O H, and thereby show that the Isolation Lemma is tight. We assume that 6 2 r. 

A similar argument to the one presented handles the case when E > 6. 

Given a function w E P the adversary, A, accepts in one of the following two 

conditions, dependent on the form of 6: 

2 ~ n  practice a PRNG p wodd be used to set the f k t  c bits of gL(0). This would be done by setting 
the first c bits of gg(0) to be quivalent be the fi& consecutive set of c bits in p(k) which were not all 
1. This allows the first c bits to be computed, and discards the need to store them, which would not be 
possible as if would require an exponentiai amount of storage. 



Case 1 (6 = 1 - $) The adversary A accepts iff the first c bits of w(O) are 0; 

Case 2 (6 = $) The adve~ary  A accepts i# the first c bits of w(O) are not 1. 

We first consider the accepting probability of A if w was chosen u n i f o d y  from Fn. 

In this case w is the composition of two permutations chosen randomly fiom each of the 

respective generators Gn and Hn. We partition the permutations of Gn into two sets. 

Let Icn represent the set of all identity permutations in Gn, and let PGm represent the 

remaining permutations in Gn. Similady, partition Hn into two sets IHn and PHm.  We 

now consider the probability that w is accepted based on it being the composition of two 

permutations from the above mentioned partitions. 

Case 1 (w E IGn O I H n )  The adversary will accept w with probability 1, and the case 

occurs with probabiiity Je. 

Case 2 (w E I c n  O PH-) The adversary will accept w with probability e. This is the 

probability that A would accept a random function conditioned on the fact that w 

was chosen fiom PH.. The case occurs with probabiiity 6(1- e ) .  

Case 3 (w E PGn O I H n )  The adversary will accept w with probability 1, and the case 

occurs with probability (1 - 6)c. 

Case 4 (w E PGn O PHn) The adversary will accept w with probability 1 - 6. This is the 

probability that the result of a random function evaluated at a random point in its 

range would meet the occeptance criteria of A. The case occurs with probability 

(1 - J)(l - €). 

Clearly a random permutation w wiil be accepted by A with probability I - 6. Al- 

lowing X to be max(a,d), and Y to be min{€, 61, we see that X = 6 and Y = E. We 

now see that the distinguishing probability of A on F is: 



5.2 The Improved Composition Lemma 

As we've just seen, we cannot improve the composition lemma by improving the security 

parameter of the resulting PRPG, in the Isolation Lemma. But, in this section we will 

prove that if we permit a slightly more Liberal notion of security for our partidy secure 

PRPGs, then we can prove a lemma similar to the Isolation Lemma. Fùrther, this 

lemma permits more than a constant number of compositions of PRPGs. The resdt 

is that a non-constant number of compositions of a partidy secure PRPG, under the 

liberal notion of security, gives a PRPG which is provably more secure then the previously 

stated results. 

5.2.1 SedSecure PRPGs 

For the remainder of this chapter we wili c d  a PRPG, H, 1 - r serni-secure, if there 

exists no family of polynornial-sized circuits {C,,) which can s + & distinguish H from 

random, for some constant c and infinitely many n. 

Note that a generator H which is 1 - c secure is also 1 - e semi-secure. However, the 

converse need not be true. The reason for the relaxation of the definition of security is 

due to the observation that the blow-up in circuit size which occurs in the Luby-Rackoff 

Isolation Lemma is due to a large amount of sampling which must be done on vaxious 

distributions which occur in the prwf. However, the amount of sampling that must be 

done is inversely proportional to the leniency we permit the adversary in r-distinguishing 

a PRPG from the random set of functions in order for the generator to still be c d e d  

1 - E secure. Therefore, by making the security definition slightly weaker we reduced the 



amount of sampling required for the proof to hold; which reduces the size of the circuits 

constmcted in the proof of the isolation lemma; which permits a greater number of 

compositions in the composition lemma; which r d t s  in a PRPG with stronger se&ty 

then was possible under the original isolation lemma. 

Finally observe that if, for any constant O < E < 1, we are given a 1 - e semi-secure 

generator F, then the same generator is definitely 1 - fi secure. However, by composing 

the generator with itself we get a 1 - (2 - c - fi secure generator, which is strictly more 

secure than the a 1 - c secure generator. This result foEIows from the original Luby- 

Rackoff Isolation Lemma, and allows us to transform many -but definitely not d- of 

the security results under the semi-seeure definition to corresponding results under the 

normal securi ty definit ion. 

Now that we have motivated the semi-secure definition we present the new version of 

the Isolation Lemma which is less dependent on sampling. 

5.2.2 A Stronger Isolation Lemma 

Lemma 5.2 (Composition Isolation Lemma - Stronger Version) - 

There ezists a f t e d  pofynomial pl and a jùed poly-logarithmic function pl svch that 

for al1 O < 6 < 1; c : N + [O, 11, where for d l  s u f i e n t l y  large n, c (n)  < 6; polynomiak 

cc, C H ,  and SF; and permutation generators H and G, where ~ ( n )  and cH(n) bound from 

aboue the size of the circuits which cornpute G" and Hn respectiuefy. Define F = G o H. 

Hypothesis: If there &ts a family of decision-circuits {C,), where for each n the 

circuit C,, is of size sF(n), and for some c > O and infinitely many n: 

Conclusion: Then for infinitely many n: 

there ex is t s  either a decision-cireuit A, of size pl(logc n  - - (n))sr(n)  for which, 



O P  a decision-circuit Y, of size pz (logc n - y;(n))sF(n) for which, 

or a decision-circuit of size cH(n)  + sF(n) for which, 

The interesting ciifference between the two Isolation Lemmas occurs in the differing 

definitions of a. The new definition of p, increases the upper bound for distinguishing 

between Hn and random functions. This is what necessitates the defhition of semi- 

security. Further, the new definition of p2 significantly affects the size of the circuit 

which can distinguish Hn from F. The differing circuit size permits a stronger version 

of the Composition Theorem, which we will present later. 

Another difference to observe is t hat , in the original Isolation Lemma the results were 

symmetric. B y this we mean that given generators fi and S, the Lemma applied equally 

to both of the constructions Fi = fi O S and F2 = S O fi. This can be observed by simply 

renaming the generators S and H. Notice that a similar result does not follow from the 

statement of the strong version of the Isolation Lemma. We note that it is possible to 

prove a symmetnc version of this Lemma by using symmetric versions of the arguments 

presented in this chapter. Unfortunately, there is one exception, for it seems that in 

order to prove a symmetric version of one of the lemmas used in the proof, one must first 

prove the lemma as it is presented in this chapter, and then use this result to prove the 

lemma's symmetric version. We will discuss this further in the sequel. 

Theorem 5.2 (Composition Theorem - Stronger Version) - 

Let O < e < 1 ,  and let G be a 1 - c secure PRPG. Then for eoch f E O(1oglogn) 

the generator F = ,C CJ - : - O 5 is 1 - B(n) semi-secure, where B(n) = &)(2 - a )  f ("1-' . 
f (n) ririe. 

Proof: Similar to the proof of Theorem 5.1. ... O 



Observe t hat this t heorem shows t hat given some generator which is 1 - c secure, where 

c = for some c > O, t hen by performing e)(log log n) compositions of the generator we 

can achieve a 1 - .& semi-secure generator, for any constant d > O. We then observe 

the fact that a 1 - .& semi-secure secure generator is 1 - ' secure. Therefore by 
logd" n 

performing O(log log n) compositions of the generator we can achieve a 1 - secure 

generator, for any constant d' > 0. 

Before presenting the proof of Theorem 5.2 we cite some lemmas used in the proof 

which are either commonly seen in the Literature or which have previously appeared in 

the manuscript of Akcoglu and Radtoff [2]. 

Lemrna 5.3 (Chernoff bound -(Weak)) Let XI, .., x,,,dn be i.i.d.r.v. which take the 

logr n values O or 1 with probabilities q or  p = 1 - q respectiuely. Let Xlogt, = Ci=i xi. 
Then for any k and 1, there ezists a t such that: 

[ 
1 1 

Pr 1 Xbgr n - P I  2 G&] ' n i -  

Lemma 5.4 (Chernoff Bound-(Strong)) Let x i ,  .., x,t be i.  i.d.r.u. which take the 

values O or 1 with probabilities q or  p = 1 - p respectiuely. Let Xnt = -$ CC, zi. Then 

for any k and 2 ,  there ezists a t s-t.: 

Both versions of the Chernoff Bound foilow immediately from the standard prwf of 

the Chernoff bound. For a prwf of the Chernoff bound see [17] or [19]. ...O 

As mentioned in section 2.1, there is no need to have probabiiistic circuits as adver- 

saries, as we can always derandomize them. This is done by fWng the random input 

bits of the circuit to  be a specific string of bits which "does weil" on the average input, 

where "does welln is defined relative to how we are attempting to use the circuit. Next 

we will present a lemma which is a formalization of a similar but more complicated idea. 



In this case we have a probabilistic circuit which weUn on two different distribu- 

tions of inputs (note these are distributions over the inputs of the circuit, and not the 

distributions over the strings of random bits which are used by the circuit). We will show 

that that there exists a specific string which can be h e d  as the random input bits of the 

circuit, so that the circuit is now guaranteed to do "almost as welln on both distributions 

of inputs, as it originally did on each distribution individually, when the circuit was still 

probabilistic. 

Lemma 5.5 (Derandomization Lemma) Let Cn(w, r )  be a probabifistic oracle-circuit, 

where w E F' represents the oracle function, and r represents C, >s random input bits. 

Let Df and il; be two distributions over F, and let & be the distri6ution over C,, >s 

random bits. Let P : 7" x R + {O, 1) be a predicate. Then, If 

Pr [P(w, C,(w, r ) )  = 1] 2 1 - p and 
WEDP, rERn 

Pr [P(w, C d w ,  r ) )  = 11 2 1 - p, 
wf D?, rERn 

Intuitively, in the lemma above, the circuit C is trying to compute a value for the 

oracle W .  However, since C is probabilistic, the value of the circuit on input w may be 

different for different strings of random bits. Therefore, we measure whether or not the 

circuit has computed aa acceptable value, given the oracle w, by using the predicate P, 

which indicates, on all pairs (w,v), whether v is an acceptable value for C to output, 

given the oracle W .  For an example of this lemma's use see section 5.3.1. 

Proof: We build a third distribution Dg by &t choosing a random random bit i E 

{1,2), and then choosing a random fimction w E A. Note that 

1 1 
Pr [P(w, C,,(w, r)) = 11 2 ?(1 - p) + 5(1 - p) = 1 - p, 

wEDjn, TER- 

and so there exists an i: € &, for whkh 



Now it must be the case that PrwEDr [P(w, Cn(w, i)) = 11 2 1 - 2p, for i E (1,2); 

otherwise D:[P(w, Cn(w, P)) = 11 < i(1- 2p)  + ) = 1 - p, and this contradicts (5.1). 

. . -11 

Lemma 5.6 For any S c Pn and any decision-circuit Cn the Prc,(PoS) = Prc.(P). 

Proof: Follows fiom the fact that each element of S is a permutation, and therefore 

the resulting distribution on the queries to 3" is invariant under when it is composed 

with the set S. ... 0 

Lemma 5.7 (Luby-RackofF) For each n, let Sn c 7" such that 2 5, for somc 

constant d .  Then, for any constant k, for any polynornial-sized decision-circuit farnily 

(C,), and for al1 but a fraction of v E 3": 

for sujîciently large n .  

This lemma foilows directly fiom the lemma stated bellow, and the strong version of the 

C hernoff Bound. 

Lemma 5.8 Let Sn and {C,) Le as in Lemrna 5.7. Then, given k then  às an r such 

that for al1 suficiently large n: 

This lemma is proven in [2], and a complete proof of similar lernmas will be presented in 

Chapters 6 and 7 (See the proofs of Lemmas 6.3 and 7.3). Therefore, we will only give a 

sketch of the lemma's proof. 

Proof(Sketch): Observe that whenever we have a circuit Cn which has oracle-gates 

which correspond to a hinction f ,  it can be easily modified, by adding at most a polyn* 

mial number of gates and connections between gates, to render a new circuit C,, where 



never repeats queries to f on the same input. Further, any polynomial sized f d y  

of circuits {Cn), in which each circuit Cn has at  most m(n) oracle gates, can be easily be 

modified to a equivalent family of circuits (6'1, where each circuit C' has exactly m(n) 

oracle gates. We shall assume that all circuits in this proof sketch are of the modifieci 

forms described above- 

We perform two experiments. In the first we randomly c h m e  fi, ..., f,,. E (P)"' ,  

and compute the average value, El,  of the circuit on these h c t i o n .  Specifically we 

let El = a Cn(fi)- In the second experiment we randomly ch- v, sl, ..., snr E 

7" x (Sn)"', and compute the average value, &, of the circuit on the hinctions v O si- 

Specifically we let & = s z;L1 C,(v o s;). Using the strong version of the Chernoff 

Bound we see that the probability that 1 El - Prc,(.P)I > -& is less than 2"j2. We then 

show that the clifference between El and & is bounded to be less than 2"12, and the 

resul t follows. 

To bound the difference between El and & we notice that fkom the perspective of 

the circuit Cn that the functions (f O sl ), ..., (f O s,.) will appear to  be random functions 

chosen uniformly fiom F, so long as f is never queried on the same input throughout 

ezperiment two. Since each circuit never perfoms the same oracle query twice, we know 

that for each i, the fuaction f will not be queried twice on the same input during the 

evaluation of C,( f o si). But for i # j ,  it may be the case that during the evaluations of 

C,( f O s i )  and C,( f osj), that the function f is queried on the same input twice. However, 

we can bound this probability. WLOG, assume that i < j ,  and let a be a query made 

during the evaluation of Cn( f O si). Let a to be the kth query which is made during the 

evaluation of Cn( f O s j ) .  If we fix si and a, then the probability that si(a) = sj(Pk) is: 

- I nd 
Pr [%(a) = sj(&)] = Pr [si(a) = sj(Pk) lsj E SI ( = - 

s j  ES" Y E ~  na 2" ' 

where the -$ in the last inequality is due to the fact that > f . Since each circuit 

can make at most a polynomial in n number of queries, and since there are a polynomial 

in n number of circuit evaluations, we can bound the probability of this event occurring 



to be less than 2"12. The ugument is made by perfofming simple counting arguments. 

