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Abstract

On the Development of Block-Ciphers and Pseudo-Random Function Generators Using
the Composition and XOR Operators

Steven A. Myers
Master’s Of Science
Graduate Department of Computer Science
University of Toronto

1999

We attempt to provide evidence for the security of block-ciphers which are constructed by
taking the composition and exclusive-or of non-secure function generators. We provide
this evidence by showing that such construction can be used to combine partially secure
pseudo-random function generators into generators with stronger security properties than
any of their constituents. We extend results of Luby and Rackoff, and show that there are
constructions based on the composition and O operators which can be used to combine

1 — 6 secure pseudo-random permutation and function generators, where 0 < § < 1, to

achieve a 1 — logl°n secure generator, for any ¢ > 0. We then give the first proof that

there is a natural construction which combines together 1 — 4 secure function generators

to form a pseudo-random function generator.
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Chapter 1

Introduction

The field of cryptography has a long and rich history, yet it is only in the past few
decades that work in the field has become more of a science then an art. Previously,
cryptographic systems were developed based on heuristics, and the cleverness of their
designers. However, the designers gave no evidence that the techniques or operators they

used in the development of their systems were actually increasing security.

Two operators which have consistently been used in the development of block ciphers
are the composition and exclusive-or (XOR) operators, for it seems to have been taken
for granted in the cryptographic community that these operators increase security. This
belief seems to stem from empirical evidence that cryptographic systems based on these
operators have remained fairly secure, under the scrutiny of very intense and extensive
cryptanalysis. One such example is the Data Encryption Standard (DES), in which 16
permutations generators, which are “completely insecure” individually, are composed and
combined together with the composition and XOR operators, to give what appears to be

a remarkably secure block cipher.
Since the development of DES, in the early 1970s, it has undergone extensive public

cryptanalysis, and during the past 30 years only two forms of cryptanalysis have sug-
gested attacks which require significantly fewer than the 2% calls to the DES algorithm
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which are necessary to break it by a brute-force attack on its 56 bit key. The two forms
of cryptanalysis which have performed reasonably well are linear, and differential crypt-
analysis developed by M. Matsui in [16]; and E. Biham and A. Shamir in [3], respectively.
Using the techniques of linear cryptanalysis, 247 executions of DES on known plain texts
are required to break it; where as in differential cryptanalysis, 27 executions on chosen
plain texts are required. In either case, the attacks are not significantly stronger than a
brute force attack on the keys of DES, and the empirical evidence seems to suggest that

DES is a very secure cryptographic system.

Further evidence of the pervasiveness of the use of composition and XOR as operators
for augmenting the security of block ciphers is the fact that MARS, TWOFISH, RC6
and most of the other Advanced Encryption Standard (AES) candidate ciphers seem
to rely on these operators to increase their security. All of the candidate ciphers are
currently in a competition to become the Advanced Encryption Standard. The AES will
replace DES as the standard block cipher used by the U.S. Government, and therefore the
candidate algorithms are expected to be very secure, given the current state of knowledge

in cryptology.

The purpose of this thesis is to provide evidence which supports the use of compo-
sition and XOR operators in the development of block ciphers. We will not be able to
demonstrate that their use in the development of a cryptographic system can result in a
provably secure cryptographic system, as such a proof would imply P # NP, and thus
solve one of the most important open questions in computer science. Instead, we have
much more modest goals, and will demonstrate that there are constructions based on
composition and XOR which combine function and permutation generators which are
already partially secure, and which result in function or permutation generators which
are more secure. This will be used to give evidence to suggest that composition improves

security, and partially justifies their use in the design of block ciphers.
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1.1 Overview of the Thesis

We will now provide a brief outline of the thesis. We begin, in Chapter 2, by introducing
some standard definitions of cryptographic primitives. We also explain the relationships
that exist between these primitives. Then in Chapter 3 we look at some previous work
which has been done on constructions which increase the security of different types of
cryptographic primitives. We will look at work which has been done in both complexity
and information theoretic models.

In Chapter 4, we will then develop a list of possible constructions which use compo-
sition and XOR operators to combine partially secure function generators into another
function or permutation generator. In the model we will work in, our definition of security
will be based on complexity theoretic notions. We will show that most of our proposed
constructions result in a function or permutation generator which is at best as secure
as its constituent generators. Therefore these constructions are not useful for increasing
security in the construction of block ciphers, but based on some work done by Luby and
Rackoff in {12], in Chapters 5, 6 and 7 we will prove that three of the constructions result
in generators which have stronger security than any of their constituent generators.

The first security increasing construction is based on the composition operator. Previ-
ously in [12], Luby and Rackoff have shown that composing partially secure permutation
generators a constant number of times results in generator with stronger security prop-
erties than any of the constituents. By making some modifications to their argument,
by making it less dependent on sampling different distributions of functions, we will ex-
tend their result to show that we can compose a O(log logn) number of partially secure
permutation generators. This will result in a construction which is more secure than
the constructions which are provably secure from the initial result by Luby and Rackoff.
These results are presented in Chapter 5.

The second security increasing construction is based on the O operator, proposed by

Luby and Rackoff in [13], which is a combination of the composition and XOR operators.
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Given two functions f; and f; such that f;: {0,1}"* — {0,1}", for i € {1,2}, define the

operator O (read as box) as:

([18f2) (z) = fi (fi(z) ® fo(z)) @ f2(fi(z) @ fa(2)) .

By proving two technical arguments about this operator, we will show that we can use
the arguments previously presented for the composition operator acting on permutation
generators, and apply them to the case of the O operator acting on function genera-
tors. Therefore, it will follow that we can combine O(log log n) function generators using
the O operator, and achieve the same security as was achieved by composing together
permutation generators. These results are presented in Chapter 6.

The third security increasing construction is based on the < operator generator. We
define the & operator generator (read as Diamond) as & = {O} ,.In € NAr,r; €
{0,1}"}. Let f; and f; be two functions such that f; : {0,1}* = {0,1}, for i € {1,2}.
For each r,r; € {0,1}" we define the operator O}, , which acts on the functions f;

and f2 as:

(107 er f2)(2) = fi{z ® 11) @ fo(z © 12).

We will show that by combining function generators using randomly chosen operators
from the < operator generator, we can combine any polynomial number of function
generators, and the result will be a completely secure! function generator. This proof
will be based on the proof by Luby and Rackoff, but we will observe that this construction
allows us to short-circuit a key section of the proof. This in turn is what allows us to
combine together many more function generators than in the previous cases. We will
then observe that while the third construction improves security significantly, there is no
reason to suspect that it will be useful in the design of block ciphers. These results are
presented in Chapter 7.

Finally, in Chapter 8 we will suggest future research directions and goals which are

1The notion of completely secure will formally be define in the sequel
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similar but more ambitious than those presented in this document. In particular, we
suggest the development of a theory for the development of block-ciphers. In this theory
we would conjecture that completely insecure function generators could be combined in
different constructions —such as the ones mentioned above- to form secure generators.
We would say that a construction was secure if the initial, insecure generators, and the
constructed generator had certain combinatorial properties. The motivation for such a
theory is that it would allow for the comparison of different resource and design trade-offs

which are made during the development of different ciphers.

1.2 Notation & Terminology

Below we introduce some notation and terminology which will be used throughout the

rest of the thesis.
Terminology 1.1 For u,v € {0,1}*, let u o v denote their concatenation.

Terminology 1.2 Let P denote the set of all permutations, and let P" denote the set
of all permutations o : {0,1}* — {0,1}".

Terminology 1.3 Let F denote the set off all functions, F'*? denote the set of all
functions f : {0,1} — {0,1}?, and let F™ be the set F"".

Terminology 1.4 For a,f € {0,1}", let a & B denote the bit-by-bit ezclusive-or of a
and 3. For f,g € F*, let (f ® g)(a) denote f(a) ® g(a).

Terminology 1.5 For any two functions g and h, let goh(z) = g(h(z)). When we refer
to the composition f o g(z) = f(g(z)) of two functions f(z) and g(z), we refer to f as

the outer function, and g as the inner function.

Terminology 1.8 For any set A, let x € A be the action of uniformly at random choos-
ing an element z from A. It will be clear from context when € is used to refer to an

element in a set, and when it refers to choosing uniformly from a set.
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Terminology 1.7 Let Dy, Ds,.... be a sequence of distributions, and let e represent a
series of events ey, ey, .... such that for all i, e; is an event of D;. We say that e occurs
with significant probability if for some constant ¢ > 0 and for infinitely many n the
Prp,e, > L. We say that an event e occurs with negligible probability if, for all

constants ¢ > 0 and for all sufficiently large n, Prp, e, < ;‘—c-

Terminology 1.8 When we refer to a function poly(n) we are referring to any function

in the set (2, O(rn').

Terminology 1.9 When we refer to a function poly-log(n) we are referring to any func-
tion in the set |2, O(log' n).

Terminology 1.10 Let A be an algorithm or Turing Machine, and let w be an orcale.

We denote by AT the algorithm or Turing Machine A, with access to the oracle .

Terminology 1.11 We call a circuit C a probabilistic circuit, if it requires as inputs a

string of random bits.

Terminology 1.12 Let C be a circuit whose outputs ere in the range {0,1}. Then we
say C is a decision circuit. Let z be an input to C. Then we say C accepts z if C(z) =1,

and we say that C rejects z if C(z) =0.

Terminology 1.13 Let D be a distribution over the inputs of a decision circuit C. Then
we define

BE(D) = P(C(d) = 1,
and we say that C accepts a fraction Prc(D) of its inputs, and rejects ¢ fraction 1 —

Prc(D) of its inputs.

Terminology 1.14 Let o € {0,...,2" — 1}, then let & be the bit-wise binary representa-

tion of a in {0,1}".
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Terminology 1.15 Given two pairs (a,b) and (c,d), where a,b,c,d € N, we say that

(a,8) < (c,d) iffa<cora=candb<d.

Terminology 1.16 We call G : {0,1}* x {0,1}* — {0,1}™ a function generator in-
stance. We say that k € {0,1}* is a key of G, and we write G(k,-) as gi(-), and say
that key k chooses the function gi. Let g € G represent the act of uniformly at random
choosing a key k from {0,1}, and then using the key k to choose the function gi.

Let m and € be polynomials, and let N C N be an infinitely large set. For each
n e N, lee G* : {0,1}(" x {0,1}* = {0,1}™™ be a function generator. We call
G = {G"|n € N'} a function generator.

In an abuse of notation, we will often refer to both specific function generator instances
and function generators as function generators. We hope it will be clear from the context

which term is actually being referred to.



Chapter 2
Cryptographic Primitives

Cryptographers have developed a series of conjectured primitives which can be used in
the development of cryptographic protocols. Due to a lack of progress in complexity
theory, no one has been able to prove the existence of these primitives. In fact, as will
be shown in the sequel, such a proof would imply that P # AP, and would close the
largest open question in computer science. In this chapter we present the definitions for a
number of cryptographic primitives and some theorems which represent the relationships
between them. However, in the definition of every cryptographic primitive there is the
notion of an adversary. Therefore, we begin the chapter with a discussion of the two

standard adversarial models, and the relationships that exist between them.

2.1 Uniform vs. Non-Uniform Adversaries

In the definition of each cryptographic primitive there exists the notion of an adversary.
Abstractly, its purpose is to break an effect that a primitive is trying to achieve. Resource
bounds are imposed on the adversaries, so that they model the computational power “real
world” adversaries might feasibly have access to, were they trying to break existential
instances of primitives. There are two standard computational models which are used to

define resource bounded adversaries.
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Uniform Adversaries

A uniform adversary is a Turing Machine which runs in time bounded by a polynomial
in the size of its input. In practice we know of algorithms which run more quickly using
randomization then the best known non-randomized versions, so we allow the Turing
machine to be probabilistic and have access to an infinite string of random bits. In order
to model the adversaries of certain primitives, we allow that the Turing Machines have
access to one or more oracles, which answer queries. Unless otherwise stated we assume

that the oracles respond to a query in unit time.

Non-Uniform Adversary

A non-uniform adversary is an infinite set of circuits {C, C5, ... }, where circuit C; is used
on inputs of size i. We wish to model efficient computation on part of the adversary, so
we assume that the size of each circuit C; is bounded by p(i), for some polynomial p.
The size of a circuit is defined to be the number of gates, and the number of connections
between gates in the circuit.

Unlike the uniform adversary we do not need to allow our circuits to be probabilistic.
Given a probabilistic circuit which takes a string of random bits as part of its input, we
can use the non-uniformity of the circuits to fix a specific set of bits as the random-input
of the circuit. Normally, a simple averaging argument will show that such a string exists.
We refer the interested reader to [7] for a further discussion of this topic.

In correspondence with the oracles in the uniform model, we assume that circuits
can have oracle-gates, which respond to inputs in the same manner an oracle would. We
assume that the gates are of unit size, and are otherwise treated like any other gate. We
stress that the description of the circuit family need not be efficiently computable even

though each circuit is of small size, relative to the size of its input.

Terminology 2.1 We write C(f) to represent a circuit C which has access to the oracle

f-
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Notice that in an abuse of notation, circuit inputs and circuit oracles are represented
in the same manner. This is done because in this thesis, in most cases of interest, our
circuits will not have inputs in the standard sense. Rather, they will be constructed to
differentiate between different oracles, and therefore, in some sense, we are considering
the oracle as an input. Notice that when we treat oracles as inputs to circuits we consider
the size of the oracle query to be the size of input of the circuit. We hope that this abuse
of notation will not cause confusion, and that we have made it clear from context whether

or not the input to a circuit is an oracle or a traditional input bit string.

Terminology 2.2 Let D be a distribution over oracles of an oracle-decision-circuit C.
Then we define

Pr(D) = Pr(C(d) = 1],
and we say that C accepts a fraction Prc(D) of its inputs, and rejects a fraction 1 —

Prc(D) of its inputs.

In the sequel we present the primitives in the uniform model, but note that it is easy

to determine the corresponding definitions for the non-uniform model.

2.2 Primitives

The first primitive we consider is the pseudo-random number generator, which takes a
random sequence of bits and extends them into a much longer sequence of random looking

bits.

Definition 2.1 (Pseudo-Random Number Generator — PRNG) Let p be a poly-
nomial where p(n) > n for every n. For each n let G™ : {0,1}* — {0,1}*™ be a
function computable in a time bounded by a polynomialinn. ThenG = {G*ln € N} is a
pseudo-random number generator if, for all adversaries A, running in time bounded by

a polynomial in n, and for all polynomials q, and for all sufficiently large n:
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1
Xeg)l:l}“ [A(G™(X)) =1]— ve {Elr},(n, [A(Y) =1]| < 2

Theorem 2.1 If there ezrists a PRNG G, then P # N'P.

Proof: Let L = {y|3n, 3z € {0,1}" s.t. G*(z) = y}. Observe, there exists a non-
deterministic machine M which decides L; given an input y, of size p(n), M guesses a
string z € {0,1}" and accepts if G"(z) = y. However, by the definition of G, there exists
no polynomial time bounded machine which decides L, and therefore P # AN P. .0

An other natural primitive to consider is the pseudo-random function generator, which

given a random string of bits generates a random looking function f.

Definition 2.2 (Pseudo-Random Function Generator — PRFG) Let m and { be
polynomials. For each n let G™ : {0,1}*™ x {0,1}" = {0,1}™ be a function generator
instance, computable in time bounded by a polynomial in n. Define G = {G™|n € N} to
be a function generator. For k € {0,1}(™), let G™(k,-) be written as gf(-) or gk(-) when
the value of n is clear, and referred to as the function g or gi respectively. If A* is an
adversary which queries a function h, then we say it is capable of e distinguishing g from

random if, for € : N = [0, 1], some polynomial p and infinitely many n:

n 1
I = 1| — ! = > _—
ke{fc’).rl o [A k ] fef-"(g)l; . [A 1] >e(n) + o)

We say that G is (1 — e(n)) secure if there ezists no function querying adversary A,
bound to run in time polynomial in n, which can € distinguish G from random.

We say that G is a pseudo-random function generator if it ¢s 1 secure.

If G is a (1 — ¢(n)) secure PRFG, and if it is the case that for all n, and for all
k € {0,1}*™ that g} is a permutation, then we call g a (1 — ¢(r)) secure pseudo-random
permutation generator. We say that G is a pseudo-random permutation generator

(PRPG), if G is 1-secure.
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Terminology 2.3 If G is a 1-secure generator, we say it is completely secure. If G is
a 0-secure generator, we say it is insecure, and if G is neither completely secure nor

insecure, then we say that it is partially secure.

It was shown by Goldreich et. al., in [5], that the existence of a PRNG is a necessary

and sufficient condition to ensure the existence of a PRFG.
Theorem 2.2 PRNGs ezist iff PRFGs ezist.

We will demonstrate the constructions, and refer the reader to the original paper for
the proof of correctness.
Construction: To construct the PRFG, we consider a PRNG G = {g" : {0,1}" —
{0,1}**|n € N}. For any z € {0,1}" we will consider g"(z) as g(z)5 ® g(z)7, where
lg{z)o] = lg(z)1] = n. We will construct a PRFG, F = {F" : {0,1}* x {0,1}* —
{0,1}"|n € N}. For each key z € {0,1}" will define the function F*(z,-) = f7.

In order to compute f*(y), for y € {0,1}", we define a complete binary tree of depth
n. We label the root with the empty string A, and assign it the value z. We then
recursively apply the following rule to assign a label and value to all other nodes, v, in

the tree. Let L,, and V,, be the respective label and value of v’s parent.

e If v is a left child set ¢ = 0, otherwise set ¢ = 1.
® Let the label for node v be i@ L.

e Let the value for node v be g*(V;, ):.

We define the value of f?(y) to be equal to the value of the leaf node labeled y.

The construction in the other direction is much simpler. Let H = {H™ : {0,1}" x
{0,1} — {0,1}*|n € N} be a PRFG. We construct a PRNG G = {g" : {0,1}" —
{0,1}*"|n € N} as follows. For each n and each z € {0,1}" let g"(z) = H?(0) ¢ H>(1)-

.0
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It was shown by Luby and Rackoff in [14] that the existence of PRFGs is a necessary
and sufficient condition to ensure the existence of PRPGs. Their construction is based
on a generalization of DES which uses independent keys in each of the sixteen rounds of
the DES protocol, rather than using a key scheduling algorithm to generate a new key
in each round. This generalization of DES is commonly referred to as MDES.

Additionally, Luby and Rackoff demonstrate how to construct a PRPG which is secure
against an adversary which not only has access to an oracle which computes a permutation
o, but which also has access to an oracle which computes the inverse of the permutation
o~!. We call a generator a super pseudo-random permutation generator (SPRPG) if, it
is considered a PRPG under a modified version of the PRPG definition, in which each

adversary A7, is replaced by a stronger adversary A7 .
Theorem 2.3 PRFGs ezist iff PRPGs ezist.

Construction: Let F = {F": {0,1}" x {0,1}* — {0,1}"|n € N} be a PRFG. We
will demonstrate the Luby-Rackoff construction, which produces a PRPG H = {H" :
{0,1}*" x {0,1}** — {0,1}*"|n € N}. For each n we perform the following construction.
For any strings z € {0,1}*" and k € {0,1}", let L? @ R? = z, where |L?| = |R?| = n and
let g7 (z) = R} o (LL ® fL(RY)). We will define A} .4, ek, (Z) = 4, © g7, © g%, (). Further,
to construct a SPRPG define H = {H" : {0,1}*" x {0,1}>* — {0,1}?*"|n € N}, we let

RE, ekzeksor, (T) = GE, © gk, © G, © gF,(2)- ...0

Recent work by Naor and Reingold [18] has shown that these constructions can be
modified to be less dependent on calls to the PRFG. This is desirable because calls
to a PRFG can consume a considerable amount of resources. Their construction re-
quires pair-wise independent permutation generators, and while these generators are not
cryptographic primitives, they are used extensively in cryptography. Therefore, we will
present a definition of pair-wise independent permutation generators, and then present

the construction of Naor and Reingold.
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Definition 2.3 (k-wise Independent Permutation Generator) Let ¢ be a polyno-
mial. For each n let G : {0,1}™ x {0,1}" — {0,1}" be a function, computable in
time bounded by a polynomial in n, where for each n and each k € {0,1}*"™) the func-
tion G™(k,-) is a permutation. We write G*(k,-) as g2(-), and the function is referred
to as the permutation g¢, or gi if the value of n is clear from the context. We define
G™ = {G™|n € N}, and say that G is a k-wise independent permutation generator,
if for each n and for all z,,...,zi € {0,1}*, where z; # z; for i # j; and for all
Y1, -er Uk € {0,1)", where y; # y; fori # j:

k-1
1
P M) =g A AgHzk) = yi] = .

