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Résumé 

Le diagramme de Voronoi est une structure géométrique puissante et attrayante pour un 
grand nombre d'applications. La présente thèse étudie la souplesse d'une telle structure 
géométrique, appelé le diagramme Voronoi dynamique de points et de segments de lignes, 
appliquée aux systèmes d'information géographique (SIG). En particulier, la question qui 
concerne cette thèse est : Étant donné le domaine d'application qui est la foresterie, est-ce 
que le diagramme Voronoi dynamique est un modèle de données utile pour apporter un 
support aux applications concernées par le développement durable en foresterie? 

Cette thèse apporte une réponse fortement positive à la question précédente. En révisant les 
caractéristiques forestières du développement durable, cette thèse résume les nécessités 
correspondant à la validation des modèles de données spatiales. Après l'examen des 
modèles de données spatiales traditionnels utilisés dans Ia plupart des systèmes SIG 
courants, cette thèse est en accord avec le fait que le modèle dynamique Voronoi peut 
supporter l'intégration de la topographie et de la géométrie. Il satisfait aussi à toutes les 
exigences d'un SIG dynamique. Cette discussion est soutenue par une incorporation du SIG 
dynamique Voronoi dans sa fome primitive et en présentant les opérations habituelles des 
SIG à travers le modèle de données Voronoi- 

Cette thèse contribue au développement d%i SIG Voronoi dynamique en proposant un 
modèle Voronoi Map Object (VMO) qui soustrait les limitations associées à l'occupation de 
la mémoire pour les diagrammes Voronoi de grande taille. Le modèle VMO est réalisé en 
sous-divisant le diagramme Voronoi en sous-diagrammes et en les représentants avec une 
structure d'objet hiérarchique. Chaque nœud sur la structure est un VMO et supporte 
entièrement la topologie et la géométrie reliées de même que Ies opérations sur les objets. 
Cette thèse décrit Palgorithme utilisé pour sous-diviser (et coller) un diagramme Voronoi et 
également le formalisme associe au modèle. VMO. 

Finalement, la thèse discute de la conception d'un système de gestion des données 
forestières utilisant le modèle VMO. La discussion couvre le modèle objet, le modèle 
dynamique, le modèle fonc t io~e l  et l'architecture logiciel du système. L'application du 
modèle VMO pour le traitement parallèle de problèmes spatiaux de même que pour la 
généralisation automatisée de cartes sont également brièvement discutées. 



Abstract 

The question concemed in the thesis is: Given forestry as an application domain, is the 

dynamic Voronoi diagram a usefil GIS data model to support applications concemed with 

the sustainability of forestry? 

The thesis provides a strong positive answer to the above question. After examining 

traditional spatial data models and data structures used in current GIS, the thesis argues that 

the dynarnic Voronoi data mode1 can support integration of the topology and geometry and 

satisfies al1 the requirements for a dynamic GIS. 

The thesis contributes to the development of a dynamic Voronoi GIS by proposing a 

Voronoi Map Object (VMO) model. The VMO model is achieved by partitioning the 

Voronoi diagram into subdiagrams and by representing them with a hierarchical object 

structure. 

Résumé 

La question qui concerne cette thèse est: Étant donné le domaine d'application qui est la 

forestene, est-ce que le diagramme Voronoi dynamique est un modèle de données utile 

pour apporter un support aux applications concernées par le développement durable en 

foresterie? 

Cette thèse apporte une réponse fortement positive a la question précédente. Après 

l'examen des modèles de données spatiales traditionnels utilisés dans les SIG courants, 

cette thèse est en accord avec le fait que le modèle dyamique Voronoi peut supporter 

l'intégration de la topographie et de la géométrie. 

Cette thèse contribue au développement d'un SIG Voronoi dynamique en proposant un 

modèle Voronoi Map Object (VMO). Le modèle VMO est réalisé en sous-divisant le 

diagramme Voronoi en sous-diagrammes et en les représentants avec une structure d'objet 

hiérarchique. 



Abstract 

The Voronoi diagram is a powerful geometric structure attractive to many applications, 

especially when it is developed with cornputers. This thesis investigates the flexibility of such 

a geometric structure, called the dynamic Voronoi diagram of points and iine segments, 

appiÏed to GIS, geographical information systems. In particular, the question concemed in 

the thesis is: Given forestry as an application domain, is the dynamic Voronoi diagram a 

useful GIS data model to support applications concerned with the sustaiaability of forestry? 

The thesis provides a strong positive answer to the above question. By reviewkg the 

characteristics of sustainable forestry, the thesis surnmarizes the corresponding requkements 

for the supporting spatial data models. Afler examining traditionai spatial data models and 

data structures used in current GIS systems, the thesis argues that the dynarnic Voronoi data 

mode1 can support integration of the topology and geometry and satisfies all the 

requirements for a dynamic GIS. The argument is supported by a cornputer implementation 

of the dynamic Voronoi GIS in its primitive form and by presenting comrnon GIS operations 

over the Voronoi data model. 

The thesis contributes to the development of a dynamic Voronoi GIS by proposing a 

Voronoi Map Object (VMO) model which removes the limitation of memory occupation for 

large Voronoi diagrams. The VMû model is achieved by partitioning the Voronoi diagram 

into subdiagrams and by representing them with a hierarchical object structure. Each node 

on the structure is a VMO and support fidl topology and geometry about, and operations on 

the object. The thesis describes the algorithm for partitioning (and pasting) a Voronoi 

diagram and the formalism ofthe VMO model. 

Finally, the thesis discusses design issues for a forestry data management system using the 

VMO model. The discussion covers the object model, the dynamic modei, the fùnctional 

model, and the software architecture of the system. The applications of the VMO model for 

pardiet processing of spatial problems and for automated map generaiization are also bnefly 

discussed. _. 
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Chapter 1 

Introduction 

Forests constitute an imperative semi-naturd resource for the existence of a global society. 

The significant role forests play in the global ecosystem cannot be over-estimated. 

Unfortunately, rapid deforestation has been occurring world wide, especially in developing 

countries, due to the following factors: clearing the forest land for farming, the demand for 

firewood and fodder, excessive commercial logging for shofl-term economical profits, and 

£ire - intentional and natural. These factors are aggravated by population growth, 

idrastxucture and industrial development, and bad planning and management. The cost of 

deforestation to society is tremendous. Beside obvious and presently hard-to-measure 

economic losses, some of the earth's plant and animal species are in danger of extinction, 

and, deforestation has resulted in the recent increase in the atmosphenc concentration of 

carbon dioxide which leads to increased global warming [World Bank 19931. 

1.1 Sustainable Forest Development 

In order to achieve a biologically and economically sound society, we have to take 

seriously the requirements for sustained forest management to meet the needs of the present 

generation without compromising the needs of future generations world Commission on 

Environment and Development 19871. The word bbsustainability" in forestry refers to the 

application of sustained-yield management practices to forests in order to ensure a 

continuous flow of desired forest products and services, without undue reduction of their 

inherent value and future productivity, and without undue undesirable effects on the 

physical and social environment m O  19921. 



Sustainably developing forests needs an integrated management plan, in addition to many 

other measures such as institutional, policy, and cuiturd changes. Integrated planning and 

management of forest resources means that the application domain should not be 

considered in isolation of its neighbouring and overlapping domains. Instead, forest 

planning and management should be practiced by treating forest resources as an 

indispensable subsystem of the ecosystem, including: soil, water, biological diversity, 

genetic diversity, landscape patterns, and cultural evolution - a l i  are criticai components to 

maintain ecosystem integrity. Ecosystems are communities of organisms working together 

with their environment as integrated units. They are places where all plants, animals, soils, 

waters, climate, people, and processes of life interact as a whole. These ecosystems/places 

may be small, such as a rotting log, or large, such as a continent or the biosphere. The 

smaller ecosystems are subsets of the larger ecosystems; that is, a pond is a subset of a 

watershed, which is a subset of a landscape, and so forth. AU ecosystems have flows of 

things - organisms, energy, water, air, and nutrients - moving among them. And al l  

ecosystems change oves space and tirne. Therefore, it is not possible to draw a line around 

an ecosystem and mandate that it stay the same or stay in place for dl time. Managing 

ecosystems means working with the processes that cause them to Vary and to change 

[Salwasser et al. 1993 1. 

Forest planning and management should be based on an ecosystem approach with the 

following p~c ip1e :  to conserve biologically and genetically diverse and productive 

landscapes within local, regional, national, and global contexts. The ecosystem approach 

embodies three fundamental concepts: design~ting the physical boundary of the system and 

its components, understanding the interaction of its parts as a functioning whole, and 

understanding the relation between the system and its context. Context in this sense means 

both the extemal factors that influence the system as well as the intemal information that 

must be synthesized at the scale of the defincd system if we are to have any understanding 

of it. For a continental ecosystem, global air poliution and population growth are examples 

of extemal context and local poiitics and endangered species are examples of intemal 

context Maser 19941. 



1.2 Characteristics of Sustainable Forest Ecosystem Management 

Although understood in principfe, a scientifically precise definition of what constitutes an 

appropriate sustainable forest ecosystem management practice is still missing. This is 

because of the lack of knowledge of the natural functioning and response of forest 

ecosystems [Sample 19931. NevertheIess, several basic characteristics of sustainable forest 

management have k e n  identined through recent research and practices in ecosystem 

management: 

It should operate across large spatial scale. The system should not only consider a broad 

array of species within the management unit but also a broad concept of the management 

unit itself - fkom focusing on forestland parcels and stands to focusing on 

landscape/regional-scale areas defined dong ecological boundaries. Real sustainability 

must account for even larger scales up to and including the global environment. In most 

cases, landscape areas encompass a host of both public and private forestlands. It is clear 

that a Ïar higher level of cooperation, coordination, and collaboration would be needed 

among the various public and private landowners and managers occupying a set of 

ecologically dehed  management units Franklin 19891. 

This perspective strongly suggests that the management system should have a hierarchical 

structure, from the lowest level of productive and operational scale to the highest level of 

directional policy steering and control scale. The hierarchical structure is not only 

institutional (organizations and people involved), but also needs to be implementable with 

available technology. To support integrated solutions, the forest ecosystem management 

needs to nui more or less the same set of data, impiying that the classification of data 

should also follow the correspondeot hierarchical structure, from the finest to the coarsest 

resolution. 

Sustainable forest management needs to be highiy open and cooperative. Institutional 

and policy changes must be addressed to facilitate closer cooperation, coordination, and 



collaboration among adjacent public and private landowners in the establishment and 

achievement of ecosystem management goals. In addition, function-based, target-oriented 

resource management hierarchies should be developed withui a more open ezvironment to 

be conducive to multidisciplinary approaches. The open environment should encourage 

dissimulation of philosophies toward sustainable forest ecosystem development, scientific 

exchanges, and most importantly, sharing of data Barriers to the exchange of 

environmental data across dEferent institutions should be minhïzed to allow multiuse of 

the data. Standards for data collection, formatting, and accuracy control need to be set up 

and agreed upon among involved parties. On the other hand, flexibility of the management 

system to accept, interpret, and integrate data fiom different sources with diHerent formats 

wuuld also be highly desirable. 

The management system must be able to reconcile overlapping goals. An ecosystem 

management approach requires that management goals and actions simultaneously satis f y  

three conditions: ecological viability (environmentally sound), economical feasibility 

(affordable), and social desirability (politically acceptable) (Figure 1.1). If the balance 

among these three criteria is not reasonable, there is a high likeiihood that the ecosystem 

will not be sustainable [%meveld 19901. 

Due to various interests and objectives held by private companies, communities, public 

citizens, and govenunent agencies, conflicting management goals necessarily exist even 

before an integrated management system is established and continue through its life-cycle. 

Negotiations, education, and stipdated regulations would be needed to compromise 

overlapped goals. The management system should also be prepared with alternatives for the 

choice of optimized decisions. To achieve this, powerful data analysis functions, matched 

with sophisticated data manipulation capabilities, would have to be built into the system. 



Ecological 
viability 

Sustainable solution 

Figure 1.1 Ecosystem solution Enangle (Adapted fkom Zonneveld [1990]) 

The management s ystem must handle dynarnic processes. Forest ecos ystem 

management goes beyond mere description of conditions or states presumed to be static. 

Emphasis should be on greater understanding of linked processes, the positive and negative 

feedback between linked processes, and the relationship between processes at different 

temporal and spatial scales. Linkages between elements (eg.  reciprocal linkage between 

carbon and nitrogen cycles, infiuenced by browsing mammals and insects) as they cycle 

between the trees and soil, impose nonlinear dynamics on forest growth and stand 

development Biological dynamic processes c m  dramatically alter the regional ecosystem 

at both forest stand (species composition and structure) and landscape (the relations of size 

and location of various forest ecosystems) scales Nadenoff and Pastor 19931. 

Conceming the requirements for Large spatial scales and dynamic processes, managing 

sustainable forest ecosystems requires viewing management objectives at large spatial as 

well as temporal scales to accommodate a broad range of objectives. The silviculture tool- 

box must be enlarged. Simple methods (e.g. even-aged or uneven-aged management) need 

to be combined with complex ones (e.g. partial cutting, group selection, retaining seed trees 

and introducing new species, and extended rotation) to meet more complex objectives that 

promote ecosystem sustainability at both landscape and stand levels. This change would 

allow the development and application of more creative silviculture techniques that provide 

for long-term comrnodity production and the maintenance of biodiversity and long-term 



productive potential, thus buffering against climatic changes. The suggested sustainable 

forest management of silviculture techniques at the stand level and the landscape level 

(landscape-scale integration) is termed dynamic landscape heterogeneity Nadenoff and 

Pastor 19931- 

The modincation of traditional silviculture methods necessarily breaks with classical forest 

management concepts. In standard forestry, the forest is typicaUy divided into management 

compartments/parcels that are subdivided into stands, consisting of tens of acres, to which 

particular silviculture techniques are applied Parcels and stands are generally considered 

to be k e d  and independent. Applyîng dynamic landscape heterogeneity in management 

requires that over longer time -es these boundaries should be considered fiuid and that 

management techniques should be aggregated over larger areas to maintain landscape-scale 

patterns and processes. In the natural landscape, overlapping Gres and other disturbances 

dso  cause boundaries to be fluid. 

The management system must incorporate a long-term life cycle. Forest ecosysterns 

feature various temporal cycles, due to the complex composition of elements and natural 

processes withui each functional ecosystem. The impacts of linked natural processes and 

disturbance events (wddhre, windstorm, insect outbreak, and tree diseases), human 

influences such as harvesting and silviculture actions on site productivity of forestland and 

sustainabüity of landscape-regions become evident generally after long time horizons (three 

rotations as suggested by Comerford et al. [1994]). This suggests that forest ecosystem 

management should be targeted on a long-term scale. A long-term management scale is 

practically and strategically desirable from two points of view: 

First, fkom the point of view of forest managers, the sustainable productivity of forest 

biomass, usually wood, is their major concem. Negative impacts of forest harvesting can be 

reduced by the appropriate choice of rotation length, harvest season, road construction 

methods, harvesting equipment, utilization standards (e.g whole-tree vs. stem-only 

harvesting) and silviculture s ystem (e.g. clearcutting vs. partial cutting). The site 

productivity may also be increased, at least in the short-term, by stimulahg nutrient cycles, 



changing plant structures, adding feaüizers, and introducing improved genetic stock 

w o m s  and Miller 19943. All these applications should only be used with a basic of 

knowledge of the historical and current site conditions. It is essential to collect and compile 

available information on the entire stand to make an informed evaluation. Furthemore, any 

events and actions in the field should be recorded in the system for future assessment. 

Second, fkom the point of view of forestry researchers, especially forest biologists, studies 

of dynamic processes and the effect of each process, event, disturbance, and forestry 

operation on the pyramid of forest ecosystems are long-tem projects. For example, current 

methodologies for studying long-term forest site productivity f d  into one of three 

categones: chronosequential, retrospective, and long-term field trial Dyck and Cole 19941. 

AU these methods rely on adequate documentation of historical information or on long-term 

experiments and observations. More importantly, the results of forest ecosystem research 

(e-g. various predicting models) need to be validated through calibrating, testing, and 

comparing (with practical observation, experiments, and forestry operations), sometimes 

spanning multiple rotations. This imposes a great diffculty because the length of practical 

experiments may well be beyond the serving periods of researchers and budget limits. A 

sustainable forest management system should be equipped with the capacity to maintain a 

minimum set of data which standardizes important environmental and site variables 

[Comerford et al. 19941. The structure changes of the data set over t h e  should equally be 

maintained so that any previous states of the forestland, operations and experiments applied 

to it cm be known if desired, thus benefiting continuous management and research over 

long periocls of time. 

The management system should have the capability of simulation. Simulation 

modelling is particularly useful in forestry because of both the long time scales involved 

and the structural and functional cornplexity of forest ecosystems. Cornputer simulations 

provide a means to organize and evaluate knowledge and hypotheses of both the structural 

and functional properties of forest ecosystems. Once validated and calibrated with data sets, 

a simulation ailows us to ask "what if' questions, or to interrogate alternatives of forest 

management strategies over past, present, and future states of the forest ecosystems. 



Simulation models have been used for a wide range of applications includïng production 

forecastîng, yield control, and the evaluation of alternative management operations w o e  et 

al. 19941. Most of these models are based on h e a r  programming, which have demonstrated 

diffcdties in plan imp1ementation. This stems fiom the fact that there are no spatial 

representations of the optimal solutions developed with these models [SampIe 19951. 

Improved planning and predictùig models are senously needed to incorporate spatial and 

temporal configurations of variables. 

The management priorities must be adaptive. Forest ecosystems are dynamic and 

subject to change. At best, a forest ecosystem is managed based on available knowledge, 

experience, and hypotheses. Thus management goals are set; inventory information is 

compile& and plans and decisions are made and implernented using curent technology and 

limited knowledge. It is important to track progress toward goals. This inchdes assessing 

present forest/environrnental conditions, using quantif~able indicators, and monitoring 

changes in those conditions over a long time frame. As updated data are obtained and 

reviewed, suggestions on improving or adjusting details of management plans may emerge. 

The system should be "adaptive" to the modification of goals, inventory structures, or 

adopting updated technologies (Figure 1.2). 

Plan 
goals \ 
NOW / Adaptive \ 

New / 
technology 

Figure 1.2 The "adaptive" concept of ecosystem management 

(Modified fkom Birch et al. [1993]) 



In summary, sustainable forest ecosystem management involves multi-disciplinary and 

integrated solutions. It is not merely a materialized system, but a set of structures and 

processes requiring philosophical, conceptual, societal, and institutional attendants. For 

convenience, we c d  these attendants collectively the culrural component of ecosystem 

management. The other components of the management system include hardware, 

sofhuare, and data. Hardware refers to cornputers and related devices with which data can 

be physically stored, displayed, and plotted. Software refers broadly to a set of computer 

programs which controls operation of the hardwarelsoftware, and manipulates data Data 

constitutes an important and expensive part of the management contents. The rest of this 

thesis is actually dedicated to the design of structures to manage data such that they can be 

manipulated elegantly to meet the requirernents of forest ecosystem management. 

1.3 Features of GIS for Forestry Management and Decision Support 

Environmental concerns, public pressure, and economic growth no longer allow empty 

discussion on what defmes a forest ecosystem and ecosystem management or whether 

sustainable management can be achieved. Given these pressures, we must achieve a 

sustainable, reasonably cost effective management system as soon as possible. The c d  for 

sustainable forest ecosystem management echoes around the world. In Canada, for 

example, a National Round Table on the Environment and the Economy was convened to 

discuss diverse issues related to sustainable forest ecosystems IT\Tational Round Table on 

the Environment and the Economy 19931. The Canadian vision of sustainable forest 

ecosystems has been defined. Based on this the Canadian Forest Service (CFS) dictates 

strategies for developing sustainable foresûy [Canadian Forest Service 19941. Of the five 

strategies guiding CFS's activities towards the end of this century, the one gaining 

signincant focus is .the development of cornputer-based geographic information and 

decision support systems. Implementing these systems can integrate biological, 

environmental, economic and social information over a variety of tirne frames and spatial 

scales, and generate forest management alternatives that are understandable and useable by 



forest managers. It is realized that sustainable forest development will only become 

possible when we are able to integrate, manipulate and interpret complex data sets from 

many different sources, over wide temporal and geographic scales. 

The geographical information systems (GIS) for forestry management and spatial decision 

support systems (SDSS) must meet the requirements of sustainable forestry developrnent. 

In what follows, we attempt to idenm important operational features of such a GIS based 

on the characteristics of sustainable forestry management. Definitions of GIS and SDSS, 

and their hardware and software components are presented in Appendix A. 

The GIS needs to have a spatial data model based on which a geographical database can 

be constructed. The spatial data model should not only support cartographie operations 

on the spatial objects in the database, but also allow versatile spatial analyses that 

require topological relationships of the spatial objects. The presence of a topologicay 

enabled spatial data model in the GIS is fundamental to support the requirements for a 

sustainable forestry management s ystem. 

The GIS needs to support spatial concepts such as country, region, forest territory and 

stand, forest f ie,  watersheds, road, GPS (Global Positionhg Systems) survey points, 

population density, income rate, etc. Some of the spatial concepts are by nature 

hierarchical, for example, a country has provinces and counties at its lower levels. 

Dependhg on the spatial concepts used, the objects used to describe these concepts may 

overlap each other geographicdy. For example, a watershed can overlap a few forest 

temtories. It should be possible to find locations of entities fiom the spatial database 

either by a hierarchy or by an overlapping concept. By hierarchy, a search fiom a higher 

level entity to lower ones reveals more detail about the entity. By overlapping, entities 

cross-referenced in different hierarchical concepts may be required to satisfy a query. 

The GIS needs to act as an integrator (or a warehouse) of a network of geographical 

databases, possibly heterogeneous and geographically distributed. In the integration, a 

client GIS can maintain, in its database, some content information (metadata) of 

geographical entities without storing their detailed data Instead linkages to servers 

where the detailed data, as well as query and analytical services are provided. In the 



case that a data server does not support a specinc analysis or operation, the detailed data 

can be transmitted to the client or other GIS in the network. This feature requires OLAP 

(OnLine Analytical Processing) capability similar to common MIS (Management 

Information Systems). The difference is that the client GIS has the spatial data model 

support to manage, manipulate, and maintain spatial metadata, and if necessary, detail 

spatial objects referred by the metadata A client GIS can also act as a server to other 

clients for whom spatial query and analysis are performed. 

The GIS needs to be dynamic in that updates to the geographical database should be 

incorporated through short transactions without excessive operation or  long locks to the 

database. Besides, any modification to spatial objects of the database should affect only 

the spatial objects involved. Services being provided by unaffected spatial objects in the 

database should not be discontinued by the modification. This feature is important to 

OLAP applicztions and is advantageous to what-if questions and simulations. 

The GIS needs to have a component architecture such that any component of the system 

can be integrated into existing corporation information and decision systems without 

extensive technical efforts. The spatial components, which are geometrically and 

topologically enabled spatial objects, should provide common GIS fimctions and allow 

themselves to be aggregated with other spatial components. With the component 

architecture, multi-media representations of geographical entities can be implemented. 

The GIS needs to support dynamic versioning of spatial components. Changes to spatial 

objects should be tractable given a temporal scale. This feature supports undochanges 

to spatial objects, and simulations demonstrating evolutions of spatial objects. 

1.4 The Problem and Objective of the Research 

The primary objective of the thesis is to design in advanced spatial data model, which can 

be used to manage and manipulate dynamic spatial objects in a GIS. The core technology of 

the GIS is the spatial data model. Without a capable spatial data model, the support of the 

desKed features would be difficult. The ngorous design needs to consider not only the 

theoretic foundation of the data model, but dso its practical implementation with 



computing software. The advancement of the data rnodel needs to be jusmed by theoreticai 

analysis and practice. 

The data model needs to be studied under the context of geographical information 

processing. This implies that it should be able to appropriately treat special characteristics 

of geographical data. Large in quantity, irregular in distribution and density, and volatile 

with dynamic changes are among the characteristics. One of the targeted application 

scenarios of the data model is for the development of a SDSS for forest harvesting 

management. The management system requires that the hardware, software, data, as well as 

data management will be distnbuted at distant sites but the system still functions as an 

integrated whole. Data should be represented and managed hierarchically with appropriate 

scales. Data should be accessible simultaneously by multi-users and modifiable in a 

dynamic fashion. The history of data evolution needs to be presenred and rnanaged. In 

addition, the management system should encourage multimedia presentation of data. 

Finally, the whole data management system should have an open architecture, to be 

adaptive to changes. 

The objective is determined nom two aspects. On the one hand, published documents 

suggest that most current GIS systerns are usually developed based on a two-step process 

for managing spatial data. The fKst step (map creation) involves a geometric data model 

such as the R-tree, which organizes digital spatial objects such that they are assigned 

addresses and therefore can be easily accessed. The second step (spatial analysis), if 

required, involves building topological relationships among spatial objects, taking 

advantages of the result fkom the first step. Examples of GIS equipped with the two-step 

architecture include A.rc/lnfoTM and Intergraph ~ ~ E / D ~ n a m o ~ .  With software 

technology, these two steps may be streamlined now without being noticed by users. The 

theoretical basis stays the same. There are still two kinds of spatial data models, 

geometrical and topological, built in the system. ~ a ~ ~ n f o ~ ~  desktop GIS is an exarnple that 

is not equipped with the topological process. The separation of geometrical and topological 

data models in a fully equipped GIS presents many disadvantages. Analysing the spatial 



data architecture used by prevailing GIS, and finding out the shortcomings of the two- 

model system is the first task of the thesis. 