As mentioned earlier, there is one lemma for which the symmetric version of the 

lemma does not follow immeàiately fiom a symmetric version of the argument presented 

in this chapter. The lemma in question is Lemma 5.7. Note that Lemma 5.7 follows 

immediately from Lemma 5.8, but observe that in the prwf of Lemma 5.8 we need to 

consider functions of the form f O si, and further observe that an argument similar to 

the one presented would not work for functions of the form si O f. Therefore, we c m o t  

directly prove a symmetric version of Lemma 5.8 by presenting a proof similar to the 

one just given for Lemma 5.8, and therefore we cannot conclude a symmetric version of 

Lemma 5.7. We note that a symmetrical version of Lemma 5.7 may be proven by using 

an averaging argument, and a slightly stronger version of Lemma 5.7 then is stated. We 

refer the interested reader to (21 for further details. 

Proof of Lemma 5.2 

Assume t hat t here exists a polynomial-sized decision-circuit family {C,) , which for some 

constant c > O and infinitely many n distinguishes Fn from 3h with probability at least 

~ ( n ) 6 ( 2  - 6) + &. 

Lemma 5.9 (Luby-Radcoff) Either there ezists a family of decision-circuits {A,}, 

where for each n the circuit A, is of sue pl(logc n - e (n ) ) sF(n ) ,  and for infinitely many 

n: 

or for each n let 

1 1 
Kn = P r ( F )  + b(1- P r ( F ) )  + a and Ln = Pr(7") - 6 P r ( F )  - -p; 

c m  C m  C m  cn 



and let 

1 1 
Pr (w E Y) 5 - and Pr (w E Tn) 5 -, 

WEP n ~€3" n 

for ail suficiently large n .  

Proof(Sketch): If there exists a family of circuits {A,) with the above mentioned 

properties then we are finished. Otherwise, no such farnily of circuits exist , and we need 

to prove the second case of the lemma. 

We introduce the following notation. Let 

1 1 
Kn(i) = Pr(3.") + 6(1 - P r ( P ) )  + - and Ln(i) = P r ( F )  - 6 P r ( F )  - -* 

Cn cn IZ' C m  Cn ni ' 

and let 

Sn(i) = {tu E F /PI(G" O W )  > Kn(i) and Tn(i) = O ui) < Ln(i) 
Ca 

Notice that K,(+) = K,, and that Sn(?) = Sn, and similarly that Ln()) = Ln and that 

Tn(!j) = Tn. 

We will assume for contradiction that for aU sufEciently large n the Pr,nep(wn E 

Sn(+)) 2 i. W e  will show that there exists a family of decision-circuits {A,), where 

for each n the circuit Â, is of size pl (logc n a ( n ) ) s ~ ( n ) ;  and for ail suüiciently large n: 

1 Prx, (Gn) - Prxn (TL) 1 2 6 + $; contradicting the fact that no such family of circuits 

exist. First we assume that we ean randomiy and unitormly sample fkom Sn($) (we 

will deal with the issue of uniform sampling hom Sn()) later). Then, we can u n i f o d y  

sample fi, ..., fnp E (s*(&))"~, and construct a probabilistic circuit An, which cornputes 

An@) = 5 c::, Cn(m fi). We choose r so that for a randomly chosen function, u E P, 

the probability that I A , ( v )  - Prc& O sn($))I 2 is less than 2"i2; and for a randomly 



chosen v the probability that IAn(v) - Prc,(P)I 2 is less then Pi3. Both of these 

properties are possible due to the Chernoff Bound and Lemma 5.7 respectively. 

We will now construct a probabilistic circuit Y(v )  which will accept v iff An(v) > 

Prc,(7") + +. Notice that a randorn function v E F will be accepted by 4 with 

negligible probability. Alu, notice that EgqGn[An(g)] > Km(+). Using a simply averaging 

argument and the two facts just mentioned we can show that at least a faction CF+ $ of 

the g E Gn will be accepted by An. 

Allowing Ân to be a derandomized version of An, we have a family of circuits {Ân) 

for which all sufnciently large n it is the case that IPrA, (Gn) - Prn, (P) [ 2 CF + I. This 
n 

provides a contradiction. We can now perform a similar argument by assuming that for 

al1 sdiiciently large n the PruinEF(wn E Tn($)) 2 $. We can then derive a similar 

contradiction. This then proves the lemma 

Unfortunately, in the above argument we assumeci that we could sample d o d y  

from Sn(+), and in practice this is not possible, so we must show how to get around 

this. Notice that in the above argument our circuits are significantly smder than is 

required by the lemma, and the reason is that many extra gates are needed for properly 

n samplïng Sn($). We construct a probabilistic circuit Bn(w) = 5 Cn(gi O w), where 

g, , . . . ,gn. are randody chosen from (Gn)"' . Using the Chernoff bound, the value s is 

chosen so that the probability that 1 Bn(w) - Prc, (Gn O w )  1 > is negligible. We now 

create a probabilistic circuit Bk which accepts a function w 8 B,(w) 2 K,,($). This 

algonthm will accept all but a negligible number of the functions w E Sn()), and it 

will reject ali but a negligible number of functions w 4 Sn(l). We now consider the set 

IS (91 R" = {wlw E Sn(l) A An(w) 1 Kn())}, and note that since -$+ 2 $, for some d, then 

IRnI i t is the case that 2 -&, for some d'. 

We now simulate the process of choosing random functions in R" as follows. We 

run Bk, but for each function-oracle query, ai, that the circuit Bi makes, we substitute 

the output of the oracle with a random string ri E {O, Iln. We assume that Bh has 



m(n) oracle gates, and has been constructed so that it never makes the same oracle 

query twice. Now if Bn accepts, we know that the set PF = u ~ ( ~ ) { ( a i , r i ) )  defines a 

partial funetion. AU random extensions of PF will be accepted by Bg. Therefore, except 

with a negligibly s m d  probability of error, the random extensions of PF are all in R,,. 

Therefore, we choose a random function in R, by ninning Bk as described above until 

it accepts. We then save the partial tunction, and randomly extend it as needed. Since 

R, represents a fraction greater than & of F, for any O < X < 1 and sufnciently large 

n, we can simulate BL a polynomial nnmber of times, and with very high probability we 

will find a random w E &. Therefore, while we cannot randomly sample from Sn($), 

we can sample fiom R, c Sn(l). Combining this sampling method with smali technical 

modifications to the original argument will d o w  us to prove the Lemma. ...a 

Lemma 5.10 Either there ezists a family of decision circuits {z), where for each n the 

circuit En is of size cn (n) + sF(n), and for infinitely many n: 

or for al1 suficiently large n and al1 hn E Hn: 

Proof: If a family of circuit {En) with the above properties exists, we are done. Oth- 

erwise, there exists no such family of circuits. Assume that for the circuit family {Cn) 

there exists a set {hn E Hnln E PI) such that for ail sufnciently large n it is the case 

that 1 Prc, (Gn o hn) - Prcn (TL) 1 2 6 + $. We create the circuit f d y  {D,), where 

Dn(v) = Cn(v O hn)). We note that {Dn) is capable of 6 distinguishing G fiom random: 



Letting D, = we have a constructed a farnily of circuits {ï). This contradicts the 

fact that there is no circuit family of size ~ ( n )  + s+), such that for infinitely many n: 

proving the lemma. ...O 

5.3.1 Main Argument 

Let % = a(n) + and similarly let Zn = b + &. Then the f a d y  of decision circuits, 

{C,), is capable of distinguishing Gn O Hn kom F with probability at least %&(2 - Sn), 
for infinitely many n, as this value is strictly smaller than d ( 2  - 6 )  + &, for sufüciently 

Large n. We assume that there exists no family of decision circuits {An), where each 

circuit is of size pi (logC n  - e ( n ) ) s r ( n ) ,  such that for infmitely many n: 

From the above assumption and Lemma 5.9 we know that for 

that PrwEp (w E Sn) < i, for all sufnciently large n. Similarly we know that for 

1 
Ln = Pr(7") - 6 Pr(F') - n ~ ~ j  and Z"L = { w E F I P ~ ( G "  O W )  < L n  

Cn cn cn 

that PrwEp (w E Tn) 5 In, for all sdficiently large n. 

Next, we assume that there exists no family of decision circuits {c), where each 

circuit is of size a (n )  + sF(n), such that for infinitely many n: 

From the above assumption and Lemma 5.10, 

n and all hn E Hm: 

, we know that for al1 mfiîciently large 



We will constmct a f d y  of decision circuits {y,), where each circuit yn is of size 

pÎ(logc n y; (n))sF(n),  such that for infinitely many n: 

proving the lemma. In the sequel we show how to construd Y, for each n such that both 

IPrcn (Fn) - Prcn (P) [ 2 s(n)6 (2 - max{s(n), 6)) + 5, and n is sufficiently large for all 

inequalities in the following proof to hold true. 

We first give an overview of the proof. We will construct a circuit Bn (via an inter- 

mediate circuit An) which, given as input a function w, airnost surely approximates the 

value Pic,(Gn O w). From Equations 5.2 and 5.3, we know that for almost al l  random 

functions w E 7" that Prcn(Gn O w) will be bounded fiom above by the value K,, and 

below by the value Ln. We break the proof into two cases. 

In the first case, if for a large fraction of the h E Hn (a &action greater than c(n)+ &) 

it is the case that Prcn (Gn O h) falls outside of the range [Ln, Kn], then we can distinguish 

between Hn and 3" by computing B(w), and accepting if B(w) is greater than K, or 

Iess than L,. Because the sets Sn and Tn contain aU of the functions w in F, for which 

P l  Prcn(Gn O w )  is less than or greater than Ln and Kn respectively, and since < and 

< f;; we know that about a fraction of the w will be accepted by B(n).  IF1 

In the second case there is not a large enough fraction of h E Gn for which Prcn (Gno h) 

fdls outside of the range [Ln, Ka]. in this case, to distinguish Hn fiom P we use a 

technique of Levin's, and construct a circuit Dn which on input w tosses a biased coin 

which is heads with probability Bn(w), and tails otherwise. The circuit Dn accepts the 

input w if the result of the flip is heads. We will now present the technical details of the 

proof which was just described. 

We construct a probabilistic circuit A, such that 



where gr, .. . , gnr are randomly chosen fkom Gn. Using the Chernoff Bound b is chosen 

Iarge enough such that: 

and 

By Lemma 5.5 we derandomize An 

and for al1 but $ of the hn E Hn: 

to get Bn so that for all but of the w E P: 

We now break the proof into the two cases mentioned earlier. The first case covers 

the situation in which there is a c1ea.r separation between the d u e  output by Bn on 

functions from ,F versus functions from Hn. The second case hanciles the random coin 

fipping. 

Let Kk = P r c n ( P )  + sn(l - Prc, (TI)), and let L', = Prc,(TL) - Zn Prc,(TL). We 

note that in the foliowing proof that the variable K, seems to be used many times, but 

there appears to be little justification for the variable L',. We note that it replaces the use 

of in the ~ymmetnc version of this prmf, and therefore it is included in this version 

of the proof as well. 

1 Case 1: PrhnEn=[Bn(hn) 2 KA] 2 Z,, = c (n)  + 
We create the decision circuit &(w) which accepts w i f f  Bn(w) 2 KA. 

1 1 1  
2 r(n) + -7 - - - - (Equation 5.2 & sampling e m r )  

log n n n 



Notice that the second inequality follows fkom constraints on the probability that 

a random function w E P is in the set Sn defineci in equation 5.2. This is because, 

for a l l  sdiciently large n, KA is greater than the value of Kn. As previously seen, the 

probability that a random w E F' has the property that Prcn(Gn 0 w )  > K,, is the 

probability that w is contained in the set Sn. But, we know that the probability of a 

random w E F being in the set Sn is l e s  than i. Clearly it foilows that the probability 

that a random w E 7" has the property that Prcn (Gn O w )  > KA is smaller than i, for 

the set of functions with this property is necessarily a subset of Sn. Finally, since Bn(ui) 

approximates Prcn(Gn o w) to within a d u e  of &--, for all but of the w E F, and 

since it still holds that for all sufticiently large n that Kk - ,os : c n  is greater than Kn, 

there can only be a fraction $ of the w E 7" for which B'(w) accepts. The first $ of 

these functions are the ones in Sn. The last of these functions are the functions w in 

1 which B(w)'s approximation of Prcn(Gn O w) is off by more than a factor of -. 

We let Y, = Bn, and we are finished Case 1. 

1 Case 2: PrhnEHn [Bn(hn) 2 KA] < = ~ ( n )  + 
Let q(w) = B,(w) and let 

( Lk if Bn(w) < Lk. 

Let 

We use Bn to create a probabilistic decision circuit D,, which accepts w with prob- 

ability pr(w). We will show that Dn distinguishes between Hn and .P with probability 

at least r(n)  + &--, proving the theorem. However, we b t  make some observations 

about the circuit Bn which we will use later in the p r d  Notice that, 

1 + - 1 and 
l ~ w ~ ~ ( ~ n ( ~ ) ) - ~ r ( ~ ~ o r ) I < i o g " n  c n  n 



These facts follow fiom equations (5.5) and (5.6) respectively. We use the first inequality 

to get an upper bound on PrDn(P) ,  and the second to get a lower bound on Pron(Hn). 