If G is a 2 — wise independent permutation generator then we say that it is pair-wise

independent.

We now show how Naor and Reingold simplify the construction of a PRPG from a
PRFG originally presented by Luby and Rackoff. Naor and Reingold show that if we
consider the construction of the functions 4™ and A" proposed by Luby and Rackoff, then
the first permutation gf, in A", and the first and last permutations, g, and g, in h™ can
be replaced by permutations chosen from a pair-wise independent permutation generator
!. Thus if P = {P" : {0,1}** x {0,1}* — {0,1}"|n € N} is pair-wise independent
permutation generator, then they replace the definition of k} ,, . (z) = g%, 0 6§, 0 g, (z)
with AZ oiex, = 95 © 9F, © PR,, Where x3 € {0,1}?", to construct a PRPG. Similarly,
they replace the definition of iz}c‘l,k:.ks.,q (z) = gi, o g%, o 9%, o gL, (z) with i":ukzﬁksﬂu =
P2, 0 g%, © gg opr , where k1,54 € {0,1}?", to construct a SPRPG.

Note that no construction was given to produce a PRFG from a PRPG, this is be-
cause any PRPG is a PRFG. This is due to the fact that in order to differentiate a

random function f € F* from a random permutation g € P, it would be necessary

!Their results are actually slightly stronger, but we refer the reader to the original paper for the exact
results



CHAPTER 2. CRYPTOGRAPHIC PRIMITIVES 15

to demonstrate that f is either not onto or one-to-one. It can easily be shown, by the
birthday attack argument?, that the probability of finding a pair (o, 3) € {0,1}"*? s.t.
f(x) = f(B), with at most p(n) queries to f is exponentially small, and therefore no ad-
versary, bounded to run in polynomial time, would be able to distinguish a permutation
from a function with a significant probability.

We now consider a primitive which at first glance seems unrelated to the primitives

which have previously been seen.

Definition 2.4 (One-Way Functions) For each n, let f* : {0,1}* — {0,1}) be a
function computable in time bounded by a polynomial in n. Define F = {f"|n € N}. We
say that an adversary is capable of e(n) inverting F if for some some polynomial p, and

all sufficiently large n:

Pr (P @) = £(E) - 5| 2 lm) + -

Xef{o,1}n
We say that F is a §(n)-weak one-way function, if no adversary A is capable of 1 — é(n)
inverting F. We say that F is a one-way function if it is 1l-weak. Finally, if F is a
permutation, then it may be referred to as a §(n)-weak one-way permutation, or one-

way permutation respectively.

Intuitively, a e(n)-weak one-way function is a function which is easy to compute, but
which is hard to invert on a 1 — €(n) fraction of its range. Similarly, a one-way function
is easy to compute, but hard to invert. It may seem that assuming the existence of a
weak one-way function is a weaker assumption than assuming the existence of a one-way
function. This however is not the case, given a weak one-way function f, it is possible to

construct a one-way function g.

Theorem 2.4 There ezists a é(n)-weak one-way function iff there ezits a one-way func-

tion.

2See [4] for a description of the birthday attack argument.
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We refer the interested reader to [7, 15] for a proof of the above theorem.
Although one-way functions appear to have little in common with the pseudo-random
primitives, it can be shown that the existence of one-way functions is a necessary and

sufficient condition for the existence of PRNGs.
Theorem 2.5 There ezist PRNGs iff there ezist one-way functions.

Although producing a one-way function from a PRNG is a relatively trivial task, pro-
ducing a PRNG from a one-way function is much more difficuit. We refer the interested

reader to (7, 15] for a proof of the above theorem.



Chapter 3

Related Work

In this thesis we are trying to show that there are constructions based on composition and
XOR which can be used to take function and permutation generators with relatively weak
security properties and use them to construct function and permutation generators with
strengthened security properties. In this chapter we will review some of the work which
has been done which has a relation to constructions based on XOR and composition, and

which increase the security of weak primitives.

3.1 Complexity Theoretic Model

We will first consider the work which is based in complexity theory. This means that the
security definitions in this section will rely on the fact that our adversaries are computa-

tionally limited in performing their tasks.

3.1.1 Yao’s XOR Lemma

If we are given a predicate which is weakly unpredictable in some resource bounded
computational model; then a natural question to ask is whether it is possible to construct,

by some “natural” method, a new predicate which amplifies the unpredictability of the

17
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original function. Ultimately, the constructed predicate should be intractable to predict,
better than at random, under a resource bounded computational model which is similar
-if not identical- to the one given for the weakly unpredictable predicate. In [21], Yao
postulated that the answer to this question was positive and suggested a solution that
is both simple and intuitive: if p(z) is weakly unpredictable then surely P(z,,...,z:) =
®!_,p(z:) is almost completely unpredictable for large enough ¢. Yao did not present a
proof, and the first proof presented was by Levin in [11]. Since then alternative proofs
have appeared from Impagliazzo [8] and from Goldreich, Nisan and Wigderson [6]. In
addition to giving their own proof of the lemma, Goldreich, Nisan and Wigderson [6]

provide a survey of Levin and Impagliazzo’s results.

Before the XOR Lemma there had been many proofs which showed that certain
constructions maintained the security of their components. However, the true importance
of this result is that it was the ground breaking work which shows that there exist
constructions based on partially secure components, but which are strictly more secure

then any of their components.

3.1.2 PRPGs and Cryptographic Composition

Cryptographers have noted that DES is effectively the composition of 16 completely
insecure permutation generators. Because DES has withstood much cryptanalysis it
is often both considered to be secure and conjectured to be a PRPG. This led Luby
and Rackoff to define the notion of a partially secure PRPG and conjecture that the
composition of several partially secure PRPGs resulted in a PRPG with stronger security
then any of its components. They proved this conjecture to be true in [12]. Later we will
use their notion of partially secure generators to study other constructions which appear
to be security increasing. Additionally, many of the proofs in this thesis will be based on
the proof that Luby and Rackoff presented in [12].
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3.2 Perfect Cipher Model

Previously we have seen work where the composition and the XOR operators have been
used to increase the security of partially secure cryptographic primitives. In this section
we assume that block-ciphers (or just cipher for short) exist. A cipher is simply a function
generator F : {0,1}* x {0,1}" — {0,1}", which generates functions which intuitively are
supposed to look random to computationally limited adversaries. Note that there is no
notion of asymptotic security, as opposed to the definitions of PRFGs and PRPGs. The
notion of ciphers corresponds to real world cryptographic functions such as DES, and
AES which are just specific function generators, and not defined asymptotically for every
n. In this section we present some work which asks the question of how secure ciphers can
be combined so that the minimum number of resources needed to break the construction

is more than the number of resources necessary to break the individual cipher.

3.2.1 DES Transforms & Generic Attacks

When DES was first introduced it came under criticism for its small 56-bit key length.
People feared that it would be feasible to mount an attack on DES by performing a brute
force search on the key space of DES. As the speed of computers has greatly increased
since the release of DES, in 1975, this attack has become a serious threat, and in 1993
Weiner provided an estimate that for $1,000,000 someone could build a machine which
broke DES in an average time of 3.5 hours. In 1999 the cost of such a machine has
surely decreased, and the average amount of time needed to break DES is probably much
smaller, given the faster processors currently available.

Cryptographers questioned if it was possible to increase the key-length of DES while
maintaining the time-tested security of the DES cipher. One solution which was proposed
by Rivest, in 1984, is called DESX. We define DESX as DESX, , x(z) = k1 ® DESk(k. &
z), where ki,k; € {0,1}%* and k£ € {0,1}%. Of course this is easily generalized to
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arbitrary function and permutation generators. If F : {0,1} x {0,1}" — {0,1}" is a
function generator then define FXy, , «(z) = k1 @ Fi(k2 @ z), where now k;, k; € {0,1}"
and k£ € {0,1}".

In [10},[20] and [9] Kilian and Rogaway show that FX does in fact increase the effective
key length of a cipher F'. However, it is not easy to define a model in which brute-
force key-searches on a cipher and a transformation of the cipher can be quantified and
compared, and so the model they have developed is as important of a contribution as
their result of the effective extended key-length of the FX cipher, as compared to the F
cipher. A final observation made by Aiello et. al in [1] is that the model is not only
useful in measuring the effect of a cipher transform on key-search attacks, but rather it
is useful in modeling the effect of any cipher-transform on any generic attack. A generic
attack is one which does not take into account the combinatorial structure of the initial
cipher, and therefore a generic attack can only exploit the structure resulting from the

transform itself, and information learned from the function in a black-box model.

The Kilian-Rogaway Model

For presentation purposes we present a simplified version of the model originally presented
by Kilian and Rogaway in [10].

Let F : {0,1}* x {0,1}* — {0,1}" be a block-cipher. Let p be a polynomial, and
let TF : {0,1}*®® x {0,1}* — {0,1}" be the cipher which results from applying the

transformation 7 to F'.

Definition 3.1 A generic-attack adversary A is an algorithm which has unlimited com-

putational power and has access to two oracles:

F(k,z) Oracle — The adversary supplies a k € {0,1}* and en z € {0,1}", and the oracle

returns F(k,z).

E(z) Oracle — The adversary supplies an z € {0,1}" and the oracle consistently responds
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as if it were in one of the following manners:

World 1 - T Fg(z), for a k € {0,1}?(®)

World 2 — nr(z), for a 7 € P™.

The adversary will be placed in one of the two worlds uniformly at random. Later we
will define the security of a function transform as an upper bound on the ability of all
adversaries to distinguish between which of the two worlds they were placed. However,
an adversary which can query F' and E at all possible locations will never have any
difficulty distinguishing between worlds. Further, one might argue that in the “real
world” no adversary truly has the ability to query each oracle at every point of its
respective domain. In practice there are limitations on the number of chosen cipher
texts that an adversary has the ability to request. This selection of chosen cipher texts
corresponds to queries to the E oracle. Additionally, time restrictions would limit the

effective number of queries to F which could be made.

Definition 3.2 An (m,t) generic attack adversary, A(m,t), is a generic-attack adver-
sary, A, which makes exactly m queries of the E oracle, and ezactly t queries to the F

oracle.

Kilian and Rogaway point out that when considering brute-force key searches we
must disallow the adversary from considering any internal combinatorial structure of
the primitive cipher F'. This is because we are interested in the effect of the specific
transformation of a cipher F on the key length, and not the weaknesses of any particular
cipher to combinatorial attack. Therefore, rather than using a specific cipher we draw
F' uniformly at random from B, the set of all function generators. Specifically, if we are
interested in a function generator F : {0,1}* x {0,1}" — {0,1}" chosen uniformly at
random from set B®" of all generators of the same form, then we can choose a random

function generator F in the following manner. For each k € {0, 1}" we associate fi € F™,
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and we define F = {(k, fi)|k € {0,1}*}. Observe that by choosing F in this fashion we
prevent an adversary from making use of the combinatorial structure of F by ensuring
that it has no structure.

We can now formally define what it means to break the cipher T F, which is the result

of applying the transform T on a cipher F'.

Definition 3.3 A generic attack adversary A(m,t) is said to e-break the TF function

transform on parameters K, n if:

Pr [ATFeF = 1] - A =1]>e

Pr [
FeBxm ke{0,1}7(x) FeB=n" xepn

We refer to the above difference as the advantage of A, written ADV 4.

Observe that this notion of breaking TF is very weak. There is no requirement
of determining the key, k, nor a requirement of producing a previously unknown pair

(z, T Fi(z)), and therefore any upper bound results in this model are very strong.

The Security of DESX

Using the model defined above Kilian and Rogaway, it is possible to show that the
effective key length of a cipher FX : {0,1}?*+* x {0,1}* — {0,1}" resulting from the
application of the DESX transform to a cipher F : {0,1}* x {0,1}" — {0,1}" is longer
than k.

We first note that, for all ¢, there exists an adversary A(m,t) which which can ¢ break
the cipher F, for € = & (note that breaking F corresponds to breaking T F, where T is
the identity transformation). In order to x break F, the adversary simply performs a
brute force key-search. Kilian and Rogaway show the same attack cannot be as effective

for the DESX transform, by proving an upper bound on the advantage of any A(m,¢)

adversary against FX.
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Theorem 3.1 (Kilian-Rogaway) Let A(m,t) be a generic attack adversary which e-

breaks the DESX transform applied to a cipher F with parameters k and n, then € <

t
2n+n-f—[o‘ m "

The theorem implies that, with the exception of adversaries which have the ability to
query the E oracle on close to its entire domain, adversaries perform significantly worse

on the FX then they do on F.

The Security of Composition and Triple-DES

Aiello et. al were able to show in [1] that under the Kilian-Rogaway model, composition
increases security against generic attacks.

They define the m-fold cascade transform which given the cipher F' : {0,1}" x
{0,1}* — {0,1}", produces the cipher mF : {0,1}™* x {0,1}* — {0,1}", where

ka[.....km(x) = Fk[ o---0 ka(z) a‘nd Ikil =K.

Theorem 3.2 (Aiello et. al) Let A(m,t) be a generic attack adversary which e-breaks

the m-fold cascade transform applied to a cipher F with parameters k and n, then ¢ <

The result is tight for m = 2, as a variant on the meet in the middle attack achieves
the bound. For the the cases where m > 3, Aiello et. al were not able to show that the
bound is tight, and they conjecture that the actual bound is much smaller.

For historical reasons Aiello ef. al also give an upper bound for the advantage of
adversaries on the triple-DES transform, which given F as a cipher outputs a cipher
3DES-F, where 3DES-Fy,e1,(z) = Fi, o F ' o Fi,(z) and |ki| = x. Note that in the
transform the inverse of the second function is done for historical reasons, and has no

security related purpose.

Theorem 3.3 (Aiello et. al) Let A(m,t) be a generic attack adversary which e-breaks
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the triple-DES transform applied to the cipher F with parameters  and n, then
e< ()
This is the same bound as for the 2-fold cascade transform and effectively follows

from the same proof, but the authors were not able to prove that this bound was tight,

and they conjecture that smaller upper bounds do exist.



Chapter 4

Proposed Operators Relating to

Composition and XOR

Our primary goal is to consider constructions which combine function and permutation
generators into a resulting function or permutation generator which has increased security
over its component generators. In particular we will be interested in constructions which
use partially secure PRPGs and PRFGs to produce new PRPGs and PRFGs. Further,
we want to consider constructions where the security of the resulting generator is stronger
than that of its component generators, assuming none of the component generators were
perfectly secure to begin with. Finally, we want the constructions to be scalable, so
that as we scale the construction to be larger, we improve the security of the resulting

generators.

In this chapter we will present a list of possible constructions which might be used to
combine function and permutation generators in a security increasing fashion. We will
consider some of the more obvious constructions which are based on the composition and
XOR operators. Again, we consider these operators, as historically they have been two
of the most widely used operators in the development of cryptographic systems. We will

show that some constructions can be discarded as they either do not increase the security

25
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of the resulting generator, or in some cases the security of the component generators is
not even maintained. In subsequent chapters we will show that three of the proposed
constructions do increase the security of the resulting generator, but unfortunately we
are only able to prove that one of them can be used to achieve 1-security by scaling the
size of the generator.

Before describing the constructions, we will first formally describe how to combine
two function generators using a generic operator, and what it means for the security to

be necessarily increasing.

Definition 4.1 Let G = {G": {0,1}*(") x {0,1}" — {0,1}*|n € N} be a 1 — 6(n) secure
PRFG. Let H = {H™ : {0,1}*") x {0,1}" — {0,1}"|n € N} be a 1 — ¢(n) secure PRFG.
Let op = {op™ : {0,1} (™ x F* x F* — F"|n € N} be an operator generator, and write
op™(s, a,b) as “a op? b”. Then let F = {F* : {0, 1}¥(™)+~(n)+r(») » {0,1}* — {0,1}"|n € N}
be the function generator defined by F*(ky @ k; @ k3,z) = (g,’,:l opk, h“k,) (z), where |k| =
¢(n), |k2| = k(n) and |ks| = r(n). This is written in short-hand as F = G op H. We say
that op is security increasing if, for all polynomial time computable function generators G
and H, the generator Gop H is a 1 — 0(n) secure PRFG; where for some constant c > 0,
and for all sufficiently large n: min{e(n),d(n)} — 0(n) > L. Similarly, we say that op is
security preserving if for all sufficiently large n we know that min{e(r),8(n)}—0(n) < X,
for all ¢ > 0. Finally, if op is neither security increasing or preserving then we say that

it is possibly security diminishing.

We will now present an operator and an operator generator which are are used in the
constructions below.

We define the O operator (read as box) on two functions f; and f,, where f; :
{0,1}* — {0,1}", for i € {1, 2}, as:

(fi0£2) (z) = fL (fi(z) @ fa(z)) @ f2 (fi(z) & fa(2)).

The O operator was originally defined in some working notes by Luby and Rackoff [13].
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We next define the O operator generator (read as Diamond), as & = {0}, . In €
NAr,r; € {0,1}*}. For each ry,r; € {0,1}" we define the operator <7 ,,.., which acts

on the functions f; and f; as:

(f1Oh e f2)(2) = fr(z @ 1) @ f2(z B T2).

4.1 Constructions with Known Properties

In this section we present the constructions which we were able to classify as either
security increasing, preserving or possibly diminishing. We present each construction
followed by an explanation of the security properties it has. In some cases the properties
are stated, but the explanations are put off for a later, more in depth discussion.

In the constructions below we will assume that G = G; = G; for i # j. We assume
that G a partially secure PRPG or PRFG, depending on the context. The indices are

only there to help in describing to constructions in a clear and precise manner.

4.1.1 F(a)=(Gum)o:--0Gy) (a)

The composition of permutation generators results in a permutation generator. There-
fore, we will consider the cases when the generators G; are PRPGs and PRFGs separately.

We will see that the outcomes are very different.

G is a PRPG

It was shown by Luby and Rackoff in [12] that the composition of partially secure PRPGs
results in a PRPG of increased security when m(n) = c for some constant c. In Chapter

5 we will discuss this result and show how to extend the result to permit any m €

O(log log n).
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G is a PRFG

The composition operator is possibly security diminishing when it acts on PRFGs. The
composition of a constant number of 1 — § secure PRFGs, for some constant §, can be
less secure than any of its component generators. Let G = {G"|n € N} be a 1 — d secure
PRFG!, where for each n the probability Prgrecn[Vz gf(z) =0] =4.

For each polynomial in 7 sized circuit family {C,}, for all ¢ > 0 and for all sufficiently

large n let

Pr [Calg™) =13z ¢"(s) £01— Pr [Ca(/) = 1] < =

grEGn

Clearly, for any function f7;

ockm(ny = Jemqm) © = <O Gky if there exists an ¢ s.t. g, is the

zero function, then 4 is a constant function. However, for each i, gi, is the zero function
with probability 8, and indistinguishable from random with probability 1 —§. Therefore,
if we randomly choose functions from G™ we expect to choose the first zero function on
draw }. Thus, by using a simple Markov Bound we can show that for as few as ¢ > [ 3]
composition of 1 — § secure PRFGs, the construction is less than 1 — é secure. Therefore,

the construction is possibly security diminishing.

4.1.2 F(a)=(Gmmn) ® - G61)(a)

The XOR of two permutations does not result in a permutation, and therefore we will
only consider the construction when G is a partially secure PRFGs. We show that the
XOR operator is at best security preserving.

Let G = {G": {0,1}*™ x {0,1}" — {0,1}"} be a PRFG. We modify G to form G as
follows: for each n and each & € {0,1}*(™) we set g" = g and then we set the first bit of

gn(0) to be 0. Notice that G is L-secure, as the Prynecn (g2(0)'s first bit is 0) = 1, while

1A PRFG such as G is constructed by taking a 1-secure PRFG and modifying it so that the first §
fraction of the keys correspond to the zero function, and the remaining keys correspond to the same
function as they did in the 1-secure PRFG.
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Prinesm (f*(0)'s first bit is 0) = . However, for all § € G @ G it is the case §(0)’s first
bit is 0. Therefore, it is clear that if we let G; = G, for all i, then for all ¢ the construction
G:.®--- @G, is still § secure.

Unfortunately this example is not very robust. In particular, the example clearly
generalizes for PRFGs which are § secure, where § = 2~* for some positive integer i.
However, we are not aware of any examples of PRFGs which are 1 — § secure when
§ = 2%, which when used in the construction above are security preserving. All examples

we have tried have been security increasing. This leaves us with the following question.