On the other hand, the Voronoi data mode1 does not follow the two-step approach to 

process geometry and topology of spatial data The research and development on the 

dynarnic Voronoi diagrams has been carried out for a few years in the Industrial Chair in 

Geornatics Applied to Forestry, Centre de recherche en geomatique at Université Laval. 

The data structures and algorithm are M y  published. The results have demonstrated 

advantages of using the dynamic Voronoi diagram as the integrated GIS data model. 

The main problems, however, are that the Voronoi diagrams, being complicated and 

detaiIed, must be presented at a single level and stay in main memory, and that it is difficult 

to divide a Voronoi diagram into spatial pages. These difnculties prevent the dynamic 

Voronoi diagram from being M y  employed in a GIS environment, where large data sets 

are often involved. Investigating effective methods to overcome these dificulties therefore 

becomes the most important task of the thesis research. 

The decision to target at the forestry application domain, using the scenario of forestry data 

management, is made as one of the important liaisons between the Industrial Chair in 

Geomatics Applied to Forestry and the Association des Industries Foresterie du Quebec 

(AIFQ). It is hoped that the research and development carried out in this thesis could be 

useful to the development of an advanced forestry data management system. The thesis will 

outlùie the design of the system components for a forestry spatial data management, 

applying the data model to be developed. Due to the major endeavour towards developing a 

sound. integrated spatial data rnodel, the effort in the systems design will be limited. 



1.5 Methodology 

Examine the forestry needs for decision support for harvest management. Among the 

numerous issues involved in forest harvesting, the examination wilI focus especially on 

forest harvesting data management. 

Evaluate the weaknesses of traditional GIS for decision support. The evaluation will 

emphasize on the technical aspects of a GIS with regard to dynarnic data updates. 

Suggest improved GIS data models and algorithms to respond to these weaknesses. 

hplement and test these methods at the technical level. The research in this part will 

explore deeply into the technical complexity, if any, of the proposed GIS data model. 

Evaluate the usefulness of the proposed GIS data model in forest harvesting. The 

evaluation WU consider the integration of the improved GIS data model and algorithms 

into the prototype of a forest data management system. 

1.5.1 The Approach 

It is found that forest harvest management has needs for dynamic features not always 

available in a traditional GIS. In particular, the dynamic features concem the "local 

updating" of forest digital maps, required both for the addition of annual information, such 

as the previous year's cutting, and for the experiment in a "what-if" fashion, with suggested 

future intenrentions. The updates need to be local in the sense that they will not have to be 

propagated to the whole spatial database of the GIS, in order to maintain the integrity of the 

spatial relationships. 

These dynamic features are primarily the ability to add and delete lines that form polygon 

boundaries, without the necessity of expensively re-stmcturing the "topology" of the map 

sheet holding the polygons. Given this ability, map updating and what-if quenes perforrned 

by a GIS would become much simplified and realistic for real-time forest decision-making. 

The absence of the dynamic features nom a traditional GIS is attributed to its built-in 

spatial model - the one that relies on a calculation of "vectof' line intersections, and on an 



extensive processing of topological relations. Analyses show that the "'intersection fmding" 

and 44topology building" are hard to be operated in a local fashion. In contrast, the space- 

füling ''Voronoi" tessellation had been shown (e-g. Gold 1991, 1994) to be able to handle 

local updates in a well-defined way. It was decided that this approach would be 

implemented, and then evaluated- 

The research and implementation of the Voronoi tessellation produced a fimctioning 

prototype which showed the feasibility of the method. However, it became evident that the 

problerns of storing the tesseHation would emerge signincantly for a full-scale operation in 

a seamless forest map. Attempts were made to address this issue as well. This led to the 

developrnent of appropriate dynamic spatial partitionhg methods, and the design of the 

associated hierarchical and dynamic GIS data model, which again was implemented at the 

prototype level. 

On this basis, a preliminary design was developed for a forest data management system 

based on the dynamic data model, and the results were examined to see how closely the 

data model matched the forest harvest management needs as originally speci6ed. Because 

of the generality of the method, its use in other applications was also bnefly descnbed. 

1.5.2 The Development 

Examine the need of the forest industry 

The task is to understand the environment in which a forestry spatial database management 

and decision support system functions. For this purpose, the author searched the literature 

to fmd discussions about forestry, especially the value of forests to the society, the attitudes 

and positions of public, government, and forest companies towards forestry, and current 

applications of GIS to forestry. The author also taked with managers and professionals 

from forest companies on different occasions, and visited forest companies to observe GIS 

practices within the organizations. It is found that a sustainable forestry is to everyone's 

interest, but what is considered a sustainable forestry practice is very much debatable. 

There is no doubt, however, that the use of GIS can improve synthesising, managing, and 



presenting information for informed decision-making and practice concerning forestry. The 

identification of characteristics of a sustainable forestry data management and decision 

support system is the result of the preliminary research, which helps with the specitlcation 

of important features of the GIS for forestry. The research and discussions to just.@ the 

subject of the thesis are the content of this chapter. 

Evaluate the weaknesses of traditional GIS 

As a continuation of justifying the thesis research, questions about commonly practiced 

spatial data models in GIS are arisen. These concem the capabilities of spatial data rnodels, 

and their strength and weakness in s e n k g  as the backbone of a GIS. In order to answer 

these questions, fundamental concepts involved in modelling geographical spaces and the 

mathematical background for spatial data modelling are reviewed. It becomes evident that 

there are usudy two separate spatial data models involved in a GIS to support geometric 

and topological data management operations. Various spatial data models employed by 

most current GIS are studied, with respect to the requirements of an advanced GIS. The 

important shortcomings inherited in these conventional spatial data models are revealed 

from the research, which suggests that the GIS community has not fomd desirable 

solutions towards spatial data modelling. More investigations are needed in this field to 

meet contemporary challenges. The review of the theoretical background in this stage is 

reported in Chapter 2. 

Suggest and implement a dynamic data model for GIS 

The subsequent research is then concentrated on the dynamic Voronoi data model, which is 

introduced with its intuitive idea of modelling geographical spaces. The research is based 

on a well-known Voronoi data model developed by Dr. Gold in the Centre de recherche en 

geomatique at Université Laval. In a rigorous manner, the research delivers a complete 

account about the mathematical background, history, data structures, constmction, 

temporaiity, and GIS applications of the dynamic Voronoi diagrams of points and line 

segments. This effort demonstrates the power of the Voronoi data model in solving geo- 

spatial problems fkequently encountered in a GIS. It also prepared the author with the 



necessary theoretical basis and- experience to manipulate, question. and leverage the data 

model for advanced applications. This part is presented in Chapter 3. 

Technical problenrs of the suggested model and solutions 

The problems with the preliminary Voronoi diagram are primarily related to its storage 

structure. One of d e  tasks of the thesis research is to improve the storage structure such 

that spatially adjacent objects cm be assigned similar addresses. If this can be achieved. the 

next task, dividing the entire storage structure into disk pages, would become possible 

The method is based on observing patterns and behaviour of the data model. Since there is 

no precedent work on the storage issues with the Voronoi diagrams, no references c m  be 

resorted to help with ideas. At beginning, it was difficult to divide the Voronoi diagram into 

distinct chunks, because of the incremental construction. The arbitrary order of data input 

and spatial distribution could results a high degree of discrepancy between spatial patterns 

and the storage of the data A few attempts were once considered, by resorting to some 

subordinate spatial data structures such as the R tree. They were soon abandoned because 

the Voronoi diagrams would be managed with conventional, rigid, and unintuitive 

geometnc data structures. Besides, it would complicate the data mode1 by imposing another 

spatial partitioning method, in addition to the one Voronoi uses. 

The solution of the storage related problems relies on the deployment of the charactenstics 

of Voronoi diagrams with line segments. In this step, the research is focused on the 

interactive behaviour of Voronoi diagrams, at both sides of a chah of line segments. It is 

noted that the change of the Voronoi diagram at one side of a chah does not affect the 

spatial configuration at the other side. Observations also show that interactions do happen 

in part of the storage structure on both sides, and that these interactions are possibly 

tractable. This finding encouraged the experiments of idenwing objects f k t  within 

rectangular polygons and then irregular polygons. After this, the research is directed to 

partitioning storage structures of Voronoi diagrams based on arbitrary polygons. The 

technique finally used to fülfd our tasks is reported in Chapter 4. 



Propose a hierarchical and dynamic GIS data mode1 

The next stage of the research defines spatial objects of the data model. The objects include 

the famüiar ones (point, line, polygon), and the newly created ones, Voronoi objects 

(defined as Voronoi Map Objects or VMO in the thesis). Equally important in this stage are 

defining inter-relationships among spatial objects, the organization structure for hem, and 

the operations upon these objects. The task in this stage is to set up the theoretical 

b e w o r k  of the data model endeavoured in this thesis. The implementation of the VMO 

classes needs to be done by using an object-oriented method. Their geometric and 

topological properties and operations are realized through the Voronoi diagram. Chapter 5 

covers the definitions and discussions about the data model. 

Prototype a forest data management system 

In the final stage, the data model will be used in the design of a prototype of a forestry data 

management system. The purpose is to demonstrate how the data model can be served 

under an object-oriented design and modelling environment. The capability of the data 

model will be re-examined with respect to the requirements specified in the first stage. The 

illustrative design of a forestry data management and decision support system is discussed 

in Chapter 6. 

Before concluding in Chapter 8, we would like to note that the data model could also be 

used to develop other interesting applications, such as intefigent map generalization and 

paraIlel processing of spatial problems. This is extended in Chapter 7. 



Chapter 2 

Modelling Geographical Space 

The "geographical space" is a phrase often refened to by professionals in GIS about which 

an agreed scientific definition is still missing. Nevertheless, sensing the existence of 

geographical space starts in childhood intuition and is enhanced by observation and 

education. The Earth, to our practical interests, is the totality of geographical space which 

host collections of concrete things such as temtories seas or plateaus, mountains lakes and 

rivers, cities and towns; not-so-concrete concepts such as populations of people, animals, 

forests, distributions of ore materials, variations of weather, temperature; or illusive ideas 

which are related to things and concepts such as time, events; etc.. They are geographical 

entities which either physically occupy, are akin to, or are associated with parts of the 

Earth, and they ail take part in geographical processes (natural or non-natural) some of 

which we have perceived as geographical phenornena. It is the desire to describe and 

understand geographical processes with the objective of exerting influence and control over 

them, based on naturd laws, that motivates us to mode1 geographical space. 

2.1 Field- or Object-Based Views of Geographical Space 

In modelling geographical space, it is necessary to consider artificial objects and simulated 

processes that we use to represent geographical entities and processes of interests. It is the 

question of what constitutes artifcial objects as rnodelling spaces that has been the cause of 

the endurhg debate between two fimdamentdy differing views [Chrisman 1975, 1978; 

Peuquet 1984; Herring 199 1; Couclelis 19921. So tremendous is the influence of the debate 

that our thinking, language of discourse, data models, and GIS systems have fallen into the 

main frames of the two different views. 



The first view, labeled field-based or position-based, conceptualizes a geographical entity 

as a set of locations each member of which is associated with afield to represent a certain 

thing or phenornenon on the Earth. The set of locations is usually referenced with a 

coordinatedframework which has an underlying geometric space. The field is described by 

one or more attributes each of which is mapped to some weli defined &bute domain (e-g. 

a set of integers). The basic object in this view is therefore a location. A field is not a 

distinct object but a set of amibute values attached to the location set. Figure 2.1 illustrates 

such a model representing the distribution of trees in a forest stand 'F'. The location set is 

referenced by a grid network. The amibute modelled is the density of trees whose values 

vary fiom ceU to cell. 

Coordinated 
fiamework 

Attribute domain 

Figure 2.1 A field-based view of a geographical entity F 

The second view, labelled object-based or feature-based, conceptualizes a geographical 

entity as a single identifiable object (or geo-object) associated with a few characteking 

properties or attributes given as other objects. One of the properties of a geo-object 

describes its extension on the Earth, the result of which is referred to as its referencing 

spatial object. A spatial object has a structure embedded in a mathematical space. 

Therefore, a geo-object is sputidly refeenced if it is associated with a spatial object in a 

definable way. For example, a forest stand is a geo-object which is spatially referenced to a 

spatial object calied 'polygon', in addition to other possible defining properties such as 



'stand no.', 'plant tirne', and 'density rate' (Fi,- 2.2). Other examples of geo-objects and 

their referencing spatial objects c m  be listed: a highway, referenced by a 'Iine3. a well by a 

'point', etc. With this view, a geographical space is a collection of distinct geo-objects. 

date text 
'October 1,1960' Stand 

Figure 2.2 An object-based view of a forest stand (after Worboys [1995], pp. 165) 

It is not the intention of this thesis to compare these two views. Generally, the field-based 

view is convenient to mode1 geographical entities that do not have clear boundaries to 

"wrap up" their insides from their outsides. Instead, some ''fuzzy" boundary patterns exist 

for a set of locations with respect to an attribute. As is shown in Figure 2.1, the attribute 

values indicate denser trees in central locations and sparser in the surrounding ones. The 

object-based view, on the other hand, relies on clear definitions of objects and is more 

appropriate if objects themselves are the major concern of a system. ~ i t u a l l ~ ,  as Herring 

[1991] stated, the underlying need to distinguish pieces of geometry are logicaUy 

equivalent. We are in favor of the concepts and terms exposed by the object-based view. 

The idea of defining a meaningfbl object with a srnall set of well defined more primitive 

objects is more compatible with the object-oriented modelling technology. It is possible, 

wiîh the object-onented approach, to bring both views of the real world into one 

representation. We WU corne back to this possibility later. 



23 Spatial Objects 

A special characteristic of geographical objects is that they are referenced to spatial objects 

which themselves must be specified. A spatial object is "'spatial" because it exists inside a 

"space", c d e d  the embedding space. The specificaîion of a spatial object depends upon the 

structure of its embedding space. The most commonly used embedding space in 

geographical applications is Euclidean space. Using the terminology of set theory, a 

Euclidean space is a product set of real numbers. The dimension of a Euclidean space is 

counted by the number of sets of real numbers R participahg in the product We restrict 

our discussion in this thesis to a two-dimensional Euclidean space (or the Euclidean plme), 

denoted 2, which is therefore a collection of ordered pairs of real numbers. We shall also 

assume that in the Euclidean plane we have a Cartesian coordiMte system for which there 

is a pair of orthogonal reference axes. The intersection of the axis pair is the origin of the 

coordinate system and the unitary segments on respective axes have identical length. With 

this, we defuie the following primitive spatial objects: 

Point: A point a is deîïned by a unique pair in R: denoted a(xl, x2) with xi, x2 E R- 

Line: Given two distinct points a and b in 3, a line l incident with a and b, denoted [(a, b), 

is defined as the pointset, T. That is 

Tx = (ha + (1-h)b I h E R). 

Line segment If we constrain the range of parameter h to be in [O, 11 for the pointset T, we 

get a line segment which is a closed pointset 

Tro, 11 = {ka + (1-L)b I li E R, k E [O, 11) 

The points a and b are called the endpoints of the line segment. 



Polyline: A polyline in R? is def5ed as a nnite set of line segments such that each endpoint 

is incident to exactly two line segments, except possibly for two endpoints, called the 

extremes of the polyline. A polyline is simple if no two line segments intersect at any place 

other than at theh endpoints. A polyiine is closed if it has no extremes. 

Polygon: A (simple) polygon in R~ is defined as the area enclosed by a simple closed 

polyhe. The polyline forms the bomdary of the polygon. Each endpoint of a line segment 

of the polyline is called a vertex of the polygon. The area enclosed by the polygon 

boundary is the interior of the polygon. In common sense, the term polygon is kequently 

used to denote the union of the boundary and of the interior. The polygon in this sense is 

bounded. NaturaUy, the rest of the plane, that is, the complement of the bounded polygon, 

is the area exterior to the boundary and is unbowtded. Therefore, a simple boundary 

partitions the plane into two distinct regions, the interior and the exterior of the polygon 

(the Jordan curve theorem le-g. Christenson and Voxman 19771). 

2.3 Properties of Spatial Objects 

Just like any other arti£ïcial object used to mode1 a system, spatial objects possess 

properties which: 1) have some rneasurements on spatial objects (metric properties); 2) 

c lassq  similar groups of spatial objects (geometnc properties); and 3) descnbe 

relationships between spatial objects (topological properties). In this section, we discuss 

those properties consistent with the Euclidean plane. 

Meîric properties. Metric properties are dependent on the metric distance, to be defmed 

below, between two points in 2: 

The distance funaion d : R~ x 2 + [O, co) c R is called a rneîric, if the foIlowing 

conditions hold for al1 points X, y, z E 2: 



For example, the distance function d defined by 

for x(xi, x2) and y*), is a metric and is cded the Euclidean distance. 

Examples of the metnc properties of spatial objects include: the Euclidean distance 

between any two points on a polyline; the perimeter and the area of a polygon; the centroid 

of a polygon or a cluster of points; the angle between two lines; and the bearing of a line in 

respect to one axis. These properties can be used to measure other properties of associated 

geo-objects such as: the average flow speed of a river between two paper miles by the river; 

the average log volume of a forest stand; etc. Another interesthg use of metric properties is 

illustrated in Figure 2.3 where clusters of points in s point set S can be classified as 

identifiable objects given a distance 6 (6clusters). For each cluster, the Gradius circle, 

centered at each point, has an intersection with some other Gradius circles. The distance 

function d can also be used to define a topology for n'. This topology is called the merrie 

topology or the topology induced by the metric d. We will soon see what we mean by 

"t0p0l0gy". 

Figure 2.3 Clustering a point set given a distance 6 



Geornetric properties. While metric properties are quantitative, Le. they can be expressed 

by values, geometric properties are qualitative, i-e. they are instead expressed by defined 

characteristics regarding their forms. Identifying geometric properties helps to classi@ 

spatiai objects into groups with similar geometric stnictures, thus facilitating the design and 

development of geometric algorithms to calculate the meeic properties of spatial objects or 

to solve geometry problems. The study of special geometric properties and the methods to 

identify them is the subject of computational geometry mpara ta  and Shamos 19851- The 

most often used geomeûk properties of spatial objects are based on the concepts of 

visibility, convexity, and monotony which are defined below: 

Visibility: Let S be a set of points in 2 Then a point x in S is visible fiom point y in S if 

either x = y or it is possible to draw a straigbt line segment between x and y that consists 

entirely of points in S. If the point x in S is visible from every point of S, the point x is 

cded  an observation point for S. 

Figure 2.4 Visibility between points x, y, and z (after Worboys [1995], pp. 110) 

Denote visibility as a relation V on 2. The relation V is reflexive, symmetric, but not 

transitive. Figure 2.4 demonstrates an example of the visibility relationship V between x, y, 

and z E S in 2. The example shows invisibility between points y and z. 

Convexity: Let S be a set of points in 2. The set S is convex if every point of S is an 

observation point for S. It is semi-convex (star-shaped if S f o m  a simple polygon) if there 

k some observation point for S. The collection of aU observation points for S forms the 



kernel of S. 1t is a natural deduction that the kernel of S must have a convex shape since all 

observation points for S are also visible to each other. 

The study of the convexity of point sets in 2 is of great value in computational geometry. 

For a non-convex or semi-convex point set S in 2, the overall convexity of the set may be 

gained or enhanced by decomposing S into a finite number of convex or semi-convex 

subsets. Altemately, larger convex regions containing S may be obtauied, of which the 

boundary of the smallest convex region containing S is called the convex hull of the point 

set S in 2. Figure 2.5 illustrates a convex polygon (a), a semi-convex polygon (b), a not- 

semiconvex polygon (c), and a convex hull aggregating a collection of disjoint polygons 

kernel 

a. convex b. semi-convex c. not semi-convex d. convex h a  

Figure 2.5 Convexity and convex hulls 

Monotony: The monotony of a polygon is dependent on the defuiition of a monotone ch-. 

Let chah C = (pi, p2, ..., h) be an ordered list of n points in I?. The C is said to be 

monotone if and only if there is some line in 2 such that the projection of the vertices ont0 

the line presemes the ordering of the list. A polygon is a monotone polygon if its boundary 

rnay be split into two polylines, such that the chain of vertices of each polyline is a 

monotone chain. Figure 2.6 shows two polygons, one is not monotone (a) and the other is 

monotone (b). 



a. not monotone b. monotone with respect to h e  Z 

Figure 2.6 Monotony of polygons 

Topological properties: These properties describe a set of particula. relationships between 

one object and another embedded in the Euclidean plane 2. They are particular because 

they remain the same by allowing certain operations acted upon the embedding plane to 

stretch, contract, and twist, but not to tear and fold it. Imagine the Euclidean plane to be an 

unbounded sheet of rubber. Also imagine spatial objects to be figures drawn on this rubber 

sheet, particularly one point drawn inside a polygon. The fact that the point is "inside" the 

polygon will remain unchanged n o  matter how the rubber sheet is stretched. The 

"insideness" is therefore a topological property. Though not explicitly examined, there are 

some other relationships in the example which are qualified to be topological. For instance, 

any vertex of the polygon remains "on" the boundary. Furthermore, the '%cidence" 

relationship between a vertex and a line segment is also preserved. The operations involved 

in stretching or contracting the embedding plane are called topological transformation or 

homeornorphism. With this understanding, a topological property can be defined as one that 

is preserved by topological transformations of the space. The study of topological 

transformations and the properties that are left unchanged by them is the subject of 

topology. Particularly, the topology that is based on the rubber sheet analog is referred to as 

usual topology for the Euclidean plane. 

In contrasting with topological properties, the metric and geometnc properties mentioned 

previously are not invariant under topological transformations based on the usual topology. 

Metric properties are invariant only under the translation operation. The size of an are& for 

example, will be changed when the embedding space is stretched wider. Geometric 



properties can withstand rigid transformations such as translation, rotation, and scaling, but 

are sensitive to uneven stretching or contractkg of the embedding space. This cm easily be 

verified by dragging one part of the lower concave ridge of Figure 2.4. Pulling down, the 

rubber sheet (embedding plane) would become flatter and points y, and z would be visible 

(Figure 2.7). 

Figure 2.7 Visibility changed by dragging and pulling the rubber sheet 

Farniliar topological properties between spatial objects in 2 generally considered in 

developing spatial information systems include neighbourhood, connectivity, containment, 

and adjacency. Examples tlanslated similarly fiom reality corresponding to these propeaies 

might be listed and illustrated (Figure 2.8) below: 

Neighbourhood - What are the parcels bordering lake A? 

Comectivity - Xs it possible to travel fkom A to B by car? 

Containment - What islands are on lake A? 

Adjacency - Which highways branch out fiom city C? 

w 
Figure 2.8 Some topological properties 



The study of topological properties and transformations is divided into two branches known 

as pointset (or analytic) topology and algebrnic (or combinatoBaZ) topology. The 

rudimentary objects and tools for pointset topology are point sets and neighbourhoods, 

respectively. A new set is constnicted by defining a neighbourhood relation on a given 

basic set. A set X, together with a collection of definable neighbourhood U, denoted (X, U), 

becomes a topological space. One of the important aspects of pointset topology studies 

homeomorphical transfomations between topological spaces, typically homeomorphisms 

between a new topological space and one of a handfid of weïl defmed and well studied 

topological spaces. Topologicully equivalent spaces should have equivdent topological 

properties. Thus the topological properties of a new space can be relatively easily reveded. 

Fundamental notions and facts of pointset topology include connected, open, closed, 

compact, and conîinuous. 

Although the basic properties of topological spaces and concepts developed in pointset 

topology may seem not to correspond directiy to the obvious topological ideas about spatial 

objects, understanding them is critical to capture the essence of topology and they are 

helpful to construct sound, f a i m ,  and lasting spatial data models. In ge6graphical 

applications, any sets of spatial objects must embed in some topological space. The 

insightful statement put by Worboys Cl9951 (pp. 118) is worth being kept in mind: "it is 

not possible to consider the topological properties of sets in exclusion from the larger 

spaces in which they are embedded." Important notions of topology are applied to describe 

our data mode1 proposed later in this thesis. We wïil discuss more on this later. 

The aigebraic topology takes a more tractable approach by emphûsizing the combinatorial 

nature of finite "'chunks" of spaces and fimctions that relate them. This is the basic 

approach taken by Euler to solve the famous Konigsberg Bridge Problem [e.g. Bollob& 

19791. It tums out that for figures built fiom such chunks (simplexes) of dimension S 3, the 

combinatorial relationships reflect all relationships which are topologically possible 

[Stillwell 19931. In the theory of the sirnplicial complex, the most primitive building blocks 

for constmcting figures are the simplest elements called n-simplex existing for any 



dimension n. Thus an O-simplex exist for any point, an 1-simplex for a closed line segment, 

a 2-simplex for a triangle, a 3-simplex for a tetrahedron, etc. Any n-simplex is composed of 

(n+l) geometrically independent simplexes of dimension (n-1). For example, a triangle, a 

2-simplex, is bounded by three 1-simplexes. These 1-simplexes are geometrically 

independent if no two triangle edges are paralle1 and no edge is of length O [Giblin 19771. 

