
WEIPDJG YANG

The Design of a Dynamic Voronoi Map Object (VMO) Mode1
for Sustainable Forestry Data Management

I

Tnèse
présentée

à la Faculté des études supérieures
de l'université Laval

pour l'obtention
du grade de Philosophiae Doctor (Ph-D.)

Département des sciences géomaîiques
FACULTÉ DE FORESTERIE ET DE GÉOMATIQUE

U N N E R S ~ LAVAL
QUÉBEC

Novembre 1998

O Weiping Yang, 1998

National Library I * m of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. nie Wellington
OtlawaON K1AON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Lïbrary of Canada to Bibliothèque nationale du Canada de
reproduce, ioan, distribute or seU reproduire, prêter, distribuer ou
copies of this thesis in mirrofonn, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/nlm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent ê e imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation,

The unleashed power of the atom has changed everythuig,
Save the way we thidc and thus we drift toward unpardeled
catastrophe.

Albert Einstein

Résumé

Le diagramme de Voronoi est une structure géométrique puissante et attrayante pour un
grand nombre d'applications. La présente thèse étudie la souplesse d'une telle structure
géométrique, appelé le diagramme Voronoi dynamique de points et de segments de lignes,
appliquée aux systèmes d'information géographique (SIG). En particulier, la question qui
concerne cette thèse est : Étant donné le domaine d'application qui est la foresterie, est-ce
que le diagramme Voronoi dynamique est un modèle de données utile pour apporter un
support aux applications concernées par le développement durable en foresterie?

Cette thèse apporte une réponse fortement positive à la question précédente. En révisant les
caractéristiques forestières du développement durable, cette thèse résume les nécessités
correspondant à la validation des modèles de données spatiales. Après l'examen des
modèles de données spatiales traditionnels utilisés dans Ia plupart des systèmes SIG
courants, cette thèse est en accord avec le fait que le modèle dynamique Voronoi peut
supporter l'intégration de la topographie et de la géométrie. Il satisfait aussi à toutes les
exigences d'un SIG dynamique. Cette discussion est soutenue par une incorporation du SIG
dynamique Voronoi dans sa fome primitive et en présentant les opérations habituelles des
SIG à travers le modèle de données Voronoi-

Cette thèse contribue au développement d%i SIG Voronoi dynamique en proposant un
modèle Voronoi Map Object (VMO) qui soustrait les limitations associées à l'occupation de
la mémoire pour les diagrammes Voronoi de grande taille. Le modèle VMO est réalisé en
sous-divisant le diagramme Voronoi en sous-diagrammes et en les représentants avec une
structure d'objet hiérarchique. Chaque nœud sur la structure est un VMO et supporte
entièrement la topologie et la géométrie reliées de même que Ies opérations sur les objets.
Cette thèse décrit Palgorithme utilisé pour sous-diviser (et coller) un diagramme Voronoi et
également le formalisme associe au modèle. VMO.

Finalement, la thèse discute de la conception d'un système de gestion des données
forestières utilisant le modèle VMO. La discussion couvre le modèle objet, le modèle
dynamique, le modèle fonc t io~e l et l'architecture logiciel du système. L'application du
modèle VMO pour le traitement parallèle de problèmes spatiaux de même que pour la
généralisation automatisée de cartes sont également brièvement discutées.

Abstract

The question concemed in the thesis is: Given forestry as an application domain, is the

dynamic Voronoi diagram a usefil GIS data model to support applications concemed with

the sustainability of forestry?

The thesis provides a strong positive answer to the above question. After examining

traditional spatial data models and data structures used in current GIS, the thesis argues that

the dynarnic Voronoi data mode1 can support integration of the topology and geometry and

satisfies al1 the requirements for a dynamic GIS.

The thesis contributes to the development of a dynamic Voronoi GIS by proposing a

Voronoi Map Object (VMO) model. The VMO model is achieved by partitioning the

Voronoi diagram into subdiagrams and by representing them with a hierarchical object

structure.

Résumé

La question qui concerne cette thèse est: Étant donné le domaine d'application qui est la

forestene, est-ce que le diagramme Voronoi dynamique est un modèle de données utile

pour apporter un support aux applications concernées par le développement durable en

foresterie?

Cette thèse apporte une réponse fortement positive a la question précédente. Après

l'examen des modèles de données spatiales traditionnels utilisés dans les SIG courants,

cette thèse est en accord avec le fait que le modèle dyamique Voronoi peut supporter

l'intégration de la topographie et de la géométrie.

Cette thèse contribue au développement d'un SIG Voronoi dynamique en proposant un

modèle Voronoi Map Object (VMO). Le modèle VMO est réalisé en sous-divisant le

diagramme Voronoi en sous-diagrammes et en les représentants avec une structure d'objet

hiérarchique.

Abstract

The Voronoi diagram is a powerful geometric structure attractive to many applications,

especially when it is developed with cornputers. This thesis investigates the flexibility of such

a geometric structure, called the dynamic Voronoi diagram of points and iine segments,

appiÏed to GIS, geographical information systems. In particular, the question concemed in

the thesis is: Given forestry as an application domain, is the dynamic Voronoi diagram a

useful GIS data model to support applications concerned with the sustaiaability of forestry?

The thesis provides a strong positive answer to the above question. By reviewkg the

characteristics of sustainable forestry, the thesis surnmarizes the corresponding requkements

for the supporting spatial data models. Afler examining traditionai spatial data models and

data structures used in current GIS systems, the thesis argues that the dynarnic Voronoi data

mode1 can support integration of the topology and geometry and satisfies all the

requirements for a dynamic GIS. The argument is supported by a cornputer implementation

of the dynamic Voronoi GIS in its primitive form and by presenting comrnon GIS operations

over the Voronoi data model.

The thesis contributes to the development of a dynamic Voronoi GIS by proposing a

Voronoi Map Object (VMO) model which removes the limitation of memory occupation for

large Voronoi diagrams. The VMû model is achieved by partitioning the Voronoi diagram

into subdiagrams and by representing them with a hierarchical object structure. Each node

on the structure is a VMO and support fidl topology and geometry about, and operations on

the object. The thesis describes the algorithm for partitioning (and pasting) a Voronoi

diagram and the formalism ofthe VMO model.

Finally, the thesis discusses design issues for a forestry data management system using the

VMO model. The discussion covers the object model, the dynamic modei, the fùnctional

model, and the software architecture of the system. The applications of the VMO model for

pardiet processing of spatial problems and for automated map generaiization are also bnefly

discussed. _.

Contents

Abstract

Chapter 1: Introduction

1.1 Sustainable Forest Development
1.2 Characteristics of Sustainable Forest Ecosystem Management
1.3 Feahires of GIS for Forestry Management and Decision Support
1.4 The Problems and Objective of the Research
1.5 Methodology

Chapter 2: Modelling Geographical Spaces

2.1 Field- or Objec t-Based Models of Geographical S paces
2.2 Spatial Objects
2.3 Properties of Spatial Objects
2.4 Representations of Spatial Objects and Relationships
2.4 Geometric Structures of Spatial Objects
2.5 Problems with Current Spatial Database Models

Chapter 3: The Dynamic Voronoi Data Mode1

3.1 An Integrated View of M o d e h g S pace
3.2 A Formal Definition of Ordinary Voronoi Diagrams
3.3 Properties of the Voronoi Diagram of Points and Line Segments
3.4 The Delaunay Trïangulation: The Dual Topological Structure
3.5 The Data Structures of the Voronoi Diagram
3.6 The Construction of the Dynarnic Voronoi Diagram
3.7 Preserving the History of Changes in Spatial Objects
3.8 GIS Operations with the Dynamic Voronoi Diagram
3.9 S-xmmary of the Chapter

Chapter 4: Partitioning and Pasting Voronoi Diagrams

4.1 Shortcomings of the Voronoi Diagram of Points and Line Segments
4.2 The Objectives of the Spatial Object Condensation Technique
4.3 Partition Boundaries
4.4 The hplementation of the Partition with the Data Structure
4.5 Pasting Together Voronoi Subdiagrams
4.6 Partitioning a Spatial Structure Along Designated Triangular Edges

Chapter 5: The Voronoi Map Object (VMO) Model

5.1 Introduction
5.2 The Geornetnc Object Classes
5.3 Topological Relationships of the Object Classes
5.4 The Voronoi Map Object (VMO) Class
5.5 The VMO-Tree Organization of the VMO Class
5.6 The Construction of the VMO-Tree
5.7 Constraints of the VMO Model
5.8 Operations on the VMO Model

Chapter 6: The Design of the VMO Forestry
Data Management System

6.1 Problem Statement
6.2 The Object Model
6.3 The Dynamic Model
6.4 The Functional Model
6.5 The Software Architecture
6.6 Relationship to the Research Objectives

Chapter 7: Applications of the VMO Model

7.1 Introduction
7.2 Pardel Processing of Spatial Problerns
7.3 Automated Map Generalization

Chapter 8: Conclusions and Future Work
8.1 Conclusions
8.2 Original Contributions of This Research
8.3 Suggested Future Work

References

Appendix A: Geographic Information and
Decision Support Systems

A. 1 Geographic Information S ystems
A.2 Spatial Decision Support Systems

Appendix B: Tools and Concepts in Data Modelling

B. 1 The Role and Nature of Data and Process Models

B.2 Mathematical Basics
B.3 Conceptual Data Modelling Techniques
BA Database Modelling and Design Process

Figure 1.1 Ecosystem solution triangle
Figure 1.2 The "adaptive" concept of ecosystem management

Figure 2.1 A field-based view of a geographical entity F
Figure 2.2 An object-based view of a forest stand
Figure 2.3 Clustering a point set given a distance 6
Figure 2.4 Visibility between points X, y, and z
Figure 2.5 Convexity and convex hulls
Figure 2.6 Monotony of polygons
Figure 2.7 Visibility changed by dragging and pulling the rubber sheet
Figure 2.8 Some topoIogicaI properties
Figure 2.9 Two 2-complexes
Figure 2.10 Intersecting two 2complexes to obtain a new complex
Figure 2.1 1 The orientations of simplexes
Figure 2.12 The boundary of a 2-complex C
Figure 2.13 A general planar graph
Figure 2.14 An EER diagram of the NAP structure
Figure 2.1 5 A planer graph with directed arcs
Figure 2.16 Relationships to a single arc in the DCEL
Figure 2.17 The EER diagram of the DCEL representation
Figure 2.18 A weakly connected areal object
Figure 2.19 The linear orders
Figure 2.20 The Grid file structure
Figure 2.2 1 A 2D-tree decomposition of space
Figure 2.22 A PM Quadtree decomposition of space
Figure 2.23 The R-tree decomposition of space
Figure 2.24 A Cell-tree decomposition of space
Figure 2.25 Objects and containing rectangles of the reactive data structure
Figure 2.26 The Reactive-tree for the configuration in Figure 2.25
Figure 2.27 The hybnd architecture of spatial database models

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8

Figure 3.9

Trees and their vicinity circles
The tessellated space with respect to trees
The tessellated space with respect to polylines and polygons
The ordinary Voronoi diagram and related elements
Regions for calculating the distance fiom a point to a line segment
Four possible types of Voronoi edges bisecting two objects
Voronoi regions bounded by two Voronoi edges
Contracted and non-contracted Voronoi regions of endpoints
incident to three or more h e segments
Six types of Voronoi vertices

Figure 3.10 Combination matrices for three Voronoi edges 68

vii

Figure 3.1 1 Equivalent combinations of Voronoi edges 68
Figure 3.12 Illustration of the degeneracy of Voronoi vertices 70
Figure 3.13 The Delaunay tnangulation as a dual tesselIation of the Voronoi diagram 72
Figure 3.14 Voronoi diagrams and Delaunay tnangulation for degenerated point sets 73
Figure 3.15 The dual triangulation of the Voronoi diagram

of points and line segments
Figure 3.16 An illustration of the quadedge data structure
Figure 3.17 The trïangular elernent data structure
Figure 3.18 The associative object data structure
Figure 3.19 Concepts related to splitting a moving point in point insertion
Figure 3.20 Moving mp without changing the topological structure
Figure 3.2 1 Two types of topological events
Figure 3.22Two swaps corresponding to moving-in (a) and rnoving-out @)
Figure 3.23 Triangles affected by a swap
Figure 3.24 Splitting a line segment from an object in S
Figure 3.25 The topological structures before and after moving-in
Figure 3.26 The topological smctures before and after moving-out
Figure 3.27 Splitting mp to delete a line segment
Figure 3.28 Shrinking and breaking a line segment
Figure 3.29The usud approach to resolving the line intersection problem
Figure 3.30The kinematic method of handling Iuie intersections
Figure 3.3 1 An undirected weighted graph
Figure 3.32The Voronoi diagram and its dud Delaunay triagulation

for the objects depicted in Figure 3.3 1
Figure 3.33 The incidence of edges to a vertex
Figure 3.34Polygon shading with the Voronoi data mode1
Figure 3.35 Buffering by calculating intersections with Voronoi edges
Figure 3.36 Kinematic incremental polygon overlay
Figure 3.37 Inserting a point x steak areas from its neighbours

Figure 4.1 A system view of the organization of a Voronoi diagram
Figure 4.2 Cutting a Voronoi diagram V(S) on paper
Figure 4.3 The Voronoi diagram and Delaunay triangulation of a map
Figure 4.4 A micro-view of the Voronoi and Delaunay

structures near partition boundaries
Figure 4.5 Flood fill memory compaction
Figure 4.6 Bordering triangles and out-pointers
Figure 4.7 Weakly-connected subspaces
Figure 4.8 Illustration of the incompleteness in handling line segments
Figure 4.9 The completion of the Voronoi in-line edge (a),

and the cntical triangles @)
Figure 4.10 Out pointers in cntical triangles inter-relating two subspaces
Figure 4.1 1 The resolution of out-pointers
Figure 4.12 An illustration of a nearest-object search algorithm
Figure 4.13 An illustration of a nearest-object search oier points and line segments 14 1

viii

Figure 4.14 A prernaturely terminated nearest-object search
Figure 4.15 The nearest-object search after the modification
Figure 4.1 6 Traversing weakiy-connected components and

the topological equivalence
Figure 4.17 The loss of the empty circumcircle property on bordering triangles
Figure 4.18 Generating critical triangles about a constrained edge
Figure 4.19 Out-pointers in trasformed constrained triangle edges
Figure 4.20 Resolution of out-pointers in partitioned subspaces

Figure 5.1 Geometric object classes
Figure 5.2 Topological relationships between spatial objects
Figure 5.3 The scope mode1
Figure 5.4 The top-dom partition and its VMO-tree
Figure 5.5 A partial VMO-tree before and after deleting a node
Figure 5.6 Binary operations involving objects containing holes

Figure 6.1 The object model for FORMONET system
Figure 6.2 Partial Forestry Geo-Objects
Figure 6.3 Dependency between WORKSPACE and the W O model
Figure 6.4 A general event flow diagram for FORMONET
Figure 6.5 A "close polygon" dynamic event and a section of the dynarnic model
Figure 6.6 The state diagram for the VMO-semer in the WORKSPACE

to handle the "close polygon" event
Figure 6.7 The functional model for FORMONET
Figure 6.8 The software systems architecture for FORMONET

Figure 7.1 Share-everythuig architecture
Figure 7.2 Share-nothing architecture
Figure 7.3 A schematic view of generalization
Figure 7.4 Hierarchical generalization of VMO objects
Figure 7.5 Detecting conflicts and errors, and controlling uncertainty

in dynamic object generalization
Figure 7.6 Function and data flows of dynamic object generalization

Figure A. 1 The general hardware cornponents of a GIS
Figure A.2 The main software component of a GIS
Figure A.3 Assumptions at each stage of information flow
Figure A.4 The software architecture of a SDSS

Figure B. 1 Set union, intersection, difference, and relative complement
Figure B.2 A partition of the set S
Figure B.3 Reflexive, symmetric, and transitive relations
Figure B.4 Relationship betweenflx), domain, range, and image
Figure B.5 An entity type and its attribute types
Figure B.6 A many-to-many relation involving two entities

Figure B.7 A class/subclass and a category
Figure B.8 Conceptual, logical, and physical design and models

Tables

Table 2.1 The NAP relation for the graph imFigure 2.15
Table 2.2 The DCEL relation for the graph in Figure 2.15
Table 2.3 The Object-DCEL relation for Figure 2.18

Table 3.1 The use of log file information for forward reconstruction

Acknowledgements

Many people helped to make this thesis possible. First, 1 am indebted tu Dr. Chnstopher
Gold my thesis supervisor. It was Chris who iaspired my interest in the study of the
Voronoi diagram and generously allowed numerous opportunities for me to share his
expenence in this subject. His humor, encouragement, support, and understanding made the
time working with him worthwhile and very much memorable. Thank you indeed, Chris.

1 would like to thank Dr. Geoffrey Edwards of the Département des sciences géomatiques at
Université Laval, and Dr. Michael Worboys of the Department of Computer Science at
Keele University, UK, for their carefiii reading through and correcting the thesis. Through
personal discussions and his wondemù book, Mike helped me with some aspects of
mathematics which led to the improvement of the presentation of the thesis. Geoffkey
encouraged me in many ways during my study and work at Université Laval. His comments
and suggestions made a lot of the statements in the thesis clearer. 1 thank Dr. Jean-Marie
Beaulieu of the Département d'informatique, Université Laval, for his constructive
comments and suggestions. Dr. Yvan Bédard, of the Département des sciences géomatiques
at Université Laval, pointed out mistakes and weakness of the thesis in a variety of places
and advised on how to strengthen them. 1 appreciate his efforts in providing me with
vaiuable reading materials which extended the scope of the discussions.

The consistent fïnancial support fkom the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Association des industries forestières du Que%ec
(AIFQ) is gratefully acknowledged, without which the undertaking of the research would
have been very mcult.

1 would also Wre to take the oppomuiity to thank many of rny colleagues and fellow
students in the Centre de recherche en géomatique at Université Laval for their
understanding, help, and fiiendship.

Special thanks should go to Mrs. Valerie Gold for her help with grammar checlcing and
correcting for the thesis, and especially, for her encouragement and moral support.

The thesis would never have been fmished without the unconditional support, tolerance,
and love from my wife, Yunzhu, and m y daughter, Theresa. 1 am always indebted to and
proud of them. 1 would dso like to express my thanks to my parents and other family
members for their help and moral support during my difficult time.

xii

Chapter 1

Introduction

Forests constitute an imperative semi-naturd resource for the existence of a global society.

The significant role forests play in the global ecosystem cannot be over-estimated.

Unfortunately, rapid deforestation has been occurring world wide, especially in developing

countries, due to the following factors: clearing the forest land for farming, the demand for

firewood and fodder, excessive commercial logging for shofl-term economical profits, and

£ire - intentional and natural. These factors are aggravated by population growth,

idrastxucture and industrial development, and bad planning and management. The cost of

deforestation to society is tremendous. Beside obvious and presently hard-to-measure

economic losses, some of the earth's plant and animal species are in danger of extinction,

and, deforestation has resulted in the recent increase in the atmosphenc concentration of

carbon dioxide which leads to increased global warming [World Bank 19931.

1.1 Sustainable Forest Development

In order to achieve a biologically and economically sound society, we have to take

seriously the requirements for sustained forest management to meet the needs of the present

generation without compromising the needs of future generations world Commission on

Environment and Development 19871. The word bbsustainability" in forestry refers to the

application of sustained-yield management practices to forests in order to ensure a

continuous flow of desired forest products and services, without undue reduction of their

inherent value and future productivity, and without undue undesirable effects on the

physical and social environment m O 19921.

Sustainably developing forests needs an integrated management plan, in addition to many

other measures such as institutional, policy, and cuiturd changes. Integrated planning and

management of forest resources means that the application domain should not be

considered in isolation of its neighbouring and overlapping domains. Instead, forest

planning and management should be practiced by treating forest resources as an

indispensable subsystem of the ecosystem, including: soil, water, biological diversity,

genetic diversity, landscape patterns, and cultural evolution - a l i are criticai components to

maintain ecosystem integrity. Ecosystems are communities of organisms working together

with their environment as integrated units. They are places where all plants, animals, soils,

waters, climate, people, and processes of life interact as a whole. These ecosystems/places

may be small, such as a rotting log, or large, such as a continent or the biosphere. The

smaller ecosystems are subsets of the larger ecosystems; that is, a pond is a subset of a

watershed, which is a subset of a landscape, and so forth. AU ecosystems have flows of

things - organisms, energy, water, air, and nutrients - moving among them. And al l

ecosystems change oves space and tirne. Therefore, it is not possible to draw a line around

an ecosystem and mandate that it stay the same or stay in place for dl time. Managing

ecosystems means working with the processes that cause them to Vary and to change

[Salwasser et al. 1993 1.

Forest planning and management should be based on an ecosystem approach with the

following p~c ip1e : to conserve biologically and genetically diverse and productive

landscapes within local, regional, national, and global contexts. The ecosystem approach

embodies three fundamental concepts: design~ting the physical boundary of the system and

its components, understanding the interaction of its parts as a functioning whole, and

understanding the relation between the system and its context. Context in this sense means

both the extemal factors that influence the system as well as the intemal information that

must be synthesized at the scale of the defincd system if we are to have any understanding

of it. For a continental ecosystem, global air poliution and population growth are examples

of extemal context and local poiitics and endangered species are examples of intemal

context Maser 19941.

1.2 Characteristics of Sustainable Forest Ecosystem Management

Although understood in principfe, a scientifically precise definition of what constitutes an

appropriate sustainable forest ecosystem management practice is still missing. This is

because of the lack of knowledge of the natural functioning and response of forest

ecosystems [Sample 19931. NevertheIess, several basic characteristics of sustainable forest

management have k e n identined through recent research and practices in ecosystem

management:

It should operate across large spatial scale. The system should not only consider a broad

array of species within the management unit but also a broad concept of the management

unit itself - fkom focusing on forestland parcels and stands to focusing on

landscape/regional-scale areas defined dong ecological boundaries. Real sustainability

must account for even larger scales up to and including the global environment. In most

cases, landscape areas encompass a host of both public and private forestlands. It is clear

that a Ïar higher level of cooperation, coordination, and collaboration would be needed

among the various public and private landowners and managers occupying a set of

ecologically dehed management units Franklin 19891.

This perspective strongly suggests that the management system should have a hierarchical

structure, from the lowest level of productive and operational scale to the highest level of

directional policy steering and control scale. The hierarchical structure is not only

institutional (organizations and people involved), but also needs to be implementable with

available technology. To support integrated solutions, the forest ecosystem management

needs to nui more or less the same set of data, impiying that the classification of data

should also follow the correspondeot hierarchical structure, from the finest to the coarsest

resolution.

Sustainable forest management needs to be highiy open and cooperative. Institutional

and policy changes must be addressed to facilitate closer cooperation, coordination, and

collaboration among adjacent public and private landowners in the establishment and

achievement of ecosystem management goals. In addition, function-based, target-oriented

resource management hierarchies should be developed withui a more open ezvironment to

be conducive to multidisciplinary approaches. The open environment should encourage

dissimulation of philosophies toward sustainable forest ecosystem development, scientific

exchanges, and most importantly, sharing of data Barriers to the exchange of

environmental data across dEferent institutions should be minhïzed to allow multiuse of

the data. Standards for data collection, formatting, and accuracy control need to be set up

and agreed upon among involved parties. On the other hand, flexibility of the management

system to accept, interpret, and integrate data fiom different sources with diHerent formats

wuuld also be highly desirable.

The management system must be able to reconcile overlapping goals. An ecosystem

management approach requires that management goals and actions simultaneously satis f y

three conditions: ecological viability (environmentally sound), economical feasibility

(affordable), and social desirability (politically acceptable) (Figure 1.1). If the balance

among these three criteria is not reasonable, there is a high likeiihood that the ecosystem

will not be sustainable [%meveld 19901.

Due to various interests and objectives held by private companies, communities, public

citizens, and govenunent agencies, conflicting management goals necessarily exist even

before an integrated management system is established and continue through its life-cycle.

Negotiations, education, and stipdated regulations would be needed to compromise

overlapped goals. The management system should also be prepared with alternatives for the

choice of optimized decisions. To achieve this, powerful data analysis functions, matched

with sophisticated data manipulation capabilities, would have to be built into the system.

Ecological
viability

Sustainable solution

Figure 1.1 Ecosystem solution Enangle (Adapted fkom Zonneveld [1990])

The management s ystem must handle dynarnic processes. Forest ecos ystem

management goes beyond mere description of conditions or states presumed to be static.

Emphasis should be on greater understanding of linked processes, the positive and negative

feedback between linked processes, and the relationship between processes at different

temporal and spatial scales. Linkages between elements (eg. reciprocal linkage between

carbon and nitrogen cycles, infiuenced by browsing mammals and insects) as they cycle

between the trees and soil, impose nonlinear dynamics on forest growth and stand

development Biological dynamic processes c m dramatically alter the regional ecosystem

at both forest stand (species composition and structure) and landscape (the relations of size

and location of various forest ecosystems) scales Nadenoff and Pastor 19931.

Conceming the requirements for Large spatial scales and dynamic processes, managing

sustainable forest ecosystems requires viewing management objectives at large spatial as

well as temporal scales to accommodate a broad range of objectives. The silviculture tool-

box must be enlarged. Simple methods (e.g. even-aged or uneven-aged management) need

to be combined with complex ones (e.g. partial cutting, group selection, retaining seed trees

and introducing new species, and extended rotation) to meet more complex objectives that

promote ecosystem sustainability at both landscape and stand levels. This change would

allow the development and application of more creative silviculture techniques that provide

for long-term comrnodity production and the maintenance of biodiversity and long-term

productive potential, thus buffering against climatic changes. The suggested sustainable

forest management of silviculture techniques at the stand level and the landscape level

(landscape-scale integration) is termed dynamic landscape heterogeneity Nadenoff and

Pastor 19931-

The modincation of traditional silviculture methods necessarily breaks with classical forest

management concepts. In standard forestry, the forest is typicaUy divided into management

compartments/parcels that are subdivided into stands, consisting of tens of acres, to which

particular silviculture techniques are applied Parcels and stands are generally considered

to be k e d and independent. Applyîng dynamic landscape heterogeneity in management

requires that over longer time -es these boundaries should be considered fiuid and that

management techniques should be aggregated over larger areas to maintain landscape-scale

patterns and processes. In the natural landscape, overlapping Gres and other disturbances

dso cause boundaries to be fluid.

The management system must incorporate a long-term life cycle. Forest ecosysterns

feature various temporal cycles, due to the complex composition of elements and natural

processes withui each functional ecosystem. The impacts of linked natural processes and

disturbance events (wddhre, windstorm, insect outbreak, and tree diseases), human

influences such as harvesting and silviculture actions on site productivity of forestland and

sustainabüity of landscape-regions become evident generally after long time horizons (three

rotations as suggested by Comerford et al. [1994]). This suggests that forest ecosystem

management should be targeted on a long-term scale. A long-term management scale is

practically and strategically desirable from two points of view:

First, fkom the point of view of forest managers, the sustainable productivity of forest

biomass, usually wood, is their major concem. Negative impacts of forest harvesting can be

reduced by the appropriate choice of rotation length, harvest season, road construction

methods, harvesting equipment, utilization standards (e.g whole-tree vs. stem-only

harvesting) and silviculture s ystem (e.g. clearcutting vs. partial cutting). The site

productivity may also be increased, at least in the short-term, by stimulahg nutrient cycles,

changing plant structures, adding feaüizers, and introducing improved genetic stock

w o m s and Miller 19943. All these applications should only be used with a basic of

knowledge of the historical and current site conditions. It is essential to collect and compile

available information on the entire stand to make an informed evaluation. Furthemore, any

events and actions in the field should be recorded in the system for future assessment.

Second, fkom the point of view of forestry researchers, especially forest biologists, studies

of dynamic processes and the effect of each process, event, disturbance, and forestry

operation on the pyramid of forest ecosystems are long-tem projects. For example, current

methodologies for studying long-term forest site productivity f d into one of three

categones: chronosequential, retrospective, and long-term field trial Dyck and Cole 19941.

AU these methods rely on adequate documentation of historical information or on long-term

experiments and observations. More importantly, the results of forest ecosystem research

(e-g. various predicting models) need to be validated through calibrating, testing, and

comparing (with practical observation, experiments, and forestry operations), sometimes

spanning multiple rotations. This imposes a great diffculty because the length of practical

experiments may well be beyond the serving periods of researchers and budget limits. A

sustainable forest management system should be equipped with the capacity to maintain a

minimum set of data which standardizes important environmental and site variables

[Comerford et al. 19941. The structure changes of the data set over t h e should equally be

maintained so that any previous states of the forestland, operations and experiments applied

to it cm be known if desired, thus benefiting continuous management and research over

long periocls of time.

The management system should have the capability of simulation. Simulation

modelling is particularly useful in forestry because of both the long time scales involved

and the structural and functional cornplexity of forest ecosystems. Cornputer simulations

provide a means to organize and evaluate knowledge and hypotheses of both the structural

and functional properties of forest ecosystems. Once validated and calibrated with data sets,

a simulation ailows us to ask "what if' questions, or to interrogate alternatives of forest

management strategies over past, present, and future states of the forest ecosystems.

Simulation models have been used for a wide range of applications includïng production

forecastîng, yield control, and the evaluation of alternative management operations w o e et

al. 19941. Most of these models are based on h e a r programming, which have demonstrated

diffcdties in plan imp1ementation. This stems fiom the fact that there are no spatial

representations of the optimal solutions developed with these models [SampIe 19951.

Improved planning and predictùig models are senously needed to incorporate spatial and

temporal configurations of variables.

The management priorities must be adaptive. Forest ecosystems are dynamic and

subject to change. At best, a forest ecosystem is managed based on available knowledge,

experience, and hypotheses. Thus management goals are set; inventory information is

compile& and plans and decisions are made and implernented using curent technology and

limited knowledge. It is important to track progress toward goals. This inchdes assessing

present forest/environrnental conditions, using quantif~able indicators, and monitoring

changes in those conditions over a long time frame. As updated data are obtained and

reviewed, suggestions on improving or adjusting details of management plans may emerge.

The system should be "adaptive" to the modification of goals, inventory structures, or

adopting updated technologies (Figure 1.2).

Plan
goals \
NOW / Adaptive \

New /
technology

Figure 1.2 The "adaptive" concept of ecosystem management

(Modified fkom Birch et al. [1993])

In summary, sustainable forest ecosystem management involves multi-disciplinary and

integrated solutions. It is not merely a materialized system, but a set of structures and

processes requiring philosophical, conceptual, societal, and institutional attendants. For

convenience, we c d these attendants collectively the culrural component of ecosystem

management. The other components of the management system include hardware,

sofhuare, and data. Hardware refers to cornputers and related devices with which data can

be physically stored, displayed, and plotted. Software refers broadly to a set of computer

programs which controls operation of the hardwarelsoftware, and manipulates data Data

constitutes an important and expensive part of the management contents. The rest of this

thesis is actually dedicated to the design of structures to manage data such that they can be

manipulated elegantly to meet the requirernents of forest ecosystem management.

1.3 Features of GIS for Forestry Management and Decision Support

Environmental concerns, public pressure, and economic growth no longer allow empty

discussion on what defmes a forest ecosystem and ecosystem management or whether

sustainable management can be achieved. Given these pressures, we must achieve a

sustainable, reasonably cost effective management system as soon as possible. The c d for

sustainable forest ecosystem management echoes around the world. In Canada, for

example, a National Round Table on the Environment and the Economy was convened to

discuss diverse issues related to sustainable forest ecosystems IT\Tational Round Table on

the Environment and the Economy 19931. The Canadian vision of sustainable forest

ecosystems has been defined. Based on this the Canadian Forest Service (CFS) dictates

strategies for developing sustainable foresûy [Canadian Forest Service 19941. Of the five

strategies guiding CFS's activities towards the end of this century, the one gaining

signincant focus is .the development of cornputer-based geographic information and

decision support systems. Implementing these systems can integrate biological,

environmental, economic and social information over a variety of tirne frames and spatial

scales, and generate forest management alternatives that are understandable and useable by

forest managers. It is realized that sustainable forest development will only become

possible when we are able to integrate, manipulate and interpret complex data sets from

many different sources, over wide temporal and geographic scales.

The geographical information systems (GIS) for forestry management and spatial decision

support systems (SDSS) must meet the requirements of sustainable forestry developrnent.

In what follows, we attempt to idenm important operational features of such a GIS based

on the characteristics of sustainable forestry management. Definitions of GIS and SDSS,

and their hardware and software components are presented in Appendix A.

The GIS needs to have a spatial data model based on which a geographical database can

be constructed. The spatial data model should not only support cartographie operations

on the spatial objects in the database, but also allow versatile spatial analyses that

require topological relationships of the spatial objects. The presence of a topologicay

enabled spatial data model in the GIS is fundamental to support the requirements for a

sustainable forestry management s ystem.

The GIS needs to support spatial concepts such as country, region, forest territory and

stand, forest f ie, watersheds, road, GPS (Global Positionhg Systems) survey points,

population density, income rate, etc. Some of the spatial concepts are by nature

hierarchical, for example, a country has provinces and counties at its lower levels.

Dependhg on the spatial concepts used, the objects used to describe these concepts may

overlap each other geographicdy. For example, a watershed can overlap a few forest

temtories. It should be possible to find locations of entities fiom the spatial database

either by a hierarchy or by an overlapping concept. By hierarchy, a search fiom a higher

level entity to lower ones reveals more detail about the entity. By overlapping, entities

cross-referenced in different hierarchical concepts may be required to satisfy a query.

The GIS needs to act as an integrator (or a warehouse) of a network of geographical

databases, possibly heterogeneous and geographically distributed. In the integration, a

client GIS can maintain, in its database, some content information (metadata) of

geographical entities without storing their detailed data Instead linkages to servers

where the detailed data, as well as query and analytical services are provided. In the

case that a data server does not support a specinc analysis or operation, the detailed data

can be transmitted to the client or other GIS in the network. This feature requires OLAP

(OnLine Analytical Processing) capability similar to common MIS (Management

Information Systems). The difference is that the client GIS has the spatial data model

support to manage, manipulate, and maintain spatial metadata, and if necessary, detail

spatial objects referred by the metadata A client GIS can also act as a server to other

clients for whom spatial query and analysis are performed.

The GIS needs to be dynamic in that updates to the geographical database should be

incorporated through short transactions without excessive operation or long locks to the

database. Besides, any modification to spatial objects of the database should affect only

the spatial objects involved. Services being provided by unaffected spatial objects in the

database should not be discontinued by the modification. This feature is important to

OLAP applicztions and is advantageous to what-if questions and simulations.

The GIS needs to have a component architecture such that any component of the system

can be integrated into existing corporation information and decision systems without

extensive technical efforts. The spatial components, which are geometrically and

topologically enabled spatial objects, should provide common GIS fimctions and allow

themselves to be aggregated with other spatial components. With the component

architecture, multi-media representations of geographical entities can be implemented.

The GIS needs to support dynamic versioning of spatial components. Changes to spatial

objects should be tractable given a temporal scale. This feature supports undochanges

to spatial objects, and simulations demonstrating evolutions of spatial objects.

1.4 The Problem and Objective of the Research

The primary objective of the thesis is to design in advanced spatial data model, which can

be used to manage and manipulate dynamic spatial objects in a GIS. The core technology of

the GIS is the spatial data model. Without a capable spatial data model, the support of the

desKed features would be difficult. The ngorous design needs to consider not only the

theoretic foundation of the data model, but dso its practical implementation with

computing software. The advancement of the data rnodel needs to be jusmed by theoreticai

analysis and practice.

The data model needs to be studied under the context of geographical information

processing. This implies that it should be able to appropriately treat special characteristics

of geographical data. Large in quantity, irregular in distribution and density, and volatile

with dynamic changes are among the characteristics. One of the targeted application

scenarios of the data model is for the development of a SDSS for forest harvesting

management. The management system requires that the hardware, software, data, as well as

data management will be distnbuted at distant sites but the system still functions as an

integrated whole. Data should be represented and managed hierarchically with appropriate

scales. Data should be accessible simultaneously by multi-users and modifiable in a

dynamic fashion. The history of data evolution needs to be presenred and rnanaged. In

addition, the management system should encourage multimedia presentation of data.

Finally, the whole data management system should have an open architecture, to be

adaptive to changes.

The objective is determined nom two aspects. On the one hand, published documents

suggest that most current GIS systerns are usually developed based on a two-step process

for managing spatial data. The fKst step (map creation) involves a geometric data model

such as the R-tree, which organizes digital spatial objects such that they are assigned

addresses and therefore can be easily accessed. The second step (spatial analysis), if

required, involves building topological relationships among spatial objects, taking

advantages of the result fkom the first step. Examples of GIS equipped with the two-step

architecture include A.rc/lnfoTM and Intergraph ~ ~ E / D ~ n a m o ~ . With software

technology, these two steps may be streamlined now without being noticed by users. The

theoretical basis stays the same. There are still two kinds of spatial data models,

geometrical and topological, built in the system. ~ a ~ ~ n f o ~ ~ desktop GIS is an exarnple that

is not equipped with the topological process. The separation of geometrical and topological

data models in a fully equipped GIS presents many disadvantages. Analysing the spatial

data architecture used by prevailing GIS, and finding out the shortcomings of the two-

model system is the first task of the thesis.

On the other hand, the Voronoi data mode1 does not follow the two-step approach to

process geometry and topology of spatial data The research and development on the

dynarnic Voronoi diagrams has been carried out for a few years in the Industrial Chair in

Geornatics Applied to Forestry, Centre de recherche en geomatique at Université Laval.

The data structures and algorithm are M y published. The results have demonstrated

advantages of using the dynamic Voronoi diagram as the integrated GIS data model.

The main problems, however, are that the Voronoi diagrams, being complicated and

detaiIed, must be presented at a single level and stay in main memory, and that it is difficult

to divide a Voronoi diagram into spatial pages. These difnculties prevent the dynamic

Voronoi diagram from being M y employed in a GIS environment, where large data sets

are often involved. Investigating effective methods to overcome these dificulties therefore

becomes the most important task of the thesis research.

The decision to target at the forestry application domain, using the scenario of forestry data

management, is made as one of the important liaisons between the Industrial Chair in

Geomatics Applied to Forestry and the Association des Industries Foresterie du Quebec

(AIFQ). It is hoped that the research and development carried out in this thesis could be

useful to the development of an advanced forestry data management system. The thesis will

outlùie the design of the system components for a forestry spatial data management,

applying the data model to be developed. Due to the major endeavour towards developing a

sound. integrated spatial data rnodel, the effort in the systems design will be limited.

1.5 Methodology

Examine the forestry needs for decision support for harvest management. Among the

numerous issues involved in forest harvesting, the examination wilI focus especially on

forest harvesting data management.

Evaluate the weaknesses of traditional GIS for decision support. The evaluation will

emphasize on the technical aspects of a GIS with regard to dynarnic data updates.

Suggest improved GIS data models and algorithms to respond to these weaknesses.

hplement and test these methods at the technical level. The research in this part will

explore deeply into the technical complexity, if any, of the proposed GIS data model.

Evaluate the usefulness of the proposed GIS data model in forest harvesting. The

evaluation WU consider the integration of the improved GIS data model and algorithms

into the prototype of a forest data management system.

1.5.1 The Approach

It is found that forest harvest management has needs for dynamic features not always

available in a traditional GIS. In particular, the dynamic features concem the "local

updating" of forest digital maps, required both for the addition of annual information, such

as the previous year's cutting, and for the experiment in a "what-if" fashion, with suggested

future intenrentions. The updates need to be local in the sense that they will not have to be

propagated to the whole spatial database of the GIS, in order to maintain the integrity of the

spatial relationships.

These dynamic features are primarily the ability to add and delete lines that form polygon

boundaries, without the necessity of expensively re-stmcturing the "topology" of the map

sheet holding the polygons. Given this ability, map updating and what-if quenes perforrned

by a GIS would become much simplified and realistic for real-time forest decision-making.

The absence of the dynamic features nom a traditional GIS is attributed to its built-in

spatial model - the one that relies on a calculation of "vectof' line intersections, and on an

extensive processing of topological relations. Analyses show that the "'intersection fmding"

and 44topology building" are hard to be operated in a local fashion. In contrast, the space-

füling ''Voronoi" tessellation had been shown (e-g. Gold 1991, 1994) to be able to handle

local updates in a well-defined way. It was decided that this approach would be

implemented, and then evaluated-

The research and implementation of the Voronoi tessellation produced a fimctioning

prototype which showed the feasibility of the method. However, it became evident that the

problerns of storing the tesseHation would emerge signincantly for a full-scale operation in

a seamless forest map. Attempts were made to address this issue as well. This led to the

developrnent of appropriate dynamic spatial partitionhg methods, and the design of the

associated hierarchical and dynamic GIS data model, which again was implemented at the

prototype level.

On this basis, a preliminary design was developed for a forest data management system

based on the dynamic data model, and the results were examined to see how closely the

data model matched the forest harvest management needs as originally speci6ed. Because

of the generality of the method, its use in other applications was also bnefly descnbed.

1.5.2 The Development

Examine the need of the forest industry

The task is to understand the environment in which a forestry spatial database management

and decision support system functions. For this purpose, the author searched the literature

to fmd discussions about forestry, especially the value of forests to the society, the attitudes

and positions of public, government, and forest companies towards forestry, and current

applications of GIS to forestry. The author also taked with managers and professionals

from forest companies on different occasions, and visited forest companies to observe GIS

practices within the organizations. It is found that a sustainable forestry is to everyone's

interest, but what is considered a sustainable forestry practice is very much debatable.

There is no doubt, however, that the use of GIS can improve synthesising, managing, and

presenting information for informed decision-making and practice concerning forestry. The

identification of characteristics of a sustainable forestry data management and decision

support system is the result of the preliminary research, which helps with the specitlcation

of important features of the GIS for forestry. The research and discussions to just.@ the

subject of the thesis are the content of this chapter.

Evaluate the weaknesses of traditional GIS

As a continuation of justifying the thesis research, questions about commonly practiced

spatial data models in GIS are arisen. These concem the capabilities of spatial data rnodels,

and their strength and weakness in s e n k g as the backbone of a GIS. In order to answer

these questions, fundamental concepts involved in modelling geographical spaces and the

mathematical background for spatial data modelling are reviewed. It becomes evident that

there are usudy two separate spatial data models involved in a GIS to support geometric

and topological data management operations. Various spatial data models employed by

most current GIS are studied, with respect to the requirements of an advanced GIS. The

important shortcomings inherited in these conventional spatial data models are revealed

from the research, which suggests that the GIS community has not fomd desirable

solutions towards spatial data modelling. More investigations are needed in this field to

meet contemporary challenges. The review of the theoretical background in this stage is

reported in Chapter 2.

Suggest and implement a dynamic data model for GIS

The subsequent research is then concentrated on the dynamic Voronoi data model, which is

introduced with its intuitive idea of modelling geographical spaces. The research is based

on a well-known Voronoi data model developed by Dr. Gold in the Centre de recherche en

geomatique at Université Laval. In a rigorous manner, the research delivers a complete

account about the mathematical background, history, data structures, constmction,

temporaiity, and GIS applications of the dynamic Voronoi diagrams of points and line

segments. This effort demonstrates the power of the Voronoi data model in solving geo-

spatial problems fkequently encountered in a GIS. It also prepared the author with the

necessary theoretical basis and- experience to manipulate, question. and leverage the data

model for advanced applications. This part is presented in Chapter 3.

Technical problenrs of the suggested model and solutions

The problems with the preliminary Voronoi diagram are primarily related to its storage

structure. One of d e tasks of the thesis research is to improve the storage structure such

that spatially adjacent objects cm be assigned similar addresses. If this can be achieved. the

next task, dividing the entire storage structure into disk pages, would become possible

The method is based on observing patterns and behaviour of the data model. Since there is

no precedent work on the storage issues with the Voronoi diagrams, no references c m be

resorted to help with ideas. At beginning, it was difficult to divide the Voronoi diagram into

distinct chunks, because of the incremental construction. The arbitrary order of data input

and spatial distribution could results a high degree of discrepancy between spatial patterns

and the storage of the data A few attempts were once considered, by resorting to some

subordinate spatial data structures such as the R tree. They were soon abandoned because

the Voronoi diagrams would be managed with conventional, rigid, and unintuitive

geometnc data structures. Besides, it would complicate the data mode1 by imposing another

spatial partitioning method, in addition to the one Voronoi uses.

The solution of the storage related problems relies on the deployment of the charactenstics

of Voronoi diagrams with line segments. In this step, the research is focused on the

interactive behaviour of Voronoi diagrams, at both sides of a chah of line segments. It is

noted that the change of the Voronoi diagram at one side of a chah does not affect the

spatial configuration at the other side. Observations also show that interactions do happen

in part of the storage structure on both sides, and that these interactions are possibly

tractable. This finding encouraged the experiments of idenwing objects f k t within

rectangular polygons and then irregular polygons. After this, the research is directed to

partitioning storage structures of Voronoi diagrams based on arbitrary polygons. The

technique finally used to fülfd our tasks is reported in Chapter 4.

Propose a hierarchical and dynamic GIS data mode1

The next stage of the research defines spatial objects of the data model. The objects include

the famüiar ones (point, line, polygon), and the newly created ones, Voronoi objects

(defined as Voronoi Map Objects or VMO in the thesis). Equally important in this stage are

defining inter-relationships among spatial objects, the organization structure for hem, and

the operations upon these objects. The task in this stage is to set up the theoretical

b e w o r k of the data model endeavoured in this thesis. The implementation of the VMO

classes needs to be done by using an object-oriented method. Their geometric and

topological properties and operations are realized through the Voronoi diagram. Chapter 5

covers the definitions and discussions about the data model.

Prototype a forest data management system

In the final stage, the data model will be used in the design of a prototype of a forestry data

management system. The purpose is to demonstrate how the data model can be served

under an object-oriented design and modelling environment. The capability of the data

model will be re-examined with respect to the requirements specified in the first stage. The

illustrative design of a forestry data management and decision support system is discussed

in Chapter 6.

Before concluding in Chapter 8, we would like to note that the data model could also be

used to develop other interesting applications, such as intefigent map generalization and

paraIlel processing of spatial problems. This is extended in Chapter 7.

Chapter 2

Modelling Geographical Space

The "geographical space" is a phrase often refened to by professionals in GIS about which

an agreed scientific definition is still missing. Nevertheless, sensing the existence of

geographical space starts in childhood intuition and is enhanced by observation and

education. The Earth, to our practical interests, is the totality of geographical space which

host collections of concrete things such as temtories seas or plateaus, mountains lakes and

rivers, cities and towns; not-so-concrete concepts such as populations of people, animals,

forests, distributions of ore materials, variations of weather, temperature; or illusive ideas

which are related to things and concepts such as time, events; etc.. They are geographical

entities which either physically occupy, are akin to, or are associated with parts of the

Earth, and they ail take part in geographical processes (natural or non-natural) some of

which we have perceived as geographical phenornena. It is the desire to describe and

understand geographical processes with the objective of exerting influence and control over

them, based on naturd laws, that motivates us to mode1 geographical space.

2.1 Field- or Object-Based Views of Geographical Space

In modelling geographical space, it is necessary to consider artificial objects and simulated

processes that we use to represent geographical entities and processes of interests. It is the

question of what constitutes artifcial objects as rnodelling spaces that has been the cause of

the endurhg debate between two fimdamentdy differing views [Chrisman 1975, 1978;

Peuquet 1984; Herring 199 1; Couclelis 19921. So tremendous is the influence of the debate

that our thinking, language of discourse, data models, and GIS systems have fallen into the

main frames of the two different views.

The first view, labeled field-based or position-based, conceptualizes a geographical entity

as a set of locations each member of which is associated with afield to represent a certain

thing or phenornenon on the Earth. The set of locations is usually referenced with a

coordinatedframework which has an underlying geometric space. The field is described by

one or more attributes each of which is mapped to some weli defined &bute domain (e-g.

a set of integers). The basic object in this view is therefore a location. A field is not a

distinct object but a set of amibute values attached to the location set. Figure 2.1 illustrates

such a model representing the distribution of trees in a forest stand 'F'. The location set is

referenced by a grid network. The amibute modelled is the density of trees whose values

vary fiom ceU to cell.

Coordinated
fiamework

Attribute domain

Figure 2.1 A field-based view of a geographical entity F

The second view, labelled object-based or feature-based, conceptualizes a geographical

entity as a single identifiable object (or geo-object) associated with a few characteking

properties or attributes given as other objects. One of the properties of a geo-object

describes its extension on the Earth, the result of which is referred to as its referencing

spatial object. A spatial object has a structure embedded in a mathematical space.

Therefore, a geo-object is sputidly refeenced if it is associated with a spatial object in a

definable way. For example, a forest stand is a geo-object which is spatially referenced to a

spatial object calied 'polygon', in addition to other possible defining properties such as

'stand no.', 'plant tirne', and 'density rate' (Fi,- 2.2). Other examples of geo-objects and

their referencing spatial objects c m be listed: a highway, referenced by a 'Iine3. a well by a

'point', etc. With this view, a geographical space is a collection of distinct geo-objects.

date text
'October 1,1960' Stand

Figure 2.2 An object-based view of a forest stand (after Worboys [1995], pp. 165)

It is not the intention of this thesis to compare these two views. Generally, the field-based

view is convenient to mode1 geographical entities that do not have clear boundaries to

"wrap up" their insides from their outsides. Instead, some ''fuzzy" boundary patterns exist

for a set of locations with respect to an attribute. As is shown in Figure 2.1, the attribute

values indicate denser trees in central locations and sparser in the surrounding ones. The

object-based view, on the other hand, relies on clear definitions of objects and is more

appropriate if objects themselves are the major concern of a system. ~ i t u a l l ~ , as Herring

[1991] stated, the underlying need to distinguish pieces of geometry are logicaUy

equivalent. We are in favor of the concepts and terms exposed by the object-based view.