Open Question 4.1 Is the construction F(a) = (Gmn) @ --- ® G1)(a) security increas-

ing, when the generators G; are restricted to being 1 — & secure foré < 1.

4.1.3 F(CY) = (Gm(n)D(Gm(n)—ID(' . GgD(GgUGl) .- ')))(C!)

When the O operator is applied to two permutations the resulting generator is not a
permutation, and so we consider only the case in which G is a PRFG. The O operator
is a security increasing operator, when applied to PRFGs. The proof of this is shown in

Chapter 6, and so we do not discuss it further here.

4.1.4 F(o)= (Ggm(n)DGgm(n)_l) o---0(G0G; ) ()

For the same reason as in section 4.1.3, we consider only the case in which G is a PRFG.
This construction is not even security preserving for PRFGs, for the same reasons as
those presented in section 4.1.1.

Let G = {G*|n € N} be a 1 — § secure PRFG, where for each n the probability
Prgnean[Vz gZ(z) = 0] = 4. For each polynomial in n sized circuit family {C,}, for all

¢ > 0, and for all sufficiently large n let

B (Cu(a") =132 6°(2) £0] - Py [Cw(f) =1 < o
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Notice that with probability §? the generator (G;;;0G;) is the zero function. Now
following the same argument made in section 4.1.1, we see that the security of the con-
struction for size m(n) > [] is less than 1 — § secure. Therefore, the construction is

possibly security diminishing.

4.1.5 F(@) = Gpun)© - - - OGi(a)

When the © operator generator is applied to two permutations the result is not a permu-
tation, and so we consider only the case in which G is a PRFG. The & operator generator
is a security increasing operator generator, when applied to PRFGs. The proof of this is

shown in Chapter 7, and so we do not discuss it further here.

4.2 Constructions with Unknown Properties

Below we give a list of constructions for which we are unaware of their status as either
security increasing, preserving or possibly diminishing. However, for all but one of the
constructions, we will give reasons to suggest that these operators are not interesting,
and therefore not worth future study. We list the constructions below, and then discuss

them.

1. F(a) = ((Gzam(n) © Gzm(n)-1) ® - - - ® (G2 © G1)) (a)
2. F(Q) = ((G2m(n)DG2m(n)—1) S---D (GzDGl)) (0)
3. F(a) = ((G2m(n) @ G2m(n)—1) o (sz(n)-z @ sz(n)-s) 0---0 (G4 @ Ga) o (Gg ) Gl)) (a)

We suspect that construction 1 in the list above is probably security increasing, for
it is similar in concept to the construction in section 4.1.5 which uses the < operator.
This is because we can view the expression HOG as (HoR) & (GoR) where R : {0,1}" x
{0,1}* — {0,1}" is a generator, where for all k& € {0,1}" we define riy € R® as ri(z) =
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z @ k. However, the effect of construction 1 on security is probably weaker than that
of the construction presented in section 4.1.5. Further, the constructions would have
slower running times, and be harder to implement. Finally, due to the structure of
the constructions, we believe that any proof that the construction is security increasing
would be much more technically complicated then the proof which will be presented for
construction 4.1.5. Therefore, we suspect that further research into these construction
will fail to provide any insight which has not previously been seen in considering other
constructions, and thus we will not mention them further in this work.

Progress in determining the security related properties of construction 2 from the list
has been stifled for many of the same reasons we were stifled from making progress in
answering Open Question 4.1. We suggest that the solution to this problem is closely

related to the solution of previously mentioned open question.

Open Question 4.2 Is the construction F(a) = ((Gzm(n)3G2m(n)-1) & -- - ® (G20G,)) ()

security increasing, securily preserving or security decreasing.

Finally, construction 3 may be slightly security increasing. However, we will show
that, even if the construction is security increasing, there is maximum security of 1 — §2
which can be achieved if G is a 1 — § secure generator. Therefore, we cannot use this
construction to try and create 1 secure generators, and thus it is of limited use.

To observe the upper bound of 1 — 42 security, we define G = {G*|n € N} to be a
1 — & secure PRFG, where for each n the probability Prgnen[Vz gp(z) = 0] = 6. For
each polynomial in n sized circuit family {C,}, for all ¢ > 0, and for all sufficiently large
n let

Pr [Ca(™) =113z g"(z) £0] = Pr [Ca(f) =11} <

9pEG™
We observe that with probability é? the generator G @ G is the zero function. Therefore
with probability % the generator (Gzm(n) @ Gam(n)—1) is the zero function, and therefore

with probability at least §2 construction 3 is the zero function. Therefore, the security of
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the construction can never be higher than 1 — §2, and thus we cannot use it to develop

a l-secure generator.



Chapter 5

The Composition Operator

Luby and Rackoff [12] were the first to prove that the composition of two partially
secure PRPGs results in a PRPG which has stronger security than either of the initial
primitives. In [12] they gave an outline of the proof, and later Akcoglu and Rackoff in
[2] filled in the missing details. It would be convenient if, by inductively repeating the
argument many times, it could shown that a partially secure PRPG could be composed
with itself many times, and result in a completely secure PRPG. Unfortunately due to
technical restrictions, which will be explained in the sequel, the given proof only works

for a constant number of compositions.

In this chapter we will demonstrate that it is possible to modify the argument pre-
sented by Luby and Rackoff to permit a non-constant number of compositions. We will
first give the framework for the original result by Luby and Rackoff and explain its limi-
tation to a constant number of compositions. Next, we will extend this result to allow a
O(loglog n) number of compositions, and in doing so we basically outline the proof given
by Luby and Rackoff, but make it less dependent on sampling. This will result in a more

secure construction then was possible under the Luby-Rackoff result.

33
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5.1 The Luby-Rackoff Result

The main result of Luby and Rackoff is to show that the composition of two partially
secure PRPGs results in a PRPG which is provably more secure then either of the
component generators. We present their theorem in a slightly different manner than it was
originally presented in [12] or in the unpublished manuscript [2]. This presentation makes
the limitations of their results more immediate, and is comparable to the presentation of

Levin’s proof of Yao’s XOR lemma in [6].

Lemma 5.1 (Composition Isolation Lemma — Luby & Rackoff’s Version) -
There ezist fized polynomials p, and p2 such that for all 0 < €,6 < 1; polynomials
€6, CH, and s¢; and permutation generators H and G, where cg(n) and cy(n) bound from
above the size of the circuits which compute G™ and H® respectively. Define F = Go H.
Hypothesis: If there ezists a family of decision-circuits {C,}, where for each n the

circuit C,, is of size sg(n), and for some ¢ > 0 and infinitely many n:

lgr(F“) - lgr(f“)l > €6 (2 — max{e, 8}) + %

Conclusion: Then for infinitely many n there ezists either a decision-circuit A, of size

p1(n° - cg(n))se(n) for which:

n 1 .
PR(G™) — Br(F)| 2 6+ o

n24c’

or a deciston-circutt T, of size p,(n° - cg(n))se(n) for which:

n 1 -
r(H") = Br(F™)| 2 e+ =

or a decision-circuit =, of size cy(n) + se(n) for which:

1
26+;6-;'

Pr(G") — Br(F™)

We can now show that by composing a partially secure PRPG with itself a constant

number of times we get a significantly more secure PRPG. This result follows from
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repetitively applying the Isolation Composition Lemma. We state this formally in the

corollary below.

Theorem 5.1 (Composition Theorem — Luby & Rackoff’s Version) Let G be a

1 — € secure PRPG. Then for each positive integer c, the generator F = Go---0G is

1 — 8 secure, where 6 = €°(2 — €)=t B
Proof(Sketch): Let {C.} be a family of circuits. For each n let the size of C, be less
than sg(n), for a polynomial sg. Let Cg and Cy be polynomials which bound the size
of the circuits needed to compute G™ and H" respectively. Assume that, for infinitely
many n, C, can distinguish between a random function in 7™ and a pseudo-random
permutation in F* with probability at least €°(2 — ¢)°~! + ;ﬂ—, for some constant d.

Since F = Go(Go---0G), we know by the Composition-Isolation The-

€ times

orem that there exits polynomials p; and p;; and either a circuit of size

max {se(n)p1 (ca(n)n?) , sr(n) — cu(n)} which e distinguishes G; or a circuit of size
n)n?)) which e1(2 — €)°~2? distinguishes (Go---0G). Since the former

(se(r)pa(cc(n)n®)) (2 — €)°? distinguishes ). Since the

c—1 times

would contradict the fact that G is (1 — €) secure, it must be the case that there is a cir-

cuit which €71(2 — ¢€)°~2? distinguishes (G o - --0 G). We can now re-apply this argument
— t—

c—1 times

inductively ¢ — 2 more times to show that there exists a polynomial p} and a circuit of
size no larger than sg(n) (p’z(cc(n)nd'))c-l, for some constant d’, which ¢ distinguishes G
from random functions. This contradicts the claim that G is 1 — € secure, and completes

the proof. ...0

Notice that the proof fails when the number of compositions, ¢, becomes non-constant.
This is because the circuit which e distinguishes G, is of size sg(n) (p}(cs(n)n?))“ ™", but
when ¢ is constant this functions is asymptotically larger than any polynomial. It is this
limitation which prevents us from attaining a PRPG which is completely secure using

the Isolation Lemma. In the sequel we will show that this limitation can be partially
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overcome, but while more security is attained the goal of complete security is still elusive.

A natural question to contemplate is whether the upper bound of distinguishing F
from F™ is tight in the Isolation Lemma. Perhaps there are smaller bounds which could
replace the bound of €¢6(2 — max{e¢,d}), and otherwise leave the lemma unchanged. In

the next section we show that the Isolation Lemma is tight with respect to this bound.

5.1.1 The Isolation Lemma is Tight

We show that there exist PRPGs H and G which are respectively (1 — ¢) and (1 — §)
secure!, but when composed together the result is exactly (1 — 8) secure, where § =

€6(2 — max{e, 6}).

The Construction of H and G

To simplify the presentation we assume that § and € are of the form X or 1 — %, for

some constant ¢. Let G = {G" : {0,1}¥™ x {0,1}* — {0,1}"|n € N} be a PRPG. We
construct G = {G™ : {0,1}("+< x {0,1}* — {0,1}"|n € N} to be 1 — ¢ secure in two
steps. We will describe the construction of G*, and note that the construction of H" is
similar.

First we set a fraction & of the keys to correspond to the identity permutation, and the
remainder to correspond to permutations chosen from G™. This is done in two different

fashions dependent on the form of § as described below:

Case 1 (6 =1— ) Foreach k € {0, 1}¢")+¢ we set the permutation gf € G™ to be the
identity permutation if the first c bits of k are not all 0; otherwise let k be the last

{(n) bits of k, and set g} = g7, for g} € G".

Case 2 (6 = L) For each k € {0,1}(™+*¢ we set the permutation gf € G" to be the
2 k

LOf course we can't actually show that such generators exits, but we show that if PRPGs exist, then
H and G exist.
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identity permutation if the first c bits of k are all 0; otherwise let & be the last £(n)

bits of k, and set gf = g, for §¢ € G".

The second step in the construction of G™ is to ensure that for each k € {0, 1}")+
we set the value of g2(0) in one of two manners, depending on the form of 5. We describe

this transformation below:

Case 1 (§ =1 — =) For all k set the first c bits of g2(0) to 0; the last n — ¢ bits remain

as they were in g7(0).

Case 2 (§ = ;=) For all k ensure that not all of the first c bits of gf(0) are 1. If they
are, set them to be a member of the set {0,1}°\ {1°} chosen uniformly at random?;

the last n — ¢ bits remain as they were in g2(0)-

Notice that in order to maintain the permutation property of G® we can simply store
both the initial and modified value of gf(0). Should a query ever be made to the initial
preimage of the modified value of g?(0), then we respond with the initial value of g?(0).

It remains to show that G and H are in fact 1 — § and 1 — € secure, and we refer the

interested reader to Appendix A for a proof of this claim.

The Adversary

We now show that there exists an adversary which can €§(2 — max{e,d}) distinguish
F = GoH, and thereby show that the Isolation Lemma is tight. We assume that 6 > e.
A similar argument to the one presented handles the case when € > §.

Given a function w € F™ the adversary, A, accepts in one of the following two

conditions, dependent on the form of 4:

2In practice a PRNG p would be used to set the first ¢ bits of gf(0). This would be done by setting
the first ¢ bits of g7 (0) to be equivalent be the first consecutive set of ¢ bits in p(k) which were not all
1. This allows the first ¢ bits to be computed, and discards the need to store them, which would not be
possible as it would require an exponential amount of storage.
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Case 1 (§ =1 — ) The adversary A accepts iff the first c bits of w(0) are 0;
Case 2 (4 = =) The adversary A accepts iff the first c bits of w(0) are not 1.

We first consider the accepting probability of A if w was chosen uniformly from F».
In this case w is the composition of two permutations chosen randomly from each of the
respective generators G" and H*. We partition the permutations of G™ into two sets.
Let Ign represent the set of all identity permutations in G", and let Pgn represent the
remaining permutations in G®. Similarly, partition H® into two sets /y» and Pyn. We
now consider the probability that w is accepted based on it being the composition of two

permutations from the above mentioned partitions.

Case 1 (w € Ign o Iyn) The adversary will accept w with probability 1, and the case

occurs with probability de.

Case 2 (w € Ign 0 Pun) The adversary will accept w with probability 1=2. This is the
probability that A would accept a random function conditioned on the fact that w

was chosen from Pyn. The case occurs with probability §(1 — ¢).

Case 3 (w € Pgn o Iyn) The adversary will accept w with probability 1, and the case

occurs with probability (1 — §)e.

Case 4 (w € Pgn 0 Pyn) The adversary will accept w with probability 1 —§. This is the
probability that the result of a random function evaluated at a random point in its
range would meet the acceptance criteria of A. The case occurs with probability

(1 -9)(1—e¢).

Clearly a random permutation w will be accepted by A with probability 1 — §. Al-
lowing X to be max{¢,é}, and Y to be min{e, 8}, we see that X = dand ¥ = €. We
now see that the distinguishing probability of A on F is:

€5 + Hm—e) + (1—8)e+(1—86)%L—e)—(1-48)
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= [FX+(1-X)X+(Q1-X)Y +(1-X)*0-Y)] -(1-X)
= [(I-X)+XY(2-X)]-(1-X)
= €6(2 — max{e,d}).

5.2 The Improved Composition Lemma

As we’ve just seen, we cannot improve the composition lemma by improving the security
parameter of the resulting PRPG, in the Isolation Lemma. But, in this section we will
prove that if we permit a slightly more liberal notion of security for our partially secure
PRPGs, then we can prove a lemma similar to the Isolation Lemma. Further, this
lemma permits more than a constant number of compositions of PRPGs. The result
is that a non-constant number of compositions of a partially secure PRPG, under the
liberal notion of security, gives a PRPG which is provably more secure then the previously

stated results.

5.2.1 Semi-Secure PRPGs

For the remainder of this chapter we will call a PRPG, H, 1 — ¢ semi-secure, if there
exists no family of polynomial-sized circuits {C,} which can €+ ﬁ distinguish H from
random, for some constant ¢ and infinitely many n.

Note that a generator H which is 1 — € secure is also 1 — € semi-secure. However, the
converse need not be true. The reason for the relaxation of the definition of security is
due to the observation that the blow-up in circuit size which occurs in the Luby-Rackoff
Isolation Lemma is due to a large amount of sampling which must be done on various
distributions which occur in the proof. However, the amount of sampling that must be
done is inversely proportional to the leniency we permit the adversary in e-distinguishing
a PRPG from the random set of functions in order for the generator to still be called
1 — e secure. Therefore, by making the security definition slightly weaker we reduced the
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amount of sampling required for the proof to hold; which reduces the size of the circuits
constructed in the proof of the isolation lemma; which permits a greater number of
compositions in the composition lemma; which results in a PRPG with stronger security
then was possible under the original isolation lemma.

Finally observe that if, for any constant 0 < € < 1, we are given a 1 — € semi-secure
generator F, then the same generator is definitely 1 — /€ secure. However, by composing
the generator with itself we get a 1 — (2 - e — \/€) secure generator, which is strictly more
secure than the a 1 — ¢ secure generator. This result follows from the original Luby-
Rackoff Isolation Lemma, and allows us to transform many —but definitely not all- of
the security results under the semi-secure definition to corresponding results under the
normal security definition.

Now that we have motivated the semi-secure definition we present the new version of

the Isolation Lemma which is less dependent on sampling.

5.2.2 A Stronger Isolation Lemma

Lemma 5.2 (Composition Isolation Lemma ~ Stronger Version) -

There exists a fized polynomial p, and a fized poly-logarithmic function p, such that
forall0 < § < 1; e: N — [0,1], where for all sufficiently large n, e(n) < &; polynomials
G, cH, and sg; and permutation generators H and G, where cg(n) and cu(n) bound from
above the size of the circuits which compute G™ and H" respectively. Define F = Go H.
Hypothesis: If there erists a family of decision-circuits {C,}, where for each n the
circuit C, is of size sg(n), and for some c > 0 and infinitely many n:

1
logn

> €(n)é (2 — max{e, 8}) +

B(F") — E1(7)

Conclusion: Then for infinitely many n:

there exists either a decision-circuit A, of size p\(log°n - cg(n))se(n) for which,

n 1.
e ]2+
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or a decision-circuit Y, of size py(log®n - cg(n))se(n) for which,

1 -
log*n’

Pr(H") = Pr(F™)| 2 o(m) +

or a decision-circuit =, of size cy(n) + sg(n) for which,

Pr(G") — I_jr(f")’ > 642,

The interesting difference between the two Isolation Lemmas occurs in the differing
definitions of p,. The new definition of p; increases the upper bound for distinguishing
between H™ and random functions. This is what necessitates the definition of semi-
security. Further, the new definition of p; significantly affects the size of the circuit
which can distinguish H” from F". The differing circuit size permits a stronger version
of the Composition Theorem, which we will present later.

Another difference to observe is that, in the original Isolation Lemma the results were
symmetric. By this we mean that given generators H and G, the Lemma applied equally
to both of the constructions F; = H oG and F, = Go H. This can be observed by simply
renaming the generators G and H. Notice that a similar result does not follow from the
statement of the strong version of the Isolation Lemma. We note that it is possible to
prove a symmetric version of this Lemma by using symmetric versions of the arguments
presented in this chapter. Unfortunately, there is one exception, for it seems that in
order to prove a symmetric version of one of the lemmas used in the proof, one must first
prove the lemma as it is presented in this chapter, and then use this result to prove the

lemma’s symmetric version. We will discuss this further in the sequel.

Theorem 5.2 (Composition Theorem — Stronger Version) -
Let 0 < € < 1, and let G be a 1 — € secure PRPG. Then for each f € O(loglogn)

the generator F = Go---0G is 1 — 6(n) semi-secure, where 8(n) = e/™(2 — ¢)f(")-1,
f(n.) times

Proof: Similar to the proof of Theorem 5.1. ...0
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Observe that this theorem shows that given some generator which is 1—e¢ secure, where
e = 1 for some ¢ > 0, then by performing O(loglogn) compositions of the generator we
can achievea 1 — -—:;—— semi-secure generator, for any constant d > 0. We then observe
the fact that a 1 — ?— semi-secure secure generator is 1 — T‘r— secure. Therefore by

log
performing O(log log n) compositions of the generator we can achievea 1 — m secure
generator, for any constant d’ > 0.
Before presenting the proof of Theorem 5.2 we cite some lemmas used in the proof
which are either commonly seen in the literature or which have previously appeared in

the manuscript of Akcoglu and Rackoff [2].

Lemma 5.3 (Chernoff bound ~(Weak)) Let z1,..,Zjog, be i.i.d.r.v. which take the
values 0 or 1 with probabilities q or p = 1 — q respectively. Let X,p:, = log - Z:"_‘l" z;.

Then for any k and I, there ezists a t such that:

1 1
Pr [IXlog‘n _pl > log"n] < ;

Lemma 5.4 (Chernoff Bound—(Strong)) Let z,,..,z, be i.i.d.r.v. which take the
values 0 or 1 with probabilities q or p = 1 — p respectively. Let X, = X; z.—x z;. Then

for any k and [, there ezists a t s.t.:
1 1
Pr [IXn‘ ~pl = ;;;] < 3

Both versions of the Chernoff Bound follow immediately from the standard proof of
the Chernoff bound. For a proof of the Chernoff bound see [17] or [19]. ...0

As mentioned in section 2.1, there is no need to have probabilistic circuits as adver-
saries, as we can always derandomize them. This is done by fixing the random input
bits of the circuit to be a specific string of bits which “does well” on the average input,
where “does well” is defined relative to how we are attempting to use the circuit. Next

we will present a lemma which is a formalization of a similar but more complicated idea.
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In this case we have a probabilistic circuit which “does well” on two different distribu-
tions of inputs (note these are distributions over the inputs of the circuit, and not the
distributions over the strings of random bits which are used by the circuit). We will show
that that there exists a specific string which can be fixed as the random input bits of the
circuit, so that the circuit is now guaranteed to do “almost as well” on both distributions
of inputs, as it originally did on each distribution individually, when the circuit was still

probabilistic.