Each subset of m+l points fkom a n-simplex similarly determines a rn-simplex which is 

called a face of the n-simplex. For example, the faces of a 2-simplex include three 1- 

simplexes and three @simplexes which are edges and vertices of the triangle, respectively. 

The union of the (n-1)-dimensional faces is called the boundary of the n-simplex, so aU 

lower-dimensional faces lie in the boundary. The boundary of a triangle is the union of its 

three edges. As an exercise, we illustrate an operation on complexes following the style 

presented in Worboys [l995] (pp. 128- 13 1). 

With the building blocks, any larger structures can be constnicted by pasting together 

simplexes so that faces of a given dimension are either disjoint or coincide completely. This 

forms a simplicial complex. A n-dimensional simplicial complex (or simply n-cornplex) C 

is a f i t e  set of simplexes of dimension n satisQing the following conditions: 

a) A face of a simplex in C is also in C, and 

b) The intersection of two simplexes in C is either empty or is also in C. 

Figure 2.9 shows two 2complexes A and B, whose simplex sets are 

respectively. Note that the complex B coincides with its 2-sirnplex constituent gih. 



Figure 2.9 Two 2-complexes 

Now we intersect the two 2-complexes A and B (Figure 2.10a). The result should also 

satisQ the two conditions above. To this end, two 1-simplexes need to be introduced at the 

intersections (points j and k in Figure 2.10b), which future induces 1-simplexes and 2- 

simplexes. The resulting 2-complex C is the simplex set satisfying both conditions. 

C = (a,b,c,d,e$g,h,i,j,j,lab,be,~fiki,ih,hj,jd,da,ac,bc,ecfc.dc,da.dg,&gc,gkgi,jk 

abc, bec, efcfgcJkg, gdcigid,gkj, dac, kih,Wtj} 

a. Intersecting A and B 

e 

b. The resuIting complex C 

Figure 2.10 Intersecting two 2-complexes to obtain a new complex 

The power of the combinatonal approach Lies in the algebraic interpretation of the 

boundary operation for a complex C. The boundary of a n-complex C, X ,  is a (n-1)- 

complex. To calculate the boundary of a complex, the orientation of n-simplices (for O < n 

< 3) is introduced (Figure 2.1 1). The orientation of an 1-simplex ab can be directed either 



from a to b or fiom b to a. The orientation of a 2-simplex detemiines that of al l  its 

constituent 1-simplexes. An oriented complex is one in which every simplex is consistently 

oriented- 

Figure 2.1 1 The orientations of simplexes 

With orientation, it is possible to define the boundary operation in a pure algebraic way. Let 

the O-simplex x, be denoted x, the onented 1-simplex, staaing fiom x and ending at y, be xy, 

and -xy be yx if it is oriented the other way; and the oriented 2-simplex, with the vertices in 

ordering king x, y, and 2, be xyz. Introduce any linear combination of simplexes (called a 

chain) of the form aiSi + ..., + a d m  where the Si, ..., Sm are simplexes and the ai ..., a,  are 

integers. The boundary operator a on the chah is defmed as 

The boundary operator for a n-simplex (for O < n < 3) is as the following: 

Apply these rules to the complex C in Figure 2.10. We fxst assign a consistent orientation 

to each of the 2-simplexes in C which results in the diagram in Figure 2.12a Next we 

express the chain of the complex to be a linear combination of its Zsimplex constituents, 

that is 

C = bac + bce + ecf+ fcg + fgk + gcd + gdj + gjk + dca + kjh + khi 



Now applying the boundary operation we get 

This results in the boundary of the complex C in Figure 2.12b. One may v e m  that the 1- 

complex boundary chah f o m  a simply closed polygon ordered in clockwise sense. 

a. Onenting each 2-simplex in C b. The boundary of the complex C 

Figure 2.12 The boundary of a Zcomplex C 

As one may have obsemed, the theory of complexes actually decomposes any object in the 

Euclidean plane into a set of 2-simplexes, that is, a triangulation. This approach is assured 

by a theorem first proved by Rad6 in 1925 which asserts that any bounded Euclidean space 

is triangulatable. The trianplation observing the two conditions mentioned previously are 

not unique for a given figure. In Chapter 3, we will introduce another way of trimgdahg 

the Euclidean plane which produces a unique trïangulation. 

2.4 Representations of Spatial Objects and Relationships 

Representing spatial objects and relationships in a tractable structure is a critical step to 

constructing a computerized database for geographical applications. There are two aspects 

to consider, usually separate. One concentrates on the topological relationships expressed 



by identifiers (system generated IDs) of spatial objects. The other specifies detailed 

geometric embedding of spatial objects in terms of identifiers as well as their coordinates. 

The reasons for this dichotomy are: 

Firstly, topological relationships between spatial objects, once identified and coded, are 

not strongly bound to their geometnc embedding. Point A is in polygon P no matter 

where A is positioned in the interior of P. Likewise, the adjacency of two polygons does 

not care how these two polygons are configured (vertices and shapes). 

Secondly, topological operations can be expressed entirely at the identifier level without 

kvolving coordinates. An example is the boundary operation presented in the previous 

section. On the other hand, metric and geometric operations rely on the detailed 

embedding of objects. 

Thirdly, due to the state of the art of computerized spatial data handling, some 

topological representations of spatial objects are readily compatible to current general 

database schema and structures where other aspatial data usually reside. This is in 

contrast with the geomehic structures of spatial objects which are proved inefficient 

when general database structures are employed to store them. 

This section discusses cornmonly practiced topological structures which explicitly capture 

some topological relationships. Geometric structures concenüng the embedding of spatial 

objects and their storage will be discussed in the next section. 

It turns out that most of the current topological structures for a Euclidean plane are based 

on the p l a ~ r  graph. As shown in Figure 2.13, the primitives in a general planar graph are 

nodes and arcs. An arc consists of arbitrary many line segments embedded in the plane. 

Arcs can only intersect at nodes of the graph. If an arc intersects itself at one node, it forms 

a loop. Multiple arcs must share two identical nodes. An arc dangles as one of its nodes is 

not adjacent to any other arcs. If an arc has two dangüng nodes, it is floating. A closed 

chain of arcs forms a polygon. A polygon can contain islands. Two arcs are said to be 



adjacent to one another if they are both incident to the same node. Two nodes are saîd to be 

adjacent if there is an arc joining them. A path is defined as a sequence of arcs which can 

be followed continuously without any arc being used more than once. A path is closed 

when it starts and finishes at the same node; otherwise it is open. A closed path is also 

called a circuit. The order of a node is the number of arcs incident to it- If an arc meeting a 

node is a loop, then that arc is counted twice in calculating the order of the node. A 

connected graph is a graph for which every pair of nodes can be joined by a path. If a graph 

is not connected, then it consists of several pieces called its components. 

The relationship used to constraint elernents of a planar graph with h components is 

expressed by the Euler formula. That is 

where i represents the ith component of the graph (1 S i S A), while pi, ai, and ni represent 

the numbers of polygons, arcs, and nodes in each component, respectively. Note that in this 

formula, each complimentary region of a component is counted as one polygon. As an 

example, the planar graph in Figure 2.13 contains 3 components (the floating arc, the 

island, and the rest of the graph). The total number of polygons is 10 with the cornpliant 

area being counted three times; the total nurnber of arcs is 15; and the total number of 

nodes is 11. It is easy to ver@ that the Euler formula holds for this graph. 

One of the earliest topological representations which found practical application in the 

1970's and is still influentid today is the TIGER structure, meaning Topologicaliy 

Xntegrated Geographic Encoding and Referewing. This structure was developed by the US 

Bureau of the Census and is described by Boudriault [1987]. The TIGER structure is 

actually the refined successor of older chain-node structures, such as DlME [US Bureau of 

the Census 19701, also developed by the US Bureau of the Census in 1967 and POLYVRT 

[Peucker and Chnsman 19751, developed at the Harvard Laboratory for Computer Graphics 



and Spatial Analysis. The now weU-known Node-Arc-Polygon representation is the DIME- 

like structure. 

Figure 2.13 A general planar graph 

Node-Arc-Polygon (NAP): The NAP structure represents explicitly the adjacency 

relationships between polygons. It can be conveniently modelled by the ER diagram and 

represented with one relational table. The constituent entities are the directed arc, node, and 

polygon which are constrained by the foUowing d e s :  

Each directed arc has exactiy one start and one end node. 

Each node must be the staa node or end node (maybe both) of at least one directed arc. 

Each polygon is bounded by one or more directed arcs. 

Directed arcs may intersects o d y  at nodes. 

Each directed arc has exactly one polygon on its nght and one polygon on its left. 

Each polygon must be the left or right polygon (maybe both) of at least one directed arc. 

An EER diagram of the NAP structure is shown in Figure 2.14. It is possible to represent 

loops, islands, and dangling arcs with the above d e s .  However, single points with no arcs 

attached are not allowed with this representation. An example of the planar graph with 



directed arcs is illustrated in Figure 2.15. The relational table for the configuration is aven 

in Table 2.1. The EER diagram of the NAP c m  be extended to include details of the 

embedding. An example of the EER diagram with the embedding is given in Worboys 

[1995] (pp. 195). 

arc id 
l- 

1 polygon 1- polygon-id 

Figure 2.14 An EER diagram of the NAP structure 

Arc Start End Left Right 
Id node node polygon polygon 

Figure 2.15 A plana graph with 
directed arcs (after Worboys [ 19951) 

Table 2.1 The NAP relation for the graph 
in Figure 2.15 (after Worboys [ 19951) 

Doubly-connected-edge-list (DCEL): The DCEL [Muller and Preparata 19781 is similar to 

the NAP in preserving polygon adjacency. In addition, the DCEL adds two pieces of 

information to each directed arc: the previous and the next arcs (Figure 2.16). The previous 



arc is associated with the start node and is the fmt arc encountered by cycling around the 

start node in an anticlockwise direction- The next arc is associated with the end node and is 

the fmt arc encountered by cycling around the end node in an anticlockwise direction. 

Figure 2.17 is the modified EER diagram fiom Figure 2.14 with two additional relations 

added for the DCEL to encode the previous arc and next arc information. Table 2 2  shows 

the DCEL in a relationai form representing the configuration in Figure 2.15. The additional 

information facilitates searches for the arcs incident to a given node or the arcs enclosing a 

aven polygon. However, special care must be taken when dangling arcs exist. As is shown 

in Figure 2.15, the directed arc j is a dangling arc. This fact can be identified from the tupIe 

of the relation corresponding to arc j in Table 2.2 as the next arc is itself. 

left polygon 

end node 

start node 
p x t  arc 

right polygon 

Figure 2.16 Relationships to a single arc in the DCEL 

l&+e] [Alel left polygon nght polygon 

Figure 2.17 The EER diagram of the DCEL representation 



Arc Start End Left Right ReviousNext 
Id node node polygon polygon arc arc 

Table 2.2 The DCEL relation for the graph in Figure 2.15 

Object-DCEL: The object-DCEL [SteU and Worboys 19941 is aimed at encoding the 

'keak" connectedness for an aggregation of spatial objects each of which is a single 

"stron@y" connected areal object. Two areal objects are weakly connected if they c m  be 

disconnected by removing a nnite number of points. Othenvise, they are sirongly 

connected. The following d e  is observed in constnicting the object-DCEL: the direction of 

the arcs is made so that the object's area is always on the right of each arc. Because of this 

d e ,  the relational representation of the object-DCEL is simplified. No polygon identifies 

are needed since it is assumed that the whole structure represents a single areal object. 

Also, end node information can be omitted because the next arc starts from the end node of 

the previous arc. Figure 2.18 shows a weakly connected areal object strucnired with the 

object DCEL d e .  The correspondhg relation table is given in Table 2.2. The boundary of 

each strongly connected areal component c m  be easily retrieved fiom the table. 



Arc Start-node Next-arc 
a 3 b 

Figure 2.18 A weakly comected 
areal object 

Table 2.3 The Object-DCEL relation 
for Figure 2-18 

2.4 Geometric Structures of Spatial Objects 

The conceptual representations of spatial objects are capable of providing a concise 

description of the components of a spatial object and some topological relationships 

between spatial objects without caring too much about the geometric embeddhg. 

Achieving such a capability, however, depends on the coordinates that actually 'ïk" spatial 

objects in the space. Encoding the fact that two arcs are adjacent in a topological structure, 

for instance, requires a geometric judgment which recognizes that these two arcs intersect 

at an identical point. Therefore, geometric embedding of spatial objects must be present 

before the contents of a topological structure can be Nled within a Euclidean space. It is 

obvious that capturing the geometric and metric properties of spatial objects requires their 

coordinates. As is pointed out by Herring 119911, the ability to represent the geometry of 

entities, or to distinguish the extent of the validity of an amibute value is a universal 

requirements of all GIS systems. Therefore, any spatial data handling system, whether 

having an explicit topological representation of the data or not, must be equipped with a 

mechanism of storing geometric embedding of spatial objects. 



Geornetric structures of spatial objects (or geornetric data structures) are schemes that 

determine how spatial data (identifiers and coordinates of spatial objects) should be stored 

in a cornputer. A scheme of a geometric data structure nay  or may not actually consist of 

spatial data but emphasizes formation of methods to dispatch spatial data to physical 

storage in cornputers. For this reason, a geometric data structure is often referred to as a 

spatial indexïng structure. One of the main objectives of devising such a scheme is that 

particula. pieces of information about object embedding can be readily accessible without 

error or too much delay. Usually, access requirements come with spatial queries which can 

be topological and geornetncal. Geometrical queries ask questions whose answers must rely 

on the spatiai references of objects. Typical types of geometric quenes seen in GIS include 

exact match, partial match, orthogonal range, and polygon quenes [Mehlhom 19841 which 

can be generalized into two types: point query and range query. A point query asks for one 

or more object whose spatial references are located at or proximate to a given point. A 

range query inquires for a l l  objects whose spatial references are located within a given 

range of any shape. 

Concerns about the design of a geometric data struchue may be addressed via the following 

requirernents: 

Since geographical applications generally involve large quantities of spatial data, the 

geometric data structure needs to facilitate efficient retrieval of interesthg spatial 

objects without a big ratio of overheads. Here the overhead means the number of 

uninteresthg objects searched for in a query. 

The relationship between the storage structure of topological representations and that of 

the geometric embedding should have a high degree of integrity. 

The geometric data structure should not require some arbitrary or unnatural 

fragmentation of complex spatial objects. 

The geometric data structure needs to be dynamic to update the embedding of spatial 

objects. and any modification causing the change of topological stahis should be 

captured and reflected promptly in the topological representation without halting the 

running of applications. 



The geometric data structure should be partitionable to disk pages such that part of the 

structure cm be loaded into memory and worked with independently. A disk page is the 

amount of data that c m  be continuously read, usually in one movement of the 

readwrite head of the disk assembly. One disk page may be composed of one or more 

disk Mocks (usually adjacent but this may be disrupted in a dynamic situation). 

The ideal geomeûic data structure should have the ability to represent spatial data at 

different levels of detail to meet the needs of cartographie generalization. 

Over nearly three decades, a variety of spatial indexing structures have been developed (see 

[Knuth 19731, [Gihther 19881, pamet 19901, and worboys 19953 for a survey). They can 

be broadly categorized into three families: linear orderings, bucket structures, and trees. h 

what follows, these three families of geometric data structures will be briefly examuied. 

Typical examples from each category are used to illustrate their common characteristics. 

The purpose of doing this is to get an idea of how these geometric data structures are 

constructed and whether they encompass the above concerns. 

a) The row order b) The row-prime c) The Morton 
order order 

d) The Hilbert e) The cantor- f) The spiral order 
order diagonal order 

Figure 2.19 The linear orders 



Linear orderings are the simplest geometric data structures in comparison to the other two 

families. They originate fkom scanning an andogous image and storing the texture 

information of pixels as a linear list Each record of the Iist contains a location code which 

is the address of a pixel. This technique is extended typically to order k-dimensional 

vectorized points, thus transforming a k-dimensional problem into one-dimension. Well- 

known data structures for one-dimensional storage and retrieve such as the B-tree, the B+- 

tree, ISAM, and hashing files can then be used. Popular orders include the row order, the 

row-prime order, the Moflun order Morton 19661, the Hilbert order [Goodchild and 

Grandfield 19831, the spiral order and the Cantor-diagonal order Mark and Goodchüd 

19861 (Figure 2.19). The Morton order is also called the Z order [Orenstein 19833 or N 

order m t e  19831, depending on how a location code is interleaved with the coordinates 

of a point. Comparisons between orders have been carried out based on the foliowing 

evaluations: efficiency for spatial searches [Abel and Mark 1990; Yang 19921; degree of 

spatial auto-correlation [Goodchild and Grandfield 19831; number of consecutive location 

codes falling in a rectangle window [Jagadish 19901; and practical considerations [S amet 

EWO]. 

Linear orderings are especially convenient for devising efficient range search algorithms 

for two or higher dimensions. Examples of range search algorithms based on the Morton 

and other orderings have been reported in Orenstein [1983], Yang [1992], and Stefanakîs 

[1994]. Besides storing discrete points, the ordering techniques c m  also be applied to index 

cells containhg cornplex objects. 

Bucket structures flatly partition the Euclidean plane into rec tangular cells, eac h having a 

location code as its address. Spatial objects falling in one cell are stored in a contiguous 

area of secondary storage. The simplest partition scheme produces a grid of fixed size for 

all the ceils. In this case, linear orderings can be applied to transform the location codes of 

cells into one-dimensional lists. The major disadvantage of a fixed grid partition is that 

some ceUs may contai. no data. This problem becomes more acute if the distribution of 

spatial objects is less uniform. The generd approach to overcome this shortcoming is to use 



some index compressing techniques to reduce the number of location codes. This method 

essentially transforms the £ked grid partition scheme into a more flexible one. A classical 

scheme following this approach is the Grid file wievergelt et al. 19841. 

1 eo 1- data page 

direc tory 

Figure 2.20 The Grid file structure 

The Grid file (Figure 2.20) uses a grid directory consisting of grid blocks. AU records in 

one grid block are stored in the same bucket (a disk page). Several grid blocks c m  share a 

bucket as long as the union of these grid blocks fonns a k-dimensional rectangle. The grid 

directory consists of two parts. The £i.rst is a dynamic k-dimensional array, which contains 

one entry for each grid block. The values of the elements are pointers to the relevant data 

buckets. The second part of the grid directory is a set of k-dimensional arrays called linear 

scales. These scales defme a partition of the domain of each attribute and enable the 

accessing of the appropriate grid blocks. The Grid file is designed to expand or contract as 

new data are inserted and deleted. A rectangle may be divided if it becomes too fulI and 

may be amalgamated with neighbouring ones if the space becomes too empty. 

Tree structures are based on recursive decomposition of space into a hierarchical indexing 

of ceus. Depending on particular decomposition schemes used and types of geometric 

primitives permitted, the resulting trees can have different shapes and the contents of 

intermediate nodes Vary depending on whether or not geometric elements participate in the 



partition. The leaves of a tree can contain a single geometric object or a cell of multiple 

objects. 

The idea of geometric hierarchical structures starts with the kd-tree pentley 19751. A kd- 

tree stores k-dimensional points. In two dimensional cases, the root of the tree corresponds 

to the whole region of interest (Figure 2.21). The rectangdar region is divided into two 

parts by the x-coordinate of the stored point on the odd nodes and by the y-coordinate on 

the even nodes on the tree. This division process continues recursively until a leaf node is 

reached on which no more than one point resides. This structure guarantees a logarithmic 

time for an exact match search. The original kd-tree manages points only and it does not 

consider disk paging capability. The balance of the kd-tree largely depends on the choice of 

the root node, which M e r  requires that all data be ready before the eee is constructed. 

Regular balance operations may be applied as points are inserted or deleted. 

Figure 2.21 A 2D-tree decomposition of space 

Variants of the original kd-tree, as well as many other types of trees, have been developed 

to accommodate complex objects and to enable secondary storage. For example, 

Matsuyama et al. [1984] modifies the kd-tree to index axes-parallel rectangular blocks 

where points, lines and polygons are recorded. The PM Quadtrees mosenberg 1985; Samet 

19841, which are regulated to have four branches, are used to partition a polygonal map. 

The arc tree [Günther and Wong 19891 generalizes arbitrary c w e d  shapes. Nevertheless, 

all these trees divide complex objects into subobjects at the boundaries of partitioned ceUs. 

The fragmentation of geometnc objects makes spatial queries such as point-in-polygon 

queries dificult and inefficient. Generally, it reduces the update dynamics and requires 



increased effort to balance the structure when deletions and additions occur. We make a 

note here that a true deletion with this kind of tree structures is r e d y  impossibIe. An 

example of a PM Quadtree is given in Figure 2.22. 

Figure 2.22 A PM Quadtree decomposition of space 

The R-tree [Guttman 19841 is a multi-dimensional extension of the B-tree and can be 

appkd to accommodate complex objects with no fragmentation. In an R-tree (Figure 2-23), 

each node represents a rectangle which can correspond to a disk page. The leaf nodes are 

the containers that actually hold the data in disk storage. Guttman devised dgorithms for 

inserthg and deleting operations which ensure that each node is neither overfiow nor 

underfiow for a given branching factor and that the tree is always balanced. 

The major problem with the R-tree is the possible overlapping of certain rectangles which 

causes overheads in spatial searches. The R+-tree Woutsos et al. 19871 is then developed 

to overcome this problem by ensuring that rectangles do not overlap. This approach, 

however, causes another problem: a complex object may be broken into different 

rectangles. 



Branching factor M = 4 

Figure 2.23 The R-tree decomposition of space 

The CeII-tree (Figure 2.24) [Günther 19881 is designed to facilitate searches on polygonal 

objects. Each cell node cornesponds to a convex polygon which is the result of binary space 

partition (BSP). The leaf nodes, which are all on the same level, contain all information that 

may be required to answer a query. Each node of the Cell-tree corresponds to one disk 

page. Günther used a tree condensation operation to eliminate empty leaves and propagates 

the elimination up the tree. Interior nodes with the number of entries less than the minimum 

are deleted and the entries under these nodes are reinserted into the cell tree. The 

shoacomings of the Cell-tree include: 1) the dennition of a tree node object does not 

corresponds to a native object definition, for not all  polygonal objects are convex; 2) in 

order to spLit a region into convex polygons, native objects may have to be broken into 

different tree nodes; 3) splitting convex polygons is more complicated than partitioning 

axes-parallel rectangles as practiced by R-trees. 

The Field-tree Frank 1983; Frank and Barrera 19891 has common features with the Grid 

fùe and the PR quadtree. Tt stores complete objects (cm be polylines and polygons) in 

rectangle cells each of which belongs to a field partitioned at a certain resolution level- A 

Field-tree therefore may consist of several sets of grids at different resolutions and 

displacements. An object may be inserted into a grid cell if it does not overlap the grid cell 

boundaries and there is no finer-meshed grid that will hold the object. An object c m  also be 

stored in a higher -1evel field if it is considered more important. A drawback to the Field- 

tree is that ovedow pages are sometimes required when grid cells of one field becomes 

full. We note here that the ability to manipulate spatial objects according to their thematic 

and geometric significance is a desirable feature in the design of a GIS, although it might 



be inappropnate to enable this feature in the geomeûic data sbmcture. Some of the reasons 

for this argument are mentioned below and will be elaborated when we discuss problems in 

automated map generalization. 

Figure 2.24 A Cell-tree decomposition of space 

Another geometric data structure that stores and retrieves geometric objects at Werent 

levels of detail is described by Oosterom [1993]. He defhed this kind of scheme as the 

reactive data structure. A reactive data structure is closely related to cartographie map 

generalization concepts and techniques. In the reactive data structure, a geometric reactive- 

hee rnust be constructed with ernbedded object-selection mechanisms. As with the Field- 

tree, the reactive-tree assumes that some important values are associated with geomeîric 

objects. One guideline for generating the reactive-tree could be: important objects are 

stored in the higher levels of the tree. Associative structures might be added to support 

different aspects of the generalization process. A general reactive-tree is a multi-way tree in 

which each intemal node contains both object and tree type entries. The leaf nodes contain 

object-entries on1 y. An object-entry has the form 

(MBR, imp-value, object-id) 

where MBR is the minimum bounding rectangle, imp-value is an integer indicating the 

importance of the object, and object-id contains a reference to the object. A tree-entry has 

the form 



(MBR, imp-value, child-pointer) 

where child-pointer contains a reference to a subtree. The MBR in a tree-entry is the 

minimum bounding rectangle of the whole subtree and imp-value is the importance of the 

child-node incremented by 1. Both entry types have the same size, with one bit in the 

object-idkhild-pointer to discriminate between the two entry types. Each node of the 

reactive-tree co~~esponds to one disk page. 

The reactive-tree satisfies the following properties: 

For each object-entry (MBR, imp-value, object-id), MBR is the smallest axes-parallel 

rectangle that geometrically contains the represented object of importance imgvalue. 

For each tree-entry (MBR, imp-value, child-pointer), MBR is the smallest axes-parallel 

rectangle that geometrically contains al l  rectangle in the child node and impvalue is the 

impvalue of the child-node incremented by 1. 

AU the entries contained in nodes on the same level are of equal importance, and more 

important entries are stored at higher levels. 