The idea of defining a meaningfbl object with a srnall set of well defined more primitive

objects is more compatible with the object-oriented modelling technology. It is possible,

wiîh the object-onented approach, to bring both views of the real world into one

representation. We WU corne back to this possibility later.

23 Spatial Objects

A special characteristic of geographical objects is that they are referenced to spatial objects

which themselves must be specified. A spatial object is "'spatial" because it exists inside a

"space", c d e d the embedding space. The specificaîion of a spatial object depends upon the

structure of its embedding space. The most commonly used embedding space in

geographical applications is Euclidean space. Using the terminology of set theory, a

Euclidean space is a product set of real numbers. The dimension of a Euclidean space is

counted by the number of sets of real numbers R participahg in the product We restrict

our discussion in this thesis to a two-dimensional Euclidean space (or the Euclidean plme),

denoted 2, which is therefore a collection of ordered pairs of real numbers. We shall also

assume that in the Euclidean plane we have a Cartesian coordiMte system for which there

is a pair of orthogonal reference axes. The intersection of the axis pair is the origin of the

coordinate system and the unitary segments on respective axes have identical length. With

this, we defuie the following primitive spatial objects:

Point: A point a is deîïned by a unique pair in R: denoted a(xl, x2) with xi, x2 E R-

Line: Given two distinct points a and b in 3, a line l incident with a and b, denoted [(a, b),

is defined as the pointset, T. That is

Tx = (ha + (1-h)b I h E R).

Line segment If we constrain the range of parameter h to be in [O, 11 for the pointset T, we

get a line segment which is a closed pointset

Tro, 11 = {ka + (1-L)b I li E R, k E [O, 11)

The points a and b are called the endpoints of the line segment.

Polyline: A polyline in R? is def5ed as a nnite set of line segments such that each endpoint

is incident to exactly two line segments, except possibly for two endpoints, called the

extremes of the polyline. A polyline is simple if no two line segments intersect at any place

other than at theh endpoints. A polyiine is closed if it has no extremes.

Polygon: A (simple) polygon in R~ is defined as the area enclosed by a simple closed

polyhe. The polyline forms the bomdary of the polygon. Each endpoint of a line segment

of the polyline is called a vertex of the polygon. The area enclosed by the polygon

boundary is the interior of the polygon. In common sense, the term polygon is kequently

used to denote the union of the boundary and of the interior. The polygon in this sense is

bounded. NaturaUy, the rest of the plane, that is, the complement of the bounded polygon,

is the area exterior to the boundary and is unbowtded. Therefore, a simple boundary

partitions the plane into two distinct regions, the interior and the exterior of the polygon

(the Jordan curve theorem le-g. Christenson and Voxman 19771).

2.3 Properties of Spatial Objects

Just like any other arti£ïcial object used to mode1 a system, spatial objects possess

properties which: 1) have some rneasurements on spatial objects (metric properties); 2)

c lassq similar groups of spatial objects (geometnc properties); and 3) descnbe

relationships between spatial objects (topological properties). In this section, we discuss

those properties consistent with the Euclidean plane.

Meîric properties. Metric properties are dependent on the metric distance, to be defmed

below, between two points in 2:

The distance funaion d : R~ x 2 + [O, co) c R is called a rneîric, if the foIlowing

conditions hold for al1 points X, y, z E 2:

For example, the distance function d defined by

for x(xi, x2) and y*), is a metric and is cded the Euclidean distance.

Examples of the metnc properties of spatial objects include: the Euclidean distance

between any two points on a polyline; the perimeter and the area of a polygon; the centroid

of a polygon or a cluster of points; the angle between two lines; and the bearing of a line in

respect to one axis. These properties can be used to measure other properties of associated

geo-objects such as: the average flow speed of a river between two paper miles by the river;

the average log volume of a forest stand; etc. Another interesthg use of metric properties is

illustrated in Figure 2.3 where clusters of points in s point set S can be classified as

identifiable objects given a distance 6 (6clusters). For each cluster, the Gradius circle,

centered at each point, has an intersection with some other Gradius circles. The distance

function d can also be used to define a topology for n'. This topology is called the merrie

topology or the topology induced by the metric d. We will soon see what we mean by

"t0p0l0gy".

Figure 2.3 Clustering a point set given a distance 6

Geornetric properties. While metric properties are quantitative, Le. they can be expressed

by values, geometric properties are qualitative, i-e. they are instead expressed by defined

characteristics regarding their forms. Identifying geometric properties helps to classi@

spatiai objects into groups with similar geometric stnictures, thus facilitating the design and

development of geometric algorithms to calculate the meeic properties of spatial objects or

to solve geometry problems. The study of special geometric properties and the methods to

identify them is the subject of computational geometry mpara ta and Shamos 19851- The

most often used geomeûk properties of spatial objects are based on the concepts of

visibility, convexity, and monotony which are defined below:

Visibility: Let S be a set of points in 2 Then a point x in S is visible fiom point y in S if

either x = y or it is possible to draw a straigbt line segment between x and y that consists

entirely of points in S. If the point x in S is visible from every point of S, the point x is

cded an observation point for S.

Figure 2.4 Visibility between points x, y, and z (after Worboys [1995], pp. 110)

Denote visibility as a relation V on 2. The relation V is reflexive, symmetric, but not

transitive. Figure 2.4 demonstrates an example of the visibility relationship V between x, y,

and z E S in 2. The example shows invisibility between points y and z.

Convexity: Let S be a set of points in 2. The set S is convex if every point of S is an

observation point for S. It is semi-convex (star-shaped if S f o m a simple polygon) if there

k some observation point for S. The collection of aU observation points for S forms the

kernel of S. 1t is a natural deduction that the kernel of S must have a convex shape since all

observation points for S are also visible to each other.

The study of the convexity of point sets in 2 is of great value in computational geometry.

For a non-convex or semi-convex point set S in 2, the overall convexity of the set may be

gained or enhanced by decomposing S into a finite number of convex or semi-convex

subsets. Altemately, larger convex regions containing S may be obtauied, of which the

boundary of the smallest convex region containing S is called the convex hull of the point

set S in 2. Figure 2.5 illustrates a convex polygon (a), a semi-convex polygon (b), a not-

semiconvex polygon (c), and a convex hull aggregating a collection of disjoint polygons

kernel

a. convex b. semi-convex c. not semi-convex d. convex h a

Figure 2.5 Convexity and convex hulls

Monotony: The monotony of a polygon is dependent on the defuiition of a monotone ch-.

Let chah C = (pi, p2, ..., h) be an ordered list of n points in I?. The C is said to be

monotone if and only if there is some line in 2 such that the projection of the vertices ont0

the line presemes the ordering of the list. A polygon is a monotone polygon if its boundary

rnay be split into two polylines, such that the chain of vertices of each polyline is a

monotone chain. Figure 2.6 shows two polygons, one is not monotone (a) and the other is

monotone (b).

a. not monotone b. monotone with respect to h e Z

Figure 2.6 Monotony of polygons

Topological properties: These properties describe a set of particula. relationships between

one object and another embedded in the Euclidean plane 2. They are particular because

they remain the same by allowing certain operations acted upon the embedding plane to

stretch, contract, and twist, but not to tear and fold it. Imagine the Euclidean plane to be an

unbounded sheet of rubber. Also imagine spatial objects to be figures drawn on this rubber

sheet, particularly one point drawn inside a polygon. The fact that the point is "inside" the

polygon will remain unchanged n o matter how the rubber sheet is stretched. The

"insideness" is therefore a topological property. Though not explicitly examined, there are

some other relationships in the example which are qualified to be topological. For instance,

any vertex of the polygon remains "on" the boundary. Furthermore, the '%cidence"

relationship between a vertex and a line segment is also preserved. The operations involved

in stretching or contracting the embedding plane are called topological transformation or

homeornorphism. With this understanding, a topological property can be defined as one that

is preserved by topological transformations of the space. The study of topological

transformations and the properties that are left unchanged by them is the subject of

topology. Particularly, the topology that is based on the rubber sheet analog is referred to as

usual topology for the Euclidean plane.

In contrasting with topological properties, the metric and geometnc properties mentioned

previously are not invariant under topological transformations based on the usual topology.

Metric properties are invariant only under the translation operation. The size of an are& for

example, will be changed when the embedding space is stretched wider. Geometric

properties can withstand rigid transformations such as translation, rotation, and scaling, but

are sensitive to uneven stretching or contractkg of the embedding space. This cm easily be

verified by dragging one part of the lower concave ridge of Figure 2.4. Pulling down, the

rubber sheet (embedding plane) would become flatter and points y, and z would be visible

(Figure 2.7).

Figure 2.7 Visibility changed by dragging and pulling the rubber sheet

Farniliar topological properties between spatial objects in 2 generally considered in

developing spatial information systems include neighbourhood, connectivity, containment,

and adjacency. Examples tlanslated similarly fiom reality corresponding to these propeaies

might be listed and illustrated (Figure 2.8) below:

Neighbourhood - What are the parcels bordering lake A?

Comectivity - Xs it possible to travel fkom A to B by car?

Containment - What islands are on lake A?

Adjacency - Which highways branch out fiom city C?

w
Figure 2.8 Some topological properties

The study of topological properties and transformations is divided into two branches known

as pointset (or analytic) topology and algebrnic (or combinatoBaZ) topology. The

rudimentary objects and tools for pointset topology are point sets and neighbourhoods,

respectively. A new set is constnicted by defining a neighbourhood relation on a given

basic set. A set X, together with a collection of definable neighbourhood U, denoted (X, U),

becomes a topological space. One of the important aspects of pointset topology studies

homeomorphical transfomations between topological spaces, typically homeomorphisms

between a new topological space and one of a handfid of weïl defmed and well studied

topological spaces. Topologicully equivalent spaces should have equivdent topological

properties. Thus the topological properties of a new space can be relatively easily reveded.

Fundamental notions and facts of pointset topology include connected, open, closed,

compact, and conîinuous.

Although the basic properties of topological spaces and concepts developed in pointset

topology may seem not to correspond directiy to the obvious topological ideas about spatial

objects, understanding them is critical to capture the essence of topology and they are

helpful to construct sound, f a i m , and lasting spatial data models. In ge6graphical

applications, any sets of spatial objects must embed in some topological space. The

insightful statement put by Worboys Cl9951 (pp. 118) is worth being kept in mind: "it is

not possible to consider the topological properties of sets in exclusion from the larger

spaces in which they are embedded." Important notions of topology are applied to describe

our data mode1 proposed later in this thesis. We wïil discuss more on this later.

The aigebraic topology takes a more tractable approach by emphûsizing the combinatorial

nature of finite "'chunks" of spaces and fimctions that relate them. This is the basic

approach taken by Euler to solve the famous Konigsberg Bridge Problem [e.g. Bollob&

19791. It tums out that for figures built fiom such chunks (simplexes) of dimension S 3, the

combinatorial relationships reflect all relationships which are topologically possible

[Stillwell 19931. In the theory of the sirnplicial complex, the most primitive building blocks

for constmcting figures are the simplest elements called n-simplex existing for any

dimension n. Thus an O-simplex exist for any point, an 1-simplex for a closed line segment,

a 2-simplex for a triangle, a 3-simplex for a tetrahedron, etc. Any n-simplex is composed of

(n+l) geometrically independent simplexes of dimension (n-1). For example, a triangle, a

2-simplex, is bounded by three 1-simplexes. These 1-simplexes are geometrically

independent if no two triangle edges are paralle1 and no edge is of length O [Giblin 19771.

Each subset of m+l points fkom a n-simplex similarly determines a rn-simplex which is

called a face of the n-simplex. For example, the faces of a 2-simplex include three 1-

simplexes and three @simplexes which are edges and vertices of the triangle, respectively.

The union of the (n-1)-dimensional faces is called the boundary of the n-simplex, so aU

lower-dimensional faces lie in the boundary. The boundary of a triangle is the union of its

three edges. As an exercise, we illustrate an operation on complexes following the style

presented in Worboys [l995] (pp. 128- 13 1).

With the building blocks, any larger structures can be constnicted by pasting together

simplexes so that faces of a given dimension are either disjoint or coincide completely. This

forms a simplicial complex. A n-dimensional simplicial complex (or simply n-cornplex) C

is a f i t e set of simplexes of dimension n satisQing the following conditions:

a) A face of a simplex in C is also in C, and

b) The intersection of two simplexes in C is either empty or is also in C.

Figure 2.9 shows two 2complexes A and B, whose simplex sets are

respectively. Note that the complex B coincides with its 2-sirnplex constituent gih.

Figure 2.9 Two 2-complexes

Now we intersect the two 2-complexes A and B (Figure 2.10a). The result should also

satisQ the two conditions above. To this end, two 1-simplexes need to be introduced at the

intersections (points j and k in Figure 2.10b), which future induces 1-simplexes and 2-

simplexes. The resulting 2-complex C is the simplex set satisfying both conditions.

C = (a,b,c,d,e$g,h,i,j,j,lab,be,~fiki,ih,hj,jd,da,ac,bc,ecfc.dc,da.dg,&gc,gkgi,jk

abc, bec, efcfgcJkg, gdcigid,gkj, dac, kih,Wtj}

a. Intersecting A and B

e

b. The resuIting complex C

Figure 2.10 Intersecting two 2-complexes to obtain a new complex

The power of the combinatonal approach Lies in the algebraic interpretation of the

boundary operation for a complex C. The boundary of a n-complex C, X , is a (n-1)-

complex. To calculate the boundary of a complex, the orientation of n-simplices (for O < n

< 3) is introduced (Figure 2.1 1). The orientation of an 1-simplex ab can be directed either

from a to b or fiom b to a. The orientation of a 2-simplex detemiines that of al l its

constituent 1-simplexes. An oriented complex is one in which every simplex is consistently

oriented-

Figure 2.1 1 The orientations of simplexes

With orientation, it is possible to define the boundary operation in a pure algebraic way. Let

the O-simplex x, be denoted x, the onented 1-simplex, staaing fiom x and ending at y, be xy,

and -xy be yx if it is oriented the other way; and the oriented 2-simplex, with the vertices in

ordering king x, y, and 2, be xyz. Introduce any linear combination of simplexes (called a

chain) of the form aiSi + ..., + a d m where the Si, ..., Sm are simplexes and the ai ..., a, are

integers. The boundary operator a on the chah is defmed as

The boundary operator for a n-simplex (for O < n < 3) is as the following:

Apply these rules to the complex C in Figure 2.10. We fxst assign a consistent orientation

to each of the 2-simplexes in C which results in the diagram in Figure 2.12a Next we

express the chain of the complex to be a linear combination of its Zsimplex constituents,

that is

C = bac + bce + ecf+ fcg + fgk + gcd + gdj + gjk + dca + kjh + khi

Now applying the boundary operation we get

This results in the boundary of the complex C in Figure 2.12b. One may v e m that the 1-

complex boundary chah f o m a simply closed polygon ordered in clockwise sense.

a. Onenting each 2-simplex in C b. The boundary of the complex C

Figure 2.12 The boundary of a Zcomplex C

As one may have obsemed, the theory of complexes actually decomposes any object in the

Euclidean plane into a set of 2-simplexes, that is, a triangulation. This approach is assured

by a theorem first proved by Rad6 in 1925 which asserts that any bounded Euclidean space

is triangulatable. The trianplation observing the two conditions mentioned previously are

not unique for a given figure. In Chapter 3, we will introduce another way of trimgdahg

the Euclidean plane which produces a unique trïangulation.

2.4 Representations of Spatial Objects and Relationships

Representing spatial objects and relationships in a tractable structure is a critical step to

constructing a computerized database for geographical applications. There are two aspects

to consider, usually separate. One concentrates on the topological relationships expressed

by identifiers (system generated IDs) of spatial objects. The other specifies detailed

geometric embedding of spatial objects in terms of identifiers as well as their coordinates.

The reasons for this dichotomy are:

Firstly, topological relationships between spatial objects, once identified and coded, are

not strongly bound to their geometnc embedding. Point A is in polygon P no matter

where A is positioned in the interior of P. Likewise, the adjacency of two polygons does

not care how these two polygons are configured (vertices and shapes).

Secondly, topological operations can be expressed entirely at the identifier level without

kvolving coordinates. An example is the boundary operation presented in the previous

section. On the other hand, metric and geometric operations rely on the detailed

embedding of objects.

Thirdly, due to the state of the art of computerized spatial data handling, some

topological representations of spatial objects are readily compatible to current general

database schema and structures where other aspatial data usually reside. This is in

contrast with the geomehic structures of spatial objects which are proved inefficient

when general database structures are employed to store them.

This section discusses cornmonly practiced topological structures which explicitly capture

some topological relationships. Geometric structures concenüng the embedding of spatial

objects and their storage will be discussed in the next section.

It turns out that most of the current topological structures for a Euclidean plane are based

on the p l a ~ r graph. As shown in Figure 2.13, the primitives in a general planar graph are

nodes and arcs. An arc consists of arbitrary many line segments embedded in the plane.

Arcs can only intersect at nodes of the graph. If an arc intersects itself at one node, it forms

a loop. Multiple arcs must share two identical nodes. An arc dangles as one of its nodes is

not adjacent to any other arcs. If an arc has two dangüng nodes, it is floating. A closed

chain of arcs forms a polygon. A polygon can contain islands. Two arcs are said to be

adjacent to one another if they are both incident to the same node. Two nodes are saîd to be

adjacent if there is an arc joining them. A path is defined as a sequence of arcs which can

be followed continuously without any arc being used more than once. A path is closed

when it starts and finishes at the same node; otherwise it is open. A closed path is also

called a circuit. The order of a node is the number of arcs incident to it- If an arc meeting a

node is a loop, then that arc is counted twice in calculating the order of the node. A

connected graph is a graph for which every pair of nodes can be joined by a path. If a graph

is not connected, then it consists of several pieces called its components.

The relationship used to constraint elernents of a planar graph with h components is

expressed by the Euler formula. That is

where i represents the ith component of the graph (1 S i S A), while pi, ai, and ni represent

the numbers of polygons, arcs, and nodes in each component, respectively. Note that in this

formula, each complimentary region of a component is counted as one polygon. As an

example, the planar graph in Figure 2.13 contains 3 components (the floating arc, the

island, and the rest of the graph). The total number of polygons is 10 with the cornpliant

area being counted three times; the total nurnber of arcs is 15; and the total number of

nodes is 11. It is easy to ver@ that the Euler formula holds for this graph.

One of the earliest topological representations which found practical application in the

1970's and is still influentid today is the TIGER structure, meaning Topologicaliy

Xntegrated Geographic Encoding and Referewing. This structure was developed by the US

Bureau of the Census and is described by Boudriault [1987]. The TIGER structure is

actually the refined successor of older chain-node structures, such as DlME [US Bureau of

the Census 19701, also developed by the US Bureau of the Census in 1967 and POLYVRT

[Peucker and Chnsman 19751, developed at the Harvard Laboratory for Computer Graphics

and Spatial Analysis. The now weU-known Node-Arc-Polygon representation is the DIME-

like structure.

Figure 2.13 A general planar graph

Node-Arc-Polygon (NAP): The NAP structure represents explicitly the adjacency

relationships between polygons. It can be conveniently modelled by the ER diagram and

represented with one relational table. The constituent entities are the directed arc, node, and

polygon which are constrained by the foUowing d e s :

Each directed arc has exactiy one start and one end node.

Each node must be the staa node or end node (maybe both) of at least one directed arc.

Each polygon is bounded by one or more directed arcs.

Directed arcs may intersects o d y at nodes.

Each directed arc has exactly one polygon on its nght and one polygon on its left.

Each polygon must be the left or right polygon (maybe both) of at least one directed arc.

An EER diagram of the NAP structure is shown in Figure 2.14. It is possible to represent

loops, islands, and dangling arcs with the above d e s . However, single points with no arcs

attached are not allowed with this representation. An example of the planar graph with

directed arcs is illustrated in Figure 2.15. The relational table for the configuration is aven

in Table 2.1. The EER diagram of the NAP c m be extended to include details of the

embedding. An example of the EER diagram with the embedding is given in Worboys

[1995] (pp. 195).

arc id
l-

1 polygon 1- polygon-id

Figure 2.14 An EER diagram of the NAP structure

Arc Start End Left Right
Id node node polygon polygon

Figure 2.15 A plana graph with
directed arcs (after Worboys [19951)

Table 2.1 The NAP relation for the graph
in Figure 2.15 (after Worboys [19951)

Doubly-connected-edge-list (DCEL): The DCEL [Muller and Preparata 19781 is similar to

the NAP in preserving polygon adjacency. In addition, the DCEL adds two pieces of

information to each directed arc: the previous and the next arcs (Figure 2.16). The previous

arc is associated with the start node and is the fmt arc encountered by cycling around the

start node in an anticlockwise direction- The next arc is associated with the end node and is

the fmt arc encountered by cycling around the end node in an anticlockwise direction.

Figure 2.17 is the modified EER diagram fiom Figure 2.14 with two additional relations

added for the DCEL to encode the previous arc and next arc information. Table 2 2 shows

the DCEL in a relationai form representing the configuration in Figure 2.15. The additional

information facilitates searches for the arcs incident to a given node or the arcs enclosing a

aven polygon. However, special care must be taken when dangling arcs exist. As is shown

in Figure 2.15, the directed arc j is a dangling arc. This fact can be identified from the tupIe

of the relation corresponding to arc j in Table 2.2 as the next arc is itself.

left polygon

end node

start node
p x t arc

right polygon

Figure 2.16 Relationships to a single arc in the DCEL

l&+e] [Alel left polygon nght polygon

Figure 2.17 The EER diagram of the DCEL representation

Arc Start End Left Right ReviousNext
Id node node polygon polygon arc arc

Table 2.2 The DCEL relation for the graph in Figure 2.15

Object-DCEL: The object-DCEL [SteU and Worboys 19941 is aimed at encoding the

'keak" connectedness for an aggregation of spatial objects each of which is a single

"stron@y" connected areal object. Two areal objects are weakly connected if they c m be

disconnected by removing a nnite number of points. Othenvise, they are sirongly

connected. The following d e is observed in constnicting the object-DCEL: the direction of

the arcs is made so that the object's area is always on the right of each arc. Because of this

d e , the relational representation of the object-DCEL is simplified. No polygon identifies

are needed since it is assumed that the whole structure represents a single areal object.

Also, end node information can be omitted because the next arc starts from the end node of

the previous arc. Figure 2.18 shows a weakly connected areal object strucnired with the

object DCEL d e . The correspondhg relation table is given in Table 2.2. The boundary of

each strongly connected areal component c m be easily retrieved fiom the table.

Arc Start-node Next-arc
a 3 b

Figure 2.18 A weakly comected
areal object

Table 2.3 The Object-DCEL relation
for Figure 2-18

2.4 Geometric Structures of Spatial Objects

The conceptual representations of spatial objects are capable of providing a concise

description of the components of a spatial object and some topological relationships

between spatial objects without caring too much about the geometric embeddhg.

Achieving such a capability, however, depends on the coordinates that actually 'ïk" spatial

objects in the space. Encoding the fact that two arcs are adjacent in a topological structure,

for instance, requires a geometric judgment which recognizes that these two arcs intersect

at an identical point. Therefore, geometric embedding of spatial objects must be present

before the contents of a topological structure can be Nled within a Euclidean space. It is

obvious that capturing the geometric and metric properties of spatial objects requires their

coordinates. As is pointed out by Herring 119911, the ability to represent the geometry of

entities, or to distinguish the extent of the validity of an amibute value is a universal

requirements of all GIS systems. Therefore, any spatial data handling system, whether

having an explicit topological representation of the data or not, must be equipped with a

mechanism of storing geometric embedding of spatial objects.

Geornetric structures of spatial objects (or geornetric data structures) are schemes that

determine how spatial data (identifiers and coordinates of spatial objects) should be stored

in a cornputer. A scheme of a geometric data structure nay or may not actually consist of

spatial data but emphasizes formation of methods to dispatch spatial data to physical

storage in cornputers. For this reason, a geometric data structure is often referred to as a

spatial indexïng structure. One of the main objectives of devising such a scheme is that

particula. pieces of information about object embedding can be readily accessible without

error or too much delay. Usually, access requirements come with spatial queries which can

be topological and geornetncal. Geometrical queries ask questions whose answers must rely

on the spatiai references of objects. Typical types of geometric quenes seen in GIS include

exact match, partial match, orthogonal range, and polygon quenes [Mehlhom 19841 which

can be generalized into two types: point query and range query. A point query asks for one

or more object whose spatial references are located at or proximate to a given point. A

range query inquires for a l l objects whose spatial references are located within a given

range of any shape.

Concerns about the design of a geometric data struchue may be addressed via the following

requirernents:

Since geographical applications generally involve large quantities of spatial data, the

geometric data structure needs to facilitate efficient retrieval of interesthg spatial

objects without a big ratio of overheads. Here the overhead means the number of

uninteresthg objects searched for in a query.

The relationship between the storage structure of topological representations and that of

the geometric embedding should have a high degree of integrity.

The geometric data structure should not require some arbitrary or unnatural

fragmentation of complex spatial objects.

The geometric data structure needs to be dynamic to update the embedding of spatial

objects. and any modification causing the change of topological stahis should be

captured and reflected promptly in the topological representation without halting the

running of applications.

The geometric data structure should be partitionable to disk pages such that part of the

structure cm be loaded into memory and worked with independently. A disk page is the

amount of data that c m be continuously read, usually in one movement of the

readwrite head of the disk assembly. One disk page may be composed of one or more

disk Mocks (usually adjacent but this may be disrupted in a dynamic situation).

The ideal geomeûic data structure should have the ability to represent spatial data at

different levels of detail to meet the needs of cartographie generalization.

Over nearly three decades, a variety of spatial indexing structures have been developed (see

[Knuth 19731, [Gihther 19881, pamet 19901, and worboys 19953 for a survey). They can

be broadly categorized into three families: linear orderings, bucket structures, and trees. h

what follows, these three families of geometric data structures will be briefly examuied.

Typical examples from each category are used to illustrate their common characteristics.

The purpose of doing this is to get an idea of how these geometric data structures are

constructed and whether they encompass the above concerns.

a) The row order b) The row-prime c) The Morton
order order

d) The Hilbert e) The cantor- f) The spiral order
order diagonal order

Figure 2.19 The linear orders

Linear orderings are the simplest geometric data structures in comparison to the other two

families. They originate fkom scanning an andogous image and storing the texture

information of pixels as a linear list Each record of the Iist contains a location code which

is the address of a pixel. This technique is extended typically to order k-dimensional

vectorized points, thus transforming a k-dimensional problem into one-dimension. Well-

known data structures for one-dimensional storage and retrieve such as the B-tree, the B+-

tree, ISAM, and hashing files can then be used. Popular orders include the row order, the

row-prime order, the Moflun order Morton 19661, the Hilbert order [Goodchild and

Grandfield 19831, the spiral order and the Cantor-diagonal order Mark and Goodchüd

19861 (Figure 2.19). The Morton order is also called the Z order [Orenstein 19833 or N

order m t e 19831, depending on how a location code is interleaved with the coordinates

of a point. Comparisons between orders have been carried out based on the foliowing

evaluations: efficiency for spatial searches [Abel and Mark 1990; Yang 19921; degree of

spatial auto-correlation [Goodchild and Grandfield 19831; number of consecutive location

codes falling in a rectangle window [Jagadish 19901; and practical considerations [S amet

EWO].

Linear orderings are especially convenient for devising efficient range search algorithms

for two or higher dimensions. Examples of range search algorithms based on the Morton

and other orderings have been reported in Orenstein [1983], Yang [1992], and Stefanakîs

[1994]. Besides storing discrete points, the ordering techniques c m also be applied to index

cells containhg cornplex objects.

Bucket structures flatly partition the Euclidean plane into rec tangular cells, eac h having a

location code as its address. Spatial objects falling in one cell are stored in a contiguous

area of secondary storage. The simplest partition scheme produces a grid of fixed size for

all the ceils. In this case, linear orderings can be applied to transform the location codes of

cells into one-dimensional lists. The major disadvantage of a fixed grid partition is that

some ceUs may contai. no data. This problem becomes more acute if the distribution of

spatial objects is less uniform. The generd approach to overcome this shortcoming is to use

some index compressing techniques to reduce the number of location codes. This method

essentially transforms the £ked grid partition scheme into a more flexible one. A classical

scheme following this approach is the Grid file wievergelt et al. 19841.

1 eo 1- data page

direc tory

Figure 2.20 The Grid file structure

The Grid file (Figure 2.20) uses a grid directory consisting of grid blocks. AU records in

one grid block are stored in the same bucket (a disk page). Several grid blocks c m share a

bucket as long as the union of these grid blocks fonns a k-dimensional rectangle. The grid

directory consists of two parts. The £i.rst is a dynamic k-dimensional array, which contains

one entry for each grid block. The values of the elements are pointers to the relevant data

buckets. The second part of the grid directory is a set of k-dimensional arrays called linear

scales. These scales defme a partition of the domain of each attribute and enable the

accessing of the appropriate grid blocks. The Grid file is designed to expand or contract as

new data are inserted and deleted. A rectangle may be divided if it becomes too fulI and

may be amalgamated with neighbouring ones if the space becomes too empty.

Tree structures are based on recursive decomposition of space into a hierarchical indexing

of ceus. Depending on particular decomposition schemes used and types of geometric

primitives permitted, the resulting trees can have different shapes and the contents of

intermediate nodes Vary depending on whether or not geometric elements participate in the

partition. The leaves of a tree can contain a single geometric object or a cell of multiple

objects.

The idea of geometric hierarchical structures starts with the kd-tree pentley 19751. A kd-

tree stores k-dimensional points. In two dimensional cases, the root of the tree corresponds

to the whole region of interest (Figure 2.21). The rectangdar region is divided into two

parts by the x-coordinate of the stored point on the odd nodes and by the y-coordinate on

the even nodes on the tree. This division process continues recursively until a leaf node is

reached on which no more than one point resides. This structure guarantees a logarithmic

time for an exact match search. The original kd-tree manages points only and it does not

consider disk paging capability. The balance of the kd-tree largely depends on the choice of

the root node, which M e r requires that all data be ready before the eee is constructed.

Regular balance operations may be applied as points are inserted or deleted.

Figure 2.21 A 2D-tree decomposition of space

Variants of the original kd-tree, as well as many other types of trees, have been developed

to accommodate complex objects and to enable secondary storage. For example,

Matsuyama et al. [1984] modifies the kd-tree to index axes-parallel rectangular blocks

where points, lines and polygons are recorded. The PM Quadtrees mosenberg 1985; Samet

19841, which are regulated to have four branches, are used to partition a polygonal map.

The arc tree [Günther and Wong 19891 generalizes arbitrary c w e d shapes. Nevertheless,

all these trees divide complex objects into subobjects at the boundaries of partitioned ceUs.

The fragmentation of geometnc objects makes spatial queries such as point-in-polygon

queries dificult and inefficient. Generally, it reduces the update dynamics and requires

increased effort to balance the structure when deletions and additions occur. We make a

note here that a true deletion with this kind of tree structures is r e d y impossibIe. An

example of a PM Quadtree is given in Figure 2.22.

Figure 2.22 A PM Quadtree decomposition of space

The R-tree [Guttman 19841 is a multi-dimensional extension of the B-tree and can be

appkd to accommodate complex objects with no fragmentation. In an R-tree (Figure 2-23),

each node represents a rectangle which can correspond to a disk page. The leaf nodes are

the containers that actually hold the data in disk storage. Guttman devised dgorithms for

inserthg and deleting operations which ensure that each node is neither overfiow nor

underfiow for a given branching factor and that the tree is always balanced.

The major problem with the R-tree is the possible overlapping of certain rectangles which

causes overheads in spatial searches. The R+-tree Woutsos et al. 19871 is then developed

to overcome this problem by ensuring that rectangles do not overlap. This approach,

however, causes another problem: a complex object may be broken into different

rectangles.

Branching factor M = 4

Figure 2.23 The R-tree decomposition of space

The CeII-tree (Figure 2.24) [Günther 19881 is designed to facilitate searches on polygonal

objects. Each cell node cornesponds to a convex polygon which is the result of binary space

partition (BSP). The leaf nodes, which are all on the same level, contain all information that

may be required to answer a query. Each node of the Cell-tree corresponds to one disk

page. Günther used a tree condensation operation to eliminate empty leaves and propagates

the elimination up the tree. Interior nodes with the number of entries less than the minimum

are deleted and the entries under these nodes are reinserted into the cell tree. The

shoacomings of the Cell-tree include: 1) the dennition of a tree node object does not

corresponds to a native object definition, for not all polygonal objects are convex; 2) in

order to spLit a region into convex polygons, native objects may have to be broken into

different tree nodes; 3) splitting convex polygons is more complicated than partitioning

axes-parallel rectangles as practiced by R-trees.

The Field-tree Frank 1983; Frank and Barrera 19891 has common features with the Grid

fùe and the PR quadtree. Tt stores complete objects (cm be polylines and polygons) in

rectangle cells each of which belongs to a field partitioned at a certain resolution level- A

Field-tree therefore may consist of several sets of grids at different resolutions and

displacements. An object may be inserted into a grid cell if it does not overlap the grid cell

boundaries and there is no finer-meshed grid that will hold the object. An object c m also be

stored in a higher -1evel field if it is considered more important. A drawback to the Field-

tree is that ovedow pages are sometimes required when grid cells of one field becomes

full. We note here that the ability to manipulate spatial objects according to their thematic

and geometric significance is a desirable feature in the design of a GIS, although it might

be inappropnate to enable this feature in the geomeûic data sbmcture. Some of the reasons

for this argument are mentioned below and will be elaborated when we discuss problems in

automated map generalization.

Figure 2.24 A Cell-tree decomposition of space

Another geometric data structure that stores and retrieves geometric objects at Werent

levels of detail is described by Oosterom [1993]. He defhed this kind of scheme as the

reactive data structure. A reactive data structure is closely related to cartographie map

generalization concepts and techniques. In the reactive data structure, a geometric reactive-

hee rnust be constructed with ernbedded object-selection mechanisms. As with the Field-

tree, the reactive-tree assumes that some important values are associated with geomeîric

objects. One guideline for generating the reactive-tree could be: important objects are

stored in the higher levels of the tree. Associative structures might be added to support

different aspects of the generalization process. A general reactive-tree is a multi-way tree in

which each intemal node contains both object and tree type entries. The leaf nodes contain

object-entries on1 y. An object-entry has the form

(MBR, imp-value, object-id)

where MBR is the minimum bounding rectangle, imp-value is an integer indicating the

importance of the object, and object-id contains a reference to the object. A tree-entry has

the form

(MBR, imp-value, child-pointer)

where child-pointer contains a reference to a subtree. The MBR in a tree-entry is the

minimum bounding rectangle of the whole subtree and imp-value is the importance of the

child-node incremented by 1. Both entry types have the same size, with one bit in the

object-idkhild-pointer to discriminate between the two entry types. Each node of the

reactive-tree co~~esponds to one disk page.

The reactive-tree satisfies the following properties:

For each object-entry (MBR, imp-value, object-id), MBR is the smallest axes-parallel

rectangle that geometrically contains the represented object of importance imgvalue.

For each tree-entry (MBR, imp-value, child-pointer), MBR is the smallest axes-parallel

rectangle that geometrically contains al l rectangle in the child node and impvalue is the

impvalue of the child-node incremented by 1.

AU the entries contained in nodes on the same level are of equal importance, and more

important entries are stored at higher levels.

Every node contains between m and M object-entries andlor tree-entries, unless it has no

brothers (a pseudo-root) .
The root contains at least two entries, unless it is a leaf.

Figure 2.25 shows a set of objects: objects of importance 1 are white, and those of

importance 2 are gray. The figure also shows the corresponding rectangles as used in the

reactive-tree. The object-entries are marked with a circle in Figure 2.26 for this example.

Figure 2.25 Objects and containing rectangles of the reactive data structure

r r r
1 2 3

6
r r r r
4 5 6 3

Figure 2.26 The Reactive-tree for the configuration in Figure 2.25

The drawbacks of the reactive-tree are: First, it imposes the knowledge of importance

values of objects resulted fiom the map generalization techniques before the tree can be '

conshucted. Classifyllig spatial objects into different important groups is strongly

application dependent. While the resulting tree is effkiently targeted to a partïcular

application, it may not be a geometric data structure supporting general applications.

Besides, the data input process itself becomes application onented. Digitized map data

categorized solely by their types of geometric primitives cannot be directly used to buiid

the tree. Second, as with most of the tree indexing structures, inserthg and deleting objects

may cause severe imbalances at the lower levels of the tree. Furthemore, a lower level

node split may trïgger overflow in an index node above, which in hun rnay trigger a m e r

cascade of downward splits. Third, as with other geometric data structures, the reactive

structure does not contain topology of the spatial objects. Topological queries have to be

supported by constmcting associated topological data structures. The separation of the

geometry and topology into different indexing structures degrades the integration of the

system and makes the maintenance of the two indices diffîcult.

In summary, the geometric data structures that support complex objects either cut objects

into pieces which may be stored in different disk pages or create overlapped containers

which causes inefficiency in spatial searches. ALthough most of the structures have disk

paging ability, the resulting disk pages themselves are not meaningful objects. They serve

simply as a part of the data store but cannot be worked upon independent of the whole

indexing scheme. The dynamics Vary from one geometric data structure to another and are

enabled at the expense of balancing operations or additional overflow handling. All

geometrîc data structures do not explicitly consider the construction of the topological

relationships. The concem is focused only on handing space partition problems.

2.5 Problems with Current Spatial Database Models

Most cwent spatial databases in GIS use a hybrid architecture. That is, the topology and

geornetry about spatial data are modelled separately with topological and geometric data

models. Figure 2.27 illustrates the relationships and levels of representations between the

two data models. In the diagram, a concinuous space is firstly discretized and spatial objects

are collected (identified with data types, names, and geometry). The storage of spatial

objects is rnanaged by a geometric data model. The geometric data model dispatches spatial

objects into decomposed cells which are possibly grouped into disk pages. Based on the

geometry stored, the topological relationships between spatial objects (identified with data

types and names) are then extracted and represented based on either planar graphs or

simplicial complexes. The storage of the representation may utilize a relational DBMS or

specialized file s tmctures.

Continuous

3

1 I 3

Space decomposition <-> Planar graphs

Arc Start End Left Right
Id node node polygon polygon

Figure 2.27 The hybrid architecture of spatial database models

The drawbacks of the hybrid architecture to manage spatial objects can be addressed from

the foliowing points of view:

First, the two data models have different mathematical bases. The geometry data mode1

is based on the decomposition of the space. The geometric reference framework

resulting from the decomposition of the space is a rather rigid one which does not

generally care about the extent, shape, and complexity of the embedded objects. As a

consequence, some complex spatial objects have to be broken into pieces, the number

of which depends on the partitionhg critena used. The hgmentation induces extra

costs for maintainhg identity, and reduces the integrity of spatial objects. The dynamics

of the geometric structure is also reduced due to the fkagrnentation. The main purpose

of using a geometric data structure is to f o m indices for the storage of clusters of

geometric data. The topological relationships are of little concem with a geornetric

scheme of orga-ng spatial data Although it can be argued that some geometric

stnichires preserve certain topological relationships in theV subdivision, e.g.

c o n t h e n t in R-trees, they are not designed to efficiently answer topological quenes.

The topological data model, on the other han& is based on a planar graph, which is an

abstract data made with lïttle handling of the geometry of spatial objects. The purpose

of using a topological data model is to encode and to answer queries concerning

topological relationships between spatial objects, while whose positional data are off-

line with respect to the system managing the topology. The representation of a

topological structure depends on a complete, flat exposition of spatial objects in the

plane. Although the geometry of spatial objects may be partitioned, paged, and

managed hierarchically, the topological representation cannot conform to the geometric

partitionhg scheme.

Second, the interaction between the two data models is not dynamic and integrated.

This is especidy tme when modification of the spatial database occurs. Adding an new

object into the database, for example, involves inserting the object first into the

geometric data structure. This process creates the identifier of the new object and

possibly identiners of other system-generated objects, when the new object intersects

others in the database. All these object idenaers then have to be incorporated into the

topological structure and its representation. The modification of the topological data

structure generally needs to calculate, for each new object, the incidence and adjacency

with other objects, and to insert new relations into the data structure. The catch is that

existing topological relations may be altered with the insertion. Failure to detect and

accommodate a l l these changes causes topological errors. Most current GIS systems

therefore ask the operator to execute an exhaustive rebuilding process once the topology

of the database is changed, although some tactic operations rnay reduce this probelrn.

This analysis implies that the linkage between the two data models is loose and apt to

inconsistency .

Third, it is known that the planar graph topological model lacks the power of expressing

some topo1ogiccal relationships. The representation of the topological structure relies on

the incidence relationship between spatial objects. It is weak when addressing the

containment topology with independent points and disconnected components in a larger

embedding space. Even for the comected components, the data model has difficulty

distinguishing and encoding the nature of the co~ect ion (weak or strong). As is

mentioned in the fint point, the data model lacks the power of representing spatial

relations at different levels of abstraction, which tamishes the abstracting effort made

with hierarchical representations during conceptual and geometric rnodelling processes.

On the other hand, representing spatial objects and relationships at different levels of

detail is natural and is the trend for spatial data modelIing.

Fially, fkom the systems point of view, the separation of geometry and topology

representations of spatial objects is not supportive of persistent object-oriented

modelling technology. It is impossible to defme classes of spatial objects which

encapsulate their States, spatial properties, and operational functions. The only

topologically operable object type is the rnap (the coverage within ~ r c / I n f o ~

termuiology) itself which constitutes the contents of the whole spatial database. The

manipulahg of lower level spatial objects must be performed through procedures

(D E) provided by the spatial DBMS. It is understood that these procedures are coded

separately fiom the storage of data to be accessed. When a map is accessed and

manipulated, other accesses to portions of the database will be refused. Likewise, the

communication of the spatial data can only occur at the map level if both their

geometric and topological structures are required. A true realization of the client-semer

architecture would be difficult with a non object-oriented spatial database model,

especially when frequent modincations of a map are needed.

Chapter 3

The Dynamic Voronoi Data Mode1

A spatial data model serves to represent and manage spatial objects occupying pieces of a

space. If there were no embedded spatial objects then the space is homogeneous and there

is no reason to manage it. The fact is that we do have various Ends of spatial objects which

dot our modelling space! At the beginning of this chapter, let us corne back a bit to the

dichotomous views of m o d e b g a geographical space tu see if we c m combine both views

within one integrated modelling system.

3.1 An htegrated View of Modelling Space

Imagine that we are m o d e b g the ecosystem around each tree in a forest within the

Euclidean plane (Figure 3.1). The vicinity (the gray circle) centred on each tree (the black

dot) has an influence on the growth cycles of its flora and fauna. The influence is greater

nearer the tree and weaker f i e r out. At some point, part of the boundary of the expanding

vicinity will meet with other vicinities centred at and extending from neighbouring trees.

Those boundaries that do not meet wiil extend to the edge of the space (Figure 3.2).

Assume that all trees in the forest have similar size and that the expanding speed is the

same for each vicinity in al1 directions. The meeting boundaries will have the same distance

fiom each of the neighbourïng trees. For any point within a vicinity, the distance between

the point and the tree wili always be shorter than the distance between this point and any

other tree.

Figure 3.1 Trees and their vicinity circles

Figure 3.2 The tessellated space with respect to trees

Figure 3.2 forms a tessellation of the space with respect to the distribution of trees. In other

words, the space is partitioned to subspaces or tiles each of which is associated with a

single tree within it. It is this tessellation that combines both field-based and object-based

views of spatial data rnodels. From the field-based point of view, each tile represents

collectively the locations that innuence or are innuenced by the growth of the associated

tree. Across the tile boundary will be an area dominated by one of its neighbouring trees.

From the object-based point of view, the reason for the tesseHation of the space is the

existence of those trees without which the modelling space will not be tessellated. The

tesseHation model, therefore, is centred on the objects and is simultaneously expressed by

the collection of locations surrounding each object. With this integrated view, when one

speaks of an object in the tessellation, there is a tile associated with it. In reverse, when one

refers to any location within a tüe, the object dominating this tile is known.

Besides tessellahg a space with respect to points, we c m similarly have a tessellation with

respect to polylùies and polygons (Figure 3.3). The analogy is the same as that for points:

tiles are formed by expanding their vicinities in ail directions fkom each complex object

until all boundaries either rneet within the space or extend to infinie. The collection of tiles

is a partition of the space and each d e is associated with an object within it. Any location

within a tile is closer to the associated object than to any other object

Figure 3.3 The tessellated space with respect to polylines and polygons

The tessellation of a space based on the vicinity analogy has a special name, called the

Voronoi diagram, which will be fonndy defmed in the next section. Figure 3.2 is a

Voronoi diagram of points. Figure 3.3 is generalized fiom a Voronoi diagram of points and

line segments. One can draw or sketch such Voronoi diagrams on a piece of paper without -

much difnculty. We will see in this chapter how they c m be produced with a cornputer.

What is so special about the tessellation of a space via a Voronoi diagram? Tessellahg a

space is not really new. AU the geometric structures of spatial objects that we have seen are

tessellations in one form or another. LÏnear orderings tessellate a space h to stripes of

consecutive spatial uni&; bucket structures divide a space into rectangular cells based on a

g id fiamework, although the size of buckets can Vary due to the merging of cells; tree

structures tessellate k t into two, four, or any lirnited number of containers, and repeat this

process in lower level containers until the contents of the container reach a pre-defined

criterion. The purpose of ail tessellations is the same: partition a space into smaller ones

such that they are easier to manage. The key clifferences for the Voronoi diagram are:

1) The Voronoi tessellation is always object-based in that no tiles of space exist if there

is no object embedded in the space.

2) The tessellation is also object-driven in that if there is an object, there is a tile

associated with it; on the other hand, the tile disappears when the object is deleted

fkom the space.

3) No additional breaking points will occur in the partitioning, in that a single idenmecl

object never belongs to two tiles.

4) The tessellation is irregular depending on the distribution and on the geomeiric

configuration of objects; distribution and configuration of objects are not generally

uniform.

3.2 A Formal Definition of Ordinary Voronoi Diagrams

In this section we defme Voronoi diagrams. Of the numerous types of Voronoi diagrams,

we are especially inierested in the ordinary Voronoi diagram. This kind of Voronoi

dîagrams is "ordinary" because it is simple and follows the intuition of the vicinity analogy.

Ordinary Voronoi diagrams can be dehed with a single notion of the Euclidean distance

metric. It tums out that varying the distance function alone tells a lot about the behaviour of

Voronoi diagrams. Besides the Euclidean metnc, non-Euclidean metrics can be used to

define Voronoi diagram with special properties, which find interesting applications.

Extensive and scholarly sunreys on both ordinary and "unordinary" Voronoi diagrams are

provided by Aurenhammer [1991] and Okabe et al. [1992].

We consider fïrst a set of points S = {si, sû .-., s,}, for a limited Uiteger n (n > l), embedded

in the R' Euclidean space such that no two points coincide. The ordinary Voronoi diagram,

V(S), partitions the plane into Voronoi regions, v, such that for two distinct points si, sj E S,

the dominance of si over sj is defked as the subset of the plane king at least as close to si

25 t0 Sj :

where d denotes the Euclidean distance function. D(si, sj) is a closed half plane bounded by

the bisector of si and sj, denoted by B(si, sj):

The Voronoi region v(si) is the portion of the plane lying in all of the dominances of si over

the remaining points in S:

With these, the Voronoi diagram V(S) is fïnally expressed as the collection of Voronoi

regions:

If ~ W O bisectors B(si, sj) and B(si, & (si, sj, and si, E S) intersect, the intersection is called a

Voronoi vertex and the bisector, delimited by two consecutive Voronoi vertices, is called a

Voronoi edge. We denote Q = {qi}, for 1 < i S nq < 00, be the set of Voronoi vertices of a

Voronoi diagram generated by S. Two points in S are neighbours if they share a common

Voronoi edge @ossibIy extended to infhity). The Voronoi vertex has an equal-distance to

at les t three points and is therefore the circumcentre of a circumcircle, 4 (1 $ i 5 n, c a),

defined by these points. Figure 3.4 shows the ordinary Voronoi diagram for a set of points

with a graphic depiction iIlustrating the elements d e k e d in this section.

Figure 3.4 The ordinary Voronoi diagram and related elements

Next we consider the h i t e set S = {sl, q, ..., s,} c p, where si E S is a point, a line

segment, a polyline, or a polygon as defined in Section 3.2. The above dennition c m be

generalized to ordinary Voronoi diagrams constructed fiom the set S. The generalization is

made with respect to the extended dennition of the distance function d which has been used

in the dennitions of the point Voronoi diagram and related elements. Generalized Voronoi

diagrams of this kind have been studied in computational geometry since the late 1970s

started by Drysdale and Lee [1978] (also reported in, Drysdale [1979], Kirkpatrick [1979],

Lee and Drysdale [1981]). In a generalized Voronoi diagram, the distance h c t i o n d is

defined as the shortest distance between a point x c R* and an arbitrary point xi on si c S,

that is

where x and xi are the location vectors of x and xi, respectively. For a line segment si with

two end points sj and sk the specification of the shortest distance function d, can be wrïtten

as

IIx - II'

where X, sj, and

respectively, and

if x E Ril,

ifx E Riz,

are location vectors of a point x E P, and WO endpoints sj, sk E S

are three regions for point x in respect to the line segment si (Figure 3.5).