Lemma 5.5 (Derandomization Lemma) Let C.(w,r) be a probabilistic oracle-circuit,
where w € F" represents the oracle function, and r represents Cp’s random input bits.
Let D} and D3 be two distributions over F™, and let R, be the distribution over C,’s

random bits. Let P : F* x R — {0,1} be a predicate. Then, If

weDgl;-eR,.[P(w’ Cu(w,r))=1]>1—p and weDg,I;eR..[P(w’ Co(w,r))=1]>1—-p,

then there erists an & € R, such that Pryep,[P(w, Ca(w,7)) = 1] 2 1~2p, fori € {1,2}.

Intuitively, in the lemma above, the circuit C is trying to compute a value for the
oracle w. However, since C is probabilistic, the value of the circuit on input w may be
different for different strings of random bits. Therefore, we measure whether or not the
circuit has computed an acceptable value, given the oracle w, by using the predicate P,
which indicates, on all pairs (w,v), whether v is an acceptable value for C to output,
given the oracle w. For an example of this lemma’s use see section 5.3.1.

Proof: We build a third distribution D} by first choosing a random random bit i €

{1,2}, and then choosing a random function w € D;. Note that

1 1
seobE e P Caw, M) =2 (1 —p)+ 51 —p) = 1-p,

and so there exists an ¥ € R,, for which

wlgb'g[P(w, Co(w,7))=1]21-p. (5.1)
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Now it must be the case that Pryeps[P(w,Ca(w,7)) = 1] > 1 —2p, for i € {1,2};
otherwise D}[P(w, Cn(w,7)) = 1] < $(1 —2p) + ; =1 — p, and this contradicts (5.1).
...

Lemma 5.6 For any S C P® and any decision-circuit C, the Prc,(F"0S) = Prc,(F™).

Proof: Follows from the fact that each element of S is a permutation, and therefore
the resulting distribution on the queries to 7™ is invariant under when it is composed

with the set S. ...0

Lemma 5.7 (Luby-Rackoff) For each n, let S™ C F™ such that fi"—,'i > n—h, for some
constant d. Then, for any constant k, for any polynomial-sized decision-circuit family

{C.}, and for all but a 345 fraction of v € F™:
1
| Be(v 0 ™) — B(F™)| < .,
for sufficiently large n.

This lemma follows directly from the lemma stated bellow, and the strong version of the

Chernoff Bound.

Lemma 5.8 Let S™ and {C,} be as in Lemma 5.7. Then, given k there is an r such

that for all sufficiently large n:

1 &
=D _Ca(vos:) - Br(F")

=1

Pr

1 1
B & S ( > ,,—k) <7

This lemma is proven in [2], and a complete proof of similar lemmas will be presented in

Chapters 6 and 7 (See the proofs of Lemmas 6.3 and 7.3). Therefore, we will only give a
sketch of the lemma’s proof.

Proof(Sketch): Observe that whenever we have a circuit C, which has oracle-gates
which correspond to a function f, it can be easily modified, by adding at most a polyno-

mial number of gates and connections between gates, to render a new circuit 6’: , Where
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-

C. never repeats queries to f on the same input. Further, any polynomial sized family
of circuits {C, }, in which each circuit C, has at most m(n) oracle gates, can be easily be
modified to a equivalent family of circuits {C,}, where each circuit C, has exactly m(n)
oracle gates. We shall assume that all circuits in this proof sketch are of the modified
forms described above.

We perform two experiments. In the first we randomly choose fi,..., for € (F*)™,
and compute the average value, F, of the circuit on these function. Specifically we
let B, = % E:’;l Cn(fi). In the second experiment we randomly choose v, sy, ..., 8pr €
F* x (S™)"", and compute the average value, E;, of the circuit on the functions v o s;.
Specifically we let E; = = :‘;l Cn(v 0 s;). Using the strong version of the Chernoff
Bound we see that the probability that |E, — Prc,(F™)| > X is less than 2"/2. We then
show that the difference between E; and E, is bounded to be less than 2%/2, and the
result follows.

To bound the difference between E; and F; we notice that from the perspective of
the circuit C,, that the functions (f 0 s,),...,(f © sar) will appear to be random functions
chosen uniformly from F*, so long as f is never queried on the same input throughout
ezperiment two. Since each circuit never performs the same oracle query twice, we know
that for each i, the function f will not be queried twice on the same input during the
evaluation of C,(f o s;). But for ¢ # j, it may be the case that during the evaluations of
Cn(fos;) and C,(fos;), that the function f is queried on the same input twice. However,
we can bound this probability. WLOG, assume that i < j, and let a be a query made
during the evaluation of C,(f 0 s;). Let S to be the k** query which is made during the

evaluation of C,(f o s;). If we fix s; and a, then the probability that s;(a) = s;(8:) is:

n?
= -2—;,

Cukle

Pr,[s:(e) = 5;(80] = P [s(e) = si{Bu)ls; € 57 <

where the 2; in the last inequality is due to the fact that g;’[ > L. Since each circuit
can make at most a polynomial in n number of queries, and since there are a polynomial

in n number of circuit evaluations, we can bound the probability of this event occurring
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to be less than 2*/2. The argument is made by performing simple counting arguments.

...0

As mentioned earlier, there is one lemma for which the symmetric version of the
lemma does not follow immediately from a symmetric version of the argument presented
in this chapter. The lemma in question is Lemma 5.7. Note that Lemma 5.7 follows
immediately from Lemma 5.8, but observe that in the proof of Lemma 5.8 we need to
consider functions of the form f o s;, and further observe that an argument similar to
the one presented would not work for functions of the form s; o f. Therefore, we cannot
directly prove a symmetric version of Lemma 5.8 by presenting a proof similar to the
one just given for Lemma 5.8, and therefore we cannot conclude a symmetric version of
Lemma 5.7. We note that a symmetrical version of Lemma 5.7 may be proven by using
an averaging argument, and a slightly stronger version of Lemma 5.7 then is stated. We

refer the interested reader to [2] for further details.

5.3 Proof of Lemma 5.2

Assume that there exists a polynomial-sized decision-circuit family {C,}, which for some
constant ¢ > 0 and infinitely many n distinguishes F™ from F™ with probability at least
€(n)d(2—48) + ,;gc—n.

Lemma 5.9 (Luby-Rackoff) FEither there ezists a family of decision-circuits {An},
where for each n the circuit A, is of size p;(log®n - cg(n))se(n), and for infinitely many
n:

n 1 .
RH(E) -~ R 284 5
or for each n let

1 1
Ko =Br(F") +8(1—BUFN + 5 and Lo =Pr(F") = §Br(F™) — s
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and let
St = {wef" gr(G“ow) > K,,} and T" = {wef'" Igr(G“ow) < Ln}.
Then:

n 1
and wg;n(weT)S;,

Q|-

Pr (wesS") <
weF™

for all sufficiently large n.

Proof(Sketch): If there exists a family of circuits {A,} with the above mentioned
properties then we are finished. Otherwise, no such family of circuits exist, and we need
to prove the second case of the lemma.

We introduce the following notation. Let

Ka(i) = Br(F™) + 8(1 — Bx(F™) + nl and  La(i) = Br(F") — 6 Pr(F™) — ni

and let
S™(i) = {w e F"

Pr(G" o w) 2 K,.(i)} and T™(i) = {w € 7" [Pr(G" o w) < Lu(i) } :

Notice that K,(3) = K, and that S,(3) = Sn, and similarly that L,(}) = L. and that
Ta(3) = Ta.

We will assume for contradiction that for all sufficiently large n the Prynesm(w™ €
S57(3)) = L. We will show that there exists a family of decision-circuits {A,}, where
for each n the circuit A, is of size p;(log®n - cg(n))se(n); and for all sufficiently large n:
|Prz (G*) — Prz (F")| = & + &; contradicting the fact that no such family of circuits
exist. First we assume that we can randomly and uniformly sample from S™(3) (we
will deal with the issue of uniform sampling from S™(3) later). Then, we can uniformly
sample fi, ..., far € (S*(3))", and construct a probabilistic circuit A,, which computes
An(v)= & v Ca(vof;). We choose r so that for a randomly chosen function, v € F»,

=1

the probability that [An(v) — Pre,(v 0 S™(%))| = & is less than 2*/%; and for a randomly
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chosen v the probability that |A.(v) — Prc,(F*)| > L is less then 2*/3. Both of these

properties are possible due to the Chernoff Bound and Lemma 5.7 respectively.

We will now construct a probabilistic circuit A () which will accept v iff A,(v) >
Prc,(F™) + . Notice that a random function v € F™ will be accepted by A’, with
negligible probability. Also notice that E,egn[An(g)] > Ka(3). Using a simply averaging
argument and the two facts just mentioned we can show that at least a fraction § + 1 of
the g € G™ will be accepted by A..

Allowing A, to be a derandomized version of A!, we have a family of circuits {K,,}
for which all sufficiently large n it is the case that |Pry,(G") — Pra,(F™)| > § + L. This
provides a contradiction. We can now perform a similar argument by assuming that for
all sufficiently large n the Prynesm(w™ € T™(3)) > L. We can then derive a similar
contradiction. This then proves the lemma.

Unfortunately, in the above argument we assumed that we could sample uniformly
from S™(%), and in practice this is not possible, so we must show how to get around
this. Notice that in the above argument our circuits are significantly smaller than is
required by the lemma, and the reason is that many extra gates are needed for properly
sampling S™(3). We construct a probabilistic circuit B,(w) = = :';1 Cn(gi o w), where
g1, ---ygns are randomly chosen from (G*)*". Using the Chernoff bound, the value s is
chosen so that the probability that |B,(w) — Pr¢,(G" o w)| > % is negligible. We now
create a probabilistic circuit B; which accepts a function w iff B,(w) > K.(2). This
algorithm will accept all but a negligible number of the functions w € S™(3), and it
will reject all but a negligible number of functions w ¢ S™(1). We now consider the set
R = {w|w € §"(1) A An(w) 2 K,.(2)}, and note that since le;—.(.éllﬂ > 2, for some d, then

it is the case that -ll-’-},.'l'[ > n—ir, for some d'.

We now simulate the process of choosing random functions in R™ as follows. We
run B}, but for each function-oracle query, o;, that the circuit B!, makes, we substitute

the output of the oracle with a random string r; € {0,1}*. We assume that B! has
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m(n) oracle gates, and has been constructed so that it never makes the same oracle
query twice. Now if B/, accepts, we know that the set PF = [J2{) {(ay,r;)} defines a
partial function. All random extensions of PF will be accepted by B,. Therefore, except
with a negligibly small probability of error, the random extensions of PF are all in R,.
Therefore, we choose a random function in R, by running B, as described above until
it accepts. We then save the partial function, and randomly extend it as needed. Since
R, represents a fraction greater than —x of 7", for any 0 < A < 1 and sufficiently large
n, we can simulate B], a polynomial number of times, and with very high probability we
will find a random w € R.. Therefore, while we cannot randomly sample from S"(%),
we can sample from R, C S™(1). Combining this sampling method with small technical

modifications to the original argument will allow us to prove the lemma. ...O0

Lemma 5.10 Either there ezists a family of decision circuits {=,}, where for each n the

circuit =, is of size cy(n) + se(n), and for infinitely many n:

Pr(G") — gr(f")l >6+ %;

or for all sufficiently large n and all h™ € H™:

<6+l.
n

Ex(Gom) B

Proof: If a family of circuit {=,} with the above properties exists, we are done. Oth-
erwise, there exists no such family of circuits. Assume that for the circuit family {C,}
there exists a set {A” € H*[n € N} such that for all sufficiently large n it is the case
that |Prc,(G"” o A™) — Prc,(F™)| = & + L. We create the circuit family {D,}, where
Dy (v) = Ca(v o h™)}. We note that {D,} is capable of § distinguishing G from random:

B'I:(G") — l’?’x“(}'") = lgf(G" oh®) - g:(}'" o h™)
= l;r(G" o h™) — lgr(}"‘) (Lemma 5.6)

> §+=
n
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Letting D, = =,, we have a constructed a family of circuits {S,}. This contradicts the

fact that there is no circuit family of size cu(n) + sf(n), such that for infinitely many n:
Pr(G") - Pr(F™)| 2 é + %,

proving the lemma. ...0

5.3.1 Main Argument

Let €, = ¢(n) + ﬁ and similarly let 6, = § + Féﬁ' Then the family of decision circuits,
{C.}, is capable of distinguishing G™ o H" from F™ with probability at least &,8,(2 — 8,),
for infinitely many n, as this value is strictly smaller than e§(2—46) + ﬁ;:, for sufficiently
large n. We assume that there exists no family of decision circuits {A,}, where each

circuit is of size p;(log®n - cg(n))sg(n), such that for infinitely many n:

[ n 1
Pr(G") —Pr(F7)| 2 6+

From the above assumption and Lemma 5.9 we know that for

1
K, = lgf(f")+5(l—g:(f"))+m and S" = {w eF" lc:’:(G“ ow) > K, } , (8.2)

that Pryem(w € S™) < &, for all sufficiently large n. Similarly we know that for
lc"I:(Gﬂ ow)< L, } ,  (5.3)

L, =gr(.7:”)—-5£’r(f") and T" = {wE.F"

T i3

that Pryesm(w € T™) < L, for all sufficiently large n.
Next, we assume that there exists no family of decision circuits {=,}, where each

circuit =, is of size cu(nr) + sg(n), such that for infinitely many n:

Pr(G") — E_}r(}"‘)l > 6+ %

From the above assumption and Lemma 5.10, we know that for all sufficiently large
n and all A™ € H™:
n 1
lc)f(G oh™)— lgf(}"')| <6+ o (5.4)
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We will construct a family of decision circuits {Y,}, where each circuit T, is of size
p2(log® n - cg(n))se(n), such that for infinitely many n:

1
log¥*n’

Pr(H") —Pr(F7)| 2 ¢(n) +

proving the lemma. In the sequel we show how to construct T, for each n such that both
[Pre,(F*) — Prc, (F™)| = €(r)d (2 — max{e(n),d}) + L, and n is sufficiently large for all
inequalities in the following proof to hold true.

We first give an overview of the proof. We will construct a circuit B, (via an inter-
mediate circuit A,) which, given as input a function w, almost surely approximates the
value Pr¢, (G™ o w). From Equations 5.2 and 5.3, we know that for almost all random
functions w € F™ that Prc, (G™ o w) will be bounded from above by the value K., and
below by the value L,,. We break the proof into two cases.

In the first case, if for a large fraction of the A € H,, (a fraction greater than e(n)+ los+n)
it is the case that Prc, (G™ o k) falls outside of the range [L,, K,], then we can distinguish
between H® and F™ by computing B(w), and accepting if B(w) is greater than K, or
less than L,. Because the sets S™ and T™ contain all of the functions w in F™, for which
Prc,.(G" o w) is less than or greater than L, and K, respectively, and since f%l[ <land
{—g—% < 1; we know that about a fraction 2 of the w will be accepted by B(n).

In the second case there is not a large enough fraction of h € G™ for which Pr¢,(G™oh)
falls outside of the range [L,, K,]. In this case, to distinguish H™ from F™ we use a
technique of Levin’s, and construct a circuit D, which on input =v tosses a biased coin
which is heads with probability B,(w), and tails otherwise. The circuit D,, accepts the
input w if the result of the flip is heads. We will now present the technical details of the

proof which was just described.

We construct a probabilistic circuit A, such that

logbn
Y Cu(giow),

i=1

1
log’n

Ap(w) =
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where ¢y, ..., gar are randomly chosen from G". Using the Chernoff Bound b is chosen

large enough such that:

1 1
oELn [ An(w) — Pr(Go W)' 2 @-;;] < =
and
Pr ||An(A") = Pr(Goh™)| > ——| < &
AnEHn n Cn ~ loghn| — n?’

By Lemma 5.5 we derandomize A, to get B, so that for all but i of the w € F™:

Ba(w) — Pr(G* o w)' <, (5.5)
Cn log™n
and for all but & of the ™ € H™:
Ba(k™) — Pr(G™ o h™)| < ——. (5.6)
Cn log*n

We now break the proof into the two cases mentioned earlier. The first case covers
the situation in which there is a clear separation between the value output by B, on
functions from F™ versus functions from H". The second case handles the random coin
flipping.

Let K’ = Prg, (F™) + 8.(1 — Prc,.(F™)), and let L, = Prg,(F") — &, Prc, (F™). We
note that in the following proof that the variable K, seems to be used many times, but
there appears to be little justification for the variable L!. We note that it replaces the use
of K} in the symmetric version of this proof, and therefore it is included in this version
of the proof as well.

Case 1: Prynepn[Ba(h™) = K] = €, = €(n) + E"g'l?i

We create the decision circuit B,(w) which accepts w iff B,(w) > K.

n 1
Pr(H") = BR(F™)| 2 e(n) + oy — BX(F™)

1 1
> e(n)+ m - -11: (Equation 5.2 & sampling error)
1
e(n) + E‘?;l—

v
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Notice that the second inequality follows from constraints on the probability that
a random function w € F™ is in the set S™ defined in equation 5.2. This is because,
for all sufficiently large n, K], is greater than the value of K,,. As previously seen, the
probability that a random w € F™ has the property that Prc,(G" o w) > K, is the
probability that w is contained in the set S®. But, we know that the probability of a
random w € F being in the set S is less than 1. Clearly it follows that the probability
that a random w € F™ has the property that Prc,(G™ o w) > K, is smaller than %, for
the set of functions with this property is necessarily a subset of S™. Finally, since B,(w)
approximates Prc,(G™ o w) to within a value of E‘}q’ for all but : of the w € 7™, and
since it still holds that for all sufficiently large n that K/ — Es-}c—; is greater than K,,
there can only be a fraction 2 of the w € F» for which B’(w) accepts. The first L of
these functions are the ones in S*. The last 1 of these functions are the functions w in
which B(w)’s approximation of Prc, (G" o w) is off by more than a factor of E}q.

We let Y, = B,, and we are finished Case 1.
Case 2: Pranenn[Ba(h™) = K}] < & = €(n) + 55

Let q(w) = B,(w) and let

K.  if K., < Bn(w);
d(w) = ¢ q(w) ifL, < Bn(w) < K';
L,  if Ba(w) < L.

n

Let

g(w) — Prg, (F™)

p(w) = x +Pr(F") and let p/(w) = ¢(w) = Prc, (F7)

dn

+ Ic’::(f").

We use B, to create a probabilistic decision circuit D,, which accepts w with prob-
ability p’(w). We will show that D, distinguishes between H” and F™ with probability
at least e(n) + E%;—;, proving the theorem. However, we first make some observations
about the circuit B,, which we will use later in the proof. Notice that,

1 1
«~— +— and
log*n n

Ew&f"(Bn(w)) - g:(Gn o P) <
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1 +1
log*n n’

Exnenn(Ba(h™) — Bx(G" o H")| <

These facts follow from equations (5.5) and (5.6) respectively. We use the first inequality
to get an upper bound on Prp,(F™), and the second to get a lower bound on Prp, (H").

We observe that Prp,(F*) = Eyern(p(w)). We first produce an upper bound on
the expectation of p(w), and then we compensate for the possible discrepancy between

it and p/(w).

Euern(q(w)) — Pre.(F7)

Buer(p(w) = 2 e
_ Eweﬁ(Bn(wgz —Pre.(F7) | Pr(F)
. Prc, (G™ o F*) + i;?c—,; + 7 = Pre.(F7) + g:'(f'")
_ Pro )+ + 4~ Pro() +Pr(F)
Ju Cn
- B g
s B+ logi"

We need to take into account the possibility that p(w) < 0, for this can never happen
with p’(w). This is because g(w) may be smaller than L! whereas this cannot be the case
with ¢’(w). Fortunately, by Equation 5.3, we know that the probability that q(w) < L,

is non-significant.

Pr(F") = Euer(p(w))
< Eyerm(p(w)) + % + ;11- (Equation 5.3 and sampling error)
1 1 1
s B+ tatn
1
<
- g.f (F7) + log*n
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We now give a lower bound for Prp,(H") = Exnenn(p’(h™)). This is done by showing a

lower bound for Eyneun(p(h™)), and then compensating for the possible difference between

p(k") and p'(h").