Every node contains between m and M object-entries andlor tree-entries, unless it has no 

brothers (a pseudo-root) . 
The root contains at least two entries, unless it is a leaf. 

Figure 2.25 shows a set of objects: objects of importance 1 are white, and those of 

importance 2 are gray. The figure also shows the corresponding rectangles as used in the 

reactive-tree. The object-entries are marked with a circle in Figure 2.26 for this example. 



Figure 2.25 Objects and containing rectangles of the reactive data structure 
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Figure 2.26 The Reactive-tree for the configuration in Figure 2.25 

The drawbacks of the reactive-tree are: First, it imposes the knowledge of importance 

values of objects resulted fiom the map generalization techniques before the tree can be ' 

conshucted. Classifyllig spatial objects into different important groups is strongly 

application dependent. While the resulting tree is effkiently targeted to a partïcular 

application, it may not be a geometric data structure supporting general applications. 

Besides, the data input process itself becomes application onented. Digitized map data 

categorized solely by their types of geometric primitives cannot be directly used to buiid 

the tree. Second, as with most of the tree indexing structures, inserthg and deleting objects 

may cause severe imbalances at the lower levels of the tree. Furthemore, a lower level 

node split may trïgger overflow in an index node above, which in hun rnay trigger a m e r  



cascade of downward splits. Third, as with other geometric data structures, the reactive 

structure does not contain topology of the spatial objects. Topological queries have to be 

supported by constmcting associated topological data structures. The separation of the 

geometry and topology into different indexing structures degrades the integration of the 

system and makes the maintenance of the two indices diffîcult. 

In summary, the geometric data structures that support complex objects either cut objects 

into pieces which may be stored in different disk pages or create overlapped containers 

which causes inefficiency in spatial searches. ALthough most of the structures have disk 

paging ability, the resulting disk pages themselves are not meaningful objects. They serve 

simply as a part of the data store but cannot be worked upon independent of the whole 

indexing scheme. The dynamics Vary from one geometric data structure to another and are 

enabled at the expense of balancing operations or additional overflow handling. All 

geometrîc data structures do not explicitly consider the construction of the topological 

relationships. The concem is focused only on handing space partition problems. 

2.5 Problems with Current Spatial Database Models 

Most cwent spatial databases in GIS use a hybrid architecture. That is, the topology and 

geornetry about spatial data are modelled separately with topological and geometric data 

models. Figure 2.27 illustrates the relationships and levels of representations between the 

two data models. In the diagram, a concinuous space is firstly discretized and spatial objects 

are collected (identified with data types, names, and geometry). The storage of spatial 

objects is rnanaged by a geometric data model. The geometric data model dispatches spatial 

objects into decomposed cells which are possibly grouped into disk pages. Based on the 

geometry stored, the topological relationships between spatial objects (identified with data 

types and names) are then extracted and represented based on either planar graphs or 

simplicial complexes. The storage of the representation may utilize a relational DBMS or 

specialized file s tmctures. 
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Figure 2.27 The hybrid architecture of spatial database models 

The drawbacks of the hybrid architecture to manage spatial objects can be addressed from 

the foliowing points of view: 

First, the two data models have different mathematical bases. The geometry data mode1 

is based on the decomposition of the space. The geometric reference framework 

resulting from the decomposition of the space is a rather rigid one which does not 

generally care about the extent, shape, and complexity of the embedded objects. As a 

consequence, some complex spatial objects have to be broken into pieces, the number 

of which depends on the partitionhg critena used. The hgmentation induces extra 

costs for maintainhg identity, and reduces the integrity of spatial objects. The dynamics 

of the geometric structure is also reduced due to the fkagrnentation. The main purpose 

of using a geometric data structure is to f o m  indices for the storage of clusters of 



geometric data. The topological relationships are of little concem with a geornetric 

scheme of orga-ng spatial data Although it can be argued that some geometric 

stnichires preserve certain topological relationships in theV subdivision, e.g. 

c o n t h e n t  in R-trees, they are not designed to efficiently answer topological quenes. 

The topological data model, on the other han& is based on a planar graph, which is an 

abstract data made with lïttle handling of the geometry of spatial objects. The purpose 

of using a topological data model is to encode and to answer queries concerning 

topological relationships between spatial objects, while whose positional data are off- 

line with respect to the system managing the topology. The representation of a 

topological structure depends on a complete, flat exposition of spatial objects in the 

plane. Although the geometry of spatial objects may be partitioned, paged, and 

managed hierarchically, the topological representation cannot conform to the geometric 

partitionhg scheme. 

Second, the interaction between the two data models is not dynamic and integrated. 

This is especidy tme when modification of the spatial database occurs. Adding an new 

object into the database, for example, involves inserting the object first into the 

geometric data structure. This process creates the identifier of the new object and 

possibly identiners of other system-generated objects, when the new object intersects 

others in the database. All these object idenaers then have to be incorporated into the 

topological structure and its representation. The modification of the topological data 

structure generally needs to calculate, for each new object, the incidence and adjacency 

with other objects, and to insert new relations into the data structure. The catch is that 

existing topological relations may be altered with the insertion. Failure to detect and 

accommodate a l l  these changes causes topological errors. Most current GIS systems 

therefore ask the operator to execute an exhaustive rebuilding process once the topology 

of the database is changed, although some tactic operations rnay reduce this probelrn. 

This analysis implies that the linkage between the two data models is loose and apt to 

inconsistency . 



Third, it is known that the planar graph topological model lacks the power of expressing 

some topo1ogiccal relationships. The representation of the topological structure relies on 

the incidence relationship between spatial objects. It is weak when addressing the 

containment topology with independent points and disconnected components in a larger 

embedding space. Even for the comected components, the data model has difficulty 

distinguishing and encoding the nature of the co~ect ion  (weak or strong). As is 

mentioned in the fint point, the data model lacks the power of representing spatial 

relations at different levels of abstraction, which tamishes the abstracting effort made 

with hierarchical representations during conceptual and geometric rnodelling processes. 

On the other hand, representing spatial objects and relationships at different levels of 

detail is natural and is the trend for spatial data modelIing. 

Fially, fkom the systems point of view, the separation of geometry and topology 

representations of spatial objects is not supportive of persistent object-oriented 

modelling technology. It is impossible to defme classes of spatial objects which 

encapsulate their States, spatial properties, and operational functions. The only 

topologically operable object type is the rnap (the coverage within ~ r c / I n f o ~  

termuiology) itself which constitutes the contents of the whole spatial database. The 

manipulahg of lower level spatial objects must be performed through procedures 

( D E )  provided by the spatial DBMS. It is understood that these procedures are coded 

separately fiom the storage of data to be accessed. When a map is accessed and 

manipulated, other accesses to portions of the database will be refused. Likewise, the 

communication of the spatial data can only occur at the map level if both their 

geometric and topological structures are required. A true realization of the client-semer 

architecture would be difficult with a non object-oriented spatial database model, 

especially when frequent modincations of a map are needed. 



Chapter 3 

The Dynamic Voronoi Data Mode1 

A spatial data model serves to represent and manage spatial objects occupying pieces of a 

space. If there were no embedded spatial objects then the space is homogeneous and there 

is no reason to manage it. The fact is that we do have various Ends of spatial objects which 

dot our modelling space! At the beginning of this chapter, let us corne back a bit to the 

dichotomous views of m o d e b g  a geographical space tu see if we c m  combine both views 

within one integrated modelling system. 

3.1 An htegrated View of Modelling Space 

Imagine that we are m o d e b g  the ecosystem around each tree in a forest within the 

Euclidean plane (Figure 3.1). The vicinity (the gray circle) centred on each tree (the black 

dot) has an influence on the growth cycles of its flora and fauna. The influence is greater 

nearer the tree and weaker f i e r  out. At some point, part of the boundary of the expanding 

vicinity will meet with other vicinities centred at and extending from neighbouring trees. 

Those boundaries that do not meet wiil extend to the edge of the space (Figure 3.2). 

Assume that all trees in the forest have similar size and that the expanding speed is the 

same for each vicinity in al1 directions. The meeting boundaries will have the same distance 

fiom each of the neighbourïng trees. For any point within a vicinity, the distance between 

the point and the tree wili always be shorter than the distance between this point and any 

other tree. 



Figure 3.1 Trees and their vicinity circles 

Figure 3.2 The tessellated space with respect to trees 

Figure 3.2 forms a tessellation of the space with respect to the distribution of trees. In other 

words, the space is partitioned to subspaces or tiles each of which is associated with a 

single tree within it. It is this tessellation that combines both field-based and object-based 

views of spatial data rnodels. From the field-based point of view, each tile represents 

collectively the locations that innuence or are innuenced by the growth of the associated 

tree. Across the tile boundary will be an area dominated by one of its neighbouring trees. 

From the object-based point of view, the reason for the tesseHation of the space is the 

existence of those trees without which the modelling space will not be tessellated. The 

tesseHation model, therefore, is centred on the objects and is simultaneously expressed by 

the collection of locations surrounding each object. With this integrated view, when one 



speaks of an object in the tessellation, there is a tile associated with it. In reverse, when one 

refers to any location within a tüe, the object dominating this tile is known. 

Besides tessellahg a space with respect to points, we c m  similarly have a tessellation with 

respect to polylùies and polygons (Figure 3.3). The analogy is the same as that for points: 

tiles are formed by expanding their vicinities in ail directions fkom each complex object 

until all boundaries either rneet within the space or extend to infinie. The collection of tiles 

is a partition of the space and each d e  is associated with an object within it. Any location 

within a tile is closer to the associated object than to any other object 

Figure 3.3 The tessellated space with respect to polylines and polygons 

The tessellation of a space based on the vicinity analogy has a special name, called the 

Voronoi diagram, which will be fonndy defmed in the next section. Figure 3.2 is a 

Voronoi diagram of points. Figure 3.3 is generalized fiom a Voronoi diagram of points and 

line segments. One can draw or sketch such Voronoi diagrams on a piece of paper without - 

much difnculty. We will see in this chapter how they c m  be produced with a cornputer. 

What is so special about the tessellation of a space via a Voronoi diagram? Tessellahg a 

space is not really new. AU the geometric structures of spatial objects that we have seen are 



tessellations in one form or another. LÏnear orderings tessellate a space h to  stripes of 

consecutive spatial uni&; bucket structures divide a space into rectangular cells based on a 

g id  fiamework, although the size of buckets can Vary due to the merging of cells; tree 

structures tessellate k t  into two, four, or any lirnited number of containers, and repeat this 

process in lower level containers until the contents of the container reach a pre-defined 

criterion. The purpose of ail tessellations is the same: partition a space into smaller ones 

such that they are easier to manage. The key clifferences for the Voronoi diagram are: 

1) The Voronoi tessellation is always object-based in that no tiles of space exist if there 

is no object embedded in the space. 

2) The tessellation is also object-driven in that if there is an object, there is a tile 

associated with it; on the other hand, the tile disappears when the object is deleted 

fkom the space. 

3) No additional breaking points will occur in the partitioning, in that a single idenmecl 

object never belongs to two tiles. 

4) The tessellation is irregular depending on the distribution and on the geomeiric 

configuration of objects; distribution and configuration of objects are not generally 

uniform. 

3.2 A Formal Definition of Ordinary Voronoi Diagrams 

In this section we defme Voronoi diagrams. Of the numerous types of Voronoi diagrams, 

we are especially inierested in the ordinary Voronoi diagram. This kind of Voronoi 

dîagrams is "ordinary" because it is simple and follows the intuition of the vicinity analogy. 

Ordinary Voronoi diagrams can be dehed  with a single notion of the Euclidean distance 

metric. It tums out that varying the distance function alone tells a lot about the behaviour of 

Voronoi diagrams. Besides the Euclidean metnc, non-Euclidean metrics can be used to 

define Voronoi diagram with special properties, which find interesting applications. 

Extensive and scholarly sunreys on both ordinary and "unordinary" Voronoi diagrams are 

provided by Aurenhammer [1991] and Okabe et al. [1992]. 



We consider fïrst a set of points S = {si, sû .-., s,}, for a limited Uiteger n (n > l), embedded 

in the R' Euclidean space such that no two points coincide. The ordinary Voronoi diagram, 

V(S), partitions the plane into Voronoi regions, v, such that for two distinct points si, sj E S, 

the dominance of si over sj is defked as the subset of the plane king at least as close to si 

25 t0 Sj : 

where d denotes the Euclidean distance function. D(si, sj) is a closed half plane bounded by 

the bisector of si and sj, denoted by B(si, sj): 

The Voronoi region v(si) is the portion of the plane lying in all of the dominances of si over 

the remaining points in S: 

With these, the Voronoi diagram V(S) is fïnally expressed as the collection of Voronoi 

regions: 

If ~ W O  bisectors B(si, sj) and B(si, & (si, sj, and si, E S) intersect, the intersection is called a 

Voronoi vertex and the bisector, delimited by two consecutive Voronoi vertices, is called a 

Voronoi edge. We denote Q = {qi}, for 1 < i S nq < 00, be the set of Voronoi vertices of a 

Voronoi diagram generated by S. Two points in S are neighbours if they share a common 

Voronoi edge @ossibIy extended to infhity). The Voronoi vertex has an equal-distance to 

at les t  three points and is therefore the circumcentre of a circumcircle, 4 (1 $ i 5 n, c a), 



defined by these points. Figure 3.4 shows the ordinary Voronoi diagram for a set of points 

with a graphic depiction iIlustrating the elements d e k e d  in this section. 

Figure 3.4 The ordinary Voronoi diagram and related elements 

Next we consider the h i t e  set S = {sl, q, ..., s,} c p, where si E S is a point, a line 

segment, a polyline, or a polygon as defined in Section 3.2. The above dennition c m  be 

generalized to ordinary Voronoi diagrams constructed fiom the set S. The generalization is 

made with respect to the extended dennition of the distance function d which has been used 

in the dennitions of the point Voronoi diagram and related elements. Generalized Voronoi 

diagrams of this kind have been studied in computational geometry since the late 1970s 

started by Drysdale and Lee [1978] (also reported in, Drysdale [1979], Kirkpatrick [1979], 

Lee and Drysdale [1981]). In a generalized Voronoi diagram, the distance h c t i o n  d is 

defined as the shortest distance between a point x c R* and an arbitrary point xi on si c S, 

that is 

where x and xi are the location vectors of x and xi, respectively. For a line segment si with 

two end points sj and sk the specification of the shortest distance function d, can be wrïtten 

as 



IIx - II' 

where X, sj, and 

respectively, and 

if x E Ril, 

ifx E Riz, 

are location vectors of a point x E P, and WO endpoints sj, sk E S 

are three regions for point x in respect to the line segment si (Figure 3.5). 

Figure 3.5 Regions for calculating the distance from a point to a line segment 

Having defined the shortest distance function for a line segment (for a point as well when a 

line segment has degenerated into a point), the shortest distance from a point to any other 

complex object in S is known. since ail complex objects dehned for S are connected with 

line segments. In the next section, we explore properties of the ordinary Voronoi diagram 



of points and line segments. Because we are dealing exclusively with the ordinary Voronoi 

diagram in this thesis, the modifier "ordinary" WU be ornitted fkom the context when no 

confusion arises- 

3.3 Properties of the Voronoi Diagram of Points and Line Segments 

The first property examuied demonstrates the behaviour of Voronoi edges which fom the 

boundary of a Voronoi region at the most primitive level. 

Property 3.1. Given the object set S defined earlier for a generalized Voronoi diagram, 

there are four possible types of Voronoi edge which bisect: i) two points (type El); ii) an 

endpoint and its comected interior of a line segment (type E2); iii) a point and the intenor 

of a line segment (type E3); and iv) the interiors of two line segments (type E4). 

The nature of the four types of Voronoi edges c m  be observed diagrammatically in the 

sketches shown in Figure 3.6. 

Figure 3.6 Four possible types of Voronoi edges bisecting two objects 



The diagram depicts that: 

~ , h e  El  edge (a) is a straight line and is perpendicular to the line linking the two points. 

A Type E2 edge @) is also a straight line perpendicular to the line segment and passing 

through the endpoint, 

A Type E3 edge (c) is a simple parabolic curve and is bound within the subspace 

overlapped by three haif-planes with respect to the line segment and its two type E2 

edges. The terminating points of the type E3 edge must be Voronoi vertices (hollowed 

circles). Each terminaihg point is the centre of the circumcircle formed by the point, the 

line segment, and at least one other object. 

A Type E4 edge (d) is a straight line, bisecting the angle between the two line segments, 

and is bound within the subspace overlapped by six half-planes with respect to the two 

line segments and their type E2 edges. 

It should be emphasized here that the introduction of type E2 Voronoi edges is the 

consequences of 1) the definition of the line segment in S, and 2) the distance function 

defined by Equation 3.6. There are Voronoi diagrams of line segments without the type E2 

edges (c.f. Gold et al. [1995]). These Voronoi diagrams do not recognize the endpoints as a 

distinct object in the denuing object set. 

AU types of Voronoi edge are equidistant from the two neighbouring objects which define 

it. An example of the distance fkom any point x on each Voronoi edge projected ont0 two 

neighbouring objects si, sj E S, i -+ j, is given in Figure 3.6, as marked by the symbol "/f7. 

Using this fact (d (x, si) = d (x, sj)), together with the distance functions given in Equation 

3.6, one can verify the nature of the four types of Voronoi edges with analyticai fûnctions. 

The existence of the E3 type Voronoi edge in the Voronoi diagram involving line segments 

has the following consequences which are stated as properties. 

Property 3.2. A Voronoi region in the Voronoi diagram of points and line segments is not 

necessarily convex. 



Property 3.3. A bounded Voronoi region in the Voronoi diagram of points and line 

segments may have only two parabolic Voronoi edges (Figure 3.7)- 

Figure 3.7 Voronoi regions bounded by two Voronoi edges 

Property 3.4. The Voronoi region of an endpoint incident to three or more h e  segments 

may be contracted into one point (Figure 3.8a). 

We note that not a l l  the Voronoi regions of endpoints incident to three or more line 

segments will be contracted into a point. This is the case when polylines are connected to 

fonn more complex objects (Figure 3.8b). 

a) A contracted Voronoi region 
of an endpoint (grayed dot) 

b) A non-contracted Voronoi region 
of an endpoint (grayed ara) 

Figure 3.8 Contracted and non-contracted Voronoi regions 

of endpoints incident to three or more line segments 



These properties do not apply to the Voronoi diagram for a set of points where aU Voronoi 

edges are straight lines, all Voronoi regions are convex, all bounded Voronoi regions must 

have at least three Voronoi edges, and there are no contracted point Voronoi regions for a 

discrete point set. The non-convexity of the Voronoi region presents some challenge to the 

design of geometric algorithms which are otherwise easier when a l l  Voronoi regions are 

convex. 

It has been mentioned in the defmition of a Voronoi diagram that the Voronoi vertex is 

equidistant to at l e s t  three points and is therefore the circumcentre of a circumcircle 

defïned by these points. This fart is equally tnie for a Voronoi diagram of points and line 

segments where a line segment must be tangent to a circumcircle. The following property 

concems the nature of any circumcircle defined by three or more objects. 

Property 3.5 (the ernpty chcumcircIe theorem). For every Voronoi vertex, qi7 in a 

Voronoi diagram, there exists a unique empty circle Ci centred at qi with contact points on 

three or more objects in S (tangent points on luie segments). 

This propeq is weU h o w n  in the study of the Voronoi diagram. The proof is simple and 

can be found in the literature (e.g. [Okabe et al. 19921, pp. 81). We make use of this 

property to show the next property. 

The property we now examine classifies possible types of Voronoi vertices (qi} in a 

Voronoi diagram. It is closely related to Property 3.1 and is useful for studying methods to 

calculate Voronoi vertices. In computational geometry the following two assumptions are 

usually made in discussing the properties of Voronoi diagrams: 

The non-collinearity assumpüon. For a given set of objects S = (4, sz, . . ., S.} c R ~ ,  (3 5 

n < oo), S17 s2, ..., sn are not on the same line. 



The reason for this assumption is clear. If all objects in S lie on the same line, all the 

Voronoi edges wiil be perpendicular to the line and extend to infinity without being 

intersected within a Iimited range. This is a special case which requires particular treatment. 

The general position assnmption. A given set of objects S = {si. q, . .., s,) c 2, (3 5 n < 

m), is in general position if no four objects are cocircular and no three objects are collinear. 

Satisfjhg this assumption, exactly three Voronoi edges will be incident at every vortex in a 

Voronoi diagram. The Voronoi diagram which is compatible with this assumption is non- 

degenerate, otherwise it is degenerate. 

Property 3.6. Voronoi vertices {qi} in a non-degenerate Voronoi diagram for points and 

line segments can be classified into six types according to the types of the three Voronoi 

edges which are generated by three objects. 

Type VI. A vertex qi generated by three points. In this case, the Voronoi edges are all of 

type E l  (Figure 3.9a). 

Type V2. A vertex qi generated by a point, the interior of a line segment, and one endpoint 

of the line segment. The Voronoi edges are types El, E2, and E3. The El and E3 edges 

are tangent at the Voronoi vertex qi (Figure 3.9b). 

Type V3. A vertex qi generated by the interior of a line segment, and two points. The 

Voronoi edges are types El  and E3 (Figure 3.9~). 

Type V4. A vertex qi generated by the interior of two Line segments, and one endpoint. The 

edges are types E2, E3 and E4. The Voronoi edges are types E 1, E2, and E3. The E3 and 

E4 edges are tangent at the Voronoi vertex qi (Figure 3.9d). 

Type V5. A vertex qi generated by the interior of two line segments, and one point. The 

Voronoi edges are types E3 and E4 (Figure 3.9e). 

Type V6. A vertex qi generated by the interior of three line segments. The Voronoi edges 

are al l  of type E4 (Figure 3.90. 



Figure 3.9 Six types of Voronoi vertices 

Proof- The complete combinations of the four types of Voronoi edges (El, E2, E3, and E4 

simplified as 1, 2, 3, and 4 respectively) intersected at a Voronoi vertex qi in a Voronoi - 

diagram of S can be listed in four mairices (Figure 3.10a). For any configuration involving 

three objects SI, SZ, and s3 in S, three Voronoi edges Ei, Ej, and Ek (for i, j, k c { 1,2,3,4}), 

there exist equivalent combinations (Figure 3.11). Removing surplus combinations fiom 

matrÏces in Figure 3.10a results in the matrices shown in Figure 3. lob. 



Figure 3.10 Combination matrices for three Voronoi edges 

Figure 3.1 1 Equivalent combinations of Voronoi edges 

We now proceed to prove that out of the remaining 20 combinations, only six of them c m  

be found in a non-degenerate Voronoi diagram, which has only three objects on a 

circumcircle corresponding to a Voronoi vertex. By putting three objects on or tangent to 



the circle corresponding to the types of Voronoi edges incident to the vertex, it is easy to 

venfy that the con~gurations in Figure 3.9 can be achieved without violating the non- 

degeneracy condition. These configurations match the combinations of Voronoi edges, 

namely 11 1, 123, 133, 234, 433. and 4-44 However, it is impossible to achieve the other 

combinations in the matrices without violating the non-degeneracy condition. Figure 3.12 

illustrates the proof of degeneracy of the other 14 combinations. The idea is to set up 

Voronoi edge configurations (solid thin lines) for the combinations with minimum number 

of objects on the circumcircle, and at the same tirne, this shows that surplus (degeneracy) 

Voronoi edges (dashed lines) incident to the vertex qi necessarily incur with these 

configurations. 

Two closely related facts will be revealed in the next section. d e r  we introduce the 

tnangulated dual structure of the Voronoi diagram. The fust fact shows that the first six 

non-degenerated vertices correspond to the six disthguished, non-degenerated triangles, 

each triangle having three objects Uustrated in Figure 3.9 as its vertices. The second fact 

demonstrates that ail the degenerate vertices correspond to non-triangulated dual polygons, 

which can be decomposed into triangles distinguishable by one of the six non-degenerate 

triangles. The significance of identifying the six non-degenerate types of vertices is that 

computing a Voronoi diagram requires only six well formulated methods to calculate and 

verify all types of Voronoi vertices. 



Figure 3.12 IUustration of the degeneracy of Voronoi vertices 

The final property which interests us views a Voronoi diagram as a planar graph, for which 

the set of Voronoi vertices {qi} corresponds to the set of nodes, the set of Voronoi edges 

{ei} to the set of edges, and the set of Voronoi regions {vil to the set of polygons. This 

property is stated in Aurenhamrner [1991]. A proof of it can be found in Okabe et al. [1992] 

(pp. 83-86). 



Property 3.7. For a finite set of objects S = ( s i ,  sz, . .., s,} c @, (2 I n < a), a Voronoi 

diagram V(S) is a plana. graph G(N, E) = G({qi}, (ei}) with the following facts: 

i) There are less than 312 edges in the graph; 

ii) There are less than Zn nodes in the graph; and 

iii) The average nurnber of edges of a polygon is aiways less than six. 

This property demonstrates h e a r  behavior for the size of the Voronoi diagram in the plane. 

It implies that, roughly speaking, the structure of a Voronoi diagram is not rnuch more 

complex than the underlying configuration of given object set [Aurenhammer 19911. This 

is one of the main reasons for the frequent use of Voronoi diagrams. A second reason is that 

V(S) comprises the entire proximity information about S in an explicit and computationally 

useful manner. 