Figure 3.5 Regions for calculating the distance from a point to a line segment

Having defined the shortest distance function for a line segment (for a point as well when a

line segment has degenerated into a point), the shortest distance from a point to any other

complex object in S is known. since ail complex objects dehned for S are connected with

line segments. In the next section, we explore properties of the ordinary Voronoi diagram

of points and line segments. Because we are dealing exclusively with the ordinary Voronoi

diagram in this thesis, the modifier "ordinary" WU be ornitted fkom the context when no

confusion arises-

3.3 Properties of the Voronoi Diagram of Points and Line Segments

The first property examuied demonstrates the behaviour of Voronoi edges which fom the

boundary of a Voronoi region at the most primitive level.

Property 3.1. Given the object set S defined earlier for a generalized Voronoi diagram,

there are four possible types of Voronoi edge which bisect: i) two points (type El); ii) an

endpoint and its comected interior of a line segment (type E2); iii) a point and the intenor

of a line segment (type E3); and iv) the interiors of two line segments (type E4).

The nature of the four types of Voronoi edges c m be observed diagrammatically in the

sketches shown in Figure 3.6.

Figure 3.6 Four possible types of Voronoi edges bisecting two objects

The diagram depicts that:

~ , h e El edge (a) is a straight line and is perpendicular to the line linking the two points.

A Type E2 edge @) is also a straight line perpendicular to the line segment and passing

through the endpoint,

A Type E3 edge (c) is a simple parabolic curve and is bound within the subspace

overlapped by three haif-planes with respect to the line segment and its two type E2

edges. The terminating points of the type E3 edge must be Voronoi vertices (hollowed

circles). Each terminaihg point is the centre of the circumcircle formed by the point, the

line segment, and at least one other object.

A Type E4 edge (d) is a straight line, bisecting the angle between the two line segments,

and is bound within the subspace overlapped by six half-planes with respect to the two

line segments and their type E2 edges.

It should be emphasized here that the introduction of type E2 Voronoi edges is the

consequences of 1) the definition of the line segment in S, and 2) the distance function

defined by Equation 3.6. There are Voronoi diagrams of line segments without the type E2

edges (c.f. Gold et al. [1995]). These Voronoi diagrams do not recognize the endpoints as a

distinct object in the denuing object set.

AU types of Voronoi edge are equidistant from the two neighbouring objects which define

it. An example of the distance fkom any point x on each Voronoi edge projected ont0 two

neighbouring objects si, sj E S, i -+ j, is given in Figure 3.6, as marked by the symbol "/f7.

Using this fact (d (x, si) = d (x, sj)), together with the distance functions given in Equation

3.6, one can verify the nature of the four types of Voronoi edges with analyticai fûnctions.

The existence of the E3 type Voronoi edge in the Voronoi diagram involving line segments

has the following consequences which are stated as properties.

Property 3.2. A Voronoi region in the Voronoi diagram of points and line segments is not

necessarily convex.

Property 3.3. A bounded Voronoi region in the Voronoi diagram of points and line

segments may have only two parabolic Voronoi edges (Figure 3.7)-

Figure 3.7 Voronoi regions bounded by two Voronoi edges

Property 3.4. The Voronoi region of an endpoint incident to three or more h e segments

may be contracted into one point (Figure 3.8a).

We note that not a l l the Voronoi regions of endpoints incident to three or more line

segments will be contracted into a point. This is the case when polylines are connected to

fonn more complex objects (Figure 3.8b).

a) A contracted Voronoi region
of an endpoint (grayed dot)

b) A non-contracted Voronoi region
of an endpoint (grayed ara)

Figure 3.8 Contracted and non-contracted Voronoi regions

of endpoints incident to three or more line segments

These properties do not apply to the Voronoi diagram for a set of points where aU Voronoi

edges are straight lines, all Voronoi regions are convex, all bounded Voronoi regions must

have at least three Voronoi edges, and there are no contracted point Voronoi regions for a

discrete point set. The non-convexity of the Voronoi region presents some challenge to the

design of geometric algorithms which are otherwise easier when a l l Voronoi regions are

convex.

It has been mentioned in the defmition of a Voronoi diagram that the Voronoi vertex is

equidistant to at l e s t three points and is therefore the circumcentre of a circumcircle

defïned by these points. This fart is equally tnie for a Voronoi diagram of points and line

segments where a line segment must be tangent to a circumcircle. The following property

concems the nature of any circumcircle defined by three or more objects.

Property 3.5 (the ernpty chcumcircIe theorem). For every Voronoi vertex, qi7 in a

Voronoi diagram, there exists a unique empty circle Ci centred at qi with contact points on

three or more objects in S (tangent points on luie segments).

This propeq is weU h o w n in the study of the Voronoi diagram. The proof is simple and

can be found in the literature (e.g. [Okabe et al. 19921, pp. 81). We make use of this

property to show the next property.

The property we now examine classifies possible types of Voronoi vertices (qi} in a

Voronoi diagram. It is closely related to Property 3.1 and is useful for studying methods to

calculate Voronoi vertices. In computational geometry the following two assumptions are

usually made in discussing the properties of Voronoi diagrams:

The non-collinearity assumpüon. For a given set of objects S = (4, sz, . . ., S.} c R ~ , (3 5

n < oo), S17 s2, ..., sn are not on the same line.

The reason for this assumption is clear. If all objects in S lie on the same line, all the

Voronoi edges wiil be perpendicular to the line and extend to infinity without being

intersected within a Iimited range. This is a special case which requires particular treatment.

The general position assnmption. A given set of objects S = {si. q, . .., s,) c 2, (3 5 n <

m), is in general position if no four objects are cocircular and no three objects are collinear.

Satisfjhg this assumption, exactly three Voronoi edges will be incident at every vortex in a

Voronoi diagram. The Voronoi diagram which is compatible with this assumption is non-

degenerate, otherwise it is degenerate.

Property 3.6. Voronoi vertices {qi} in a non-degenerate Voronoi diagram for points and

line segments can be classified into six types according to the types of the three Voronoi

edges which are generated by three objects.

Type VI. A vertex qi generated by three points. In this case, the Voronoi edges are all of

type E l (Figure 3.9a).

Type V2. A vertex qi generated by a point, the interior of a line segment, and one endpoint

of the line segment. The Voronoi edges are types El, E2, and E3. The El and E3 edges

are tangent at the Voronoi vertex qi (Figure 3.9b).

Type V3. A vertex qi generated by the interior of a line segment, and two points. The

Voronoi edges are types El and E3 (Figure 3.9~).

Type V4. A vertex qi generated by the interior of two Line segments, and one endpoint. The

edges are types E2, E3 and E4. The Voronoi edges are types E 1, E2, and E3. The E3 and

E4 edges are tangent at the Voronoi vertex qi (Figure 3.9d).

Type V5. A vertex qi generated by the interior of two line segments, and one point. The

Voronoi edges are types E3 and E4 (Figure 3.9e).

Type V6. A vertex qi generated by the interior of three line segments. The Voronoi edges

are al l of type E4 (Figure 3.90.

Figure 3.9 Six types of Voronoi vertices

Proof- The complete combinations of the four types of Voronoi edges (El, E2, E3, and E4

simplified as 1, 2, 3, and 4 respectively) intersected at a Voronoi vertex qi in a Voronoi -

diagram of S can be listed in four mairices (Figure 3.10a). For any configuration involving

three objects SI, SZ, and s3 in S, three Voronoi edges Ei, Ej, and Ek (for i, j, k c { 1,2,3,4}),

there exist equivalent combinations (Figure 3.11). Removing surplus combinations fiom

matrÏces in Figure 3.10a results in the matrices shown in Figure 3. lob.

Figure 3.10 Combination matrices for three Voronoi edges

Figure 3.1 1 Equivalent combinations of Voronoi edges

We now proceed to prove that out of the remaining 20 combinations, only six of them c m

be found in a non-degenerate Voronoi diagram, which has only three objects on a

circumcircle corresponding to a Voronoi vertex. By putting three objects on or tangent to

the circle corresponding to the types of Voronoi edges incident to the vertex, it is easy to

venfy that the con~gurations in Figure 3.9 can be achieved without violating the non-

degeneracy condition. These configurations match the combinations of Voronoi edges,

namely 11 1, 123, 133, 234, 433. and 4-44 However, it is impossible to achieve the other

combinations in the matrices without violating the non-degeneracy condition. Figure 3.12

illustrates the proof of degeneracy of the other 14 combinations. The idea is to set up

Voronoi edge configurations (solid thin lines) for the combinations with minimum number

of objects on the circumcircle, and at the same tirne, this shows that surplus (degeneracy)

Voronoi edges (dashed lines) incident to the vertex qi necessarily incur with these

configurations.

Two closely related facts will be revealed in the next section. d e r we introduce the

tnangulated dual structure of the Voronoi diagram. The fust fact shows that the first six

non-degenerated vertices correspond to the six disthguished, non-degenerated triangles,

each triangle having three objects Uustrated in Figure 3.9 as its vertices. The second fact

demonstrates that ail the degenerate vertices correspond to non-triangulated dual polygons,

which can be decomposed into triangles distinguishable by one of the six non-degenerate

triangles. The significance of identifying the six non-degenerate types of vertices is that

computing a Voronoi diagram requires only six well formulated methods to calculate and

verify all types of Voronoi vertices.

Figure 3.12 IUustration of the degeneracy of Voronoi vertices

The final property which interests us views a Voronoi diagram as a planar graph, for which

the set of Voronoi vertices {qi} corresponds to the set of nodes, the set of Voronoi edges

{ei} to the set of edges, and the set of Voronoi regions {vil to the set of polygons. This

property is stated in Aurenhamrner [1991]. A proof of it can be found in Okabe et al. [1992]

(pp. 83-86).

Property 3.7. For a finite set of objects S = (s i , sz, . .., s,} c @, (2 I n < a), a Voronoi

diagram V(S) is a plana. graph G(N, E) = G({qi}, (ei}) with the following facts:

i) There are less than 312 edges in the graph;

ii) There are less than Zn nodes in the graph; and

iii) The average nurnber of edges of a polygon is aiways less than six.

This property demonstrates h e a r behavior for the size of the Voronoi diagram in the plane.

It implies that, roughly speaking, the structure of a Voronoi diagram is not rnuch more

complex than the underlying configuration of given object set [Aurenhammer 19911. This

is one of the main reasons for the frequent use of Voronoi diagrams. A second reason is that

V(S) comprises the entire proximity information about S in an explicit and computationally

useful manner.

3.4 The Delaunay Triangulation: The Dual Topological Structure

The graph-theoretical view of a planar Voronoi diagram permis us to examuie its dual

structure. To make things simple, we fxst study the dual structure of a non-degenerate

Voronoi diagram of a set of points S. The Voronoi diagram for a set S is drawn in Figure

3.13 with thin lines. We obtain the dual structure by a joining rule which joins every pair of

neighbounng objects with a dual edge (thick lines). Each dual edge will be orthogonal to a

Voronoi edge, but not necessarily intersect it. Since each Voronoi vertex is incident to

exactly three Voronoi edges, it has correspondingly exactly three dual edges which form a

triangle. Voronoi regions correspond to the set of objects S. The set S equaliy forms the set

of nodes of the dual structure. It is also obsemed that the boundary of the convex hull of the

object set consists of dual edges. This dual structure itself constitutes another tessellation of

the bounded convex region spanning the object set, and is known as the Delaunay

tessellation in honor one of its earlier investigators, or the Delaunay triangulation as each

tile is a triangle. A dual edge joining a pair of neighbours is called a Delaunay edge. Each

triangle in the triangulation is cailed a Delaunay triangle and the vertices of a Delaunay

triangle, which are three points in set S, are Delaunay verrices. The duality between

Voronoi and Delaunay immediately implies upper boundaries of 3n and of Zn on the

number of Delaunay edges and triangIes.

Before we give a mathematical defintion of the Delaunay triangulation, a few questions

addressing practical problems are worth asking:

1. The fmt question concems the general position assumption. If a point set is not in

general position, can we s t . achieve a aiangulated dual tesseHation for the Voronoi

diagram of this set? The answer to this question is yes if the set satisfies the non-

cobearity assumption. However, an additional refined joining mle must be observed.

To see how this can be done, let us examine two degenerate Voronoi diagrams for small

sets of points not in general position (Figure 3. Ma and Figure 3. Md), which show that

the Voronoi vertex (the smaU circie) in each of the two diagrams is incident by more

than three Voronoi edges (thin luies).

Figure 3.13 The Delaunay tnangulation as a dual tessellation of the Voronoi diagram

Figure 3.14 Voronoi diagrams and Delaunay triangulation for degenerated point sets

Fi,- 3.14a and Figure 3.14d also show dual edges (thick lines) drawn according to the

joining rule to join two neighbours. They are orthogonal to the corresponding Voronoi

edges. The resulting dual structures for these two Voronoi diagrams, however, are not

triangulations but polygons. The refined joining d e is introduced in this case by

partitioning the polygons into triangles with non-intersecting line segments joining the

vertices (Figure 3.14b and Figure 3. Me). The results are therefore the Delaunay

triangulations, sometimes called the degenerate Delaunay triangulations. Notice that a

degenerate Delaunay triangulation may be structwed differently by joining different

objects. This c m be seen from alternative triangulations (c) and (g) for (a) and (d),

respectively, in Figure 3.14. Either triangulation is acceptable.

It is clear that each Delaunay inangle corresponds to a Voronoi vertex and the circumcircle

defmed by a Delaunay triangle satisfies the empty circumcKcle theorem. Sibson LI9771

proved that the Delaunay trimgulation for a set of points is locally equiangular or it

satisfies the local m m i n angle criterion. That is, for any two triangles whose union is a

convex quadrilateral, the minimum angle arnong the six angles in the quacidateral is

maximized. Actually, the Delaunay triangulation is the only triangulation with this

property. The Delaunay aiangulation maximizes the minimum angle over aI l possible

triangulations of a given set of points. On the other hand a simple example shows that the

maximum angle is not minimized. By the empty circle property, any trimgdation without

obtuse angles must be Delaunay. Tnangulations without "extreme" angles are desirable in

fnite elements and interpolation methocls.

The Delaunay triangulation is a supergraph of several well-known and widely used planar

graphs spanned by a set of objects in the plane: the minimum spanning tree [Kruskal 19561

(or Prim sho~es t comection network @%m 19571); the Gabriel graph [Gabriel and Sokal

19691; and the relative neighbourhood graph [Toussaint 19801. These planar graphs are

subjects studied in computational geometry and are applied to a variety of applications.

2. The second question asks about the extensibility of the triangulated dual structure to the

Voronoi diagram constmcted from a set of points and line segments. The joining rule is

problematic here because a pair of neighboun may be line segments which are defined

not by a single point, but a set of points defined by a linear combinatory equation.

Therefore, any point on a line segment is, in theory, a neighbour to other objects in

neighbouring Voronoi regions. The solution to this problem again utilizes more niles.

For a line segment defmed by two endpoints a and 6, with a and b k i n g their location

vectors, respectively, we define the middle point located at (a + b)/2 as the graphical

representation point of the line segment. With this reinforcement, a dual edge can now

be drawn to relate two neighbouring line segments by their graphical representation

points. Figure 3.15 illustrates the dual triangulation denved fiom the Voronoi diagram

of a small set of points and line segments.

Several notable characteristics of the dual trianplation can be identified in Figure 3.15.

Firstly, the eianguiation does not necessarily satisw the max-min angle critenon. This is

because the triangulation simply uses the graphical representation point to show the lùikage

between a line segment and its neighbours. The neighbourhood relationship actually exists

for ail points on the line segment. Altemativeiy, this implies that the trïangulation is not a

tessellation of a space in the geometric sense. It becomes a planar graph modemg

neighbourhood relationships observed from the dud Voronoi diagram. Secondly, the

trïangulation does satisQ the empty circumcircle theorem when the interior of a line

segment is considered wholly as one vertex of a triangle. A line segment as a vertex of a

triangle is tangent to the circumcïrcle defined by this triangle. It does not matter where the

tangent point is. For example, the triangle hisjsk in Figure 3.15 is corresponding to the

Voronoi vertex q and has two h e segment vertices sj and sk, and one point vertex 4. The

circumcirde C defbed by this triangle is tangent to one point in each of the interiors of sj

and sk, respectively, and is object free in its interior. For this reason, that the dual

trïangulation preserves the empty circumcircle property, we still cal l it a Delaunay

trimgdation. Finally, for the same reason, a triangle edge in the dual triangulation of a

Voronoi diagram of points and line segments is not necessady drawn as a straight line

segment. A fiee c w e d triangle edge, t, for instance, is graphicaIiy presented in Figure

3.15. Note that the curved triangle edge is for graphical purpose only. Neighbourhood

between two objects is not affected by the shape of a linking edge. The last charactenstic

actualiy reveais an important concept about the Voronoi diagram of points and line

segments, that is, a iine segment must be distinguished by its sides. This concept will be

elaborated later.

Figure 3.15 The dual tnangdation of the Voronoi diagram of points and line segments

3. The last question concerns the usefdness of the dual triangulation. As the Voronoi

diagram itself forms the tessellation of a space with many usefid properties, what is the

advantage of having a dual structure in the fust place? The answer to this question

emphasizes the efficiency of the dud triangulation in the representation by a cornputer.

Similar to the topological structure discussed in the previous chapter, the dual

triangulation is the topological structure which explicitly preserves the neighbourhood

relationship between Voronoi tiles and hence objects. Although the Voronoi diagram

itself admits this relationship, its representation by a cornputer is not easy. The major

difficulties &se from 1) the number of neighbours of a Voronoi region depends upon

the distribution of the set of objects and cannot be fned; and 2) there are parabolic

boundaries between neighbouring Voronoi regions when line segments are involved in

the object set. On the other hand, the information items needed to register the same

topology cm be fixed with the triangulated dual structure. In the inangulation, each

triangle edge is defined by two objects in the given set, and each triangle has exactly

three neighbouring triangles. Therefore, the record length for each triangle is lcnown

and constant. If the dual information (a triangle edge vs. two vertex objects and two

neighbouring triangles) can be encoded in a data structure, aU the facts that we need to

know about a Voronoi diagram can be provided by the data structure. As a matter of

fact, the dual topological data structure contains not only the explicit neighbourhood

relationship, but other topological properties, such as connectivity and containment

concerning topological spaces, can be denved rather efficientiy. We wïil elaborate this

point in the coming sections.

As a summary of this section, we give our f o m d definition of the Delaunay triangulation

derived fiom a Voronoi diagrarn:

Given a Voronoi diagram for a set S = {si, si, S.} c l?, (3 I n < m), of points and line

segments as dehned previously, V(S), its dual topological structure, the Delaunay

tessellation, D(S), is a planar graph G(S, E), where S, E are the node set and the edge set of

G, respectively, and for si7 sj E S, i, j E In, i F j, sisj E E iff the Voronoi regions v(si) and

v(sj), possibly unbounded, share a common Voronoi edge which can be a half-line, a line

segment, a paraboiic curve, or a degenerate point. We cal1 each sisj E E a Delaunay edge.

In the case that a Voronoi edge has degenerated into a point, this point must be a

circumcentre of a circumcircle defined by more than three nodes in G, and one must

therefore add Delaunay edges in E by applying the refmed joining d e .

Defme a subgraph T = (TI, T2, ..., Tm) c D(S), 1 S rn S 2n, where each Ti c T is a 2-

simplex whose composing 0- and 1- simplices belong to S, and E, respectively. The only

constraint on Ti c T is the empty circumcircle critenon, that is, the circumcircle defined by

the vertices of each 2-simplex in T does not contain any object in S in its interior. The

subgraph T c D(S) is called the Delaunay triangulation. Each Ti c T is a Delaunay triangle.

3.5 The Data Structures of the Voronoi Diagram

Designhg a data structure to represent the Voronoi diagram is the fnst concrete step in the

constmction of the diagram with a computer, in addition to understanding the nature and

properties of the diagram. Following the discussion presented in the preceding section, the

design of the data structure is centred on representing the duai Delaunay triangulation. The

following two important requirements are imposed on the data structure: 1) It must be

topologicd in the sense that only the identifiers, not the geometry, of an object class should

be involved in the supporting operations for topological properties; and 2) The transition

between an identifier of an object and its geometnc definition should be nahiral and

smooth. There could be many different data structures encoding a Delaunay triangulation,

although two representations stand out. The fxst one is the well-known quad-edge data

structure [Guibas and Stolfi 19851, and the other is the triangular elernent data structure

[e-g. Gold 1976; Gold et al. 19771.

The quad-edge data structure is a computer implementation of the edge algebra developed

by Guibas and Stolfi [1985] which captures ail the topological properties of the subdivision

of a surface. Each undirected edge of a non-oriented subdivision is composed of eight

information items: four encode the orientation and direction of the edge, and the other four

encode that of the dual edge (linking left and right faces). Figure 3.16 depicts the direction

and orientation of an edge in (a) and a genenc edge structure in (b). For a generic edge e, its

record, identified as e, has four parts (quarters), e[r] with r E {O, 1, 2, 31, plus in each part

one additional bit f E (0, 1 }. Therefore, the edge e c m be referenced by the triplet (e, r, fi,
where r indicates the orientation, and f the direction. This triplet serves as a pointer to a

"recordquartei' e[r] plus the bit telling us the edge e by a particular vertex, and a pariicular

face. Each part e[r] of an edge record e can contain two fields, Data and Next. The Data

field holds geometric and attribute information about the edge e in orientation r and at

texminaif. The Next field contains a reference to an adjacent edge in a counterclockwise

order. The algebraic operations upon quad-edges include Flip, Onext, and Rot. The FZip

operation on an edge e r e m s the same unonented edge with the opposite orientation and

the sarne direction. The Onext operation on e retums the edge immediately following e in a

counterclockwise direction, with the same origin as e. The Rot operation on e, however,

rehuns the dual of e, which is e being rotated 90° counterclockwise around the crossing

point of dual edges. The quad-edge data structure contains no separate records for vertices

or faces. A vertex is implicitly defined as a ring of edges and cm be referred to by

spec-g any of its outgoing edges. On an orientable manifold, such as the Euclidean

plane or the sphere, the Flip operaiion is not needed.

direction

- - - 1 dual edge

t x , O) = (e, O, O) Rot

l(e, O, 1) = (e, O, O) Flip

O

a) A directed, oriented edge b) A quad-edge e

Figure 3.16 An illustration of the quadedge data structure

The uiangular element data structure is simple, and more intuitive. As the name suggests,

the basic elements of the data structure are iadividud triangles. For each triangle Ti in a

triangulation, a tuple of six ordered pointcrs is used:

where vl, v2, and vz are three system-generated references for the vertices of the triangle in

counterclockwise order; and ti, tz, and t3 are three system-generated references for the

adjacent triangles. The order of the adjacent triangle references is arranged such that for

each 4, k E { 1,2, 3 }, its referred triangle shares a triangle edge with triangle Ti, the shared

triangle edge must be d e h e d by vk.1 and vk+l. In other words, the position of tk

corresponds to the position of vertex vk- Figure 3.17 shows a portion of a triangulaîion and

its data structure. The arrows illustrate the positioned correspondence between vertex and

adjacent triangle references.

30

a) A portion of a triangulation b) Triangular element representation

Figure 3.17 The triangular element data structure

Unlike the quad-edge data structure, the triangular-element data structure expücitly

represents the identities of triangles and their vertices but not the triangle edges. A triangle

edge is implicitly identified fkom the data structure. Both data structures are equivalent for

a planar tnangulated subdivision in the sense that topological properties involved in this

subdivision are represented. The triangular element data structure is used to represent and

store Voronoi diagrams in this thesis. This was chosen for the historical reason that the

surface interpolation data mode1 was first studied based OE the triangular element data

structure [e.g. Gold 1976, 19891, which has been transformed later into the fundamental

data structures for a dynamic spatial data handling system [e.g. Gold 19911.

One of the most important extensions to the original triangular element data structure

permitsi the Voronoi diagram to handle both points and line segments [Gold 19901. This

capacity is built into the associative topological object structure to represent and manage

these two types of objects. As is shown in Figure 3.18% the object structure specifies the

relationship between a line segment and its endpoints. It has been mentioned before that a

line segment has to be distinguished by its sides, it is therefore onented. It is also directed if

the start and end points of the line segment can be identified. This is done by actually

treating a line segment composed of two mutually associated and oppositely oriented lines.

When a line segment is refened, it is necessary to indicate which side.

Let ki E 1 , Wi E 1, 1 I i É a, and I is a fd te , distinct set of positive integer numbers. The

example of a general line segment in Figure 3.18a has two oriented lines k3 and b. For the

onented line k3, the endpoint kl is associated with it; and for b, the endpoint k2 is

associated (indicated by dashed arrows). Associated also with an oriented line is the other

side of the line (dashed arrows relating k3 and b). The endhg point of the oriented h e k3,

cm be retrieved by asking for the staaing point of the orïented line at the other side, which

is The data structure representing this scheme is shown in Figure 3.18b. The distinction

between a line segment and a point is made in the "Other-side" field. For a point object, the

value of its "Other-side" field is null (Le. O), and the value of its 6Znd-pointp' field will

never be a null. For an oriented line, the "End-point" field is filled with the identifier of the

starting point; and the "Other-side" field is the identifier of the associated onented line on

the other side.

(a) The associative object structure

OTD Endpoint Other-side ...

m.. . ..
null *..
null *..

k4 ...
k3 . . .
null ...
null ...

(b) The object structure representation
for the data in (a)

Figure 3.18 The associative object data stmcture

The subject of identimg orientation of geometric lines and planes has been recognized in

computation geometry. One theoretic treatment [Stolfi 19871 named the study as "oriented

projective geometry". The oriented projective geornetry can be viewed as a marriage of

classical projective geometry, which underlies the homogeneous coordinate representation,

with an algebra of orientations, which is the ordinary algebra augmented by two-sided

representation of objects.

3.6 The Construction of the Dynamic Voronoi Diagram

The computing of a Voronoi diagram c m be carried out directly, or by constructing its

dual, the Delaunay triangulation, since they are topologically quivalent. The construction

through the Delaunay triangulation is especially advantageous if the data structures are

oriented to representing the Delaunay triangulations. By associating aiangles with some

relevant geometric information, for example the coordinates of the correspondhg Voronoi

vertices, we are computing, simultaneously, the underlying Voronoi diagram.

There are typically four approaches to constnicting a Delaunay triangulation. The

algonthms of each approach are extensively studied in the computational geometxy

community. The divide-and-conquer [Drysdale and Lee 1978; Guibas and Stolfi 19851

approach recursively divides the set of objects into two equalIy smaller subsets, usually the

left and the rïght halves:The Delaunay triangulation of each half is then recursively

computed and finally merged with that of the other hdf into a bigger one, until the whole

set is spanned with one Delaunay triangulation. The plane-sweep method Fornine 1986,

19871 uses a horizontal h e , called the sweepline, and moves it over the plane fiom bottom

to top, halting at special points, called "event points". The Voronoi diagram is constnicted

dong this line by maintaining a list of Voronoi regions and boundaries encountered by the

sweepline, and a priority queue of events. The third approach is rather different in that it is

based on the idea of "transforming geometrical problerns into more easily understood and

solved ones". This method [e.g. Brown 1979; Edelsbrunner 19861 transforms Voronoi

diagrams in R' into convex hulls in p: the points are mapped, via a stereographical

projection, into points lying on a sphere. For this reason, the method is called "tifring-up"

[Okabe et al. 19921 or "higher dimensiunal ernbedding" [Aurenhammer 19911. The convex

hull in higher dimensions is fmally transformed inversely to the original plane. Ail these

three methods can compute a Voronoi diagram with the optimal O(n log n) tirne bound,

where n is the size of the object set. However, a serious drawback of these algonthms is the

assumption that all objects are known before these dgorithms are applied which is

unredistic in a dynamic environment. The fourth approach is the incremental methud

which is the simplest to understand and implement. The incremental approach is usually

attributed to Green and Sibson 119773 for their dgorithmic description of the method,

although Gold [1977] independently discovered this approach and used it to generate

contour maps based on a partial ordering of the tnangulated plane. The idea of this method

is first to set up a Delaunay triangulated frame of the universal plane and then to modiw the

triangulation, based on the empty circumcircle test, as new points are inserted one at a time

kt0 the plane.

We are interested in the incremental approach to construct d y ~ m i c Voronoi diagrams.

"Dynamic" means that the diagram is (locally) modifiable as objects are added or deleted.

We chose this method for the following reasons: Fit ly , most geographical applications

experience dynamic processes involving spatially referenced objects, as identifed in the

fxst chapter of this thesis. Often a dynamic process occurs in an existing spatial

configuration which is then interacted with and modified during the process. A new spatial

configuration is derived as a result of the addition or deletion of objects, or the

displacement of a previous configuration. The status of the set of spatial objects in the

spatial configuration is therefore dynamic in nature. Secondly, the incremental approach is

naturdy akin to the temporality of a geographical database with which the history of the

evolution of spatial objects can be tracked. This is sensible because the tracking process

corresponds directly to a geographical process. Thirdly, taking the construction of the

Voronoi diagram as a cartographic application, the incremental approach could be

advantageous when used under some interactive environment. AU cartographic data

inputting and editing processes can be monitored and validated within a topologically

meaningful framework, hence avoiding the tedious foilow-up process of correcting

topological errors. Finally, the incrernental approach permits the building of an object-

onented and dynamic spatial database which is concurrently accessible by multi-users and

supports parallel processing of geographical problems. These arguments wïil be made clear

as the thesis proceeds.

The Kinematic Constmction Algorithm

The particular incremental method applied in this thesis is based on the kinematic

conshuction algonthm, with which embedding objects are allowed to move dong given

continuous trajectories. The kinematic procedures to generate Voronoi diagrams of points

and iïne segments have been practiced in the GIS comUILity since the early 1990s [Gold

1991, 1992al. They have k e n simultaneously investigated in the community of

computational geometry [Roos 1991; Guibas et al. 19911, with the emphasis on the

independent motions of a set of points in the plane. A recent publication [Gold et al. 19971

on M y dynamic and kinematic Voronoi diagrams and their application in GIS

demonstrates a fniitful collaboration between the two communities.

Given a set S = {si, ..., S.} of points and Line segments on the Euclidean plane R ~ . We

assume that an initial Voronoi diagram V(S) exists. The kinematic algorithm dynamizes

V(S) by inserthg new elements into, or deleting one from the set S. It also displaces point

objects in S. The objective of the algorithm is to maintain a continuously updated Voronoi

diagram V(S) for the dynamic object set S. This is achieved by maintainhg a current

topological structure of V(S), the Delaunay triangulation D(S). The concept of how to detect

potential change of D(S) is different from other dynamizing, but non-kinematic techniques

(compare, e.g., Boissonnat et al. [1992] and Devillers et al. [1992]).

Nearest object search (nos). We devise a nearest object search function (nos) and use it

extensively to assist in the construction of and query operations on a Voronoi diagram.

Searching for a nearest object embedded in a Voronoi diagram is a specific case of a

general nearest-neighbour problern [Knuth 19731. By constmcting a hierarchical Delaunay

search structure with n dynamically moving points, using O(n log n) time and O(n) storage,

Roos [1991] proved that each nearest-neighbour query can be affected in worst-case

optimal O(1og n) t h e . Even by a simple walking aigorithm [Green and Sibson 1977; Gold

19771 over a triangulated structure, Guibas and StoIfi Cl9851 analyzed that an O(n) worst-

case tirne bound suffices for locating a point. Our nos hinction is based on the simple

walking procedure and has k e n shown to be efficient in an interactive environment.

hserting, deleting, moving a point

Destination. starting point, trujectory. and moving point: Before a new point s is inserted,

its location vector s E l'? m u t be aven which is the destination of s, denoted dest.

Superimposing the destination s ont0 V(S), the nearest object to s cm be found from S

through D(S) with the nos function. To insert a point, we name the nearest object the

starting point for m o w i n g D(S), denoted sp. A trajectory is a half-line in IZ2, emitted from

sp E S and passing through dest. A moving point, denoted rnp, is created and inserted into

S. The initial location of mp is the same as that of sp and is immediately moved away fiom

sp dong the trajectory. Gold [199 1, 1992aI describes this operation as object splir.

Consequently the topological structure, D(S), has to be modifed to D(S u mp). The

modification is in respect to the newly split Voronoi region v(MP) which bas similar

neighbouring Voronoi regions as v(sp) before mp is split, plus now v(sp). Figure 3.19

illustrates the above concept where in (a) a destination for a new point is superimposed on a

Voronoi diagram and the starting point sp is found. This determines a trajectory (the dashed

and arrow line). The moving point rnp is then split and displaced (exaggerated in the

diagram) away from sp, together with the Voronoi diagram modified in (b). For the sake of

clarity, the destination mark is removed from Figure 3.19 @). Instead, two Voronoi vertices

are labeled as qi and qz. It can be verified that ql, qz are the centres of the circumcircles

defined by two triangles LLnp-sjj-si and hi-sj0sk, respectively. The reason for this labeling

wili soon be made clear.

(a) before spiitting a point (b) after splitting a point

Figure 3.19 Concepts related to splitting a moving point in point insertion

After splitting, mp exists in S and moves to it's destination. It is known that mp is a

Delaunay vertex shared by a number of adjacent triangles, determined by the number of

Voronoi edges for v(mp). As rnp moves, the shape of v(mp) will be reformed,

accompanying the displacement of the Delaunay vertex designated by mp. Nevertheless, so

long as the circula list of the adjacent triangles around mp does not change, the topological

structure stays the same. This can be seen fiom Figure 3.20 where mp is moved dong the

trajectory some distance without changing the topological structure established in Figure

3.19 @). We are, however, interested to know when the topological structure should be

altered and how we can be infonned of this possible change. By carehilly studying Figure

3.20, one can observe that the Voronoi edge between ql and qt in Figure 3.19b becomes

zero, and ql and qz coincide to a single Voronoi vertex, q, which is now intersected by four

Voronoi edges. This indicates that Voronoi vertex q must be correspondent to four

cocircular objects. They are, indeed, the four aiangle vertices of the two adjacent triangles,

hp-sj-si and bi-sj-si;.

Figure 3.20 Moving mp without changing the topological structure

The phenomenon, that a degenerate Voronoi vertex becomes contracted with mp, signals

that the topological structure might be modified. Roos 119911 calls this signal a topological

event. There is yet another type of topological event which corresponds to the phenomenon,

that mp is about to abandon a contraction with an existing degenerate Voronoi vertex. Gold

[1991, 1992a] distinpuishes these two topological events as moving-in, for the former type,

and moving-ouf for the latter one (Figure 3.21).

(a) The moving-in event O>) The rnoving-out event

Figure 3.2 1 Two types of topological events

Intuition is sufncient to understand the two topological events. For both events, the moving

point mp anives at a critical point. It is either moving into (for Figure 3.21a) the

circumcircle origindy defined by triangle bisi-sj-sk, or moving out of (for Figure 3.2 L b) the

circumcircle defmed by triangle hisi-sj-sk. The kinematics of the algondun capture al1

topological events activated by the advance of the moving point. For each event, a decision

has to be made on whether or not an action should be taken. The action, actually the well-

known swap function [Green and Sibson 1977; Gold 1977; Guibas and Stolfi 19851,

switches the triangle -edge diagonal to the quadrilateral defining the circumcircle

corresponding to the degenerate Voronoi vertex, q. A decision can be justified based on the

h o w n ernpty circle property that any topological conflict shouid be avoided. Figure 3.22

illustrates the result of swapping, with (a), (b) corresponding to (a) and (b) in Figure 3.21,

respectively. It can be seen that after the swap, the contraction of mp with a degeneracy is

released. The circumcircle in Figure 3.22 (a) should not exist, we keep it there to show the

moving-in idea

It should be noted that a swap is a local operation in that the only triangles which have to be

adjusted are the two aiangles in the quadrilateral and the four additional triangles sharing a

boundary with the quadrilateral (Figure 3.23).

The process af detecting topological events and swapping triangles to resolve possible

topological conflicts continues until rnp arrives at its destination.

Figure 3.22 Two swaps corresponding to moving-in (a) and moving-out (b)

Figure 3.23 Triangles affected by a swap

Deleting a point si E S is a similar process to point insertion. In this case, the point to be

deleted is already in S therefore there is no need to split a point. In addition, the destination

is not given but is instead chosen as the location vector occupied by the nearest point in S.

After this, the trajectory is known to be the half-line emitted fiom the original location of si

and passes through the selected destination. The point si then becomes mp and is moved

towards the destination. When mp arrives close to the destination point, with the

topological structure around it similar to that of a point splitting, a rnerge [Gold 199 1,

1992al operation takes place. The merge operation reverses the split process.

Moving a point si E S to a designated location (the destination and the trajectory are

known) is simpler because it does not involve splitting (as in point insertion) or merging (as

in point deletion).

Inserting and deieting a line segment

A fine segment can be connected and uncomected. Inserthg an unconnected line segment

into S is divided into two steps: inserting a point into S, which will be an endpoint of the

line segment; then inserting the line segment from the endpoint. Similarly, inserting a line

segment into S and connecting it to an object already in S also involve N o steps:

designating a point in S to be an endpoint of the line to be inserted; then inserting the line

segment from the endpoint. In either case, the location vector of the destination has to be

given, which will be the location of the other endpoint of the line segment. The trajectory is

then determined to be ernitted from the endpoint in S and passing through the destination.

Let sp E S be the designated endpoint of the line segment to be inserted. Similar to splitting

a point, three new objects will be created and inserted into S. The three objects are: the

other endpoint, denoted mp, meaning it WU be the moving point; the left-side line, Il; and

the nght-side h e , rl. -Both side lines are collineas to the trajectory and are mutually

referenced: IL is referenced to sp, thus making the new line segment comected to a point in

S; rl is referenced to mp. The initial location of mp is the same as that of sp. Conceptuaily,

three Voronoi regions, v(mp), v(lC), and ~ (r l) are to be split from V(S). This is achieved by

m o m g the topological structure, D(S), to be D(S u mp u IL u rl). Figure 3 -24 iilustrates

the Voronoi diagram in Figure 3.19 (a) immediately after a new line segment is split from

sp. The exaggerated displacement of mp demonstrates the modified topological structure so

far.

Figure 3.24 Splitting a iine segment from an object in S

The moving point, mp, now moves toward the destination, dragging a line behind it. The

topological structure around rnp is modified to correspond to the topological events

detected. It is worth noting that the behaviour of the moving-in topological event is the

same as i n s e d g a point (Figure 3.25). It is different, however, for the moving-out event.

The distinction is that the trajectory is always tangent to, but never cuts. the circumcircle

that mp is leaving (Figure 3.26). Othenvise the empty circumcircle condition would be

violated.

Figure 3.25 The topological structures before and afier moving-in

Figure 3.26 The topologicd structures before and after moving-out

Sometimes it is desirable to insert a line segment which has both endpoints connected to

two objects in S. In this case the destination endpoint should also be designated in S.

Similarly, the moving point and two oriented lines need to be inserted in S, with the starting

endpoint connected. When mp nears the destination and there will be no more moving-in or

moving-out events between the current location of mp and the destination. the merge

operation takes place, which changes the reference point of rl fiom mp to the designated

endpoint in S.

Delehg a line segment in S consequently deletes ail unconnected components of the line

segment; fmt, delete the interior of the iine segment; second, delete any unconnected

endpoints of the line segment. To delete the interior of a line segment, one endpoint of the

line segment is designated as sp and the other endpoint as tp. The trajectory starts from sp

and passes p. A new point is then created and inserted into S. This point is designated as

mp, and is split from sp. In splining mp, the reference point of the left-side line is changed

from sp to mp, and the topologicai structure for both sp and mp is constructed. Figure 3.27

shows the result of splitting mp before starting to delete a line segment.

Figure 3.27 Splitting mp to delete a line segment

The topological events are then captured and the topological structure is modified as rnp

moves to tp, the destination. Analogous to deleting a point, when mp arrives at a location

close to tp and there are no more topological events lefi, the merge operation f indy adjusts

the topological structure around mp and removes mp, II , and rl from the set S.

With the basic inserting and deleting algorithms for handling line segments, it is

straightforward to rnodify and extend them to suit other cartographie operations. For

example, instead of completely deleting a line segment, the line c m be shrunk to a point on

the lhe segment. Furthemore, a line segment c m be broken into two line segments,

comected at the breaking point. Breaking a line segment may be done by fmt shrinking the

line segment to the breakhg point, and then inserting a new line segment in between the

original endpoint and the breaking point. Figure 3.28 illustrates shrinking, and breaking

operations on a line segment. Cleariy, breaking a line segment is a compound operation.

(a) Shrinking a
iine segment

(b) Breaking a Iine segment:
1) shrinking, 2) inserting

Figure 3.28 Shrinking and breaking a Line segment

The dynamic resolution of the Iuie intersection problem

Inserting a h e segment into the object set S may cause a problem in that the new line

segment inteaects a number of existing objects already in S. Correctly fmding intersections

of a line segment with other line segments in S is not trivial if the objects in S are not

supported by an efficient indexing structure. Even with some indexing structure, the usual

approach wiIl fust involve a range search with respect to a minimum bounding rectangle

(MBR) for the full range of the new line segment. The intersection test then has to be

applied to each h e segment falling inside the bounding rectangle. Consequently,

intersecting nodes, together with the new line segments incurred, have to be inserted into

the indexing structure (Figure 3.29). If a Voronoi diagram is constructed for the set S with a

non-kinematic incrernental method, the first two steps are still applicable when a new fine

is inserted. In this case, of course, the third step is not to modiQ the indexing structure, but

to rigorously modiv the Voronoi diagram.

(a) Form a MBR for the (b) Range search for al1 line (c) Calculate intersections
new line segment segments in MBR and update the geometric

data structure

Figure 3.29 The usual approach to resolving the line intersection problem

The bernatic approach resolves this problem in an unusual and elegant way. The solution

is topological rather than geometrïcal in that 1) a potential intersection is captured by

detectuig a topoiogicai event (no range search is needed); and 2) the sequence of

intersections is known with regard to the direction of the trajectory. With the kinematic

method (Figure 3-30), an intersection is detected dynamically as the moving point is

proceeding to a given destination. A possible intersection is signaled by a topological event

which indicates that the moving point is about to collide with an existing line segment

(Figure 3.30a). This signal arises when the moving point is lefi with only two neighbours. If

an intersection is about to and is intended to happen, the colliding line is broken at the

intersection and a join node is made to connect the three line segments (Figure 3.30b).

Afier this, a new line segment is split from the join node, and pulled dong the trajectory by

a moving point towards its fuial destination (Figure 3.3Cc).

(a) A collision is detected (b) Break the line segment (c) Pull the iine after the break

Figure 3.30 The kinematic method of handling line intersections

The kinematic method of handling the problem of line intersection is readily applicable to

deai with the collisions of a moving point with obstacles in a spatial configuration, and can

be applied to advantage in robot navigation, motion planning, and GIS intelligent digiuzing

[GoId et al. 19961. For example, Gold and Condal [1994] described a simulation mode1 for

boat navigation in a marine environment-

3-7 Preserving the History of Changes in Spatial Objects

An increasing demand on a spatial data handling system is that the history of changes in

spatial objects needs to be preserved. The history of a spatial object records the time when

the object was created and inserted into the space, when any changes have occurred on its

geometrïc shape and placement, and if it was removed fiom the space. The complications

of creating, transforming, and destroying spatial objects are discussed in Worboys [1995].

If organized and stmctured the history of spatial objects in a system can be quened and

retrieved thus presenting the temporality of the system. Moreover, one can talk about a

spatial object by referring to a specific time instance or period, implemented with an

underlying temporal h e w o r k . Spatial objects referenced with both spatial and temporal

dimensions are cailed sputio-temporal (ST) objects (Worboys [1995], pp. 303-3 14).

Recent years, research and development on spatio-temporal database management systems

have k e n actively carried out in the Centre de recherche en geomatique at Université

Laval, by Dr. Bédard and his team. Substantial results from a series of inter-related projects

have k e n achieved. Bédard and van Chestein [1995] presented primary requirements in

managing the temporality of geo-objects. Gagnon 119931 discussed notions and concepts

involved in space and tirne. Roulx 119951 developed a query language and an interactive

interface for a spatio-temporal GIS based on graphical notions representing topological and

temporal relationships. Szarmes [1997] addressed issues of spatio-temporal databases, and

proposed a framework for modelling the evolution of spatio-temporal database structures.

The framework is based on a management of modifications occurred in conceptual schema

whose structures are formalized using Modul-R 2.01, a conceptual data modelling tool,

developed in the Centre de recherche en geomatique at Universite Laval [Bédard et al.

1 9941.

Closely related to the incremental approach is the feasibility of implementing a dynarnic

system to handle ST objects. As can be seen fiom the processes of inserting, moving,

shrinking, breaking, and deleting a primitive spatial object in an object set, book-keeping

procedures c m be devised to keep track of these processes. A meaningful handling of ST

objects, of course, must incorporate additional mechaaisms which, for example, assemble

primitive temporal records into records corresponding to the ternporality of identifiable

cornplex geo-objects. This c a . be provisionaily achieved by incorporating spatio-temporal

modelling tools at the conceptual level, such as the ones developed by Dr. Bédard's group.

In this section, we discuss a log file structure which keeps one-dimensional, sequential

temporality of primitive spatial objects, wit h respect to the construction functions discussed

in the preceding section. It is therefore the temporality coxresponding to system

transactions [Langran 19921. The idea of the log file structure was proposed originally by

Gold [1994] as an approach to replay (fonvards and backwards) a map history like playing

a movie. To this purpose, the minimum requirement is to enable the reconstruction of the

Voronoi diagram for a set of map objects, either from the beginning of the map history

forward in time, or fkom the current state of a map backwards to previous times.

The implementation of the log file structure starts with symbolizing the dynamic Voronoi

diagram constmction operations. We shall use letters 'P' and 'M' to denote the inserted and

moving points, respectively; 'L', and 'S' as the action of inserting and shrinking a line

segment; and 'D' as deleting an object for either a point or a line segment. Since breaking a

line segment is a compound operation, it will not be recorded in the log file. A record of

eight fields is used:

where the T field is for the transaction time, the O field for a character representing one of

the construction operations, OIDl and OID2 are two system identifiers for two objects, and

each is followed by a pair of x and y coordinates. The meanings of TT and O are not

ambiguous. The interpretation for two triples of identifiers and coordinates is, however,

dependent on a particular operation recorded in the O field. Their use of log file

information for forwarâ reconstruction is explained in Table 3.1.

O OID1 x l , y l OID2 x2, 9 Remark
'P' not used dest not used not used split a new point fiom the nearest point
'W the object to of this

be moved object
'L' the starting of sp

point sp

'S' ofsp of sp
endpoint

'D' the object to of sp
be deleted

not used dest

n d if dest end dest
not connected;
of tp if dest
end connected
of the lefi-side defi
line II
not used dest

the object identified by 0ID 1 is moved
to dest
inserting a line segment between sp and
dest. The dest endpoint is connected if
OID2 is not nutl

the line segment, identified by Il, is
shrunken from sp to dest
if the object to be deleted is a point, its
nearest object is searched is rp; if it is a
Iine segment, OID1 is for II, and sp and tp
are known fkom the object data structure.
The two pairs of coordinates are used for
backward play

Table 3.1 The use of log file information for forward reconstruction

When reconstructing a map from the current state backward to previous ones, the log file is

consulted in reverse order, from the most current log record to the oldest one. The meaning

of the operation has to be reversed accordingljj. The objective is to obtain necessary

reversing construction operands such as sp, mp, dest, the trajectory. For example, if the log

operation is 'P', to insert a point, the reverse operation should be 'D', to delete one. In this

case, the first pair of coordinates are used to search for the point, sp, occupying that

location, and at the same tirne, the nearest point, tp, to sp is found. Afier this the dest, and

the trajectory can be known, and reverse construction c m start.

Besides reconstruction, the log file also provides limited possibilities for spatio-temporal

quenes. The log file structure is indexed in the chronological order of a temporal space, T,

mapped to an underlying numencai domain. It is possible, therefore, to answer queries of

the following types:

where Q is a query, î7 = [q, t2], t l , t2 E T, SI c are temporal and spatial intervals,

respectively, and the symbol "S' means to return the result of a query. The query type

(3.2) implies that the spatial interval is not specified; it c m be the whole plane. With the

primitive log file structure, ît is diffcult to answer queries of the type:

Hence the log fde structure favours quenes whose answer is a spatial subset, and not a

temporal interval. Implementation for the first two types of spatio-temporal queries is

straightforward. Preserving temporal aspects of complex spatial objects corresponds to

dynamic events that create and destroy these objects. Capturing the dynamic events relies -

on the search facilities to detect the effect of primitive construction operations. Additional

data structures are needed to record events of cornplex objects and to support complex

spatio-temporal queries.

3.8 GIS Operations with the Dynamic Voronoi Diagram

This section discusses how typicai GIS functions can be realized with the dynamic Voronoi

diagram for points and line segments. The discussion first concentrates on the graph-

theoretic properties of space tessellations and the procedures for performing network

analysis over planar map objects scnictured with the Voronoi diagram. Spatial searches.

especially the range search procedure, are then discussed. Both types of GIS function are

based on a cornmon feature of travershg the dual topological structure, the Delaunay

triangulation. In spatial analysis functions, we outline general algorithms for polygon

shading, buffer zoning, and polygon overiay, highlighting the advantages of the underlying

Voronoi data model. FmalIy we demonstrate the utility of Voronoi diagrams applied to

digital temain modelling. It is noted that although the generai ideas of spatial searches,

network and spatial analysis have k e n published in the fiterature, the application of these

ideas to the design of workable algorithms based on the Voronoi diagrams of points and

iine segments is firstly reported in this thesis.