We observe that PrD,(F)  = EwEp (p'(w)). W e  h t  pmduce an upper bound on 

t h e  expectation of p(w), and then we compensate for the possible discrepancy between 

i t  aad #(w).  

We need to take into account the possibility that p(w) < 0, for this can never happen 

with pr(w). This is because q(w) may be smaller than Ln whereas this cannot be the case 

with q'(w). Fortunately, by Equation 5.3, we know that the probability that q(w) < LL 

is non-significant . 

1 1  
5 E w E p ( p ( ~ ) )  + ; + - (Equation 5.3 and sampling error) 

n 



W e  now give a lower bound for Prn,(Hn) = EhnEza(fl(hn)). This is done by showing a 

lower bound for EhnEHn (p(hn)), and then compensating for the possibIe merence between 

P ( W  P'(W 

We compensate for the hn E Hn such that p(hn) > 1. This occurs when q(hn) > K', 
L and thus by virtue of being in case 2, this can only occur for a fraction b = c(n) + 

of the hn E W .  

By Equation 5.4 we know that Vh; E Hn IPrcn (G O h;) - P r c n ( F )  1 < 6 + i. Note 

that Prc, (Gnoh$) is within ,& of Bn(hn) = q(hn), for all but of the hn E Hm. Further, 

the Prc,(Gn o h;) is at most one. It foilows that Iq(hn) - Prcn(P)[  < 6 + & -k i, for 

most hn E Hn. We conclude that for al1 but $ of the hn E Hn: 

We show that in both of the above cases the distance between q(hn) and q'(hn) = KL is 

Sub Case 1) Prcn(7") 5 (1 - 6) 

It m u t  be the case that q(hn) < P r c n ( P )  +J+ i*+ $ and q'(hn) = KL = P r c n ( F )  + 
&,(l - Prcn (F)).The result follows: 



Sub Case 2) Prc,(F) > (1 - 6) 

In this case there must exist a u such that O < u 5 6 where Prc,(F) = 1 - 6 + u. The 

resdt follows: 



Using the bound on the distance between p(hn) and #(ha) denved above and applying 

it to the previous lower bound for PrDn(Hn) we get that for dl but of hn E Hn: 

For the of the hn E Hn that are not within the distance given by the Chernoff bound, 

we know that they differ by at most 1 from the value being estimated, and therefore can 

conclude: 

1 1 
= [Z,,(1-6--c+6)-- 

log n 1og"n + WWI cn 

By taking the difference between the lower bound on the acceptance rate of D, on 

H n  and the upper bound on the acceptance rate of Dn on F we achieve the proper 

dist inguishing probabilïty. 



1 1 
Pr(Hn) - P r ( F )  2 [G(l-  y) - - + P r ( F ) ]  - [ P r ( F )  + 1 
D n  D n  log n log2cn cm C n  hgac n 1 

All that remains is to derandomize D,. In this case we let Y, be the derandomized 

version of D,. We have now constructed the f d y  of circuits {Y,) which was required 

to prove the lemma. ...O 

5.4 Towards Complete Security 

Our god is to show that by composing enough partially secure PRPGs together we can 

construct a PRPG which is completely secure. So far our efforts along these Lines have 

failed. We will now discuss some possible future research directions which will d o w  us 

to attain our goal. 

Observe that although the Isolation Lemma is tight, we have been unable to find 

a set of three permutation generators which when composed together are as insecure 

as is permitted by the direct application of the Isolation Lemma. In particular, in our 

previous example we showed that there are generators G which are 1 - b secure, and 

generators H which are 1 - e secure, but whose composition G O H is d ( 2  - max{c, 6)) 

secure. However, a crucial requirement of this example is that a fraction 6 of the keys in G 

correspond to the identity permutation, and a fraction e of the keys in H correspond to the 

ident ity permutation. However, only a faction €6 of the keys for G O H correspond to the 



identity permutation, whereas its security is 6 ( 2  - max{c, 6)). This fact prevents us from 

composing G O H with a 1 - 7 secure generator F to produce a generator F O (Go H ) which is 

d 7 ( 2  - max{e, 6))(2 - ma+, 6,7)) secure. The observation we make is that the fraction 

of keys for G o H which correspond to permutations which are eady distinguishable from 

random functions is much smder  than the resulting security of G O H. Further, it is this 

lack of "special", and therefore easily identifiable, permutations in G O H which prevents 

us from composing the generator with a third, and achieving the security bound specified 

by the Isolation Lemma. 

We conjecture that the security of the composition of three or more parti* secure 

PRPGs is stronger than the bound which results fiom multiple applications of the Isola- 

tion Lemma. However, we suspect that the m e n t  notion of security may be too coarse 

to prove such a statement. Therefore, we propose a finer notion of security. 

Definition 5.1 (Weak Security) We say that a PRPG (PRFG) G is 1 - 6(n) weak- 

secure if for al1 adversanes Af which have the property that for al1 c > 0, and for al1 

suficiently large n: 
1 

then it i s  the case that for al1 suficiently large n and al1 c > 0: 

We note that by some minor modifications to the arguments presented in this chapter, it 

is easy to show that the composition of a 1 - 6 weakly senire PRPG and a 1 - E weakly 

secure PRPG is 1 - 6~ weakly-secure (This follows from the fact that sub case 2 of case 

2 in section 5.3.1 disappears). This shows that there is no way of increasing the fraction 

of permutations which are easily identifiable from random in the composition of two 

partially secure PWGs. We suspect that further work in this direction may point the 

way to developing a theorem which shows that a polynomial in n nurnber of compositions 

of a 1 - S partidy secure PRPG results in a 1 secure PRPG. 



Chapter 6 

The Luby-Rackoff Operator 

In Chapter 5 we showed how to take partially secure PRPGs and compose them to 

produce a PRPG which is more secure than any of the constituent PRPGs. In this 

chapter we will show that an analog is possible for PRFGs. As was demonstrated in 

Chapter 4, this cannot be done directly by composing PRFGs, and so we introduce a 

new operator O (read as box). We will show that the Li operator acting on functions has 

some properties in cornmon with the composition operator acting on permutations. 

Given two functions fi and f2 such that fi : {O, 1)" -+ {O, l)", for i E {l, 2) ,  we 

define the operator D as: 

The O operator was origindy defmed in some working notes by Luby and Rackoff [13] 

in which an incompkte argument is given to show that two par t idy  secure PRFGs can 

be combined by the a operator, so that the resulting PRFG is more secure than either of 

its constituents. We will now complete the argument, and show how these results relate 

to the arguments presentd in Chapter 5. 



6.1 Two Technical Lemmas 

In Chapter 5 we presented two IsoIation Lemmas which proved that the composition 

of two part idy secure PRPGs resulted in a third which was more secure than either 

of the constituent generators. However, in both prmfs the only arguments which made 

use of specific properties of the composition operator or the permutation property of the 

PRPGs were contained in Lemmas 5.6 and 5.7, Therefore, if we can prove corresponding 

lemmas for the D operator and PRFGs, then equivalent hla t ion  Lemmas will hoid for 

the O operator acting on PRFGs. 

Before proving these correspondences we standardize the circuits that will be used in 

the remainder of this chapter. Observe that whenever we have a circuit Cn which bas 

oracle-gates which correspond to a function f ,  it can be easily modified, by adding at 

most a polynomial number of gates and connections between gates, to render a new circuit - A 

C,, where Cn never repeats queries to f on the same input. Further, any polynomial 

sized family of circuits {Cn), in which each circuit Cn has at  most m(n) oracle gates, 

c m  be easily be modified to a equivalent family of circuits (c*), where each circuit C .  

has exactly m(n) oracle gates. We s h d  assume that ail circuits and circuit families 

in this chapter are of the modified forms described above, d e s s  specifically mentioned 

otherwise. 

We now state the first property of the a operator, which 

of the above mentioned correspondences. 

Lemma 6.1 Giuen any family of decision-circuits {C,), for 

2m2 (n) 
I f -  Zn , 
Cn c m  

where m(n) is the n u m b e ~  oracle gates in the c i m i t  C,. 

Intuitively the lemma shows that the O operator maintains 

we will use to develop one 

each f E F, 

the security of its strongest 

operand, for there is a trivial circuit which distinguishes f ,  but by the above Iemma 



there can be no such circuit for f o P .  For completeness we give the proof of Lemma 

6.1 originally presented by Luby and Radroff in 1131. 

Proof of Lemma 6.1: We will perform two experiments which will result in two 

random variables Ri and R2. We wiU show that EIRl] = Prcn(TL), and then show that 

E [R2] differs from Prcn (f O P )  by at most a negligible amount. Fmally, we will observe 

that Ri = R2, proving the result. 

In the first experiment we let XI, .., X,(,) be i.i.d.r.v. from the uniforni distribution 

over {O, 1)". Let 9 1 ,  ...,g,,,(,) be the oracle gates in Cn- We define Ri to be the output 

of the circuit Cn when we replace the output of gate g; with the value Xi. Let a; be the 

input to oracle gate gi. Note that for i ,  such that 1 < i 5 rn(n), that a; is completely 

determined by Cn and X i ,  ..., Xi-l. This taken in conjunction with the f a d  that for i # j 
that ai # aj and by the construction of Cn, we observe that Prc,(TL) = EIRl]. 

For the second experiment, observe that Prc, ( f  O P )  = PrPE= [Cn( f O f') = 11. 

This follows from two observations: f b t  ( f10 f i ) ( z )  = ( fl @ f a )  o ( f i  @ fi)(z); secondly, 

for any f E 7" the set f @ 7" is isomorphic to F. We construct the circuit En by 

replacing each oracle-gate g; in the circuit Cn with two oracle-gates hi and hi. We feed 

the original input of g; into h;; feed the output of h; into hf; and let the output of h: 

replace the original output of gi. We now let X I ,  .., X,(,) and YI, ..., Y,(,) be i.i.d.r.v. 

from the unifom distribution over {O, 1)". We define Ra to be the the output of En when 

we replace the output of gate hi with x, and the output of hf with Xi, for 1 5 i 5 m(n). 

Let a; be the input to gate hi, and notice that ai is completely determined by E n  and 

X , . . . , X i  . Clearly E [RI]  = E[R2]. But we WU show that E [Ra] is negligibly close to 

Prc, (f OP). We consider the set 

good = {xi ,  ..., X,(,), &, ..., Y,(,) 1 the relation {(q, X)) U {(x, Xi ) }  is one-toone) . 

The set contaias all of the choices of X i ,  ..., X,(,), Yi, ..., Y,(,) which define a partial 

function in the above experiment. We then define the set bad to be the com~lement of 



the set good Notice that: 

Finally, observe that a tuple ( x ~ ,  ..., X,(,), f i ,  ..., Y,(,)) is definitely in good if 
LC 

~ 1 ,  .., ctrn(h), K t  -.., Ym(nl are all distinct. But by the construction of Cn, a; # aj for i # j, 
2m n 

and thus the probability that these values are not all distinct is bounded above by *. 
0 bserving that: 

the result follows. 

Corollary 6.1 For each n let S c F, and let {Cn) be a family of circuits, then 

where m(n) is the number oracle gates in the circuit C,. 

Notice the similarities between Corollary 6.1 and Lemma 5.6. In effect, except for a 

negligibly small chance of error, we have proven the equivalent of Lemma 5.6 except 

that the composition operator and a set of permutations has been replaced by the 0 

operator and a set of functions, respectively. However, because the probability of error 

is negligible it does not have an effect on arguments made in the proofs of the Isolation 

Lemmas. Therefore, we can intuitively treat Prcn (SnoF) = PrG (P) . 



We now present the second property of the O operator. As we used Lemma 5.8 to 

prove Lemma 5.7, we will similarly use a lemma, which corresponds to Lemma 5.8, to 

help prove a Lemma which corresponds to Lemma 5.7. La order to prove the lemma 

which corresponds to Lemma 5.8, we k t  need to prove the lemma given below. 

Lemma 6.2 For every n let C P be a set such that 2 5, for some constant 

c > 0-Let {Bn) be an infinite family of polynomd in n sized oracle circuits. For each n, 

let Bn have ezactly m(n) oracle gates. Then for al1 k and all s u f i e n t l y  lawe n 

where 7~ is the kth query made to a function orucle gate by Bn when given â O B as an 

oracle. 

Proof: We first give a bound on the probability when S is chosen d o r m l y  a t  random 

from the set P. Later, we use this bound to derive one in which S is considered to be 

chosen from the set Sn. 
Let Bn be a polynomial sized oracle circuit which has m(n) oracle gates. Further, 

suppose that Bn never perforrns the same query twice. Let FI, ...., ï,(,) be the oracle 

gates of Bn. Each gate Ck is supposed to represent the function 2 O S. Therefore, we 

replace each gate rk with the gates I': and r:, where these gates each represent the 

function 5. This is done by taking the input to rk and redirecting it to r:; taking the 

output of and making it the input of I'z; and replacing the output of rk with the 

output of ri. 
We perform an experiment . We choose 6, ..., Cm(,) d o r m l y  at random from the set 

(O, I ) " X ~ ( " ) ,  and we choose Xi, ..., Am(,) uniformly at random from the set {O, l)nXm(n). 

We will evaluate B, in two different manners using the random choices. D e h e  the output 

of gate r; to be p;. For each k, we cal1 qk the input to l?:. 

For the first evaluation of Bn we do the following. For each k we set pi to be Ck. Notice 

we have completely determined TI, .. , h(n), the inputs to that by fixing the p:, ..., pm(*) 



each oracle gate. Further, we have determined the output of the circuit B,, which we 

will denote the output by the pair (m,p), where p is Bn9s guess of s(r,~k), for some k. 

Now for each k we set p i  to be Xk. 