3.4 The Delaunay Triangulation: The Dual Topological Structure 

The graph-theoretical view of a planar Voronoi diagram permis us to examuie its dual 

structure. To make things simple, we fxst study the dual structure of a non-degenerate 

Voronoi diagram of a set of points S. The Voronoi diagram for a set S is drawn in Figure 

3.13 with thin lines. We obtain the dual structure by a joining rule which joins every pair of 

neighbounng objects with a dual edge (thick lines). Each dual edge will be orthogonal to a 

Voronoi edge, but not necessarily intersect it. Since each Voronoi vertex is incident to 

exactly three Voronoi edges, it has correspondingly exactly three dual edges which form a 

triangle. Voronoi regions correspond to the set of objects S. The set S equaliy forms the set 

of nodes of the dual structure. It is also obsemed that the boundary of the convex hull of the 

object set consists of dual edges. This dual structure itself constitutes another tessellation of 

the bounded convex region spanning the object set, and is known as the Delaunay 

tessellation in honor one of its earlier investigators, or the Delaunay triangulation as each 

tile is a triangle. A dual edge joining a pair of neighbours is called a Delaunay edge. Each 



triangle in the triangulation is cailed a Delaunay triangle and the vertices of a Delaunay 

triangle, which are three points in set S, are Delaunay verrices. The duality between 

Voronoi and Delaunay immediately implies upper boundaries of 3n and of Zn on the 

number of Delaunay edges and triangIes. 

Before we give a mathematical defintion of the Delaunay triangulation, a few questions 

addressing practical problems are worth asking: 

1. The fmt question concems the general position assumption. If a point set is not in 

general position, can we s t .  achieve a aiangulated dual tesseHation for the Voronoi 

diagram of this set? The answer to this question is yes if the set satisfies the non- 

cobearity assumption. However, an additional refined joining mle must be observed. 

To see how this can be done, let us examine two degenerate Voronoi diagrams for small 

sets of points not in general position (Figure 3. Ma and Figure 3. Md), which show that 

the Voronoi vertex (the smaU circie) in each of the two diagrams is incident by more 

than three Voronoi edges (thin luies). 

Figure 3.13 The Delaunay tnangulation as a dual tessellation of the Voronoi diagram 



Figure 3.14 Voronoi diagrams and Delaunay triangulation for degenerated point sets 

Fi,- 3.14a and Figure 3.14d also show dual edges (thick lines) drawn according to the 

joining rule to join two neighbours. They are orthogonal to the corresponding Voronoi 

edges. The resulting dual structures for these two Voronoi diagrams, however, are not 

triangulations but polygons. The refined joining d e  is introduced in this case by 

partitioning the polygons into triangles with non-intersecting line segments joining the 

vertices (Figure 3.14b and Figure 3. Me). The results are therefore the Delaunay 

triangulations, sometimes called the degenerate Delaunay triangulations. Notice that a 

degenerate Delaunay triangulation may be structwed differently by joining different 

objects. This c m  be seen from alternative triangulations (c) and (g) for (a) and (d), 

respectively, in Figure 3.14. Either triangulation is acceptable. 

It is clear that each Delaunay inangle corresponds to a Voronoi vertex and the circumcircle 

defmed by a Delaunay triangle satisfies the empty circumcKcle theorem. Sibson LI9771 



proved that the Delaunay trimgulation for a set of points is locally equiangular or it 

satisfies the local m m i n  angle criterion. That is, for any two triangles whose union is a 

convex quadrilateral, the minimum angle arnong the six angles in the quacidateral is 

maximized. Actually, the Delaunay triangulation is the only triangulation with this 

property. The Delaunay aiangulation maximizes the minimum angle over aI l  possible 

triangulations of a given set of points. On the other hand a simple example shows that the 

maximum angle is not minimized. By the empty circle property, any trimgdation without 

obtuse angles must be Delaunay. Tnangulations without "extreme" angles are desirable in 

fnite elements and interpolation methocls. 

The Delaunay triangulation is a supergraph of several well-known and widely used planar 

graphs spanned by a set of objects in the plane: the minimum spanning tree [Kruskal 19561 

(or Prim sho~es t  comection network @%m 19571); the Gabriel graph [Gabriel and Sokal 

19691; and the relative neighbourhood graph [Toussaint 19801. These planar graphs are 

subjects studied in computational geometry and are applied to a variety of applications. 

2. The second question asks about the extensibility of the triangulated dual structure to the 

Voronoi diagram constmcted from a set of points and line segments. The joining rule is 

problematic here because a pair of neighboun may be line segments which are defined 

not by a single point, but a set of points defined by a linear combinatory equation. 

Therefore, any point on a line segment is, in theory, a neighbour to other objects in 

neighbouring Voronoi regions. The solution to this problem again utilizes more niles. 

For a line segment defmed by two endpoints a and 6, with a and b k i n g  their location 

vectors, respectively, we define the middle point located at (a + b)/2 as the graphical 

representation point of the line segment. With this reinforcement, a dual edge can now 

be drawn to relate two neighbouring line segments by their graphical representation 

points. Figure 3.15 illustrates the dual triangulation denved fiom the Voronoi diagram 

of a small set of points and line segments. 

Several notable characteristics of the dual trianplation can be identified in Figure 3.15. 

Firstly, the eianguiation does not necessarily satisw the max-min angle critenon. This is 



because the triangulation simply uses the graphical representation point to show the lùikage 

between a line segment and its neighbours. The neighbourhood relationship actually exists 

for ail points on the line segment. Altemativeiy, this implies that the trïangulation is not a 

tessellation of a space in the geometric sense. It becomes a planar graph modemg 

neighbourhood relationships observed from the dud Voronoi diagram. Secondly, the 

trïangulation does satisQ the empty circumcircle theorem when the interior of a line 

segment is considered wholly as one vertex of a triangle. A line segment as a vertex of a 

triangle is tangent to the circumcïrcle defined by this triangle. It does not matter where the 

tangent point is. For example, the triangle hisjsk in Figure 3.15 is corresponding to the 

Voronoi vertex q and has two h e  segment vertices sj and sk, and one point vertex 4. The 

circumcirde C defbed by this triangle is tangent to one point in each of the interiors of sj 

and sk, respectively, and is object free in its interior. For this reason, that the dual 

trïangulation preserves the empty circumcircle property, we still cal l  it a Delaunay 

trimgdation. Finally, for the same reason, a triangle edge in the dual triangulation of a 

Voronoi diagram of points and line segments is not necessady drawn as a straight line 

segment. A fiee c w e d  triangle edge, t, for instance, is graphicaIiy presented in Figure 

3.15. Note that the curved triangle edge is for graphical purpose only. Neighbourhood 

between two objects is not affected by the shape of a linking edge. The last charactenstic 

actualiy reveais an important concept about the Voronoi diagram of points and line 

segments, that is, a iine segment must be distinguished by its sides. This concept will be 

elaborated later. 



Figure 3.15 The dual tnangdation of the Voronoi diagram of points and line segments 

3. The last question concerns the usefdness of the dual triangulation. As the Voronoi 

diagram itself forms the tessellation of a space with many usefid properties, what is the 

advantage of having a dual structure in the fust place? The answer to this question 

emphasizes the efficiency of the dud triangulation in the representation by a cornputer. 

Similar to the topological structure discussed in the previous chapter, the dual 

triangulation is the topological structure which explicitly preserves the neighbourhood 

relationship between Voronoi tiles and hence objects. Although the Voronoi diagram 

itself admits this relationship, its representation by a cornputer is not easy. The major 

difficulties &se from 1) the number of neighbours of a Voronoi region depends upon 

the distribution of the set of objects and cannot be fned; and 2) there are parabolic 

boundaries between neighbouring Voronoi regions when line segments are involved in 

the object set. On the other hand, the information items needed to register the same 



topology cm be fixed with the triangulated dual structure. In the inangulation, each 

triangle edge is defined by two objects in the given set, and each triangle has exactly 

three neighbouring triangles. Therefore, the record length for each triangle is lcnown 

and constant. If the dual information (a triangle edge vs. two vertex objects and two 

neighbouring triangles) can be encoded in a data structure, aU the facts that we need to 

know about a Voronoi diagram can be provided by the data structure. As a matter of 

fact, the dual topological data structure contains not only the explicit neighbourhood 

relationship, but other topological properties, such as connectivity and containment 

concerning topological spaces, can be denved rather efficientiy. We wïil elaborate this 

point in the coming sections. 

As a summary of this section, we give our f o m d  definition of the Delaunay triangulation 

derived fiom a Voronoi diagrarn: 

Given a Voronoi diagram for a set S = {si, si,  . . .. S.} c l?, (3 I n < m), of points and line 

segments as dehned previously, V(S), its dual topological structure, the Delaunay 

tessellation, D(S), is a planar graph G(S, E), where S, E are the node set and the edge set of 

G, respectively, and for si7 sj E S, i, j E In, i F j, sisj E E iff the Voronoi regions v(si) and 

v(sj), possibly unbounded, share a common Voronoi edge which can be a half-line, a line 

segment, a paraboiic curve, or a degenerate point. We cal1 each sisj E E a Delaunay edge. 

In the case that a Voronoi edge has degenerated into a point, this point must be a 

circumcentre of a circumcircle defined by more than three nodes in G, and one must 

therefore add Delaunay edges in E by applying the refmed joining d e .  

Defme a subgraph T = (TI, T2, ..., Tm) c D(S), 1 S rn S 2n, where each Ti c T is a 2- 

simplex whose composing 0- and 1- simplices belong to S, and E, respectively. The only 

constraint on Ti c T is the empty circumcircle critenon, that is, the circumcircle defined by 

the vertices of each 2-simplex in T does not contain any object in S in its interior. The 

subgraph T c  D(S) is called the Delaunay triangulation. Each Ti c T is a Delaunay triangle. 



3.5 The Data Structures of the Voronoi Diagram 

Designhg a data structure to represent the Voronoi diagram is the fnst concrete step in the 

constmction of the diagram with a computer, in addition to understanding the nature and 

properties of the diagram. Following the discussion presented in the preceding section, the 

design of the data structure is centred on representing the duai Delaunay triangulation. The 

following two important requirements are imposed on the data structure: 1) It must be 

topologicd in the sense that only the identifiers, not the geometry, of an object class should 

be involved in the supporting operations for topological properties; and 2) The transition 

between an identifier of an object and its geometnc definition should be nahiral and 

smooth. There could be many different data structures encoding a Delaunay triangulation, 

although two representations stand out. The fxst one is the well-known quad-edge data 

structure [Guibas and Stolfi 19851, and the other is the triangular elernent data structure 

[e-g. Gold 1976; Gold et al. 19771. 

The quad-edge data structure is a computer implementation of the edge algebra developed 

by Guibas and Stolfi [1985] which captures ail the topological properties of the subdivision 

of a surface. Each undirected edge of a non-oriented subdivision is composed of eight 

information items: four encode the orientation and direction of the edge, and the other four 

encode that of the dual edge (linking left and right faces). Figure 3.16 depicts the direction 

and orientation of an edge in (a) and a genenc edge structure in (b). For a generic edge e, its 

record, identified as e, has four parts (quarters), e[r] with r E {O, 1, 2, 31, plus in each part 

one additional bit f E (0, 1 }. Therefore, the edge e c m  be referenced by the triplet (e, r, fi, 
where r indicates the orientation, and f the direction. This triplet serves as a pointer to a 

"recordquartei' e[r] plus the bit telling us the edge e by a particular vertex, and a pariicular 

face. Each part e[r] of an edge record e can contain two fields, Data and Next. The Data 

field holds geometric and attribute information about the edge e in orientation r and at 

texminaif. The Next field contains a reference to an adjacent edge in a counterclockwise 

order. The algebraic operations upon quad-edges include Flip, Onext, and Rot. The FZip 

operation on an edge e r e m s  the same unonented edge with the opposite orientation and 

the sarne direction. The Onext operation on e retums the edge immediately following e in a 



counterclockwise direction, with the same origin as e. The Rot operation on e, however, 

rehuns the dual of e, which is e being rotated 90° counterclockwise around the crossing 

point of dual edges. The quad-edge data structure contains no separate records for vertices 

or faces. A vertex is implicitly defined as a ring of edges and cm be referred to by 

spec-g any of its outgoing edges. On an orientable manifold, such as the Euclidean 

plane or the sphere, the Flip operaiion is not needed. 

direction 

- - - 1 dual edge 

t x ,  O) = (e, O, O) Rot 

l(e, O, 1) = (e, O, O) Flip 

O 

a) A directed, oriented edge b) A quad-edge e 

Figure 3.16 An illustration of the quadedge data structure 

The uiangular element data structure is simple, and more intuitive. As the name suggests, 

the basic elements of the data structure are iadividud triangles. For each triangle Ti in a 

triangulation, a tuple of six ordered pointcrs is used: 

where vl, v2, and vz are three system-generated references for the vertices of the triangle in 

counterclockwise order; and ti, tz, and t3 are three system-generated references for the 

adjacent triangles. The order of the adjacent triangle references is arranged such that for 

each 4, k E { 1,2, 3 }, its referred triangle shares a triangle edge with triangle Ti, the shared 

triangle edge must be d e h e d  by vk.1 and vk+l. In other words, the position of tk  



corresponds to the position of vertex vk- Figure 3.17 shows a portion of a triangulaîion and 

its data structure. The arrows illustrate the positioned correspondence between vertex and 

adjacent triangle references. 

30 

a) A portion of a triangulation b) Triangular element representation 

Figure 3.17 The triangular element data structure 

Unlike the quad-edge data structure, the triangular-element data structure expücitly 

represents the identities of triangles and their vertices but not the triangle edges. A triangle 

edge is implicitly identified fkom the data structure. Both data structures are equivalent for 

a planar tnangulated subdivision in the sense that topological properties involved in this 

subdivision are represented. The triangular element data structure is used to represent and 

store Voronoi diagrams in this thesis. This was chosen for the historical reason that the 

surface interpolation data mode1 was first studied based OE the triangular element data 

structure [e.g. Gold 1976, 19891, which has been transformed later into the fundamental 

data structures for a dynamic spatial data handling system [e.g. Gold 19911. 

One of the most important extensions to the original triangular element data structure 

permitsi the Voronoi diagram to handle both points and line segments [Gold 19901. This 

capacity is built into the associative topological object structure to represent and manage 

these two types of objects. As is shown in Figure 3.18% the object structure specifies the 

relationship between a line segment and its endpoints. It has been mentioned before that a 

line segment has to be distinguished by its sides, it is therefore onented. It is also directed if 



the start and end points of the line segment can be identified. This is done by actually 

treating a line segment composed of two mutually associated and oppositely oriented lines. 

When a line segment is refened, it is necessary to indicate which side. 

Let ki E 1 ,  Wi E 1, 1 I i É a, and I is a fd te ,  distinct set of positive integer numbers. The 

example of a general line segment in Figure 3.18a has two oriented lines k3 and b. For the 

onented line k3, the endpoint kl is associated with it; and for b, the endpoint k2 is 

associated (indicated by dashed arrows). Associated also with an oriented line is the other 

side of the line (dashed arrows relating k3 and b). The endhg point of the oriented h e  k3, 

cm be retrieved by asking for the staaing point of the orïented line at the other side, which 

is The data structure representing this scheme is shown in Figure 3.18b. The distinction 

between a line segment and a point is made in the "Other-side" field. For a point object, the 

value of its "Other-side" field is null (Le. O), and the value of its 6Znd-pointp' field will 

never be a null. For an oriented line, the "End-point" field is filled with the identifier of the 

starting point; and the "Other-side" field is the identifier of the associated onented line on 

the other side. 

(a) The associative object structure 

OTD Endpoint Other-side ... 

m.. . .. 
null *.. 
null *.. 

k4 ... 
k3 . . . 
null ... 
null ... 

(b) The object structure representation 
for the data in (a) 

Figure 3.18 The associative object data stmcture 



The subject of identimg orientation of geometric lines and planes has been recognized in 

computation geometry. One theoretic treatment [Stolfi 19871 named the study as "oriented 

projective geometry". The oriented projective geornetry can be viewed as a marriage of 

classical projective geometry, which underlies the homogeneous coordinate representation, 

with an algebra of orientations, which is the ordinary algebra augmented by two-sided 

representation of objects. 

3.6 The Construction of the Dynamic Voronoi Diagram 

The computing of a Voronoi diagram c m  be carried out directly, or by constructing its 

dual, the Delaunay triangulation, since they are topologically quivalent. The construction 

through the Delaunay triangulation is especially advantageous if the data structures are 

oriented to representing the Delaunay triangulations. By associating aiangles with some 

relevant geometric information, for example the coordinates of the correspondhg Voronoi 

vertices, we are computing, simultaneously, the underlying Voronoi diagram. 

There are typically four approaches to constnicting a Delaunay triangulation. The 

algonthms of each approach are extensively studied in the computational geometxy 

community. The divide-and-conquer [Drysdale and Lee 1978; Guibas and Stolfi 19851 

approach recursively divides the set of objects into two equalIy smaller subsets, usually the 

left and the rïght halves:The Delaunay triangulation of each half is then recursively 

computed and finally merged with that of the other hdf into a bigger one, until the whole 

set is spanned with one Delaunay triangulation. The plane-sweep method Fornine 1986, 

19871 uses a horizontal h e ,  called the sweepline, and moves it over the plane fiom bottom 

to top, halting at special points, called "event points". The Voronoi diagram is constnicted 

dong this line by maintaining a list of Voronoi regions and boundaries encountered by the 

sweepline, and a priority queue of events. The third approach is rather different in that it is 

based on the idea of "transforming geometrical problerns into more easily understood and 

solved ones". This method [e.g. Brown 1979; Edelsbrunner 19861 transforms Voronoi 

diagrams in R' into convex hulls in p: the points are mapped, via a stereographical 



projection, into points lying on a sphere. For this reason, the method is called "tifring-up" 

[Okabe et al. 19921 or "higher dimensiunal ernbedding" [Aurenhammer 19911. The convex 

hull in higher dimensions is fmally transformed inversely to the original plane. Ail these 

three methods can compute a Voronoi diagram with the optimal O(n log n) tirne bound, 

where n is the size of the object set. However, a serious drawback of these algonthms is the 

assumption that all objects are known before these dgorithms are applied which is 

unredistic in a dynamic environment. The fourth approach is the incremental methud 

which is the simplest to understand and implement. The incremental approach is usually 

attributed to Green and Sibson 119773 for their dgorithmic description of the method, 

although Gold [1977] independently discovered this approach and used it to generate 

contour maps based on a partial ordering of the tnangulated plane. The idea of this method 

is first to set up a Delaunay triangulated frame of the universal plane and then to modiw the 

triangulation, based on the empty circumcircle test, as new points are inserted one at a time 

kt0 the plane. 

We are interested in the incremental approach to construct d y ~ m i c  Voronoi diagrams. 

"Dynamic" means that the diagram is (locally) modifiable as objects are added or deleted. 

We chose this method for the following reasons: Fit ly ,  most geographical applications 

experience dynamic processes involving spatially referenced objects, as identifed in the 

fxst chapter of this thesis. Often a dynamic process occurs in an existing spatial 

configuration which is then interacted with and modified during the process. A new spatial 

configuration is derived as a result of the addition or deletion of objects, or the 

displacement of a previous configuration. The status of the set of spatial objects in the 

spatial configuration is therefore dynamic in nature. Secondly, the incremental approach is 

naturdy akin to the temporality of a geographical database with which the history of the 

evolution of spatial objects can be tracked. This is sensible because the tracking process 

corresponds directly to a geographical process. Thirdly, taking the construction of the 

Voronoi diagram as a cartographic application, the incremental approach could be 

advantageous when used under some interactive environment. AU cartographic data 

inputting and editing processes can be monitored and validated within a topologically 

meaningful framework, hence avoiding the tedious foilow-up process of correcting 



topological errors. Finally, the incrernental approach permits the building of an object- 

onented and dynamic spatial database which is concurrently accessible by multi-users and 

supports parallel processing of geographical problems. These arguments wïil be made clear 

as the thesis proceeds. 

The Kinematic Constmction Algorithm 

The particular incremental method applied in this thesis is based on the kinematic 

conshuction algonthm, with which embedding objects are allowed to move dong given 

continuous trajectories. The kinematic procedures to generate Voronoi diagrams of points 

and iïne segments have been practiced in the GIS comUILity since the early 1990s [Gold 

1991, 1992al. They have k e n  simultaneously investigated in the community of 

computational geometry [Roos 1991; Guibas et al. 19911, with the emphasis on the 

independent motions of a set of points in the plane. A recent publication [Gold et al. 19971 

on M y  dynamic and kinematic Voronoi diagrams and their application in GIS 

demonstrates a fniitful collaboration between the two communities. 

Given a set S = {si, ..., S.} of points and Line segments on the Euclidean plane R ~ .  We 

assume that an initial Voronoi diagram V(S) exists. The kinematic algorithm dynamizes 

V(S) by inserthg new elements into, or deleting one from the set S. It also displaces point 

objects in S. The objective of the algorithm is to maintain a continuously updated Voronoi 

diagram V(S) for the dynamic object set S. This is achieved by maintainhg a current 

topological structure of V(S), the Delaunay triangulation D(S). The concept of how to detect 

potential change of D(S) is different from other dynamizing, but non-kinematic techniques 

(compare, e.g., Boissonnat et al. [1992] and Devillers et al. [1992]). 

Nearest object search (nos). We devise a nearest object search function (nos) and use it 

extensively to assist in the construction of and query operations on a Voronoi diagram. 

Searching for a nearest object embedded in a Voronoi diagram is a specific case of a 

general nearest-neighbour problern [Knuth 19731. By constmcting a hierarchical Delaunay 

search structure with n dynamically moving points, using O(n log n) time and O(n) storage, 



Roos [1991] proved that each nearest-neighbour query can be affected in worst-case 

optimal O(1og n) t h e .  Even by a simple walking aigorithm [Green and Sibson 1977; Gold 

19771 over a triangulated structure, Guibas and StoIfi Cl9851 analyzed that an O(n) worst- 

case tirne bound suffices for locating a point. Our nos hinction is based on the simple 

walking procedure and has k e n  shown to be efficient in an interactive environment. 

hserting, deleting, moving a point 

Destination. starting point, trujectory. and moving point: Before a new point s is inserted, 

its location vector s E l'? m u t  be aven which is the destination of s, denoted dest. 

Superimposing the destination s ont0 V(S), the nearest object to s cm be found from S 

through D(S) with the nos function. To insert a point, we name the nearest object the 

starting point for m o w i n g  D(S), denoted sp. A trajectory is a half-line in IZ2, emitted from 

sp E S and passing through dest. A moving point, denoted rnp, is created and inserted into 

S. The initial location of mp is the same as that of sp and is immediately moved away fiom 

sp dong the trajectory. Gold [199 1, 1992aI describes this operation as object splir. 

Consequently the topological structure, D(S), has to be modifed to D(S u mp). The 

modification is in respect to the newly split Voronoi region v(MP) which bas similar 

neighbouring Voronoi regions as v(sp) before mp is split, plus now v(sp). Figure 3.19 

illustrates the above concept where in (a) a destination for a new point is superimposed on a 

Voronoi diagram and the starting point sp is found. This determines a trajectory (the dashed 

and arrow line). The moving point rnp is then split and displaced (exaggerated in the 

diagram) away from sp, together with the Voronoi diagram modified in (b). For the sake of 

clarity, the destination mark is removed from Figure 3.19 @). Instead, two Voronoi vertices 

are labeled as qi and qz. It can be verified that ql, qz are the centres of the circumcircles 

defined by two triangles LLnp-sjj-si and hi-sj0sk, respectively. The reason for this labeling 

wili soon be made clear. 



(a) before spiitting a point (b) after splitting a point 

Figure 3.19 Concepts related to splitting a moving point in point insertion 

After splitting, mp exists in S and moves to it's destination. It is known that mp is a 

Delaunay vertex shared by a number of adjacent triangles, determined by the number of 

Voronoi edges for v(mp). As rnp moves, the shape of v(mp) will be reformed, 

accompanying the displacement of the Delaunay vertex designated by mp. Nevertheless, so 

long as the circula list of the adjacent triangles around mp does not change, the topological 

structure stays the same. This can be seen fiom Figure 3.20 where mp is moved dong the 

trajectory some distance without changing the topological structure established in Figure 

3.19 @). We are, however, interested to know when the topological structure should be 

altered and how we can be infonned of this possible change. By carehilly studying Figure 

3.20, one can observe that the Voronoi edge between ql and qt in Figure 3.19b becomes 

zero, and ql and qz coincide to a single Voronoi vertex, q, which is now intersected by four 

Voronoi edges. This indicates that Voronoi vertex q must be correspondent to four 

cocircular objects. They are, indeed, the four aiangle vertices of the two adjacent triangles, 

hp-sj-si and bi-sj-si;. 



Figure 3.20 Moving mp without changing the topological structure 

The phenomenon, that a degenerate Voronoi vertex becomes contracted with mp, signals 

that the topological structure might be modified. Roos 119911 calls this signal a topological 

event. There is yet another type of topological event which corresponds to the phenomenon, 

that mp is about to abandon a contraction with an existing degenerate Voronoi vertex. Gold 

[1991, 1992a] distinpuishes these two topological events as moving-in, for the former type, 

and moving-ouf for the latter one (Figure 3.21). 