3.8.1 Network Analysis

Many GIS applications work on large data sets depicted as points and line segments on

planar maps. These map objects (points and line segments) may represent highway

networks, stirline routes, or circuits in a VLSI design. Knowledge about interconnections

between objects helps to answer questions such as "how to get fiom location A to location

B in the fastest or cheapest way" and "Is location A connected to location B". Answering

these problems with a computer depends largely on how information about the objects and

their connections are modelled, and on effective algorithms based on the model.

In this section, we view a set of points and line segments as an undirected, weighted planar

graph, G(V, E), a collection of vertices V (points) and edges E (line segments). It is the

venices and edges that are the essence of the graph and the algorithms over it. A path from

vertex x to y in G is a list of vertices in which successive vertices are connected by edges in

G. A simple path is a path in which no vertex is repeated. A graph with no cycles is a tree.

A spanning tree of a graph is a subgraph that contains ail the vertices but only enough of

the edges to form a tree. A graph is undirected if all edges can be followed in both

directions. Conversely, a directed graph has "one-way" edges only: one travels frorn x to y

but not fiom y to x. In weighted graphs values are assigned to each edge that represent

distances or costs. Figure 3.3 1 is an example of an undirected weighted graph which will be

used to illustrate our graph algorithms. In Figure 3.31, integers are identifiers of vertices

while floating-point values are weights representing the distance of each edge. Figure 3.32

illustrates the Voronoi diagram (gray Lines) and the dud Delaunay triangulation (thin lines)

used to constnxct the graph depiction (dark Lines) shown in Figure 3.3 1.

Figure 3.3 1 An undirected weighted graph

The Voronoi diagram is a comected graph for the whole space. Its dual, the Delaunay

triangulation, is more interesting because it has map objects as vertices and its edges are ail

Illie segments. The simple geometric structure of the Delaunay ûiangulation makes the

traversai of space an easy job. Similar to a linked list or a tree structure that must have a

pointer directed to the starting address of the structure in the computer, the traversal of the

Delaunay triangulation starts with a known triangle. No matter where the starthtg triangle

is, by repeatedly walking adjacent triangles of a known triangle in a consistent scheme, the

triangulation can be completely visited.

Figure 3.32 The Voronoi diagram and its dual Delaunay triagulation

for the objects depicted in Figure 3.3 1

Given a graph of objects, there exist two classical graph-traversa1 algorithms which visit

every vertex and edge in the graph. They are the depth-first search and the breadth-first

search. The technique of examining every piece of the graph lays the ground for solutions

to other graph-theoretic problems. In this section, we describe four classical graph

algorithms using the Voronoi data structure developed in this chapter. We first present

generai strategies and subordhate data structures [Sedgewick 19921 to be used repeatedly.

The applications of the general strategies lead to the algorithms solving the depth-fxst

search, the breadth-fmt search, the minimum spanning tree, and the shortest-path problems.

Further details about these strategies, subordhate data structures, and applications to O ther

network analysis algorithms c m be found in Sedgewick [1992].

Obtaining Incident Edges of Vertices

In graphic representations and algorithm designs, adjacent vertices, comected by edges,

must be known. In the foIlowing algorithms, we assume that a function, called nbrs(obj),

has k e n implemented over the Voronoi data structure. The nbrs(ob~2 function coliects the

neighbours of an object, named obj. Based on the definition of the Voronoi diagram, an

neighbour is an object whose Voronoi ule shares a Voronoi edge with that of the concemed

object. An array of integers adj is used to store the identifiers of neighbouring objects

renirned by the nbrs function. Note that in a Voronoi diagram, neighboun are not

necessarily incident line segments to the given vertex (Figure 3.33). However, this can be

easily screened by determining if one end of a neighbouring line segment shares the same

node as the given vertex. In the adj array, the first neighbouring object c m start from any of

the neighbours, the rest of the neighboun are listed in anti-clockwise order. The searched

neighbouring object list is teminated by the number O. We use this tactic to determine the

termination of loops in the algorithm.

(a) Neighbours of v are
incident edges

(b) Not ai l neighbours of v
are incident edges

Figure 3.33 The incidence of edges to a vertex

The General Strategy: Division of Vertices into Untouched, Fringe, and Tree

Several graph traversai algorithms use the same strategy of processing a graph. Prior to

beginning an algorithm. aLl vertices are untouched. The algorithm [Sedgewick 19921 starts

by visiting one vertex in the graph and putting it into a priorîty queue called afringe. It then

repeatedly removes a vertex from the fringe and inserts it into a traversal tree of vertices

already processed. Adjacent vertices to the vertex just removed fkom the f i g e are

collected Any untouched vertices in the graph are visited and put into the fnnge. The

algorithm finishes when the h g e is empty.

The above strategy is expressed as a general priori@-first procedure called visit (Procedure

3.1, with the C language style). For the sake of simplicity, static arrays are used in the

foilowing procedures. The priority queue, PQ, is defmed as an object class to be described.

In the visit procedure, an instance of PQ is instantiated and named thefnnge. An array val

is used to record the order in which vertices are visited. The array is initialized to the value

meen to indicate that no vertex has been visited. The goal is to visit systematically al1

vertices of the graph, setting elements of the val for the idth vertex visited to id. Two

additional functions are assumed: isline(object) which returns TRUE if an object is a line

segment, and matchend(vertex, line) which returns the OID of the other end if one

endpoint of the h e matches the vertex, or O otherwise. After calling uisit, the traversal tree

is established by collecting indices of the array val for values fiorn 1 to V.

void visit(1ong v) //general procedure
PQ fruige[maxVl; .
long adj WaxNumofNbrs] ;
long adjv;
int i;

id = 0;
ninge.insert(v); //insert a vertex into the f i g e
while (!fringe.empty())
(v = fkinge.remove0; //remove a vertex fiom the f i g e

val[v] = ++id; //id-th vertex visited
nbrs(v, adj); //collect neighbours of v fkom the Voronoi diagram,

//terminate the searched object list by O
i = -1;
while (adj [++il && isline[adj [il) //for each adjacent line segment

if ((adjv = matchend(v, adj[i])) ! = 0)
if (val[adjv] = = unseen)
(val[adjv] = -1; //mark the node in the fringe

fringe.insert(adjv);
) /*if val*/

} //while (!fringe.emptyO)

hocedure 3.1 The general pnonty-fmt vkit procedure

The Fringe: A Priority Queue

As we have just seen, a fundamental graph-search method is based on the step "move one

vertex (c d it v) from the fiinge to the tree, then insert into the fringe any untouched

vertices adjacent to v". One c m think of the fringe as a record of nodes. Each node contains

an integer field to hold the system-defined object identifier refemng to a vertex of the

graph (other data types may be possible, depending on applications), and a numericd field

to store the priority value of the vertex. We want the fringe structure to possess the

following propertles:

Nodes can be processed in the order of their priorîty values, but the list is not necessarily

in Mly-sorted order and new nodes can be inserted dynamicaliy;

The first node in the list has the largest priority;

Once the node with the largest priority is removed from the list, the node with the next

largest priority should be ready;

As new nodes are inserted, the node to be removed next should be updated accordingly,

by comparing the pnority values of all new nodes.

Based on the above specifkations, the pnority queue should therefore support insert and

remove operations. Also, it should be able to perform swapping operations in order to

prepare the queue with the largest priority. This c m be implemented with a paaicular data

structure called a heap.

The heap may be maintained as an may, a, of records such that each record is guaranteed

to have a larger pnority than the records at two other specific positions. Ln tuni, each of

those records m u t have a larger priority than ~o fuaher records, and so on. The array

satisfying the heap condition is a complete binary tree with the record of largest pnority in

the root which is the f k t position in the array. The heap irnplementation of the prionty

queue ensures that all operations in the priority queue can be done in logarithmic time. This

property is important because swapping records in the array occurs at most of the priority

queue operations. The code for the priority queue class is Listed in Procedure 3.2.

struct node (long id; float w; };
class PQ
{ private: node -huge* a; int n;

public:
PQ(int max) { a = new node[max]; n = 0; }
-PQO { delete a; }
void upheap(int k)
{ node v;

v = a@]; a[OJ.w = cosMax;
while (aw21.w <= v.w)
{ a M = aCk/2]; k= k/2; }
a B l = v; 1

void downheap(int k)
{ int j; node v;

v = a@];
while (k <= n/2)
{ j = k+k; if (j < n && aU1.w < au+l].w) jtt;

if (V.W >= atj1.w) break;
a k] =ab]; k = j ; }

aF3 = v; 1
void insert(node v)

{ a[+tn] = v; upheap(n); } //maintain heap properity with w value
long remove0
{ nodev=a[l]; //first on the queue

a[l] = a[n-1; //put the last on the queue to the fmt
downheap(1); //maintain heap property
return v.id; }

long update(node v)
(int j, onninge, changed;

onfringe = changed = FALSE;
for (j=1; j<=n; i-ij)

if (v.id = ab] .id)
(onfringe = TRUE;

if (V.W > alj1.w)
{ ab] = v; upheapu); changed = TRUE; }
break; }

if (onfringe=FALSE) insert(v) ;
if (onfringe = FALSE II changed = TRUE) retum 1 ;
else return 0;)

long emptyO { if (n = O) retum 1 ; else retum O;)
1;

Procedure 3.2 The pnority query class

When a new record is inserted, the number of records n in the heap must be increased by

one. The new record is put into a[n], but this may violate the heap property if the new

record has a prionty greater than its parent. This condition can be fixed by the upheap

operation which repeatediy exchanges the new record with its parent until the heap

condition is satisfied. In reverse, the remove operation takes the first record a[1]. Since the

heap will be one record smaller, it is necessary to decrease n by one after moving the last

record to £ïil the fint position. The downheap operation is performed to correct the heap

condition. AU the basic operations - insert, remove, upheap, and downheap require

fewer than 2 log n cornparisons when performed on a heap of n records. The empty

method is a constant operation, it returns 1 if n = O and O otherwise. The update method

will be explained when we discuss the minimum spanning tree algorithm.

In the foilowing subsections, we explain how to set priority values for each record in the

f i g e and how to adapt the general viçit procedure to different graph algorithms.

Depth-Fit Search @FS)

The idea of the depth-first search is that it lets the priority of adjacent vertices reverse the

sequence in which they are encountered. That is, the vertex last visited has a higher priority.

Replacing the data type for the fringe and choosing the proper priority for each fnnge node,

the general vkit procedure is modified for the DFS (Procedure 3.3)

PQ fringe;
void visit(node v) //DFS with PQ
{ long adj ~ a x N u r n o M r s] ;

node adjv;
int i;

v.w = O;
fringe.insert(v); //insert a vertex into the h g e
while (!fruige.empty())
(v = ninge.remove(); //remove a vertex from the f i g e

val[v.id] = ++id; //id41 vertex visited
nbrs(v.id, adj); //coilect neighbours of v fiom the Voronoi diagram

Ilterminate the searched object list by O
i = -1;
while (adj [++il && isline[adj [il) //for each adjacent line segment

if ((adjv-id = matchend(v.id, adjCi])) ! = O)
if (val[adjv.id] = = unseen)
(adjv.w = id + i +l; IDFS, the object visited later has higher pnority

fringe.insert(adjv);
vaI[adjv.id] = - 1; //flag it on the h g e

1
) // while (!fringe.emptyO)

1

Procedure 3.3 The modifïed visit procedure for a depth-fxst search

In thïs procedure, the sentinel constant unseen is set to a large negative value. Running this

procedure with the graph given in Figure 3.3 1, the traversal tree, starting from vertex 22

collected from the indices of array val by their increasing order of positive values is:

Breadth-First Search (BFS)

The algorithm for the breadth-fîrst search traversa1 is almost the same as that for the DFS,

except for a different choice of priority values for the fringe vertices. In the BFS traversal,

it is the vertex put in the fnnge earlier that will be removed first. Therefore, the adjv-w for

each of the adjacent vertices is assigned by a decreasing value, such that the one

encountered earLier has a larger priority. In the general a i t procedure, we modify the line

/KIFS, the object visited later has higher priority

to become

adjv.w = maxnode - (id + i +l); //BFS, the object visited later has lower pnority

where rnaxnode is a positive constant specifjring the maximum number of vertices in the

graph. Running this modified procedure with the same graph, starting also with vertex 22,

we have the tree traversai as:

Minimum Spanning Tree (MST)

A minimum spanning tree (MST) of a weighted graph is a collection of edges connecting ail

the vertices such that the sum of the weights of the edges is at ieast as small as the sum of

the weights of my other collection of edges connecting ail the vertices. The MST of a

graph may not be unique, but it must be computed based on the following general property:

Given any division of the vertices of a graph into two sets, the minimum spanning

tree contains the shortest of the edges connecting a vertex in one of the sets to a

vertex in the other set.

Based on this general property, we can build the MST by starting with any vertex and

always taking next vertex which is the "closest" to the vertices already taken. In other

words, we find the edge of lowest weight among those edges that connect vertices already

on the tree to vertices not yet on the tree, then insert that edge and the vertex it leads to into

the tree.

It tums out that the generai a i t procedure can be adapted to the construction of the MST

with some modifications. For computing the MST, the pnority of each vertex on the k g e

should be the length (or cost) of the shortest (or cheapest) edge connecting it to the tree. For

the same graph in Figure 3.3 1, if we use the Euclidean distance between a vertex just taken

from the f i g e and its adjacent vertices as the prionty value for each adjacent vertex, we

will end up with an Euclidean Minimum Spanning Tree (EMST).

The modification of the visit procedure for the MST is explained here. We use an array dad

to contain the index of the parent for each vertex in the tree (O if it is the root). A function

disf(vertexl, vertex2) is assumed to calculate the distance between zmfexz and aertexz. For

each adjacent vertex, the update operation is performed on the f i g e which ensures that

the given vertex appears on the fringe with at least the given pnonty: if the vertex is not on

the fringe, it is inserted, and if the vertex is there but the most recent one has a larger

pnority value, then the pnority value is replaced. This must be followed by the upheap

operation to correct the heap condition. If any change is made (either insertion or priority

change), then the method update r e m s a nonzero value. This allows the visit procedure

to keep the arrays val and dad current. To flag a vertex in the h g e , set its val equal to the

negative distance value; to flag a vertex in the tree, set its val to the positive distance value.

The prïority value of each vertex is assigned the negative distance value to correspond to

the internal operation on the fringe. A smaller negative distance of an edge will have a

larger pnority. Procedure 3.4 is the modified visit procedure for computing the EMST. It

should be noted that the update method is not an efficient operation, since it may loop

through ail elements in the pnority queue. The method c m be improved at the expenses of

maintaining a supplementary data structure. We will not however elaborate the

improvement.

PQ f i g e ;
void visit(node v) //MST with PQ
(long adj [MaxNumoMbrs] ;

node adjv;
int i;

V.W = unseen;
if (fringe.update(v)) //insert a vertex into the frùige or change priority

dad[v.id] = 0; //for the root
while (!fringe.ernptyO)
{ v.id = hge.remove0; //remove a vertex fiom the f i g e

vai[v.id] = -val[v.id] ;
if (val[v.id] = = unseen) //me if v is the start vertex

val[v.id] = 0;
nbrs(v.id, adj); //collect neighbours of v fiom the Voronoi diagram

//terminate the searched object list by O
i = -1;
while (adj[++i] &Br isiine[adj[i]) //for each adjacent line segment

if ((adjv-id = matchend(v,id, adj[i])) != 0)
if (valladjv-id] < 0) //unseen or on the fringe
(adjv.w = -dist(v.id, adjv-id); //EMST

if (hge.update(adjv))
(val[adjv.id] = adjv-w; //flag it on the fringe

dad[adjv.id] = v.id;
1

1
) // while (!fnnge.emptyO)

1

Procedure 3.4 The modified visit procedure for a EMST

Running this procedure for the graph in Figure 3.3 1, starting again with vertex 22, produces

the following results:

MST: id 22 9 10 13 16 19 25 42 39 36 33 30 45

dad[id] O 22 9 10 13 10 13 25 42 39 36 33 30

Shortest Path (SP)

The shortestpnth (SP) algorithm finds the path in a weighted graph that connects two given

vertices x and y with the property: the sum of the weights of ail edges of the path is

minimized over all such paths. It is easy to prove by induction that a breadth-fit search

s t h g at x wiIl first visit a l l vertices that can be reached from x with one edge, then ai i

veaices that can be reached from x with two edges. etc., visiting al1 vertices that can be

reached with k edges before encountering any that requires k + 1 edges. Thus, when y is

fint encountered, the shortest path fiom x has been found because no shorter paîh reached

y. In general, the path fiom x to y could touch ail the vertices, so we usually consider the

problem of fmding the shortest path connecting a given vertex x with all of the other

vertices in the graph.

The prionty-fat search solution to this problem is virtually identical to that for the MST,

except that, for each vertex v taken from the f ige, instead of inserthg the adjacent vertex

closest to the tree into the f i g e , one inserts the vertex which is the closest to v. TO find

which fringe vertex is closest to v, we use the val array for each tree vertex v. Val[v] is the

distance from that vertex to its adjacent vertex adjv, using the shortest path. When an adjv

is inserted into the fringe, we update the f i g e using a similar approach to the one used for

the MST. Compared to the visit procedure for the MST, the priority value of each adjacent

vertex adjv of v becomes

adjv-w = - (val[v.id] + dist(v.id, adjv-id)); //Shortest Path

The rest of the code is the same.

Ruaniog the modified procedure using the graph in Figure 3.3 1, starting from vertex 22, we

have the foilowing results:

SP: id 22 9 10 16 19 13 25 42 33 30 39 36 45

dadrid] O 22 9 9 22 9 22 25 25 13 42 33 30

val[id] O 96 163 171 175 197 220 279 296 322 346 367 398

Values in va l have been rounded for simpiicity. Based on this result, the shortest path from

vertex 22 to any other vertex c m be found by tracing backwards the dad array. For

example, to fmd the shortest path from 22 to 33, we start from the vertex id 33 and find its

dad 25, by the entry of 25 for the dad, we have 22. Therefore the desired shortest path is 22

- 25 - 33, with a minimum distance value of 296.

3.8.2 Spatial Searches -

Spatial searches are frequently required in GIS, because of the need for spatial queries. Of

the two types of spatial quenes, point and range queries, the range query presents more

stringent dernands for efficient performance. A typical application of a range query displays

all objects falling in a specified window, which may be regular, irregular, or degenerate to a

line segment. In this section, we present, for the fmt t h e , a range search algorithm which

utilizes the BFS or DFS strategy. The spatial data is constructed with the Voronoi diagram.

It turns out that a range search over the Voronoi diagram can be designed using the same

scheme as the one for BFS or DFS. The ciifference for a range search is that the nodes in the

ninge are triangles instead of map objects. This is because objects in a range may not al1 be

connected but the triangles are. Therefore travershg through aU the triangles overlapping

the range and performing an inrange test on each vertex of a triangle visited ensures that

all objects will be found correctly. The algorithm starts with one triangle overlapping the

given range and inserts it into the h g e . It then repeatedly pops a triangle out from the

fringe. The three vertices of the triangle are tested for inclusion or clipping the range.

Included or clipped objects are reported and marked as visited. Adjacent triangles of the

one being examined are retrieved and the ones overlapping the range and untouched earlier

are inserted into the h g e . The algorithm finishes when the fringe is empty. A

range-search procedure for a rectangular range, utilizing BFS, is included in Procedure

3.5, which is modified from Procedure 3.1. The existence of procedures get-adjtri,

get-vertobj, overlap, mark-visited, and indusion-dip are assurned.

l l k seed is the given ûiangle overlapping the mnge rg.
v.w = O;
vid = seed;
--(VI; lfitheseedv
whiIe (!bge.empsO)
(v . i d = i d = ~ m m v e () ; //rem>veanaIefÏantheiïïnge,~itasv

get-@tri(vid, adjtri); //hd adj- triangles ofv
j=Q
for(i=Q i<3; is+) //for each adjacent triangle of v
{ vid = adjtri[i] ;

g f X ~ ~ j (v i c L m;qabj);
if (untouched(3" vid))
{ foî@=O; k<3; ktt)

(if (~ ~ i ~ - c l i ~ X (n i i l p o j BI) ~ o u c h e d (~ ~ j [k I)
*[fCCOUntI = rrrapobjra

d r r i a r k v i s i t e 4 1, mqm BI);
1
if (ovierlq(rg vid))
{ v-w = rmxmcie - (id + +tj); //wighî fm the edge v-adjv

fEnge.insert(v);
d-visited(2, v ia ;

1
} / f i lrnt0uck.d

} //for each adjtri
} / M e !eml*y
retumcount;

1

Procedure 3.5 A range search based on BFS

3.83 Spatial Anaiysis

Spatial analysis, as the term implies, analyzes a space. With objects embedded in space

captured and modeled in a representation fiamework. this means obtaining qualitative and

quantitative properties of spatial objects based on the representauon structures. There are

numerous spatial analytic algonthms to calculate, derive, and collect various spatial

properties. In this section, we give three examples of these algorithms based on the Voronoi

data mode1 and data structures. These ideas have been mentioned on different occasions,

e.g. Gold [1994], Gold et al. [1997]. The foflowing presentation is a more detailed

description of these algorithms.

Identifmg a Polygon (Polygon Shading)

A polygon is defined as the area enclosed by a closed loop of line segments. In most spatial

data models, polygons are identified by a conceptual representation, but are not explicitly

represented by a geometric data structure, as with the dynamic Voronoi data rnodel.

Visualizing a polygon in a spatial setting, or calculating its area, therefore, rely on a process

to specw the extent of its geometric shape. This process is also referred to as polygon

shading orfloodfill with a raster-based system, and as assembling polygonal chains with a

vector-based one. The algorithm based on the Voronoi diagram takes advantage of its

integrated view of a polygonal space. As is illustrated in Figure 3.34, the interior of a

polygon object is composed of Voronoi regions that are bounded by a closed loop. Each

Voronoi region is associated with an oriented line segment. It is therefore natural to start

with shading a known Voronoi region inside the polygon and expanding to shade adjacent

Voronoi regions of each shaded one. The systematic way of doing this uses the triangular

structure and is similar to the range search algorithm for travershg triangles. However,

there is a difference in detecting if an adjacent triangle falls outside of the polygon. In range

search, we used an overlapping test since the range is a regular shape and the range

boundary is not part of the Voronoi structure. In polygon shading, the boundary of an

arbitrary polygon is part of the Voronoi structure. Therefore, it is only necessary to test if

two vertices of an adjacent triangle are boundary line segments but are on the other side. If

the test is positive, the adjacent triangle will not be inserted into the fnnge. Dunng this

flooding process, an attribute value c m be assigned to each half-line segment enclosing the

polygon, if desired. This method is capable to identify polygons with holes. Adjacent

polygons c m also be identified through the same method.

It is evident in this example that the Voronoi data model, aithough implemented with a

vector-based data structure, conveniently uses algorithms based on the field-based view and

raster data structures. This observation is aiso m e -for the polygon overlay algorithm to be

described soon.

tounched
in f i g e

Figure 3.34 Polygon shading with the Voronoi data model

Bufier zoning is the process of delineating areas within a given range of a set of objects. In

a traditional vector GIS, determining buffer boundaries requires extensive calculations of

the intersections of line segments and circula. arcs. The Voronoi data model demonstrates

the ease of perfomiing this operation. The algorithm takes each object from a selected set

and collects its Voronoi edges into a list. For each Voronoi edge (bounded by hvo Voronoi

vertices counterclockwise), its intersections, if there are any, with the line (or circular arc)

coincihg with the perspective buffer boundary, are calculated. Two consecutive

intersections constitute a buffer segment. If a Voronoi region concems a line segment, the

buffer boundary is a straight line segment, otherwise, it is a circular arc. It is possible that a

buffer boundary is composed of non-consecutive segments. This can be observed in that for

the first intersection calculated, if the second one is not obtained with the 1 s t Voronoi edge

on the list, the buffer boundary will be broken after the second intersection.

Figure 3.35 is an example of the buffer zoning process. To calculate the buffer boundary

for fine segment s, starting with the perpendicular Voronoi edge at the nght end, the fust

intersection is obtained. The second intersection is found with a paraboiic Voronoi edge. A

segment of the buffer -boundary is drawn as a straight line between 1, and 2. Since

intersection 2 is not on the last Voronoi edge for s, the buffer boundary is broken between

intersections 2 and 3. The Iast segment is found in between intersections 3 to 4.

/ ~oronoi edge

Figure 3.35 Buffering by caiculating intersections with Voronoi edges

Polygon Overlay

A polygon is a spatial object carrying certain attributes. In current GIS practice, al l

polygons are modelled in one thematic layer if they carry the same attribute type.

Frequently required in a synthesized spatial analysis is information conceming areas

carrying combined attnbute values of two or more attribute types. The process used to fmd

those areas is called polygon overlay. Overlaying multiple layers of polygons to calculate

areas with some combined attnbute values presents a long-standing challenge to GIS

development. All intersections of line segments fonning polygons in one layer must be

calculated with respect to Line segments of polygons in other layers in current vector GIS.

This process is not only algorithmically diffrcult, but also has proved to be error-prone. The

kinematic incremental Voronoi data mode1 approaches this problem in a very different way.

The key idea is that the overlay process can also be done incrementally. To illustrate the

Voronoi approach, we use thematic maps consisting of colIections of polygons.

Let MI(A) = (P l l(aI), . . ., Pi.(an)} be a map object consisting of a set of polygons { Pii(ai) }

partitionhg Ml, 1 < i < a, ai E A, and A is a set of attribute values mapped to a well defined

attribute domain. Define Li = {Il 1, ..., Iir} c Ml, 2 < k < m, to be a set of line segments

forming boundaries of the polygon set. Since each line segment in Li, e.g. il 1 E LI, belongs

to exactiy two polygons in Ml, Say Pll(al) and Plz(az), it implies that the line segment can

be treated as two directed and oriented (sided) lines. Each side of the line segment is

associated with an attribute value of the facing polygon, denoted lil(al, a2). Similarly, we

can define another map object M2(B), with (PZi(bi)}, and Ztl(bi, bi) an example of the set of

h e segments in LQ = {ZZ1, .--, la) c MZ.

The objective of the kkematic incremental polygon overlay process, with two thematic

layers, Ml(A) and Mt(B), is to perform a binary operation, denoted R, so that a third Iayer,

M3(A R B) = {P31(aI r bI), ..., P&. r bd} , O _< n < m, with 131(a1 r 61, a2 r b2) an example

of the set of line segments in 4 = (131, .-., h} c M3, is produced, where r is an instance of

the binary operation R. It is assumed that both Ml, and M2 are constmcted with Voronoi

diagrams. The general method is composed of the foklowing steps (Figure 3.36):

- --

Figure 3.36 Kinematic incremental polygon overlay

1. Make a copy of M2 and name it M3.

2. For each line segment Ili in Mi, insert Ili into M3, using the kinematic incremental

rnethod. The Lùie segment Ili may intersect with existing h e segments in M3. Preserve

the associated attribute of Ili in every broken segment of Z l i .

3. Identify polygons in M3, using the polygon shading algorithm, and adjust associate

attributes for each sided Iine segment in Mî.

Advantages of the Voronoi polygon overlay approach include: 1) no rigorous line

intersection calculation is needed, except as part of the process of constmcting the Voronoi

diagram for the combined map; 2) the overlay process is easier to control, as events due to

coliisions and intersections are known to the process; 3) consequently, many problems such

as those with coïncident line segments, and sliver polygons cm be resolved during the

incremental construction; and 4) the algorithm also handles islands in Ml or M2 which

remain islands in M3.

3.8.4 Digital Terrain Modeilhg

Given a set of attnbuted objects distributed on a plane, one of the problems in digital

terrain modelling (DTM) is to interpolate attribute values at any location within, say, the

convex hull of the set, such that the attribute surface does not behave strangely. It has long

been known that the behaviour of an interpolated surface depends largely on the choice of

the portions (weights) of attribute values from selected objects around an interpolating

Location. The question of which objects should be selected as atcnbute contributors Leads to

discussion on identifying "the neighbours" of a given location. Gold [1992b, 19891, Gold

and Roos [1994] argued that the objects in the adjacent Voronoi regions of an object in a

Voronoi diagram, constitute "reasonable" neighbours of the object.

Based on the notion of Voronoi neighbours, an interpolation method called "area stealing"

was descnbed which obtains a weighted average attribute value for one interpolation. The

basic idea (Figure 3.37), is to interpolate an attribute value in location x, where the point x

is imagined to be inserted into the Voronoi diagram. The Voronoi region for x would be

"stolen" fkom neighbouring Voronoi regions. The weights of contributhg attributes can be

calculated, by computing individual rate of areas "stolen" from the neighbouring objects.

This method has been extended to interpolating surfaces based on a set of points and line

segments.

Figure 3.37 hserting a point x steak areas from its neighbours

3.9 Summary of the Chapter

In this chapter, we presented the dynamic Voronoi data model from the following important

aspects, as they are essential to the construction of the data model:

It was observed that the integrated view of spatial modeliing c m be found fiom the

Voronoi diagrams. The influence vicinity analogy led naturally to the intuitive

comprehension of the spatial data model. A formal definition of the ordinary Voronoi

diagram was elaborated which also anchored the geometric components of the diagram for

the discourse of its properties. The properties akin to the introducing of the Line segients in

the object set were discussed in length. It is proved in this chapter that there exist only six

types of Voronoi vertices involving an object set of points and line segments. The dual

structure of the Voronoi diagram, the Delaunay triangulation was also defmed. after having

treated the degeneracy and its graphical representation.

Two data structures representing the Voronoi diagram, via representing the Delaunay

triangulation. were discussed. More emphasis was on the triangular element data structure

for it is used as the implementation structure in the research of the thesis. This chapter put a

great deal of effort on- the discussion of the kinematic incremental construction of the

Voronoi diagram of points and line segments. The discussion includes inseaing, deleting,

and moving a point; inserthg and delehg a line segment; the moving-in, moving-out

topological events; and the detecting and handling collisions of objects. The log file

structure used to preserve the history of the construction of Voronoi diagram was designed

and implemented. With the log file structure, the Voronoi diagram can be reconstnicted

forward and backward, and be quened with regard to its temporality. It is expected that by

integrating the lower level tool with tools managing changes at the conceptual level, a t d y

spatio-temporal GIS database engine can be developed-

GIS operations with the dynarnic Voronoi diagram were discussed in detail. The algorithms

for these operations cover the graph traversal over the Voronoi diagram, its dual

Lriangulation, and the object structure; the range search; the spatial analysis, including

polygon shading, buffer zoning, and polygon overlay; and the digital terrain modelling.

Through this chapter, the power and flexibility of the dynamic Voronoi diagrarns in spatial

modelling and analysis are basically revealed. The natural neighbourhood relationship built

into the topological structure and the dynamic detecting of changes in the spatial

relationship makes the dynamic Voronoi diagram an attractive choice for a spatial database

model. In the following chapten, we are going to discuss the shortcomings of the primitive

Voronoi diagrams of points and line segments and to seek solutions to the problems.

4.1

The

Chapter 4

Partitioning and Pasting Voronoi Diagrams

Shortcomings of the Voronoi Diagram of Points and Line Segments

Voronoi diagram of points and line segments presents a powerful tool to manipulate

spatial objects at the most primitive level. With the dynamic feanire for updating a spatiai

structure, it makes an ideal on-line spatial database model for a dynamic GIS where the

topological integrity of a map is dways maintained. The impact of this feature on a spatial

decision support system (SDSS) is obvious: decision models supported by the dynamic

spatial DBMS obtain a reul-tirne response when executing spatial and network analysis

functions over collections of continuously updated map data. This is in contrast to current

SDSS where the topology of a spatial database must be updated off-line when any

modification on a spatial setting occurs. The concepts of on-line, off-line, and real-time are

similar to those explained in Preparate and Sharnos [1985]. An on-line algorithm is referred

to as one that cannot look ahead at its input data An off-Zine algorithm operates on ail the

data collectively. A real-time application relies on a special on-line algorithm that an update

should be completed within an appropriate time delay.

However, used under realistic GIS or SDSS applications, the system presented here, based

on the Voronoi data model, has a senous drawback: the supporting spatial data structures

are not divisible into disk pages. It is assumed that, in order to operate on a map, al1 of the

topological and geometric data structure must be loaded into cornputer memory.

Considering the size of a cypical forest GIS map with thousands of complex polygons

composed of hundreds of thousands of line segments, the size of the supporting Voronoi

data structure will be tremendously large. This means, as illustrated in Figure 4.1, objects

and relations of the spatial data structure may occupy a large portion of the memory space,

which may be allocated fiom different memory blocks. Notice also in Figure 4.1 that some

hiangles and objects that are close in space may be addressed far apart in memory, possibly

scattered in different data blocks. This is because the Voronoi diagram is generated

incrementally, and hence the input of objects does not necessariiy follow a regular spatial

pattern. As a result, an instance of the data structure may corne be characterized by a poor

spatial index. This d e s a simple partition or ordering of the space impossible. It follows

that no rnatter how big a map is, a l l the topological and geometric objects must be Ioaded in

memory in order to ensure the presence of the neighbourhood around any area of interest.

A Voronoi diagram
of points and line

segments

The data structure for the a The associative
Delaunay triangulation object data structure

m..

4
m..

The memory
of a cornputer =. The rnemory blocks

; occupied by data structures
of the Voronoi diagram

Figure 4.1 A system view of the organization of a Voronoi diagram

This drawback can raise additional problems with the GIS:

The buik use of computer resources lowers the overall performance of the system. It may

well happen that a cornputer's memory is too smail to completely hold a Large map.

The presence of umiecessarily detailed map objects (points and line segments) on an

interactive display device hinders operators from concentrahg on the more important

properties of a rnap.

Managing spatial objects in a non-splinable fashion fails to meet the requirements for

modem data structures which need to be dynamic, berarchical, and with varying levels

detail.

The mismatch between spatial adjacency and memory contiguity reduces the efficiency

of spatial searches and presents difficulties in geometric index stmc turing.

The assumption of rnemory residence for all geometric data and data structures is common

in the community of computational geometry. Although a few attempts have been made to

design algorithms which process sets of geometric objects and keep at any time only a srnail

part of their data in main memory (e.g. [Szymansky and van Wyk 1983; Ottmann and Wood

1986; Güting and Schilling 1987]), they are not generally targeted at Voronoi diagrams. The

main Stream of research on Voronoi diagrams and Delaunay viangulations today, including

the incremental approach, s u maintains the assumption of Bat memory. As a matter of

fact, the majority of currently practiced topological data models, such as the ones discussed

in Chapter 3, have not even considered this problem, which is one of the main reasons why

standard DBMS fictions (as mentioned in Chapter 2) are difficult to reaiize in a spatial

DBMS. A transition, therefore, must be made £rom efficient intemal data structures for

geometric searching problems to extemal geometric fde structures based upon the same

principles [Güting 19881.

4.2 The Objectives of the Spatial Object Condensation Technique

The rest of this chapter addresses the problems presented in the fmt section. The idea is not

to alter the incremental construction of and other spatial operations on the Voronoi diagram,

as discussed earlier, but to devise a method which partitions a larger Voronoi diagram into

smaller diagrams enclosed in some designated polygon boundaries, and which pastes

together smalier Voronoi diagrams (spatidy) to forrn a larger one. This method. called the

spatial objecr condensation technique [Yang and Gold 19951, needs to provide the

following features to the partitioned Voronoi diagrams:

When partitioning a Voronoi diagram, the corresponding parts of geometric objects and

spatial data structures should be identified and separated from the original structures. We

cal l each of such geometrically identinable and topologically structured àiagrams a

Voronoi map object (W).

The VMO from which srnailer VMOs are partitioned is a parent, and the srnalier objects

are children. The parent VMO embeds the geometric boundaries of its children in its

spatial stmctures (the Voronoi diagram and the Delaunay triangulation). The intemal

spatial structures of child VMOs are opaque to their parent and are removed from the

spatial data structures of the parent. This simplifies the spatial structure while preserving

an outline view of a spatial setting, and reduces the memory used for unnecessary detail.

The boundary of a child VMO specifies the extent of the subspace and of its intemal

geometric objects and its spatial structure.

Each individuai VMO c m be saved separately ont0 secondary storage, loaded into main

memory, and worked with independently. By "worked with" we mean applying either

constmction operations, spatial searciiz-s, or analysis functions to the object.

A child VMO cm be pasted seamlessly back to its parent space with or without merging

the two spatid data structures. It can also be inserted into other Voronoi diagrams,

provided there is no spatial conflict. The insertion wül not be exhaustive in that only the

boundarv of the VMO needs to be inserted into the target Voronoi diarrram.

This chapter deals with the geometric and topological aspects of the technique and

implementation issues involved in partitionhg a set of system objects allocated to store and

operate on elements of the data suucnire of a Voronoi diagrarn. Managing dynamic

relationships between VMOs and operations upon them as individually identifiable objects

is more an issue of spatial database models and will be tackled in a later chapter.

The objective concerning the geometric and topological aspects can be stated in a more

forma1 fashion. Take a set of spatial objects O c @, the Voronoi diagram V(O) c R ~ , and

the dud topological structure, the Delaunay triangulation, D(0) c @, as defmed previously

in this thesis. The objective of the spatial condensation technique is to partition V(O),

within its embedding plane R ~ , into a f ~ t e nurnber of n - 1 bounded subdiagrams, V(&),

..., V(Od, with corresponding bounded, embedding subspaces, S2, ..., Sn, and one

unbounded lefi-over subdiagram, V(Oi), with its corresponding unbounded Zef-over

subspace, SI. Denote Sio, asi, and Sir, the interior, the boundary, and the extenor of Si, for 2

L i I n, respectively. By the same notion, denote also Si0, asi, and SIr, the interior, the

boundary, and the exterior of SI, respectively. The partition must satisfy the following

conditions:

(the Si are a covering of 21,

b) Sio n S: = 0 for 1 < i S n and i # j (ail Si" are mutuaily disjoint), and

(mutual boundaries between Si and Si).

Especially, denote by Xi, the set of spatial objects to be inserted into (or deleted from) Si, 1

I i I n, that is, a partition of a finite set of spatial objects X c R ~ . We would like the

partition to satisQ the following dynamic conditions:

d) (Oi u Xi) c Si for 1 4 i n (dynarnic subspace restn-ction),

n
e) O U X = U (Oi u Xi)

i = 1

£) V(Oi u Xi) c Si for 1 l i l n

II

g) V(OUX)= u V (0 i u Xi)
i = I -

h) D(Oi u Xi) c Si for 1 S i S n

i) D (0 v X) = 6 D(0i u Xi)
i = l

(the Oi are a dynamic covering of O),

(dynnmic geometnk integnVty),

(the V(Oi) are a dynamic covenng of V(O)),

(dynamic tupological integrity), and

(the D(Si) are a dynamic covenng of D(S)).

It is undentood that only the unbounded subspace, Si, is the parent of ail children, Si, for 2

5 i 5 n, which are bounded subspaces. The parent subspace is "left-over" with n - 1 holes

after n - 1 children are partitioned. The interiors of all subspaces are disjoint, Le. condition

b), and all subspaces are connected via the mutual boundaries with the parent subspace, Le.

condition c). Conditions d), f) , and h) stipulate that partitioned subsets of objects, the

Voronoi diagrams, and the Delaunay eiangulation are al l dynamically restricted within the

corresponding subspaces. By the concept of "dynamic geomevic and topological integrity"

we mean that the Voronoi diagrams and Delaunay tnangulations need to be completely

definable (and modifiable) within each subspace with respect to dynamic sets of objects

embedded therein. The unions of all subspaces, dynamic subsets of objects, Voronoi

diagrams, and Delaunay trianplations need to come to their counterparts before and after

partitioning, as indicated by conditions a), e), g), and i).

It should be noticed that in the above formai conditions, we have deliberately negtected a

few "boundary conditions" between subsets of objects, Voronoi subdiagrams, and Delaunay

subtriangulations. This is because we have not specified what might constitute the

boundaries of partitions. We now nirn to discuss the boundary matter fxst, and come back

to formal boundary conditions later. For the sake of simplicity, we denote the partitioning of

a V (0) into a finte k of subdiagrams as a k-parrition.

4.3 Partition Boundaries

When discussing what might constitute appropnate boundarïes where partitions are made,

we fmt look intuitively at a Voronoi diagram V (0) on a piece of paper (Figure 4.2), and are

prepared with a pair of scissors. It seems nanual that a partition can be made by cutting the

diagram along some existing geometnc kamework, Say, the Voronoi edges. By checking

the result of this method with the conditions specdated in the previous section, it is obvious

that aU but the last conditions stated are readily satisfied by cutting V(O) into V(Oi) and

V(0z) along the designated Voronoi edges. However, the Delaunay triangles crossing the

boundary will be cut, which violates the integrity of the topological structures for both

partitioned subsets.

Figure 4.2 Cutting a Voronoi diagram V(S) on paper

The problem of violating the last condition would not be a serious one if the Delaunay

triangulation did not play a cntical role in managùig objects and Voronoi diagrams

embedded in space, as in the example of drawing a Voronoi diagram with a d e r and a

compass on paper. Also, it will not work with the cornputer representation relying on the

Delaunay triangulation. To attempt to solve this problem, we used our imagination.

Imagine that with a retriangulating algorithm, ignoring the complication involving the

boundary conditions, the cut triangles at both subspaces could be modifed to be complete.

One way of doing this could simply discard those cut triangles from both divided diagrams.

This solution can provisionaily bring other problems. The fmt concerns the dynamics of

both subspaces. If a poht x E Si is inserted close to the boundary of Si and Sz, the triangles

near the boundary in Si have to be adjusted. This consequently alters the partitioned

Voronoi edges on the boundary of SI, which violates conditions g) and i).

Naturally, one can think of using connected Delaunay triangle edges as the partitionhg

boundary. While cutting dong triangle edges preserves the integrity of the computer

representation of a Voronoi diagram (admitting duplicated representations of vertex objects

on the boundary), condition f) is violated in that the Voronoi edges crossing the boundary

will be cut. Again both conditions g) and i) are difficdt to maintain when considering the

dynamics of the object sets. However, if one emphasizes the integrity of the computer

representation and admits overlapping of the Voronoi diagrams near the boundary,

condition i) c m be ensured by spec@ing that the boundary triangle edges never be

switched. We wiU corne back to this possibility after we have examined another more

natural kind of boundary.

The kind of partition boundary. that cornes to mind more naturally consists of the

components of polygonal objects. We treat a partitioned polygon as a container object

within which other types of spatial objects may exist. Polygons as containers are frequently

seen fiom the hierarchical structure of spatial arrangements. For example, the polygon

representing the temtory of a country can contain temtories of provinces which further

contain regions of counties, areas of municipalities and political districts, and so on. In

other geographicai applications, polygons c m be containers representing the aggregated

properties of some spatial phenomenon. Examples of aggregated polygons include forest

land diversified with polygons representing different tree species or groups of trees at

different ages; crop land with variations of vegetation, etc. No rnatter what may be

contained inside, a noticeable characteristic of al1 such polygons is that their shapes are

naturaiiy irregular. This contrasts with the current computerized practice of traditional

cartographie mapping where the propeaies of maps are all contained in rectangular fiames

which spatially delineate boundaries of geographic databases. The choice of partitioning a

large map based on the natural boundaries of container objects is advantageous in this

respect .

The initiai attempt of partitioning a Voronoi diagram dong container polygon boundaries

can be Uustrated from the following two diagrm. In Figure 4.3 the Voronoi diagram and

the dual Delaunay triangulation for a s m d collection of polygons are present. Along

polygon boundaries, Delaunay edges and Voronoi edges are aligned. As is shown in the

diagram, although the boundaries of those polygon are closed loops of h e segments, the

underlying structures are not necessady simple. To simplify the description, we assume

that they are simple closed loops, i.e. every node in a loop is connected by two line

segments only. The partitioning method described later does not rely on this assumption.

Now we choose to partition the container polygon with the closed boundary. The separation

of two subspaces, Si, and Sz, by partitioning the enclosed polygon region dong the simple

boundary is immediately guaranteed by the Jordan c w e theorem, which says that a simple

polygon boundary divides the Euclidean plane into two connected regions, the interior one

is bounded and the exterior one is unbounded. Both regions have the same boundary as

frontiers. To see that the Voronoi diagram and the Delaunay eianguiation are also readily

separated by the simple polygon boundary, we need to take a micro-view of both structures

dong the boundary.

Figure 4.3 The Voronoi diagram and Delaunay triangulation of a map

An enlarged view of one part of the diagram from Figure 4.3 is shown at the left of Figure

4.4. Both Voronoi and Delaunay edges are connected on the container boundary. Some

Delaunay edges are entirely on the boundary. The semantics (in the Voronoi sense) of either

kind of edge can be easily interpreted based on their respective definitions.

0 point object O graphic representing point

Figure 4.4 A micro-view of the Voronoi and Delaunay structures near partition boundaries

130

For example. any Delaunay edge between an endpoint and a graphic representation point

depends on the existence of the Voronoi edge (possibly degenerated to zero length) between

the endpoint and the interior of the line segment. Likewise, any Delaunay edge between two

graphical representation points on the boundary corresponds to the bisecting Voronoi edge

of the two line segments. Nevertheless, by the definitions of both the Voronoi diagram and

the Delaunay triangulation, neither Voronoi nor Delaunay edges extend from the intenor of

the container to the exterior, or vice versa Therefore, by preserving the mutual boundary of

both partitioned subsets, the integrity conditions f) and h) are automaticaily ensured. This is

shown at the nght of Figure 44, where no Voronoi or Delaunay edges are cut by the

partition.

The next concem is the dynarnic behaviour of the partïtioned subspaces on both sides. The

question is whether changes made to the spatial structures (the Voronoi diagram and the

Delaunay triangulation) in one subspace would affect the spatial structures in the subspace

on the other side of the panitioning boundary. It is mdentood that changes to the spatial

structures are caused by construction operations such as inserting, deleting, and moving

objects in the object set. If these construction operations are applied only to objects in the

interior of a bounded (or an unbounded) subspace, it is immediately clear that any changes

in the spatial structures of the subspace will not affect those of other subspaces. The reason

is that the boundary of the subspace is the outmost neighbour of any object in the subspace,

which precludes the neighbourhood relationship between any two objects residing in two

interiors separated O;. a boundary.

We surnmarize the above discussion with the following boundmy choice theorem:

Theorem 4.1 (boundary choice theorem). Paaitioning a Voronoi diagram V(O), together

with its ernbedding space S, dong a closed polygon boundary, B c O, into V(Oi) and V(02) ,

together with correspondhg subspaces Si and S2, satisfies all conditions specified in

Section 4.2. provided that the dynamic subsets of objects, Xi and X2, belong only to the

interior of their corresponding subspaces, that is XI c SI0, and & c &O. The partition

boundary is munial to both SI and S2, that is B = 6S1 = 6Sz.

It is obvious that this theorem can be extended n a d y to a k-partition.

4.4 The Implementation of the Partition with the Data Structure

After choosing to use the container polygon boundary to partition the Voronoi diagram and

its embedding space, we now proceed to see how this partition c m be done with the data

structure of the Voronoi diagram stored in a computer. The objectives here are: to identify

al l geomeuic and topological components of the data structure for each subspace; to

separate the child subdiagram fiom the original instance of the data structure; and

ultimately, to Save it as another instance of the data structure. The constraint for ail

separated instances of the data senicture is that each individual instance should support the

partition objectives in Section 4.2 such that the corresponding subdiagram cm be operated

upon independently. We remind ourselves here that the data structure of the Voronoi

diagram used in this thesis is cornposed of two parts: the representation of the Delaunay

triangulation and the representation of the associative object structure.

Denote A(0) the associative object structure, and M(A(0)) the cornputer representation of

A(0). Likewise, denote M(D(0)) the computer representation of D(0). Both M(D(0)) and

M(A(0)) are collections of respective system objects representing triangles, points and line

segments. For simplicity, we also denote M(V(0)) = M(D(0)) u M(A(0)) the computer

representation of V(0). An objective of the implementation of a k-partition is to partition

the collection M(V(0)) into corresponding subsets, M(V(Oi)), ..., M(V(Ok)), such that for a

proper set of functions F applied on V(O), denoted F(V(O)), the foliowing conditions hold:

j) F(V(0)) e F(v(od u -.. u F(v(Oiç)) (fiinction subdivision), and

k) F(V(Oi)) + M(V(Oi)) is bijective for 1 S i S k (logical-physical transformation).

The equivalence condition j) States that the proper set of functions applied on the original

Voronoi diagram can be equivalently achieved by fmt applying them to the collection of

subdivisions and then taking the union of individual results. The mapping condition k)

stipulates that the implementation of the functions on individual Voronoi subdiagrams

needs to be transformable between the logical and the physical levels, and the

transformation is both injective and surjective. That is, the algorithm of a spatial operation

on V(Oz) (logical representation of spatial objects) c m be exclusively irnplemented on

M(V(02)) (physical representation of spatial objects); inversely, any system operation on

M(V(02)) corresponds to some spatial operation exclusively on V(02) .