Observe that these choices do not correspond to randomly choosing a h c t i o n  t E F, 

and then nirining B, on the oracle t O t. In fact, it may be the case that these random 

choices do not even correspond to functions. For example, it may be the case that 

X = Ac, but that Cj # CC*, and therefore the choices would not even correspond to a 

function, as hc t i ons  are single-valued. However, had these choices corresponded to a 

random function, then the probability that the output of the circuit, (qk, p ) ,  was correct, 

1 is the probability that p = A*. We note that the probability that p = Ac is exactly ,. 
Let El be the event that p = Ab, during the f k t  evaluation of B,. 

As stated earlier, it is clearly the case that the above experiment does not correspond 

to choosing a function S uniformly at random fiom P, and then using S O O as an oracle 

for B,. We will correct this in the second evaluation of B,. Further, we wiLl now bound 

the number of cases in which the f is t  evaluation fails to correspond to choosing a function 

i E F,  and then using d O d as an oracle. 

We now describe the second evaluation of B,, and we note that it simulates B, running 

on the input S O g. We consider the gates of Bn in the order ri, I':, ..., ïk(n,, I'L ,,,. W e  

need to set the outputs of the gates I'; in fashion which is equivalent to how they would 

be set if we were to truly choose an ŝ  uniformly at random fkom P,  and then use S O S 

as an oracle. To accomplish this we set the outputs of the oracle gates to be the random 

choices, as before, except when the random choice would not correspond to a function of 

the form g O S. This occurs when the random choice for the output is not consistent with 

previously assigned random outputs of previous gates. If such an exception arises, then 

we &c the output of the gate so that it is consistent with the outputs of previous gates. 

Formally, we set p: to be Ai, unless there exists a pi = p:, for t < k, and in this case we 

set pk to be Similady, we set p: to be 6,  unless there exists an L < k where pk = p: 



or pk = Q, in which case we set p: to be pi or pi respectively. 

When there exists a k such that we do not set p: to be Ar, or we do net set p: to be 

G then we say a collision has occurred. Intuitively, this is when a random choice was 

not consistent with a function of the form ri O S, and so the output of a gate was set so 

that it was consistent with previous gates outputs. 

Notice that it is only when collisions occur that the h t  evaluation of Bn differs from 

the second evaluation of B,. 

Let E2 be the event of a collision occumng in second evaluation of Bn. We bound the 

probability of event 6. Clearly, if all of the q's and A's are distinct, then no collision can 

occur. W e  bound this probability. 

evaluation of B,. Clearly, this is only the case when the output of gate I'i is equal to p. 

Therefore, E3 c El U &, and this implies that: 

Notice that by the definition of E3, and the design of the experiment that 



We now remember that we are interestecl in the case in which S is  chosen d o r m l y  

at random for the set Sn, and not the set P. We use our bound for the latter case to 

derive a bound for the former. 

We now prove the lemma which corresponds to Lemma 5.8. Remember that this 

lemma is only used to later prove a lemma which corresponds to Lemma 5.7. 

Lernma 6.3 For every n let Sn c T" be a set such that fo 3 5, for some constant 

c > O .  Let CC,) be an infinite family of polynomial in n sired decision-circuits. We show 

that for any d > O ,  there &ts an r > O such that for al1 s u f i e n t l y  large n: 

Proof: We wiil assume that r is hed,  and iater we will 

value. 

show how to determine r's 

First we define two experiments. In the f k t  experiment pick random ( fl, fa, ..., f i )  E 

(F)"', and evaluate C,(fi) for each i E (1, .., nr). Define the event El to be: 



In the second experiment pi& random ( f, s 1, . . . , sz) E Sn x (TL)"', and evaluate C, (f mi) 
for each i, where I < i < nr. Define the event & to be: 

Using the Chernoff Bound (Lemma 5.4) we choose an r where the probability of event 

El occurring in the first experiment is less than *. We will show that the probability 

of event E2, in the second experiment, is negligibly close to the probability of El,  in the 

first experiment. The lemma will follow. 

We will perform a third experiment, in which we model both of the first two ex- 

periments by considering two different methods of evaluating the circuit Cn, nr times. 

However, in the t hird experiment we use a modified fonn of Cn. To modify C,, we replace 

every function gate, gj, which corresponds to the function I; or fOs; in experiments one 

and two respectively, with two function gates, Ij and Oj- In the first experiment the gate 

1, would correspond to the icientity function and Oj  would correspond to the function 

fi. In the second experiment both Ij and O would corre~pond to the functions f @ si. 

We redirect gj1s input to Ij; we take the output of 1, and use it as the input for Oj; and 

we replace the outputs of gj with the output of Oj- Notice that the behavior of C, has 

not been modified. We have simply modified the representation of the circuit. We let 1; 

and O: correspond to the gates which replaced gj, in the manner previously mentioned, 

during the evaluation of Cn( fi) and Cn( f Osi), respectively in our models of experiments 

one and two. 

1 First we choose si, ..., snr E Sn; pi, ..., &(,), ..., Rr, ..-,Pz:,, E {O, i)nxm(n)xnr; and 

1 nr then we choose ri, ..., rm(,), ..., +yl , ... , f&,, E {O, l)nxm(n)xnr . We represent the input to 

the gate 1; as a;; we represent the input to the gate O: as & = It(az); and we represent 

the output of the gate 0: as %. 
We can now model the first experiment in experiment three. Rather than perfonning 

nr evaluations of Cn using a different random h c t i o n  as the oracle for each evaluation, as 

in experiment one; we equivalently consider nr evaluations of Cm, where in each evaluation 



i and for each j we assign the random element $ E {O, 1)" to %, the output of 0;. Notice 

that by fixing the outputs of each gate we have completely determined the behaviour of 

the circuit. Further, notice that because of the way we have set the outputs to the gates 

O:, we have pedectly modeled experiment one. Let El be the event in experiment three 

which corresponds to event El in experiment one. 

Observe that we cannot model the second experiment in the same manner, for we 

are dealing wit h functions of the form f Osi = (f @ si) O (f @ si) (x) . An example of the 

problems which can occur is as foUows: it is possible for the gates gi and gj to be queried 

on ~ W O  different inputs a; # aj, but it may be the case that (f @ si)(ai) = (f @ si)(aj), 

and in this case the outputs of the two gates must be identical. However, the chances of 

randomly assigning the same output to both gates is negligibly small. We will remedy 

this problem, and present a model of experiment two which is similar to our model of 

experiment one. 

We consider the gates in the following order: 

~ : ï o : , . - - , 1 ~ , ~ ~ , O ~ ( ~ ~ i - * * , I ~ i 0 ; ~ , . - - , ' ~ ~ ) ~ o ~ ) .  If the input ai of gate Ip is 

not equal to any a; or & for any (c,d) < (a, b), then we assign its output to be t &. 
Similarly, if the input ,@ of gate 0; is not equal to any ai or for any (c, d) < (a, b), 

then we assign its output to be 3 c 7;. 

Alternatively, if the input ai of gate 1; is equal to a; or ,&, for some (e, d )  5 (a, b), 

then we assign its output to be @ t f(ag) @ sa(ai). Similarly, if the input & of 

gate Ot is equal to ad or &, for some (c, d)  5 (a, b), then we assign its output to be 

7; t f (et) @ sa(Pr). These nr evaiuations of C, now perfectly model experiment two. 

Let E2 be the event in experiment three which corresponds to & in experiment two. 

It is now easy to see that our view of assigning outputs to the function gates, as in the 

model of experiment one, goes wrong only if one of the gates 0; is queried on an input 

which was previously queried for a gate Oz or I;, for some (c, d )  # (a, b). We formalize 

this by defining a collision. Given our random choices in experiment three, we Say that 



o collision has occurred if t here exists (a,  b) # (c, d)  s.t. 3; = ,& or & = a:. Let E3 be 

the event that a collision has occurred in our mode1 of experiment two. 

Given the new perspective of the experiments, observe that & C El U E3, and this 

implies that Pr[&] 5 Pr[&] + Pr[&]. We will now show that the Pr[E3] 5 &, and this 

combined with the fact that Pr[Ei] 5 h, and thus that Pr[El] 5 h, implies that 

Pr[&] 5 and thus that Pr[&] 5 h- This proves the lemma. 

It remains to show that Pr[&] 5 3- l In order to do this we consider a forth 

experiment in which we fix f E P. We then draw a function s uniformly at random 

from the set Sn. We then nui the circuit Cn on the oracle f Os, by having the gates Ij  

and Oj compute the function f @ s, for each j .  

Remember that ai is completely determined by Cn, but for j > 1 the choice of a$ 

can be dependent on %,%, ...,%-,. Further, a$ # ai, for j # k, by the construction 

of C,,. In experiment four, we will consider the probabilities involved in four cases. We 

show that in first three cases the probability is trivia@ bounded, and show that in the 

last case reduces to the problem taken care of in Lemma 6.2. Before describing the cases 

we define a set used in the four cases. The set is F' = { f $ silsi E Sn). 

Case 1: There exists an i,j, k, 1, where k = i, such that @ = @. 

Fix f E F, and consider: 

Notice that when i = k that 

Pr [ f (ai) e ~;(4) = f (a:) S* (a:)] = Pr [&(a:) = &(a:)] 0 .  

s~ES" bi ES" 

A simple argument shows that this probability is bounded by v. To notice this, 

observe that given a function 5 ,  drawn d o d y  at random fiom P, and given m(n)  

queries, that for any two distinct queries a and b, the probability that $(a) = 8(b) is less 

m n 2  than -&&. Then notice when S is drawn u n i f o d y  at random from 3" instead of T", 
m n l.~" we can easily bound the probability by +. 



Case 2: There exists an i , j ,  k, 1, where k # i, such that @ = @. 
Fix f E P, and consider. 

Notice t hat f (al) @ sk(af) and af are completely independent of the choice of si. There 

fore, we can bound this probability by bounding the probability 

Pr [ f (ai) @ s;(aj) = 91, 
s; ES" 

where 9 is a fixed value which has been chosen, n o n - d o d y ,  to maximize the above 

probability. This gives the following probability, 

Pr [ f (ai) @ si(ai) = 91 = Pr [s^i(a:) = t9]. 
s; ES" O; ES" 

This probability is bound to be less than 9. To notice this, observe that given a 

function 8, drawn uniformly at random fiom P, and given m(n) queries, that for any 

query a, the probability that j (a )  = ~9 is less than *, Then notice when ri is drawn 

uniformiy at random from gn instead of P, we can easily bound the pobability by 

Case 3: There exists an i, j, k, 1, where k # i, such that 6 = nt. 

Again we fix f E F ,  and consider: 

A. 

S; ES" si ES" 

= PI [a: = si(,;)]. 
Si ES" 

Similarly to the previous case, notice that a: is completely independent of the choice of 

g i .  Therefore, we can bound this probability by bounding the following probability, 

where 9' is a fixed value which has b e n  chosen, non-uniformiy, to maximize the above 

probability. This probability is bound to be less than w, for the s a m e  reasons as 

those mentioned in Case 2. 



A. 

Case 4: There exists an i,j, k, 1, where k = i ,  such that 4 = a:. 

Again we fix f E P,  and consider: 

Pr [a: = 61 = P P ~  [c$ = f (ai) @ s~(c$)] 
siEs" si ES" 

= Pg [c$=ii(aj)]. 
bi ES" 

Clearly, the probability in last cases is bound by a bound on the following probability. 

First, let {Sn) be any polynomial in n sized circuit family, in which every circuit B, has 

m(n) oracle gates. We consider the probability when O is chosen uniformly at raadom 

from the set S", and that when given as an input the oracle doi  the circuit B, outputs the 

pair (a, p ) ,  where a corresponds to one of the oracle queries made by B,, and p = %(a). 

Fortunately, the above bound is given in Lemma 6.2. 

Therefore, for each choice of i, j, k and I there are two possible ways in which a collision 
nC-m(n)3 

can occur, and for each way the probability of it occurring is bounded above by ,, 
from the results of Lemma 6.2. nZr+m n There are a total of choices of i, j, k, I ,  so: 

Pr(E3) 

and the lemma is proved. 

Corollary 6.2 For each n, let Sn c 3" 6y any set such that 2 f , for some  constant 

d ,  and let {C,) 6e a polynomial sized family of decision-circuits. Then for every constant 

c, and for al1 but of the w E F: 

for suficiently large n. 

This corollary corresponds directly to Lemma 5.7, but with the composition operator 

and the set of permutations Sn replaced by the O operator and the set of functions Sn. 



6.2 Isolation Lemmas 

Now by Corollaries 6.1 and 6.2 we can prove both versions of the Isolation Lemmas in 

Chapter 5 by replacing the composition operator with the a operator, and by replacing 

the PRPGs with PR.FGsl. For completeness, we state both versions of Isolation Lemmas 

and their corresponding composition theorems below. 

Lemma 6.4 (Box Isolation Lemma - Weak Version) - 

There ezist fized polynornials m and p, such that for al1 O 5 e, b 5 1; polynomiais CG, m, 

and SF; and function generators H and G, where e ( n )  and a ( n )  bound h m  aboue the 

size of the circuits which compute Gn and Hn respectiuely. Defie F = GO H. 

Hypothesis: If there ezists a family of decision-circuits {Cn), where for each n the 

circuit Cn is of size sF(n), and for some c > O and infinitely many n: 

Conclusion: Then for each suficiently large n there exists either a decision-circuit A, 

of size pl (nc - a(n))sr(n)  for which: 

or a decision-circuit Tn of sire pr (ne - e(n))sF(n) for which: 

or a decision-circuit En of size cH(n) + sF(n) for which: 

Corollary 6.3 (Box Theorem) Let G be a 1 - c secure PRPG. Then for each positiue 

integer c, the genemtor F = (- - - (GOG)O - - - DG) is i - B secure, where 0 = P(2 - c)'-'. 
\ 

w I 

C iimc. 

'Technically the original Isolation Lemma requins a commutative version of Lemma 5.6 and 5.7, but 
since the O operator is commutative the corresponding lemmaa foiiow immediately. 