(a) The moving-in event O>) The rnoving-out event 

Figure 3.2 1 Two types of topological events 

Intuition is sufncient to understand the two topological events. For both events, the moving 

point mp anives at a critical point. It is either moving into (for Figure 3.21a) the 

circumcircle origindy defined by triangle bisi-sj-sk, or moving out of (for Figure 3.2 L b) the 



circumcircle defmed by triangle hisi-sj-sk. The kinematics of the algondun capture al1 

topological events activated by the advance of the moving point. For each event, a decision 

has to be made on whether or not an action should be taken. The action, actually the well- 

known swap function [Green and Sibson 1977; Gold 1977; Guibas and Stolfi 19851, 

switches the triangle -edge diagonal to the quadrilateral defining the circumcircle 

corresponding to the degenerate Voronoi vertex, q. A decision can be justified based on the 

h o w n  ernpty circle property that any topological conflict shouid be avoided. Figure 3.22 

illustrates the result of swapping, with (a), (b) corresponding to (a) and (b) in Figure 3.21, 

respectively. It can be seen that after the swap, the contraction of mp with a degeneracy is 

released. The circumcircle in Figure 3.22 (a) should not exist, we keep it there to show the 

moving-in idea 

It should be noted that a swap is a local operation in that the only triangles which have to be 

adjusted are the two aiangles in the quadrilateral and the four additional triangles sharing a 

boundary with the quadrilateral (Figure 3.23). 

The process af detecting topological events and swapping triangles to resolve possible 

topological conflicts continues until rnp arrives at its destination. 

Figure 3.22 Two swaps corresponding to moving-in (a) and moving-out (b) 



Figure 3.23 Triangles affected by a swap 

Deleting a point si E S is a similar process to point insertion. In this case, the point to be 

deleted is already in S therefore there is no need to split a point. In addition, the destination 

is not given but is instead chosen as the location vector occupied by the nearest point in S. 

After this, the trajectory is known to be the half-line emitted fiom the original location of si 

and passes through the selected destination. The point si then becomes mp and is moved 

towards the destination. When mp arrives close to the destination point, with the 

topological structure around it similar to that of a point splitting, a rnerge [Gold 199 1, 

1992al operation takes place. The merge operation reverses the split process. 

Moving a point si E S to a designated location (the destination and the trajectory are 

known) is simpler because it does not involve splitting (as in point insertion) or merging (as 

in point deletion). 

Inserting and deieting a line segment 

A fine segment can be connected and uncomected. Inserthg an unconnected line segment 

into S is divided into two steps: inserting a point into S, which will be an endpoint of the 

line segment; then inserting the line segment from the endpoint. Similarly, inserting a line 

segment into S and connecting it to an object already in S also involve N o  steps: 

designating a point in S to be an endpoint of the line to be inserted; then inserting the line 

segment from the endpoint. In either case, the location vector of the destination has to be 

given, which will be the location of the other endpoint of the line segment. The trajectory is 

then determined to be ernitted from the endpoint in S and passing through the destination. 



Let sp E S be the designated endpoint of the line segment to be inserted. Similar to splitting 

a point, three new objects will be created and inserted into S. The three objects are: the 

other endpoint, denoted mp, meaning it WU be the moving point; the left-side line, Il; and 

the nght-side h e ,  rl. -Both side lines are collineas to the trajectory and are mutually 

referenced: IL is referenced to sp, thus making the new line segment comected to a point in 

S; rl is referenced to mp. The initial location of mp is the same as that of sp. Conceptuaily, 

three Voronoi regions, v(mp), v(lC), and ~ ( r l )  are to be split from V(S). This is achieved by 

m o m g  the topological structure, D(S), to be D(S u mp u IL u rl). Figure 3 -24 iilustrates 

the Voronoi diagram in Figure 3.19 (a) immediately after a new line segment is split from 

sp. The exaggerated displacement of mp demonstrates the modified topological structure so 

far. 

Figure 3.24 Splitting a iine segment from an object in S 

The moving point, mp, now moves toward the destination, dragging a line behind it. The 

topological structure around rnp is modified to correspond to the topological events 

detected. It is worth noting that the behaviour of the moving-in topological event is the 

same as i n s e d g  a point (Figure 3.25). It is different, however, for the moving-out event. 

The distinction is that the trajectory is always tangent to, but never cuts. the circumcircle 

that mp is leaving (Figure 3.26). Othenvise the empty circumcircle condition would be 

violated. 



Figure 3.25 The topological structures before and afier moving-in 

Figure 3.26 The topologicd structures before and after moving-out 

Sometimes it is desirable to insert a line segment which has both endpoints connected to 

two objects in S. In this case the destination endpoint should also be designated in S. 

Similarly, the moving point and two oriented lines need to be inserted in S, with the starting 

endpoint connected. When mp nears the destination and there will be no more moving-in or 

moving-out events between the current location of mp and the destination. the merge 

operation takes place, which changes the reference point of rl fiom mp to the designated 

endpoint in S. 

Delehg a line segment in S consequently deletes ail unconnected components of the line 

segment; fmt, delete the interior of the iine segment; second, delete any unconnected 

endpoints of the line segment. To delete the interior of a line segment, one endpoint of the 

line segment is designated as sp and the other endpoint as  tp. The trajectory starts from sp 

and passes p. A new point is then created and inserted into S. This point is designated as 



mp, and is split from sp. In splining mp, the reference point of the left-side line is changed 

from sp to mp, and the topologicai structure for both sp and mp is constructed. Figure 3.27 

shows the result of splitting mp before starting to delete a line segment. 

Figure 3.27 Splitting mp to delete a line segment 

The topological events are then captured and the topological structure is modified as rnp 

moves to tp, the destination. Analogous to deleting a point, when mp arrives at a location 

close to tp and there are no more topological events lefi, the merge operation f indy adjusts 

the topological structure around mp and removes mp, II ,  and rl from the set S. 

With the basic inserting and deleting algorithms for handling line segments, it is 

straightforward to rnodify and extend them to suit other cartographie operations. For 

example, instead of completely deleting a line segment, the line c m  be shrunk to a point on 

the lhe segment. Furthemore, a line segment c m  be broken into two line segments, 

comected at the breaking point. Breaking a line segment may be done by fmt shrinking the 

line segment to the breakhg point, and then inserting a new line segment in between the 

original endpoint and the breaking point. Figure 3.28 illustrates shrinking, and breaking 

operations on a line segment. Cleariy, breaking a line segment is a compound operation. 



(a) Shrinking a 
iine segment 

(b) Breaking a Iine segment: 
1) shrinking, 2) inserting 

Figure 3.28 Shrinking and breaking a Line segment 

The dynamic resolution of the Iuie intersection problem 

Inserting a h e  segment into the object set S may cause a problem in that the new line 

segment inteaects a number of existing objects already in S. Correctly fmding intersections 

of a line segment with other line segments in S is not trivial if the objects in S are not 

supported by an efficient indexing structure. Even with some indexing structure, the usual 

approach wiIl fust involve a range search with respect to a minimum bounding rectangle 

(MBR) for the full range of the new line segment. The intersection test then has to be 

applied to each h e  segment falling inside the bounding rectangle. Consequently, 

intersecting nodes, together with the new line segments incurred, have to be inserted into 

the indexing structure (Figure 3.29). If a Voronoi diagram is constructed for the set S with a 

non-kinematic incrernental method, the first two steps are still applicable when a new fine 

is inserted. In this case, of course, the third step is not to modiQ the indexing structure, but 

to rigorously modiv the Voronoi diagram. 



(a) Form a MBR for the (b) Range search for al1 line (c) Calculate intersections 
new line segment segments in MBR and update the geometric 

data structure 

Figure 3.29 The usual approach to resolving the line intersection problem 

The bernatic approach resolves this problem in an unusual and elegant way. The solution 

is topological rather than geometrïcal in that 1) a potential intersection is captured by 

detectuig a topoiogicai event (no range search is needed); and 2) the sequence of 

intersections is known with regard to the direction of the trajectory. With the kinematic 

method (Figure 3-30), an intersection is detected dynamically as the moving point is 

proceeding to a given destination. A possible intersection is signaled by a topological event 

which indicates that the moving point is about to collide with an existing line segment 

(Figure 3.30a). This signal arises when the moving point is lefi with only two neighbours. If 

an intersection is about to and is intended to happen, the colliding line is broken at the 

intersection and a join node is made to connect the three line segments (Figure 3.30b). 

Afier this, a new line segment is split from the join node, and pulled dong the trajectory by 

a moving point towards its fuial destination (Figure 3.3Cc). 

(a) A collision is detected (b) Break the line segment (c) Pull the iine after the break 

Figure 3.30 The kinematic method of handling line intersections 



The kinematic method of handling the problem of line intersection is readily applicable to 

deai with the collisions of a moving point with obstacles in a spatial configuration, and can 

be applied to advantage in robot navigation, motion planning, and GIS intelligent digiuzing 

[GoId et al. 19961. For example, Gold and Condal [1994] described a simulation mode1 for 

boat navigation in a marine environment- 

3-7 Preserving the History of Changes in Spatial Objects 

An increasing demand on a spatial data handling system is that the history of changes in 

spatial objects needs to be preserved. The history of a spatial object records the time when 

the object was created and inserted into the space, when any changes have occurred on its 

geometrïc shape and placement, and if it was removed fiom the space. The complications 

of creating, transforming, and destroying spatial objects are discussed in Worboys [1995]. 

If organized and stmctured the history of spatial objects in a system can be quened and 

retrieved thus presenting the temporality of the system. Moreover, one can talk about a 

spatial object by referring to a specific time instance or period, implemented with an 

underlying temporal h e w o r k .  Spatial objects referenced with both spatial and temporal 

dimensions are cailed sputio-temporal (ST) objects (Worboys [1995], pp. 303-3 14). 

Recent years, research and development on spatio-temporal database management systems 

have k e n  actively carried out in the Centre de recherche en geomatique at Université 

Laval, by Dr. Bédard and his team. Substantial results from a series of inter-related projects 

have k e n  achieved. Bédard and van Chestein [1995] presented primary requirements in 

managing the temporality of geo-objects. Gagnon 119931 discussed notions and concepts 

involved in space and tirne. Roulx 119951 developed a query language and an interactive 

interface for a spatio-temporal GIS based on graphical notions representing topological and 

temporal relationships. Szarmes [1997] addressed issues of spatio-temporal databases, and 

proposed a framework for modelling the evolution of spatio-temporal database structures. 

The framework is based on a management of modifications occurred in conceptual schema 



whose structures are formalized using Modul-R 2.01, a conceptual data modelling tool, 

developed in the Centre de recherche en geomatique at Universite Laval [Bédard et al. 

1 9941. 

Closely related to the incremental approach is the feasibility of implementing a dynarnic 

system to handle ST objects. As can be seen fiom the processes of inserting, moving, 

shrinking, breaking, and deleting a primitive spatial object in an object set, book-keeping 

procedures c m  be devised to keep track of these processes. A meaningful handling of ST 

objects, of course, must incorporate additional mechaaisms which, for example, assemble 

primitive temporal records into records corresponding to the ternporality of identifiable 

cornplex geo-objects. This c a .  be provisionaily achieved by incorporating spatio-temporal 

modelling tools at the conceptual level, such as the ones developed by Dr. Bédard's group. 

In this section, we discuss a log file structure which keeps one-dimensional, sequential 

temporality of primitive spatial objects, wit h respect to the construction functions discussed 

in the preceding section. It is therefore the temporality coxresponding to system 

transactions [Langran 19921. The idea of the log file structure was proposed originally by 

Gold [1994] as an approach to replay (fonvards and backwards) a map history like playing 

a movie. To this purpose, the minimum requirement is to enable the reconstruction of the 

Voronoi diagram for a set of map objects, either from the beginning of the map history 

forward in time, or fkom the current state of a map backwards to previous times. 

The implementation of the log file structure starts with symbolizing the dynamic Voronoi 

diagram constmction operations. We shall use letters 'P' and 'M' to denote the inserted and 

moving points, respectively; 'L', and 'S' as the action of inserting and shrinking a line 

segment; and 'D' as deleting an object for either a point or a line segment. Since breaking a 

line segment is a compound operation, it will not be recorded in the log file. A record of 

eight fields is used: 



where the T field is for the transaction time, the O field for a character representing one of 

the construction operations, OIDl and OID2 are two system identifiers for two objects, and 

each is followed by a pair of x and y coordinates. The meanings of TT and O are not 

ambiguous. The interpretation for two triples of identifiers and coordinates is, however, 

dependent on a particular operation recorded in the O field. Their use of log file 

information for forwarâ reconstruction is explained in Table 3.1. 

O OID1 x l , y l  OID2 x2, 9 Remark 
'P' not used dest not used not used split a new point fiom the nearest point 
'W the object to of  this 

be moved object 
'L' the starting of  sp 

point sp 

'S' ofsp  of  sp 
endpoint 

'D' the object to of sp 
be deleted 

not used dest 

n d  if dest end dest 
not connected; 
of tp if dest 
end connected 
of the lefi-side defi 
line II 
not used dest 

the object identified by 0ID 1 is moved 
to dest 
inserting a line segment between sp and 
dest. The dest endpoint is connected if 
OID2 is not nutl 

the line segment, identified by Il, is 
shrunken from sp to dest 
if the object to be deleted is a point, its 
nearest object is searched is rp; if it is a 
Iine segment, OID1 is for II,  and sp and tp 
are known fkom the object data structure. 
The two pairs of coordinates are used for 
backward play 

Table 3.1 The use of log file information for forward reconstruction 

When reconstructing a map from the current state backward to previous ones, the log file is 

consulted in reverse order, from the most current log record to the oldest one. The meaning 

of the operation has to be reversed accordingljj. The objective is to obtain necessary 

reversing construction operands such as sp, mp, dest, the trajectory. For example, if the log 

operation is 'P',  to insert a point, the reverse operation should be 'D', to delete one. In this 

case, the first pair of coordinates are used to search for the point, sp, occupying that 

location, and at the same tirne, the nearest point, tp, to sp is found. Afier this the dest, and 

the trajectory can be known, and reverse construction c m  start. 

Besides reconstruction, the log file also provides limited possibilities for spatio-temporal 

quenes. The log file structure is indexed in the chronological order of a temporal space, T, 



mapped to an underlying numencai domain. It is possible, therefore, to answer queries of 

the following types: 

where Q is a query, î7 = [q, t2], t l ,  t2 E T, SI c are temporal and spatial intervals, 

respectively, and the symbol "S' means to return the result of a query. The query type 

(3.2) implies that the spatial interval is not specified; it c m  be the whole plane. With the 

primitive log file structure, ît is diffcult to answer queries of the type: 

Hence the log fde structure favours quenes whose answer is a spatial subset, and not a 

temporal interval. Implementation for the first two types of spatio-temporal queries is 

straightforward. Preserving temporal aspects of complex spatial objects corresponds to 

dynamic events that create and destroy these objects. Capturing the dynamic events relies - 

on the search facilities to detect the effect of primitive construction operations. Additional 

data structures are needed to record events of cornplex objects and to support complex 

spatio-temporal queries. 

3.8 GIS Operations with the Dynamic Voronoi Diagram 

This section discusses how typicai GIS functions can be realized with the dynamic Voronoi 

diagram for points and line segments. The discussion first concentrates on the graph- 

theoretic properties of space tessellations and the procedures for performing network 

analysis over planar map objects scnictured with the Voronoi diagram. Spatial searches. 

especially the range search procedure, are then discussed. Both types of GIS function are 

based on a cornmon feature of travershg the dual topological structure, the Delaunay 

triangulation. In spatial analysis functions, we outline general algorithms for polygon 



shading, buffer zoning, and polygon overiay, highlighting the advantages of the underlying 

Voronoi data model. FmalIy we demonstrate the utility of Voronoi diagrams applied to 

digital temain modelling. It is noted that although the generai ideas of spatial searches, 

network and spatial analysis have k e n  published in the fiterature, the application of these 

ideas to the design of workable algorithms based on the Voronoi diagrams of points and 

iine segments is firstly reported in this thesis. 

3.8.1 Network Analysis 

Many GIS applications work on large data sets depicted as points and line segments on 

planar maps. These map objects (points and line segments) may represent highway 

networks, stirline routes, or circuits in a VLSI design. Knowledge about interconnections 

between objects helps to answer questions such as  "how to get fiom location A to location 

B in the fastest or cheapest way" and "Is location A connected to location B". Answering 

these problems with a computer depends largely on how information about the objects and 

their connections are modelled, and on effective algorithms based on the model. 

In this section, we view a set of points and line segments as  an undirected, weighted planar 

graph, G(V, E),  a collection of vertices V (points) and edges E (line segments). It is the 

venices and edges that are the essence of the graph and the algorithms over it. A path from 

vertex x to y in G is a list of vertices in which successive vertices are connected by edges in 

G. A simple path is a path in which no vertex is repeated. A graph with no cycles is a tree. 

A spanning tree of a graph is a subgraph that contains ail the vertices but only enough of 

the edges to form a tree. A graph is undirected if all edges can be followed in both 

directions. Conversely, a directed graph has "one-way" edges only: one travels frorn x to y 

but not fiom y to x. In weighted graphs values are assigned to each edge that represent 

distances or costs. Figure 3.3 1 is an example of an undirected weighted graph which will be 

used to illustrate our graph algorithms. In Figure 3.31, integers are identifiers of vertices 

while floating-point values are weights representing the distance of each edge. Figure 3.32 

illustrates the Voronoi diagram (gray Lines) and the dud Delaunay triangulation (thin lines) 

used to constnxct the graph depiction (dark Lines) shown in Figure 3.3 1. 



Figure 3.3 1 An undirected weighted graph 

The Voronoi diagram is a comected graph for the whole space. Its dual, the Delaunay 

triangulation, is more interesting because it has map objects as vertices and its edges are ail 

Illie segments. The simple geometric structure of the Delaunay ûiangulation makes the 

traversai of space an easy job. Similar to a linked list or a tree structure that must have a 

pointer directed to the starting address of the structure in the computer, the traversal of the 

Delaunay triangulation starts with a known triangle. No matter where the starthtg triangle 

is, by repeatedly walking adjacent triangles of a known triangle in a consistent scheme, the 

triangulation can be completely visited. 

Figure 3.32 The Voronoi diagram and its dual Delaunay triagulation 

for the objects depicted in Figure 3.3 1 



Given a graph of objects, there exist two classical graph-traversa1 algorithms which visit 

every vertex and edge in the graph. They are the depth-first search and the breadth-first 

search. The technique of examining every piece of the graph lays the ground for solutions 

to other graph-theoretic problems. In this section, we describe four classical graph 

algorithms using the Voronoi data structure developed in this chapter. We first present 

generai strategies and subordhate data structures [Sedgewick 19921 to be used repeatedly. 

The applications of the general strategies lead to the algorithms solving the depth-fxst 

search, the breadth-fmt search, the minimum spanning tree, and the shortest-path problems. 

Further details about these strategies, subordhate data structures, and applications to O ther 

network analysis algorithms c m  be found in Sedgewick [1992]. 

Obtaining Incident Edges of Vertices 

In graphic representations and algorithm designs, adjacent vertices, comected by edges, 

must be known. In the foIlowing algorithms, we assume that a function, called nbrs(obj), 

has k e n  implemented over the Voronoi data structure. The nbrs(ob~2 function coliects the 

neighbours of an object, named obj. Based on the definition of the Voronoi diagram, an 

neighbour is an object whose Voronoi ule shares a Voronoi edge with that of the concemed 

object. An array of integers adj is used to store the identifiers of neighbouring objects 

renirned by the nbrs function. Note that in a Voronoi diagram, neighboun are not 

necessarily incident line segments to the given vertex (Figure 3.33). However, this can be 

easily screened by determining if one end of a neighbouring line segment shares the same 

node as the given vertex. In the adj array, the first neighbouring object c m  start from any of 

the neighbours, the rest of the neighboun are listed in anti-clockwise order. The searched 

neighbouring object list is teminated by the number O. We use this tactic to determine the 

termination of loops in the algorithm. 



(a) Neighbours of v are 
incident edges 

(b) Not ai l  neighbours of v 
are incident edges 

Figure 3.33 The incidence of edges to a vertex 

The General Strategy: Division of Vertices into Untouched, Fringe, and Tree 

Several graph traversai algorithms use the same strategy of processing a graph. Prior to 

beginning an algorithm. aLl vertices are untouched. The algorithm [Sedgewick 19921 starts 

by visiting one vertex in the graph and putting it into a priorîty queue called afringe. It then 

repeatedly removes a vertex from the fringe and inserts it into a traversal tree of vertices 

already processed. Adjacent vertices to the vertex just removed fkom the f i g e  are 

collected Any untouched vertices in the graph are visited and put into the fnnge. The 

algorithm finishes when the h g e  is empty. 

The above strategy is expressed as  a general priori@-first procedure called visit (Procedure 

3.1, with the C language style). For the sake of simplicity, static arrays are used in the 

foilowing procedures. The priority queue, PQ, is defmed as an object class to be described. 

In the visit procedure, an instance of PQ is instantiated and named thefnnge. An array val 

is used to record the order in which vertices are visited. The array is initialized to the value 

meen to indicate that no vertex has been visited. The goal is to visit systematically al1 

vertices of the graph, setting elements of the val for the idth vertex visited to id. Two 

additional functions are assumed: isline(object) which returns TRUE if an object is a line 

segment, and matchend(vertex, line) which returns the OID of the other end if one 



endpoint of the h e  matches the vertex, or O otherwise. After calling uisit, the traversal tree 

is established by collecting indices of the array val for values fiorn 1 to V. 

void visit(1ong v) //general procedure 
PQ fruige[maxVl; . 
long adj WaxNumofNbrs] ; 
long adjv; 
int i; 

id = 0; 
ninge.insert(v); //insert a vertex into the f i g e  
while ( !fringe.empty() ) 
( v = fkinge.remove0; //remove a vertex fiom the f i g e  

val[v] = ++id; //id-th vertex visited 
nbrs(v, adj); //collect neighbours of v fkom the Voronoi diagram, 

//terminate the searched object list by O 
i = -1; 
while ( adj [++il && isline[adj [il ) //for each adjacent line segment 

if ( (adjv = matchend(v, adj[i])) ! = 0 ) 
if ( val[adjv] = = unseen ) 
( val[adjv] = -1; //mark the node in the fringe 

fringe.insert(adjv); 
) /*if val*/ 

} //while (!fringe.emptyO) 

hocedure 3.1 The general pnonty-fmt vkit procedure 

The Fringe: A Priority Queue 

As we have just seen, a fundamental graph-search method is based on the step "move one 

vertex ( c d  it v) from the fiinge to the tree, then insert into the fringe any untouched 

vertices adjacent to v". One c m  think of the fringe as a record of nodes. Each node contains 

an integer field to hold the system-defined object identifier refemng to a vertex of the 

graph (other data types may be possible, depending on applications), and a numericd field 



to store the priority value of the vertex. We want the fringe structure to possess the 

following propertles: 

Nodes can be processed in the order of their priorîty values, but the list is not necessarily 

in Mly-sorted order and new nodes can be inserted dynamicaliy; 

The first node in the list has the largest priority; 

Once the node with the largest priority is removed from the list, the node with the next 

largest priority should be ready; 

As new nodes are inserted, the node to be removed next should be updated accordingly, 

by comparing the pnority values of all new nodes. 

Based on the above specifkations, the pnority queue should therefore support insert and 

remove operations. Also, it should be able to perform swapping operations in order to 

prepare the queue with the largest priority. This c m  be implemented with a paaicular data 

structure called a heap. 

The heap may be maintained as an may, a, of records such that each record is guaranteed 

to have a larger pnority than the records at two other specific positions. Ln tuni, each of 

those records m u t  have a larger priority than ~o fuaher records, and so on. The array 

satisfying the heap condition is a complete binary tree with the record of largest pnority in 

the root which is the f k t  position in the array. The heap irnplementation of the prionty 

queue ensures that all operations in the priority queue can be done in logarithmic time. This 

property is important because swapping records in the array occurs at most of the priority 

queue operations. The code for the priority queue class is Listed in Procedure 3.2. 



struct node ( long id; float w; }; 
class PQ 
{ private: node -huge* a; int n; 

public: 
PQ(int max) { a = new node[max]; n = 0; } 
-PQO { delete a; } 
void upheap(int k) 
{ node v; 

v = a@]; a[OJ.w = cosMax; 
while (aw21.w <= v.w) 
{ a M  = aCk/2]; k=  k/2; } 
a B l =  v; 1 

void downheap(int k) 
{ int j; node v; 

v = a@]; 
while (k <= n/2) 
{ j = k+k; if (j < n && aU1.w < au+l].w) jtt; 

if (V.W >= atj1.w) break; 
a k ]  =ab]; k = j ;  } 

aF3 = v; 1 
void insert(node v) 

{ a[+tn] = v; upheap(n); } //maintain heap properity with w value 
long remove0 
{ nodev=a[l]; //first on the queue 

a[l] = a[n-1; //put the last on the queue to the fmt  
downheap(1); //maintain heap property 
return v.id; } 

long update(node v) 
( int j, onninge, changed; 

onfringe = changed = FALSE; 
for (j=1; j<=n; i-ij) 

if (v.id = ab] .id) 
( onfringe = TRUE; 

if (V.W > alj1.w) 
{ ab] = v; upheapu); changed = TRUE; } 
break; } 

if (onfringe=FALSE) insert(v) ; 
if (onfringe = FALSE II changed = TRUE) retum 1 ; 
else return 0; ) 

long emptyO { if (n = O) retum 1 ; else retum O; ) 
1; 

Procedure 3.2 The pnority query class 



When a new record is inserted, the number of records n in the heap must be increased by 

one. The new record is put into a[n], but this may violate the heap property if the new 

record has a prionty greater than its parent. This condition can be fixed by the upheap 

operation which repeatediy exchanges the new record with its parent until the heap 

condition is satisfied. In reverse, the remove operation takes the first record a[1]. Since the 

heap will be one record smaller, it is necessary to decrease n by one after moving the last 

record to £ïil the fint position. The downheap operation is performed to correct the heap 

condition. AU the basic operations - insert, remove, upheap, and downheap require 

fewer than 2 log n cornparisons when performed on a heap of n records. The empty 

method is a constant operation, it returns 1 if n = O and O otherwise. The update method 

will be explained when we discuss the minimum spanning tree algorithm. 