Sat i smg the above two conditions can be useful for designing pardel algorithms for

spatial operations and for federated spatial database management in general. F d a r

examples of the proper set of functions include construction operations, spatial searches and

analysis, as discussed earlier. The "proper" modifier on the set of functions respects the

''boundary conditions", especiaily those regarding construction operations.

Identifying and Tramferring the Subset Enclosed in a Partitionhg Boundary

The first step of the partitioning algorithm identifies the subset of spatial objects and their

spatial structures in one designated subspace. Once identifïed, it can be "wntten" into a

newly allocated memory space as a separate instance of the data structure, and later

removed kom the original memory space. Due to incremental construction, the logical

indices of the subset of spatially adjacent objects and structures may not be contiguous, the

memory blocks occupied by the subset may consequently be dispersed. Some spatial

traversal technique has to be used to identify the subset and transfer the logicai addresses of

the members into those of the new instance of the data structure.

Ln Our implernentation, we use the potygon shading or flood fill algorithm, as discussed in

Chapter 4, to traverse the topological structure (the Delaunay triangulation) in spiral-like

order. For every triangle and vertex object identified, instead of matching their original

logical indices to the counterparts in the new instance, appropnate consecutive index

numbers fiom the new instance are assigned to them. This eliminates big gaps in the

memory space of the new instance between spatially adjacent objects and structures. The

process of i den t img and transferring logicd indices is called flood fil1 rnemory

compaction. Figure 4.5 illustrates this process where the heavy and iight numbers represent

indices for spatial objects and Delaunay triangles, respectively.

463 745
In the new instance

985

367
91

12

75 2

In the original instance
y 4

Figure 4.5 Flood fa memory compaction

Out-Pointers of the Bordering Triangles in the Data S tmcture

Recall that (ref. page 79) the triangular element data structure for the Delaunay

triangulation not only maintains pointers to three vertex objects for each triangle, but also

pointers to three adjacent triangles for each triangle in question. Maintainhg pointers to

adjacent triangles ensures the ability to spatially traverse the whole topological structure. In

this sense, we call those pointers the topological pointers. For a set of triangular objects

identifed in one partition, Say M(D(Ot)), it is apparent that some topological pointers in

M(D(02)) will have to point to tnangular objects in M(D(O2)), naming these pointers out-

pointers. Unfomuiately this violates both conditions j) and k). For example, a function on

D(02) may need to know the positions of al1 adjacent triangles for each triangle concerned,

including the adjacent hiangles referred to by the out-pointers. The function will fail when

Dr(02) is removed and the subspace Ozr becomes void, because the out-pointers refer to

triangles which no longer exist in the subspace concemed. In order io solve this problem,

we first identify triangles in D(02) whose representation contains out-pointes.

For any h e segment on the partitioning boundary, there c m be only two triangle edges

each connecting an endpoint and the graphic representation point (cf. Figure 4.4). No matter

how many triangles are incident to the line segment, only two pairs of adjacent triangles

share the aiangle edges collinear to the line segment. Since each pair has triangles fiom

both sides and they are face to face dong the boundary line, they are cailed bordering

triangles (Figure 4.6a). Referring to the data structure for the Delaunay aiangulation, it is

the bordering triangles that contain out-pointers to triangles out of reach (Figure 4.6b).

(a) bordering triangles (b) out-pointers in M(D(02))

Figure 4.6 Bordering triangles and out-pointers

A Flaw of Voronoi Diagramo in Dealing with Line Segments

In seeking a solution for the subset inter-referencing problem incurred by the out-pointers,

an important flaw in curent theory and practice of Voronoi diagrams dealing with line

segments is revealed: their internal spatial structures have k e n either ignored or are

incomplete. This fuiding can be made evident by the following example (Figure 4.7).

Figure 4.7 Weakly-connected subspaces

Based on pointset topology, two components in Si of Figure 4.7 are weakly connected via

two single lines between points 01 and 02, Q and 04, respectively. These two topological

subspaces need to be travened with a supporting topological structure. However, what

would be the construction of the Voronoi diagram over a single line subspace is neither

treated theoretically nor in the representation with data structures. Typically, two Voronoi

diagrarns would be constructed, one for each subspace. This leaves the subspace occupied

by the single pass unatîended. Besides, this treatment alters the topological nature of Si

which would become unconnected. A reason for this ignorance is that most of the current

studies of Voronoi diagrams consider that embedding spaces are al1 strongly connected and

these 'boundary conditions" are treated as "special cases" which are usually avoided by the

main Stream of research on Voronoi diagrams.

Some distinct aspects of Voronoi diagrarns involving line segments have been addressed in

the literatue. For example, it has been noted that wMe the subdivision of the Voronoi

region of a line segment c m be conceptually analogous to that of a point, the denving of the

dual Delaunay structure around a line segment, however, is not a simple extension of that

for a point (compare Figure 4.8 (a) and @)). The orientation of a Line segment must be

distinguished to confonn to the unique empty circumcircle condition for the Delaunay

triangulation. Nevertheless, the treatment is incomplete both theoretically and practically.

Theoreticdy, the topological structure of the Voronoi diagram is not homogeneous on the

whole plane. As demonstrated in Figure 4.8b, there exist double triangle edges between

adjacent triangles, Aoio50s and Ao6o3o8, on one hand, and a gap between Voronoi regions

incurred by two objects, os and 06, on the other hand. In practice, the absence of

representation of the intemal topologicai structure of a line segment presents cüfficuity in

dealing with, for example, the inter-referencing problem and the traversal between weakly-

connected subspaces via the cornputer representation of their topological structures.

(a) Voronoi region and adjacent
triangles around a point

(b) Voronoi region and adjacent
triangles around a line segment

Figure 4.8 Illustration of the incompleteness in handling line segments

The Completion of the Spatial Structures Within a Line Segment

The idea of completing the spatial structures within a line segment becomes simple once the

problem has been analyzed. Take a close look at the geometry of a line segment whose

composition includes two topologically distinguished "haif-Lines". Each haif-line starts

from one endpoint and its orientation is given by the "right-hand" rule with respect to the

other endpoint associated with the other half-line. In the associative object data structure,

these two half-lines represent two distinct objects and are mutuaiiy referenced. Based on the

d e f ~ t i o n of the Voronoi diagram, it is natural to amend a Voronoi edge bisecting these two

ha-line objects (Figure 4.9a). We call this Voronoi edge the Voronoi in-line edge to

distinguish it from other Voronoi edges. Accordingly, amend the two triangles inside the

full h e segment to correspond to the Voronoi edges between the four connected objects

which together describe a full line segment (Figure 4.9b). We call these the critical

triangles because they serve as the transitional elements between interrelated subspaces.

(a) the completion of the Voronoi in-luit
edge fa a full iine segment

(b) fhe completion of the critical triangles
for a fuii üne segment

Figure 4.9 The completion of the Voronoi in-line edge (a), and the critical triangles (b)

The completion of the spatial structures within a iine segment complies with the defuiitions

of both structures. It is understandable that the circumcircle of a critical triangle has a zero

radius and its centre coincides with the endpoint vertex. These amendments are rather more

concephiai chan geometric. They are nevertheless vital to solving the two problems

mentioned above. The role of the critical triangles WU be made more evident as the

discussion continues,

Resolving Unreferenced Out-Pointers

We now corne back to solve the inter-referencing problem: the out-pointers in one subset of

system objects refer to trianguia. objects in other subsets. With the completion of the

critical triangles, the bordering triangles no longer contain out-pointers because these have

k e n transferred or contained within critical triangles on the partitioning boundary. Figure

4.10 shows the out-pointers in the critical triangles on the boundary inter-relating two

connected subspaces.

Figure 4.10 Out-pointers in critical triangles

inter-relating two subspaces

After V(&) has been removed, the out-pointers fiom M(V(Si)) cannot be resolved once they

are used to access triangles in LI(&). Our solution is to replace the reference of an out-

pointer in one cntical triangle with the other critical triangle incident to the sarne endpoint.

This is s h o w in Figure 4.1 la as out-pointers are "bent" around corners. As a result, two

cntical triangles incident to the same endpoint are mutually referred. Likewise, the out-

pointers on the boundary of the other partitioned subspace are similarly resolved (Figure

4.11b). The explanaiion for bending out-pointers is that whenever a traverse is about to

leave a subspace, it should immediately be directed back if and when the other subspace

becomes void.

(a) Resolving out-pointers for M(V(S1)) (b) Resolving out-pointers for M(V(S2))

Figure 4.1 1 The resolution of out-pointers

Applying the method of bending out-pointers completes the justification for the

irnplementation of the partition technique. The equivalence condition j) and the mapping

condition k) are satisfied except for the following modification.

The Modification of the Nearest-Object Search

The nearest-object search over the Delaunay triangulation uses the simple walking

algorithm [Green and Sibson 1977; Gold 19771 to traverse the triangular network. It starts

from any known aiangle and walks towards a triangle connected to an object which is the

closest to the target location. Figure 4.12 illustrates such an algorithm. The mows indicates

the search path that one traverses from one triangle to another. The algorithm distinguishes

the probed object and the questioned object dong the search path. A questioned object is a

triangle vertex whose closeness to the target location is examined. A probed object is a

questioned object, which is found closer than the previously probed, and all its neighbours

are intended to be questioned in a circular sense. The algorithm speculates that 1) when an

object is questioned with respect to a probed object, the txiangular path is advanced once to

the adjacent one which is comected to the object in question; 2) when a questioned object

becomes the probed, a new circular questioning starts from the triangle just advanced in;

and 3) a complete circle of triangles (with respect to the probed object) must be perfomed

before claming the probed object the nearest object. In the example shown in Figure 4.12,

the start triangle (gray) and the probed object a (gray) are on top of the partial triangulation.

Object b becomes a new probed object when it is questioned. Then a new circular search

path is atternpted, starting fiom the adjacent triangle below the grayed initial triangle.

Another new probed object, c, is found before a circle of triangles is formed. The search is

terminated by dedaring object c the nearest object, as a questioning circle is formed with

respect the c.

~ t a r t triangle

x Target location

Object probed

O Neighbour questioned

Nearest object

Figure 4.12 An illustration of a nearest-object search algorithm

The principles of the algorithm can be extended to the Delaunay tnangdation with points

and line segments. The only additional concem is about closeness test with regards to a line

segment. Figure 4.13 illustrates a nearest-object search over a triangulation of points and a

closed polygon in Si. The polygon boundary is implemented with critical triangles. Notice

that the search path enters the intenor of the polygon.

S tart triangle

Target location

Object probed

Neighbour questioned

Nearest object

Figure 4.13 An illustration of a nearest-object search over points and h e segments

The problem occurs when the interior subspace has been removed from subspace Si. In the

example shown in Figure 4.13, the search path wiil be broken when one traverses on the

polygon boundary and is about to enter into the interior of the polygon. This effectively says

that the target location is "invisible" fkom the start probed object in the sense that there does

not exist a "straight" search path beîween them.

On the other hand, the application of "bending" out-pointers alters the direction that leads

to adjacent triangles. Because of the bending, the nearest-search algorithm may r e m an

incorrect answer. The reason is that the search may be terminated prematureiy. Figure 4.14

illustrates this situation. Notice that the search completes a ckcular questionhg around a

probed object and reports it as the nearest-object.

Start triangle

Target location

Object probed

Neighbour questioned

Neares t object

Figure 4.14 A prematurely terminated nearest-object search

The modification of the nearest-object search algorithm adds a test about the type of a

triangle just traversed: Whenever a traverse w a k into a critical triangle while probing an

object on the partition boundary, it should never uses the bent out-pointer to walk back.

Instead, the traverse should proceed to question other boundary objects in counterclockwise

order, extending the triangular search path as it proceeds. The traverse continues like this

until one of three cases occurs: 1) ail objects on the boundary have been questioned; 2) a

new probed object on the boundary is found; or 3) a probed object in the interior of the

search space is found. In the f ~ s t case, a closed search path around the boundary is

complete and the probed object on the boundary is the answer. For the second case, the

walk continues until either case 1) or 2) or 3) is encountered. In the third case, the w a W g

path is away fkom the boundaq and the search is back to the normal algorithm. In the

example in Figure 4.15; the traverse has encountered case 2) a few times before case 3) is

found. The algorithm fmally reports a correct answer.

Start triangle

Target Iocation

Object probed

Neighbour questioned

Nearest object

Figure 4.1 5 The nearest-object search after the modification

The topological concept behind the modification of the algorithm is clear: The hole

occupied by the partitioned subspace is treated topologicdy as a special point object in the

left-over search space. It is special because it has a boundary and a geometry, and its

interior is condensed to a point in the Ieft-over subspace - the v e r = reason we call it a

"condensed object". Therefore, once a boundary component of the condensed point is found .

closer to a target point, the search needs to complete the "circular path" around the point

before it confirms the answer. We call the condensed objects 'point equivalent classes" in

the leftsver subspace in a topological sense.

Traversing WeaMy-Connected Components

Extending the "point equivalence" concept to weakly-comected components in a subspace,

the problem of travening the whole subspace is immediately solved. Based on the modified

traversing algorithm fot the nearest-object search, any two points in a subspace, weakly-

connected or not, can be traversed by a continuous search path (the left illustration in Figure

4.16). Denote {os} and {06} the two eqiiivalence points representing the holes in SI, then

the search space is topologically represented as the one at the right of Figure 4.16. It is no

different than the ordinary Delaunay eiangulation of an Euclidean plane.

Figure 4.16 Traversing weakly-connected components and the topological equivdence

The Pseudocode of the Aigorithm

The algorithm for partitioning V(O) c S c R' into V(Oi) and V(02) is summarized in the

pseudocode procedure named Condense. For simplicity, we assume there exist two

procedures: Identify-bound, which identifies a container polygon in S to be partitioned

and returns the List of line segments in O, narned bdr, on the partitionhg boundary, in

counterclockwise order; and Release Mi/M2, which releases the part of the memory space

in M(V(0)) originally occupied by M(V(02)). Two subprocedures narned Partition Si/!%

and Compact D called by Condense will be expanded further.

Procedure Condense (M(D(O), A(0)))

Begin

1. Narne M(D(O), A(0)) to be M(D(Ol), A(Ol)), short for Ml, the lefi-over instance of

the data structure.

2. Allocate memory space for M(D(02), A(02)), short for M2.

3. Identifytifybound(Mi, bdr).

4. Partition Sl/S2(Ml, bdr). In this step, critical triangles in D(O1) are embedded for

each element in bdr. All critical aiangles are flagged with the Iogical indices of the

corresponding critical triangles to be embedded in M2. These indices cm be

calculated. At the same t h e , the out-pointers in critical triangles are %ent7'.

5. Compact D(Ml, M2, bdr). This step fmt embeds cntical triangles on the boundq

in M2. This is followed by duplicating the partitioning boundary in Mt. Each critical

triangle is flagged with the index of the corresponding cntical triangle in Ml. Finally,

starting with a given triangle in Ml, the flood fd algorithm is applied, which

transforrns D(OZ) and A(Oz) in Ml, bounded by the partitioning boundary and flagged

cntical triangles, to a contiguous space in M2.

6. Release M1/M2(MI, M2)-

End.

Procedure Partition SI /S2(MI, bdr)

Begin

Proceed with each pair of line segments in bdr.

Collect bordering triangles for the pair, then put them in a temporary variable of

structure type bt.

Create four cntical triangles and insert them into the pair of line segments, referring

to the information in bt.

Flag each critical triangle with calculated logical triangular indices which will be

used for the cntical triangles in M2.

5. ModiQ out-pointers in the critical triangles. Care must be taken with the fïrst critical

triangle, because its preceding critical triangle is the last one whose logical index

wiil be calculated when processing the last line segment in bdr.

6 . Take another pair from bdr, while repeating Steps 2 through 5 until all line segments

in bdr are processed.

End

Procedure Compact D(Mi, Mt, bdr)

Begin

For each pair of line segments in bdr, create cntical triangles and insert them into

M2. The vertex pointers of each cntical triangle are created and inserted into M2. The

logical triangular indices created are identical to the ones calculated in Partition

SI/%-

ModZy the out-pointers in the critical triangles. Care must be taken of the f ~ s t

cntical triangle, because its preceding critical triangle is the last one whose logical

index will be calculated when processing the last line segment in bdr.

Flag each of the critical triangles with the indices of the corresponding critical

triangles in M2.

Flag each of the boundary objects wiîh the indices of the corresponding boundary

object in M2.

Repeat Steps 1 through 4 until ail line segments in bdr are processed.

Apply flood fill. Start fiom any triangle oldt in Mi which lies in the intenor of

subspace S2. Create a new triangle named newt in M2. Rag oldt with newt and push

o u t into the priority queue named pq.

Pop one triangle oldt from the queue. Obtait the flag from oldt and name the

triangle indexed by the flag newnnme.

For each adjacent triangle, adjt, of oldt, both in Mi, in counterclockwise order:

If adjt is not flagged, create a new triangle newt in Mr, flag adjt with newt, push adjt

in pq; othenvise let newt be the triangle indexed by the flag.

Fil1 one topological pointer in newname with newt and one in newt with newnarne.

Examine the vertex oldv in adjr, opposing oldr. If oldv is not flagged, create a new

object newv, with the sarne type as oldv, in M2 and flag oldv with newv; otherwise

let newv be the object indexed by the flag.

FiIl one object pointer in newt with newv.

Examine the vertex oldv in oldt, opposing adjt. If oldv is not flagged, create a new

object newv, with the same type as oldv, nom Mz and flag oldv with newv; otherwise

let newv be the object indexed by the flag.

Fill one object pointer in newname with naw.

I fpq is not empty, go to Step 6.

Save M2 as a spatial page in a secondary storage medium.

Analysis of the Algorithm

Obviously, additional storage for a flag is required for each triangular element and

associative object. The cost for storing flags is in the order of O(n), where n is the number

of objects in V(0) .

The time spent for the procedure Partition Sl/S2 includes 1) walkïng fiom a known

triangular index to any triangle incident to the partitioning boundary; 2) colIecting

bordering triangles to each line segment in Ml; 3) insereing critical triangles in Mi, and 4)

modifying out-pointers in critical triangles. Traversing from any triangle in D(Oi) to an

incident triangle of a boundq line segment costs O(log n) which is worstcase optimal, as

analyzed in Chapter 3. The upper boundary is in the order of O(n). Processes 2) through 4)

cost a constant thne for each line segment and the total is proportional to m, the number of

line segments on the partitioning boundary. Therefore, the upper boundary for Partition

SI/$ is O@).

The Compact D procedure, to compact M2, includes creating and inserthg critical triangles

in line segments on the partitioning boundary in MZ, the total of which takes O(m) tirne; and

the flood-fd process utilizing a priority queue, for which the worst case can involve al1

triangles in D(0) and all objects in A(@. The upper boundiïiry is in the order of O(n) based

on the linear behaviour analysis of the Voronoi graph in Chapter 3. Storage for the priority

queue has accordingly an upper boundary of O(n), for adjacent triangles in the queue

covering ail triangles in -D(O).

The following theorem summaxizes the implementation of the partitioning algorithm:

Theorem 4.2. The implementation of a 2-partition over the Voronoi diagram V(O), for a

nnite collection of n points and h e segments in 0, satismg conditions j) and k), c m be

affécted in the worst-case by O(n) in both time and storage.

4.5 Pasting Together Voronoi Subdiagrams

In this section, we discuss the reverse process of partitioning a Voronoi diagram into

subdiagrams which paste together subdiagrams into a seamless whole. Each subdiagrarn is

constnicted separately. The resulting Voronoi diagrarn will contain single sets of Delaunay

triangles and spatial objects which are the union of the respective subsets. The union

diagram can be stored either in a single instance of the data structure, or in separated

instances. In this section, we deal with the first case that the whole diagram is merged both

geometrically and in storage. The second case treats the union of the Voronoi diagrarns as

functioning geometrically and topologically as a whole but the components of the union are

stored in different instances of the data structure. The dynamic interactions of the latter case

will be tackled in Chapter 5.

Two possibilities are considered when pasting a partitioned subset into a Voronoi diagram.

The fmt one pastes the partitioned subset (being bounded) back into the original left-over

subspace of the Voronoi diagrarn, presumably the geometry of the common partition

boundary has not been modified. The other possibility pastes the partitioned subset into

another Voronoi diagram, provided that there will be no spatial conflicts on the location of

the boundary. For clarity, we name the subset of the Voronoi diagram to be pasted the

source set and the Voronoi d i a m into which the source set is to be pasted the target set.

It is assumed that both the source and the target sets have, or can be transformed into, the

same Cartesian coordinate units and origin in the Euclidean plane.

The algorithm of pasting a partitioned subdiagram back to its left-over subspace is basicalIy

the same as that described in procedure cornpress D, with the following changes: 1) the

fust argument should p s s in the memory instance of the target set, Mz, and the second one

passes in that of the source set, M l ; 2) the first five steps will not be used because the

critical triangles already exist in the target. Since the critical aiangles and the boundary line

segments in the source set have flags which are indices referring to critical triangles and

boundary h e segments in the target set, the completion of the flood fill (Steps 6 - 10 in

procedure compact D) appends the storage indices of the data structure for the source set

to that of the target set. The critical tnangles in the boundary may be removed, if so desired,

after two subspaces are pasted together.

TO paste a partitioned subset into another Voronoi diagram, since the partition boundary

does not exist in the target set, it needs to be inserted into the target set, taking the

boundary geometry from the source set. If no spatial conflict occurs in inserting the

boundary, the geometry of the new boundary will be the same as the one in the source set.

This process adds a closed polygon in the turget space and the interior of the polygon is

populated by Voronoi regions. The second step is to replace these Voronoi regions with the

ones contained in the interior of the source set. Since the flags in the criticai triangles of the

source set are indices refening to cntical triangles in the lefi-over subspace, they are

unknown to the target set. Additional operations have to be taken to match topological

pointers in two subsets. This can be done by 1) collecting bordering triangles in the extenor

of the new polygon in the target set; and 2) passing the information about the bordering

triangles to the source set to modify the flags in the critical triangles such that the modified

flags are indices of the corresponding bordenng triangles in the extenor of the new polygon.

After this, the modified procedure compact D (as the one used for the fust case) can be

used to paste together two instances of the storage structure.

4.6 Partitioning a Spatial Structure Along Designated Triangular Edges

In geographical applications, it may well happen that geometrical objects embedded in

space are not contained in any polygons. A good example is the digital terrain mode1 with

sample points ody. In this case, aii points rnay be stmctured with the Delaunay or other

trïangulations. We discuss briefly in this section how the spatial object condensation

technique can be applied to triangulated spatial structures. The objective of this application

is to solve the more general problem that "Sometimes the data set in the digital terrain

mode1 is too big to be loaded into the main memory".

The idea of partitioning a triangulated data set into storage-independent but geometrically

and topologically integrated subsets is the same as that of partitioning a Voronoi diagram.

However the partitioning boundary with a tnangulation is not a polygon object but the

designated triangular edges in a closed loop. To achieve storage and functional

independence, critical triangles will be implemented in the boundary edges, which will

become "fixed" (they will be kept unswitched) in the dynamic operations on individual

subsets after the partition. In the discussion, we deliberately avoid using the dual Delaunay

triangulation of a Voronoi diagram. The purpose is not to assume the empty circumcircle

condition for the Delaunay îriangulation. If the partition does use a Delaunay triangulation,

it shodd be borne in mind that Voronoi regions around the partitioning boundary rnay

overlap due to the dynamic operations over each partitioned subset, as shown in Figures

4.17 a) and b). The nearest object search, therefore, cannot be assurned on triangles

bordenng the boundary. The propertïes and applications of the triangulations wirh some

"fixed" triangle edges are part of the study of consaained triangulations (cf. Lee and

Schachter [1980]; Chew [1987, 19891).

e 9

a) Triagular edge oiq is 'Ylxed?' on a b) Moving two vertices on bordering trïangIes
partitioning boundary causes overlapping of Voronoi regions

Figure 4.17 The loss of the empty circumcircle property on bordering triangles

With the above background, we phrase our objective for the problem mentioned at the

beginning of this section: given a tnangulation, with some constcained triangle edges

forming a closed loop, fmd a method to decompose the aiangulation dong the closed loop,

called the partitioning boundary, into two subsets such that each subset of the triangulation

can be stored and dynamically operated on independently in main memory.

The method we propose generates critical triangles on the partitioning boundary. For each

constrained edge between points 01 and oz, two bordering triangles, at both sides of the edge

(Figure 4.18 a), are collected, and used to create critical triangles. It tums out that two

additional triangles are suficient to serve as the critical triangles with the same purpose as

the ones embedded in a Linz segment. These two critical triangles can be generated by

inserting one auxiliary point 03 in the middle of the constrained triangle edge whicb is

broken into two, 0103 and o3q (Figure 4.18 b). The position of 03 is determined by the

location vector (ol + 02)/2, where 01 and oz are location vectors of ol and 03 respectively.

a) Two bordering triangles at both sides of
constrained edge olm

b) Two critical triangles, ~ 0 3 0 1 0 2 at the
down side, and ~030201 at the up side

Figure 4.18 Generating cntical triangles about a constrained edge

It can be seen that there are now two constrained edges with the same two vertices. This is

proper with the triangular element data structure. The two geometrically identicai triangle

edges belong to the components of two distinct (in topological sense) triangles, Aqoioz and

Ao30201. The two constrained edges are analogous to the two oriented lines in one line

segment within which the cntical triangles are embedded. This piece of the partitioning

boundary is now completely transformed into a "hard boundary segment" and will be saved

on both partitioned subsets.

Once aU boundary aiangle edges are transformed, the topological connections between two

subsets are implemented as out-pointers in cntical triangles, as is shown in Figure 4.19.

These out-pointers will be ' kn t" in order for the two subsets Si and S2 to finction

independently. This can be implemented so that each of them is directed, Say in

counterclockwise order, to the other critical triangle incident to the same point (Figure

4.20). Therefore, the out-pointers in Sl form a closed loop around the partitioning boundary

clockwise (Figure 4.20a). Likewise, the out-pointers in S2 fonn a closed loop in

counterclockwise order (Figure 4.20b). The rest of the algorithm for transforming viangular

and object indices is sirnilar to that using the line segment boundary.

Figure 4.19 Out-pointers in transfonned constrained triangle edges

a) Resolving out-pointers in SI b) Resolving out-pointers in S2

Figure 4.20 Resolution of out-pointers in partitioned subspaces

Chapter 5

The Voronoi Map Object (VMO) Mode1

Introduction

The spatial object condensation technique decomposes the Euclidean plane, and its

topologicd and geometric representations with data structures, into subsets wrapped

independently as Voronoi Map Objects (VMO). The technique also encompasses the ability

of pasting partitioned or individuaily created VMOs to form a larger space and

representation. What has not k e n discussed is the managerial mechanism or structure that

oversees the object condensation process, and that manages and manipulates the resulting

VMOs as an integral whole. Without the complementary structure at the management level,

the effort made in condensation could not be M y utilized. This chapter is devoted to this

matter, and will cover the following issues: 1) What is the proper structure to collect and

manage the set of VMOs? 2) What are the spatial objects and relationships that c m be

supported and manipulated with the structure? 3) What are the operations and constraints

appliczible to the spatial objects mauitained in the structure?

The above issues achially touch the fundamental problems in developing a contemporary

spatial data model for GIS. The problems with a spatial data model span al l aspects of

processing spatial data, especially with the integration of geo-object designing, storing,

rnanipuiating, analyzing, viewing, and communicating. "Contemporary" may be labeled

with the increasingly "luxurious" requirements fiom users of GIS who are demanding to

handle spatial data with more flexibility. Idediy, any interesting data in a large spatial

database are modelled, manage& and viewed as an operable unit or object. The change of

focus back and forth between objects should be smooth and transparent, and the database

should allow both outlined and detailed views. From the systems point of view, these

requirements impiy that spatial data be geometricdy and topologically stmctured in a

hierarchical fashion, with varying levels of detail. Each object in the hierarchy

accommodates a region of arbitrary polygonal shape which again contains both comected

and discomected points, lineal objects, and smder regions of different complexity; and the

objects at each level correspond permanently to disk pages.

Most traditional spatial data models based on a hybnd architecture are composed of a

planar graph topological data model and a geometric indexing data model. They can hardly

satisfy these increasingly sophisticated ne&, the reasons having been analyzed briefly in

Chapter 2. In recent years, research on spatial data modeIs for GIS has k e n moving

towards developing more genenc spatial objects with enhanced expressive power. The

enhancement has been concentrated on formal descriptions of spatial objects which c m be

incorporated with their temporal aspect and with multiple resolutions.

For example, based on the work by Worboys [1992a], classes of spatial objects embedded

in the Euclidean plane are formally defmed, together with the operations on hem, using the

mathematical tool of simplicial complexes. The formalism is extended to model spatio-

temporal (ST) objects [Worboys 1992bl. The spatial objects constitute an indispensable

component within a larger frame of geo-objects which is k i n g attempted with the object-

oriented approach morboys 19941 e

In a multiple scaled representation, Bertolotto et al. 119941 report a HPEG (Hierarchical

Plane Euclidean Graph) for a rnultiresolution representation of a region. The HPEG

recursively decomposes regions into smaller ones. Region boundaries at one level are

simplified by creating ehomotopys with line generation algorithms, where E specifies the

radius of a band convoluted from a chain of edges. Each smaller region in HPEG is a PEG

(Plane Euclidean Graph) [de Floriani et al. 19931 whose features are refined with smailer

horizontal error. In order to support navigation in the hierarchy of PEGs, the boundary

information of a PEG must be recorded and the links to the direct refinements of a PEG

must be maintained. The HPEG provides a way of browsing a map at different levels of

resolution. The formalism, based on the cell complexes, for this map model is provided by

Puppo and Gettori [1995]. The implementation of the HPEG is based on the DCEL

encoduig structure. A hierarchical geometric indexing structure is suggested in the

irnplementation in order to speed up data access.

We propose, in this chapter, a hierarchical data model whose node objects corne from the

condensation technique described in the previous chapter. This data model is aimed at

managing a set of meaningfd map objects which together constitute a federated spatial

database, possibly distributed in a computer network. Each component of the hierarchy

accommodates a subspace where a collection of spatial objects is embedded and structured

both geometricaily and topologicdy. In addition, each node corresponds to a disk page and

c m be loaded into memory to work independently of other node objects. Dynamic GIS

operations on the spatial objects in the hierarchy are inhented fkom what has been discussed

on the Voronoi data model in the previous chapters of this thesis. These operations can be

defined within each node object to comply with object-orientation technology. A partial

discussion of this data model is in Yang and Goid [1996].

The VMOs created by the condensation technique proposed in Chapter 4 naturally form a

hierarchical relationship where the object fiom which a partition is made is the parent and

the newly partitioned object is the child. A parent can have a number of children and each

child itself can have children when the condensation is recursively applied to the child

VMO. When a complex polygon is condensed, the partitionhg boundary is duplicated in

both parent and child objects. At the parent level, the subspace occupied by a child VMO is

enclosed by a simple polygon whose composing detail is suppressed. Topologically, the

enclosed subspace is equivalent to a hole in the lefi-over subspace.

We k t defme spatial objects accommodated by the proposed data model. This is followed

by the specification of valid topological relationships between spatial objects. These

topological relationships are supported by the Voronoi diagram embedded in the Iargest

spatial object, the VMO. The representation of the data model is a tree of VMOs.

5.2 The Geometnc Object Classes

The data mode1 provides support for the following geometric data types or object classes:

Points, denoted P. A point p E P is charactenzed by a pair of ordered real numbers x, y

E R, denoted as p(x, y) E lZ2. The pair (x, y) is caiied the coordinates of p.

Directed and oriented line segments, denoted LSG. A directed and oriented line segment

Isg E LSG is defined by two endpoints pl, p2, E P, denoted lsg(pi, pz). Each lsg is a

collection of points satisfj6ng the following convex combinatorid equation

The line segment lsg(pi, pz) is directed from the endpoint pl to the endpoint PZ- The lefi-

side of Zsg is defined as a set of points fomiing a halfplane, LJY c lZ2, bounded by the

line T (cf. Section 3.2)

such that Vpj E LH, the following determinant condition holds

Likewise, the right-side of Zsg is a set of points forming a halfplane RH c p, bounded

by T, such that Vp3 E RH, the deteminant condition D < O. The dual concept is

introduced to a directed and oriented line segment, such that Vlsg(pi, pz) E LSG, its dm1

directed and oriented line segment is defined as Zsg(p2, pl) which is also in LSG. For

simplicity, a directed and oriented line segment (or its dual) is calied simply a line

segment, when no ambiguity arises. The left-side halfplane is called the referencing

plane of Lg(p1, pz).

Directed und oriented Lines, denoted L. A directed and oriented line 1 E L is composed

of a sequence of comected line segments in LSG, such that each endpoint in P is

incident to exactly two line segments, except possibly for two endpoints, called the

extremes of the line. The direction of a line i E L is designated by its two extreme nodes,

s and e, cdled the starring and endhg nodes, and the line is denoted as I(s, e). The

orientation is defined such that walking the line fiom s to e, the reference plane is always

on the lefi-side of the w-g direction. The dual of a line l(s, e) is l(e, s). When the line

starts and ends at the same node, it becomes closed. The relationship between the class L

and the primitive classes LTG and P is (LSG v P) c L, indicating the fact that a line is a

subset of the union of line segments and points.

Polylines, denoted PL. A polyline pl E PL is composed of lines which intersect only at

the extremes of lines. The intersection point can be incident to more than two lines. The

directions and orientations of each composing line can be worked out based on bat

represented for the line segments. These properties cannot be properly applied to a

polyline if it is multi-branched or cornpiexly networked. The relationship between the

class PL and the class L is simply L c PL.

Regions, denoted A. A region r E A c R~ is the area enclosed by a closed line. The

closed line is the boundary of r, denoted i3r (ar E L), for which no extreme can be found.

The interior of r, denoted rO, together with ar, constitute the region object, r. For

convenience, the exterior of r is denoted r'. Both r0 and f have a homogeneous infernal

structure, Le., object composition and topology. A region is a container object where

points, line segments, lines, polylines, and smaiier regions can be embedded. It is also

possible that a region r contains holes which represent maps, to be defined. In the case

that a hole is contained in rO, âr and r' of r will be disconnected. The boundary of the

hole is the outer bowidary of the hole which is simultaneously the inner boundary of r.

Maps, denoted M. A rnap rn E M is an appropriate subset of the Euclidean plane R'. It

can be unbounded or bounded. An unbounded rnap is called the universal map. A

bounded rnap (denoted as [ml) has an area enclosed by a closed boundary, denoted dm.

The boundary is disthguished by its intemal side and external side. The internai side is

connected to mO, the interior of Cm], and the external side is connected to m', the exterior

of [ml. The boundary of an [ml can be defined either by a subset of L or by a subset of P

plus some structural lines in @ to luik points in P for a closed polygon.

Similar to a region object, a rnap is also a container of al l spatial objects defined abme

and including smaller maps in M. An [ml and a region r indeed behave the same at the

object level. The ciifference emerges oniy when putting them in a container level, where

the intemal structure of m0 is hidden while that of r0 is always visible. The intenor of a

map object in a container actually constitutes a hole in the container space. When the

intemal structure of an [ml is homogeneous to the structure of its extenor rn', it c m be

pasted back to fill the hole.

The reasons for having a rnap object class, in addition to the region object class, are: 1)

the data describing the internai structure of a map may temporarily be unavaitable (such

as in multi-user and networked applications); 2) the intemal structure may have a

different format (for multimedia representation and heterogeneous databases); and 3) for

hierarchical representation and management of large quantities of geomevically and

topologically stnictured spatial objects.

A diagrammatic representation of a bounded rnap object is shown in Figure 5.1 which

depicts the boundary and the intemal objects accommodated in the intenor of the map. The

grayed area is the embedding space for a set of points, line segments, lines, polylines,

regions, and holes (white). The holes represent smaller bounded rnap objects whose intemal

structures are not present at the container level. The detail compositions of the contained

rnap objects are specifïed at a lower level. On the other hand, the internai object

composition in a region object is present and visible at the container level.

Region

& PoIyiine

/ Line

Line-Seg

Point

Figure 5.1 Geometric object classes

5.3 Topologicd Relationships of the Object Classes

Figure 5.2 illustrates an incomplete set of detail topological relationships between the

geometric object classes supported by the data model. We follow the terminology of

describing basic topological relationships defined by Egenhofer and Franzosa [IW 11. The

terminology is extended to cover some of the topological relations between regions with

holes pgenhofer et al. 19941. Forrnal definitions based on pointsets for the set of spatial

relationships are covered in the above mentioned two papes. The VMO data model

excludes, under the static spatial database context, the general overlapping between spatial

objects. Instead, dynamic operations are provided to support the overlapping process

incurred in map overlay.

The shaded rectangular background represents the embedding space of a bounded map (or a

region). The category of "area/area" concems the relationships between two areal ([ml E M

or r E A) objects in the container. They can be disjoint, such as (a); touch at one or more

common points, such as (b) and (d); or touch at one or more comrnon boundaries, such as

(c) and (e). The enclosure of the union of areal objects overlaps part of the container region.

Likewise, the inner boundary of a rnap may be totally comected to the outer boundary of

another map (f). It should be noted that the relationship (0 is not one of overlapping: the

intenors of two rnap objects are disjoint. The outer rnap object is therefore a toms.

Likewise, the inner boundary of a map of the toms shape can be totally connected to the

outer boundary of a region (g). In this case, the toms disconnects its exterior, i.e. the

interior of the container,

In the category "arealline", an areal object and a line are concemed. A line in the interior of

the container can touch a contained rnap at one point (h). A line enclosed in a region (not a

map) touches the region boundary at one point (i). Likewise, a line cm also pass through

the interior of a region (not a map) and intersects the region boundary two or more (but

finite) times (j). For the relation (j), if the region becomes a rnap object, the segment of the

h e enclosed in the interior of the rnap will not be visible at the container level (k).

The relations in the category of ''line/lineW are trivial. Two h e s c m be connected to form a

longer line (l), or multiple branches of lines intersect at one common extreme point (m).

The relation (n) depicts isolated points contained in a region (the rectangle). The relations

between points and lines are implicitly represented in some of the previous relations in the

diagram.

Figure 5.2 Topological relationships between spatial objects

5.4 The Voronoi Map Object (VMO) Class

The VMû class is an 'implementation of the geometric object classes and t-pological

relationships presented in the preceding subsections. The implementation inherits directly

the fact, resulting from the spatial object condensation technique, that the Voronoi diagram

is embedded in the interior of a map object in M, and that the boundary of a VMO

preserves the outline geometry of the rnap object in both comected subspaces. The

following definitions would cl- the terminology to be used to defme the VMO class.

We note that this section is developed from a preliminary version, published in Yang and

Gold [19961.

Definiton 5.1: The outline image is the partitioning boundary left on the subspace Si from

which the partitioning occurs. The object outline is the partitioning boundary duplicated on

the partitioned subspace Sz whose extent is confined in the enclosure of S2.

Definition 5.2: An object embedding of a rnap in M implements the geometric properîies of

its composing objects in 2. Except for that of the universal map, the object embedding is

bounded by the object outline of the rnap and possibly outline images of other maps

contained in the map.

For a single map, the object embedding disallows general intersection between objects,

following the concept of the single valued vector rnap wolenaar 19891. This ensures the

planarity of the map. The object embedding can be dynamic. That is, the components of the

rnap object can be changed. However, any change to a bounded rnap object must be

confmed by the intemal side of the object outline.

Defiition 53: A topologicd embedding of a rnap in M implements topological

relationships in R ~ , over the object embedding of the map. Except for that of the universal

map, the embedding is bounded by the object outline of a rnap and possibly outline images

of other maps contained in the map. The topological relationships are specified in the

topological data structures.

The topological embedding is aiso dynamic, due to the dynamic property of the object

embedding. The change of the topologicai structure depends on the dynarnic object

embedding and will also be confuied by the internal side of the object outline.

Note that both object and topologicai embeddings of a map do not apply to the interiors of

condensed objects in the map because the internal structures of these objects are

suppressed. However, the outline image of a condensed object is topologicdy embedded in

the map object as part of its object components.

Defiition 5.4: The class VMO is a set of topologicdy and geometrically stnictured maps

in M. Each instance of VMO has a topological embedding over an object embedding of the

map instances. Denote M = (P, LSG, L, PL, A, M,), where P is the class of points, LSG the

class of Line segments, L the class of lines, PL the class of polylines, A the class of regions

with closed boundaries, and Ms the bounded subclass of the class M which are

geometrically presented as holes in M. The object and topological embeddings of a VMO

are represented by the Voronoi diagram V(M).

The definition is recursive. An instance of the VMO class can result in a hierarchy of maps.

Nevertheless, a VMO may not have aii classes of objects presented. The following

implementations are valid for the object and topological embeddings of a VMO instance:

1) V(M) = V(P, LTG, L, PL, A, Ms). This is the Voronoi diagram for a complete

composition of spatial object classes. The existence of Ms class indicating that there are

holes in the object embedding of the VMO.

2) V(M) = V(P, LSG, L, PL, A, 0) = V(P, LSG, L, PL, A). This is the Voronoi diagram of

regions, polylines, lines, line segments and points.

3) V(M) = V(P, LSG, L, PL, 0, 0) = V(P, LSG, L, PL). This is the Voronoi diagram of

polylines, lines, line segments and points. There will be b e networks but no closed area

in the correspondent map.

4) V(M)= V(P, L, 0, 0, 0, 0) = V(P, L). This is the Voronoi diagram of points and Line

segments. No more complicated objects are represented in the corespondent map.

5) V O = V(P, 0,0,0,0,0) = V(P). This is the point Voronoi diagram.

6) V(M)= V(O, 0,0,0,0,0) = V(0) . This is the map with no components and is caiied

a null map or nul1 object.

It is understood that it is impossible to implement relatively more complex objects without

first implementing primitive objects. The implementations 2) through 6) are Voronoi

diagrarm without holes, al l spatial objects and their structures are presented at one Bat

level. The above deffition has emphasized the spatial aspects of the VMO class. It is not,

however, exclusive of any reasonable extensions to other data types to be included in the

definition. For example, by extending some attribute types mapped to weil defmed attribute

domains (e.g. stand-no => string, tree-type => string, densixrate => integer), an VMO

object becomes a geo-object representing forest stands.

5.5 The VMO-Tree Organization of the VMO Class

Definition 5: A VMO-tree is a graph G = (N, E) with node set N and edge set E. The

components of any node x in N include a VMO object, denoted rVMO. For any pair uc, y>

E N, an edge e E E exists between x and y iff the object embedding of rVMO contains the

outline image of y.VM0. The node x is called a parent, and the node y is a child. The VMO

of the root node corresponds to the implementation of the universal map.

Each node in N is of the following data type:

where Node-ID and ParentJD are unique idenufiers of the node itself and its parent.

Child-ID-List is a list of Node-IDs for the children immediately descendent from the node,

and VMO-ID is the identifier of a properly defined VMO map.

An important design decision for the VMO-uee, as for a general distributed information

system, is the implementation of object identity [ozsu and Valduriez 19911. Object identiv

is the property of an object that distinguishes it from a l l other objects, which is independent

of content, type, and addressability. It is the only property rnaintained across structural and

behavioral modifications of an object. The objects manipulated by a general information

system include persistent objects, the disk-resident objects concurrently shared by a l l users,

and transient objects, the main memory-resident objects local to a program execution.

There are two solutions for the implementation of object identity: the physical and the

logical identifier approaches. The physical identifier approach equates the OID with the

physical address of the corresponding object. For a database with a single server,

implementation of the identity of persistent objects can generally differ nom that of

transient objects. Transient object identity can be implemented more efficiently with

programming techniques such as using pointers. Problems with this approach occur when a

distributed database is served and shared by different object managers. The reason for the

problems is that physical addresses are not unique when boundaries of serves are crossed.

The logical identifier approach, promoted by object-oriented programming, consists of

allocating a system-wide unique OID (i.e. a surrogate) per object. The dilemma for

managing object identification is a trade-off between generality and efficiency. The general

support of the object mode1 incurs a certain overhead.

We prefer the logical identifier approach. That is, every object managed by the VMO-tree

must be uniquely identified by a bgical identifier. This involves identiwing nodes across

the tree as weU as spatial objects accommodated in each node. The identifier of a node can

contain the foliowing components:

An integer number assigned by the tree constructor.

The location of the metadata describing the node and its VMO. The description may

include the owner of data in the node, the creation date and time, the object classes and

services provided by the VMO, the authentic-check code for security of the map, etc..

The host name serving the VMO data and its operations.

The M O - I D may be composed of

The name and location of the map.

The customized interface ID.

The object outline.

As far as spatial objects within a VMO are concemed, they are either persistent or transient.

The persistent spatial objects created in a VMO are imrnediately integrated in both object

and topological embeddings, which constitute the contents of the spatial database structure.

The transient spatial objects are inctmed mostly due to a spatial operation performed on a

VMO. For example, another container VMO object may be created to hold a set of buffer

zone boundaries. This VMO contauiing buffer zone is confined within the object outline of

the host VMO. A transient object exist for the purpose of perforrning spatial analysis but

may not be permanently preserved. It has the option to transform itself as persistent object

if desired. In this case, the transient object is associated with the VMO from which it is

derived and preserved as a layer.

There is one problern here. A spatial object wrapped in one VMO node does not have a

unique identity in general. Since a VMO can be constructed within a host data management

system which is independent of other hosts on the tree, the logical OID (integers) of spatial

structures for two VMOs may weil start from the same number and increment the value of

OID as a new object is inserted. The OID generated by a local data management system is

cailed the local object identifier (LOD) A LOD has to be globalized when the object it

stands for is presented to other Local object servers. This can be done by an OID module

implemented into the base class of the VMO node. The OID module manages dynamic

assignment of global object identifiers (GOID) to node objects on the tree, and mapping

between L O D and GOID [Schmitt and Saake 19951. The working principle of the OID

manager is based on a uniqueness scope model (Figure 5.3) [Kent 19911 which identifies

objects across a federated (maybe heterogeneous) database management system. 1t tums out

that the scope structure has a direct application to object identification accommodated by

the VMO-tree,

LOID, e.g. name of the RDBS
ID, e.g. name of the FDBS \ LOD. e-g. name of the relation

\ \ LOI?, e.g. key-value of the tuple

/ LOD, e.g. OID of the object

LOID, e.g, name of the OODBS

Figure 5.3 The scope model (adapted from [Kent 19911)

5.6 The Construction of the VMO-Tree

The construction of a VMO-tree can be either top-down. bottom-up, or a combination of

both [Yang and Gold 19961. There are two scenanos when the top-down strategy is used. In

either case, the universai map of the root node is f ~ s t created. One scenario of the top-down

approach condenses a set of map objects for each smaUer geographical area such that the

whole study region is completely partitioned by the outiine images of these ndl objects.

The nodes corresponding to these map objects are added into the VMO-tree at Level 1. Each

map object is assigned to a host whose location is known to the root node. Before the

assignment, the semer of the root node negotiates with the child-server for the proper

location of the map. Once the agreement is reached, the data about the VMO child is

transmitted to the child-server. The child-server can then load the map in memory and work

on the detail of the map. Even smaller map objects can be added in the tree at lower levels

(Figure 5.4).

Another scenario of the top-down consmiction is that the root server works on the detail

with the universal map and adds components in it. Some heuristic approach can be taken to

aid the decision on when and where a cluster of components c m be condensed. Suggestions

on the heuristic criteria include using a threshold for the total size of the map, localized

thresholds for the density of spatial objects in heterogeneous clusters, or some artificially

implemented triggering methods. Whenever a new object is dynamically condensed, the

node representing the object is inserted into the tree. Meanwhile, the server decides, in

consulting with the database administrator, where the condensed map should be stored.

b. A VMO-tree Representation

a. A Partition of a Region

Figure 5.4 The top-down partition and its VMO-tree (after Yang and Gold [1996])

The bottom-up strategy works in a reverse way where the smallest distinct objects are first

composed as maps separately. The construction assumes the existence of the root and

inserts into the universal map al1 the object nodes corresponding to the maps created

previously. This involves pasting Voronoi diagrams into the universal map. AU the pasted

objects will be at level 1. This resdts in a flat tree where a i l children have the root as the

parent. A generalization process can then take place which aggregates smaller objects into

bigger ones. When a bigger object rn aggregated from k smaüer objects at level i is formed,

the object m becomes the parent of the k objects. Note that the aggregation happens at level

i - 1, The new node representing object rn will therefore be at level i and the k children are

dropped to level i + 1. The Iist of the children in the original parent at level i - 1 will be

updated, which excludes the k objects and includes the new aggregated object m. Likewise.

the Parent-ID in each of the k objects needs to be modified. After the generalization, the

tree becomes narrower-by k - 1 branches at level 1, and deeper if the generalization is

applied to a number of leaf nodes. The generation process c m be performed heuristically,

with predefined d e s and possibly interactive instructions fiom the database administrator.

It is dso possible that intermediate nodes are generalized without the knowledge of the

root. These intermediate nodes serve temporarily as roots of subtrees. A forest can exist

during the whole process. A bigger tree is federated by inserthg a nurnber of roots of

smaUer trees.

Both the top-down and the bottom-up approaches may be interchangeably applied during

the construction of a distributed spatial database, which either partitions a map of an

intermediate node, or aggregates srnaller maps.

From a cartographer's point of view, the top-down approach works from smaller scale,

larger sized objects towards larger scaie, smailer objects. The deeper down in the VMO-

tree. the more details an object cm expose. On the contrary, the bottom-up approach works

from larger scale, smailer shed objects towards smaller scale, larger objects. The higher a

node is in the VMO-tree, the more abstract it becomes.