For the theorem below we need a definition for a semi-secure PRFG which is analogous 

to the defkition of a semi-secure PRPG. W e  will dl a PRFG, H, 1 - e semi-secure if 

there exists no f d i  of polynomiai-sized decision- circuits {Ca) which has an advantage 

of 6 + & in distinguishing H n  from P, for some constant c and infinitely many n. 

Lemma 6.5 (Box Isolation Lemma - Stronger Version) - 

There exist a fied polynomials pl and a fîzed poly-logarithmic function pz such that 

for ail O < d 6 1; s : N + [O, 11, mhere for al1 sugiciently large n, c ( n )  < 6 ;  polynornials 

cc, CH, and SF; and function generators H and G,  where e ( n )  and cH(n)  bound /rom aboue 

the size of the circuits which compute Gn and Hn respectively. Define F = GOH. 

Hypothesis: If there ezz3t.s a family of decision-circuits {C,), where for each n the 

circuit C, is of size s F ( n ) ,  and for some c > O and all su.ciently large n: 

Conciusion: Then for infinitely many n there exists either a decision-circuit An of size 

pi (logc n - % ( n ) ) s F ( n )  for which: 

or a decision-circuit Y, of size (logC n - e ( n ) ) s F ( n )  for which: 

or a decision-circuit of size cH (n)  + s F ( n )  for which: 

Theorem 6.1 (Box Theorem - Stronger Version) - 

Let G be a 1 - s secure PRPG. Then for each f E 6(bg logn) there ezàts a genemtor 

F = (- (GOG)O - -  OG) d i d r  is 1 - B(n) semi-secure, where B(n) = af(")(2 - c)ffn)-'. 
\ fl v 

f (n) rimer 



As in the case of the composition operator acting on permutation generators, it is a 

natural question to ask if the Isolation Lemma's security parameter is still tight for the 

function generator that results fiom the 0 operator acting on partially secure PRFGs. 

We show in the next section that the Isolation Lemma is still tight. 

6.3 The Isolation Lemma is Still Tight 

We now show that there exist PRFGs H and G which are respectively (1 - e) and (1 - 6) 

secure, but when boxed together are exactly (1 - 0) secure, where B = d ( 2  - mm{€, 6) ) .  

We point out to the reader that there is much in common between this construction and 

the construction presented in Chapter 5. 

The Construction of G and H 

We present the construction of G, and note that the construction of H is similar. To 

simplify the presentation we assume that 6 and c are of the form & or 1 - ,. Let 

S = {Sn : {O, 1)'(") x (0,l)" -t {O, 1)"ln E N) be a PRFG. We constmct Gn = {Gn : 

{O, I)'(")+~ x {O, ljn + {O, 1)"ln E W} to be 1 - 6 secure in two steps. We will describe 

the construction of Gn, and note that the construction of Hn is similar. 

First , for each n we set a fraction 6 of the keys of Gn to correspond to the zero fuaction, 

f (s) = O Vz, and the remainder to correspond to functions chosen fiom S n . ~ h i s  is done 

in two different fashions dependent on the form of b as describecl below: 

Case 1 (d = 1 - &) For each k E {O, I)'(J+~ we set the hinction gg € GR to be the zero 

function, if the first c bits of k a n  not do; otherwise let ik. be the last l (n )  bits of 
h 

k, and set g; = GE, for E Gn. 

Case 2 (6 = &) For each k E {O, L)'(")+~ we set the function g; E Gn to be the zero 

function, if the first c bits of k are do; otherwise let k. be the last [(n) bits of k, 
h 

and set g i  = 32, for 6: E G'. 



The second step in the construction of Gn is to ensure that for each k E (0, l)qn)+' 

we set the value of g~(gé(0)) in one of two manners, depending on the form of 6, as 

described below: 

Case i (6 = 1 - 5)  For d keys k set the first c bits of g~(~c(O))  to 0; the last n - c 

bits rernain as they were in gz(Ô). 

Case 2 (6 = 15) For al1 keys k ensure that not all of the first c bits of g;(gz(0)) are 1. 

If they are, then set them to be a member of the set {O, I lC  \ Clc)  chosen d o r m l y  

at random2; the last n - c bits remain as they were in gé(g;(0)). 

It remains to show that G and H are in fact 1 - 6 and 1 - e secure. We note that the 

proof is similar to the proof presented in Appendix A, and so we will not present it here. 

The Adversary 

We now show that there exists an adversary which can 4 2  - max{e, 6)) distinguish 

F = Go H, and thereby show that the isolation lemma result is tight. We assume WLOG 

that 6 2 E .  

Given a function w E .P the adversary, A, accepts in one of the following two 

conditions, dependent on the fonn of S: 

Case 1 (6 = 1 - 5 )  The adversary A accepts if the first c bits of w(w(O)) are 0; 

Case 2 (6 = 5) The adversary A accepts ig the first c bits of w(w(0)) are not 1. 

We first consider the accepting probability of A if w was chosen uniformly fkom Fn. In 

this case w is the result of applying the box operator to two functions chosen randomly 

from each of the respective generators Gn and Hn. We partition the functions of Gn into 

2 ~ n  practice a P W G  p would be used to set the first c bits of gr(gt(0)). This would be done by 
setting the first c bits of g," (9," (O) to be equivalent be the first consecutive set of c bits in ~ ( k )  which 
were not aU 1. This allows the ftrst c bits to be cornputeci, and discards the need to store them, which 
wodd not be possible as it would require an exponential amount of storage. 



two sets. W e  let IGn represent the set of d zero functions in Gn, and we let PGn represent 

the remaining functions in Gn. Sunilarly, we partition Hn into h o  sets IHn and PHm. We 

now consider the probabiiity that w is accepted based on it being the result of applying 

the box operator to two functions from the above mentioned partitions. 

Case 1 (w E IGnmlnn) The adversary WU accept w with probabiiity 1. This case occurs 

with probability de, 

Case 2 (w E IGnnP~n) The adversary will accept w with probability E, which is the 

probability that A would accept a random function conditioned on the fact that 

the function w was chosen fiom PHm. This case occurs with probability 6(1- c). 

Case 3 (w E PGn a l H n )  The adversary will accept w with probability 1. This case occm 

with probability (1 - b)c. 

Case 4 (w E PGnOPHn) The adversary will accept w with probability 1 - 6, which is the 

probability that the result of a random function evaluated at a random point in its 

range would meet the acceptance criteria of A. This case occurs with probability 

(1 -6 ) ( l -  €1. 

Clearly a random function w will be accepted by A with probabifity 1 - 6. Now follow- 

ing the argument made in section 5.1.1 it is clear that the adversary has distinguishing 

probability of €6 (2 - m d s ,  6 ) ) .  

6.4 Scalability Issues 

Again, OUT goal is to show that by scaling this construction large enough we can achieve 

a 1-secure PRPG. We believe that this will be possible by considering the finer notion 

of security which is proposed in section 5.4. However, d e s s  we can eventually achieve 

complete security by a construction (- - - (G0G)o DG) then this construction will not 
\ 4 - 

c'(log 4 



be usefid. This is because the size of the construction becomes larger than any fixeci 

polynomial for sufficiently large n, and thus the generator is not cornputable in polynomid 

time. This is due to the fact that the size of the implementation of the construction is 

exponential in the number of a operators which are used in the construction. This 

becomes obvious by rewriting the construction and substituting the 0 operat or with its 

definition. This may ümit the usefulness of this construction in practice, for it may be 

too slow to practically consider. Futther, it may prevent polynomial size constructions 

of this form from becoming PRFGs. 



Chapter 7 

The O Operator Generator 

In the previous two chapters we have shown that the composition and O operators are 

security increasing for PRPGs and P WGs respectively. Unfortunately, in both cases we 

have not been able to show that constructions based on t hem can give 1-secure generators. 

In this chapter we will show that the O operator generator is security increasing when 

appiied to PRFGs. Further, we will show that it can be used to constmct completely 

secure PRFGs from 1 - 6 secure PRFGs. We now remind the reader of the definition of 

the O operator generator. 

We define the O operator generator (read as Diamond) as O = {O:, ,, In E N h  ri, r~ E 

O 1 Let fi and fi be two functions such that fi : {O, 1)" + {O, l)", for i E {l, 2). 

For each PI, r 2  E {O, lJn we defme the operator O:, ,, , which acts on the functions fi 

and fi as: 

(f1o:,er2f*)(z) = fi(z e ri) e fa(= e r2)- 

We will now show that this operator-generator is security increasing, by modifying 

the arguments which were presented in Chapters 5 and 6. We will see that the fact that 

O is an operator-generator, as opposed to an operator, does not have anything more than 

a cosmetic effect on the proof. 

Lemma 7.1 (Diamond Isolation Lemma) - 



There ezists a jùed polynornial such that for all c, 6 : Z + [O, 11; polynomiak yj,qi, 

and SF; and finction generutors H and G ,  where ~ ( n )  and q ( n )  bound fhm above the 

s i l e  of the circuits which compute Gn and H n  t~spectively. Define F = GOH. 

Hypothesis: If there ezists a family of decision-circuits {C,), where for each n the 

c i ra i t  Cn is of size sr(n), and for some c > O and inf i i te ly  many n: 

Conclusion: Then for infinitdy many n there e z k k  either a decision-circuit Y, of size 

~ ( n ~  . e (n ) ) sF(n )  for which: 

or a decision-circuit of size cH ( n )  + sF(n) for which: 

Notice that in this version of the Isolation Lemma that there is ody  one circuit 

which distinguishes G fiom random, and the resulting circuit is much smder  than the 

circuit needed to break H. This dows us to iteratively apply the Isolation Lemma to the 

construction $0 - - - 04 for a p E fl(log2 n) n (UZ, O(ni) ) and achieve complete security. - 
~ ( 4  

Theorem 7.1 (Diamond Composition Theorem) - 

Let G be o 1 - c secure PRFG. Then for each p E fl(log2 n) n ( u ~ , O ( ~ ' ) )  the generator 

We will now present a prmf of Lemma 7.1. As was the case in Chapter 6, the 

important changes to the proof rely on two technical lemmas. We present these lemmas 

fist , and then give the complete proof. It will becorne evident that the fact that we me 

using an operator generator instead of an operator has no signifiant e f f '  on the proof. 



7.1 Two Technical Lemmas 

As mentioned in Chapter 6, the proof of security presented in Chapter 5 only makes 

specific use of the properties of composition and permutations in Lemmas 5.6 and 5.7. 

Therefore, we will need to prove corresponding lenimas which correspond to the O oper- 

ator. In this chapter we shall assume the same standardized circuits and circuit families 

which were presented in Section 6.1. Specificdy, all circuits wili never repeat oracle 

queries, and ad circuits Cn in a circuit family {C,) will perform exactly m(n) queries, 

for some polynomial m. 

Below we present the f is t  technical lemma. It corresponds to Lemma 5.6. 

Lemma 7 .2  Given any decision-circuit C ,  for each f E F and for each rl ,  r2 E {O, 1)": 

ProoZ: First observe that for each rz E {O, l)", that the set {f'(x@r2)If' E 7") = F. 

Then let g(x) = f (x @ r l ) ,  and observe that the g @ P = F, proving the result. 

Corollary 7.1 Given any decision-circuit C ,  for each f E F': 

Pr( c f O F )  = P r ( F ) .  c 

We now present the second technical lemma, and from it we will derive a simple 

corollary which corresponds to Lemma 5.7. Notice that the proof of this lemma is very 

similar to the proof of Lenima 6.3. 

Lemma 7.3 For euery n let Sn c F be a non-empty set. Let {C,} be a family of 

polynomial in n sized decision-cimuits. We show that for any d > O ,  there enî ts  an 

r > O such that for al1 suficiently large n: 



Notice that in this lemma there is no restriction on the size of Sn, other than it 

being non-empty. It is this lack of restriction on the size of Sn which ends up dowing 

us to iteratively apply the O operator a polynomial number of times, as is stated in the 

Diamond Composition Theorem (Theorem 7.1). Notice than in similar Lemmas presented 

in Chapters 5 and 6 (Lemmas 5.8 and 6.3), there is a requirement that # 2 5, for 

some constant c. Therefore, this Iemma is a much stronger r d t .  

Pro of: We will assume t hat r is fixed, aad later we will show how to determine r 's value. 

F k t  we define h o  experiments. III the tirst experiment pick random ( fi7 fi, . . ., f i )  E 
(P)"', and evaluate Cm(/;) for each i E {l, ..., nr). Define the event El to be: 

In the second experiment pick random (f, k:, k:, ..., k;,, k:, , si, ..., snr) E 7" x {O, I)(~")("') x 

(Sn)"', and evaluate Cn(fOki&si) t for each i, where 1 i 5 nr. Define the event E2 to 

be: 

Using the Chernoff Bound (Lemma 5.4) we choose an r where the probability of event 

El occurring in the first experiment is less than &. We will show that the probability 

of event E2 in the second experiment, is negligibiy close to the probability of El in the 

first experiment. The lemma will follow. 

We wiU perfurm a third experiment, in which we model both of the first two experi- 

ments by considering two different methods of evaluating the circuit Cn, nr times. 

1 1 n y "' E {O, l}n."(")*nr; ,d We choose SI, ..., sr E Sn; T ~ ,  --, ?,,+), ...., T~ , ---, Y,+) 

k:, k:, ..., kkr, k:, E {O,  1)*""'. Let gi represent the jth oracle-gate of Cn when evalu- 

ating f; in experiment one, or f 0; in experiment two. Let 1: be the input to gj in 

the experiment and let O; be its output. We consider the gates in the following order 

1 1 nr nt 
91 8 g2 Y * O * >  9 m ( n ) 7  91 7 ***gm(n)g 

We model the first experiment of performing nr evaluations of C,, where in each 



evaluation we set C,'s oracle to be a random funetion by equivalently considering n' 

evaluations of C,, where in the evaluation of fj we independently assign the element $ 
to O:, the output of each oracle gate gj in C,. Notice that by =g, for each i and each 

j, the value of O;, we have completely determineci the behaviour of the circuit C, in each 

of the evaluations. Further, notice that because of the way we have set the outputs of 

the gates, we have perfectly modeled experiment one. Let El be the event in experiment 

three which corresponds to event El in experiment one. 