Epnenn (Q(hnl) — Pre.(F7) + Pr(F™)
6'" Cn

Eunerr(Ba(A™) = Peca(F™) | o
3s Cn

Prc,(G" o H*) — e — & — Prc, (F7)
A +Br(F™)
Engﬂ(z - Sn) - loglcn - ;l;-_
;. +E:(FT)
N = 1 1
2 en(z - Jn) - Sn Iog«:n - Sun + g:(fn)

+EXFD)

Epnenn(p(R™)) =

v

vV

2 &2 d) - log*n

We compensate for the k* € H™ such that p(h”) > 1. This occurs when q(h") > K,
and thus by virtue of being in case 2, this can only occur for a fraction &, = ¢(n) + E‘gl?;‘{
of the A™ € H™.

By Equation 5.4 we know that YA} € H" |Prc,(G o h}) — Prc, (F7)| < § + L. Note
that Prc,(G"oh}) is within E}c—n of B,(h™) = q(h™), for all but % of the ™ € H™. Further,
the Prc,(G" o A}) is at most one. It follows that |g(h™) ~ Prc, (F*)| < § + I-;E}q + L, for
most k™ € H*. We conclude that for all but } of the h™ € H":

. 1 1 1 1
Q(h)<mm{(1+l°g4cn +;>,(g:(f“)+5+m+;)}

We show that in both of the above cases the distance between gq(h™) and ¢'(h") = K., is
less than d,(1 — 4).

Sub Case 1) Prg (F*) < (1-96)

It must be the case that q(h") < Prc,,(f")+5+|—o?1;¢-;+i and ¢'(h*) = K|, = Prc, (F*)+
82(1 — Prc, (F™)).The result follows:

1
log*n

a) - ) < (B +6+ e+ 1) = (BF) + 8.0 - Bx(F)
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= (e n) - (o) (-20)

1 1

_ (5+ - n) 6+6Pr(.7-"") g+ o )
- ( L +-1-)+6P(.7-"‘)— L 2t Pr(F")
= \log*n " n Cn log°n * log°n Ca

1
< Jg:(F)+log°ngf(P)
= Sngf(}m)
< 8.(1—=9).

Sub Case 2) Prc,(F") > (1 -4)
In this case there must exist a u such that 0 < u < § where Pr¢,(F*) =1 — § + u. The

result follows:

1 1
ah) = ¢'(h) < 1+ ——+—-—K,
log*n
1 1
= g:(f )+é—ut——+—-—K;

log*n n

n

1 1 =
= BrF) 8- ut ot - (gf(f“) +54(1 - g:(f“))

1 1 =
- e e o)

= ~u+;+l—(&‘—3ﬂPr(F"))
log n n
“ )
= -—u+ —_——
log

= —u—6+6nlc’f(-7’")

= —u—8+8,(1-6+u)

= —u—38+3d,(1-9)+5u
= &(1-8)+%u—u—4¢

< 8.(1-6).
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Using the bound on the distance between p(h") and p’(h") derived above and applying

it to the previous lower bound for Prp,(H") we get that for all but £ of A™ € H":

ID’:'(H") = Epnenn(p'(h™))

> Epmerm(p(h)) = (e(n) " log—l,;) )
= Enmenn(p(h") ~ (&) (1 —4)

For the L of the h™ € H" that are not within the distancegiven by the Chernoff bound,
we know that they differ by at most 1 from the value being estimated, and therefore can

conclude:

Pr(H") = Epnenn(p'(R™))
2 Binenn(p(h") - all(1 = 8)] ~ =

+Be(F)] ~ (1~ 8)] - =

= [&(2- sn) -

log® n
= [€a(2—8, —1+8)— 1oglzcn + g:(}'“)]
= [E@(l—3.+6) - log%n + Pr(F™)]
= [E(1-6- 1og1°n +48) - Iog%n+g:(f")]
= all- o) - logicn +Br(F™).

By taking the difference between the lower bound on the acceptance rate of D, on
H™ and the upper bound on the acceptance rate of D, on F* we achieve the proper

distinguishing probability.
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1 1 1

Pr(H™) —Br(F™) 2 [l - o) — o, + BRI — (BT + ]
> @l - )
= (elm) + )1~ o)
= (elm) — ot + o ~ o)
2 en)+ Iogicn

All that remains is to derandomize D,. In this case we let T, be the derandomized
version of D,. We have now constructed the family of circuits {Y,} which was required

to prove the lemma. ...0

5.4 Towards Complete Security

Our goal is to show that by composing enough partially secure PRPGs together we can
construct a PRPG which is completely secure. So far our efforts along these lines have
failed. We will now discuss some possible future research directions which will allow us
to attain our goal.

Observe that although the Isolation Lemma is tight, we have been unable to find
a set of three permutation generators which when composed together are as insecure
as is permitted by the direct application of the Isolation Lemma. In particular, in our
previous example we showed that there are generators G which are 1 — § secure, and
generators H which are 1 — € secure, but whose composition G o H is €§(2 — max{e, é})
secure. However, a crucial requirement of this example is that a fraction 4 of the keys in G
correspond to the identity permutation, and a fraction € of the keys in H correspond to the

identity permutation. However, only a fraction €& of the keys for G o H correspond to the
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identity permutation, whereas its security is €¢5(2—max{e, 6}). This fact prevents us from
composing GoH with a 1 —+ secure generator F to produce a generator Fo(GoH) which is
€dy(2 —max{e, 6})(2 — max{e, §,v}) secure. The observation we make is that the fraction
of keys for Go H which correspond to permutations which are easily distinguishable from
random functions is much smaller than the resulting security of G o H. Further, it is this
lack of “special”, and therefore easily identifiable, permutations in G o H which prevents
us from composing the generator with a third, and achieving the security bound specified
by the Isolation Lemma.

We conjecture that the security of the composition of three or more partially secure
PRPGs is stronger than the bound which results from multiple applications of the Isola-
tion Lemma. However, we suspect that the current notion of security may be too coarse

to prove such a statement. Therefore, we propose a finer notion of security.

Definition 5.1 (Weak Security) We say that a PRPG (PRFG) G is 1 — §(n) weak-
secure if for all adversaries A’ which have the property that for all ¢ > 0, and for all

sufficiently large n:

Pr [A/=1] < l;
fern n¢

then it is the case that for all sufficiently large n and all ¢ > 0:

1
f = —_ 9 — < _
fgr (A7 =1] ggé..[“" 1]| < 8(n) + -

We note that by some minor modifications to the arguments presented in this chapter, it
is easy to show that the composition of a 1 — & weakly secure PRPG and a 1 — € weakly
secure PRPG is 1 — ée weakly-secure (This follows from the fact that sub case 2 of case
2 in section 5.3.1 disappears). This shows that there is no way of increasing the fraction
of permutations which are easily identifiable from random in the composition of two
partially secure PRPGs. We suspect that further work in this direction may point the
way to developing a theorem which shows that a polynomial in n number of compositions

of a 1 — § partially secure PRPG results in a 1 secure PRPG.



Chapter 6

The Luby-Rackoff Operator

In Chapter 5 we showed how to take partially secure PRPGs and compose them to
produce a PRPG which is more secure than any of the constituent PRPGs. In this
chapter we will show that an analog is possible for PRFGs. As was demonstrated in
Chapter 4, this cannot be done directly by composing PRFGs, and so we introduce a
new operator O (read as box). We will show that the O operator acting on functions has

some properties in common with the composition operator acting on permutations.

Given two functions f; and f2 such that f; : {0,1}* — {0,1}", for i € {1,2}, we

define the operator O as:

(10£2) (z) = £ (fr(z) @ fa(2)) @ f2(fi(z) @ f2(z)) .

The O operator was originally defined in some working notes by Luby and Rackoff [13]
in which an incomplete argument is given to show that two partially secure PRFGs can
be combined by the O operator, so that the resulting PRFG is more secure than either of
its constituents. We will now complete the argument, and show how these results relate

to the arguments presented in Chapter 5.

60
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6.1 Two Technical Lemmas

In Chapter 5 we presented two Isolation Lemmas which proved that the composition
of two partially secure PRPGs resulted in a third which was more secure than either
of the constituent generators. However, in both proofs the only arguments which made
use of specific properties of the composition operator or the permutation property of the
PRPGs were contained in Lemmas 5.6 and 5.7. Therefore, if we can prove corresponding
lemmas for the O operator and PRFGs, then equivalent Isolation Lemmas will hold for
the O operator acting on PRFGs.

Before proving these correspondences we standardize the circuits that will be used in
the remainder of this chapter. Observe that whenever we have a circuit C, which has
oracle-gates which correspond to a function f, it can be easily modified, by adding at
most a polynomial number of gates and connections between gates, to render a new circuit
6’:, where 6‘: never repeats queries to f on the same input. Further, any polynomial
sized family of circuits {C,}, in which each circuit C,, has at most m(n) oracle gates,
can be easily be modified to a equivalent family of circuits {C,}, where each circuit C,
has exactly m(n) oracle gates. We shall assume that all circuits and circuit families
in this chapter are of the modified forms described above, unless specifically mentioned
otherwise.

We now state the first property of the O operator, which we will use to develop one

of the above mentioned correspondences.

Lemma 6.1 Given any family of decision-circuits {C,}, for each f € F*,

2m?(n)
2n

| Br(fOF") — Bx(F™)| <
where m(n) is the number oracle gates in the circuit C,.

Intuitively the lemma shows that the O operator maintains the security of its strongest

operand, for there is a trivial circuit which distinguishes f, but by the above lemma
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there can be no such circuit for fOF™. For completeness we give the proof of Lemma
6.1 originally presented by Luby and Rackoff in [13].

Proof of Lemma 6.1: We will perform two experiments which will result in two
random variables R; and R;. We will show that E[R;] = Pr¢,(F™), and then show that
E[R,] differs from Prc,(fOF™) by at most a negligible amount. Finally, we will observe
that R; = R, proving the result.

In the first experiment we let X, .., X;5(n) be Li.d.r.v. from the uniform distribution
over {0,1}". Let gi,..., gm(n) be the oracle gates in C,. We define R; to be the output
of the circuit C,, when we replace the output of gate g; with the value X;. Let a; be the
input to oracle gate g;. Note that for iz, such that 1 < ¢ < m(n), that a; is completely
determined by C, and X, ..., X;—;. This taken in conjunction with the fact that for i # j
that a; # a; and by the construction of C,, we observe that Pr¢, (F*) = E[R,]-

For the second experiment, observe that Prc,(fOF") = Prpes [Cu(f 0 f) = 1].
This follows from two observations: first (f10f;)(z) = (fi ® f2) o (f1 ® f2)(z); secondly,
for any f € F™ the set f @ F* is isomorphic to F"*. We construct the circuit C. by
replacing each oracle-gate g; in the circuit C, with two oracle-gates h; and h;. We feed
the original input of g; into k;; feed the output of h; into A!; and let the output of A’
replace the original output of g;. We now let Xi,.., X;u(n) and Yi, ..., Yr(n) be iid.r.v.
from the uniform distribution over {0,1}". We define R; to be the the output of C, when
we replace the output of gate h; with Y;, and the output of A! with X;, for 1 < i < m(n).
Let a; be the input to gate h;, and notice that a; is completely determined by C, and
X1, ...y Xi—1. Clearly E[Ry] = E[R;]. But we will show that E[R;] is negligibly close to
Prc,(fOF™). We consider the set

good = { X1, ..., Xa(n)> Y1, - Yinn)| the relation {(ay,Y:)} U {(Y;, Xi)} is one-to-one} .

The set contains all of the choices of X},..., Xm(n), Y1,...; Ym(n) which define a partial

function in the above experiment. We then define the set bad to be the complement of
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the set good. Notice that:

Pr(foF") = Pr [Cu(fof)=1]
= i [6“(f )= 1]

= Eper [Cals)]

= E‘=(xl.»‘xm(n) th--‘va(n) )E{O,l}" x2m(n) [R2 It (S gOOd]
Finally, observe that a tuple (X1, ..., Xm(n) Y1, ---, Ym(n)) is definitely in good if
Q1 -y Um(k)s Y11 -y Ym(n) are all distinct. But by the construction of 5,,, a; # a; for i # 7,
and thus the probability that these values are not all distinct is bounded above by 2—"172,,(1'-1

Observing that:

Pr(F7) = E[R)]
= E[R;|good] Pr{good] + E[R;|bad] Pr{bad]
2
< Pr(fOF")Prlgood] + E[R,|bad]22in
2
< pr(form) + 20,
the result follows. ...0

Corollary 6.1 For each n let S™ C F*, and let {C,} be a family of circuits, then

2 2
|Br(sPaF) — Be(F7)] < 22 (),

where m(n) is the number oracle gates in the circuit C,.

Notice the similarities between Corollary 6.1 and Lemma 5.6. In effect, except for a
negligibly small chance of error, we have proven the equivalent of Lemma 5.6 except
that the composition operator and a set of permutations has been replaced by the O
operator and a set of functions, respectively. However, because the probability of error
is negligible it does not have an effect on arguments made in the proofs of the Isolation

Lemmas. Therefore, we can intuitively treat Prc,(S"O0F™) = Prc,(F").
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We now present the second property of the O operator. As we used Lemma 5.8 to
prove Lemma 5.7, we will similarly use a lemma, which corresponds to Lemma 5.8, to
help prove a Lemma which corresponds to Lemma 5.7. In order to prove the lemma

which corresponds to Lemma 5.8, we first need to prove the lemma given below.

Lemma 6.2 For every n let Sn c F* be a set such that ‘II;;S:-% > n‘—?, for some constant
¢ > 0.Let {B,} be an infinite family of polynomial in n sized oracle circuits. For each n,
let B, have ezactly m(n) oracle gates. Then for all k and all sufficiently large n

c 3
s a . n®-m(n
Pr [Ba(3 0 ) = (me, (ne))] < 2200
sesn 2
where n; is the k** query made to a function oracle gate by B, when given $0 § as an

oracle.

Proof: We first give a bound on the probability when 3 is chosen uniformly at random
from the set ™. Later, we use this bound to derive one in which § is considered to be
chosen from the set S™.

Let B, be a polynomial sized oracle circuit which has m(n) oracle gates. Further,
suppose that B, never performs the same query twice. Let I'y,....,['n(m) be the oracle
gates of B,. Each gate ['; is supposed to represent the function § o . Therefore, we
replace each gate [, with the gates I'} and I'?, where these gates each represent the
function §. This is done by taking the input to 'y and redirecting it to '}; taking the
output of ‘I‘}c and making it the input of ['?; and replacing the output of [, with the
output of I'Z.

We perform an experiment. We choose ¢y, ..., {m(n) uniformly at random from the set
{0,1}"*™(") | and we choose Ay, ..., Am(n) uniformly at random from the set {0,1}"*™(").
We will evaluate B, in two different manners using the random choices. Define the output
of gate I'g to be p§. For each k, we call n; the input to I'}.

For the first evaluation of B, we do the following. For each k we set p? to be (i. Notice

that by fixing the p?, ...,pfn(n) we have completely determined 7, .., m(n), the inputs to
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each oracle gate. Further, we have determined the output of the circuit B,, which we
will denote the output by the pair (m,u), where u is B,’s guess of s(nx), for some k.

Now for each k we set p} to be Ag.

Observe that these choices do not correspond to randomly choosing a function t € F*,
and then running B, on the oracle t o t. In fact, it may be the case that these random
choices do not even correspond to functions. For example, it may be the case that
Aj = Ak, but that {; # (x, and therefore the choices would not even correspond to a
function, as functions are single-valued. However, had these choices corresponded to a
random function, then the probability that the output of the circuit, (7%, #), was correct,
is the probability that u = Ar. We note that the probability that u = A is exactly 3.
Let £ be the event that g = A, during the first evaluation of B,.

As stated earlier, it is clearly the case that the above experiment does not correspond
to choosing a function $ uniformly at random from F™, and then using $ 0 § as an oracle
for B,. We will correct this in the second evaluation of B,. Further, we will now bound
the number of cases in which the first evaluation fails to correspond to choosing a function

§ € F", and then using $ 0 § as an oracle.

We now describe the second evaluation of By, and we note that it simulates B, running
on the input 5 o §. We consider the gates of B, in the order I'},I'?, ..., [‘,lu(n), an(n). We
need to set the outputs of the gates I'f in fashion which is equivalent to how they would
be set if we were to truly choose an § uniformly at random from F™, and then use $0 §
as an oracle. To accomplish this we set the outputs of the oracle gates to be the random
choices, as before, except when the random choice would not correspond to a function of
the form §o0 8. This occurs when the random choice for the output is not consistent with
previously assigned random outputs of previous gates. If such an exception arises, then
we fix the output of the gate so that it is consistent with the outputs of previous gates.
Formally, we set p} to be A, unless there exists a p} = pi, for £ < k, and in this case we

set pi to be pZ. Similarly, we set p? to be (i, unless there exists an £ < k where p} = p}
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or p; = 7, in which case we set p? to be p? or p} respectively.

When there exists a k such that we do not set p} to be Az, or we do not set p? to be
Cr then we say a collision has occurred. Intuitively, this is when a random choice was
not consistent with a function of the form § o S, and so the output of a gate was set so
that it was consistent with previous gates outputs.

Notice that it is only when collisions occur that the first evaluation of B, differs from
the second evaluation of B,,.

Let &, be the event of a collision occurring in second evaluation of B,. We bound the
probability of event &,. Clearly, if all of the n’s and A’s are distinct, then no collision can

occur. We bound this probability.

Pr ({0 mell <Gk < m(n)} < 2m(n)] < ™) mm+1 2m(n)

€1 veerslem () €L0,1}7(7) 2" 2" 2"

Al dm(n) e{o0,1}7-m(n)
(m(n))* + (1 4 -- - + m(n))
2n
(m(n))? + (m(n)? + m(n))
2n+1
2m(n)? + m(n)
2n+1

Define £; to be the event that B, outputs (ni,u), and g = pi during the second
evaluation of B,. Clearly, this is only the case when the output of gate I'} is equal to u.
Therefore, &5 C £, U &, and this implies that:

Pr& < Pr& +Pré&

1 2m(n)? +m(n)

gt T g

2 + 2m(n)? + m(n)
on+1

Notice that by the definition of £, and the design of the experiment that

B [Ba(3 0 3) = (ns, 36ne))] = Prls] < ZH 2N 4 i),




CHAPTER 6. THE LUBY-RACKOFF OPERATOR 67

We now remember that we are interested in the case in which § is chosen uniformly
at random for the set §", and not the set F". We use our bound for the latter case to

derive a bound for the former.

’ggn [&] = sg},_[gsls € 5"
Pl‘jefn [83]

n°(2 + 2m(n)? + m(n))
on+l
n¢.m(n)?
2n

...0

We now prove the lemma which corresponds to Lemma 5.8. Remember that this

lemma is only used to later prove a lemma which corresponds to Lemma 5.7.

Lemma 6.3 For every n let S® C F™ be a set such that g"—,,l[ > L, for some constant
¢ > 0. Let {C,} be an infinite family of polynomial in n sized decision-circuits. We show
that for any d > 0, there ezists an r > 0 such that for all sufficiently large n:

L3 cusos) B

=1

1 1
> n_“ < —_2n/3'

Pr
(fr‘l yeeerSnT )ep x (sn)nr

Proof: We will assume that r is fixed, and later we will show how to determine r’s
value.

First we define two experiments. In the first experiment pick random (f, fz, ..., f5) €
(F*)V, and evaluate C,(f;) for each i € {1,..,n"}. Define the event E; to be:

1« 1

=1
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In the second experiment pick random (£, s1, ..., s%) € S®*x(F")*", and evaluate C, (fOs;)
for each 7, where 1 < i < n". Define the event E; to be:

1 1

— Zz; Calf0s:) - Bx(F™)| > =.
Using the Chernoff Bound (Lemma 5.4) we choose an r where the probability of event
FE\ occurring in the first experiment is less than ;1!; We will show that the probability
of event Ej, in the second experiment, is negligibly close to the probability of E;, in the
first experiment. The lemma will follow.