Inserthg an existing condensed object into the VMO-tree, or aggregating smaller

condensed objects into a bigger one, is a compound operation which takes severai steps.

The principal technique for rnanaging the geometry and topolagy has k e n descnbed in

Chapter 4. The realization of the technique depends on intelligent decisions on choosing the

boundary of a partition or an aggregation. It also relies on effective communication through

the computer network if different VMO servers comected to the network are distributed at

separated geographical sites.

It is without doubt that building a distributed or federated spatial database for a region or an

enterprise based on the VMO data model is not just a technicd issue, but more an endeavor

which requires institutional, societal, and cultural change. The data model makes the

technology available. The adoption of the technology for a region-wide spatial DSS,

however, needs the cornmitment of policy makers, and managers in the public and private

sectors at strategic, operational, and user levels.

It is noted here that at the first glance the VMO-tree looks similar to some of the other trees

such as the R-tree or Cell-tree. They are essentially different in two major aspects:

Fintly, the R-tree or Ceil-tree like structures are geornetric ones. The partitionhg of the

geometric objects is the primary concem when those trees are constnicted. The VMO tree

is not only a geometric, but also a topological structure. The reason is that within each

partitioned cell of the VMO tree there implemented with an topological structure. Because

of the topological representation, the VMO tree is ready to answer topological queries and

to perform spatial analysis. While the objects in the cells of other geometnc trees are not

topologicdy organized (spatidy-unaware linked list is one cornmon data structure), they

are not ready to answer topological queries or to perform spatial analgsis. This is the very

reason to categorize them as geometric structures.

Secondly, the partition cntena and mechanism of the VMO tree is ~ i ~ c a n t l y different

from those of the geometric trees. In each subspace to be partitioned, the topological

construction and hinctions with the VMO tree makes the selection of paaitioning boundary

:'intelligent7' in that it is topologically, thematically, and semantically conscious. As a

result, the partitioning is not restncted by a ngid shape or size and produces rneaningful

objects.

5.7 Constraints of the VMO Mode1

The VMO mode1 is ccmposed of a set of properly defmed VMO objects which may be

physically distributed and are rnanaged by the VMO-tree. The VMO-tree represents a more

abstract topological strbcture which is mapped from the partition of a Euclidean space

structured with a neighbourhood relationship. Hence the VMO-tree is a directory of a

repository of integrated maps which may be operated upon by different database servers.

Each server can update the directory below its node, which makes the directory dynamic. In

order to maintain the integity of the whole database, constraints have to be applied to each

node of the tree. Whenever the directory is updated, the checking of the constraints needs to

be û-iggered.

In general database theory, constraints operate in parailel with the structures of a database

schema They can be used as guidelines for deciding the schema's structure according to

three principles: representation, nonredundency, and separation peeri et al. 19781. The

representation of a constraint needs to include the natural relationships between objects.

The constraint c m be thought of as a propem of the schema which should be true with

respect to al l such natural relationships represented in the schema Nonredundency is a

property of constraints which emphasizes that a constraint, derived fiom the structures and

other constraints already specified in a schema, should not be redundently specified. It may

be confushg to represent the same information in more than one way. Separation is

devoted to a schema in such a way that information units, as represented by constraints, are

separated and do not interfere with one other.

Based on the above guidelines, we define the following constraints for the VMO-tree

structure. Let A = (a i , az, ..., a,} be a finite set of condensed objects contained in a rnap

object. A is the parent and ai (i = 1,2, ..a) are children. These constraints state:

Constraint 1. Every node of a VMO-tree, except for the root node, has one and only one

parent. The root node corresponds to the universal map which is unbounded.

Constraint 2: The number of condensed objects contained in one rnap object corresponds

to the number of children under the node representing the map object Adding a child node

under a parent node adds a condensed object in the rnap corresponding to the parent node.

Deleting a node from the tree deletes the corresponding condensed object in the parent map

and a l i cMd nodes descendent from it.

Technically, the deletion of a node can be achieved by pasting the corresponding condensed

map back to its parent map and making the map a region. In this case, ail the immediately

descendent nodes of the source node need to be promoted one level higher and to have the

target node as their parent (Figure 5.5).

Constraiot 3: For ai, aj E A, (i # j), aio n = 0. That is, interior spaces of any two

distinct condensed child objects must be disjoint at the same level. Overlapped or partialiy

overlapped subspaces enclosed by outline images are disallowed. The non-empty

intersection of distinct member of A may only happens on the outline images.

Constraint 4: U outline(a) c outline(A). That is, the union of outline images of al1 child
a E A

maps is a subset of the outline of the parent map. The complete outline set of A is the union

of the object outline of A and U outline(a) .
LI EA

(a) A partial VMO-tree

@) The partial VMO-tree after node B merged into node A

Figure 5.5 A partial VMO-tree before and after deleting a node

5.8 Operations on the VMO Model

The VMO model is composed of a set of geometnc object classes which are topologicaily

implemented with the VMO class. The integral relationship between VMO objects and the

other spatial objects is represented by the VMO tree. The VMO tree also serves as the

directory of the federated spatial database.

Based on this understanding, operations on the VMO model can be categorized as the ones

on the VMO tree and the ones on the spatial objects addressed by each node of the tree. We

have just seen the construction operations and constraints on the VMO tree in the previous

sections. We have also discussed adding, deleting, and moving primitive spatial objects, as

well as typical GIS operations with Voronoi diagrams, in Chapter 3. What needs to be

explored in this section are additional operations and constraints particular to the

introduction of the map object class and the tree structure. These include set-theoretic

operations, spatial queries and their optimizations, and operations related to multiuser

database h c t i o n and network c~mmunications.

The set-theoretic operations typically involve two object sets which c m have either

identical or different attribute types or themes. Forma1 and detailed discussions about the

set-theoretic operations on sets of areal objects can be found in Worboys [1992a]. These

include calcuIating unions, intersections, and complements, with respect to given themes

and objects. New instances of the VMO-tree can be generated by a set operation. An

example of this calculates the intersection of two objects, each £Yom a VMO-tree instance.

A third instance of the VMO-tree can result if the calculation results in a non-empty subset

of objects.

A special care must be taken when any of the two VMO objects contains maps, i.e. holes.

Figure 5.6 illustrates a binary operation involving VMO objects A and B, while B contains a

map object presented as a hole C. The binary operation has to be perfomed fxst on A and B

and then on A and C. The final result will be the union of the two-step calculations. It is

possible to repeat this process when C again contains holes.

Figure 5.6 Binary operations involving objects containing holes

Spatial quexies can be greatly facilitated by the VMO-tree, which provides a fast search

along the edges of the tree, and the topological embedding within each spatial object, which

enables navigation and searches over components of a map object. This ability to search

objects vertically and horizontally resembles that of the B+ tree.

Both set-theoretic and spatial search operations involving multiple VMO objects cm be

distributed and executed in parallel. That is, instead of sequentially perfomiing an operation

at the entry level objects and then preceding to lower level ones with a single processor, a

quick detennination of any lower objects involved should be fired with the help of the node

structure. The operation can then be divided and executed concurrently on all sites or

processors hosting these objects. Certain optimizing criteria need to be considered

conceming the efficiency of this feature. This may involve factors such as the cost and

complexity of the operation, the size of the object set. and the cost-effect cornparison on

data transmissions through the network.

The VMO-tree manages map objects, some of which may reside in or be accessed fiom

remote sites. The object networking hinctions must ensure the data security, integrity and

concurrency controls, and dynarnic communications. The integration of database systems

technology and a network environment leads to a new class of problems and consequently

to new means to solve them. These problems and solutions are active research topics of

cornputer science. An important aspect of the problem is the need for network-wide

definition (or directory) of the location and characteristics of data objects. This definition

should include the details about how information is paaitioned and if it is replicated on

different nodes of a network. When a user fxes a query access to data, the local node must

determine where the data is located, if the data is on a remote mode, and if the user has

permission to access the data.

A client-server architecture can be designed to allow node objects of the VMO-tree to be

linked to client applications. The client-server architecture is based on the concept of

distributeci processing, with the front end (or the user application) being the client and the

back end (the database access and manipulation), the server. This facilitates setting up

enterprise-wide connectivity. The functions perfonned by the server include:

Centralized data management

Data integrity and database consistency

Database security

Concurrent operations (for multiuser access)

Centralized processing (e.g. stored procedures precompiled and stored in a database ->

encapsulated functions akin to objects)

The client is responsible for handling user-specific database access tasks, and the server for

managing shared data. The functions of a client:

Custornized user interface

Front-end processing data

Initiation of the server remote procedure c d s

Access to a database server across a network

A data dictionary pIays an important role in applications using the client-semer

architecture. A data dictionary is a manual or automatic repository, usually rnanaged by the

database, containing information about applications, databases, logical data models and

constituent objects, users and user access authorizations, and any other information usefui

for defuiing the organization and use of data within the database. It provides location

transparency for the user/developer in viewing data dispersed around the network. The

contents of an object data dictionary contains the following key components:

Class definitions

Class hierarchy

Object access authorizations

Indexes

O Server definitions (and locations)

An issue of interest is that the dictionary itself must be distrîbuted; either there are identical

copies on each semer or each server maintains a data dictionary that describes components

on that server only. W e hope these issues will be explored more deeply conceming the

clierrt-server architecture with the VMO tree, as research and development continues to

progress. The defuùtion and organization of the VMO class with a clear boundary seerns to

be a promising way of implementing distributed client-server applications.

Chapter 6

The Design of the VMO Forestry Data Management System

We propose, in this chapter, the design of a forestry data management system based on the

VMO model to handle spatial properties of the real world. For simplicity, we name the

software systeem FORMONET, meaning FORestry Map Object NETwork. The design

process is guided by an object-onented methodology, called the Object Modelling

Technique (O W [Rumbaugh et al. 199 11. We note here that the result of the design in this

chapter will not be a complete application system - more issues other than technological

ones must be addressed and resolved for that. Instead, the design is aimed at an ou the of

the spatial data management component, especidy the linkage between system components

and the VMO class. Three closely inter-related models (object, dynarnic, and function) will

be sketched. G s e l l methods of major classes will be identified and described, with the

purpose of demonstrating the roles of object classes in the system. In the detail design and

implementation phases, a geographical entity must be associated with a spatial object in

order to complete the database of the system. Given the VMO model, most geographical

entities can be associated with types of spatial objects. The design c m be used for

understanding and communication between software requesters and developers, and as a

framework for detail design and implementation.

While the design in this chapter is concentrated on the system architecture in which the

VMO spatial object mode1 is used, other works conducted in the Centre for Research in

Geomatics at Laval University have identified more specificaliy forestry entities and

relationships. Doucet [1990] described the development of a spatially referenced

information prototype system for forestry data management. The design in this project is

currentiy evolving into an operational system, named Système d'Aménagement Forestier

Monnatisé 2 Référence Spatiale (SAFIRS) (cf. Szarmes [1997]). Bédard et al. [1993]

proposed a prototype of spatio-temporal forestry database where a forestry data dictionary is

compiled. Theoretical solutions to the management of changes in forestry objects, using a

commercial GIS (MGE-Dynamo). were discussed (Bédard [1993]). Felten [1998] reported

an experiment under the MGE environment to integrate time into forestry maps, based on

real forestry data fÎom Montmorency Forest which is located at the north of Quebec city. It

would be beneficial to entail the attributes of spatial object classes proposed in this chapter,

with the descriptions about forestry seen in these previous results.

Foliowing the guideline of the 0MT method, the fxst analysis task is to formulate the

problem statement. The statement speculates on what needs to be done, not how this can be

done. Based on the discussion in Chapter 1, the forestry domain knowledge, and current

practice in the forestry industry and in govenunent departments, the statement for

developing a software system FORMONET can be documented as foilows:

FORMONET is a computerized system to support forestry data modelling

and management. The system must be maintained through a dedicated

network of hardware, software, and cultural componentç (ref. Ch. 1). There

are three kinds of management mandates which involve managers at the

strategic, managerial, and operational levelç corresponding to geographical

entities at national, regional, and temtorial geographical scales. The fully

functional system needs to support the gathering and analyzing of forestry

domain information from the national office in order to faditate policy-

making and to support strategic planning concerning sustainable forestry.

The regional offices in turn prepare timely forestry information which is

updated and which bears on natural and man-made processes o c h g

throughout the territory. A territory iç composed of forest stands, which are

the atomic u ~ t s for harvesting, planting, and silvicultural operations.

The core of the system must store and manage digital maps at various scales

over a set of geographically diverse sites. The sources of data include existing

paper maps, airborne photographs, remotely sensed images, GPS and other

field sunrey records, and any documents describing or relevant to these data.

AU data must be digitized and stored in the geo-database of the system

(allowing diffeïmt formats). Data initialization can be done at authorized

sites. These sites are consequently owners and hostç of the distributed data

within a federated database. The host is responsible for maïntaining,

updating, and accessing information upon request. The practice of quality

checking and calibration for the data on each site must be performed as a

result of agreement between responsible members of the system. For spatial

objects contained in a map, an integrated topology and geometry needs to be

maintained at progressively larger scales for smaller regions. Aspatial data ïs

associated with spatial data. In the case that the detailed data of a partidar

site is temporally unavailable, the outline shape and general information

about the corresponding spatial region needs to be present at a higher level.

The system needs to support different types of accesses to the database for

system developers, application programmers, and occasional users through

various interfaces. The access to the information system should be controlled

through the assignment of privileges to use the system. A dedicated graphie

user interface should be provided for each public outlet of the system. The

interface accepts and launches user queries, analysis, and simulations, and

preçents results retumed by the system. Duplicated storage of data is not

encouraged, for the sake of data consistency. Some users can have a copy of a

part of the data retrieved from the system for research and analysis. Whether

the modified information of the copy needs to be incorporated into the

system is the decision of managers at appropriate levels of the system.

In the following, we include an example concemuig data resources and user required

services when considering setting up a Forestry Geographic Information System &amont

19881 in the province of Manitoba, Canada Conditions may Vary from project to project

and site to site. The example illustrated some rather common features of a forestry

information system in real world.

The input information of the system cornes fiom the following maps:

Forest Resource Inventory Maps

Forest Wildlife Maps

Natural Disaster Maps

- Wind, drought, flood

Forest Insect and Disease Maps

Silviculture Activity Maps

Timber Management Activity Maps

Soi1 Maps

Land and Resource Use Maps

Utility Comdor Maps

- Proposed and/or actual

Forest Capability Canada Land Inventory Map

Satellite Imagery

- Landsat and variations

User required services from the system (partial):

Data Manipulation

- Analysis of effect of management decisions

- Area analysis

- Buffer zone analysis

- Wildlife loss analysis

- Overlay analysis (125,000 polygons at a time)

Updating

- Review map and attribute files

- Review status and ownership boundaries

- Enter new features as they are constmcted

- Wildlife area and loss cdculation and revision of original forest cover data

Thematic Mapping

- Colour code and shading code options to iden- selected forest stand attributes

- Determine a new colour or shading code based on results of polygon overlay

Site Specific Information

- Integration of town street maps into the database where specific items at large scale

(1500 - 1:2,ûûû) are to be positioned

S ystem Functions

- Polygonization - areas connected to form polygons

- Merging and dropping h e s

- Subdivision of polygons

- Browsing

- Define comdors dong straight or convoluted lines

- Complex polygons

- Windowing

- Scale changes - full range performed in cornputers

- Projections - to increasing grapnic capabiiities for iarge-area mapping

The example shows that forestry data may come from a variety of sources and disciplines,

with differing formats, types, and scales. The services of a forestry GIS also fails in a large

range, fkom manipulating individual forestry objects to operations on whole maps with

large volumes of polygons. Sorne of the required services are dynamic, such as merging and

dropping lines and subdividing polygons, forming polygons from comecting areas, and

inseaing new features as they become exist. There are ako some technically challenging

services, such as changing the scales which requires automated mapping generalization

capabilities, and revising original forest data coverage which requires temporal rnodelling,

manipulation, and queries. The requirements shown in this real world example demonstrate

a close correspondence to the analysis presented in Chapter 1.

6.2 The Object Model

Based on the problem statement, major object classes are identified and their relationships

are presented as the object model shown in Figure 6.1. The diagram uses the OMT

connotations to denote object classes and their associations. The class USER represents a

collection of users of the systern, which can be managers, developers, decision makers, or

casual information seekers. GEO-DATABASE class is the data store, which contains

relevant geo-objects according to a forestry inventory. USERS can access GEO-

DATABASE through interfaces of the data store. Closely related to the geo-object database

is the WORKSPACE class. The objects in this class constitute part of the geo-objects in the

geo-object store. The spatial objects loaded in WORKSPACE are implemented as VMO

objects. FORESTRY PROJECT is the class that contains tools for users to specify, set up,

and to manage and manipulate an application project. Besides accessing geo-objects fiom

the geo-database, located through WORKSPACE, a user works on a forestry project c m

also coliect and integrate any related documents and multimedia information for the project.

1

FORESTRY PROJECT work_on

Figure 6.1 The object model for FORMONET system

USER

I I

locate use

WORKSPACE GEO-DATABASE

For the USER class, attributes may include name, address, and account information which

properly identifies the role and access privilege of a user and the nature of using the

systems. When integrated with a corporation information system, the comection between

the USER class and the corporate database would have to be established.

The GEO-DATABASE itself forms a subsystem and provides rather independent functions.

The subsystem c m be decomposed into a few functional components, such as a database

modelling tool, a component taking care of storing and accessing geo-objects, and a graphic

user interface. The database modelling tool helps users to conceptualise and class@ geo-

entities and their relationships. A good example of such a modelling facility is Modul-R, a

CASE tool based on an E/R mode1 and used to formalise geo-spatial phenomena in a

database and to generate data dictionary for it [Caron 199 1, Caron and Bédard 19931. The

geo-object storing and accessing component c m be a commercial database such as Access,

or Oracle. The database schema cornes fkom the result of the modelling tool. It is noted that

some relational databases nowadays are extended to accommodate spatial objects. An

example is the Spatial Cartridge, employed by 0rac le8~ . Figure 6.2 illustrates partial

forestry geo-objects for the GEO-DATABASE. Note that each geo-object class has in its

attribute list an Id of the correspondhg VMO object.

GEO-OB JECT

Hydo-Pole
Id
Height
Year-built
VMO-Pointid

Figure 6.2 Partial Fores try Geo-Objects

FORESTRY PROJECT is the component that helps users to set up, manage, and operate on

forestry projects. Project name, purpose, developers, and history are among important

attributes associated with the class. Included with the class are metadata describing

locations and nature of data resources and auxiliary documents related to a project.

QUERY, ANALYSIS, and SIMULATION are functional components of the class, which

work through the WORKSPACE class. For each of these functions, some templates can be

constructed through which instruction statements from users wili be accepted. The

functions will then vdidate and optimize the statements and parameters. Corresponding

actions on the WORKSPACE and GEO-DATABASE will be triggered. Results are sent

back to FORESTRY PROJECT and presented via users desired reporting templates. One of

the templates for QUERY couid be a dialog box for composing SQL statements. Other

templates featuring pictonal languages can also be developed.

The class WORKSPACE is the central concem of this chapter, and is directly related to the

VMO data model developed in this thesis. The primazy role of the class provides users

visual platform and tools to design, edit, manipulate, query and analyse spatially referenced

geo-objects. The visual plaîform contains a graphic window displaying those interested geo-

objects. The graphic representation of geo-objects is calied a map in common sense. An

instance of the class is the workspace s p e ~ ~ c a l l y designed for an instance of FORESTRY

PROIECT. A workspace may involve one or many rnaps covering dif5erent geographical

areas or themes. Most important attributes of the WORKSPACE class include the narne of

a workspace, the number, names, and locations of maps, and the layout or settings of maps

preserved from the last login.

The class WORKSPACE can be directly associated with the VMO Node class developed in

Chapters 4 and 5. The dependency and the spatial aspect of the VMO object model is

shown in Figure 6.3. Note that the arrow from Geometry to Topology represents a dynamic

process to construct topology fkom geometric objects. Dynamic modelling will be discussed

in the next section.

correspond

-

ColorRef
VMONodeId

r -
TOPOLOGY GEOMETRY

Find-Adj-Obj embed , : ~ t ~ c - ~ . r e a
Find-Containment Caic-Length
Find-Connectivity

consist-of P
ColorRef
LineId

I I

POLYLINE LINE LiNE-SEG POINT
Poly Iineid LineId LineSegId PointId
LineId CoIorRef PointId X, y

LineSegid

Figure 6.3 Dependency between WORKSPACE and the VMO mode1

In Figure 6.3, the WORKSPACE is represented as a specialised VMO NODE which further

refers to VMO class. One specialisation adds graphic object manipulation tools in the visual

platform of WORKSPACE. A VMO object is implemented with geometry and topology,

which enables the VMO object to provide topological quenes and spatial analysis. The

VMO presents a seamiess accessibility to geo-objects, whether they corne from a single or

multiple geo-databases. Recent software technology such as COM (Common Object

Model), DCOM (Distributeci COM-1, anu ÛLE i3S for ÛLkn jûniine Aiaij6ca.l

Processing) ensures this capability.

6.3 The Dynamic Model

The dynamic mode1 shows the time-dependent behaviour of the system and the objects in it

[Rumbaugh et al. 1991, pp. 1691. An interactive system or object acts upon events. A

contemporary GIS necessarily involves human-computer interaction. In this context, any

actions generated by users and devices send messages to the system which are interpreted as

events. The objectives of the dynamic modelling are therefore to fmd out possible events

associated with the components of the system and to design proper responses for them.

Note that some responses fiom a component may incur events to other inter-related

components within the system. The flow of events is a scenario which describes things

happening between objects as a result of extemal stimuli murnbaugh et al. 199 1, pp. 1731.

For a complex system such as FORMONET, there are many scenarios for various

application tasks. These include tasks for construcMg and populating a geo-database, for

preparing and performing spatial analysis, the result of which may or may not become

permanent objects in the database, for various quenes which requise searching through the

database and which nevertheless do not m o d e the status of the database, etc. It should be

noted that most of these tasks generate events requiring responses fÎom the geo-database

management system and that the fulfilment of the triggered tasks relies on the intemal

processes enabled by the database system. The intemal processes interact with objects in the

database and are transparent to the user. Therefore, the interactions at the surface level

between the system and user involve only a few object classes. Based on the object mode1

developed in the previous section, these objects typically include USER, FORESTRY

PROIECT, WORKSPACE, and GEO-DATABASE. This implies that a general scenario

involving these objects can be generated (Figure 6.4).

Figure 6.4 illustrates an event flow diagram from USER to GEO-DATABASE, after a

FORMONET GUI interface is created. The classes Window and Message loop are objects

provided by the operating system under which the application is executed. They are

included in the diagram to show the acnial process by which application events are

generated. A USER gives instructions through manipulating system devices on the GUI

interface, which generates events. These events are fxst received by the operating system

which then sen& messages to a Message loop associated with the application instance-

Messages are then taken one at a t h e (for a single processor application) and dispatched to

the message handler embedded within the GUI interface. Window class objects

automatically handle a set of predefined messages whose execution is taken care of by

methods implemented within a Window object. Customized messages have to be handled

by an Application whose major components are shown w i t h the dashed-line rectangle. In

the diagrarn, it is shown that FORESTRY PROJECT receives customized messages and

generates events to occur within a WORKSPACE. The WORKSPACE further invokes a

VMO-semer which could be bounded by the WORKSPACE. The VMO-semer takes care

of comectivity issues and parses events with the DDL or the DML database languages to be

deveioped with the spatial database management system.

USER Window
(operathg systerns)

GEO-DATABA VMO-server

WORKSPACE

1

Figure 6.4 A general event flow diagram for FOECMONET

generate senà messages
manipulate
devices events 1

gemmre ,
events

I

& iiver cusrorn)
messages

invoke

The general scenario for the sequence of events is by no means complete. For example, for

an event sender, an immediate response from the event receiver (occasionally the sender

itself) is required before any subsequent event is sent. The event flow diagram nevertheless

demonstrates the main path central to the system.

input dispatch
immcrions Messages

FORESTRY
PROJECT

More detailed design of the dynarnic mode1 should include an event trace diagrarn for each

particula. scenario, in which the the-dependent order of events between objects is

scheduled according to results of a preceding event. State diagram for each object class

should then be worked out which entai1 the dispatch of events and the control of an event

flow by a state with more than one exit transition. A state diagram shows the dynamic

Message loop of the
programming environment

7 Application

-

-

behaviour of an object at a particular state. When an event occurs, the next state of an

object depends on the curent state as weil as the event; a change of state caused by an event

is a transition. Therefore a state diagram is a graph whose nodes are states and whose edges

are transitions labelled by event names Eumbaugh et al. 1991, pp. 173-1791. The OMT

technique provides various basic and advanced constmcts for the design, generalization,

and control of event fiow and state d iagrm. W e will elaborate only one state diagram as

an example and leave the rest for future development and implementation.

We note here that customized dynamic events can correspond to evolution of an object.

Catching, processing, and saving these events contribute to the temporality of the database.

It has been discussed in Chapter 3 that the underlying topological and geometrîc operations

of the VMO model are associated with a log f i e which preserves the history of a map at the

scale of points and line segments. We Uustrate here how a node of a dynarnic model can be

refined into a state diagram within a workspace, which handles events for the creation,

update, and destruction of higher level objects such as a region or a map.

Figure 6.5 shows a scenario for an interactive operation "close polygon" and the

corresponding message passing section in a high-level dynarnic model. The event will be

handIed by the VMO-server associated with the WORKSPACE. The state diagram for

VMO-server may be modeiied as that shown in Figure 6.6 which is a simplified version of

the actuai impiementation.

The "close polygon"
opemion

Figure 6.5 A "close polygon" dynamic event and a section of the dynamic model

DML: Save histocy' >O
do: update log-file

f DML: join NO\ sfa,mde
O bjec ts

do: ver* start-node

A \ (0IDl.xl .yl) 1
srart-node end-no&

hvalid end-nade
Ürvalid

(OIDI= nul[) (0r02= nuil)
OK

v
operation succeed

Figure 6.6 The state diagram for the VMO-server in the WORKSPACE

to handle the "close polygon" event

6.4 The Functional Model

Â ~ c t i o n a i modei describes the computations withîn a system, Uirough the use of muitipie

data flow diagram mumbaugh et al. 1991, pp. 1241. A data flow diagrarn is a graph

consisting of processes as nodes, and data flows as edges. It also attaches actor objects that

produce and consume data, and data store objects that store data passively. Each data flow

diagram shows the flow of values from extemal inputs, through operations and intemal data

stores, to extemal outputs. A data Bow diagrarn does not generally show control

information, such as the time at which processes are executed or decisions arnong

alternative data paths; this information belongs to the state diagrarns in the dynamic model.

A data flow diagram does not show the organization of values into objects; this information

belongs to the object model [Rumbaugh et al. 199 1, pp. 124, 180-18 11.

A process traasforms data values. 1t may be a high-level functional tool set or an indivisible

function. The lowest-level processes are pure functions without side effects mumbaugh et

al. 1991, pp. 124-1321. Typical pure hnctions include the sum of two numbers, the

recording of a transaction into a log, and the drawing of a line through a List of points. A

complex system needs to generalize reaiiy high- level processes to make data

hansformations clear. An entire data flow graph is a high-level process. Law-level

processes need to be worked out as the design rnoves more towards implementation. For

example, calculating the tree volume for a territory is not a pure functional process. It

involves searching individual stands covered in the territory and calculating areas for the

stands. A process may have side effects if it contains non-functional components, such as

data stores or externai objects. "The hnctional model does not uniquely specify the results

of a process with side effects. It only indicates the possible functional paths without

showing which path will acniaily occur" [Rumbaugh et al. 199 1, pp. 1251.

As with the dynamic model, we provide in this section a general functional model for

FORMONET Figure 6.7). The idea of the functional model is to demonstrate data flows

transformed through major processes for the system. It is assumed that a digital map of the

working area, in addition to other interface templates, is required. The digital map displays

itself on a graphics window as users interact with the system to achieve goals.

C FORESTRY
GUI Interface PROJECT

menus cartographie
location project narne

menu
selected

-.

:ctS * - - -7-- menus\ 1 digital map

1 Worksp

Result buffer < updates

/

Geo-tool

Figure 6.7 The functiond mode1 for FORMONET

>

Major processes shown in the diagram include the usual functionality of the system.

GEO-
DATABASE

"Select" aliows users to choose a project to work with. Menus are provided by the GUI

interface. The inputs of the process are rnouse positions (or information fIom using other

input devices). The output of the process is a particular menu selected. The "Open" process

Lists all project mes from a data store from which uses pick up one project to open. This

process also needs to locate a workspace and geo-objects contained in a project and

possibly to connect a geo-database to use other geo-servers. "Open" then outputs project

data-fdes for display and manipulation. The "Display" process obtains graphical data to

draw digital maps with proper symbols, scales, and position. "Manipulate" then takes place,

with the help of the graphics and al1 available tools. This process can launch query,

analysis, and simulation processes. The input of cbManipuIate" can also corne from the

Function class of the Forestry application which may concem factors such as growth, cut,

and plant of trees, as well as natural processes such as wind and fues. The output of

b'Manipulatey' either updates the graphics display or is sent to "Presenty'. The result buffer

stores any results from the "Present" process which regulates presentation formats. The

results c m be delivered in any meaningful manner.

AU processes in Figure 6.7 are high-level ones which need to be expanded. For example,

the display process m g be broken down into generalizing, centring, clipping, etc. which

require the knowledge of window size, location, and other relevant information. The most

complex one is perhaps the "Manipulate" process which may be fuaher specified with any

lower processes that help users to achieve goals. Most object classes attached to the data

flow diagram corne fkom the object model. Sorne of the objects are treated as data stores for

the reason that only trivial operations are expected from them. Rrhich object cm be attached

to which processor should be based on the class accessibility provided by the object model.

The Result buffer was not in the object model. It represents a temporary object allocated by

the system. Its object structure should be defined based on the possible types of results.

6.5 The Software Architecture

While the object, dynamic, and functional models concentrate on individual aspect of a

system, the sofMtare systems architecture describes how the whole system needs to be

decomposed into software components. The architecture concems aggregating of objects

with cornmon functionality into subsystems, defining of communication topology between

the subsystems, and their inter-processing interfaces. The decision about grouping classes

into a component needs to involve the following factors: 1) There are classes close to users

and classes close to hardware and hardware-dependent software. The system should be

structured such that tasks can be fulfilled without users worrying too much about the

intemal complexity close to the machine level. Intermediate classes between users and

machine dependent facilities should be formed if necessary. 2) The construction of the

software architecture needs to observe trade-offs between flexibility and effkiency. A

flexible component is hardware independent and may be used in various programming

environments. It c m dso survive future changes or extensions to its intemal structure and

hnctionality. However, flexibility is usually achieved at the cost of performance because

additional software layers have to be used to hide hardware dependent instructions and to

support modularity. This implies overheads when executing instructions from higher level

layers to lower ones. 3) The decornposition of a complex system rnay produce largely, but

not entirely, independent components. This means that some software components may not

be fùnctioning without the presence of other supportive ones.

The software industrial trend is moving toward client-semer architectures with service

providers wrapped as software components whose interfaces are well-designed to allow

Uiformed access with different privileges. Modification to the intemal States and structures

of components are restricted. A component is often a subclass of some superclass.

Therefore most common services designed for the superclass can be directly inhented or

customized. This encourages reuse of code and contributes to shorter development periods.

The software systems architecture for FORMONET is illustrated in Figure 6.8. It follows

the principle of a layered systems design [Rumbaugh et al. 199 1, pp. 200-20 11. Ail software

components are organized into tlxee layers. The top layer is the user layer which is

composed of a GUI interface supported by a set of virtual GIS, SDSS, and application

modelling tools. Users can be responsible for customizing the appearance of the interface,

using publicly available components and tools. The second layer is exposed to application

developers who are domain experts and have knowledge about the functions and interfaces

of the VMO-server. The components at this layer provide functionality support to the GUI

interface. The services that require database and expert systems support are providea DY rhe

VMO-semer. The bottom layer is the most important one. which develops the VMO-

workspace engine, the management of metadata about the federated database, and the

expert systems engine. Developing internai services is the responsibility of systems

designers and developers. Intemal services are linked to the VMO-semer which M e r

exports them to the layer immediately above it. The VMO-semer provides a level of

abstraction over location and implementation of the components below it. Through the

VMO-semer, application programmers obtain fimctional support from the databases using

standard interfaces. How and where this support is provided become transparent.

___=----

_--- _---- . .
*.--

- . . , _--- layer user 1 1 -= !====-- .--. __-- - -
GUI interface _----

projeci
designkase

tools

fde management system

operating systernfhardware

VMO-semer 1 Application
developer

layer

WerY
analysis

simulation

Figure 6.8 The software systems architecture for FORMONET

expert
systems
engine

VMO-
S ys tem workspace

designer engine

In summary, this chapter foliows the 0MT method to provide a general design of the

foresûy data management software system (FORMONET) based on the VMO model. The

OMT spans analysis, systems design, and object design phases. The central content of the

OMT methodology is emphasized on the production of object, dynamic, and functional

models. The object mode1 of the FORMONET is discussed in view of the problem

statement and domain knowledge. Relevant classes are extracted through the analysis of the

problem, together with the associations arnong them. One of the associations establishes the

linkage between the WORKSPACE class and the VMO classes. In addition to diagrams

showing structures of objects, descriptions and the data dictionary are al l important part of

the object model. The dynamic mode1 aims to capture events stimulated extemally and

actions of objects in response to messages. Instead of entailing individual scenarios of

events and interactions, this chapter presents a general event flow diagram for

FORMONET, which encompasses major classes and accommodates most types of user

stimulated events. An example of the state diagrams for the VMO semer interacting an

event is also given in this chapter. The functional model consists of diagrams showing data

presentation
system

layer

federated
database

management

inputl
edit

s ystem

values transfomiing through processes. As with the dynamic model, a general functional

model for FORMONET is presented in this chapter. The hinctional model involves several

major processors each of them need to be decomposed. Nevertheless, the fimctionai model

demonstrates the accessibility of data stores and actors modelied in the class andysis. Given

software components covered in the three models, a three-layer software architecture is

presented at the end of the chapter, with the expectation that the system is flexible to the

addition of new components and to modifications. With this architecture, developers at

each layer c m concentrate on the problems more relevant to that layer.

6.6 Relationship to the Research Objectives

In closing this chapter, it is desirable to examine how the research objectives are achieved

through the operation of the prototype system. In other words, we need to question if the

FORMONET GIS, once implemented, will possess the advanced features specified in

Chapter 1.

The fust feanire concems capabilities for the system to support spatial objects, to ailow

cartographic operations and topological analysis over the spatial objects. This feature is

ensured through the inclusion of the GEO-DATABASE and especially, the WORKSPACE
-1-crac

C;nnn th- W(~TZTCPAPK ciinnnrtc W Q je^^, q ~ l n g i c a ' aaalysis can be L1CW3b3- V U I b w UAW v v v a u r u a & r - u urryy-A-

performed through the Voronoi construction. Cartographic operations such as colouring,

applying symbols to, and labelling objects are trivial but need to be implemented. The main

restriction to cartographic capabilities is the changing of projections of VMO objects. It

appears necessary to reconsûuct the Voronoi diagram after objects are re-projected.

Spatial concepts, the second feature, are supported through the provision of spatial data

types in Chapter 5. The VMO model distinguishes two types of areal objects: maps and

regions. These areal objects can be irregular in shape. Kierarchical spatial structures are

recursively entailed through the containing of other maps. With the topological

implementation, spatial searches and analysis can be done intelligently - by always knowing

neighbours. In the scenario of foresw application, the rnap object can be used to establish

management zones which aUow team work. Repetitive work over a whole larger area can

be avoided. At the operational level, maps can be used to combine forest stands together to

form blocks based on which analyses are applied.

With the implementation of the VMO components for distribution, a forest management

project can use the WORKSPACE to collect maps residing on different servers. Maps can

be constmcted and maintained by responsible teams working on management zones. This

feature not oniy allows the whole project to be operated on updated data, but fiees higher

level managers from worrying technical details involved in individual maps so that they can

concentrate on more important work. On the other hand, a VMO rnap rnay be used by

multiple projects and usen. The theoretical base of the VMO mode1 and the current

software technology demonstrate the feasibility of the clienilserver architecture for the

VMO COM objects. Further design and implementation are needed to achieve the goal.

The dynamic feature of the FORMONET, through its comection to VMO servers, allows

maps to be updated in short periods, and any updates can be seen by users (clients) of the

data components. During the maintenance, the map semer will be temporarily blocked,

clients can however continue to work on other area of the container map.

As is discussed in Chapters 4 and 5, the VMO wraps geometry and topology of spatial data,

and can be provided with interfaces to access GIS functions over each data type. The

implementation of functions can be hidden from users. This feature ensures the reusability

of the software code and compatibility of the software components versioning through time.

The requirement for this feature is that the VMO component must be designed following

the COM specification.

Finally, the incremental process of the VMO topological structure makes it possible to track

down the rnap history. The tracking process can also be accompanied by topological queries

at any point of time, hence topological history of the evolving objects is also tractable. A

scenario of applications of this feature fmds the auto-correlation between the yield of forest

product and silvicdture operations on forest stands over a long time frame. As was pointed

out in 3.7, the full temporality of the database using the VMO can only be realized after

more structures are designed for cornplex objects.

With the above, we wodd Say that most of the research objectives are attainable through

the application of the VMO model to forestry. The implementation of the dynamic Voronoi

constniction, spatial searches and GIS operations, the forwardhackward reconstruction of

the Voronoi maps, and the partitioning/pasting of the Voronoi diagrams in a prototype

system should support this conclusion. What left to be done, however, are the

implementation of the VMO model with the Common Object Mode1 (COM) specification

and architecture, and the deployment of the VMO COM objects with the FORMONET

application design.

Chapter 7

Other Applications of the VMO Mode1

7.1 Introduction

Most GIS projects involve large quantities of complex spatial data With the development

of data acquisition techniques, the accumulation of widely dispersed digital data resources,

and the improvement of telecommunication technology, the availability of GIS data has

steadily increased compared with some years ago. Accordingly, the worry about the initiai

cost of data collection has been reduced while the demands becorne more acute as to how to

get data into GIS applications so as to best represent reality quickly. There are severai

problems which are worth noting for future GIS data modelling and development:

Rapid prototyping. By rapid prototyping is meant the ability for GIS application developers

to formulate and test their initial solutions to application problems at an early stage of the

software life-cycle. This requires software engineering techniques and a visual

programming environment to specify object, dynamic, and functional models of the

problem without fust considering the detailed implementaîion. The purpose of prototyping

is to make sure that ail componenis arc riecessary and fuactiou as an inîegiiîed w b k . h

ninning a prototyped system many problems may emerge and be treated at early stages,

instead of k i n g found only &er large amounts of effort have k e n spent. Rapid

prototyping in GIS applications would be enhanced if the required spatial data types and

operations are modelled and wrapped as components which are readily included into

problem specincations.

Dynamiring. Dynamizing refers to the ability to update a modelled spatial database when

new data become available. This capability is very useful in whatever area when dynamic

changes to spatial configurations are observed and need to be modelled and analysed

promptly. Besides forestry applications, which motivated the research in this thesis,

telecommunication and route navigation applications have emerged favouring this feature.

The transmitting of signals for cellular telecommunication and way-fmding in automobiles

are aEected largely by urban dynamic environment [e.g. Lee 1995 pp.103-1561. Modelling

of these changes must be realized within a realistic tirne-frame.

Parallel processing. Cornputhg spatial problems in paralle1 presents a futuristic attraction

to GIS applications which hande very large quantities of data and which require real-ùme

responses. Modelling forest fires, digital terrains, and forest watersheds belongs to this kind

of applications. In order to support parallel processing, a large spatial problem has to be

decomposed into subproolems, which presents a key challenge to workers of geographical

information systems. Parallekation has not been considered as of priority in the major

Stream of GIS development today. The author feels this situation will be changed as

computers with multiprocessors become affordable, as application needs become more

acute, and of course, as cornpetition of processing power in GIS industry becomes reality.

Autornated map generalization. Automated rnap generalization is a longstanding problem

in GIS development which was traditionally related only to cartographic representation of

rnap objects. In reality, cartographic generalization alone has been very difficult. The

problems in traditional rnap generalization include: most algorithms are applied in isolation

to individual objects; localized neighbourhood relationships are not included, which often

raises errors and conflicts; the results are unfavourably sensitive to the changes of scaling

factors; the resulting rnap is fxed on a uniform scale; and data certainty information is not

usudy utilized and therefore the data uncertainty of a resulting rnap is left uncontroiled.

Because of these problems, recent work on rnap generalization seeks integrated solutions

which encompass ail aspects of GIS from data modelling to the use of GIS products [Mark

199 1; Müller et al. 1995; Weibel 1995; Joao 19953.

Cognitive process. An increasingly important problem with GIS development and

applications, as with other computerized systems, is how much human intelligence can be

artifcially incorporated into a system. This may includes allowing data modelling

processes to consider mental models of space; understanding and mimicking cognitive

processes in a problem solving environment; modelling and updating incomplete domain

knowledge; presenting easy-to-understand results; and communicating with users using

semanticaily meaningful dialogues [Head 1984, Hayes-Roth, 1985; Eastman 1985; Blades

and Spencer 1986; Moulin 1990; Edwards 1991; Kuhn 19961.

The dynamic VMO model is potentially usehl for the fmt two problems Listed above. The

main supporting argument lies in the very modularity of objects. That is, every container

object is equipped with topology and geometry about its components, and dynamic

methods to maîntain these properties. These object modules can be wrapped nahirally as

classes of components to be used in an application prograrnrning environment. Including a

VMO object is as simple as including a dialogue box. It is possible to allow a map object to

be modified at either design or nui time. During designing and running an application,

detailed spatial components and their attributes can be filled. Application designers do not

have to worry about implementing algorithms to manipulate these objects and to obtain

values derived from spatial properties. This feature, that combines dynamics and

modularity of spatial objects, makes it substantially different from traditional ways of

handihg spatial data.

The VMO mode1 may also be appropnate for tackling the hard problems such as map

generalization, and futuristic problems such as pardel processing and embedding

"intelligence" into objects to allow cognitive treatment of spatial applications. In the rest of

this chapter, we will first look into problerns with parallelizing spatial processes and outline

the solution using the VMO model. The integrated approach to map generalization is then

presented, which includes a preliminary attempt to incorporate an intelligent map agent to

oversee the map generalization and map use processes. These are not completed

applications, but they suggest funire directions.

7.2 Paralle1 Processing of Spatial Problems

Paralle1 processing means to compute tasks in parailel, in contrast to processing instructions

in series with the von Neumann architecture. The hardware requirement must include a

computer with more than one processor. The number of processors in processor mays

varies dramatically. A coarse-grained parael computer can have between two and several

hundred processors, while a fine-grained one contains anywhere between several hundred

and many thousands of small processors wower 19921. Multiprocessor architectures also

fall into two extremes, the share-everything and share-nothing architectures [OZSU and

Valduriez f 99 11.

In a share-everything architecture (Figure 7.1), any processor has access to any main

memory component or disk unit through a fast interconnection. Since every single access to

a data item requires access to the cornmon interconnect, such architectures may suffer from

a communication bottleneck caused by contention for the interconnection. One way to

solve the problem is to have a limited nurnber of powerful processors. In the context of

database management, meta-information (e.g. the directories to data and the data

dictionary) and control information (e.g. the lock table in concurrent access control) can be

shared by al1 processors.

. 1 Fast Interconnection 1 ...

Figure 7.1 S hue-everythng architecture (after 0zsu and Valduriez [199 11)

In a share-nothing architecture (Figure 7.2), each processor has exclusive access to one or

more memory components and one or more disk units. A node with this architecture

includes a processor, a local cache memory, and a disk unit on which resides a local

database. Diskless nodes rnay be used to interface with application servers or to process

intermediate computation in parailel. The term share-nothing refers to the fact that there is

no sharing of main memory or disks by the nodes. The only shared resource is the

interconnection, with which nodes c m exchange messages. This architecture can be viewed

as a particular implementation of a disûibuted database system. The main idea is that a

powerfd cornputer may be built out of several srnaller and less powerful ones. One

similarity with the distributed database approach is that each node can be managed by the

same local system. Therefore, each node must implement solutions to the global data

directory, distributed data defuütion and control, distributed query processing, and

distributed transaction management. However, the major difference with a distributed

database system is that a node of the multiprocessor is not a site at which a user can nui an

application program. Application programs run typically on an application semer and

interface the multiprocessor system through a specific communication channel.

Fast Intercomection

Figure 7.2 Share-nothing architecture (after 0zsu and Valduriez [199 11

The share-nothing architecture is more able to achieve two important objectives:

performance and extensibility. Performance improvement is obtained by using two

complementary solutions. First, data shodd be carefdly fiagmented across many nodes so

that paraüelism is maximised when processing a distributed query. Second, distributed data

management should be efficiently supported by a distributed database operating system.

The main difficulties are the partitionhg of the data so that most of the queries get

processed in parallel, and the development of efficient paralle1 aigorithms for performing

database operations. Extensibfity is the ability to smoothly increment the growth of the

system by adding new nodes. A share-nothing architecture is unifoxm and thus extensible.

Furthemore, the sarne architecture and same system can be used for a large range of

database sizes-

Declustering and assigning data and operations to processors are major concerns in

designing algorithms for parallel processing. This includes determining the size of clusters

to each processor in order to obtain optimized performance. In the context of spatial

applications, it is often the case that operations nui by one processor needs to get

information passed fiom processors handling its spatial neighbours. Performance of paralle1

processing is largely dependent on whether neighbouring processors (in multi-dimensional

processor arrays) correspond to neighbouring spatial clusters, as al l messages must compete

for the right-of-way through common colxununication channels.

In view of the structure of the VMO model, it naturally favours the share-nothing

architecture. The data declustering has been taken care of by the partitionhg technique.

One imrnediately thinks of assigning each map object to one processor. The topological

structure embedded in the map object c m help to preserve the processor-object

neighbourhood relationships. Two possible problems with this database onented partition

based on the natural spatial configuration are: 1) a processor may not be large enough to

handle one map object; 2) unbdanced assignment may result, which contributes to either

very busy or idle processors. More research is needed on this respect of the problem.

7.3 Automated Map Generalization

This section presents a system approach to tackle problems involved in automated map

generalization. The objectives are to combine database generalization and dynamic object

generalization capabilities in the system, and to couple a map agent on top of a map object

which constmcts user maps for navigating, performs tasks on behalf of, and communicates

with, the users. The object classes are topologically and geometrically stntctured with the

dynamic VMO-tree. This approach is based on a popuiar consensus that automated rnap

generalization is actudy part of a fiindamental problem in GIS development, and a

satisfactory solution cannot be achieved without an integrated consideration of database

modelling, artificial intelligence methods, individual object generalization algorithms, and

object-oriented technology Müller et al. 1995; Weibel 1995; Buttenfield 199 1, 1995;

Keller 1995; Nyerges 1991; Mark 199 11.

7.3.1 The Schematic View of Automated Map Generalization

Automated map generalization is a complex decision-making process which must be

steered by goals and d e s fiom the geographical application domain, so that the generalized

representation conveys knowledge consistent with reality. Taking generalized map

production as an integral part of a GIS, it can be used as early as during the geo-database

modelling, al l the way the interactive process of querying and presenting information in a

problem-solving environment where a map is intelligently used (Figure 7.3).

7.3.2 Database Generalization

Database generalization utilises data modelling formalisms to capture the map structure of

applications at a given point of t h e . The formalism describing geometnc objects and their

relationships has been discussed in previous chaptes. The construction of the VMO

structure reflects an information abstraction process in which higher level objects represent

outline views of geographic spaces and details can be examined in lower level objects with

successively finer resolutions (Figure 7 -4).

A -

Geoera~hical 7 Map agent 1

Figure 7.3 A schematic view of generalization

Y * /, knowledge

Figure 7.4 Hierarchical generalization of VMO objects

Inference engine

An important step to construct a generalized geographic database is to recognise geometric

structures that correspond to geographical phenomena [Mark 19891. This requires applying

on-line knowledge representation techniques to catch structural and process knowledge

[Nyerges 19911. Znference rules need to be devised for generating structural knowledge

[Buttenfeld 19911 based on neighbourhood reasoning in a geographical context. The

dynamic feaîure and the object-onented design of the VMO mode1 enhance triggering

appropriate procedures and rules at the right time and place. The Voronoi diagram is

proved to be a reliable local structure to reason and extract perceptual structures fiom

atomic objects [Ahuja and Tuceryan 19891. An experiment in utilising the Voronoi diagram

for analyzing building clusters was reported recently Begnauld 19961-

7.3.3 Map Agents

The relatively static database design incorporates geographic knowledge and cartographers'

intuition on structural constraints of maps. The dynamic database generalization process

would rely on both declarative and procedural knowledge and, especially, on mechanisms

to integrate and e ~ c h both types of knowledge through the evolution of the database. A

rnap agent serves such a the mechanism in an interactive environment. An aaificial agent is

an object which possesses formal venions of a mental state, and in particdar forma1

versions of beliefs, capabilities, choices, commitments, and a few other qualities

wooldridge and Jennings 1994; Shoharn 19941. Autonomous agents are primarily

developed from the field of distributed artificial intelligence (DAI) and play active roles in

a dynamic environment of a cornplex system which involves multiple, CO-operative

decisions by different autonomie components with goals.