Observe that we could model the second experiment in the same manner if we could 

guarantee that f would never be queried on the same input. Since our circuits never 

repeat queries, there is no worry that C, will every query f 0 2 e e ~ i  on the same input. 

Unfortunately, in our experiment there is the possibility that for i # j that Cn will 

perform a query a on input f Onl H S i  and a query P on input f  O&y sj where a @ k: = 
k i @  1 

0 @ q, and the result will be that f is queried on the same input twice. However, we 

can model experiment two in a method similar to which we modeled experiment one. 

For each evaluation of C,( f O;:eq~ i )  we set the output Oi to be $, for each P such 

that 1 5 t 5 m(n).  Observe that once the outputs of the oracle gates have been h e d ,  

then all of the inputs to the oracle-gates are fixed, as is the output of the circuit. Now 

that the inputs and outputs have been fixed, the only way the f  can be queried on the 

same input twice is if we have bad choices for our kt's. Now for each i, we check if there 

exists a pair (a,  6 )  and a j ,  where (a, 6) < (i, j), such that 1' @ # = 1; $ k:; if such 

an (a ,  6 )  and j exist then we Say a collision has occurred. A coilision corresponds to a 

bad choice of k,', and therefore f is inadvertently being queried twice on the same input, 

and we therefore have to make sure that the two query responses axe consistent. If a 

collision has occurred, then we reevaluate Cn(fO;:eq~i) in the following manner. We 

reevaluate the gates gi, ..., g&(,) in that order. For each gate g$ we consider its input 

Ij,  and the input to f which is Ii 8 k:. If there exists a pair (a, b) < (i, j) such that 

Ib @ ki = 1; @ k: , t hen f is being queried on an input which has previously been performed 



in the experiment. Therefore, we set the output O: to be f (l '@ kt) @si([; @ k:), and force 

the orackgates t o  respond consistently to queries on f. If no such pair (a, b) existed then 

the random response was a consistent response, and therefore we set O$ t $. Notice 

t hat this method of evaluating Cn, perfectly models experiment two. Let be the event 

in experiment three which corresponds to & in experiment two. 

Note that the mode1 of the second experiment is identical to the mode1 of the k t ,  

except in those cases in which a collision occurs. We define E' to be the event that a 

collision occmed during the thkd experiment. Cleady & c El LJ E3, which implies that 

Pr(&) 5 Pr(&) + Pr(&). Since the probability of El is less than h, in experiment one, 

and thus the probability of El is l e s  than h, in experiment three; it suffices to  show 

that the probability of event E3 in experiment three is las than in order to prove 

that the probabilîty of E2, in experiment three, is less than h, which implies that the 

probability of Er, in experiment two, is l a s  than &. This proves the lemma. 

We now bound from above the probability of event &. Let 

The set Li represents the pairs (x, f (2 ) )  which would be needed in order to calculate 

the function fO;;ee~i for the queries which are made by C, during the evaluation of 

C,( f OYey si ) .  Notice that (I:  @ k:) corresponds to the value at which f is evaluated, 

given that the query I: is made to the function fOnl psi+ Similarly, ($ @ si( l j  @ k:)) 
k;. l 

corresponds to the value of f evaluated on ( I j  @ k:) given that (f U&qsi)(I' @ k:) = $. 
Since all of Cn7s queries are unique it is the case that a repeated query to f cannot be 

strictly contained in the evaluation of Cm( f Unsi), and therefore ILil = m(n) for each 

i. We now consider the probability that during the evaluation of Ca( f OE!eesi) that a 
I 

collision occurs. We define the set 

which contains all of the possible values of k: which wiil cause a collision. We observe 
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that lTil 5 rn(n)2 - i. Therefore the probability of having a collision during the evaluation 

m (n)2 -i of C, (f OYecrsi) is at most . We note that the probability of a collision occurring 
8 

in experiment three is less than the sum of the probabilities of a collision oc&g during 

the evaluations of C, ( f 0;; si) for each i ,  where 1 < i 5 nr . Therefore: 

This proves the lemrna. 

Corollary 7.2 For each n, let Sn C P be a non empty set, and let (C,) be a polynomial 

sized farnily of decision-circuits. Then for euery constant c, and for al1 but of the 

W E F :  

for suficiently large n .  

This corollary corresponds to Lemma 5.7, but is actudy much stronger. Since there 

are no restrictions on the size of Sn we are able to prove a lemma conesponding to Lemma 

5.9, as a direct consequence of Corollary 7.2 

7.2 Proof Of Lemma 7.1 

Assume that there exists a polynomial-sized decision-circuit family {Cm) which for some 

constant c > O and infinitely many n distinguishes Fn fiom F with probability at least 

+)+) + 5. 



Lemma 7.4 For i > O and for each n let 

1 1 
K'(i) = Pr(.F') + - and L,(i) = Pr(7") - -. 

cm nt Cn n' 

Let 

Sn(i) = {UJ E F l P r ( ~ " ~ w )  2 K.(i) and Tn(i) = 
Cn 

Then giuen i,j: 

1 
Pr (w E Sn(i)) 5 - 1 

and Pr (w E Tn(i)) 5 - 
WEP ni w e "  ni Y 

for suficiently large n. 

Proof: This lemma foilows directly kom Corollary 7.2 as Gn C P. 

Notice the similarities between this lemma, and Lemma 5.9. They are similar, but in 

Lemma 5.9 there exists the possibility of a family of circuits {An}, which does not exist 

in this lemma. It is the lack of this circuit family which permits the large number of 

applications of the Diamond Operator Generator in the Diamond Composition Theorem, 

and thereby allows us to attain a PRFG from a parti* secure PRFG. Notice that the 

lack of the family of circuits {A) in this lemma, as opposed to Lemma 5.9, is made 

possible due to the lack of restrictions on the size of Sn in CoroUary 7.2, which is a direct 

consequence of the lack of restrictions on the size of Sn in Lemma 7.3. 

Lemma 7.5 Either there ezists a famdy of decision-circuits CE), where for each n the 

circuit Zn is of size cn(n) + sF(n); and for infinitely many n: 

or for al1 suficiently large n and all hn E Hn: 



Proof: If a f d y  of circuits {n) with the above properties exists, then we are done. 

Otherwise, there exists no such family of circuits. Assume that for the circuit family 

{C,), there exists a set {hn E Hnln E N} such that, for all sufnciently large n it is the 

case that 1 Prcn (GnOhn) - Prcn(.F) 1 2 J(n) + &. We aea te  the decision-circuit family 

IDn), where D,(w) = Cn(wOhn)- 

Letting Dn = & we have a constructed a family of decision-circuits {En). This contra- 

dicts the fact that there is no decision-circuit family of size cw(n) + sF(n), such that for 

proving the lemma. 

7.2.1 Main Argument 

We note that the Main Argument for the Diamond Isolation Lemma is similar, but 

easier than the Main Argument for the Composition Isolation Lemma presented eariier 

in section 5.3.1. One major difference is that it performs more sampling, and therefore 

achieves bounds under the normal security definition of a part idy secure PRFG, and not 

under the semi-secure definition of PRFGS. Another difference is that there is no need to 

assume the existence of a f d y  of circuits {An), due to Lemma 7.4. The final difference 

is that we present the construction of only one type of circuit in this Main Argument. 

Unlike the Main Argument in Chapter 5, there is no need to present a circuit which Eps 

biased coins. This is because for a random w E P, Lemma 7.4 constrains the value of 

Prc, [GnOw] to be much closer to Pr=. [TL], t hen is the case for the constraint imposed 
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on the distance between Prcn[Gn 0 w] and Prcn[P], by Lemma 5.9. 

Let & = ~ ( n )  + 5 and similarly let bn = b(n) + 5. Then the family of circuits, 

{C,), is capable of distinguishing GnOHn fkom F with probability at least G&, for 

infinitely many n, as t his value is strictly smder  than c(n)b(n) + 5, for sufnciently large 

n. We assume that there exists no famdy of circuits {G), where each circuit En is of 

size cH(n)  + sF(n), such that for infinitely many n: 

From the above assumption and 

and ail hn f Hn: 

Lemma 7.5, we kmw that for d sufficiently large n 

From Lemma 7.4 we know that for 

that PrWEF(w E Sn) 5 &, for ail sufficiently large 

that PiwEF (W E Tn) 5 &, for all sufficiently large 

n. Similarly we know t hat for 

We will construct a family of decision-circuits {Y ,}, where each circuit T, is of size 

p2(nc - =(n))sF(n), such that for infmitely many n: 

proving the lemma. In the sequel we show how to construct Y, for each n such that both 

IPrc,(Fn) - Prcn(P)I  2 e(n)b(n) + S., and n is sdüciently large for a l l  inequalities in 

the following proof to hold tme. 

We fist give an overview of the prwf. We will construct a circuit B, (via an inter- 

mediate circuit A,) which, given as input a function w, almost surely approxirnates the 



value Prcn(GnOw). From Equations 7.2 and 7.3, we know that for aImost all random 

functions w E 7" that Prcn(GnOw) WU be bounded from above by the d u e  Kn, and 

below by the value Ln. 

We show, by means of a simple averaging argument, that it must be the case that 

for a large fraction of the h E H, (a fiaction greater than c(n) + &) it is the case that 

Prcn (GnOh) f d s  outside of the range [Ln, K,]. We can then distinguish between Hn 

and P by computing B(w),  and accepting if B(w) is greater than K, or less than Ln. 

Because the  sets S and T" contain all of the funetions w in F, for which Prc,(GnOut) 

is less than or greater than Ln and Kn respectively, and since < 5 and < A; 
we know that about a fraction & of the tu will be accepted by B(n). 

We construct a probabilistic circuit A,, such that 

where gi, ..., g n b  E Gn and k:, k:, .., k$, k$ E {O, 1)" are randomly chosen. Let n(n) be 

the length of the key of Hn, and set a > 1 so that na > ~(n). Using the Chernoff Bound, 

b is chosen large enough such that: 

and 

By Lemma 5.5 we derandomize An to get the circuit B, for all but of the w E F: 

and for ail of the h; E Hn: 

1 since for each k E {O, 1)'(") the probability of h; E H" is at Least ,?;tnr > F. 



Let KL = Prc,(F) + -&, and let L: = Prcn(F)  - &- We now show that 

1 
Pr [Bn(hn) 2 Kk V Bn(hn) 5 Li] 1 ~ ( n )  + 

h"fH" 

The argument is an averaging argument. We h t  give an intuitive version of the 

argument, and then we give a.ll of the details. 

We now present the intuitive version of the argument. In this argument we essentially 

assume that any two values which differ by a value of at most ,+, for some polynomial 
PO Y ( 4  

poly, are equident . 
We remember that Bn(hn) is an approximation of Prcn(GnOhn), and intuitively the 

two values can be treated as the same. We know that IPrc, (GnOHn) - P r c n ( P )  1 > 

e(n)6(n). We partition the functions in Hn into two groups. This first group contains 

those hn E H n  for which Prcn(GnOhn) * Prcn(P) .  The second group contains the 

rest of h" E Hn not in the first group. We then observe, by equation 7.1, that for each 

hn E Hn,  the value 1 Prcn(GOhn) - Prcn(P)[  is l e s  than 6(n). Using this fact we point 

out that for a random hn E Hn it must be the case that hn is in the second group with a 

probability of at least c(n), or otherwise IPrcn (GnOHn) - Prcn (P) 1 < c(n)b(n). 

We know present the exact argument. Assume for contradiction that PrhnEHn [Bn(hn) 2 

KA V B,(hn) 5 LL] < a(n) + 5. Let Kn c Hn be the set of functions hn E Hn, for which 

Bn(hn) 3 KA or Bn(hn) 5 Ln, and let Rn be its complement. 

We now get a contradiction by a simple averaging argument. 

Pr[GOhn] - Pr[F']I Pr [f = hn] 
c m  

hnçHn 
f EH" 

= C ( l ~ r [ ~ O h ~ ]  - R[F] 1 Pr [f = hnl) 
cn cn 

h%Kn 
f EH" 

Pr[GOhn] - P~[F] 1 Pr [f = hml) 
cn f EH" 

Pr[GOhn] - P~[F] 1 Pr [f = h"] 
Cn 

hnEKn 
f EH" 



The inequality in line 7.6 follows from two fxts. First that, by assumption, the proba- 

bility that a random hn E Hn is in En is 1 - a(n) - &. Second, that for each hn in En, 
it  is the case that Kn > Bn(hn) > Ln, and this implies that 1 Bn(hn) - Prc, (7") 1 < & 
by the definitions of Kn and Ln. 

The inequality in line 7.7 follows from two facts. First, by assumption, the probability 

that a random hn E Hn is in En is ( e (n)  + S. Second, by equation 7.1, it is the case 

that for each hn E Hn that (Prc,(GOhn) - Prcn(TL) 1 < b(n) + A. 
The inequaüty in h e  7.8 contradicts the fact that lPrcn [GOH] - Prcn [Pl1 2 a(n)d(n)+ 

and therefore it must be the case that PïhnEHn[Bn(hn) 5 K: V Bn(hn) 5 Lk] 2 ne y 

1 4 4  + ;;rr- 
We create the decision circuit B,(w) which accepts w iff Bn(w) 2 M or if &(w) 5 

Li. 