We will perform a third experiment, in which we model both of the first two ex-
periments by considering two different methods of evaluating the circuit C,, n” times.
However, in the third experiment we use a modified form of C,. To modify C,, we replace
every function gate, g;, which corresponds to the function f; or fOs; in experiments one
and two respectively, with two function gates, I; and O;. In the first experiment the gate
I; would correspond to the identity function and O; would correspond to the function
fi. In the second experiment both /; and O; would correspond to the functions f & s;.
We redirect g;’s input to [;; we take the output of /; and use it as the input for O;; and
we replace the outputs of g; with the output of O;. Notice that the behavior of C, has
not been modified. We have simply modified the representation of the circuit. We let I _;
and O;'- correspond to the gates which replaced g;, in the manner previously mentioned,
during the evaluation of C,(f;) and C.(fOs;), respectively in our models of experiments
one and two.

First we choose sy, ..., 8. € S™; B}, .., ;(n),...,ﬁi",...,ﬂ,’;'(n) € {0,1}»xm()xn". and
then we choose 7}, ...; Th(nys s W 1 -+s Ymgm) € 105 1}7*m(")xn"  We represent the input to
the gate I as aj; we represent the input to the gate Of as Bg = I#(a§); and we represent
the output of the gate Of as 7.

We can now model the first experiment in experiment three. Rather than performing
n" evaluations of C, using a different random function as the oracle for each evaluation, as

in experiment one; we equivalently consider n" evaluations of C,, where in each evaluation
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i and for each j we assign the random element v} € {0,1}™ to 52, the output of O:. Notice
that by fixing the outputs of each gate we have completely determined the behaviour of
the circuit. Further, notice that because of the way we have set the outputs to the gates
O;-, we have perfectly modeled experiment one. Let &, be the event in experiment three

which corresponds to event E, in experiment one.

Observe that we cannot model the second experiment in the same manner, for we
are dealing with functions of the form fOs; = (f @ s;) o (f @ s:)(z). An example of the
problems which can occur is as follows: it is possible for the gates g; and g; to be queried
on two different inputs a; # «;, but it may be the case that (f & s;)(a:) = (f & s:)(e;),
and in this case the outputs of the two gates must be identical. However, the chances of
randomly assigning the same output to both gates is negligibly small. We will remedy
this problem, and present a model of experiment two which is similar to our model of

experiment one.

We consider the gates in the following order:
15,01, s 1y Oy -5 n,or,.--, I,’,‘.'(n), Onny- If the input of of gate I} is

not equal to any aj or Eﬁ for any (¢, d) < (a,b), then we assign its output to be Eg « Bg.
Similarly, if the input Eg of gate Of is not equal to any a or ﬁj for any (c,d) < (a,b),
then we assign its output to be 37 « .

Alternatively, if the input af of gate I is equal to a5 or ﬁj, for some (¢, d) < (a,b),
then we assign its output to be 8¢ ¢« f(af) @ s*(af). Similarly, if the input 32 of
gate Of is equal to aj or ﬁ{;’, for some (c,d) < (a,bd), then we assign its output to be
3¢ « f(B2) @ s*(B2). These n" evaluations of C, now perfectly model experiment two.

Let & be the event in experiment three which corresponds to F, in experiment two.

It is now easy to see that our view of assigning outputs to the function gates, as in the
model of experiment one, goes wrong only if one of the gates Of is queried on an input
which was previously queried for a gate Oj or I3, for some (c,d) # (a,b). We formalize

this by defining a collision. Given our random choices in experiment three, we say that
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a collision has occurred if there exists (a,b) # (c,d) s.t. B¢ = B5 or B2 = af. Let & be
the event that a collision has occurred in our model of experiment two.

Given the new perspective of the experiments, observe that £ C &, U &3, and this
implies that Pr[&] < Pr[€)] + Pr[€3]. We will now show that the Pr[€s] < =1, and this
combined with the fact that Pr[E\] < =5, and thus that Pr{€i] < 57, implies that
Pr[&;] < 55 and thus that Pr[E;] < 545. This proves the lemma.

It remains to show that Pr[€3] < . In order to do this we consider a forth
experiment in which we fix f € F*. We then draw a function s uniformly at random
from the set S”. We then run the circuit C, on the oracle fOs, by having the gates [;
and O; compute the function f & s, for each j.

Remember that o} is completely determined by C,, but for j > 1 the choice of o
can be dependent on 7},%},...,5i_,. Further, o} # af, for j # k, by the construction
of Cy. In experiment four, we will consider the probabilities involved in four cases. We
show that in first three cases the probability is trivially bounded, and show that in the
last case reduces to the problem taken care of in Lemma 6.2. Before describing the cases
we define a set used in the four cases. The set is 5™ = {f @ s;|s; € S}

Case 1: There exists an i, j, k, [, where k = i, such that §i = 3F.

Fix f € F™, and consider:

B; =B = Pr[f(ef) @ si(e)) = f(af) ® si(ef)]

rs ES"

Notice that when : = k that

Pt [f(ef) @ si(aj) = flar) @ s(ar)] = D [s;(a ) = 3(af)].-

A simple argument shows that this probability is bounded by M To notice this,
observe that given a function §, drawn uniformly at random from F", and given m(n)
queries, that for any two distinct queries a and b, the probability that 5(a) = 3(b) is less
than ﬂgl’- Then notice when § is drawn uniformly at random from S instead of F,
we can easily bound the probability by M.
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Case 2: There exists an t, j, k, [, where k # i, such that E,‘ = ﬁ,".
Fix f € 7™, and consider.

P Bi=pF = "le’gn[f(a;'-) @ si(a}) = f(ar) @ se(af)]

Notice that f(af)® si(af) and af are completely independent of the choice of s;. There-

fore, we can bound this probability by bounding the probability

Pr [f(a}) @ si(a}) = ¥),

s;ES"
where 9 is a fixed value which has been chosen, non-uniformly, to maximize the above

probability. This gives the following probability,

,igg,,[f (af) @ siaf) = 9] = iggﬂ[-‘}i(a;:) = 9d].

This probability is bound to be less than ﬂ%‘,{—“i To notice this, observe that given a
function 3, drawn uniformly at random from F™, and given m(n) queries, that for any
query a, the probability that $(a) = ¥ is less than %1,'.—'1 Then notice when $ is drawn

uniformly at random from 5™ instead of F™, we can easily bound the probability by
m!n!-n‘o

2"
Case 3: There exists an ¢, j, k, [, where k # 7, such that ﬁ; = af.

Again we fix f € F™, and consider:

s‘le)gn[af = ﬁ;] = "ggﬂ [of = f(a3) ® si(a))]

= Pr [of = (o))
;€S
Similarly to the previous case, notice that af is completely independent of the choice of

;. Therefore, we can bound this probability by bounding the following probability,

Pr [ = 3:(a})],
§;ES™
where ¥’ is a fixed value which has been chosen, non-uniformly, to maximize the above
probability. This probability is bound to be less than 2%,’.—'1':, for the same reasons as

those mentioned in Case 2.
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Case 4: There exists an 1, 7, k, [, where k = 1, such that ﬁ; = af.

Again we fix f € F*, and consider:

Brlaf =B = Prlaf=f(a})®sial)]
= Pr [of = di(ef)].
sES™

Clearly, the probability in last cases is bound by a bound on the following probability.
First, let {B,} be any polynomial in n sized circuit family, in which every circuit B, has
m(n) oracle gates. We consider the probability when 3 is chosen uniformly at random
from the set S n_and that when given as an input the oracle 303 the circuit B, outputs the
pair (c, ), where a corresponds to one of the oracle queries made by B, and ¢ = 3(a)-
Fortunately, the above bound is given in Lemma 6.2.

Therefore, for each choice of , j, k and [ there are two possible ways in which a collision
can occur, and for each way the probability of it occurring is bounded above by "-c-z"l}'ﬂi

from the results of Lemma 6.2. There are a total of @2—"11‘)-2- choices of i, 3, k, [, so:

ne - m(n)? (e )
In

Pl‘(£3) < <

N
(SH Lan
-

and the lemma is proved. ..0

Corollary 6.2 For eachn, let S® C F™ by any set such that {;:—IT > -4, for some constant

d, and let {C,} be a polynomial sized family of decision-circuits. Then for every constant

¢, and for all but 75 of the w € F™:
1
Pr(wOS™) - lg"r(f")i <3,
for sufficiently large n.

This corollary corresponds directly to Lemma 5.7, but with the composition operator

and the set of permutations S™ replaced by the O operator and the set of functions S™.
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6.2 Isolation Lemmas

Now by Corollaries 6.1 and 6.2 we can prove both versions of the Isolation Lemmas in
Chapter 5 by replacing the composition operator with the O operator, and by replacing
the PRPGs with PRFGs!. For completeness, we state both versions of Isolation Lemmas

and their corresponding composition theorems below.

Lemma 6.4 (Box Isolation Lemma — Weak Version) -

There ezist fized polynomials p, and p; such that for all 0 < ¢,4 < 1; polynomials cg, cy,
and sg; and function generators H and G, where cg(n) and cy(n) bound from above the
size of the circuits which compute G® and H™ respectively. Define F = GOH.
Hypothesis: [f there erists a family of deciston-circuits {Crn}, where for each n the

circuit C, is of size sg(n), and for some ¢ > 0 and infinitely many n:

gr(F”) - Ec’r(}"‘)‘ > €6 (2 — max{e,8}) + ;1;

Conclusion: Then for each sufficiently large n there ezists either a decision-circuit A,
of size p1(n€ - cg(n))se(n) for which:
1

i)
n24c

> 5+

A& = R

or a decision-circuit Y, of size p(nc - cg(n))se(n) for which:

1
ny F*)| > P
gf(H ) gf( )l Zet e
or a decision-circuit =, of size cu(n) + sg(n) for which:

1
26+ .

gr(G”) - l;r(f")

Corollary 6.3 (Box Theorem) Let G be a 1 — € secure PRPG. Then for each positive

integer c, the generator F = (---(GDG)O ---0G) is 1 — @ secure, where § = (2 — €)~".

C imes

17Technically the original Isolation Lemma requires a commutative version of Lemma 5.6 and 5.7, but
since the O operator is commutative the corresponding lemmas follow immediately.
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For the theorem below we need a definition for a semi-secure PRFG which is analogous
to the definition of a semi-secure PRPG. We will call a PRFG, H, 1 — ¢ semi-secure if
there exists no family of polynomial-sized decision- circuits {C,} which has an advantage
of e + ﬁ? in distinguishing H" from F™, for some constant ¢ and infinitely many n.

Lemma 6.5 (Box Isolation Lemma — Stronger Version) -

There exist a fized polynomials py and a fized poly-logarithmic function p; such that
for all0 < é < 1; €: N = [0,1], where for all sufficiently large n, e(n) < §; polynomials
G, CH, and s¢; and function generators H and G, where cg(n) and cy(n) bound from above
the size of the circuits which compute G™ and H™ respectively. Define F = GOH.
Hypothesis: If there exists a family of decision-circuits {C,}, where for each n the

circutt C,, is of size sp(n), and for some ¢ > 0 and all sufficiently large n:

1

c -

logtn

Pr(F") — g:(f")' > ¢(n)d (2 — max{e, 8}) +

Conclusion: Then for infinitely many n there ezists either a decision-circuit A, of size

p1(log®n - cg(n))se(n) for which:

n 1-
Pr(G™) - lgnr(f")‘ >5+ L

or a decision-circuit T, of size py(log®n - cg(n))se(n) for which:

l;:(”")—g'f(f“)‘ZE(n)+ L

log*n

or a decision-circuit =, of size cy(n) + sg(n) for which:

Pe(H") — I::(P)I > 6+

—T

Theorem 6.1 (Box Theorem — Stronger Version) -
Let G be a 1 — € secure PRPG. Then for each f € O(loglogn) there ezits a generator

F = (---(GOG)O---0OG) which is 1 — O(n) semi-secure, where O(n) = /(2 — ¢)/(M)-1,

f (n)vn'uu
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As in the case of the composition operator acting on permutation generators, it is a
natural question to ask if the Isolation Lemma’s security parameter is still tight for the
function generator that results from the O operator acting on partially secure PRFGs.

We show in the next section that the Isolation Lemma is still tight.

6.3 The Isolation Lemma is Still Tight

We now show that there exist PRFGs H and G which are respectively (1 — ¢€) and (1 —§)
secure, but when boxed together are exactly (1 — @) secure, where 8 = €§(2 — max{e, d}).
We point out to the reader that there is much in common between this construction and

the construction presented in Chapter 5.

The Construction of G and H

We present the construction of G, and note that the construction of H is similar. To

simplify the presentation we assume that § and € are of the form .‘,l—c or 1 — 3. Let

G = {G" : {0,1}4™ x {0, 1}* — {0,1}*|n € N} be a PRFG. We construct G* = {G" :
{0, 1}4")*< x {0,1}* — {0,1}"|n € N} to be 1 — § secure in two steps. We will describe
the construction of G*, and note that the construction of H” is similar.

First, for each n we set a fraction § of the keys of G™ to correspond to the zero function,
f(z) =0 Vz, and the remainder to correspond to functions chosen from G™.This is done

in two different fashions dependent on the form of é as described below:

Case 1 (6 =1 — ) For each k € {0, 1}“")*< we set the function gZ € G" to be the zero
function, if the first c bits of k are not all 0; otherwise let k be the last £(n) bits of

k, and set gi = g¢, for g7 € G~

Case 2 (6 = ) For each k € {0,1}"*c we set the function g € G" to be the zero
function, if the first ¢ bits of k are all 0; otherwise let k be the last £(n) bits of k,

and set g7 = g¢, for gf € G~
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The second step in the construction of G* is to ensure that for each k € {0, 1}4")+¢
we set the value of gZ(gZ(0)) in one of two manners, depending on the form of 4, as

described below:

Case 1 (§ =1 — 3) For all keys k set the first ¢ bits of gF(gZ(0)) to 0; the last n — ¢

bits remain as they were in g7(0).

Case 2 (6 = ) For all keys k ensure that not all of the first c bits of g¢(gz(0)) are 1.
If they are, then set them to be a member of the set {0,1}¢\ {1°} chosen uniformly

at random?; the last » — c bits remain as they were in gf*(g7(0))-

It remains to show that G and H are in fact 1 — § and 1 — € secure. We note that the

proof is similar to the proof presented in Appendix A, and so we will not present it here.

The Adversary

We now show that there exists an adversary which can €§(2 — max{e¢,d}) distinguish
F = GOH, and thereby show that the isolation lemma result is tight. We assume WLOG

that & > e.
Given a function w € F™ the adversary, A, accepts in one of the following two

conditions, dependent on the form of é:
Case 1 (6§ =1 — 3-) The adversary A accepts iff the first ¢ bits of w(w(0)) are 0;
Case 2 (§ = &) The adversary A accepts iff the first c bits of w(w(0)) are not 1.

We first consider the accepting probability of A if w was chosen uniformly from F”. In
this case w is the result of applying the box operator to two functions chosen randomly

from each of the respective generators G™ and H". We partition the functions of G™ into

2In practice a PRFG p would be used to set the first ¢ bits of g (g2 (0)). This would be done by
setting the first c bits of g2 (92(0) to be equivalent be the first consecutive set of ¢ bits in p(k) which
were not all 1. This allows the first c bits to be computed, and discards the need to store them, which
would not be possible as it would require an exponential amount of storage.
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two sets. We let Ign represent the set of all zero functions in G®, and we let Pgn represent
the remaining functions in G*. Similarly, we partition H" into two sets Iy~ and Py». We
now consider the probability that w is accepted based on it being the result of applying

the box operator to two functions from the above mentioned partitions.

Case 1 (w € IgnOIyn) The adversary will accept w with probability 1. This case occurs
with probability de.

Case 2 (w € IgnOPun) The adversary will accept w with probability E, which is the
probability that A would accept a random function conditioned on the fact that

the function w was chosen from Pyn. This case occurs with probability §(1 — €).

Case 3 (w € PgnOlyn) The adversary will accept w with probability 1. This case occurs
with probability (1 — d)e.

Case 4 (w € PgnOPyn) The adversary will accept w with probability 1 — 4, which is the
probability that the result of a random function evaluated at a random point in its
range would meet the acceptance criteria of A. This case occurs with probability

(1—8)(1—e).

Clearly a random function w will be accepted by A with probability 1 —é. Now follow-
ing the argument made in section 5.1.1 it is clear that the adversary has distinguishing
probability of €é (2 — max{e,d}).

6.4 Scalability Issues

Again, our goal is to show that by scaling this construction large enough we can achieve
a l-secure PRPG. We believe that this will be possible by considering the finer notion
of security which is proposed in section 5.4. However, unless we can eventually achieve

complete security by a construction (---(GOG)O---3G) then this construction will not
O(logn)




CHAPTER 6. THE LuBY-RACKOFF OPERATOR 78

be useful. This is because the size of the construction becomes larger than any fixed
polynomial for sufficiently large n, and thus the generator is not computable in polynomial
time. This is due to the fact that the size of the implementation of the construction is
exponential in the number of O operators which are used in the construction. This
becomes obvious by rewriting the construction and substituting the O operator with its
definition. This may limit the usefulness of this construction in practice, for it may be
too slow to practically consider. Further, it may prevent polynomial size constructions

of this form from becoming PRFGs.



Chapter 7

The ¢ Operator Generator

In the previous two chapters we have shown that the composition and O operators are
security increasing for PRPGs and PRFGs respectively. Unfortunately, in both cases we
have not been able to show that constructions based on them can give 1-secure generators.
In this chapter we will show that the & operator generator is security increasing when
applied to PRFGs. Further, we will show that it can be used to construct completely
secure PRFGs from 1 — § secure PRFGs. We now remind the reader of the definition of
the © operator generator.

We define the < operator generator (read as Diamond) as O = {O}, . |n € NAr, 2 €
{0,1}*}. Let f; and f, be two functions such that f; : {0,1}* — {0,1}", for : € {1,2}.
For each ry,r; € {0,1}" we define the operator O},,,,, which acts on the functions f
and f, as:

(f1lh e f2)(Z) = fi(z D 1) ® fa(z B T2)-

We will now show that this operator-generator is security increasing, by modifying
the arguments which were presented in Chapters 5 and 6. We will see that the fact that
< is an operator-generator, as opposed to an operator, does not have anything more than

a cosmetic effect on the proof.

Lemma 7.1 (Diamond Isolation Lemma) -

79
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There ezists a fized polynomial p, such that for all €,6 : Z — [0,1]; polynomials cg,cn,
and sg; and function generators H and G, where cg(n) and ci(n) bound from above the
size of the circuits which compute G™ and H™ respectively. Define F = GOH.

Hypothesis: If there ezists a family of decision-circuits {C,}, where for each n the

circuit C, is of size sg(n), and for some ¢ > 0 and infinitely many n:

> ¢(n)d(n) + nl

Be(F") ~ Br(#)

Conclusion: Then for infinitely many n there ezists either a decision-circuit T, of size

p2(n© - cg(n))se(n) for which:

Pr(H") — Br(F™)| 2 e(n) + i

or a decision-circuit =, of size cu(n) + sg(n) for which:

Pr(G") - gr(}"‘)‘ > 8(n) + .

Notice that in this version of the Isolation Lemma that there is only one circuit
which distinguishes G from random, and the resulting circuit is much smaller than the
circuit needed to break H. This allows us to iteratively apply the Isolation Lemma to the

construction GO -- -<OG for a p € Q(log? n) N (UR,O(n’)) and achieve complete security.
p(n)

Theorem 7.1 (Diamond Composition Theorem) -
Let G be a 1 — € secure PRFG. Then for each p € Q(log? n) N (UR,0(n')) the generator

F=GO---0OG is a secure PRFG.
p(n)

Proof: Similar to the proof of corollary 5.1. .0

We will now present a proof of Lemma 7.1. As was the case in Chapter 6, the
important changes to the proof rely on two technical lemmas. We present these lemmas
first, and then give the complete proof. It will become evident that the fact that we are

using an operator generator instead of an operator has no significant effect on the proof.
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7.1 Two Technical Lemmas

As mentioned in Chapter 6, the proof of security presented in Chapter 5 only makes
specific use of the properties of composition and permutations in Lemmas 5.6 and 5.7.
Therefore, we will need to prove corresponding lemmas which correspond to the < oper-
ator. In this chapter we shall assume the same standardized circuits and circuit families
which were presented in Section 6.1. Specifically, all circuits will never repeat oracle
queries, and all circuits Cy in a circuit family {C,} will perform exactly m(n) queries,
for some polynomial m.

Below we present the first technical lemma. It corresponds to Lemma 5.6.
Lemma 7.2 Given any decision-circuit C, for each f € F™ and for each ry,r, € {0,1}":
Pcr(fo:"ltrgp) = Pcr(‘rn)’

Proof: First observe that for each r; € {0,1}", that the set {f'(z®r2)|f € F*} = F".
Then let g(z) = f(z @ 1), and observe that the g ® F™ = F™, proving the result.