The map agent is an object class whose state is a repository of declarative metadata about

the mapping classes and d e s derived from geographical and cartographie expert

knowledge. An example of generalization mles of a bay is given in Mark [1991]. Functions

of a rnap agent constitute the inference engine conducting knowledge collection and

representation. The inference engine contains the logic to control and direct search and

reasoning techniques. The logic techniques cm be charactensed as having four basic pa-rts

Flichaelsen et ai. 1985J: 1) selection of the relevant rules and data elements; 2) matching

the active d e s against data elements to determine which rules have been triggered,

indicating they have satisfied the antecedent condition; 3) scheduling which triggered mles

shouid be flred; and 4) executing (Mng) of the rule chosen during the scheduling process.

The choice of an appropriate control strategy to address these four actions is dictated by the

problem under consideration, the content of the object database, and the structure of the

knowledge base.

There is aIso a technical reason for coupling a rnap agent on top of the geo-database. A geo-

database must have classes of geometric objects as well as thematic objects. It is desirable

that complex geometric objects are implemented with some generalization capabilities such

as that they know how to generaüze themselves before being presented graphically at a

given scale. It would be inappropnate to include geographical knowledge in the

generalization procedure because one geometric object may be dynamicdy associated with

different geographical objects. On the other hami, a thematic object is a conceptual one

which refers to, but is not, a geometric object. It would be awkward to include specific

generalization rules in the thematic object because of loss of generality. A rnap agent

understanding both thematic and geometric models can serve as the CO-ordinator between

them.

In the context of map generalization, the primary role of the rnap agent is to control,

schedule, and validate dynarnic generalization operations enacted by objects. More about

dynamic object generalization is explained in the next section. Another imperative role of

the rnap agent is to aid rnap uses. To achieve success in automated rnap generalization, the

purposes of mapping must be understood and intended users must be integrated [Dymon

1989; Blades and Spencer 19871. Typical uses of maps include navigation, measurements,

and visualization (of landscape patterns) [Head 19841, for the purposes of spatial andysis,

planning, designing, simulation, and decision making. We argue here that of the three uses

of a map, the most important one is navigation. The other two functions rely on the result of

navigating a rnap (albeit in a broad sense). In a cornputer environment where data of a rnap

are stored in a database, navigation means to intelligently "search" through the database for

usefbi information. Navigation differs from the farniliar search functions in that: 1)

Navigation is not driven by precisely defned parameters such as the range of a search, or

specific object types expected; it is rather driven by goals which are formulated £iom

problems and which may change over tune. 2) Navigation is accornpanied by some

mernory models to store knowledge and reasoning abilities to influence decisions about

what information would be usefd and where to find the information. 3) Unlike search

functions with simplistic objectives, the navigation process needs to be stnictured into a

model of a few components. The functions of these components would include

automatically denning objectives and performing interchangeable outline and detailed

search processes. One of the main purposes of the navigation model is to aUow users to

concentrate on their problems, with less distraction, and to f ~ s h tasks with non-surplus

and sufficient information.

Generating a schedule for a generic navigation model in an autonomous fashion would be a

highiy desirable goal of the map agent. For this purpose, the map agent needs to perform

communication. This includes communication between computer systems, between a

system and humans, and among humans with various Ievels of knowledge. Studies show a

strocg dissatisfaction conceming current maps ability to convey knowledge. The difference

between the functional abilities of geographic information systems and the expectations of

users is iremendous. Maps developed in current spatial databases may not be the sarne as

those understood by a user. For a specific task, a user may have herlhis own interpretation

of the space and construct herhis own mental models for the task. The mental models or

mental maps are centred with respect to the observer. With a goal specified, a mental rnap

is constructed through a repetitive process, exchanging and updating information between

shoa term and long term memory spaces. Psychological studies show that cognitive models

of spaces in a human brain form hierarchical structures and that a more generdized

perception about a space is obtained by moving his eyes dong more detailed small parts of

the space [Steinke 1987; Eastman 1985; Blades and Spencer 1986; Dobson 1985; Head

l984].

Programming a rnap agent in order to mimic rnap users presents a long-standing challenge.

Ahhough the geo-database briefly descnbed earlier represents progressively generalized

views of the world, it reflects only one state of limited expert knowledge. How to navigate

through the structure and construct different views to present to various users can not be

answered very easily. We hope that understanding and developing rnap agents will lend a

hand to solve such problems.

7.3 -4 Dynamic Object Generalization

Dynamic object generalization is the process activated before an object is drawn. How

many and what objects to draw is the decision of the rnap agent in accordance with the

purpose of the rnap use. When an object receives the message to draw itself, it invokes the

built-in generalization procedure to prepare the graphics data The container rnap object

controls the generalization by providing search functions to detect any positional conflicts

(Figure 7.5a), or topological errors (Figure 7.5b) of a proposed generalization with other

existing objects to be drawn. Furthemore, if an object has a property descrïbing its

certainty, an uncertainty band (comdor) can be superimposed to control the quality of the

generalization (Figure 7.5~). Searching functions and making conidors can be performed

easily with the support of native geometric and topological structures (in our

implementation, the Voronoi diagram). The function and data flows of the dynamic object

generalization process may look like the one in Figure 7.6.

a. Position confiict b. Topological error c. Uncertainty band

Figure 7.5 Detecting conflicts and errors, and controlling uncertainty

in dynamic object generalization

I Map agent

Functions 'r

1 Svucaual support 1
I

: genedization Detecting conflicts
and errors

ResoIving confiicts

and errors

Figure 7.6 Function and data flows of dynamic object generalization

One of the advantages of having dynamic object generalization is that a rnap cari have

different scale versions simultaneously in one representation, that is, more details in the

area of interest with a more outlined global picture elsewhere to visualise landscape

patterns. Because generalization procedures are built in each geometric object, individual

messages concerning the resolution of a generalization can be passed to the object

concemed.

In summary of this section, we have discussed that although the problem of automated map

generalization appears to corne from the "hardware" limitation of mapping media, it has in

fact a strong intellectual background and the true solution of it is never simple. The system

needs to include individual generalization techniques and, more importantly, a mechanism

of representuig and inducing inference mles to support the choice of decisions when one

individual method alone fails. The final result, i.e., a generalized map (which may even not

need be drawn), must convey an understandable message to help the user to complete tasks.

The system approach incorporating database generalization through off- and on-line data

modelling, dynamic object generalization, and map agents looks promising for providing

desirable solutions.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In the final chapter of this thesis, we take a last look at the problems stated and objectives

set in the first chapter. As shown in 6.6, many of the original objectives are attainable for

foresm. Tn addition, the research result is useful to other applications, as outlined in

Chapter 7. The research and development presented leads to the following conclusions:

1. Motivated by the needs of forestry data management, the thesis sets its prime objective

to designing an advanced spatial data model. The data model is aimed to be suitable for

constructing a spatial database management system to support decisions conceming

sustainable forestry. In order to satisQ the practical needs and achieve the objectives of

the research, we started with investigating what is really meant by "sustainable forestry

development" and major factors that may stand out as "charactenstics" of the

sustainable forestry data management system. The characteristics of sustainable forestry

management strongly suggest that the data management system m u t be: i) of large

spatio-temporal scale; ii) dynamic to changes caused by new data, goals, and

technology; iii) able to support management and operations at strategic, managerial, and

operational levels; iv) allow multi-user access to the data and information which are

created and rnaintained by different owners; v) be geographically distributed, with

integxated global meta-information; and vi) be flexible to data modelling, analysis, and

simulation. In addition, effort was made to understand general problems and processes

involved in decision-making. The philosophy and concepts discussed in this matter

have helped the development of the thesis and should influence the future development

of a SDSS.

2. Following the initial investigation, the basics and tools comrnonly used for data

m o d e h g and database development were examined (Appendix B). After this, we

discussed the special properties of spatial objects, which may be represented in a variety

of ways. It was found that the curent prevailing practice of spatial data handling does

not treat the issues well. The prevaîling spatial data management systems are based on a

hybrid architecture in which the geometry and topology are modelled separately. The

geometric reference framework, resulted from a decomposition of the space, is rigid in

that it does not generally care about the extent, shape, and complexity of the embedded

objects. The topological representation of spatial objects, often based on a planar graph,

does not support the geometric decomposition scheme and is not dynamic. The

globalized construction of a topological structure makes the hybrid architecture diffcult

to apply to a distributed, federated spatial database. Besides, the architecture does not

support t d y hierarchical objects and object-oriented data modelling and therefore is

not flexible to user needs. The analysis concludes that the hybrid data model finds itseif

difficult to satisQ the requirements identified for an integrated sustainable forestry data

management and decision support system. We do not yet fully understand geographical

spaces and as a consequence, a convincing theory which can be used to describe them is

still in question.

3. Fortunately, there do exist some tools worth developing: the concept of Voronoi

diagrams and the idea of dynamically constmcting them. It was demonstrated that the

very concept of "neighbours" centred in Voronoi diagrams catches the essential

property of the constructs for geographicai spaces and that the concept combines both

field- and object-based views embedded in geographical modelling. Based on this, this

thesis reviewed and explored important properties of the dynamic Voronoi diagrams

and its dual, the Delaunay triangulation. The data structures for, and the kinematic

incremental process of, constructing a Voronoi diagram were explained in length. The

representation of the data model integrates the geometric object definition and preserves

the fundamental neighbourhood relationship fiom which other topological properties of

spatial objects can be conveniently derived. Using this representation, GIS operations

are realized with ease, and in a topologicaily informed fashion. The topologically

informative operations on spatial objects form the bais of intelligent data models.

Intended to use the Voronoi diagram as a dynamic GIS data model, this thesis also

extended the coverage of the temporal ability required in contemporary spatial data

handling. Aigorithms for typical GIS operations were elaborated in the light of their

graph-theoretic equivalence and the combined view of space using the Voronoi data

model.

4. The thesis identifïed problems with the primitive Voronoi diagrams of points and h e

segments. These problems prevent the Voronoi data model from being applied to large

data volumes and k i n g treated in modular and hierarchical fashion in t e m of cornplex

spatial objects. A spatial object condensation technique was devised during the thesis

research which led to an elegant resolution of these problems. The technique partitions

a Voronoi diagram along natural container boundaries into disjoint and independent

subdiagrams, in t e m of spatial structures, the storage of their representations, and their

functions. There is no restriction on the shape and size of containers. Smaller Voronoi

diagrarns constmcted separately c m be pasted together to defme a larger Voronoi

diagram. The partition uses a time proportional to the number of line segments forming

the partitioning boundary to break the dependency between neighbouring subdiagrarns

on the memory model. The overaIl partitioning algorithm is affected in the worst-case

by O(n) in both time and storage. The spatial object condensation can also be applied to

partition any triangulation networks along designated triangular edges forming closed

polygons. This application produces independent memory modules of subtnangulations,

such that a large tnangulation network can be stored and worked with separately. The

outcome of the spatial object condensation technique breaks through conventional ways

of spatial data modeiling and brings up a novel paradigm of construction and

management of large spatial databases.

5. The extended application of the spatial object condensation technique in this thesis is

the design of a dynamic spatial object database scheme called the Voronoi Map Object

(VMO) model. Covered by the VMO model are forma1 definitions of basic geomevic

object classes and a description about spatial relationships between these objects. The

implementation of geornetrïc and topological structures within a map object tums it into

a VMO. With a VMO, a l l previously developed operations based on the dynamic

Voronoi diagrams are inhented. The embedding of geometry and topology, as weli as

dynarnic operations within a VMO, makes it stand out as an independent object class to

be used in geographical applications. The VMO model is enhanced naturally by the

VMO-tree which can be constructed via both top-down and bottom-up approaches, with

the support of the spatial object condensation technique. The constrained VMO-tree

forms a global organization about VMOs which may be geographicdy distributed. The

thesis also speculated about operations over VMO-~ees and their nodes. These

operations cover issues related to distributed spatial database management systems

supported by the client-semer architecture.

6. In response to the needs of sustainable forestry data management and decision support

systems, the thesis outlined a design of such a system based on the VMO model. The

design was based on the Object Modelling Technique (OMT) which covers object,

dynamic, and functionai models. The object model comes fiom a problem statement

and constitutes structural support to the other two models. The relationship between

system objects and the object in charge of dynamic spatial database management using

the VMO model is placed and described. In the dynamic model, the interactions

between objects through dynamic events were Uustrated. The data and information

flow between sequentially invoked processors was demonstrated in the functional

model. The software architecture of the system was devised, which organizes the

system components into three layers each of which is intended for different developers.

Although the whole design was at a rather coane stage, it nevertheless sets up an

integrated framework from which detailed elaboration can be completed in later

development .

7. It is hoped that the VMO model can be applied in many different ways, corresponding

to contemporary requirements for spatial data handling. It is especially useful in

situations that require dynamic topology and integrated spatial data management

systems whose database is constructed and managed by different teams at various sites.

The thesis briefed two application examples: parallel processing and automated map

generalization envisaged from their database, dynamic, and intelligent aspects.

8.2 Original Contributions of This Research

The research covered in this thesis is based on the primitive dynamic Voronoi data model

developed by Dr. Gold, without which the enhanced treatrnent of this thesis would be

impossible. Theories and applications of the original dynamic Voronoi data mode1 have

been widely published in various national and international joumals. The context of the

early model covers the basic algonthms and implementation of the Ïncremental and

kinematic construction of Voronoi diagrams of points and line segments; the idea of the log

file structure for preserving history of the construction; applications of the dynamic

Voronoi diagrams in digital terrain rnodelling, intelligent navigation over and through

spatial structures; and most of the general algorithms for GIS operations used in this thesis.

The author of the thesis has k e n greatly benefited by the opportunity of participating in the

implementation of the primitive Voronoi data model. This experience and numerous

discussions with Dr. Gold and other researchers working in this area helped to forrn the

shape of the spatial object condensation technique and the VMO model advanced in this

thesis. Specifically, the thesis bnngs up the following contributions to the Voronoi based

GIS research and development.

1. Provided the proof for Property 4.6 conceming the configuration types of the three

objects fiom which Voronoi vertices are calculated.

2. Complemented the description, in an algorithmic fashion, of the incremental and

kinernatic construction process for the Voronoi diagram of points and h e segments.

3. Described and implemented the log fde structure, and the forward- and backward-

reconstruction of the dynamic Voronoi diagram.

Designed and implemented algorithms for network analysis (depth-fmt and breadth-

fmt searches, minimum spanning tree, shortest path) and range seanih, based on the

Voronoi data structure. The algorithm for polygon overlay was elaborated.

Designed and implemented algorithms for the spatial object condensation technique

dong the boundaries of containers. The method of partitioning triangular networks was

described.

As a by-product of the spatial object condensation technique, the flaw in the current

theory and practice of Voronoi diagrams of h e segments in dealing with weakly-

comected components is remedied.

The nearest-object search algonthm is modified to work for spaces with holes and

weakly-connected components.

The VMO model is formally described, which encompasses the geometric object

classes and spatial relationships, the VMO class, the data structure, the constraints, and

the constructions and operations.

A design for a forestry data management software system is outlined, covering the

object, dynamic, and functional models, and the software architecture.

10. The thesis describes the development of an operational prototype, as demonstrated by

all of the Voronoi diagram illustrations used in this thesis.

8.3 Suggested Future Work

The objectives of the thesis were to define the appropnate spatial model, not to implement a

full system. Therefore, the VMO model is by no means complete, either in theory,

implementation, or applications. The thesis has nevertheless set up the skeleton of the data

model. It is suggested that the following efforts need to be made in future work:

1. Experimenting and analyzing the condensation algorithms against large volumes of

real, preferably forestry data.

2. The development of a dynamic configuration capability for automatically identifying

partitioning boundaries for clusters of spatial objects. Without an automated clustenng

or grouping process, the partitioning boundaries have to be manually identifîed or to be

selected through some SQL quenes.

3. Completing the VMO class design and implementation for wrapping it into software

components. The interface design and implementation needs to follow the COM

specification. Mer- VMO COM objects are available, applications c m be rapidly

developed by plugging and playing with these components. With the current COM

technology, remote access and operations on the VMO objects c m be enabled without

being noticed by users.

4. Detailed design and implementation of FORMONET. The production of the prototype

system can set up an example for the deployment of the VMO components.

5. Researching the temporal aspects for the VMO model and implementing spatio-

temporal queries over the model with different versions of VMO objects. The log file

structure and forwardhackward reconstruction mechanism provided in this research

works on the primitive objects. The real temporality of the database using the VMO c m

only be realized after more structures are designed for the other VMO objects.

6. Completing the formal description for topologicai relationships and operatiom. This is

felt to be important, as with other data rnodels, for the discourse and communication

with a clearly defmed language.

References

Abel, D. J. and Mark, D. M. 1990. A comparative analysis of some two-dimensional
orderings-" International Journal of Geographic Information System, 4(1), 22-3 1.

Ahuja, N. and Tuceryan, M. 1989. Extraction of early perceptual structure in dot patters:
integrating region, boundary, and component gestalt. Cornputer Vision. Graphics. and
Image Processing 48. 304-56.

Andleigh, P. K. and Gretzinger, M. R. 1992. Distributed Object-Oriented Data-System
Design. Prentice Hall.

Anthony, R-N. 1965. Planning and Control Systems: A Frumework for Analysis. Harvard
University Press, Bos ton-

Aurenhammer, F. 1991. Voronoi diagrams - a s w e y of a fundamental geometric data
structures. ACM Computing Surveys, 23(3), 345-405.

Bédard, Y., Gagnon, P. D., and Vallière, D. 1994. Le fomlisme MODUL-R 2.01 et le
dictionnaire de données pour la conception des bares de données spatio-temporelles.
Research document, Centre for Research in Geomatics, Laval University.

Bédard, Y. and van Chestein, Y. 1995. La gestion du temps dans les systèmes de gestion de
données localisées: état actuel et avenues futures. Proc. International Symposium of
Geomatics V (CIG Montreal branch) - The Road to Innovation. Nov. 9-10, Montreal,
Canada, 2 1-33.

Beeri, C., Bernstein, P. A. and Goodman, N. 1978. A sophisticate's introduction to database
norrnalization theory. Proc. 4th Int. Con. Very Large Data Bases, 1 13-24.

Bentley, J. L. 1975. Multidimensional binary search trees used for associative searching."
ACM Communications, 18 (9), 509- 17.

Bertolotto, M. and de Floriani, L. 1994. Multiresolution topological maps. In Molenaar, M.
and de Hoop, S. (eds.) Advanced Geographic Data Modelling: Spatial Data Modelling
and Query h g u a g e s for 2 0 and 30 Applications. New Series No. 40, Delft, The
Netherlands, 179-90.

Birch, K., Blair, R., Bradley, B., Bormann, B., Browning, A., Collopy, M., Franklin, K.,
Manning, V., and Monesmith, J. 1993. Interim Concepts for Developing an Adaptive
Management Process. Unpublished Report.

Blades, M. and Spencer, C. 1987. How do people use maps to navigate through the world?
Cartographica, 24(3), 64-75.

Blades, M. and Spencer, C. 1986. The impiicaticn of psychological theory and
methodology for cognitive cartography. Cartographica, 23(4), 1 - 13.

Boissonnat, J.-D., Devillers, O., Schott, R., Teillaud, M., and Yvinec, M. 1992.
Applications of random sampling to on-line algorithm in computational geometry.
Discrete & Compr<tational Geornetry, 8,s 1-7 1.

Bollobb Béla, 1979. Graduate Texts in Mathematics 63: Graph Theory - An Introductory
Course. Springer-Verlag, New York.

Bormann, B. T., Brookes, M. H., Ford, E. D., Kiester, A. R., Oliver, C- D., and Weigand, J.
F. 1994. A framework for sustainable-ecosystem management. USDA Forest Service
General Technical Report PNW-GTR-319, Pacinc Northwest Research Station,
Portland, Oregon.

Boudriault, G. 1987. Topology in the TIGER file. Auto-Cam, 8,258-69.

Brown, KQ. 1979. Voroooi diagrams from convex h&s. Information Processing Letters 9,
223-28.

Burrough, P. A. 1986. Principles of Geographical Infonnation System for Lund Resources
Assessment. Oxford: Clarendon Press.

Buttenf5eld, B. P. 1995. Object-oriented map generaiization: modeliing and cartographic
considerations. In Müller, J.-C., Lagrange, J.P., and Weibel, R. (eds.) GIS and
Generalization: Methodology and Practice, Taylor & Francis, 9 1- 105.

Buttenfîeld, B. P. 1991. A rule for describing h e feature geometry. In Buttenfield, B.P.
and R.B. McMaster (eds) Map Generalization: Making Rules for Knowledge
Representation. Longman, London. 150-7 1.

Cameron, M.A. and Abel, D.J. 1996. A problem model for spatial decision support
systems. In Kraak, M. J. and Molenaar, M. (eds) Proc. 7th International Symposium on
Spatial Data Handling, Delft, The Netherlands: Taylor & Francis, 3A: 25-36.

Candian Forest Service 1994. Towards a New Era in Sustainable Forestry - The Canadian
Forest Service Strategic Plan for Science and Technology: 1995-2000. Natural
Resources Canada, ~ k t w a , Canada.

Caron, C. 199 1. Nouveau Formalisme de Modélisation ConceptuelIe Adaptéaux SKRS .
Masters thesis, Département des Sciences Géomatiques, Université Lavai.

Chen, P. P. 1976. The entity-relationship model toward a unified view of data." ACM
Transactions on Database Systems, 1(1 j, 9-35.

Chew, L. P. 1989. Constrained Delaunay Triangulation. Algorithmica, 4,97-108.
Chew, L. P. 1987. Constrained Delaunay Triangulation. Proc. 3rd ACM Symposium on

Computational Geornetm 2 15-22-
Chrisman, N. R. 1975. Topological information systems for geographic representation.

Auto-Ca~o 2,246-5 1.
Chrisman, N. R. 1978. Concepts of space as a guide to cartographic data structures. In

Dutton, G. (ed.) Proc. 1st International Advanced Study Symposium on Topological
Data Structures for Geographic Information Systems, Cambridge, MA: Harvard
Laboratory for Computer Graphics and Spatial Anaiysis. 1- 19.

Christenson, C. 0. and Voxman, W. L. 1977. Aspects of Topology, Monographs and
Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc. New York.

Codd, E. F. 1970. A relational model of data for large shared data banks. ACM
Communication, 13,377-87.

C o d o r d , N. B., Cole, D. W., Dyck, W. J. 1994. Impacts of harvesting on long-term site
quality: future research. In Dyck, W. J., Cole, D.W., and Comerford, N. B. (eds.)
Impacts of Forest Harvesting on Long-Tem Site Productivi~. London: Chapman &
Hall. 363-68.

Couclelis, H. 1992. Beyond the raster-vector debate in GIS. In Frank, A. U., Campari, I.,
and Formentini, U. (eds.) Theories of Saptio-Temporal Rearoning in Geographic Space,
Lecture Notes in Cornputer Science 639, Springer-Verlag, 65-77.

Cowen, D. J. 1988. GIS versus CAD versus DBMS: what are the differences?
Photograrnmtric Engineering and Rernote Senskg, S4(l I) , 155 1-5.

Davies, C. and Medyckyj-Scott, D. 1996. GIS users observed. International Journal of
Geographic Infonnation Systemr. 1 O(4), 363 -84.

de Floriani, L., Marzano, P., and Puppo, E. 1993. Spatial queries and data models. In Frank,
A. U. and Campari, 1. (eds.) Spatial Information Theory - A Theoretical Basis for GIS,

COSïï7 93, Marciana Marina, Elba Island, M y . Lecture Notes in Computer Science
71 6, Springer-Verlag, 1 1 3-38.

Devaers, O., Meiser, S., and Teillaud, M. 1992. Fully dynamic Delaunay triangulation in
logarithmic time per operation. Computational Geometry Theory and Applications, 2,
55-80.

Dobson, M. W. 1985. ThP- hiture of perceptual cartography. Cafiographica. 22(2), 27-43.
Doucet, B. 1990. Développement d'un Protoiype d'un Systeme d'Information ir Référence

Spatiale pour la Gestion des Données d'Aménagement Forestier à [a Forêt
Monmtorency. Masters thesis, Département des Sciences Géomaciques, Université
Laval.

Drysdaie, R. L. 1979. Generalized Voronoi Diagrams and Geometric Searching. PhD
Thesis, Department of Computer Science, Stadord University.

Drysdale, R. L. and Lee, D. T. 1978. Generalued Voronoi diagram in the plane. Proc. 16th
Annual Allerion Conference on Commmications, Contml and Cornpuring, 833-42.

D'Silva, E. and Appanah, S. 1993. Forestry management for sustainable development. EDI
Policy Seminar Report No. 32. The World Bank, Washington, D. C.

Dyck, W. J. and Cole, D. W. 1994. Strategies for determinhg consequences of harvesting
and associated practices on long-term productivity. In Dyck, W. J., Cole, D.W., and
Comerford, N. B. (eds.) Impacts of Foresr Harvesting on Long-Tenn Site Productivi~.
London: Chapman & Hall. 13-40.

Dymon, U. 1989. Do we really h o w our map usen? Cartographica. 26(3&4), 49-58.
Eastman. J. R. 1985. Graphic organization and memory structures for map leaming.

Cartographica, 22(1), 1-20.
Edelsbmer, H. 1986. Edge-skeletons in arrangements with applications. Algorithmica 1,
93-109.

Edwards, G. 1991. Spatial knowledge for image understanding. In Mark, D. M. and Frank,
A. U. (eds.) Cognitive and Linguistic Aspects of Geographic Space, Kluwer Academic
Publlshers, 295-308.

Egenhofer, M., Clementini, E., and di FeIice, P. 1994. Topological relations between
regions wi th holes. International Journal of Geographic Infomtion Systems, 8(2). 129-
42.

Egenhofer, M. and Franzosa, R. 199 1. Point-set topological spatial relations. International
Journal of Geographic Information Systerns, 5(2), 16 1-74.

Faloutsos, C., Sillis, T., and Roussopoulos, N. 1987. Analysis of object oriented spatial
access methods. ACM SIGMOD, l6(3), 426-39.

Felten, V. 1998. Integration de la Dimension Temporelle dans les SIRS, Application a la
Forêt Monmtorency. Technical report, Université Laval, also Mémoire présenté en vue
de l'obtention du diplôme d'ingénieur E.S .G.T. (Ecole Superieure des Geometres et
Topographes) , France.

Fortune, S. 1987. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2,153-74.
Fortune, S. 1986. A sweepline algorithm for Voronoi diagrams. Proc. 2nd ACM Symposium

on Computational Geometry, 3 13-22.
Frank, A. 1983. Storage methods for space related data: the field-tree. Tech. Rep. Bericht

No. 71, Eidgenossische Technische Hochschule Zürich.
Frank, A. and Barrera, R. 1989. The field-tree: a data structure for geographic information

system. In Günther, 0. and Smith, T. (eds.), Design and Implementation of Large

Spatial Databases, Proc. SSD'89, Santa Barbara, California, Lecture Notes in
Cornputer Science 409, Berlin: Spriger-Verlag, 29-44.

Franklin, I. F. 1989. Toward a new forestry. American Forest- 95,3744.
Fry, J. P. and Sibley, E. H. 1976. The Evolution of Database Management Systems. ACM

Cornputing Survey, 8,742.
Gabriel, K. R. and Sokal, R. R. 1969. A new statistical approach to geographic variation

analysis. Systernutic Zbology, 18,259-78.
Gagnon, P. 1993. Concepts fondamentaux de la gestion du temps dans les SGDL. Masters

thesis, Département des sciences géomatiques, Université Laval.
Giblin, P. J. 1977. Graphs, Surfaces and Homology - An Introduction to Algebraic

Topology. London: Chapman and HaIl.
Gold, C. M. 1997. Simple topology generation from scanned maps. Proc. ACSWASPRS -

Auto-Carto 13, vol. 5, Seattle, Washington, April, 7-10,337-46.
Gold, C. M. 1994. The interactive map. In Molenaar, M. and de Hoop, S. (eds.) Advanced

Geographic Data Modelling: Spatial Data Modelling and Query Languages for 2D and
3D Applications. Netherlands Geodetic Commission hiblications in Geodesy, New
Series, 40, 121-28.

Gold, C. M. 1992a An object-based dynamic spatial model, and its application in the
development of a user-fkiendly digitizing system Proc. 5th SDH'92, Charleston, U.S.A.,
495-504.

Gold, C. M. 1992b. The meaning of "neighbours". In Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space. Lecture Notes in Computer Science 639,
Spnnger-Verlag, Berlin, 220-35.

Gold, C. M. 1991. Problems with handling spatial Data - the Voronoi approach. CISM
Journal 45(1), 65-80.

Gold, C. M. 1990. Spatial data structures: the extension from one to two dimensions. In
Pau, L.F. (ed.) Mapping and Spatial Modelling for Navigation, NATO AS1 Senes 65,
Berlin: S pringer-Verlag, 1 1-39.

Gold, C. M. 1989. Surface Interpolation, Spatial Adjacency and GIS. In Raper, J. (ed.),
Clzapter 3: Three Dimensional Applications in GIS. FrancisBiTaylor, London, 2 1-35.

Gold, C. M. 1977. The practical generation and use of geographic tnangular element data
structures. Advanced Srudy Symposium on Topological Data Structures for Geographic
Information Systems, Cambridge, Mass.: Laboratory for Computer Graphics and Spatial
Anal ysis.

Gold, C. M. 1976. Triangular element data structures. The University of Alberta
Computing Services Users Applications Symposium Proceedings, Edmonton, Canada.
43-54.

Gold, C. M., Charters, T. D., and Ramsden, J. 1977. Automated contour mapping using
triangular element data structures and an interpolant over eac h triangular domain.
Cornputer Graphics, 11, 170-75.

Gold, C. M. and Condal, A. R. 1994. A spatial data stmcture integrating GIS and
simulation in a marine environment. Marine Geodesy, 18,2 13-28.

Gold, C. M., Nantel, J., and Yang, W. 1996. Outside-in: an alternative approach to forest map
digitizing. Int. J. Geographicai Infomtion Systems, 1 q 3) 29 1-3 10.

Gold, C. M., Remmele, P. R., and Roos, T. 1997. Fully dynamic and kinematic Voronoi
diagrams in GIS. Algorithmica, in press.

Gold, C. M., Remrnele, P. R., and Roos, T. 1995. Voronoi diagrams of line segments made
easy. Proc. 7th Canadian Conference on Computational Geornetry, Quebéc, Canada,
223-28.

Gold, C. M. and Roos, T. 1994. Surface modelling with guaranteed consistency - an object-
based approach. In Nievergelt, J., Roos, T., Schek, H.-J., and Widmayer, P. (eds.)
IGIS'94: Geographic Information System, Proc. International Workshop on Advanced
Research in Geographic Infomtion System, Monte Verità, Ascona, Switzerland,
Lecture Notes in Computer Science 884, Springer-Verlag, 70-87.

Goodchild, M. F. and Grandfield. A. W. 1983. Optimizing raster storage: an examination of
four alternatives. Proc. Auto Cartography: Intematio~l Perspectives on Achievements
and Challenges, Ottawa, Canada, 400-07.

Gorry, G. A. and Morton, S. 1975. A framework for management information systems. In
Rappaport, A. (ed.) Information for Decision Making: Quantitative and Behuvioral
Dimensions (2nd edition), Rentice-Hall Englewood Cliffs, New Jersey, 16-30.

Green, P. I. and Sibson, R. 1977. Computing dirichlet tesselations in the plane. Cornputer
Journal, 2 1, 168-73.

Guibas, L., Mitchell, J. S. B., and Roos, T. 1991. Voronoi diagratm of moving points in the
plane. Proc. 1Yh Intl. Workshop on Graph, The Ineoretic Concepts in Computer
Science, Fischbac hau, Germany , Lecture Notes in Computer Science 570, S pringer-
Verlag, 1 13-25.

Guibas, L. and Stolfi, J. 1985. Primitives for the manipulation of general subdivisions and
the computational of voronoi diagrams. ACM Transaction on Graphies, 4(2), 74- 123.

Günther, 0. 1988. Efficient structures for geometric data management Lecture Notes in
Computer Science. No. 337, Berlin: Springer-Verlag.

Günther, 0. and Wong, E. 1989. The arc tree: an approximation scheme to represent
arbitrary c w e d shapes. In Litwin, W. and Schek, H.4. (eds.), Foundations of Data
Organimtion and Algorithm. Paris, France, Lecture Notes in Computer Science 367,
S pringer-Verlag, 3 54-70.

Güting. R. H. 1988. Geo-relational algebra: a mode1 and query language for geometric
database systems. In Goos, G. and Hartmanis, J. (eds.) Advances in Database
Technology - EDBT'88, Lecture Notes in Computer Science 303, Springer-Verlag, 506-
27.

Güting, R. H. and Schilling, W. 1987. A practical divide-andconquer algorithm for the
rectangle intersection problem. Information Sciences. 42,95-112.

Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching." ACM
SZGMOD, 13,47-57.

Hayes-Roth, F. 1985. Rule-based systems. Communications of the ACM. 28(9).
Head, C. G. 1984. The map as natural language: a paradigm for understanding.

Curtographica, 21(1), 1-32.
Herrïng, J. R. 199 1. The mathematical m o d e h g of spatial and non-spatial information in

Geographical Information Systems. In Mark, D. M. and Frank, A. U. (eds.) Cognitive
and Linguistic Aspects of Geographic Space, Kluwer Academic Publishers, 3 13-50,

ITïO (International Tropical Timber Organization) 1992. ITTO Criteria for the
Measurement of Sustainable Tropical Forest Management. ITïO Policy Development
Series 3. Yokohama.

lagadish, H. V. 1990. Linear clustering of objects with multiple attributes. ACM S M D
19(2), 3 32-42.

Joao, E. M. 1995. The importance of quantiQing the effects of generalization. In Müller, 1.-
C., Lagrange, LP., and Weibel, R. (eds.) GIS and Generalization: Methodology and
Practice, Taylor & Francis, 183-93.

Keller, S. F. 1995. Potentials and Limitations of artificial intelligence techniques applied to
generalization. In Müller, J - C , Lagrange, LP., and Weibel, R. (eds.) GIS and
Generalization: Methodology und Practice, Taylor & Francis, 135-47.

Kent, W. 1991. A rigourous mode1 of object reference, identity, and existence. Journal of
Object-On-ented Programming.

Kirkpatrick, D. G. 1979. Efficient computation of continuous skeletons. Proc. 20th Annual
IEEE S p p o s i m on Foundations of Cornputer Science, 18-27.

Küuth, D. E. 1973. The Art of Computer Programming III= Sorting and Searching. Addison
Wesley, Reading, MA.

Kniskal, J. R. Jr. 1956. On the shortest spanning subtree of a graph and the traveling
salesman problem. Problem. Am Math. Soc., 7(I), 48-50.

Kuhn, W. 1996. Hancilhg data spatially: Spatializing user interfaces. In Kraak, M.4. and
Molenaar, M. (eds.) Proc. 7th International Symposium on Spatial Data Handling,
Delft, The Netherlands. Taylor & Francis, 877-93.

Lamont, R. H. 1988. Avoiding surprises in selecting and setting up a geographic
information system. In Heit, M. and Shortreid, A. (eds.) GIS Applications in Natural
Resources. GIS World, Inc. 199 1.7 1-4.

Langran, G. 1992. Time in Geographic Information System. Taylor & Francis, New York.
Lee, D. T. and Drysdale, R. L III. 1981. Generalized Voronoi diagrams in the plane. SIAM

Journal of Cornputing, 1 O, 73-87.
Lee, D. T. and Schachter, B. J. 1980. Two algorithms for constructing the Delaunay

triangulation. International Journal of Cornputer und Infonnation Sciences, 9(3), 219-
42.

Lee, William C. Y. 1995. Mobile Cellular Telecommunications: Analysis and Digital
Systems. 2"* edition, McGraw-Hill hc .

Mark, D.M. 199 1. Object modelling and phenornenon-based generaluation. In Buttenfield,
B. P. and McMaster. R. B. (eds.) Map Generalization: Making Rules for Knowledge
Representation. Longman, London. 103- 18.

Mark, D. M. and Goodchild, M. F. 1986. On the ordering of two-dimensional space:
introduction and relation to tesseral principles. In Diaz, B. and Beil, S. B. M. (eds.)
Proc. the Tesseral Worhhop No. 2, Swindon: Natural Environment Research Council,
179-92.

Mason, R. O., Jr. 1975. Basic concepts for designing management information systems. In
Rappaport, A. (ed.) Infonnation for decision making: quantitative and behavioral
dimensions (2nd edition). Prentice-Hall Englewood Cliffs, New Jersey, 2- 16.

Maser C. 1994. Sustainable Foresfry: Philosophy. Science, and Economics. S t. Lucie Press,
Delray, Beach, FL.

Matsuyama, T., Hao, L. V., and Nagao, M. 1984. A file organization for geographic
information systems based on spatial proximity. Computer Vision, Graphics and Image
Processing, 26,303- 1 8.

Mehhom, K. 1984. Data Structures and A l g o r i t h 3: Multi-Dimensional Searching and
Computational Geometry. Springer-Verlag.

Michadsen, RH, Michie, D., and Boulanger, A. 1985. The technology of expert systems.
BYTE Magazine 10.303-12.

Mladenoff, D- J. and Pastor, J. 1993. Sustainable forest ecosystems in the northern
hardwood and conifer forest region: Concept and management. Ln Aplet, G. H., Johnson,
N., Olson, J. T., and Sample, V. A-. (eds.) Deming Sustainable Forestry. Island Press,
Washington, D.C. 145-80.

Molenaar, M. 1989. Single vaiued vector maps - A concept in geographic information
systems. Geo-lnfomationssysteme, (2)I , 18-26.

Morton, G. M. 1966. A. Computer Onented Geodetic Data Base, and a New Technique in
File Strucniring. Unpubfished report, IBM Canada Ltd.

Morris, L. A. and Miller, R. E. 1994. Evidence for long-term productivity change as
provided by field trials. In Dyck, W. J., Cole, D. W., and Comerford, N. B. (eds.)
Impacts of Forest Harvesting on Long-Term Site Productivity. London: Chapman &
Hall. 41-80.

Moulin, B. 1990. Know ledge Representation and Conceptual Modelling . Revised version,
Department d' informatique, Université Laval.

Mower, J. E. 1992. Building a GIS for parallel cornpuring environments. In Corwin, E. and
Cowen, D. (eds.) Proc. 5th International Symposium on Spatial Data Handling,
Columbus, OH: International Geographical Union, 2 19-29.

Muller, D. E. and Preparata, F. P. 1978. Finding the intersection of two convex polyhedra.
Theoretical Compter Science, 7(2), 2 17-3 6.

Müller, J. C., Weibel, R., Lagrange, J.-P., and Selge, F. 1995. Generalization: state of the
art and issues. In Müller, J.-C., Lagrange, J.-P., and Weibel, R. (eds.) GIS and
Generalization: Methodology and Practice, Taylor & Francis, 3-17.

National Round Table on the Environment and the Economy 1993. Forest Round Table on
Sustainable Development, a Pregress Report. Ottawa, Canada

NCGIA 1989. The research plan of the National Centre for Geographic Information and
Analysis. International Journal of Geographic Infomtion Systems, 3, 1 17-36.

Nievergelt, J., Hinterberger, H., and Sevcik, K. C. 1984. The grid file: an adaptable,
symmetric, multikey file structure. ACM Transactions on Database System, 9(1). 38-
71.

Nyerges, T. L. 199 1. Representing geographical meaning. In Buttenfield, B.P. and R.B.
McMaster (eds) Map Generalization: Making Rules for Knowledge Representa tion.
Longman, London. 55-85.

Okabe, A., Boots, B., and Sugihara, K. 1992. Spatial Tessellations: Concepts and
Applications of Voronoi Diagram. John Wiley & Sons.

Orenstein, J. A. 1983. Data Structures and Algorithm for the Implementation of a
Relational Da tubase System. PhD Thesis, McGill University.

Ot tma~, T. and Wood, D. 1986. Space-economicd plane-sweep algorithms. Computer
Vision, Graphics, and Imnge Processing, 34,354 1.

OZSU, M. T. and Valdurîez, P. 199 1. Principles of Distnbuted Database Systems. Prentice-
Hall, Englewood CIiffs, New Jersey.

Peucker, T. K. and Chrisman, N. 1975. Cartographie data structures. Arnerican
Cartographer, 2(1), 55-69.

Peuquet, D. 1. 1984. A conceptual frarnework and cornparison of spatial models.
Cartographica, 21 (4). 66- 1 13.

Preparata, F. P. and Sharnos, M. 1. 1985. Computational Geornetry: An Introduction.
Springer-Verlag.

Prim, R. C. 1957. Shortest comection networks and some generalizations. The Bell System
Technical Journal, 36, 1389-40 1 -

Proe, M. F., Rauscher, H. M., and Yarïe, J. 1994. Computer simulation models and expert
systems for predicting productivity decline. In Dyck, W. J., Cole, D. W., and Comerford,
N. B. (eds.) Impacts of Forest Harvesting on Long-Tem Site Productivi~. London:
Chapman & Hall. 15 1-86.

ProuLx, M.-J. 1995. Développement d'un Nouveau Langage d'Interrogation de Bases de
Données S patio-Temporelles. Mas ters thesis, Département des sciences géomatiques,
Université Laval.

Puppo, E. and Dettori, G. 1995. Towards a forma1 mode1 for multiresolution spatial maps.
In Egenhofer, M. J. and Herring, J. R. (eds.) Advances in Spatial Dotabases, Proc.
SSD'95, Lecmre Notes in Compter Science 951, Springer-Verlag, 152-69.

Regnadd, N. 1996. Recognition of building clusters for generalization. In Kraak, M.J. and
M. Molenaa. (eds) Proc. 7th International Symposium on Spatial Data Handling. Delft,
The Netherlands: Taylor & Francis, 4B. 1 - L4.

Roos, T. 1991. ûynamic Voronoi Diagrams. Ph.D Thesis, Universitat Würzburg,
Switzerlmd.

Rosenberg, J. B. 1985. Geographical data structures compared: a study of data structures
supporthg region queries. IEEE Transaction. on Computer Aided Design 4(1), 53-67.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lurensen, W. 1991. Object-
Oriented Modelling and Design. Prentice Hall, Engiewood Cliffs, New Jersey.

Samet, H. 1990. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, Mass.

Samet, H. 1984. The quadtree and related hierarchical data stnictures. Computing Suneys,
16(2), 187-260.

Sample, V. A. Realizing the potential of remote sensing and GIS in ecosystem management
planning, anaiysis, and policymaking. In Sample, V. A. (ed.) Remote Sensing and GIS in
Ecosystem Management. Island Press, 346-52.

Schmitt, 1. and Saake, G. 1995. Managing object identity in federated database systems. In
M. P. Papazoglou (ed.) OOER'95: Object-Oriented and Entity-Relationship Modelling.
14th Int. Conference, Gold Coast, Australia Lecture Notes in Computer Science 1121,
Springer, 400- 1 1.

Sedgewick, R. 1992. Algorithm in C++. Addison-Wesley hiblishing Company, Inc.
Shoham, Y. 1994. Muiti-agent research in the knobotics group. In Castelfranchi, C. and E.

Werner (eds.) Artifcia l Social System, 4th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, S . Martino al Cimino, Italy. Lecture Notes
in Adficial Intelligence 830. Springer-Verlag. 27 1-278.

Sibson, R. 1977. Locdy equiangular triangulations. The Computer. Journal, 21,243-5.
Simon, H. A. 1977. The New Science of Management Decision. Prentice-Hail, Englewood

Cliffs, New Jersey.
Smith, S. M. and Smith, D. C. P. 1977. Database abstractions: aggregation and

generalization. ACM Transactions on Database Systems, 2(2), 105-33.
Stefmakis, E. 1994. A New Approach to Range Searching Based on the Point

Representation of Spatial Objects. Masten thesis, Department of Geodesy and
Geomatics, University of New Brunswick.

Steinke, T. R. 1987. Eye movement studies in cartography and related fields.
Cartographica, 24(2), 40-73.

Stell, J. G. and Worboys, M. F. 1994. Towards a representation for saptial objects in
diverse geometries. In Pissinou, N. and Makki, K. (eds.) Proc. 2nd ACM Workshop on
Advances in Geographic Information Systems. National Institute for Standards and
Technology, Gaithersburg, Maryland, New York: ACM Press, 28-33.

Stolfi, J. 1987. Oriented projective geometry. 3rd ACM Symp. on Computational Geometry,
76-85.

Stuth, J. W. and Smith, M. S. 1993. Decision support for grazing lands: an ovenriew. In
Snith, J. W. and Lyons, B. G. (eds), Decision Support Systems for the Management of
Grazing Lands: Emerging Issues. Man and the Biosphre Series, Vol. II, UNESCO and
The Parthenon Publishing Group. 1-35.

Szames, M. C. 1997. Modelling the evolurion of spatio-temporal databuses structures for
GIS applications. Masters thesis, Department of Geomatics Engineering, The University
of Calgary.

Szymansky, T. G. and van Wyk, C. J. 1983. Space efficient algonthms for VU1 artwork
analysis. Proc. 20th IEEE Design Automation Conference, 734-39-

Toussaint, G. T. 1980. The relative neighbourhood graph of a finite planar set. Pattern
Recognition, 12,261-8.

Tsichritzis, D. C and Lochovsky, F. H. 1982. Data Models. Prentice-Hall, Englewood
Cliffs, New Jersey.

US Burean of the Census 1970. The DIME Geocoding System. Tech. Rep. 4, Burean of the
Census, Washington, DC.

van Oosterom, P. 1993. Reactive Data Structures for Geographic Information Systems.
Oxford University Press.

Weibel, R. 1995. Three essential building blockç for automated generalization. In Müller,
LC., Lagrange, LP., and Weibel, R. (eds.) GIS and Generalization: Methodology and
Practice, Taylor & Francis, 56-69.

White, M. 1983. N-trees: large ordered indexes for multidimensional space. hesented at
the Lincoln Institute of Land Policy's Colloquium on Spatial Mathematical Algorithms
for Microcornputer Land Data Systems.

Wooldridge, M. md Jennings, N. R. 1994. Agent theories, architectures, and languages: a
s w e y . In Wooldridge, M. and lennings, N. R (eds.) Proc. ECAI-94 Workshop on Agent
Theories. Architectures, and Languages, Amsterdam, The Netherlands. Lecture Notes in
Cornputer Science 890, S pringer-Verlag, 1-39.

Worboys, M. F. 1995. GIS.- A Computing Perspective. Taylor & Francis.
Worboys, M. F. 1994. Object-oriented approaches to geo-reference information.

International J o u m l of Geographic Information Systems, (8)4,385-99.
Worboys, M. F 1992a A generic model for planar geographic objects. International

Journal of Geographic Information Systems, (6)5,353-72.
Worboys, M. F 1992b. A model for spatio-temporal information. In Corwin, E. and Cowen,

D. (eds.) Proc. 5th Intemational Symposium on Spatial Data Handling, Columbus, OH:
International Geographkal Union, 602- 1 1.

World Bank 1993. Forestry Management for Sustainable Developrnent. An EDI Polic y
Semlliar Report No. 32. The World Bank, Washington, D.C.

World Commision on Environment and Developrnent 1987. Our Common Future. Oxford
University Press, Oxford, UK.

Yang, W. 1992. A New Range Searching Algorithm for Large Point Databases. Masters
thesis, Department of Geodesy and Geomatics, University of New Brunswick.

Yang, W. and Gold. C. M. 1996. Managing spatial objecis with the VMO-tree. In Kraak,
M.4. and Molenaar, M. (eds.) Proc. 7th Intemational Symposium on Spatial Data
Handling, Delft, The Netherlands. Taylor & Francis, 71 1-26.

Yang, W. and Gold, C. M. 1995. Dynamic spatial object condensation based on the Voronoi
diagram Proc. 4th Int. Sym of LIESMARS'95 - Towards three dimensional, temporal and
dynamic spatial data modelling and analysis, Wuhan. China, 134-45.

Zonneveld, 1. S. 1990. Scope and concepts of landscape ecology as an emerging science. In
Zomeveld. 1. S. and Formann, R. T. T. (eds.) Changing landscapes: An Ecological
Perspective. New York: S pringer-Verlag. 3-20.

Appendix A

Geographic Information and Decision Support Systems

A.l Geographic Information Systems

DefInition. A geographic information system (GIS) is usually defked as a computer-based

information system that enables capture, modelling, manipulation, retrieval, analysis, and

presentation of geographicdy referenced data morboys 1995, pp. 1 1.

The above and similar BCGIA 19891 definitions actually summarize the cornmon

bctionalities of a GIS. Other practicai definitions may m e r emphasize typical

applications of GIS. For example, Cowen [1988] argues that ''A GIS is best defined as a

decision support system involving the integration of spatially referenced data in a problem

solving environment." There is also a tendency to include users (e.g. organizational context

as descnbed by Burrough [1986]) of a GIS in the definition. The key argument is that a GIS

is a complex system the proficient use of which needs human-computer interactions. A

team of trained staff with GIS skill and application domain expertise is indispensable to

successful operations of GIS applications. This point of view expresses a popular concern

that curent GIS is not easy to understand and use. Mastery of it requires comprehensive

training to know the tools it provides, the data models and data structures on which it is

built, and more importantly, the weakness and limitations it brings to bear on certain

applications.

GIS hardware. The general hardware components of a GIS include the computer and its

peripherals (Figure A.1). The computer system must have a central processing unit (CPU),

and is configured with a random access memory (RAM) as well as an internal hard disk.