I 1 
Pr(Hn) - P r ( F )  2 c(n) + - Pr(7") 

Bn & 
1 2 1 

2 c ( n ) + - - - - -  n 2 ~  ,7c 2na (Equations 7.2, 7.3 & sampling error) 

Notice that the second inequality follows h m  constraints on the probability that 

a random function w E P is in the set Sn defineci in equation 7.2. This is because, 

for ail sufficiently large n, is greater than the d u e  of K,. As previously seen, the 



probability that a random w E F has the property that Prc,(GnOto) > K,, is the 

probability that w is contained in the set Sn. But, we know that the probability of a 

random w E 7" being in the set Sn is less than h. Clearly it follows that the probability 

that a random w E F has the property that Prc,, (GnOw) > Kk is s m d e r  than A, 
for the set of functions with this property is necessarily a subset of Sn. Clearly similar 

arguments apply for when Prc,(GnOw) < Ln. 

Finally, since Bn(w) approximates Prc,(Gn O w) to within a value of +, for al1 but 

& of the w E P, and since it stili holds that for all sufliciently large n that KL - 

is greater than Kn, there can only be a fiaction + of the w E F' for which Bf(w) 

accepts. The first 5 of these functions are the ones in Sn and T,. The last of these 

functions are the functions w in which B(w)'s approximation of Prc,(GnOw) is off by 

more than a factor of &. 
We let Y, = Bn, and we axe finished. 

7.3 Questioning The Mode1 

In this section we have shown how to construct a PRFG from partially secure PRFGs, 

and have thus reached one of our research goals. However, the initial purpose of studying 

constructions which increased the security of partiaily secure PRFGs was to attempt 

to provide evidence that such constructions would amplify security when applied to 

completely insecure function generators (what would be considered a O-secure PRFG in 

our model). Or in lay man's terms, we wanted to provide evidence that there was reason 

to believe t hat the constructions used in real world cryptographie permutation generators, 

such as DES and the AES candidates, actually do increase security. Unfortunately, 

our research program has fallen short in this respect because there is little reason to 

believe that the construction studied in this chapter would have any security arnplifying 

properties on insecure function generators. This is based on the belief that, to the best 



of the authors' knowledge, there exists no 'real world" cryptographie system, in public 

use, that is based on the security amplyfiyng properties of the exlasiveor function. 

Further, the author predicts that the consensus arnong cryptologists would be that it 

would be shocking to discover that the exclusive-or function can be used in the fashion 

described in this chapter to increase security. Therefore, while there is no formal evidence 

backing the claim that the O operator does not provide security amplification in the "real- 

world", there is sac ien t  enough evidence to have us question the mode1 we are working 

in. Therefore, proving that certain constructions are siecurity increasing when applied 

to partially secure PRFGs may provide little evidence that the construction will have 

security amplifying properties when applied to trivial generators. 



Chapter 8 

Conclusions and Open Questions 

In this chapter we summarize our findings, and propose some interesting new research 

directions. 

8.1 Conclusions 

Our goal was to understand in which ways insecure functions generators might be com- 

bined in order to produce function generators which are conjectured to be pseudcxandom. 

We developed a list of possible constructions which are based on "naturaln operators 

which are commoniy used in the cryptographie cornmuni@ 

We then considered each construction in the mode1 of partially secure pseud-random 

generators. For each proposed construction we were then able to either give evidence 

which suggests it is of Little practical use, or classify the construction as securify in- 

creasing, preserving, or decreasing. We extended the result of Luby and Rackoff [12] 

and showed that we could achieve a 1 - & secure generator from a partially secure 

PRPG. We then showed that the we could achieve the same security using PWGs and 

the O operator, as proposed by Luby and Rackoff [13]. Finally, we have shown that we 

can achieve a completely secure PRFG from a par t idy secure PRFG based on the O 

operator generator. This last result has led us to question the belief that a construction 
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which is security increasing in the weakly çecure pseudcxandom mode1 is &O security 

increasing when applied to insecure generators. However, it  has answered in the positive 

the question of whether or not it is possible to use a "natural" construction to combine 

partially secure PRFGs into a secure PRFG. 

8.2 Open Questions 

In this section we will first review the open questions which have appeared previously in 

this text. We will then describe one problem which we have spent a significant amount 

of time thinking about, but for which we have made little progress on. Findy, we 

will suggest a new direction for future research which we believe is of strong practical 

importance, and if successful may dramatically change the way conjectured PRPGs and 

PRFGs are designed. 

8.2.1 Previously Stated Open Questions 

We remind the reader that in Chapter 4 we codd not show that the construction based on 

the XOR operator was security preserving when applied to generators of security p a t e r  

than $. W e  then mentioned that for similar reasons we were unable to determine whether 

a construction based on the O and XOR operators was security increasing, preserving, 

or possibly diminishing. We restate the questions here, for completeness. 

Open Question 8.1 (Restatement of Open Question 4.1) Is the construction F ( a )  = 

(G,(,) @ - - @ Gi) (a )  security increasing, when the generators Gi are restricted to being 

1 - 6 secun for 6 < ). 

Open Question 8.2 (Restatement of Open Question 4.2) Is the construction F ( a )  = 

((GZrn(n)nGtm(n)-l) @ * . . CD (G~oGI) )  (LI) ~ e ~ ~ r i t y  incnasing, ~ecuri ty  pnscrving or S ~ C U -  

rit y decreasing. 
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8 -2.2 Adartive vs- Non- Adart ive S e c d t y  

We Say that a PRFG is non-adaptively s e m e  if it is secue under a weakened version of 

the standard definition of secure PRFGs. The definition is weakened by disallowing the 

adversary from making adaptive queries to the function-oracle. Therefore, the adversary 

can still make a polynomial in n number of queries, but the queries must al l  be made at 

the same tirne. This prevents the adversary from making queries based on information 

learned from the results of previous queries. 

We give a simple example of a generator which is non-adaptively secure, but which 

is adaptively insecure. Let 2 = {G : {O, 1}*(") x {0,1}" -P {O, 1)"ln E Ei) be an 

adaptively secure PRFG. We construct a non-adaptively secure generator G = {G : 

{O, 1)"(") x {O, 1)" -P {O, l}"ln E N}, by taking for each k E {O, 1}'(") the function 

i z  E Gn, and using it to construct a new function g; E Gn: for all x # ijt(O), for some 

x E {O, 1)" and k E {O, 1)'(") we set gt(x) = ijt(x), but we set g;(@(0)) = O. 

The question is if there is some construction based on "naturaln operators which 

allows us construct an adaptively secure PRFG, from non-adaptively secure generators. 

Specificdy, we Say that a construction provides adaptive security if, for ali possible non- 

adaptively secure PRFGs used in the cons tniction, the resulting generator is adaptively 

secure. 

We note that using a non-adaptively secure PRFG we can e a d y  construct a one-way 

function. Then using the standard constructions we can construct an adaptively secure 

PRFG. Therefore, when we limit our operators and constructions to be natural, we mean 

that the operators are ones which can easily be used to combine generators. Further, the 

operators are normally cornputable in linear tirne. 

As we just mentioned, the existence of non-adaptively secure PRFGs implies the 

existence of adaptively secure PRFGs. Therefore, the point of this question is to develop 

an efficient construction which gives adap tively secure generators from non-adaptive ones. 

We will now d e  out one feasible construction, and propose several others. 
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Data Dependent Re-Keying Does Not Work 

Let H = {Hn : {O, 1)" x {O, 1)" + {O, 1)"ln E N) and G = {Gn : {O, 1)" x {O, -t 

{O, 1)" ln E FI) be non-adaptively secure PRFGs. Let the data-dependent re-keying 

construction F = {FnI E N) be definml as follows: 

P(k,  x) = Gn(H"(k, x), z), 

for each n. 

We will now construct specific generators Gn and Hn which are non-adaptively secure, 

but F will not be adaptively secure. Let R = {fin : {O, 1)" x {O, 1)" + {O, 1)"ln f PI) 
h 

and G = {Sn : (0,l)" x {O, 1)" + {O, 1)"ln E N) be adaptively secure PRFGs. For each 

n we construct Gn by setting for each x E {O, 1)" and each k E (O, 1)" \ {O) the function 

$ ( x )  = i jE(x);  and then for each x E {O, 1)" setting gg(x) = O. For each n and each 

k E {O, 1)" let a; = g&,)(~).  For each R we construct Hn by setting for each k E {O, 1)" 

and each x E (0,l)" \ {a;) the fundion h;(x) = K;, and setting &(a:) = O. Notice 

that Gn is adaptively secure, and that Hn is non-adaptively secure. 

Now constmct F from H and G, as in the data-dependent re-keying constmction given 

above. Notice that for each n and for each k E {O, 1)" the funetion f l  E En has the 

property that f i  (f~(0)) = O, and therefore the generator F is clearly not adaptively 

secure. Further, since G is adaptively secure, we see that the construction does not even 

preserve adaptive security. 

Proposed Constructions 

We conjecture that any of the constructions presented in Chapter 4 which are security 

improving might also provide adaptive security. In particdar, we have not been able to 

give examples of constructions of any non-adaptively secure PRFGs which, when used in 

one of the security improving constructions of Chapter 4, gives a generator which is not 

adaptively secure, However, we have f d d  to give either a proof of adaptive security or 



a counterexample when we restrict the constructions so that only two constituent non- 

adaptively secure generators are used, and when only one adaptive query is performed. 

We also conjecture that if K is a 1-wise independent permutation generator, and G 

is a non-adaptively secure pseuderandom permutation generator then the construction 

G O K is an adaptively secure pseuderandom permutation generator. We note that 

composition is not commutative, and the construction K O G is not conjectured to  provide 

adaptive security, for there exist specific examples of pair-wise independent permutation 

generators and non-adaptively secure PRFGs which when used in the above constmction 

do not give adaptive security 

For example if we let K = {Kn : {O, 1j2" x {O, 1)" -+ {O, 1)"ln E W )  be a pair-wise 

independent permutation generator, where K(a a 6, x) = ax + 6; la1 = Ibl = n; a # O; and 

the operations are performed over the field GF(2"). Let H = {Hn : {O, 1)=(") x {O, 1)" + 
{O, 1)" ln E W) be an adaptively secure PRPG. For each n, and for each k E {O, 1)1("), 

hR(0)-h"(1) 
we will modify h; E H and thereby make H non-adaptively secuce. Let ah; = h~( , , -h~( , ) .  

Modify h; by making the changes:hf (ah;) t h;(O), h;(ah; + 1) + h;( l )  and /&;(ah; + 
2) t hE(2). Clearly, Hn is no longer adaptively secure as one can easily constmct an 

adversary which accepts a function f " E P iff f"(0) = fn(crp), f "(1) = f "(ap + 1) and 

f "(2) = fn (a + 2). However, we can also constmct an advenary which distinguishes 

K O H adap tively. Given a function fn f 3" our adversary will dist inguish i t by performing 

/"(a n)-f(a n+l) computing a p ,  and then computing Pl= = I(a$)- l(ojn+Z) . The adversary accepts iff 

fin = a/n.  It is a relatively simple argument to show that this will occur with probability 

1 if fn was drawn from Kn O Hn, whereas it will occw with a negligible probability if f 

was drawn from P. This construction can be generalized to show that for agy k-wise 

independent finction generator G = {Gn : {O, 1)" x {O, 1)" + {O, 1)" : n E N), where 

n k-2 
& t ~ - - - ~ ~ i  (2) = a k r k - l + a ~ - l z  + " = - + a l z O  and lail = 1x1 = n; and agenerator H f  

which is constructed in a generalized mariner of the generator H presented above, that 

the generator G O H' is non-adaptively secure. 
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As rnentioned earlier, the existence of PRFGs cannot be proven without indirectly proving 

that P # NP. Given the apparent dïfEculty of such a task, it would seem udikely 

that ally modern cryptographic systems will be proven secure in the immediate future. 

However, this does not prevent the development of a theory which can be used to help 

cryp tographers design cryptograp hic systems. Currently, block-cipher designers only 

seem to have intuition to guide their designs. Further, the number of designs often 

seem to be as numerous as  the number of block-cipher designers. The result is that 

there are many proposed block-ciphers, none of which can be compared. We propose the 

development of a theory to help with this process. 

This research direction is motivateci by the current Advanced Encryption Standard 

competit ion. As mentioned earlier, t here are many proposed function and permutation 

generators which are currently being considered, and there is no quantifiable method for 

comparing the different designs. The end result seems to be that the main criteria for 

choosing a wimer of this competition is based on the pedigree, within the cryptographic 

community, of the designers. Yet many of these designs are based on composing triv- 

ial permutation generators numerous times to  result in a permutation generator which 

appears to be secue. A theory such as the one we are proposing would ailow for these 

generators to be compared in a quantitative, and hopefdy meaningfd sense. Informa- 

tion about the AES competition and the currently proposed ciphers is available at the 

AES' official web page h t t p  : //csrc . n i s t  . go~/encryption/aes/aes~home. htm. 

The idea behind our proposed theory would be to combine function generators which 

have some trivial security proper ties toget her in some construction, such as the security 

increasing constructions proposed in Chapter 4. We would then conjecture that if the 

resulting generator has some specific combinatorid property, then it is a pseuderandom 

generator. 

An example of how such a theory might look is the following. We would like to stress 
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that these examples are most likely incorrect, and are included only to help bring light 

to o u  proposed research direction. 

Definition 8.1 (Trivial Permutation Generator (Example)) A jùnction genemtor 

T = {Tn : {O, 1}"(") x {O, 1)" -t {O, 1)"ln E El} is considerrd triuial, if for each n, each 

key k E {O, 1)"(") and each x E (O, l}", euery bit of t ; ( x )  is dependent on no more than 

O(10gn) bits of x. 

An example of a construction which wouid be used to combine trivial function generators 

is repeated composition. FinaJly, an example of a conjecture of security based on a 

combinatorial principle is given below. 