In the foilowing subsections, we explain how to set priority values for each record in the 

f i g e  and how to adapt the general viçit procedure to different graph algorithms. 

Depth-Fit Search @FS) 

The idea of the depth-first search is that it lets the priority of adjacent vertices reverse the 

sequence in which they are encountered. That is, the vertex last visited has a higher priority. 

Replacing the data type for the fringe and choosing the proper priority for each fnnge node, 

the general vkit procedure is modified for the DFS (Procedure 3.3) 



PQ fringe; 
void visit(node v) //DFS with PQ 
{ long adj ~ a x N u r n o M r s ] ;  

node adjv; 
int i; 

v.w = O; 
fringe.insert(v); //insert a vertex into the h g e  
while ( !fruige.empty() ) 
( v = ninge.remove(); //remove a vertex from the f i g e  

val[v.id] = ++id; //id41 vertex visited 
nbrs(v.id, adj); //coilect neighbours of v fiom the Voronoi diagram 

Ilterminate the searched object list by O 
i = -1; 
while ( adj [++il && isline[adj [il ) //for each adjacent line segment 

if ( (adjv-id = matchend(v.id, adjCi])) ! = O ) 
if ( val[adjv.id] = = unseen ) 
( adjv.w = id + i +l; IDFS, the object visited later has higher pnority 

fringe.insert(adjv); 
vaI[adjv.id] = - 1; //flag it on the h g e  

1 
) // while ( !fringe.emptyO ) 

1 

Procedure 3.3 The modifïed visit procedure for a depth-fxst search 

In thïs procedure, the sentinel constant unseen is set to a large negative value. Running this 

procedure with the graph given in Figure 3.3 1, the traversal tree, starting from vertex 22 

collected from the indices of array val by their increasing order of positive values is: 

Breadth-First Search (BFS) 

The algorithm for the breadth-fîrst search traversa1 is almost the same as that for the DFS, 

except for a different choice of priority values for the fringe vertices. In the BFS traversal, 

it is the vertex put in the fnnge earlier that will be removed first. Therefore, the adjv-w for 



each of the adjacent vertices is assigned by a decreasing value, such that the one 

encountered earLier has a larger priority. In the general a i t  procedure, we modify the line 

/KIFS, the object visited later has higher priority 

to become 

adjv.w = maxnode - (id + i +l); //BFS, the object visited later has lower pnority 

where rnaxnode is a positive constant specifjring the maximum number of vertices in the 

graph. Running this modified procedure with the same graph, starting also with vertex 22, 

we have the tree traversai as: 

Minimum Spanning Tree (MST) 

A minimum spanning tree (MST) of a weighted graph is a collection of edges connecting ail 

the vertices such that the sum of the weights of the edges is at ieast as small as the sum of 

the weights of my other collection of edges connecting ail the vertices. The MST of a 

graph may not be unique, but it must be computed based on the following general property: 

Given any division of the vertices of a graph into two sets, the minimum spanning 

tree contains the shortest of the edges connecting a vertex in one of the sets to a 

vertex in the other set. 

Based on this general property, we can build the MST by starting with any vertex and 

always taking next vertex which is the "closest" to the vertices already taken. In other 

words, we find the edge of lowest weight among those edges that connect vertices already 

on the tree to vertices not yet on the tree, then insert that edge and the vertex it leads to into 

the tree. 



It tums out that the generai a i t  procedure can be adapted to the construction of the MST 

with some modifications. For computing the MST, the pnority of each vertex on the k g e  

should be the length (or cost) of the shortest (or cheapest) edge connecting it to the tree. For 

the same graph in Figure 3.3 1, if we use the Euclidean distance between a vertex just taken 

from the f i g e  and its adjacent vertices as the prionty value for each adjacent vertex, we 

will end up with an Euclidean Minimum Spanning Tree (EMST). 

The modification of the visit procedure for the MST is explained here. We use an array dad 

to contain the index of the parent for each vertex in the tree (O if it is the root). A function 

disf(vertexl, vertex2) is assumed to calculate the distance between zmfexz and aertexz. For 

each adjacent vertex, the update operation is performed on the f i g e  which ensures that 

the given vertex appears on the fringe with at least the given pnonty: if the vertex is not on 

the fringe, it is inserted, and if the vertex is there but the most recent one has a larger 

pnority value, then the pnority value is replaced. This must be followed by the upheap 

operation to correct the heap condition. If any change is made (either insertion or priority 

change), then the method update r e m s  a nonzero value. This allows the visit procedure 

to keep the arrays val  and dad current. To flag a vertex in the h g e ,  set its val equal to the 

negative distance value; to flag a vertex in the tree, set its val to the positive distance value. 

The prïority value of each vertex is assigned the negative distance value to correspond to 

the internal operation on the fringe. A smaller negative distance of an edge will have a 

larger pnority. Procedure 3.4 is the modified visit procedure for computing the EMST. It 

should be noted that the update method is not an efficient operation, since it may loop 

through ail elements in the pnority queue. The method c m  be improved at the expenses of 

maintaining a supplementary data structure. We will not however elaborate the 

improvement. 



PQ f i g e ;  
void visit(node v) //MST with PQ 
( long adj [MaxNumoMbrs] ; 

node adjv; 
int i; 

V.W = unseen; 
if ( fringe.update(v) ) //insert a vertex into the frùige or change priority 

dad[v.id] = 0; //for the root 
while ( !fringe.ernptyO ) 
{ v.id = hge.remove0; //remove a vertex fiom the f i g e  

vai[v.id] = -val[v.id] ; 
if ( val[v.id] = = unseen ) //me if v is the start vertex 

val[v.id] = 0; 
nbrs(v.id, adj); //collect neighbours of v fiom the Voronoi diagram 

//terminate the searched object list by O 
i = -1; 
while ( adj[++i] &Br isiine[adj[i] ) //for each adjacent line segment 

if ( (adjv-id = matchend(v,id, adj[i])) != 0) 
if ( valladjv-id] < 0 ) //unseen or on the fringe 
( adjv.w = -dist(v.id, adjv-id); //EMST 

if ( hge.update(adjv) ) 
( val[adjv.id] = adjv-w; //flag it on the fringe 

dad[adjv.id] = v.id; 
1 

1 
) // while ( !fnnge.emptyO ) 

1 

Procedure 3.4 The modified visit procedure for a EMST 

Running this procedure for the graph in Figure 3.3 1, starting again with vertex 22, produces 

the following results: 

MST: id 22 9 10 13 16 19 25 42 39 36 33 30 45 

dad[id] O 22 9 10 13 10 13 25 42 39 36 33 30 

Shortest Path (SP) 

The shortestpnth (SP) algorithm finds the path in a weighted graph that connects two given 

vertices x and y with the property: the sum of the weights of ail edges of the path is 



minimized over all such paths. It is easy to prove by induction that a breadth-fit search 

s t h g  at x wiIl first visit a l l  vertices that can be reached from x with one edge, then ai i  

veaices that can be reached from x with two edges. etc., visiting al1 vertices that can be 

reached with k edges before encountering any that requires k + 1 edges. Thus, when y is 

fint encountered, the shortest path fiom x has been found because no shorter paîh reached 

y. In general, the path fiom x to y could touch ail the vertices, so we usually consider the 

problem of fmding the shortest path connecting a given vertex x with all of the other 

vertices in the graph. 

The prionty-fat search solution to this problem is virtually identical to that for the MST, 

except that, for each vertex v taken from the f ige,  instead of inserthg the adjacent vertex 

closest to the tree into the f i g e ,  one inserts the vertex which is the closest to v. TO find 

which fringe vertex is closest to v, we use the val  array for each tree vertex v. Val[v] is the 

distance from that vertex to its adjacent vertex adjv, using the shortest path. When an adjv 

is inserted into the fringe, we update the f i g e  using a similar approach to the one used for 

the MST. Compared to the visit procedure for the MST, the priority value of each adjacent 

vertex adjv of v becomes 

adjv-w = - ( val[v.id] + dist(v.id, adjv-id) ); //Shortest Path 

The rest of the code is the same. 

Ruaniog the modified procedure using the graph in Figure 3.3 1, starting from vertex 22, we 

have the foilowing results: 

SP: id 22 9 10 16 19 13 25 42 33 30 39 36 45 

dadrid] O 22 9 9 22 9 22 25 25 13 42 33 30 

val[id] O 96 163 171 175 197 220 279 296 322 346 367 398 

Values in va l  have been rounded for simpiicity. Based on this result, the shortest path from 

vertex 22 to any other vertex c m  be found by tracing backwards the dad array. For 



example, to fmd the shortest path from 22 to 33, we start from the vertex id 33 and find its 

dad 25, by the entry of 25 for the dad, we have 22. Therefore the desired shortest path is 22 

- 25 - 33, with a minimum distance value of 296. 

3.8.2 Spatial Searches - 

Spatial searches are frequently required in GIS, because of the need for spatial queries. Of 

the two types of spatial quenes, point and range queries, the range query presents more 

stringent dernands for efficient performance. A typical application of a range query displays 

all objects falling in a specified window, which may be regular, irregular, or degenerate to a 

line segment. In this section, we present, for the fmt t h e ,  a range search algorithm which 

utilizes the BFS or DFS strategy. The spatial data is constructed with the Voronoi diagram. 

It turns out that a range search over the Voronoi diagram can be designed using the same 

scheme as the one for BFS or DFS. The ciifference for a range search is that the nodes in the 

ninge are triangles instead of map objects. This is because objects in a range may not al1 be 

connected but the triangles are. Therefore travershg through aU the triangles overlapping 

the range and performing an inrange test on each vertex of a triangle visited ensures that 

all objects will be found correctly. The algorithm starts with one triangle overlapping the 

given range and inserts it into the h g e .  It then repeatedly pops a triangle out from the 

fringe. The three vertices of the triangle are tested for inclusion or clipping the range. 

Included or clipped objects are reported and marked as visited. Adjacent triangles of the 

one being examined are retrieved and the ones overlapping the range and untouched earlier 

are inserted into the h g e .  The algorithm finishes when the fringe is empty. A 

range-search procedure for a rectangular range, utilizing BFS, is included in Procedure 

3.5, which is modified from Procedure 3.1. The existence of procedures get-adjtri, 

get-vertobj, overlap, mark-visited, and indusion-dip are assurned. 



l l k  seed is the given ûiangle overlapping the mnge rg. 
v.w = O; 
vid = seed; 
--(VI; lfitheseedv 
whiIe (!bge.empsO) 
( v . i d = i d = ~ m m v e ( ) ;  //rem>veanaIefÏantheiïïnge,~itasv 

get-@tri(vid, adjtri); //hd adj- triangles ofv 
j=Q 
for(i=Q i<3; is+) //for each adjacent triangle of v 
{ vid = adjtri[i] ; 

g f X ~ ~ j ( v i c L  m;qabj); 
if (untouched(3" vid)) 
{ foî@=O; k<3; ktt) 

( if ( ~ ~ i ~ - c l i ~ X ( n i i l p o j  BI) ~ o u c h e d ( ~ ~ j [ k I )  
*[fCCOUntI = rrrapobjra 

d r r i a r k v i s i t e 4  1, mqm BI); 
1 
if (ovierlq(rg vid)) 
{ v-w = rmxmcie - (id + +tj); //wighî fm the edge v-adjv 

fEnge.insert(v); 
d-visited(2, v ia ;  

1 
} / f i  lrnt0uck.d 

} //for each adjtri 
} / M e  !eml*y 
retumcount; 

1 

Procedure 3.5 A range search based on BFS 

3.83 Spatial Anaiysis 

Spatial analysis, as the term implies, analyzes a space. With objects embedded in space 

captured and modeled in a representation fiamework. this means obtaining qualitative and 



quantitative properties of spatial objects based on the representauon structures. There are 

numerous spatial analytic algonthms to calculate, derive, and collect various spatial 

properties. In this section, we give three examples of these algorithms based on the Voronoi 

data mode1 and data structures. These ideas have been mentioned on different occasions, 

e.g. Gold [1994], Gold et al. [1997]. The foflowing presentation is a more detailed 

description of these algorithms. 

Identifmg a Polygon (Polygon Shading) 

A polygon is defined as the area enclosed by a closed loop of line segments. In most spatial 

data models, polygons are identified by a conceptual representation, but are not explicitly 

represented by a geometric data structure, as with the dynamic Voronoi data rnodel. 

Visualizing a polygon in a spatial setting, or calculating its area, therefore, rely on a process 

to specw the extent of its geometric shape. This process is also referred to as polygon 

shading orfloodfill with a raster-based system, and as assembling polygonal chains with a 

vector-based one. The algorithm based on the Voronoi diagram takes advantage of its 

integrated view of a polygonal space. As is illustrated in Figure 3.34, the interior of a 

polygon object is composed of Voronoi regions that are bounded by a closed loop. Each 

Voronoi region is associated with an oriented line segment. It is therefore natural to start 

with shading a known Voronoi region inside the polygon and expanding to shade adjacent 

Voronoi regions of each shaded one. The systematic way of doing this uses the triangular 

structure and is similar to the range search algorithm for travershg triangles. However, 

there is a difference in detecting if an adjacent triangle falls outside of the polygon. In range 

search, we used an overlapping test since the range is a regular shape and the range 

boundary is not part of the Voronoi structure. In polygon shading, the boundary of an 

arbitrary polygon is part of the Voronoi structure. Therefore, it is only necessary to test if 

two vertices of an adjacent triangle are boundary line segments but are on the other side. If 

the test is positive, the adjacent triangle will not be inserted into the fnnge. Dunng this 

flooding process, an attribute value c m  be assigned to each half-line segment enclosing the 

polygon, if desired. This method is capable to identify polygons with holes. Adjacent 

polygons c m  also be identified through the same method. 



It is evident in this example that the Voronoi data model, aithough implemented with a 

vector-based data structure, conveniently uses algorithms based on the field-based view and 

raster data structures. This observation is aiso m e  -for the polygon overlay algorithm to be 

described soon. 

tounched 
in f i g e  

Figure 3.34 Polygon shading with the Voronoi data model 

Bufier zoning is the process of delineating areas within a given range of a set of objects. In 

a traditional vector GIS, determining buffer boundaries requires extensive calculations of 

the intersections of line segments and circula. arcs. The Voronoi data model demonstrates 

the ease of perfomiing this operation. The algorithm takes each object from a selected set 

and collects its Voronoi edges into a list. For each Voronoi edge (bounded by hvo Voronoi 

vertices counterclockwise), its intersections, if there are any, with the line (or circular arc) 

coincihg with the perspective buffer boundary, are calculated. Two consecutive 

intersections constitute a buffer segment. If a Voronoi region concems a line segment, the 

buffer boundary is a straight line segment, otherwise, it is a circular arc. It is possible that a 

buffer boundary is composed of non-consecutive segments. This can be observed in that for 

the first intersection calculated, if the second one is not obtained with the 1 s t  Voronoi edge 

on the list, the buffer boundary will be broken after the second intersection. 



Figure 3.35 is an example of the buffer zoning process. To calculate the buffer boundary 

for fine segment s, starting with the perpendicular Voronoi edge at the nght end, the fust 

intersection is obtained. The second intersection is found with a paraboiic Voronoi edge. A 

segment of the buffer -boundary is drawn as a straight line between 1, and 2. Since 

intersection 2 is not on the last Voronoi edge for s, the buffer boundary is broken between 

intersections 2 and 3. The Iast segment is found in between intersections 3 to 4. 

/ ~oronoi edge 

Figure 3.35 Buffering by caiculating intersections with Voronoi edges 

Polygon Overlay 

A polygon is a spatial object carrying certain attributes. In current GIS practice, al l  

polygons are modelled in one thematic layer if they carry the same attribute type. 

Frequently required in a synthesized spatial analysis is information conceming areas 

carrying combined attnbute values of two or more attribute types. The process used to fmd 

those areas is called polygon overlay. Overlaying multiple layers of polygons to calculate 

areas with some combined attnbute values presents a long-standing challenge to GIS 

development. All intersections of line segments fonning polygons in one layer must be 

calculated with respect to Line segments of polygons in other layers in current vector GIS. 

This process is not only algorithmically diffrcult, but also has proved to be error-prone. The 

kinematic incremental Voronoi data mode1 approaches this problem in a very different way. 

The key idea is that the overlay process can also be done incrementally. To illustrate the 

Voronoi approach, we use thematic maps consisting of colIections of polygons. 



Let MI(A) = ( P l  l(aI), . . ., Pi.(an)} be a map object consisting of a set of polygons { Pii(ai) } 

partitionhg Ml, 1 < i < a, ai E A, and A is a set of attribute values mapped to a well defined 

attribute domain. Define Li = {Il 1, ..., Iir} c Ml,  2 < k < m, to be a set of line segments 

forming boundaries of the polygon set. Since each line segment in Li, e.g. il 1 E LI, belongs 

to exactiy two polygons in Ml, Say Pll(al) and Plz(az), it implies that the line segment can 

be treated as two directed and oriented (sided) lines. Each side of the line segment is 

associated with an attribute value of the facing polygon, denoted lil(al, a2). Similarly, we 

can define another map object M2(B), with (PZi(bi)}, and Ztl(bi, bi) an example of the set of 

h e  segments in LQ = {ZZ1, .--, la) c MZ. 

The objective of the kkematic incremental polygon overlay process, with two thematic 

layers, Ml(A) and Mt(B), is to perform a binary operation, denoted R, so that a third Iayer, 

M3(A R B) = {P31(aI r bI), ..., P&. r bd} ,  O _< n < m, with 131(a1 r 61, a2 r b2) an example 

of the set of line segments in 4 = (131, .-., h} c M3, is produced, where r is an instance of 

the binary operation R. It is assumed that both Ml, and M2 are constmcted with Voronoi 

diagrams. The general method is composed of the foklowing steps (Figure 3.36): 

- -- 

Figure 3.36 Kinematic incremental polygon overlay 



1. Make a copy of M2 and name it M3. 

2. For each line segment Ili in Mi, insert Ili into M3, using the kinematic incremental 

rnethod. The Lùie segment Ili may intersect with existing h e  segments in M3. Preserve 

the associated attribute of Ili in every broken segment of Z l i .  

3. Identify polygons in M3, using the polygon shading algorithm, and adjust associate 

attributes for each sided Iine segment in Mî. 

Advantages of the Voronoi polygon overlay approach include: 1) no rigorous line 

intersection calculation is needed, except as part of the process of constmcting the Voronoi 

diagram for the combined map; 2) the overlay process is easier to control, as events due to 

coliisions and intersections are known to the process; 3) consequently, many problems such 

as those with coïncident line segments, and sliver polygons cm be resolved during the 

incremental construction; and 4) the algorithm also handles islands in Ml or M2 which 

remain islands in M3. 

3.8.4 Digital Terrain Modeilhg 

Given a set of attnbuted objects distributed on a plane, one of the problems in digital 

terrain modelling (DTM) is to interpolate attribute values at any location within, say, the 

convex hull of the set, such that the attribute surface does not behave strangely. It has long 

been known that the behaviour of an interpolated surface depends largely on the choice of 

the portions (weights) of attribute values from selected objects around an interpolating 

Location. The question of which objects should be selected as atcnbute contributors Leads to 

discussion on identifying "the neighbours" of a given location. Gold [1992b, 19891, Gold 

and Roos [1994] argued that the objects in the adjacent Voronoi regions of an object in a 

Voronoi diagram, constitute "reasonable" neighbours of the object. 

Based on the notion of Voronoi neighbours, an interpolation method called "area stealing" 

was descnbed which obtains a weighted average attribute value for one interpolation. The 

basic idea (Figure 3.37), is to interpolate an attribute value in location x, where the point x 



is imagined to be inserted into the Voronoi diagram. The Voronoi region for x would be 

"stolen" fkom neighbouring Voronoi regions. The weights of contributhg attributes can be 

calculated, by computing individual rate of areas "stolen" from the neighbouring objects. 

This method has been extended to interpolating surfaces based on a set of points and line 

segments. 

Figure 3.37 hserting a point x steak areas from its neighbours 

3.9 Summary of the Chapter 

In this chapter, we presented the dynamic Voronoi data model from the following important 

aspects, as they are essential to the construction of the data model: 

It was observed that the integrated view of spatial modeliing c m  be found fiom the 

Voronoi diagrams. The influence vicinity analogy led naturally to the intuitive 

comprehension of the spatial data model. A formal definition of the ordinary Voronoi 

diagram was elaborated which also anchored the geometric components of the diagram for 

the discourse of its properties. The properties akin to the introducing of the Line segients in 

the object set were discussed in length. It is proved in this chapter that there exist only six 

types of Voronoi vertices involving an object set of points and line segments. The dual 

structure of the Voronoi diagram, the Delaunay triangulation was also defmed. after having 

treated the degeneracy and its graphical representation. 



Two data structures representing the Voronoi diagram, via representing the Delaunay 

triangulation. were discussed. More emphasis was on the triangular element data structure 

for it is used as the implementation structure in the research of the thesis. This chapter put a 

great deal of effort on- the discussion of the kinematic incremental construction of the 

Voronoi diagram of points and line segments. The discussion includes inseaing, deleting, 

and moving a point; inserthg and delehg a line segment; the moving-in, moving-out 

topological events; and the detecting and handling collisions of objects. The log file 

structure used to preserve the history of the construction of Voronoi diagram was designed 

and implemented. With the log file structure, the Voronoi diagram can be reconstnicted 

forward and backward, and be quened with regard to its temporality. It is expected that by 

integrating the lower level tool with tools managing changes at the conceptual level, a t d y  

spatio-temporal GIS database engine can be developed- 

GIS operations with the dynarnic Voronoi diagram were discussed in detail. The algorithms 

for these operations cover the graph traversal over the Voronoi diagram, its dual 

Lriangulation, and the object structure; the range search; the spatial analysis, including 

polygon shading, buffer zoning, and polygon overlay; and the digital terrain modelling. 

Through this chapter, the power and flexibility of the dynamic Voronoi diagrarns in spatial 

modelling and analysis are basically revealed. The natural neighbourhood relationship built 

into the topological structure and the dynamic detecting of changes in the spatial 

relationship makes the dynamic Voronoi diagram an attractive choice for a spatial database 

model. In the following chapten, we are going to discuss the shortcomings of the primitive 

Voronoi diagrams of points and line segments and to seek solutions to the problems. 



4.1 

The 

Chapter 4 

Partitioning and Pasting Voronoi Diagrams 

Shortcomings of the Voronoi Diagram of Points and Line Segments 

Voronoi diagram of points and line segments presents a powerful tool to manipulate 

spatial objects at the most primitive level. With the dynamic feanire for updating a spatiai 

structure, it makes an ideal on-line spatial database model for a dynamic GIS where the 

topological integrity of a map is dways maintained. The impact of this feature on a spatial 

decision support system (SDSS) is obvious: decision models supported by the dynamic 

spatial DBMS obtain a reul-tirne response when executing spatial and network analysis 

functions over collections of continuously updated map data. This is in contrast to current 

SDSS where the topology of a spatial database must be updated off-line when any 

modification on a spatial setting occurs. The concepts of on-line, off-line, and real-time are 

similar to those explained in Preparate and Sharnos [1985]. An on-line algorithm is referred 

to as one that cannot look ahead at its input data An off-Zine algorithm operates on ail the 

data collectively. A real-time application relies on a special on-line algorithm that an update 

should be completed within an appropriate time delay. 

However, used under realistic GIS or SDSS applications, the system presented here, based 

on the Voronoi data model, has a senous drawback: the supporting spatial data structures 

are not divisible into disk pages. It is assumed that, in order to operate on a map, al1 of the 

topological and geometric data structure must be loaded into cornputer memory. 

Considering the size of a cypical forest GIS map with thousands of complex polygons 

composed of hundreds of thousands of line segments, the size of the supporting Voronoi 

data structure will be tremendously large. This means, as illustrated in Figure 4.1, objects 

and relations of the spatial data structure may occupy a large portion of the memory space, 

which may be allocated fiom different memory blocks. Notice also in Figure 4.1 that some 



hiangles and objects that are close in space may be addressed far apart in memory, possibly 

scattered in different data blocks. This is because the Voronoi diagram is generated 

incrementally, and hence the input of objects does not necessariiy follow a regular spatial 

pattern. As a result, an instance of the data structure may corne be characterized by a poor 

spatial index. This d e s  a simple partition or ordering of the space impossible. It follows 

that no rnatter how big a map is, a l l  the topological and geometric objects must be Ioaded in 

memory in order to ensure the presence of the neighbourhood around any area of interest. 