Corollary 7.1 Given any decision-circuit C, for each f € F™:
%r(f()f"‘) = Iér(f")

We now present the second technical lemma, and from it we will derive a simple
corollary which corresponds to Lemma 5.7. Notice that the proof of this lemma is very

similar to the proof of Lemma 6.3.

Lemma 7.3 For every n let S® C F™ be a non-empty set. Let {C,} be a family of
polynomial in n sized decision-circuits. We show that for any d > 0, there ezists an

r > 0 such that for all sufficiently large n:

Pr
(k) k2 e kL 2 1 81 seen 87 ) EFT X {0,1} (37} (0] x (S )"

nf*

I
Zwi| S

1 & .
—2_ Ca(fOhugsi) — Br(F™)

=1
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Notice that in this lemma there is no restriction on the size of S™, other than it
being non-empty. It is this lack of restriction on the size of S™ which ends up allowing
us to iteratively apply the O operator a polynomial number of times, as is stated in the
Diamond Composition Theorem (Theorem 7.1). Notice than in similar Lemmas presented
in Chapters 5 and 6 (Lemmas 5.8 and 6.3), there is a requirement that f—% > L, for
some constant c¢. Therefore, this lemma is a much stronger result.

Proof: We will assume that r is fixed, and later we will show how to determine r’s value.
First we define two experiments. In the first experiment pick random (f1, f2,..., i) €
(F™)™, and evaluate C,(f;) for each i € {1,...,n"}. Define the event E, to be:

> 1
nd’

L3t - B

i=1

In the second experiment pick random (f, k}, k?, ..., kL., k2., 51, ..., Spr) € F™x{0,1}E77) x
(S™)*", and evaluate C,( fOkix.k‘zs;) for each i, where 1 < i < n". Define the event E; to
be:

> 1
nd’

1 n
o 2 CalfOhregsi) — Be(F™)

=1

Using the Chernoff Bound (Lemma 5.4) we choose an r where the probability of event
E, occurring in the first experiment is less than ;‘;— We will show that the probability
of event E, in the second experiment, is negligibly close to the probability of E; in the
first experiment. The lemma will follow.

We will perform a third experiment, in which we model both of the first two experi-
ments by considering two different methods of evaluating the circuit C,, n™ times.

We choose si,...,s, € S"; 41, ...,'y,‘n(n),....,‘y{"', . ,’,‘,'(n) e {0,1}>™)"". and

kL K2, .. kL

n

r k2. € {0,1}>™™". Let g} represent the j** oracle-gate of C, when evalu-
ating f; in experiment one, or fO7; ,.,5: in experiment two. Let I} be the input to g;: in
the experiment and let O} be its output. We consider the gates in the following order

g{! 9%9 ceey gyln(n)’ ey g;‘" "'g"::(")'

We model the first experiment of performing n" evaluations of C,, where in each
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evaluation we set C,’s oracle to be a random function by equivalently considering n”
evaluations of C,, where in the evaluation of f; we independently assign the element 7
to O%, the output of each oracle gate g; in C,. Notice that by fixing, for each i and each
j, the value of O, we have completely determined the behaviour of the circuit C, in each
of the evaluations. Further, notice that because of the way we have set the outputs of
the gates, we have perfectly modeled experiment one. Let & be the event in experiment

three which corresponds to event E, in experiment one.

Observe that we could model the second experiment in the same manner if we could
guarantee that f would never be queried on the same input. Since our circuits never
repeat queries, there is no worry that C, will every query f<>:} ok2Si O1L the same input.
Unfortunately, in our experiment there is the possibility that for ¢ # j that C, will
perform a query « on input f<>;:i1 k25 and a query § on input fO:; oi2Si where a @ k! =
B @ k}, and the result will be that f is queried on the same input twice. However, we

can model experiment two in a method similar to which we modeled experiment one.

For each evaluation of Cy( fO;“'; .k';s,-) we set the output O} to be +}, for each £ such
that 1 < € < m(n). Observe that once the outputs of the oracle gates have been fixed,
then all of the inputs to the oracle-gates are fixed, as is the output of the circuit. Now
that the inputs and outputs have been fixed, the only way the f can be queried on the
same input twice is if we have bad choices for our k}’s. Now for each #, we check if there
exists a pair (a,b) and a j, where (a,b) < (i,7), such that I} @ &} = I} @ k; if such
an (a,b) and j exist then we say a collision has occurred. A collision corresponds to a
bad choice of k!, and therefore f is inadvertently being queried twice on the same input,
and we therefore have to make sure that the two query responses are consistent. If a
collision has occurred, then we reevaluate C,( fo;‘!.,,?s;) in the following manner. We
reevaluate the gates gi, ..., g}, in that order. For each gate gi we conmsider its input

I

%, and the input to f which is I} @ k!. If there exists a pair (a,b) < (,j) such that

I} k! = I}@k}, then f is being queried on an input which has previously been performed
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in the experiment. Therefore, we set the output O% to be f(Ii@k}) D s:(Ii®k?), and force
the oracle-gates to respond consistently to queries on f. Ifno such pair (a, b) existed then
the random response was a consistent response, and therefore we set Oj- «— 'y; Notice
that this method of evaluating C,,, perfectly models experiment two. Let £ be the event
in experiment three which corresponds to E-, in experiment two.

Note that the model of the second experiment is identical to the model of the first,
except in those cases in which a collision occurs. We define £ to be the event that a
collision occurred during the third experiment. Clearly & C &, U &3, which implies that
Pr(&;) < Pr(&:) +Pr(€2). Since the probability of E, is less than 775, in experiment one,
and thus the probability of & is less than 2—,,‘,,—, in experiment three; it suffices to show
that the probability of event &£ in experiment three is less than 2—,,‘,,— in order to prove
that the probability of &, in experiment three, is less than 5.5, which implies that the
probability of E;, in experiment two, is less than 27’; This proves the lemma.

We now bound from above the probability of event &;. Let
Li={((F @ k). (v @ s([© k7)) I1 <j < m(n)}.

The set L; represents the pairs (z, f(z)) which would be needed in order to calculate
the function f O:} k2 Si for the queries which are made by C, during the evaluation of
Ca(fO% a5i). Notice that (I} & k}) corresponds to the value at which f is evaluated,
given that the query I} is made to the function fOhia2sic Similarly, (7} & si(I} @ k7))
corresponds to the value of f evaluated on (I} @ k}) given that ( fO’;} .k?s,-)(I;: @ k}) =i
Since all of C,’s queries are unique it is the case that a repeated query to f cannot be
strictly contained in the evaluation of C,(f<O™s;), and therefore |L;| = m(n) for each
t. We now consider the probability that during the evaluation of C,( fOZ} .k?s,-) that a

collision occurs. We define the set
T. = (@3]l < j < m(n) A (=, £(2)) € UL L} ,

which contains all of the possible values of k! which will cause a collision. We observe
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that [T;| < m(n)?-i. Therefore the probability of having a collision during the evaluation
of Crn(fOh 128i) is at most 1%‘233 We note that the probability of a collision occurring
in experiment three is less than the sum of the probabilities of a collision occurring during

the evaluations of C,(f<{L,,25:) for each i, where 1 < i < n". Therefore:

2
Pr[Es] < %(1+2+---+n")
_ [m(n)? n"(n" +1)
- 2n 2
_ m(n)*n? +n"m(n)?
- 2u+l
< L
- 2
This proves the lemma. ...0

Corollary 7.2 For eachn, let S C F™ be a non empty set, and let {C,.} be a polynomial
sized family of decision-circuits. Then for every constant ¢, and for all but 2—,,1,5 of the
weE F":

1
Exwos) — B <

for sufficiently large n.

This corollary corresponds to Lemma 5.7, but is actually much stronger. Since there
are no restrictions on the size of S, we are able to prove a lemma corresponding to Lemma

5.9, as a direct consequence of Corollary 7.2

7.2 Proof Of Lemma 7.1

Assume that there exists a polynomial-sized decision-circuit family {C,} which for some
constant ¢ > 0 and infinitely many n distinguishes F* from F™ with probability at least
e(n)é(n) + ;1;
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Lemma 7.4 Fori> 0 and for each n let
Ka()) =Pr(F") + — and L.(i) = Pr(F") — =
n(1) =Pr —~ an "(l)_c,f )—ni.
Let

Pr(G"Ow) > K,.(i)} and T"(i) = {w € F*|Br(G"ow) < L,,(i)} .

S™(i) = {w s

Then given t,j:
Pr (we S"(6) < ~ and Pr (weT() <~
weFn AT I we;"(w i) < ni’
for sufficiently large n.

Proof: This lemma follows directly from Corollary 7.2 as G C F™. .0

Notice the similarities between this lemma, and Lemma 5.9. They are similar, but in
Lemma 5.9 there exists the possibility of a family of circuits {A,}, which does not exist
in this lemma. It is the lack of this circuit family which permits the large number of
applications of the Diamond Operator Generator in the Diamond Composition Theorem,
and thereby allows us to attain a PRFG from a partially secure PRFG. Notice that the
lack of the family of circuits {A} in this lemma, as opposed to Lemma 5.9, is made
possible due to the lack of restrictions on the size of S™ in Corollary 7.2, which is a direct

consequence of the lack of restrictions on the size of S™ in Lemma 7.3.

Lemma 7.5 FEither there ezists a family of decision-circuits {=,.}, where for each n the

circuit =, is of size cu(n) + s¢(n); and for infinitely many n:

Pr(G™) — fs’:(f")' > §(n) + ;]ja;

or for all sufficiently large n and all h™ € H™:

n 1
g:(GOh ) — gf(f'“)l <é(n)+ e
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Proof: If a family of circuits {=,} with the above properties exists, then we are done.
Otherwise, there exists no such family of circuits. Assume that for the circuit family
{C.}, there exists a set {h™ € H*|n € N} such that, for all sufficiently large n it is the
case that | Prc, (G"OA™) — Prc,(F™)| 2 8(n) + =. We create the decision-circuit family
{D,}, where D,(w) = Cp(wlh™).

Br(6) =B = E(GOR) ~ Erom
= gr(G“Oh“) - gr(}"‘) (Lemma 7.1)

A%

1
é(n) + =

Letting D, = =, we have a constructed a family of decision-circuits {=,}. This contra-
dicts the fact that there is no decision-circuit family of size cy(n) + sg(n), such that for
infinitely many n:
n 1
Pr(G") ~ B(F™)| 2 6(n) + &,

proving the lemma. .0

7.2.1 Main Argument

We note that the Main Argument for the Diamond Isolation Lemma is similar, but
easier than the Main Argument for the Composition Isolation Lemma presented earlier
in section 5.3.1. One major difference is that it performs more sampling, and therefore
achieves bounds under the normal security definition of a partially secure PRFG, and not
under the semi-secure definition of PRFGS. Another difference is that there is no need to
assume the existence of a family of circuits {A,}, due to Lemma 7.4. The final difference
is that we present the construction of only one type of circuit in this Main Argument.
Unlike the Main Argument in Chapter 5, there is no need to present a circuit which flips
biased coins. This is because for a random w € F*, Lemma 7.4 constrains the value of

Prc,[G*Cw] to be much closer to Prc,[F™], then is the case for the constraint imposed
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on the distance between Prc,[G" o w] and Pr¢, [F7], by Lemma 5.9.

Let & = €(r) + X and similarly let 8, = §(n) + L. Then the family of circuits,
{C.}, is capable of distinguishing G®OH" from F™ with probability at least &,d,, for
infinitely many n, as this value is strictly smaller than €(n)é(n) + ==, for sufficiently large
n. We assume that there exists no family of circuits {=,}, where each circuit =, is of

size cy(n) + s¢(n), such that for infinitely many n:

n 1
Be(H") ~ Br(F™)| 2 6(n) + iz

From the above assumption and Lemma 7.5, we know that for all sufficiently large n
and all A™ € H":
n 1
g’f(GOh ) — 1;:(.7:"), < é(n)+ s (7.1)

From Lemma 7.4 we know that for

Ko = Pr(F™) + nis and S"= {w € 7" [Bx(G"ow) > K, } , (7.2)

that Pryes(w € S™) < ¢, for all sufficiently large n. Similarly we know that for

1

Ln=Br(F")— = and T"= {w & 7 [Br(Gow) < Ln} . (13)

that Pryem(w € T*) < i, for all sufficiently large n.
We will construct a family of decision-circuits {Y,}, where each circuit T, is of size

p2(n¢ - cg(n))se(n), such that for infinitely many n:
n 1
Pr(H™) — Pr(F™)| 2 e(n) + —,

proving the lemma. In the sequel we show how to construct T, for each n such that both
|Pre, (F*) — Pre, (F7)| = e(n)dé(n) + L., and n is sufficiently large for all inequalities in
the following proof to hold true.

We first give an overview of the proof. We will construct a circuit B, (via an inter-

mediate circuit A,) which, given as input a function w, almost surely approximates the
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value Prc,(G*Ow). From Equations 7.2 and 7.3, we know that for almost all random
functions w € F* that Pr¢,(G"Ow) will be bounded from above by the value K,, and
below by the value L,.

We show, by means of a simple averaging argument, that it must be the case that
for a large fraction of the h € H, (a fraction greater than e(n) + -3;) it is the case that
Prc,(G"Oh) falls outside of the range [Ln, K.]. We can then distinguish between H"
and F™ by computing B(w), and accepting if B(w) is greater than K, or less than L,.
Because the sets S™ and T™ contain all of the functions w in F*, for which Prc (G"Ow)
is less than or greater than L, and K, respectively, and since %—f_%ll- < = and g"—,.} <
we know that about a fraction -3: of the w will be accepted by B(n).

We construct a probabilistic circuit A, such that

b
An(w) = % Z; Cn(9iO%az®),
where gy, ..., gt € G" and k},k}, .., kL, k2, € {0,1}" are randomly chosen. Let x(n) be
the length of the key of H™, and set @ > 1 so that n* > k(n). Using the Chernoff Bound,

b is chosen large enough such that:

1 1
£ ooz ] =
and
Pr ||Au(h") — Pr(GOR™)| > —| < -
pnetin |70 ) En = nTe| = 2n%°

By Lemma 5.5 we derandomize A, to get the circuit By, for all but -2x of the w € F™:

Ba(w) — gf(G"Ow)l <= (7.4)

and for all of the A} € H™:

1
< ;7::’ (7.5)

B (h") — Br(GOh})

since for each k € {0,1}*(™ the probability of h} € H™ is at least iy > 7w
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Let K] = Prc,(F*) + =, and let L], = Prc,(F*) — =. We now show that

" > K’ m < L L
WL [Ba(h™) 2 KoV Ba(h™) < L1] 2 €(n) + —.

The argument is an averaging argument. We first give an intuitive version of the
argument, and then we give all of the details.

We now present the intuitive version of the argument. In this argument we essentially
assume that any two values which differ by a value of at most pﬂlﬁ;:)-’ for some polynomial
poly, are equivalent.

We remember that B,(h"™) is an approximation of Pr¢,(G"COhR™), and intuitively the
two values can be treated as the same. We know that |Prc,(G"CH") — Prg, (F7)| >
e(n)é(n). We partition the functions in H" into two groups. This first group contains
those h* € H" for which Prc,(G"COh™) = Prc, (F™"). The second group contains the
rest of A € H™ not in the first group. We then observe, by equation 7.1, that for each
h™ € H", the value | Pr¢,(GOAR™) — Prc,(F™)| is less than §(n). Using this fact we point
out that for a random A™ € H™ it must be the case that A" is in the second group with a
probability of at least e(n), or otherwise |Pr¢, (G*COH™) — Prg, (F™)| < €(n)d(n).

We know present the exact argument. Assume for contradiction that Praneun[Bn(h™) =
K,V Bn(h™) < L}] < e(n) + 3=. Let K™ C H" be the set of functions h® € H", for which
B.(h™) > K! or B.(h™) < L', and let K" be its complement.

We now get a contradiction by a simple averaging argument.

BelGoH] - Eri]|

SZ(

1 -1)

ExLCOM — B

hneH®»
= % ([rcomt g i = 1)

picor-g gulr )

+ ¥ (

hneKkn

A= hn])

sZ(

hAnekn

Bi{GOK"] - Bl
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+h§, (( ) o lf= h"l)
< hén ( PrGOR™] — Br(F™]| Prlf = h“]) + (1 — e(n) — ’_112_) n£= (7.6)
< & (o) (Br=r))+ an
< (e(n) + ;112—) (J(n) + ;ja) e

< €n)s(n)+ % (7.8)

+

1
nTc

The inequality in line 7.6 follows from two facts. First that, by assumption, the proba-
bility that a random A™ € H" is in K™ is 1 — ¢(n) — jz. Second, that for each A™ in K,
it is the case that K, > B,(h") > L,, and this implies that |B,(h") — Prc,(F*)| < ==
by the definitions of K,, and L,,.

The inequality in line 7.7 follows from two facts. First, by assumption, the probability
that a random A" € H" is in K™ is (e(n) + . Second, by equation 7.1, it is the case
that for each k™ € H" that |Pr¢,(GOR™) — Prc, (F7)| < 8(n) + ==

The inequality in line 7.8 contradicts the fact that {Pr¢, {GOH] — Prc, [F7]| = €(n)d(n)+
L., and therefore it must be the case that Praneun[Ba(h") = K V Bn(h") < L}] >
e(n) + %=

We create the decision circuit B,(w) which accepts w iff B,(w) > K, or if B,(w) <

LI

e

. 1
Pr(H") = Br(F™)| 2 eln) + =z — BX(F")

1 2 1

> ¢(n)+ e - (Equations 7.2, 7.3 & sampling error)
1

> ¢(n)+ e

Notice that the second inequality follows from constraints on the probability that
a random function w € F™ is in the set S™ defined in equation 7.2. This is because,

for all sufficiently large n, K is greater than the value of K,. As previously seen, the
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probability that a random w € F™ has the property that Prc,(G*Ow) > K,, is the
probability that w is contained in the set S™. But, we know that the probability of a
random w € F™ being in the set S™ is less than }z. Clearly it follows that the probability
that a random w € F" has the property that Prc,(G"Ow) > K], is smaller than -,
for the set of functions with this property is necessarily a subset of S*. Clearly similar
arguments apply for when Prc, (G"Ow) < L,.

Finally, since B,(w) approximates Prc,(G" o w) to within a value of 31, for all but
s+ of the w € F™, and since it still holds that for all sufficiently large n that K} — 7=
is greater than K, there can only be a fraction %z + ;5= of the w € F™ for which B'(w)
accepts. The first % of these functions are the ones in S™ and T;,. The last 5= of these
functions are the functions w in which B(w)’s approximation of Pr¢,(G*Ow) is off by
more than a factor of .

We let T, = B,, and we are finished.

7.3 Questioning The Model

In this section we have shown how to construct a PRFG from partially secure PRFGs,
and have thus reached one of our research goals. However, the initial purpose of studying
constructions which increased the security of partially secure PRFGs was to attempt
to provide evidence that such constructions would amplify security when applied to
completely insecure function generators (what would be considered a (-secure PRFG in
our model). Or in lay man’s terms, we wanted to provide evidence that there was reason
to believe that the constructions used in real world cryptographic permutation generators,
such as DES and the AES candidates, actually do increase security. Unfortunately,
our research program has fallen short in this respect because there is little reason to
believe that the construction studied in this chapter would have any security amplifying

properties on insecure function generators. This is based on the belief that, to the best
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of the authors’ knowledge, there exists no “real world” cryptographic system, in public
use, that is based on the security amplyfiyng properties of the exlcusive-or function.
Further, the author predicts that the consensus among cryptologists would be that it
would be shocking to discover that the exclusive-or function can be used in the fashion
described in this chapter to increase security. Therefore, while there is no formal evidence
backing the claim that the © operator does not provide security amplification in the “real-
world”, there is sufficient enough evidence to have us question the model we are working
in. Therefore, proving that certain constructions are security increasing when applied
to partially secure PRFGs may provide little evidence that the construction will have

security amplifying properties when applied to trivial generators.



Chapter 8

Conclusions and Open Questions

In this chapter we summarize our findings, and propose some interesting new research

directions.

8.1 Conclusions

Our goal was to understand in which ways insecure functions generators might be com-
bined in order to produce function generators which are conjectured to be pseudo-random.
We developed a list of possible constructions which are based on “natural” operators
which are commonly used in the cryptographic community.