Conjecture 8.1 (Combinatorial Security (Example)) Let T be a triuial function 

genemtor. Construct F = T O - *  - o T ,  so that enough compositions are performed so that 

F is an alrnost pair-uilse independent function generator. Then there ezists a polynornial 

p such that F = {Fn O - - - O F" In E N} is a PRFG. - 
~ ( 4  

Note the importance of T being a trivial function generator, for there are standard con- 

structions of pair-wise independent permutation generators which are clearly not secure. 

For example, if we consider the generator K ( a  6, x) = ax + b, where lx 1 = la 1 = 1 b1 = n, 

a # O and the operations are performed over the field GF(2"), then it is clearly insecure. 

Furt her, t his generator would be insecure under an arbi trary number of compositions, 

as the resulting permutations will always be linear. Therefore, the triviality requirement 

would exclude the use of a generator such as K. 

Notice that this construction is based on what people currently do to construct ci- 

phers, and is not some notion we have invented. Both DES and almost all of the AES 

candidates c m  by described at an abstract level as being the result of composing together 

many completely insecure (or trivial) permutation generators. What differs in t heir de- 

sign is the types of trivial permutation generators they use, and how many times the 
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generators are c o m p d .  Notice, that is exactly the types of dinerences which could be 

compared in our proposed theory. 

One difference between our proposed theory, and the constmction of known ciphers, 

such as DES and the AES candidates, is that the hovm ciphers are compositions of 

pennutat ion generators, whereas in our construction we consider compositions of h c t i o n  

generators. Initidy, we thought that the trivial generators should be restricted to being 

permutation generaton. However, in hindsight we realize that this restriction is probably 

not important. The important goal is that we are able to xhieve an aImost pair-wise 

independent function generator fkom some polynomial number of compositions. 

W e  believe that using a theory such as the one proposed, designers could easily 

quantify and compare tradeoffs which were made during design. For example, arguments 

could be made for using different types of initial trivial generators. However, we could 

now argue tradeoffs based on how fast specific trivial generators are, and the size of the 

construction in which they would need to be embedded, in order for the construction to be 

conjectured secure. Further, it might be possible to prove security preserving reductions 

between different generators in this model. This wodd d o w  us to establish security 

classes, where certain generators would be pseuderandom only if other generators are 

pseud*randorn. Findy, because the theory is not based on any complexity theoretic 

assumptions, it may be aasier than in the complexity theoretic models to find counter 

examples, and thus disprove the theory, if the theory turned out to be incorrect. 



Bibliography 

[l] W. Aiello, M. Beilare, G .  Di Crescemm, and R. Vekatesan. Security amplification 

by composition: The case of doubly-i terated, ideal ciphers. In H. Krawczy k, editor, 

Aduances in Cryptology - Crypto 98, volume 1462 of Lecture Notes In Cornputer 

Science. Springer-Verlag, 1998. 

[2] K. Akcoglu and C. Rackoff. Pseudcxandom permutation generators and crypte 

graphic composition. (Manuscript in preperation for release). , June 1998. 

[3] E. Biham and A. Shamir. Diflerential Cryptanalyshs of the Data Encryption Stan- 

dard. Springer-Veriag, 1993. 

[4] T. Cormen, C.E. Lierson, and R. Rivest. Introduction to Algorithms. MIT Press 

and McGraw Hill, 1990. 

[5] 0. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. 

Journal  of the ACM, 33(4):792-807, 1986. 

[6] 0. Goldreich, N. Nisan, and A. Wigderson. On yao's xor-lemma. 

http: //theory. lcs .mit .edu/*oded/, 1995. 

[7] Oded Goldreich. Foundations of Cryptogphy(Fmgments of a Book). Weizmann 

Institute of Science, 1995. 

[8] R. Impagliazzo. Hard core distributions for somewhat hard problems. 

http : //vwirgcse .ucsd. edu/'mssell/, 1994. 



[9] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search. 

h t t p  : / / m c s i f .  cs  . ucdavis . edu/'rogavay, 1997. 

[lo] J. Killian and P. Rogaway. How to protect DES against exhaustive key search. In 

Advances in Cryptology - Crypto '96, Lecture Notes In Computer Science, 1996. 

[l 11 L. A. Levin. One-way functions and pseudorandom generators. Combinatorica, 

7(4):357-363, 1987. 

[12] M. Luby and C. Rackoff. Pseudtxandorn permutation generators and cryptographic 

composition. In Proceedings of the 18th Annual Symposium on Theory of Computing. 

ACM, 1986. 

[13] M. Luby and C .  R,ackoff. Secure cryptography fkom a slightly secure function gen- 

erator. (Private notes on cryptography)., October 1987. 

[14] M. Luby and C. Rackoff. How to construct pseudorandom permutations fkom pseu- 

dorandom functions. SIA M Journal on Computing, 17:373-386, 1988. 

[15] Micheal Luby. Pseudomndomness and Cryptographic Applications. Princeton Com- 

puter Science Notes. Pinceton University Press, 1996. 

[16] M. Matsui. Linear cryptanalysis of DES cipher (i). In Advances in Cryptology - 

EUROCRYFT 93 Proceedings, LNCS, pages 386-397. Springer-Verlag, 1994. 

[17] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge 

University Press, 1995. 

[18] M. Naor and 0. Reigold. On the construction of psedo-random permutations: Luby- 

rackoff revisited. In Proceedings of the 29th Annual ACM Symposium on the Theory 

of Computing, 1997. To appear in the Journal of CryptoIogy. 

[19] Christos Papadimitriou. Computational Complezity. Addison-Wesley Publishing 

Compaay, 1994. 



[20] P. Rogaway. The Security of DESX. Cryptobytes, 1996. 

[21] Andrew Yao. Theory and applications oif tapdwr functions (extended abstract). 

In Proceedings of the 23rd Symposium on Foundations of Computer Science. IEEE, 

1982. 



Appendix A 

Proof Of Security for the Generator 

Described in 5.1.1 

In this section we present the proof of security for the PRPG constructecl in section 5.1.1. 

We fist  rernind the reader of the construction presented, and then give the  proof of its 

security. 

A.1 Construction of the 1 - 6 Secure Generator 

1 To simplify the presentation we assume that 6 and e are of the form 5 or 1 - ,, for 
A 

sorne constant c. Let G = {Sn : {O, l}'(") x {O,l)" -t {O, 1)"ln E Ei) be a PRPG. W e  

construct G = {Gn : {O, l)'(n)+c x {O, 1jn + {O, 1)"ln E EI) to be 1 - 6 secure in two 

steps. We will describe the construction of Gn, and note that the constmction of lin is 

similar. 

First we set a fraction 6 of the keys to correspond to the identity permutation, and the 
A 

remainder to correspond to permutations chosen from Gn. This is done in two different 

fashions dependent on the fonn of S as described below: 

1 Case 1 (6 = 1 - ,) For each k E {O, l)'(")+C we set the permutation gt E Gn to be the 
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identity permutation if the f k t  c bits of k am not all O;  otherwise let k be the last 

l (n)  bits of k, and set gc = ij:, for 6: E Sn. 

Case 2 (6 = 8) For each k E {O, 1)'(")+' we set the permutation gz E Gn to be the 

identity permutation if the h t  c bits of k are a l l  O; otherwise let E be the 1 s t  C(n) 
n 

bits of k, and set gg = GE, for 5; E Gn. 

The second step in the construction of Gn is to ensure that for each k E (O, l}C(n)+c 

we set the value of g;(O) in one of two manners, depending on the form of 6. We describe 

t his transformation below: 

Case 1 (6 = 1 - &) For all k set the &t c bits of g;(0) to 0; the last n - c  bits rernain 

as they were in gc(O). 

Case 2 (6 = &) For all k ensure that not a l l  of the first c bits of gz(0) are 1. If they 

are, set them to be a member of the set (O, 1)' \ (1') chosen d o d y  at randoml; 

the last n - c bits remain as they were in g;(O). 

Notice that in order to maintain the permutation property of Gn we c m  simply store 

both the initial and modified value of t~c(0). Should a query ever be made to the initial 

preimage of the modified value of g;(O), then we respond with the initial d u e  of g;(O). 

A.2 Proof that G is 1 - 6 Secure 

Theorern A.1 The pseudo-random permutation generator G is 1 - 6 secure. 

Proof: Let A be an adversary such that: 

l1n practice a PRNG p would be used to set the first c bits of gE(6). This would be done by setting 
the first c bits of g;(O) to be equivalent be the finst consecutive aet of c bits in p(k) which were not dl 
1. This allows the f h t  c bits to be cornputeci, and discards the need to store them, which would not be 
possible as it would require an exponential amount of storage. 
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for infinitely many n and some constant c > O. We will show how to distinguish G 
from random functions or derive a contradiction, and thereby prove the 1 - 6 security 

of G. The intuition is as foilows, we expect the adversary, A, to be able to distinguish 

the identity permutations in Gn from random fimctions in 7". However, the remaining 

functions in Gn should not be distinguishable from random functions p E P, which 

have the property that f"(Ô)'s first c bits are either all O, or not all 1, dependent on 

whether 6 2 f or 6 < respectively. Further, accepting any of the p E F' which do 

not conform to the above description wilI o d y  deetease the adversa.ries distinguishing 

probability. Therefore, it would appear that the distinguishing probability should not be 

bet ter than 6, and this provides the contradiction. 

We partition the set {O, 1)" into two sets Xn and Y" = {O, 1)" \ Xn. The contents 

of the set Xn is dependent on the fonn of 6 as described below: 

Case 1 (6 = 1 - 8)  Then Xn = {x E {O, 1)"IThe first c bits of x are 0). 

Case 2 (6 = &) Then Xn = {x E {O, 1)"IThe first c bits of x are not all 1). 

We use Xn and Y" to distinguish between the functions f n  which appear to have had the 

transformation on fn(ô) applied to them, in which case p(O) E Xn, versus those which 

have not , in which case f n  (ô) E Yn. Findy we distinguish the identity permutations from 

random permutations by simply checking of f *(ô) = O. By partitioning the functions in 

the distributions as in the manner described above, and assuming that Pr f n E p ( ~ f n  = 

1 )  > PrOnEGn ( ~ g "  = 1) (if this is not the case, then we can simply reverse the outputs of 

A), we can rewrite equation (A.1) as shown below: 
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- Pr [A~" = 1 lgn(0) = O] Pr [#(O) = O ]  
gn€Gn g"EGn 

- Pr [A~" = 1 lgn ( O )  # O & gn ( O )  E Xn] Pr [gn(0) # O & gn(0) E Xn] 
g"EGn g"EG" 

- Pr [ ~ ~ " = l l g ~ ( O ) # i j & g " ( O ) ~ Y ]  Pr [ g " ( 0 ) # i j & g n ( O ) ~ Y " ]  
gneGn gn€Gn 

1 
L s+-  

nd 

We notice that for the set of random fimctions it is the case that: 

1 
Pr [f"(O) = O] = -* 

f " E P  2"' 
1 

Pr [~ (Ô)#Okf"(Ô)€Xn]=1-6 - -*  
f " E P  2" ' 

Pr [f"(O) # O & f y b )  E Y"] = 6. 
f "€7" 

Similarly, by the construction of Gn we h o w  that 

Pr [gn(0) = O] = (d+ ~ ( n ) ) ;  
P E G "  

Pr [g"(O) # O k gn(0) E Xn] = 1 - b - q(n); 
gnEGn 

Pr # O & gn(0) E Y"] = 0; 
gn€Gn 

for some negligible function rl(n). The quantity q(n) cornes hom the observation that 

PrGnE-($@) = O )  must be at most ~ ( n ) ,  or S is not pseuderandom. 

Therefore, rewriting equation (A.1) again, using the above facts, we get: 
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We now use a lemma which formalizes o u  intuition that the adversaries shodd not 

be able to distinguish between random functions f n  E P that have the property that 

f"(0)  E Xn and those gn E Gn which are not the identity function. These have the form 

gn(0) E Xn, by the construction of Gn. 

Lemma A.1 For al1 constants e 2 O and suficiently large n, 

We now take equation (A.2) and eliminate al1 negligible quantities. Further, we treat 

the two probabilities in Lemma A.1 as equal because their Merence is negligible. The 

result is: 

This gives: 

but this is a contradiction since the two probabilities are bounded to be between O and 

1. ... O 

AU that remains is to give a proof of Lemma A.1. 

Proof of Lemma A.l: Suppose there exists a e such that for infinitely many n the 
h 

inequality stated in the lemma does not hold. We will construct an adversary A which 

can distinguish Sn from 7" with significant probability for infinitely many n. 

Given a function w,  Â will query w(O), and if w(O) = O then Â will accept with 

probability i. Otherwise Â simulates A ninning on UJ exactly, except in one condition: 

if A queries w(O) and if w(O) $ Xn then we modify it, dependent on 6. 

Case 1 (6 = 1 - 8)  Set the fk t  c bits of tu@) to O. 
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Case 2 (6 = &) Set the first c bits of w(O) to be a member of the set {O, 1)' \ (1') 

chosen unifonnly at random. 

We maintain the permutation property of w by simply having Â store both the initial 

and modified value of w(0) .  Should a query ever be made to the initial preimage of the 

rnodified value of w(O), then Â responds with the initial value of ~ ( 0 ) .  FinaUy, Â accepts 

if A accepts. 

We notice that the probability of the event in which w(Ô) = O can be bounded in 

both distributions. For the set of random functions, ~r Ep( f (O) = O) = &, and for the 
A 

functions fiom the generator Gn, Pr,n,c^n(9n(0) = O) 5 5, for all constants e > O. Since 

in both cases the event happens with negligible probability, the fact that Â accepts in both 

these cases with probability f ,  does not have any significant affect on Â's distinguishing 

probability on the two distributions of functions. Therefore, we WU ignore this factor for 

the remainder of the proof. 

We observe that by the simulation of A by Â and the construction of G fIom S that: 

Therefore by assumption: 

This contradicts the assumption that S is a PRPG, and proves the daim. ...a 