The penpheral devices consist of: a keyboard, a screen display monitor, a floppy disk drive,

a compact disk (CD) drive, a tape drive, a digitizer, a plotter, and optiondy, a scanner. The

CPU is in charge of executing instructions designated by computer programs. During the

execution of an application, data and programs have to be read and temporady stored in

the RAM. One use of the hard disk is to persistently save data and program files. Floppy

disks and CDS are also storage media which can be used for communication. Nevertheless,

more and more communications between users of computers nowadays are performed

through a network of computers. An effective network connection to intemet and intranet

becomes a dispensable penpheral when configuring a computer hardware for a GIS. The

monitor provides the visual display of data, programs, and control panels for human-

computer interaction, normally with the help of a keyboard and a mouse. Digitizers and

scanners are used for converthg data on maps and documents into digital f o m The results

of the data processing c m be presented via a hard copy obtained by means of a plotter.

1 connection / / Tape 1 Ihloniior 1 / Digitizer drive 1
Cornputer

CD drive (CPU+RAM+ Flotter
Hard disk drive)

"OPPY 1 / Kcyboard 1 Maure 1 1 Scanna disk drive

Figure A.1 The general hardware components of a GIS

GIS software. The GIS software constitutes a more important and usuaily more expensive

component of the system, in cornparison with the hardware. The basic software component

is divided into closely related functional modules or sub-systems which handle data

input/edit, presentation, query/analysis, datz modelling and database management, and

human-computer interface, respectively. A schematic view of these basic modules and the

building architecture is s h o w in Figure A.2.

Data inpuü'edit. A AGIS is useless without data. Data can be spatial or non-spatial. Spatial

data are usually supposed to represent something that c m be located in the real world. Non-

spatial data in a GIS are usualiy subordinate. They are associated to and descnbe spatial

data AU data, spatial or non-spatial, must be in digital f o m of some formats before they

are entered into a GIS. A GE normaily captures data through scanners, digitizers, and

standard input peripherals as for ail information systems (keyboard, mouse, CD and disk

readers, internethtranet). Each of these devices is supported by appropnate software called

drivers. Commonly involved processes in this module include format conversion, error

detection and correction, rectification and registration, and line simplification. Most of

these processes are highly humadmachine interactive. Editing data after its initial input to

resolve topological errors is tedious manual work with most commercial GIS.

Figure A.2 The main software components of a GIS

Capturing spatial data in a GIS contributes a major cost which can be as high as 70 per cent

of total GIS system expenses [Dickinson and Callllns 19881. The digitizing process is slow

and expensive, but it does deliver a weU structured and information Bch vector data source.

Scarming is fast and cheaper, but the raster end-product is limited in structure and in the

ability to add values by attaching attributes to spatial references. Two possibilities for

improving spatial data capturing exist: 1) increasing automation and reliability in raster-

vector conversion; 2) improving a raster-based system to provide equai or enhanced

functionality with vector systems. Recent research and development in the Industrial

Research Chair in geomatics applied to forestry, at Laval University has demonstrated a

great potential for reducing cost on data capninng. Three techniques have been developed:

1) interactive digitizing with dynamic topology [Gold 19941; 2) rapid digitizing for

environmental data [Gold et al. 19961; and 3) map scanning plus automated raster-vector

conversion with simple vector topology [Gold 19971.

Query and analysis. Data query and analysis constitute a major software block of a GIS.

Querying a GIS for information can be thought of as the process of asking @y users) and

answering @y a GIS) questions. Application related questions are numerous, no tably

c o v e ~ g three aspects of geographical data: spatial, aspatial, and temporal. Some of these

general questions are the following [Burrough 1986, pp. 91:

(a) Where is object A?

(b) Where is A in relation to place B?

(c) How many occurrences of type A are there within distance D of B?

(d) What is the value of function Z at position X?

(e) How large is B (area, primeter, count of inclusions)?

(f) What is the result of intersecting various kinds of spatial data?

(g) What is the path of least cost, resistance, or distance dong the ground from X to Y?

(h) What is at points X 1, X2, ... ?

(i) What objects are next to objects having certain combinations of attributes?

(j) Reclassfi objects having certain combinations of attributes.

Oc) Using the digital database as a mode1 of the red world, simulate the effect of

process P over time T for a given scenario S.

Some of these and other questions can be answered easily, some with diff~culty, and some

cannot be answered given current theory and technology. Most of the questions inquiring

about temporal properties and topological dynamics of geographical phenornena cannot be

easily answered using the majority of commercial GIS on the market. Difficult questions

often rely on the underlining data models and the analytical processes of a system. Analysis

of geographical data usually refers to processes that need to manipulate the spatial or

temporal aspects of data in order to calculate or denve the geornetric, topological and

temporal properties of the data Geometric properties of spatial data concern theh shape,

size, or location in an embedding space. Topological properties are the ones that are

invariant under "rubber-sheetY7 transformations, which continuously defom the underlying

space without breaking it. Examples of topologid properties include: neighbourhood.

adjacency, connectivity, and inclusion. Temporal properties concem the evolution,

disturbance events, and precedence relationships of geographical data in a certain t h e

h e . A part of forestland F transfomed into an industrial park IP in 1990 may be an

example indicating an evolution of F, and at the same the, a creation of a new entity called

industrial park (P).

Query and analysis WU inevitably retrieve the geographical database for the desired data,

which involves search and access operations. Retrieval, search, and access of data are often

used ambiguously to mean "getting data from databases". They do, however, have

distinctions. Retrieving is a collective terni which treats a database as a blackbox without

really referring to intemal data organization and search operations provided by the database

management. Searching data from databases concems more of the logicai structures of data

organization and of the operations to locate relative addresses of desired data in the whole

structure. The whole structure may be divided into severai logically related fies which

reside in storage media. Accessing data is the set of methods which actuaily 'ctouches" the

physical records of the desired data, based on their relative addresses in each file. To access

a data record, the file containing the data must fmt be opened. Other important accessing

operations include fmd, read, delete, modiw, insert. Finally, the file opened must be closed.

How efficiently data in the database can be searched and accessed in order to be retrieved,

and sometimes modified depends on the construction of data models and supporting data

stmctures. Construction of data models and data structures for building a spatial database

management system is the central concern of this thesis.

Data presentation. This module concems how data and results of query/analysis from a

GIS can be presented to users through output devices. Traditional general purpose

databases provide output in the f o m of text and numbers in tabular form. A report

generator is a standard feature of a DBMS and allows the embedding of database output in

a high-level document format which c m be enhanced by colourful charts and graphies. GIS

requires a m e r step to the presentation of maps and images. Such presentation should

enable the user to visualize their base maps and results of analysis, which may be multi-

dimensional. Information wili be required at varying scales, and appropnate detail should

be presented at each scale. This is closely related to the issue of geographical database and

cartographic generuiization which will be discussed in this thesis in a rather integrated

way.

Geo-object database, data rnodeiling, and dntabase management. The geo-object database

stores geographical data. The depositing of geographicd data in the database, however,

must follow pre-defmed database structures which themselves are translations of data

modelling processes with compatible database languages. The essence of data modelling is

to identify and describe entities and relationships in reality, with respect to the real world

processes affecting them. In the computer world, entities and relationships are often called

objects and relations, respectively. Geographical data in the database need to be represented

as objects with varîous cornplexities. Each geographical object (geo-object) has to be

described with a few references or characteristics. Typical aspects of a geo-object may be

spatial, textuaVnumerica1, graphical, and temporal charactenstics.

The spatial aspect of a geo-object concems the specification and structure of the object in

an embedding space. Geometnc and topological data models are often used to study spatial

structures of and operations upon geo-objects. Geometric and topological data models are

ofien referred to collectively as spatial data models. A good spatial data mode1 should be

closed under operations on the objects concemed, and expressive with respect to a wide

range of object types and relations. The value of a geo-object is primarily reflected from its

textuaVnumerical aspect. The identification of a geo-object in a database requires a unique

value together with its spatial description. The textuaUnurnerical aspect of a geo-object is

also referred to as the thematic aspect and is often studied with thematic data models which

concem the semantics of objects in the application domain. The graphical aspect of a geo-

object concerns how the object is presented or visualized. It was traditionally thought of

merely as a cartographic issue. More and more, the approach now is to consider it an

integral part of the spatial data modelling. The temporal aspect of a geo-object concems its

changes over space and tirne. A meaninghil change in an object occurs when its spatial or

textuaVnumerical stahis is altered at a particular tirne. Data models must encompass a long

t h e frame and capture meaninghil changes such that the previous statu of an object can

be retneved and restored if desired. Another issue associated with the temporal aspect of a

geo-object is how data models can reflect changes in a localized and dynarnic fashion. A

data model is dynamic if integraiion among its components can be maintained upon

changing events without restructuring the whole model.

Computerized database capabilities are enabled by a collection of pragrams called a

database management system (DBMS). The DBMS is hence a software system that

facilitates the process of defining, constructing, and manipulating databases for various

applications. Defning a database involves specifying the types of data to be stored in the

database, dong with a detailed description for each type of data Constnrcting the database

is the process of storing the data itself in some storage medium that is controlled by the

DBMS. Manipulating a database includes functions such as querying the database to

retrieve specific data, updating the database to reflect changes in the real world, and

generating reports from the data. A database in a GIS must be spatial, which distinguishes a

GIS from other information systems. Nevertheless, Like any other standard database, a

DBMS in a GIS should possess the following basic capabilities:

1. Controlling redundancy: Redundancy refers to storing the same data multiple times.

This happas in traditional fie processing systems where each user group

independently keeps data files for their own use. Redundancy leads to problems such as

duplication of effort, wasted storage space, and more senously, inducing data

inconsistency. The database system controls redundancy by integrating the views of

different user groups during database design which ensures that each logical data item

is to be stored in one place only.

2. Sharing of data: A database may be accessed by multiple users at the same time. This

is essential if data for multiple applications is to be integrated and maintained in a

single database. Sharing of data is an important way of reducing die high cost of data

capturing. It also promotes inter-discipline cooperation to achieve more optimized

results. By sharing data, authorized updating of data can be incorporated by multiple

applications in a timely fashion. By allowing multiple access, a database system must

include concurrency control methods to ensure that several users trying to update the

same data do so in a controlled rnanner so that the result of the update is correct.

Besides, security and authorization procedures must be placed to assign privileges to

different users for the retrieval or updating of data.

3. Providing backup and recovery: If the compter system fails in the rniddle of a

complex update program, the recovery subsystem is responsible for making sure that

the database is restored to its state before the program started executing. Altematively,

the recovery subsystem could ensure that the program is resumed from the point at

which it was interrupted so that its full effort is recorded in the database. This requiics

that the backup subsystem should keep track of database update operations and should

record updates and data necessary for the future recovery. This capability is essential to

maintainhg the temporality of databases.

S orne researchers feel that current geographical database s ystems lack proper database

management support. This shortcoming leads to lack of portabiiity, maintainability,

reusability and sometimes correctness [Stuth and Smith 19931. Over the past twenty yean,

most of the theoretic research on DBMS in GIS have emphasized developing appropriate

spatial data models. Ln current practice, the majonty of spatial DBMS are composed of

carefully devised programs to handle the management of spatial data. These systems have

gained needed functionalities by developing customized, individual stand-alone programs.

Standard capabilities of a DBMS, especially the ones dealing with multiple access and

update of spatial data and management of time in the database system, have not been fully

realized. A satisfactory solution to these DBMS issues still relies on the promise of a

modem spatial data mode1 and open system architecture.

GIS intetj%aces. A GIS is not just a store for depositing geographical data One of its

purposes is to support and to facilitate the use of data. A GIS should provide a variety of

user interfaces. The types of interface include query languages for casual users,

programrning ianguage interfaces for application programmen, forms for parametric users,

menu-driven or iconic interfaces for naive users, and natural language interfaces. On-line,

context-sensitive help facilities also constitute an important part of the interface.

A.2 Spatial Decision Support Systems

Definition. A Decision Support System (DSS) can be viewed as an integrated solution to

help people to make their decisions. It can encompass methodologies as diverse as

cornputer models, expert systems, information systems, discussion groups, and structured

thought and evaluation processes. The use of a DSS can improve the objectivity of decision

making, especially where complex interactions are involved. A Spatial Decision Support

System (SDSS) is one that involves the integration of spatially referenced data in a

pro blem-solving environment.

One of the key characteristics of a SDSS, as with a general DSS, is that problems to be

solved are often ill-defmed or ill-structured. As is put by Simon 119771, "Decisions are non-

programmed to the extent that they are novel, unstructured, and consequentid. There is no

cut-and-dried method of handling the problem because it hasn't arisen before, or because its

precise nature and structure are elusive or complex, or because it is so important that it

deserves a custom-tailored treatment." Seeking solutions for unstructured problems requires

the integration of our understanding of the problerns themsekes. In these processes,

additional data, information and knowledge rnight be required and there is no obvious

stopping mie for the investigation. Understanding problems involves such aspects as

identiwing observable and controiling process variables, discovering casual relationships,

and developing a preference structure to rank outcornes [Cameron and Abel 1996). As the

investigation proceeds, some unstmctured problems may become semi-stmctured or

structured.

In the consuuction of a DSS, it is important to understand the human decision making or

problem-solving processes. Research on human problem solving supports Simon's claim

that al1 cycles of problem solving can be broken down into three phases of activities:

intelligence, design, and choice [Simon 19771. The intelligence activity searches the

environment for conditions calling for decision; the design process invents, develops, and

analyzes possible courses of action; and the choice activity selects a course of action fiom

those available. Nomaily, intelligence precedes design, and design proceeds choice. The

cycle of phases is. however, far more complex than the sequence suggests. Each phase in

making a particular decision is itself a complex decision-making process. The design phase,

for example, may cail for new intelligence activities; problems at any given level generate

subproblems that in tum have their intelligence, design, and choice phases, and so on.

These problem-solving stages all contribute to the answering of the questions: "What is the

problem", ' m a t are the alternatives", and " W c h alternative is best".

Another indispensable consideration in building a DSS concems the nature and type of

decisions within an application domain. It is realized that the nature and type of decisions

are closely related to the organizational structure of the application which designs,

implements, and uses the DSS. For each leveI of the structure, decision activities and

bctional requirement of the system are significantly different from that at other levels. A

classification scheme differentiatïng planning, controlling, and operating activities within

an organization is developed by Anthony [1965]. This scheme consists of three categories

of managerial decisions and suggests that these categories represent activities suffïcienùy

different in kind to require the development of different systems.

The fmt category is sîrategicplanning. It is the process of deciding on the objectives of the

organization, on the changes in these objectives, on the resources used to attain these

objectives, and on the policies that are to govern the acquisition, use, and disposition of

these resources. This process focuses on the choice of objectives for the organization and

on the activities and means required to achieve these objectives. As a result, a major

problem in this area is predicting the future of the organization and its environment.

S trategic planning does not follow a routine procedure.

The second category is munagement control in which managers assure that resources are

obtained and used effectively and effkiently in the accomplishment of the organization's

objectives. Key aspects of activities in this area include I) inter-personal interaction; 2) the

activity takes place within the context of the policies and objectives developed in the

strategic planning process; 3) the paramount goal of the activity is the assurance of

effective and efficient performance.

The third category is operational control. It is the process of assuring that specifïc tasks are

caxrïed out effectively and efficiently. The boundaries between these categones are often

not clear. The classification, however, helps to identiQ the fundamental character of

information needed by different decision-making and management levels [Gorry and

Morton 19751.

Strategic planning O ften needs aggregate information which is obtained main1 y from

sources extemal to the organization itself. Both the scope and variety of the information are

quite large, but the requirements for accuracy are not particularly stringent. The nonroutine

nature of the strategic planning process means that the demand for information occurs

infrequently. The information needed for operational control stand in sharp contrast to

those of strategic planning. The task orientation requires information of a well-defined and

narrow scope. The information is quite detailed and arises largely from sources within the

organization. Very fiequent use is made of this information, and it must therefore be

accurate. The infonnation requirernents for management control faii between the extremes

for operational contrd and strategic planning. Much of the information in this area cornes

fiom the process of interpersonal interaction.

In addition to understanding the decision process in an organization, knowledge about

information flow and assumptions made in the design of a DSS help to justify its

appropriate use and hence the decision outcornes. Any information system assumes views

of the world which reflect in some way the opinions of the designer about the information

needed at each stage of decision within an organization. These assumptions are intrinsic to

the intemal architecture of a DSS and are vital to its flexibility and success. The following

diagram (Figure A.3) (modified from Mason [1975]) austrates the information flow and

general assumptions inûorporated at each stage of a decision.

Source El
Assumptïons about the
confidence, trust and
credibility the &cisiop
rnaker places in the
assumptions made in the
previous steps.

Assumpîions about the vaiues, purposes and
objectixs pertinent to this decision and about
the criteria for choice.

Assumptions about functional relationships, especially
cause and effect relationships, among data items and
b e ~ e n present and future States of the system

Assurnptions about ucltiich of the manifold of phenornena occming at the source should be
obsemd, selected, filtered, classified (inîo which categories), measured (on h c h
scales) and recorded as data items and about *ch items are reIemt to subsequent . - -

Figure A.3 Assumptions at each stage of information flow

The information flow in Figure A.3 is compatible with the three phases of the problem-

solving process discussed earlier. The processes involved in identiQing and collecting

infornation sources and assimilating data correspond to the intelligence phase; the

problem-solving models, which may include predicting, analyzing, simulating, and logic

deducting rnodels and tools to the design phase; and the outcorne, values and choice of a

decision to the ch~ice phase.

Structured much like a GIS, a modem SDSS might in addition incorporate an expert system

which nuis over a nile-base for an application domain (Figure A.4). The expert system

fonnalizes, stores, manages, and manipulates domain specific knowledge needed for

problems. The subsystem interface takes care of interactions between the geo-object

database and the expert system. The integrating of the problem-solving models and tools

transfers the total system to a more specific application system. Consequently, the user

interface may need to be customized to suit domain experts or decision-makers who are

novices to computerized system.

Figure A.4 The software architecture of a SDSS

Stuth and Smith [1993] reviewed the development of a SDSS for ecosystems, from an

domain expert point of view. The following aspects have arisen as a wish list of a future

SDSS:

Graphical inte?fizce, multimedia and data visuulizution. Appropriate and attractive

forms of data display are a vital part of helping people to make better decisions. Good

maps, graphs, flowcharts, and other displays aid people to interpret data and to

appreciate its significance much more rapidly, and if honest, more objec tively .

Spatial landscape analysis. Greater emphasis is king placed on seamless, application-

specific spatial landscape analysis to address planning applications which have both

temporal and spatial responses. This requires spatial aualyzers to be flexible enough to

be Linked to planning models without disrupting a planning session.

Integrating data from RS, digital photography and GPS systems. Directiy importing

these data sources into a SDSS c m help monitor the effectiveness of management

strategies imposed on landscapes.

Experî systems. Considerable interest is focusing on using speciaiized, well-focused

expert systems embedded in SDSS to help users with parameterizing simulation models

and to match technological development options with management systems.

Embedded simulation models. The core of many SDSS will always be good simulation

models, varying fkom simple spreadsheet-style aids tu complex representation of system

function where data and understanding exist. Developers will need to pay greater

attention to controlling mode1 complexity for the sake of users and their input data

needs while maintainhg the quality and integrity of results.

Natural resource infomtion networks. There is a growing need to create on-line data

for regional, national, and international databases to service these data requirements

including soils, land use, weather, plant attributes, endangered species, etc.

Open systems architectzues. SDSS should meet current users needs yet have sufficient

flexibility to adapt to future technology. Especially, on-line communications through

the internet need to break software, hardware, and technology banîers to allow different

operating systems, databases, and applications, interact with each other.

Staruhrdization and CO-operation. There is an increasing need to standardize data and

applications to facilitate data exchange. For SDSS to have widespread value and ready

accessibility to users, some display standards are needed.

Appendix B

Tools And Concepts In Data Modelling

The appendix discusses the role and nature of models in information modelling, fiom which

the generd phases of developing data models and methodologies applied to each stage can

be presented. The development starts fÏom the real world, through different levels of

abstractions, to the implementation with a compter. The real world concemed is

prescnbed by the geographical phenornena occumng in a forest ecosystem with respect to

the environment wherein a fores t SDSS works. S pecial treatments for spatial information

are considered within the context The purpose of discussing basic tools and data modellllig

concepts in this part is to have an overall understanding of the hindamentals involved in

consmicting database models, instead of taking them for granted. More complex m o d e h g

structures and processes, like the ones addressed in Chapter 2, have these basic structures

and simple processes.

B.1 The Role and Nature of Data and Process Models

A rnodel is a human-obsewed representation or reflection of sornething in the real world.

The primary reason for using a model is because the real world is often so large and

complex that the comprehension of it is very dificult and sometimes impossible by a

human k ing without the help of a model. The understanding of positional relationships

between continents, for example, might be outside human capacity if some kind of overall

perception (verbal description, drawing, sketch) is not present in hisher mind. This

knowledge is obtained by reading a world map which is a representation with simplified

contents, reduced size, and rounded accuracy. This illustrates the important use of a model

for communicating knowledge and provides a basis for the study of the real world at some

resolution level. A data model is a model conceming data. The emphasis put on a data

model is the data, Le., the measurement, observation, and description captured fkom the real

world. The types and charactenstics of data detennine how complex a modelling process

must be to effectively represent the real world. The existence of data, together with a host

of models, transfers the study of the real world into the study of data models of the real

world.

It must be noted that studying a representation of the real world is not the sole objective of

data rnodelling. A more interesting consideration in data modelling is that data models

provide a background on which such processes as analysis, reasoning, planning and

simulation can occur. In order to have a meanin@ and useful data model of the real

world, modelling processes occurring in the real world must proceed in pardel. This

requires that the intemal structures of a data model match the specific needs of process

modelling.

Any representation of the real world is an abstraction. It is impossible to accommodate dl

aspects of the real world in the construction of a model. Important factors need to be

selected. This includes identifying application-signifkant entities (things, concepts, events),

and the relationships, processes, and constraints or conditions that delimit these

components. These constrained components constitute the information content of a data

model. The abstract nature of data rnodels determines that they are not exact replicas of the

real world but partial views of it. Therefore, the development of data models must contend

with the inverse process: transferring results from data and process models back to the part

of the real world modelled.

Questions concerning the study of a data mode1 are: 1) which entities are covered by the

model; 2) which relationships between entities are explicitly expressed; 3) what are the

operations on those entities and relationships; 4) what are the constraints that bound

operations and relationships, the dynamic interactions of one operation with another, as

well as the interactions with entities; 5) is the data model closed under valid operations; and

6) how accurate and precise are the information contents of the model in cornparison to

their counterparts in the real world.

This section introduces 'some basic mathematical concepts and tools usefid in constnicting

complex models of the real world. The power of these mathematical basics lies in their

abstract ability. The abstract constructions, operations, axioms and theorerns c m then be

applied to interpreting real world situations. The most important and axiomatic concept in

the construction of mathematical models cornes fiom set theoretic notions-

B.2.1 Sets

A set is a collection of things (cailed its members or elements), the collection being

regarded as a single object. Whenever possible, we will use italic capital letters as names

for the sets we introduce and italic small letters for elements that may or may not be

memben of a paaicular set. If S is a set, we indicate the fact that a is an element or member

of S by the notation of a E S. Similady, we write a E S to Say that a is not a member of S.

"Set" and "membef' are two primitive notions within the axiomatic method of the set

theory. Other concepts will be defmed in terms of these two primitives which themselves

will remain undefined. Instead, a List of axioms c o n c e d g the primitive notions is adopted:

Equality: If two sets, A and B, have exactly the same members, then ihey are equal:

Empty set: The set B having no members, denoted 0, is called the empty set:

3B (Vx I x g B).

Subset: For two sets, A and B, if every member of A is a member of B, then A is a subset of

B, denoted A B:

VA VB[Vx(x E A s x E B) = A 5 BI-

A is said to be contained in B if A G B. IfA G B but A # B, then we Say that A is a proper

subset of B and wnte A c B.

Power set: For any set A, there is a set B whose members are exactly the subsets of A. The

set B is said to be the power set of A, denoted p (A):

B.2.2 Operations on Sets

We are going to discuss several ways of composing new sets fiom old ones. These

operations constitute part of the algebra of sets.

Union: For two sets, A and B, their union, denoted A u B, is the set whose elements are

members of either A or B:

Intersection: For two sets, A and B, their intersection, denoted A u 23, is the set whose

elements are rnembers of both A and B:

Diifference: For two sets, A and B, their difference, denoted NB, is the set whose elements

are members of the fmt set A but not the second set B:

Relative complement: This operation is usuaiiy appLied to a single argument A S, where

the complement of A, denoted A', is a set whose elements are mernbers (of S) not in A:

The diagrammatic representations of the previous operations are shown in Figure B. 1. The

shaded regions represent the new sets resdtuig from the respective operations.

A u B A n B N B A'

Figure B. 1 Set union, intersection, difference, and relative complement

The union and intersection operations can be generalized to n arguments without regard to

the order of the composition. In complete analogy with the use of the summation symbol in

arithmetic, we may therefore define

= (a l a E Ai for some i = 1,2, --, n}

Using the generalized union and intersection, the intuitive notion of the partitionhg of a set

can be defined. Before definhg partition, we need to agree to Say that the sets A and B are

disjoint if A n B = 0 (intuitively, they do not overlap). More generally, any finite number

of sets At, AZ, ---, An is said to be disjoint (or, for the sake of clarity, mutually disjoint) if

Partition: A collection n = {Ai, A*, --, A.} of nonempty subset Ai S is a partition of S if

(a) (oj Ai = S (the Ai are a covenng of S), and
i=1

(b) Ai Aj = 0 for al1 i # j (they are mutually disjoint, no overlap)

The subsets Ai are cded the blocks of the partition. A partition of S into k nonempty blocks

is called a k-partition of S. Figure B.2 intuitively illustrates the partition operation.

Figure B.2 A partition of the set S

B.2.3 Relations and Functions

The simplest mathematical structure of al1 is the unstructured set. However, sets on their

own are limited in their applications in modelling. As everything in the real world is related

to something else, and sets cm be used to hold things, it is of paramount importance to

define relational structures between sets. This can be treated with the aid of the set product

construction, which in turn will lead quite natüraliy to the important definition of

relationshîps and functions. Without the latter, a meaningful analysis of Our subsequent

mathematical structures would be impossible.

Product: Given any sets A and B, the product, denoted A x B, is defined to be the collection

of ail ordered pairs (a, b) such that a E A and b E B. That is

By an ordered pair, we mean that (a, b) and (a', b') are regarded as equal only when a = a'

and b = b'. Thus (a, b) z (a', b'), in general. In fact, when A = B = R, the set of real

numbers, then A x B is recognized as the set of points in the Cartesian plane. For this

reason, the product A x B is quite often referred to as the Canesian product of the sets A

and B.

As in the case of unions and intersections, we can extend the definition of products to

arbitrarily n (for n 2 2) factors:

= {(al, a*, O - - , ad I ai E Ai for each i = 1,2, ---, n)

In the special case where all the Ai are the same, Say AI = At = --- = A, = A, we denote this

product set by An. Thus for any set A we have

An = ((ai, a2, --•, a.): ai E Ai for all i = 1, 2, a-, n}

and the elements of such a product set are usualiy called the n-tuples from the set A. The

term n-tuple is just the generalized terminology: pair, triple, quadruple, ---, n-tuple.

Binary relation: A binary relation R from a set A to a set B is simply a subset R A x B.

We Say that a E A is related to b E B (by the relation R) if (a, 6) E R. The notation a R b is

used in the connection,

Given a relation R on a set A, the following three important properties are often used to

classi@ relations on a set, we use the symboIs x, y, z to denote members of A:

(i) Regexive: x R x, -for ail x (i') irreflexive: x R x, for no x

(ii) Symmetn'c: x R y y R x (ii') antisymmetric: x R y, y R x x = y

(iii) Transitive: x R y, y R z = x R z

The graphical representation of the three properties is given in Figure B.3, where the

arrowhead edges depict the relation.

(i) Reflexive (ii) Symmetric (5) Transitive

Figure B.3 Reflexive, symmetric, and transitive relations

The binary relation R is reflexive if it satisfies (i); symmetric for (ii); and transitive for (iii).

If a relation R satisfies al1 the three properties, the relation is said to be an equiva[ence

relation, denoted -. The properties of an equivalence relation express important aspects of

being the sarne, which are ordinady taken for granted, and are usually obvious for specific

equivalence relations. Equivalence relations are the primary tools employed in the process

of abstraction, or selectively ignoring differences which are irrelevant to the purpose at

hand. Within a given context, we Say that two things are equivalent if the differences

between them do not matter. Another way of looking at equivalence relations is as ways of

dividing things into classes. The result of this process is a collection of new sets. For aay a

E A, an equivalence class [a] determined by a can be defined, which is the subset of A

consisting of a l l the elements that are related (equivalent) to a. That is,

It is interesting to note that the partition of a set A induces an equivalence relation on A

which relates elernents of A in the same block. AU elements in one block constitute an

equivalence class.

Partial ordering relation (denoted b y I): The relation I is a binary relation which is

transitive, reffexive, and antisymmetric. For a set A, it is called a partially ordered set or

poset if the partial ordering relation is on A. Two elements a and b in A are said to be

comparable under S if either a 2 b or b I a; otherwise îhey are incomparable. If every

pair of elements of A are comparable, then we Say that [A; I] is totally ordered or that A is

a totally ordered set or a chain. In this case, the relation 2 is caIled a total order.

Function: Afwtction is a special type of relation between elements of one set S and those of

another T, denotedf: S + T. The first set S is called the domain, and the second set T the

range. The distinction of a function from a relation is that it transforms each x E S into one

and only one element Ax), called the imge of x, in the range T. Thus fimctions are by

nature single valued in that

Ax>*fi)=x*r

The image is a subset of the range. The relationship between hinctionfix), domain, range,

and image is illustrated in Figure B -4.

Figure B.4 Sets forflx) (adapted from Worboys [1995], pp. 109)

A function f is said to be injective (or one-to-one) if it transforms two distinct elements in

the domain into two distinct elements in the range, that is

A function f is surjective (or onto) if each t E T can be written as t =As) for some s E S,

that is, if every element of the range is an image. That is

A function that is both injective and surjective is bijective (or one-to-one correspondence).

B.2.4 Grapbs and Trees

Abstract graphs: A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset

of the set of unordered pairs of V. The set of V is the set of vertices and E is the set of

edges. E c m be any relation on V. V = V(G) is the vertex set of G and E = E(G) is the edge

set. G' = (V, B) is a subgraph of G if V c V and E c E, we write Gr c G. If Gr contains

all edges of G that join two vertices in Ir then G' is said to be the subgraph induced or

spanned by V and is denoted by G[VI.

The order of G is the number of vertices; denoted by IGI. The same notation is used for the

number of elements (cardinality) of a set: Ki denotes the number of elements of the set X.

Thus IGI = IV(G)l. The size of G is the number of edges; denoted by e(@. We write Gn for

an arbitrary graph of order n. Similady, G(n, m) denotes an arbitrary graph of order n and

size m.

Two graphs are isomorphic if there is a correspondence between their vertex sets that

preserves adjacency. Isomorphic means "having the same fom". Thus G = (V, E) is

isomorphic to G' = (Y, B) if there is a bijection 0: V + V' such that xy E E iff 0 (x) DO>)

E Er. Clearly, isomorphic graphs have the sarne order and size. Usually we do not

distinguish between isornorphic graphs, unless we consider graphs with a distinguished or

labelled set of vertices (e.g. subgraphs of a given graph). In accordance with this

convention, if G and H are isomorphic graphs we wnte either G i H or simply G = H.

Trees: A tree is an acyclic graph.

B.3 Conceptual Data ModeIlhg Techniques

The mathematical basis presented in the preceding section provides a preiiminary

formalism to defme abstract sets, relations, and functions. Modelling the real world requires

identifLing components, i.e. entities, relationships, and operations, from the real world and

representing them with these mathematical constructs. However, the real world is often a

complex one in that most of the components identified cannot be directly modeiled with

basic mathematical tools which are based on homogenous sets. Some rigorous and

systematic modelling techniques have to be employed to defme and constrain compound

smicnires from basic ones, to practice operations on these structures, and to present the

model to othes. This section introduces some general concepts on how complex structures

can be constructed from simple ones, and then specific modelling techniques for the entity-

relationship (ER) data model and the object-oriented (00) data model wiU be discussed.

These two data models are used, primarily, to descnbe inter-related concepts from the real

world without considering any implementation details with a computer. They are therefore

generall y called conceptuul data models.

B3.1 Modeiiing Concepts

Classification: The process of classification involves classifying sirnilar objects or concepts

into classes. A class is andogous to a set. Some traditional set theory claims that a class is

too large to be a set. In data modelling, objects in a class correspond to named things in the

real world and their internid structures and behaviour often need further definition and

explmation using some more primitive concepts. In general, objects of a class have similar

structures and the values of particular properties descnbing these objects belong to identical

atûtbute domains. However, some of the objects may display properties that make them

differ in some aspects from the other objects in the class. These exception objects need to

be modelled using additional constraints. Instantiation is the inverse of classification and

refers to the generation- and specific examination of distinct objects of a class. Hence. an

object instance is related to its object class by an "IN" or "1s-AN-INSTANCE-OF'

relationship.

Observing and c lass img similar objects in the real world and pu thg them into classes is

necessary when a bottorn-up approach is adopted in data modelling. This process produces

abstract data types and altows us to describe or ta& about classes rather than the individual

objects themselves. Certain properties may apply to the class as a whole and not to the

individual objects themselves. For example, the class name and the number of objects in the

class are class properties. The average value of an attribute over aIl members of a class is

another example of a class property. Incorporated with other modelling concepts,

classification can result in fairly complex data types.

Abstraction: One of the main ways of structuring and visualizing data is through the use of

abstraction [Tsichritzis and Lochovsky 19821. Abstraction is the ability to hide detail and

concentrate on general, common properties of a set of objects. An elementary f o m of

abstraction distinguishes between the token level and the type Ievel. A token is an actual

value or a particular instance of an object. Abstraction is used to defme a type from a class

of similar tokens. For instance, abstraction is applied to a set of Bowers to form the generic

concept FLOWER. In data modelling, abstraction is used to obtain categories of data and

combine categories into different levels of more general categories. Data in the sarne

category are supposed to have similarities. Sometimes these similarities are stated as

properties of the category. There are two techniques for abstraction: generalization and

aggregation [Smith and Smith 19771.

Generalization: This process views a set of tokens or a set of types as one genenc type.

Token-type generalization is usually differentiated fkom type-type generalization. The

formai process is referred to as classification, while the latter process is called

generalization. For instance, viewing a set of individual river tokens as one generic type

RIVER is considered classification. Viewing the types RIVER and LAKE as one generic

type WATERBODY is considered generalization. Therefore, generalization is used to

describe a phenomenon involving a family of types inhenting sorne common property

which is essential to the phenomenon. It would be more general to use a single concept

"waterbody" to refer to the percentage of a surface area covered with water than using

concrete concepts such as "river", "lake", "stream", etc.. Analogous to instantiation versus

classincation, specification is the opposite process to generalization. Thus, a river token is

an instantiation of the type RIVER, but the type RIVER is a specialization of the type

WATERBODY.

Aggregation: This abstraction structure is composed from its constituent objects- For

instance, a city can be characterized by its name, population, and centroid (coordinates of

its centre). Hence the attribute types "NAME", "POPULATION", "CEhTTROID" are

aggregated to describe the object type "CITY'. The more rigorous use of the aggxegation is

to relate one object with other higher level objects to fonn some compound object. To

evduate the land use of a city, for example, it is usual to include objects such as residential

areas, commercial areas, parks, etc.. These objects constitute the use of the land within the

city and each of them needs fmer structures to be completely described. Some of these

objects are themselves aggregated from smaller objects and they are essentiaiiy different

from each other. The reason for bounding them together is because of the specific relation,

'land-use", involved. There can be other relationships that bound a city with the objects

within it. For example, as parts of the city, residentiai areas, commercial areas, and parks al1

"lie in" the vicinity of the city.

B.3.2 The Entity-Relation (ER) Mode1

The entity-relationship (ER) model (or entity-attribute-relationship model) is one of the

best known conceptual models of an information system. It was orïginally proposed by

Chen Cl9761 and has been extended with many variations. In the following description, we

generdy do noî distinguish which version of relevant concepts were coined.

The basic components of an ER model, as the narne suggested, are: entities, attributes, and

relationships. An entiîy-may be a person, object, place. concept, or event of interest to be

represented in the database. An entiv type is used to represent a class of similar entities

occurrhg in the real world and is usually identified by a group name. Thus FOREST-

STAND, ROAD, RIVER are types of entities. In the type of RIVER, we have an

occurrence of a specific river named "Saint Lawrence". An attribute (or amibute rype) is

one of the properties identified to describe characteristics of an entity (or entity type). The

entity type RIVER, for instance, has one attnbute types called NAME, and one called

LENGTH, in addition to other possible ataibute types. Therefore, the river named "Saint

Lawrence" has a specific Iength of, Say 450.0 km.

The ER model features the graphical notation used to represent its components. An entity

type can be diagramatically represented by a rectangle box containing the name of an entity

type, whiie its attribute types are represented by ellipses each containing the name of an

attribute type. The subordination of an attribute type to an entity type is represented by a

line linking a rectangle box and an ellipse. The diagrams of m o d e h g components

following this notation are called entity-relationship or ER diagrams. For example, the ER

diagram for the entity type RIVER and its possible attribute types is drawn in Figure B.5.

Sometirnes attribute types of an entity type can be omitted from the ER diagrams.

Figure B -5 An entity type and its attribute types

A relationship type in the ER model, graphically represented by diarnond rectangles, is

used to descnbe an association between one entity type and another. The entity type

RIVER and the entity type CITY can be associated with the relationship type PASS-

THROUGH. An instance of this relationship finds that Saint Lawrence River passes

through the city of Quebec. Sometirnes a relationship type can also have attributes which

M e r spec- the nature of a relation. Relations c m be constrained by cardinalities. A

cardinaliv of a relation defines the number of times the relationship can occur between two

entities (occurrences). Cardinalities are expressed by four numbers indicatuig the minimum

and maximum numbers of entities occurring in a relation. Figure B.6 illustrates the PASS-

THROUGH relation. The cardinality number of the river indicates that a river may pass

through zero or n number of cities. Similady, an occurrence of a city may be passed

through by zero or rn nurnber of rivers, as indicated by the cardinality numbers by the city.

The relation in Figure B.6 is also called many-to-many (or mm) relationship, as suggested

by the maximm cardinality numbers at both sides of the relation. Potentially, one-to-many

(or lm), one-to-one (or 1: 1) relationships can be found in the real world.

Figure B.6 A rnany-to-many relation involving two entities

The ER model has been extended in various ways to meet practical needs. The extended

entiry-relationship @ER) model adds constructs of more complicated entity types by

applying generalization/specification and aggregation techniques described earlier. This

leads to the definition of class, superclass, subclass, and category in the EER model.

Associated with these concepts is the important mechanism of anribute inheritance.

A class is a set of entities; this includes any of the EER constructs that group together

entities such as entity types, subclasses, superclasses, and categories. An entity type Ei is a

subclass of an entity type E if every occurrence of type El is also an occurrence of type E.

Accordingly, the type E is said to be the superclass of El. The superclass/subclass

relationship is often cailed an IS-A relationship because of the way one refers to the

concept. A category T is a class that is a subset of the union of n defining superclasses Di,

4, ---, 4, n > 1. The EER diagrams representing a general superclass/subclass relationship

and category are shown in Figure B.7. The subset symbol c attached to the Linking lines

indicates the subclass/superclass relationship. A letter in the circle of each diagram

indicates the relationship between classes at the same level, as determined by set

operations. For our generai example, the letter 'd' in Figure B.7a indicates that El, E2, and

E3 are disjoint in E, while 'U' in Figure B.% shows that the category T is a subset of the

union of DI, D2, and D3.

a Generating El, E2, E3 into E b. Category T is a subset of the union
of Di, Dz, and D3

Figure B.7 A class/subclass and a category

B.3.3 The Object-Oriented (00) Mode1

The most appealing data modeliing technology is provided by the paradigm of the object-

onented approach. In the object-onented approach the concept of object dominates the

whole modelling, design, and programming philosophy. An object has not only static

structures for its definition, similar to the constnicts in the ER model, but also dynamically

behavioural ability. The unification of object states (data) and its functions (procedures) in

the specification of an object distinguishes the object-onented approach from those that

separate data and the procedures mnning the data. The object-oriented approach has the

following features that are missing from or weakened by a non-object-oriented approach:

Object classes and inheritance: "An objecr is a concept, abstraction, or thing with cnsp

boundanes and meaning for the problem at hand" [Rumbaugh et al. 199 1, pp. 2 11. The 00

model puts a great deal of emphasis on the design of objects. Objects serve two purposes:

they promote understanding of the real world and provide a practical ba i s for computer

implementation. All objects have distinguishing identities which persist through time and

are independent of their attnbute values. The identity of an object may be considered to be

represented by a system-generated object identifier (OID). Objects are explicitly created

and destroyed. Attributes of an object can be updated without destroying it's identity. "A

class is a group of objects with similar properties (attributes), common behaviour

(operations), commoo relationships to other objects, and common semantics (the meaning

that holds objects together)" [Rumbaugh et al. 1991, pp. 221. Similar to the description in

the ER model, subclasses and superclasses can be defined to represent the static aspects of

object structures. The difference with the 00 approach is that each class knows how to

operate on itself. By deciaring a superclass/subclaçs relationship, the subclass inherits all

the attributes and operations from the superclass as well as adding it's own. Inheritance

makes most of the design and programming effort previously made in the construction of

classes to be better utilized.

Methods and polymorphism: "An operation is a function or transformation that may be

applied to or by objects in a class" [Rumbaugh et al. 1991, pp. 251. Calculating area,

drawing, and colouring the intenor are operations on class AREAL-OBJECT. AU objects in

a class share the same operations. In the 00 paradigm, a method is the implementation of

an operation for a class. The same operation c m be irnplemented in different classes with

different procedures. This phenornenon is called polymorphism. For example, the class

AREAL-OBJECT may have RECTANGLE, CIRCLE, and TRIANGLE as its subclasses.

Al1 these subclasses inherit the method "calculate-area". The codes implemented in eac h

subclass, however, are different. Polymorp hism becomes powerful in combination with

inheritance. It provides flexibility for execution of processes in information systems,

because operations need only be bound to implementations at nui-time.

Encapsulation: Encapsulation (also referred to as information hiding) consists of

separating the extemal aspects of an object, which are accessible to other objects, frorn the

intemal implementation details of the object, which are hidden fiom other objects.

Encapsulated objects or components c m be used and reused in developing computerized

systems, which prevents a system from becoming so interdependent that a small change has

massive npple effects. The implementation of an object can be changed without affecting

the applications that use it m b a u g h et al. 199 1, pp. 71.

With the 00 approach, an object knows how to act itself. To activate an object to invoke its

methods, however, needs messagps communicated kom another object. Extemal stimuli are

generated by events which occur when objects in a system participate in activities.

Therefore, from the system's point of view, a data model should be equipped with an

environment in which processors (embedded in objects), correspondkg to system

functions, c m be managed, coordinated, and controlled. The environment serves as an

interface exposed to objects. The public interface of an object contains a collection of

messages to which the object responds by altering its state or r e h n g an object. The

interpretation of the messages passing between objects shows what happened to the objects

in a system. These concepts address three important aspects of an information system based

on the 00 data model: "the object model represents the static, structural, 'data' aspects of a

system; the dynamic model represents the temporal, behavioural, 'control' aspects of a

system; and the functional modei represents the transformational, 'function' aspects of a

systern" m b a u g h et al. 1991, pp. 171. Modelling these aspects is the content of a

particular methodology named the Object Modelling Technique (OMT) [Rumbaugh et al.

19911. The philosophy, concepts, and notations will be applied in this thesis for the design

of applications ushg our spatial data model.

B.4 Database Modelling and Design Process

In this section, we discuss commonly practiced rnodeliing processes for the design of

applicational database systems. It tums out that different phases of data modelling exist

information contents of a database. The presentation of this information is ofien called a

conceptual rnodel. A good conceptual model should also allow flexible manipulation of

concepts and relationships to denve new concepts and relations. Conceptual modellîng

plays a paramount role in designing an information system. Ir influences the expressive

power and operational capability of the information system build from it. The conceptual

model is, however, rnost general and is independent of any software or hardware. The

conceptual model should possess the following charactenstics [Elmasri and Navathe 1989

pp. 4621:

1. Expressiveness: The data model should be expressive enough tu point out commody

occuriing distinctions between diflerent types of data, relationships, and constraints.

2. Simplicity: The model should be simple enough for typical usen to understand and

use; its concepts should be easily understood by end users.

3. Minimai: The model should have a srnaIl number of basic concepts that are distinct

and nonoverlapping in meanuig.

4. Diagrammatic representation: The model should have a diagrammatic notation for

displaying a conceptual schema that is easy to interpret.

5. Formality: A conceptual schema expressed in the data mode1 must represent a formaI

nonambiguous specification of the data. Hence, the model concepts must be

accurately and unambiguously defied.

A conceptual model c m be obtained by an incremental approach. One starts with a

preliminary schema constmcted fiom the previous phase, and incrementdly modifies and

refines it. For large databases it is sometimes difficult to try to design the whole database

schema at once. In such cases, individual views (srnail schema) can be designed first by

using a bottom-up, top-down, or mixed strategy and then integrated p2lmasri and Navathe

1989 pp. 463-4641.

Phase 3: Logicai design. The next step after conceptual modelling transforms a conceptual

schema into the schema of a particular DBMS. A DBMS schema consists of structures,

constraints, and languages. A collection of structures specifies data and attribute types, and

relationships a DBMS schema supports. The set of constraints is used to ensure the

integration of schema structures, which is done by examinhg functional dependencies of

the structural components. The languages provide a host of vocabularies and syntax that

one can use to define allowable structures (called data definition language DDL) and

dynamic actions to manipulate data and structures (called data manipulation language

DML).

It is apparent that a DBMS schema has an inherent data model based on which the DBMS

is built. The basis of a DBMS data model encompasses some mathematical theory and

structures which operate on more or less homogenous entity and attribute domains (abstract

sets) and generates mathematical constnicts for complex relationships. Concepts and

relationships fiom a conceptuai model sometimes need to be broken into homogenous

components at this level. The relationships between components are maintained by logical

links provided by the DBMS schema- For this reason, the representation produced by

following a DBMS schema is referred to as a logical model. Except for mathematical

concepts used to capture and manipulate relationships, a logical model does not directly

involve any computing data structures. In fact, it hides the actual data structure from the

user. The way of constnicting a logical data model, however, affects data structures chosen

to implement a system.

Since the late 1960s, the development of DBMS data models has experienced several

evolutions. The earliest data models, such as the network and hierarchical models, were

drawn from early file processing and report generation systems Fry and Sibley 19761.

They have graduaily k e n replaced by a more popular data model, the relational model fmt

proposed by Codd [1970]. A significant reason for the popularity of relational data models

is that they are simple in nature and are strongly based on the mathematical theory of

relations.

The only data structurîng tools used by original relational data models is a relation. The

definition of a relation in relationai models is identicd to the mathematical one except that

database relations are time varying. That is, tuples are inserted, deleted, and modified in

database relations. The def~tion of a database relation [Codd 19701 is: given sets Di, D2,

--, 4 (not necessarily distinct), R is a relation on these n sets if it is a set of n-tuples or

simply tuples each of which has its f i s t element from Di, second element from LI2, and so

on. The sets Di are called the domains of R. The nmber n is the degree of R, and the

number of tuples in R is c d e d its cardinality.

From the basic dennition, a relationai database c m be specified by a relational schema

which consists of one or more relation schemes. A relation scheme is a listing of a relation

name and its corresponding attribute narnes. In a relational model, relation schemes are

represented as named tables with rows king tuples and columns k i n g named amibutes.

An instance of a relation scheme, i.e. a relation, is a finite set of tuples each containing as

many data items as there are attribute names in the relation scheme. Each data item has a

value from the domain with which its attribute type is associated. A relation has the

following properties:

The ordering of tuples in the relation is not significant;

Tuples in a relation are al l distinct from one another; and

Columns are ordered so that data items correspond to the anrïbute in the relation scheme

with which they are named.

Traditional set operations, such as union, intersection, and difference; together with

relational ones, such as project, join, and divide; are supported in a relational database and

are the basis of the so c d e d relational algebra. Constraints applied to a relational schema

are guided according to the three directions: representation, nonredundancy, and

separatiun. They constitute important contents of the schema analysis or fonnalization

[Tsichritzis and Lochovsky 19821 which are used to obtain a good schema Data definition

and manipulation with a relational database are faciiitated by the süuctured q u q language

(SQL) which provides a standardized syntax and semantics for users to define relation

schemes and then insert, modiQ, and retrieve data from a relational database.

Phase 4: Physical design. This is the process of choosing specific storage structures and

access paths for the database files to achieve good performance for the various database

applications. The design of physical data structures is concemed with various type of

indexing, clustering and linking of related records on disk blocks via pointers, hashing

keys, and so on. Cntena for the choice of physical data structures may include space

utilization for data and their structures, and response time needed for execution of

transactions.

The whole data modelling process involves transforming one data model to another. It is

possible that not a l l information fiom a source rnodel may be preserved or realized

efficiently in a target model. The information loss between representations of different data

models is termed impedance mismatch porboys 1995, pp. 85, 931, which can be

aggravated if the chosen data rnodels do not have a high compatibility in data and

relationship types.