We then considered each construction in the model of partially secure pseudo-random
generators. For each proposed construction we were then able to either give evidence
which suggests it is of little practical use, or classify the construction as security in-
creasing, preserving, or decreasing. We extended the result of Luby and Rackoff [12]
and showed that we could achieve a 1 — X~ secure generator from a partially secure

logn

PRPG. We then showed that the we could achieve the same security using PRFGs and

the O operator, as proposed by Luby and Rackoff [13]. Finally, we have shown that we
can achieve a completely secure PRFG from a partially secure PRFG based on the &

operator generator. This last result has led us to question the belief that a construction
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which is security increasing in the weakly secure pseudo-random model is also security
increasing when applied to insecure generators. However, it has answered in the positive
the question of whether or not it is possible to use a “natural” construction to combine

partially secure PRFGs into a secure PRFG.

8.2 Open Questions

In this section we will first review the open questions which have appeared previously in
this text. We will then describe one problem which we have spent a significant amount
of time thinking about, but for which we have made little progress on. Finally, we
will suggest a new direction for future research which we believe is of strong practical
importance, and if successful may dramatically change the way conjectured PRPGs and
PRFGs are designed.

8.2.1 Previously Stated Oren Questions

We remind the reader that in Chapter 4 we could not show that the construction based on
the XOR operator was security preserving when applied to generators of security greater
than 7. We then mentioned that for similar reasons we were unable to determine whether
a construction based on the [0 and XOR operators was security increasing, preserving,

or possibly diminishing. We restate the questions here, for completeness.

Open Question 8.1 (Restatement of Open Question 4.1) Is the construction F(a) =

(Gm(n) @ - - - ® G1)(@) security increasing, when the generators G; are restricted to being

1 — & secure for § < 1.

Open Question 8.2 (Restatement of Open Question 4.2) Is the construction F(a) =
((G2m(n)DGam(n)—1) @ - - - ® (G20Gy)) () security increasing, security preserving or secu-

rity decreasing.
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8.2.2 Adartive vs. Non-Adartive Security

We say that a PRFG is non-adaptively secure if it is secure under a weakened version of
the standard definition of secure PRFGs. The definition is weakened by disallowing the
adversary from making adaptive queries to the function-oracle. Therefore, the adversary
can still make a polynomial in » number of queries, but the queries must all be made at
the same time. This prevents the adversary from making queries based on information
learned from the results of previous queries.

We give a simple example of a generator which is non-adaptively secure, but which
is adaptively insecure. Let G = {G : {0,1}*™ x {0,1}* — {0,1}"|n € N} be an
adaptively secure PRFG. We construct a non-adaptively secure generator G = {G :
{0,1}*(") x {0,1}* — {0,1}"*|n € N}, by taking for each k£ € {0,1}*(") the function
47 € G*, and using it to construct a new function g¢ € G™ for all z # §2(0), for some
z € {0,1}" and k € {0,1}*™) we set gf(z) = g7(z), but we set g2(gp(0)) = 0.

The question is if there is some construction based on “natural” operators which
allows us construct an adaptively secure PRFG, from non-adaptively secure generators.
Specifically, we say that a construction provides adaptive security if, for all possible non-
adaptively secure PRFGs used in the construction, the resulting generator is adaptively
secure.

We note that using a non-adaptively secure PRFG we can easily construct a one-way
function. Then using the standard constructions we can construct an adaptively secure
PRFG. Therefore, when we limit our operators and constructions to be natural, we mean
that the operators are ones which can easily be used to combine generators. Further, the
operators are normally computable in linear time.

As we just mentioned, the existence of non-adaptively secure PRFGs implies the
existence of adaptively secure PRFGs. Therefore, the point of this question is to develop
an efficient construction which gives adaptively secure generators from non-adaptive ones.

We will now rule out one feasible construction, and propose several others.
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Data Dependent Re-Keying Does Not Work

Let H = {H" : {0,1}" x {0,1}"* — {0,1}"*|n € N} and G = {G" : {0,1}" x {0,1}" —
{0,1}*|n € N} be non-adaptively secure PRFGs. Let the data-dependent re-keying
construction F = {F"| € N} be defined as follows:

F*(k,z) = G*(H"(k,z), z),

for each n.

We will now construct specific generators G™ and H™ which are non-adaptively secure,
but F will not be adaptively secure. Let H = {H" : {0,1}" x {0,1}* — {0,1}"|r € N}
and G = {G" : {0,1}" x {0,1}" — {0,1}"|n € N} be adaptively secure PRFGs. For each
n we construct G™ by setting for each = € {0,1}" and each k € {0,1}" \ {0} the function
g2(z) = §¢(z); and then for each z € {0,1}" setting g3(z) = 0. For each n and each
k€ {0,1}" let o} = g)!:;: © (0). For each n we construct H™ by setting for each k& € {0,1}"
and each z € {0,1}" \ {a}} the function h}(z) = A7, and setting A7(a}) = 0. Notice
that G™ is adaptively secure, and that H" is non-adaptively secure.

Now construct F from H and G, as in the data-dependent re-keying construction given
above. Notice that for each n and for each k € {0,1}" the function f; € F" has the
property that f2(ff(0)) = 0, and therefore the generator F is clearly not adaptively

secure. Further, since G is adaptively secure, we see that the construction does not even

preserve adaptive security.

Proposed Constructions

We conjecture that any of the constructions presented in Chapter 4 which are security
improving might also provide adaptive security. In particular, we have not been able to
give examples of constructions of any non-adaptively secure PRFGs which, when used in
one of the security improving constructions of Chapter 4, gives a generator which is not

adaptively secure. However, we have failed to give either a proof of adaptive security or
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a counterexample when we restrict the constructions so that only two constituent non-

adaptively secure generators are used, and when only one adaptive query is performed.

We also conjecture that if K is a 1-wise independent permutation generator, and G
is a non-adaptively secure pseudo-random permutation generator then the construction
G o K is an adaptively secure pseudo-random permutation generator. We note that
composition is not commutative, and the construction Ko G is not conjectured to provide
adaptive security, for there exist specific examples of pair-wise independent permutation
generators and non-adaptively secure PRFGs which when used in the above construction

do not give adaptive security.

For example if we let K = {K" : {0,1}*" x {0,1}* = {0,1}"|n € N} be a pair-wise
independent permutation generator, where K(a ® b, z) = az + b; |a| = |b| = n; a 7% 0; and
the operations are performed over the field GF'(2"). Let H = {H™ : {0,1}*(") x {0,1}" —
{0,1}"|n € N} be an adaptively secure PRPG. For each n, and for each k£ € {0,1}"("),
we will modify k] € H and thereby make H non-adaptively secure. Let axp = -Eg—gg;—::%%—;.
Modify Ay by making the changes:A}(anp) < hZ(0), hg(anp + 1) + hR(1) and AZ(asp +
2) « hZ(2). Clearly, H” is no longer adaptively secure as one can easily construct an
adversary which accepts a function f* € F* iff f*(0) = f*(ay»), f*(1) = f*(ayn+1) and
f(2) = f*(ayn +2). However, we can also construct an adversary which distinguishes
KoH adaptively. Given a function f™ € F™ our adversary will distinguish it by performing

computing ayn, and then computing By = !;(Era/l" "))__!!(EZ{."::)) The adversary accepts iff

B = ayn. It is a relatively simple argument to show that this will occur with probability
1 if f* was drawn from K" o H", whereas it will occur with a negligible probability if f
was drawn from F™. This construction can be generalized to show that for any k-wise
independent function generator G = {G" : {0,1}* x {0,1}" — {0,1}" : n € N}, where
Gno0moay () = arz* ' + ap_12*¥2 + ... + a,2° and |a;| = |z| = n; and a generator H’
which is constructed in a generalized manner of the generator H presented above, that

the generator G o H' is non-adaptively secure.
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8.2.3 A Combinatorial Security Model

As mentioned earlier, the existence of PRFGs cannot be proven without indirectly proving
that P # NP. Given the apparent difficulty of such a task, it would seem unlikely
that any modern cryptographic systems will be proven secure in the immediate future.
However, this does not prevent the development of a theory which can be used to help
cryptographers design cryptographic systems. Currently, block-cipher designers only
seem to have intuition to guide their designs. Further, the number of designs often
seem to be as numerous as the number of block-cipher designers. The result is that
there are many proposed block-ciphers, none of which can be compared. We propose the
development of a theory to help with this process.

This research direction is motivated by the current Advanced Encryption Standard
competition. As mentioned earlier, there are many proposed function and permutation
generators which are currently being considered, and there is no quantifiable method for
comparing the different designs. The end result seems to be that the main criteria for
choosing a winner of this competition is based on the pedigree, within the cryptographic
community, of the designers. Yet many of these designs are based on composing triv-
ial permutation generators numerous times to result in a permutation generator which
appears to be secure. A theory such as the one we are proposing would allow for these
generators to be compared in a quaatitative, and hopefully meaningful sense. Informa-
tion about the AES competition and the currently proposed ciphers is available at the
AES’ official web page http://csrc.nist.gov/encryption/aes/aes_home.htm.

The idea behind our proposed theory would be to combine function generators which
have some trivial security properties together in some construction, such as the security
increasing constructions proposed in Chapter 4. We would then conjecture that if the
resulting generator has some specific combinatorial property, then it is a pseudo-random
generator.

An example of how such a theory might look is the following. We would like to stress
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that these examples are most likely incorrect, and are included only to help bring light

to our proposed research direction.

Definition 8.1 (Trivial Permutation Generator (Example)) A function generator
T ={T":{0,1}*") x {0,1}"* — {0,1}"|n € N} is considered trivial, if for each n, each
key k € {0,1}*") and each z € {0,1}", every bit of t}(z) is dependent on no more than
O(logn) bits of z.

An example of a construction which would be used to combine trivial function generators
is repeated composition. Finally, an example of a conjecture of security based on a

combinatorial principle is given below.

Conjecture 8.1 (Combinatorial Security (Example)) Let T be a trivial function
generator. Construct F =T o-.-0T, so that enough compositions are performed so that
F is an almost pair-wise independent function generator. Then there ezists a polynomial

p such that F = {F*o---0 F"|n € N} is a PRFG.
»(n)

Note the importance of T being a trivial function generator, for there are standard con-
structions of pair-wise independent permutation generators which are clearly not secure.
For example, if we consider the generator K(a @b, z) = az + b, where |z| = |a]| = |b] = n,
a # 0 and the operations are performed over the field GF(2"), then it is clearly insecure.
Further, this generator would be insecure under an arbitrary number of compositions,
as the resulting permutations will always be linear. Therefore, the triviality requirement
would exclude the use of a generator such as K.

Notice that this construction is based on what people currently do to construct ci-
phers, and is not some notion we have invented. Both DES and almost all of the AES
candidates can by described at an abstract level as being the result of composing together
many completely insecure (or trivial) permutation generators. What differs in their de-

sign is the types of trivial permutation generators they use, and how many times the
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generators are composed. Notice, that is exactly the types of differences which could be
compared in our proposed theory.

One difference between our proposed theory, and the construction of known ciphers,
such as DES and the AES candidates, is that the known ciphers are compositions of
permutation generators, whereas in our construction we consider compositions of function
generators. Initially, we thought that the trivial generators should be restricted to being
permutation generators. However, in hindsight we realize that this restriction is probably
not important. The important goal is that we are able to achieve an almost pair-wise
independent function generator from some polynomial number of compositions.

We believe that using a theory such as the one proposed, designers could easily
quantify and compare tradeoffs which were made during design. For example, arguments
could be made for using different types of initial trivial generators. However, we could
now argue tradeoffs based on how fast specific trivial generators are, and the size of the
construction in which they would need to be embedded, in order for the construction to be
conjectured secure. Further, it might be possible to prove security preserving reductions
between different generators in this model. This would allow us to establish security
classes, where certain generators would be pseudo-random only if other generators are
pseudo-random. Finally, because the theory is not based on any complexity theoretic
assumptions, it may be easier than in the complexity theoretic models to find counter

examples, and thus disprove the theory, if the theory turned out to be incorrect.
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Appendix A

Proof Of Security for the Generator
Described in 5.1.1

In this section we present the proof of security for the PRPG constructed in section 5.1.1.
We first remind the reader of the construction presented, and then give the proof of its

security.

A.1 Construction of the 1 — é Secure Generator

To simplify the presentation we assume that § and € are of the form 5= or 1 — 3, for

some constant c. Let G = {G" : {0,1}*™ x {0,1}" — {0,1}"|n € N} be a PRPG. We
construct G = {G" : {0,1}¥™)+¢ x {0,1}* — {0,1}"|n € N} to be 1 — & secure in two
steps. We will describe the construction of G*, and note that the construction of H” is
similar.

First we set a fraction & of the keys to correspond to the identity permutation, and the
remainder to correspond to permutations chosen from G". This is done in two different

fashions dependent on the form of é as described below:

Case 1 (§ =1— %) For each &k € {0,1}“™** we set the permutation g¢ € G™ to be the
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identity permutation if the first ¢ bits of k are not all 0; otherwise let k& be the last

¢(n) bits of k, and set gf = gF, for §¢ € G~

Case 2 (6 = &) For each k € {0,1}*")* we set the permutation gf € G" to be the
identity permutation if the first ¢ bits of k are all 0; otherwise let k be the last £(n)

bits of k, and set gf = 37, for g € G™.

The second step in the construction of G is to ensure that for each k € {0, 1}4™)+¢
we set the value of gF(0) in one of two manners, depending on the form of §. We describe

this transformation below:

Case 1 (6§ = 1 — &) For all k set the first c bits of g¢(0) to 0; the last n — ¢ bits remain

as they were in gf(0).

Case 2 (6 = &) For all k ensure that not all of the first c bits of g7(0) are 1. If they
are, set them to be a member of the set {0,1}¢\ {1°} chosen uniformly at random?;

the last n — c bits remain as they were in g7(0).

Notice that in order to maintain the permutation property of G® we can simply store
both the initial and modified value of g2(0). Should a query ever be made to the initial
preimage of the modified value of gf(0), then we respond with the initial value of gZ(0).

A.2 Proof that Gis 1 —§ Secure

Theorem A.1 The pseudo-random permutation generator G is 1 — & secure.

Proof: Let A be an adversary such that:

1
™ — 1) — " — > — .
J"IZ;"(A 1) gnl;gn(A 1)| =26+ o (A.1)

'In practice a PRNG p would be used to set the first ¢ bits of g2(0). This would be done by setting
the first ¢ bits of g2(0) to be equivalent be the first consecutive set of ¢ bits in p(k) which were not all
1. This allows the first ¢ bits to be computed, and discards the need to store them, which would not be
possible as it would require an exponential amount of storage.
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for infinitely many n and some constant ¢ > 0. We will show how to distinguish G
from random functions or derive a contradiction, and thereby prove the 1 — § security
of G. The intuition is as follows, we expect the adversary, A, to be able to distinguish
the identity permutations in G™ from random functions in ™. However, the remaining
functions in G™ should not be distinguishable from random functions f* € F*, which
have the property that f™(0)’s first ¢ bits are either all 0, or not all 1, dependent on
whether § > 7 or § < ; respectively. Further, accepting any of the f* € F™ which do
not conform to the above description will only decrease the adversaries distinguishing
probability. Therefore, it would appear that the distinguishing probability should not be
better than 4, and this provides the contradiction.

We partition the set {0,1}" into two sets X™ and Y™ = {0,1}" \ X™. The contents

of the set X™ is dependent on the form of § as described below:
Case 1 (§ =1 — %) Then X" = {z € {0, 1}"|The first ¢ bits of z are 0}.
Case 2 (6§ = &) Then X™ = {z € {0,1}"[The first c bits of z are not all 1}.

We use X™ and Y™ to distinguish between the functions f* which appear to have had the
transformation on f™(0) applied to them, in which case f™(0) € X", versus those which
have not, in which case f*(0) € Y™. Finally we distinguish the identity permutations from
random permutations by simply checking of f*(0) = 0. By partitioning the functions in
the distributions as in the manner described above, and assuming that Prinesm(Af" =
1) > Prgnegn(A9" = 1) (if this is not the case, then we can simply reverse the outputs of

A), we can rewrite equation (A.1) as shown below:

(A7 =11(0) =0] Pr [f"(0) =0]
+ !,,1;;.,,[14’" =1|f*(0) # 0 & f(0) € X"] f,,f;;,,[f”(ﬁ) #0& f*(0) € X"
+ J,,};;,,[AI" =1{f*(0) #0 & f(0) € Y™ ,,,fe’;,,[f"(ﬁ) #0& f~(0) e Y™
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- Br 4" =1g"(0) =0] Pr [g"(0)=0]

gnegn neGn
~ Pr 4 =1"(0) £0 & "(0) € X"]_Pr [¢"(0) #0 & "(0) € X™]
- g,,lzg,,[A’" =1[g"(0) #0 & ¢"(0) € Y"] L 97(0) #0 & g7(0) € Y]
S

We notice that for the set of random functions it is the case that:

Py (/@) = 0] = o;

freFn
P [f(0) £0& /@) € X" =1 -6~ oy
LB (0 #0& f(0) e Y] =4,

Similarly, by the construction of G* we know that
LEE[97(0) = 0] = (§ + n(n));
AL[97(0) #0 & g"(0) € X"] =1 =6 —n(n);
Pr [°@) #0&g"0) €Y7 = 0;

for some negligible function n(n). The quantity n(n) comes from the observation that
Prg,,ea(g“(ﬁ) = 0) must be at most n(n), or G is not pseudo-random.

Therefore, rewriting equation (A.l) again, using the above facts, we get:

Pr [A” = 1|/~(0) = 0] (217) (A.2)

frern
BLlA” =110 £0& @ e X7 (1-5- 1)
Pr (A" = 1|f"(0) #0 & f*(0) € Y"|s

fnern
—_ g" = (0 = 0
L[4 =1]g"(0) =06 + 1
- P[4 =1]g"0) #0& ¢"(®) € X" (1 — 6 — 1)
1

v

5+;;;
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We now use a lemma which formalizes our intuition that the adversaries should not
be able to distinguish between random functions f® € F" that have the property that
f*(0) € X™ and those g" € G which are not the identity function. These have the form

g"(0) € X™, by the construction of G™.

Lemma A.1 For all constants e > 0 and sufficiently large n,

JPe [47 =1/7°0) £0 & f70) € X*] = _Pr (4" =1g"0) £0 & ¢"(0) € X"]| < .

We now take equation (A.2) and eliminate all negligible quantities. Further, we treat
the two probabilities in Lemma A.l as equal because their difference is negligible. The
result is:

— — — - — 1
" n ™ — 1a™(0) = 1
JPr (A7 =1 @) #£0& /@) €Y~ Pr (AT =1|g"(0) =0}§ 2 8 +

This gives:

PG £08 G € v @) =0 3 14 o
JPr (A7 =11 @) £0& @) €Y - Pr (47 =1lg"(0) =0 21+ 5 o,

but this is a contradiction since the two probabilities are bounded to be between 0 and

1. ...0

All that remains is to give a proof of Lemma A.l.
Proof of Lemma A.1l: Suppose there exists a e such that for infinitely many n the
inequality stated in the lemma does not hold. We will construct an adversary A which
can distinguish G" from F™ with significant probability for infinitely many n.

Given a function w, A will query w(d), and if w(0) = 0 then A will accept with
probability 1. Otherwise A simulates A running on w exactly, except in one condition:

if A queries w(0) and if w(0) ¢ X™ then we modify it, dependent on 4.

Case 1 (6§ =1— ) Set the first ¢ bits of w(0) to 0.
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Case 2 (8§ = 3:) Set the first ¢ bits of w(0) to be a member of the set {0,1}°\ {1°}

chosen uniformly at random.

We maintain the permutation property of w by simply having A store both the initial
and modified value of w(0). Should a query ever be made to the initial preimage of the
modified value of w(D), then A responds with the initial value of w(0). Finally, A accepts
iff A accepts.

We notice that the probability of the event in which w(0) = 0 can be bounded in
both distributions. For the set of random functions, Prsemm(f(0) = 0) = 5%, and for the
functions from the generator G", Pr Iaegn(97(0) =0) < 2, for all constants e > 0. Since
in both cases the event happens with negligible probability, the fact that A accepts in both
these cases with probability %, does not have any significant affect on A’s distinguishing
probability on the two distributions of functions. Therefore, we will ignore this factor for
the remainder of the proof.

We observe that by the simulation of A by A and the construction of G from G that:

Pr [A" =1]g"(0) # 0 & g"(0) € X"] = i A% =1].

gneGn

Similarly,

o (A7 = 1@ #£0& @ € X" = Pr [A7 =1].

Therefore by assumption:

Pr [A"=1]— Pr [A"=1] >l
g“EG" Jrermn

This contradicts the assumption that G is a PRPG, and proves the claim. ...0