A Voronoi diagram 
of points and line 

segments 

The data structure for the a The associative 
Delaunay triangulation object data structure 

m.. 

4 
m.. 

The memory 
of a cornputer =. The rnemory blocks 

; occupied by data structures 
of the Voronoi diagram 

Figure 4.1 A system view of the organization of a Voronoi diagram 



This drawback can raise additional problems with the GIS: 

The buik use of computer resources lowers the overall performance of the system. It may 

well happen that a cornputer's memory is too smail to completely hold a Large map. 

The presence of umiecessarily detailed map objects (points and line segments) on an 

interactive display device hinders operators from concentrahg on the more important 

properties of a rnap. 

Managing spatial objects in a non-splinable fashion fails to meet the requirements for 

modem data structures which need to be dynamic, berarchical, and with varying levels 

detail. 

The mismatch between spatial adjacency and memory contiguity reduces the efficiency 

of spatial searches and presents difficulties in geometric index stmc turing. 

The assumption of rnemory residence for all geometric data and data structures is common 

in the community of computational geometry. Although a few attempts have been made to 

design algorithms which process sets of geometric objects and keep at any time only a srnail 

part of their data in main memory (e.g. [Szymansky and van Wyk 1983; Ottmann and Wood 

1986; Güting and Schilling 1987]), they are not generally targeted at Voronoi diagrams. The 

main Stream of research on Voronoi diagrams and Delaunay viangulations today, including 

the incremental approach, s u  maintains the assumption of Bat memory. As a matter of 

fact, the majority of currently practiced topological data models, such as the ones discussed 

in Chapter 3, have not even considered this problem, which is one of the main reasons why 

standard DBMS fictions (as mentioned in Chapter 2) are difficult to reaiize in a spatial 

DBMS. A transition, therefore, must be made £rom efficient intemal data structures for 

geometric searching problems to extemal geometric fde structures based upon the same 

principles [Güting 19881. 



4.2 The Objectives of the Spatial Object Condensation Technique 

The rest of this chapter addresses the problems presented in the fmt section. The idea is not 

to alter the incremental construction of and other spatial operations on the Voronoi diagram, 

as discussed earlier, but to devise a method which partitions a larger Voronoi diagram into 

smaller diagrams enclosed in some designated polygon boundaries, and which pastes 

together smalier Voronoi diagrams (spatidy) to forrn a larger one. This method. called the 

spatial objecr condensation technique [Yang and Gold 19951, needs to provide the 

following features to the partitioned Voronoi diagrams: 

When partitioning a Voronoi diagram, the corresponding parts of geometric objects and 

spatial data structures should be identified and separated from the original structures. We 

cal l  each of such geometrically identinable and topologically structured àiagrams a 

Voronoi map object (W). 

The VMO from which srnailer VMOs are partitioned is a parent, and the srnalier objects 

are children. The parent VMO embeds the geometric boundaries of its children in its 

spatial stmctures (the Voronoi diagram and the Delaunay triangulation). The intemal 

spatial structures of child VMOs are opaque to their parent and are removed from the 

spatial data structures of the parent. This simplifies the spatial structure while preserving 

an outline view of a spatial setting, and reduces the memory used for unnecessary detail. 

The boundary of a child VMO specifies the extent of the subspace and of its intemal 

geometric objects and its spatial structure. 

Each individuai VMO c m  be saved separately ont0 secondary storage, loaded into main 

memory, and worked with independently. By "worked with" we mean applying either 

constmction operations, spatial searciiz-s, or analysis functions to the object. 

A child VMO cm be pasted seamlessly back to its parent space with or without merging 

the two spatid data structures. It can also be inserted into other Voronoi diagrams, 

provided there is no spatial conflict. The insertion wül not be exhaustive in that only the 

boundarv of the VMO needs to be inserted into the target Voronoi diarrram. 



This chapter deals with the geometric and topological aspects of the technique and 

implementation issues involved in partitionhg a set of system objects allocated to store and 

operate on elements of the data suucnire of a Voronoi diagrarn. Managing dynamic 

relationships between VMOs and operations upon them as individually identifiable objects 

is more an issue of spatial database models and will be tackled in a later chapter. 

The objective concerning the geometric and topological aspects can be stated in a more 

forma1 fashion. Take a set of spatial objects O c @, the Voronoi diagram V(O) c R ~ ,  and 

the dud topological structure, the Delaunay triangulation, D(0) c @, as defmed previously 

in this thesis. The objective of the spatial condensation technique is to partition V(O), 

within its embedding plane R ~ ,  into a f ~ t e  nurnber of n - 1 bounded subdiagrams, V(&), 

..., V(Od, with corresponding bounded, embedding subspaces, S2, ..., Sn, and one 

unbounded lefi-over subdiagram, V(Oi), with its corresponding unbounded Zef-over 

subspace, SI. Denote Sio, asi, and Sir, the interior, the boundary, and the extenor of Si, for 2 

L i I n, respectively. By the same notion, denote also Si0, asi, and SIr, the interior, the 

boundary, and the exterior of SI, respectively. The partition must satisfy the following 

conditions: 

(the Si are a covering of 21, 

b) Sio n S: = 0 for 1 < i S n and i # j (ail Si" are mutuaily disjoint), and 

(mutual boundaries between Si and Si). 

Especially, denote by Xi, the set of spatial objects to be inserted into (or deleted from) Si, 1 

I i I n, that is, a partition of a finite set of spatial objects X c R ~ .  We would like the 

partition to satisQ the following dynamic conditions: 

d) (Oi u Xi) c Si for 1 4 i n (dynarnic subspace restn-ction), 



n 
e) O U X =  U (Oi u Xi) 

i =  1 

£) V(Oi u Xi) c Si for 1 l i l n  

II  

g) V(OUX)= u V ( 0 i  u Xi) 
i = I  - 

h) D(Oi u Xi) c Si for 1 S i S n  

i) D ( 0  v X )  = 6 D(0i u Xi) 
i = l  

(the Oi are a dynamic covering of O), 

(dynnmic geometnk integnVty), 

(the V(Oi) are a dynamic covenng of V(O)), 

(dynamic tupological integrity), and 

(the D(Si) are a dynamic covenng of D(S)). 

It is undentood that only the unbounded subspace, Si, is the parent of ail children, Si, for 2 

5 i 5 n, which are bounded subspaces. The parent subspace is "left-over" with n  - 1 holes 

after n - 1 children are partitioned. The interiors of all  subspaces are disjoint, Le. condition 

b), and all subspaces are connected via the mutual boundaries with the parent subspace, Le. 

condition c). Conditions d), f) ,  and h) stipulate that partitioned subsets of objects, the 

Voronoi diagrams, and the Delaunay eiangulation are al l  dynamically restricted within the 

corresponding subspaces. By the concept of "dynamic geomevic and topological integrity" 

we mean that the Voronoi diagrams and Delaunay tnangulations need to be completely 

definable (and modifiable) within each subspace with respect to dynamic sets of objects 

embedded therein. The unions of all subspaces, dynamic subsets of objects, Voronoi 

diagrams, and Delaunay trianplations need to come to their counterparts before and after 

partitioning, as indicated by conditions a), e), g), and i). 

It should be noticed that in the above formai conditions, we have deliberately negtected a 

few "boundary conditions" between subsets of objects, Voronoi subdiagrams, and Delaunay 

subtriangulations. This is because we have not specified what might constitute the 

boundaries of partitions. We now nirn to discuss the boundary matter fxst, and come back 

to formal boundary conditions later. For the sake of simplicity, we denote the partitioning of 

a V ( 0 )  into a finte k of subdiagrams as a k-parrition. 



4.3 Partition Boundaries 

When discussing what might constitute appropnate boundarïes where partitions are made, 

we fmt  look intuitively at a Voronoi diagram V ( 0 )  on a piece of paper (Figure 4.2), and are 

prepared with a pair of scissors. It seems nanual that a partition can be made by cutting the 

diagram along some existing geometnc kamework, Say, the Voronoi edges. By checking 

the result of this method with the conditions specdated in the previous section, it is obvious 

that aU but the last conditions stated are readily satisfied by cutting V(O) into V(Oi) and 

V(0z) along the designated Voronoi edges. However, the Delaunay triangles crossing the 

boundary will be cut, which violates the integrity of the topological structures for both 

partitioned subsets. 

Figure 4.2 Cutting a Voronoi diagram V(S) on paper 

The problem of violating the last condition would not be a serious one if the Delaunay 

triangulation did not play a cntical role in managùig objects and Voronoi diagrams 

embedded in space, as in the example of drawing a Voronoi diagram with a d e r  and a 

compass on paper. Also, it will not work with the cornputer representation relying on the 

Delaunay triangulation. To attempt to solve this problem, we used our imagination. 



Imagine that with a retriangulating algorithm, ignoring the complication involving the 

boundary conditions, the cut triangles at both subspaces could be modifed to be complete. 

One way of doing this could simply discard those cut triangles from both divided diagrams. 

This solution can provisionaily bring other problems. The fmt concerns the dynamics of 

both subspaces. If a poht x E Si is inserted close to the boundary of Si and Sz, the triangles 

near the boundary in Si have to be adjusted. This consequently alters the partitioned 

Voronoi edges on the boundary of SI, which violates conditions g) and i). 

Naturally, one can think of using connected Delaunay triangle edges as the partitionhg 

boundary. While cutting dong triangle edges preserves the integrity of the computer 

representation of a Voronoi diagram (admitting duplicated representations of vertex objects 

on the boundary), condition f) is violated in that the Voronoi edges crossing the boundary 

will be cut. Again both conditions g) and i) are difficdt to maintain when considering the 

dynamics of the object sets. However, if one emphasizes the integrity of the computer 

representation and admits overlapping of the Voronoi diagrams near the boundary, 

condition i) c m  be ensured by spec@ing that the boundary triangle edges never be 

switched. We wiU corne back to this possibility after we have examined another more 

natural kind of boundary. 

The kind of partition boundary. that cornes to mind more naturally consists of the 

components of polygonal objects. We treat a partitioned polygon as a container object 

within which other types of spatial objects may exist. Polygons as  containers are frequently 

seen fiom the hierarchical structure of spatial arrangements. For example, the polygon 

representing the temtory of a country can contain temtories of provinces which further 

contain regions of counties, areas of municipalities and political districts, and so on. In 

other geographicai applications, polygons c m  be containers representing the aggregated 

properties of some spatial phenomenon. Examples of aggregated polygons include forest 

land diversified with polygons representing different tree species or groups of trees at 

different ages; crop land with variations of vegetation, etc. No rnatter what may be 

contained inside, a noticeable characteristic of al1 such polygons is that their shapes are 



naturaiiy irregular. This contrasts with the current computerized practice of traditional 

cartographie mapping where the propeaies of maps are all contained in rectangular fiames 

which spatially delineate boundaries of geographic databases. The choice of partitioning a 

large map based on the natural boundaries of container objects is advantageous in this 

respect . 

The initiai attempt of partitioning a Voronoi diagram dong container polygon boundaries 

can be Uustrated from the following two diagrm.  In Figure 4.3 the Voronoi diagram and 

the dual Delaunay triangulation for a s m d  collection of polygons are present. Along 

polygon boundaries, Delaunay edges and Voronoi edges are aligned. As is shown in the 

diagram, although the boundaries of those polygon are closed loops of h e  segments, the 

underlying structures are not necessady simple. To simplify the description, we assume 

that they are simple closed loops, i.e. every node in a loop is connected by two line 

segments only. The partitioning method described later does not rely on this assumption. 

Now we choose to partition the container polygon with the closed boundary. The separation 

of two subspaces, Si, and Sz, by partitioning the enclosed polygon region dong the simple 

boundary is immediately guaranteed by the Jordan c w e  theorem, which says that a simple 

polygon boundary divides the Euclidean plane into two connected regions, the interior one 

is bounded and the exterior one is unbounded. Both regions have the same boundary as 

frontiers. To see that the Voronoi diagram and the Delaunay eianguiation are also readily 

separated by the simple polygon boundary, we need to take a micro-view of both structures 

dong the boundary. 



Figure 4.3 The Voronoi diagram and Delaunay triangulation of a map 

An enlarged view of one part of the diagram from Figure 4.3 is shown at the left of Figure 

4.4. Both Voronoi and Delaunay edges are connected on the container boundary. Some 

Delaunay edges are entirely on the boundary. The semantics (in the Voronoi sense) of either 

kind of edge can be easily interpreted based on their respective definitions. 

0 point object O graphic representing point 

Figure 4.4 A micro-view of the Voronoi and Delaunay structures near partition boundaries 
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For example. any Delaunay edge between an endpoint and a graphic representation point 

depends on the existence of the Voronoi edge (possibly degenerated to zero length) between 

the endpoint and the interior of the line segment. Likewise, any Delaunay edge between two 

graphical representation points on the boundary corresponds to the bisecting Voronoi edge 

of the two line segments. Nevertheless, by the definitions of both the Voronoi diagram and 

the Delaunay triangulation, neither Voronoi nor Delaunay edges extend from the intenor of 

the container to the exterior, or vice versa Therefore, by preserving the mutual boundary of 

both partitioned subsets, the integrity conditions f )  and h) are automaticaily ensured. This is 

shown at the nght of Figure 44, where no Voronoi or Delaunay edges are cut by the 

partition. 

The next concem is the dynarnic behaviour of the partïtioned subspaces on both sides. The 

question is whether changes made to the spatial structures (the Voronoi diagram and the 

Delaunay triangulation) in one subspace would affect the spatial structures in the subspace 

on the other side of the panitioning boundary. It is mdentood that changes to the spatial 

structures are caused by construction operations such as inserting, deleting, and moving 

objects in the object set. If these construction operations are applied only to objects in the 

interior of a bounded (or an unbounded) subspace, it is immediately clear that any changes 

in the spatial structures of the subspace will not affect those of other subspaces. The reason 

is that the boundary of the subspace is the outmost neighbour of any object in the subspace, 

which precludes the neighbourhood relationship between any two objects residing in two 

interiors separated O;. a boundary. 

We surnmarize the above discussion with the following boundmy choice theorem: 

Theorem 4.1 (boundary choice theorem). Paaitioning a Voronoi diagram V(O), together 

with its ernbedding space S, dong a closed polygon boundary, B c O, into V(Oi) and V(02) ,  

together with correspondhg subspaces Si and S2, satisfies all conditions specified in 

Section 4.2. provided that the dynamic subsets of objects, Xi and X2, belong only to the 



interior of their corresponding subspaces, that is XI c SI0, and & c &O. The partition 

boundary is munial to both SI and S2, that is B = 6S1 = 6Sz. 

It is obvious that this theorem can be extended n a d y  to a k-partition. 

4.4 The Implementation of the Partition with the Data Structure 

After choosing to use the container polygon boundary to partition the Voronoi diagram and 

its embedding space, we now proceed to see how this partition c m  be done with the data 

structure of the Voronoi diagram stored in a computer. The objectives here are: to identify 

al l  geomeuic and topological components of the data structure for each subspace; to 

separate the child subdiagram fiom the original instance of the data structure; and 

ultimately, to Save it as another instance of the data structure. The constraint for ail 

separated instances of the data senicture is that each individual instance should support the 

partition objectives in Section 4.2 such that the corresponding subdiagram cm be operated 

upon independently. We remind ourselves here that the data structure of the Voronoi 

diagram used in this thesis is cornposed of two parts: the representation of the Delaunay 

triangulation and the representation of the associative object structure. 

Denote A(0)  the associative object structure, and M(A(0)) the cornputer representation of 

A(0). Likewise, denote M(D(0))  the computer representation of D(0). Both M(D(0)) and 

M(A(0)) are collections of respective system objects representing triangles, points and line 

segments. For simplicity, we also denote M(V(0)) = M(D(0))  u M(A(0))  the computer 

representation of V(0). An objective of the implementation of a k-partition is to partition 

the collection M(V(0))  into corresponding subsets, M(V(Oi)), ..., M(V(Ok)), such that for a 

proper set of functions F applied on V(O), denoted F(V(O)), the foliowing conditions hold: 

j) F(V(0)) e F(v(od u -.. u F(v(Oiç)) (fiinction subdivision), and 

k) F(V(Oi)) + M(V(Oi)) is bijective for 1 S i S k (logical-physical transformation). 



The equivalence condition j) States that the proper set of functions applied on the original 

Voronoi diagram can be equivalently achieved by fmt applying them to the collection of 

subdivisions and then taking the union of individual results. The mapping condition k) 

stipulates that the implementation of the functions on individual Voronoi subdiagrams 

needs to be transformable between the logical and the physical levels, and the 

transformation is both injective and surjective. That is, the algorithm of a spatial operation 

on V(Oz) (logical representation of spatial objects) c m  be exclusively irnplemented on 

M(V(02)) (physical representation of spatial objects); inversely, any system operation on 

M(V(02)) corresponds to some spatial operation exclusively on V(02) .  

Sat i smg the above two conditions can be useful for designing pardel algorithms for 

spatial operations and for federated spatial database management in general. F d a r  

examples of the proper set of functions include construction operations, spatial searches and 

analysis, as discussed earlier. The "proper" modifier on the set of functions respects the 

''boundary conditions", especiaily those regarding construction operations. 

Identifying and Tramferring the Subset Enclosed in a Partitionhg Boundary 

The first step of the partitioning algorithm identifies the subset of spatial objects and their 

spatial structures in one designated subspace. Once identifïed, it can be "wntten" into a 

newly allocated memory space as a separate instance of the data structure, and later 

removed kom the original memory space. Due to incremental construction, the logical 

indices of the subset of spatially adjacent objects and structures may not be contiguous, the 

memory blocks occupied by the subset may consequently be dispersed. Some spatial 

traversal technique has to be used to identify the subset and transfer the logicai addresses of 

the members into those of the new instance of the data structure. 

Ln Our implernentation, we use the potygon shading or flood fill algorithm, as discussed in 

Chapter 4, to traverse the topological structure (the Delaunay triangulation) in spiral-like 



order. For every triangle and vertex object identified, instead of matching their original 

logical indices to the counterparts in the new instance, appropnate consecutive index 

numbers fiom the new instance are assigned to them. This eliminates big gaps in the 

memory space of the new instance between spatially adjacent objects and structures. The 

process of i den t img  and transferring logicd indices is called flood fil1 rnemory 

compaction. Figure 4.5 illustrates this process where the heavy and iight numbers represent 

indices for spatial objects and Delaunay triangles, respectively. 

463 745 
In the new instance 

985 

367 
91 

12 

75 2 

In the original instance 
y 4  

Figure 4.5 Flood fa memory compaction 

Out-Pointers of the Bordering Triangles in the Data S tmcture 

Recall that (ref. page 79) the triangular element data structure for the Delaunay 

triangulation not only maintains pointers to three vertex objects for each triangle, but also 

pointers to three adjacent triangles for each triangle in question. Maintainhg pointers to 

adjacent triangles ensures the ability to spatially traverse the whole topological structure. In 

this sense, we call those pointers the topological pointers. For a set of triangular objects 

identifed in one partition, Say M(D(Ot)), it is apparent that some topological pointers in 

M(D(02)) will have to point to tnangular objects in M(D(O2)), naming these pointers out- 

pointers. Unfomuiately this violates both conditions j) and k). For example, a function on 

D(02) may need to know the positions of al1 adjacent triangles for each triangle concerned, 

including the adjacent hiangles referred to by the out-pointers. The function will fail when 

Dr(02) is removed and the subspace Ozr becomes void, because the out-pointers refer to 



triangles which no longer exist in the subspace concemed. In order io solve this problem, 

we first identify triangles in D(02)  whose representation contains out-pointes. 

For any h e  segment on the partitioning boundary, there c m  be only two triangle edges 

each connecting an endpoint and the graphic representation point (cf. Figure 4.4). No matter 

how many triangles are incident to the line segment, only two pairs of adjacent triangles 

share the aiangle edges collinear to the line segment. Since each pair has triangles fiom 

both sides and they are face to face dong the boundary line, they are cailed bordering 

triangles (Figure 4.6a). Referring to the data structure for the Delaunay aiangulation, it is 

the bordering triangles that contain out-pointers to triangles out of reach (Figure 4.6b). 

(a) bordering triangles (b) out-pointers in M(D(02)) 

Figure 4.6 Bordering triangles and out-pointers 

A Flaw of Voronoi Diagramo in Dealing with Line Segments 

In seeking a solution for the subset inter-referencing problem incurred by the out-pointers, 

an important flaw in curent theory and practice of Voronoi diagrams dealing with line 

segments is revealed: their internal spatial structures have k e n  either ignored or are 

incomplete. This fuiding can be made evident by the following example (Figure 4.7). 



Figure 4.7 Weakly-connected subspaces 

Based on pointset topology, two components in Si of Figure 4.7 are weakly connected via 

two single lines between points 01 and 02,  Q and 04, respectively. These two topological 

subspaces need to be travened with a supporting topological structure. However, what 

would be the construction of the Voronoi diagram over a single line subspace is neither 

treated theoretically nor in the representation with data structures. Typically, two Voronoi 

diagrarns would be constructed, one for each subspace. This leaves the subspace occupied 

by the single pass unatîended. Besides, this treatment alters the topological nature of Si 

which would become unconnected. A reason for this ignorance is that most of the current 

studies of Voronoi diagrams consider that embedding spaces are al1 strongly connected and 

these 'boundary conditions" are treated as "special cases" which are usually avoided by the 

main Stream of research on Voronoi diagrams. 

Some distinct aspects of Voronoi diagrarns involving line segments have been addressed in 

the literatue. For example, it has been noted that wMe the subdivision of the Voronoi 

region of a line segment c m  be conceptually analogous to that of a point, the denving of the 

dual Delaunay structure around a line segment, however, is not a simple extension of that 

for a point (compare Figure 4.8 (a) and @)). The orientation of a Line segment must be 

distinguished to confonn to the unique empty circumcircle condition for the Delaunay 

triangulation. Nevertheless, the treatment is incomplete both theoretically and practically. 



Theoreticdy, the topological structure of the Voronoi diagram is not homogeneous on the 

whole plane. As demonstrated in Figure 4.8b, there exist double triangle edges between 

adjacent triangles, Aoio50s and Ao6o3o8, on one hand, and a gap between Voronoi regions 

incurred by two objects, os and 06, on the other hand. In practice, the absence of 

representation of the intemal topologicai structure of a line segment presents cüfficuity in 

dealing with, for example, the inter-referencing problem and the traversal between weakly- 

connected subspaces via the cornputer representation of their topological structures. 

(a) Voronoi region and adjacent 
triangles around a point 

(b) Voronoi region and adjacent 
triangles around a line segment 

Figure 4.8 Illustration of the incompleteness in handling line segments 

The Completion of the Spatial Structures Within a Line Segment 

The idea of completing the spatial structures within a line segment becomes simple once the 

problem has been analyzed. Take a close look at the geometry of a line segment whose 

composition includes two topologically distinguished "haif-Lines". Each haif-line starts 

from one endpoint and its orientation is given by the "right-hand" rule with respect to the 

other endpoint associated with the other half-line. In the associative object data structure, 

these two half-lines represent two distinct objects and are mutuaiiy referenced. Based on the 

d e f ~ t i o n  of the Voronoi diagram, it is natural to amend a Voronoi edge bisecting these two 

ha-line objects (Figure 4.9a). We call this Voronoi edge the Voronoi in-line edge to 

distinguish it from other Voronoi edges. Accordingly, amend the two triangles inside the 



full h e  segment to correspond to the Voronoi edges between the four connected objects 

which together describe a full line segment (Figure 4.9b). We call these the critical 

triangles because they serve as the transitional elements between interrelated subspaces. 

(a) the completion of the Voronoi in-luit 
edge fa a full iine segment 

(b) fhe completion of the critical triangles 
for a fuii üne segment 

Figure 4.9 The completion of the Voronoi in-line edge (a), and the critical triangles (b) 

The completion of the spatial structures within a iine segment complies with the defuiitions 

of both structures. It is understandable that the circumcircle of a critical triangle has a zero 

radius and its centre coincides with the endpoint vertex. These amendments are rather more 

concephiai chan geometric. They are nevertheless vital to solving the two problems 

mentioned above. The role of the critical triangles WU be made more evident as the 

discussion continues, 

Resolving Unreferenced Out-Pointers 

We now corne back to solve the inter-referencing problem: the out-pointers in one subset of 

system objects refer to trianguia. objects in other subsets. With the completion of the 

critical triangles, the bordering triangles no longer contain out-pointers because these have 

k e n  transferred or contained within critical triangles on the partitioning boundary. Figure 

4.10 shows the out-pointers in the critical triangles on the boundary inter-relating two 

connected subspaces. 



Figure 4.10 Out-pointers in critical triangles 

inter-relating two subspaces 

After V(&) has been removed, the out-pointers fiom M(V(Si)) cannot be resolved once they 

are used to access triangles in LI(&). Our solution is to replace the reference of an out- 

pointer in one cntical triangle with the other critical triangle incident to the sarne endpoint. 

This is s h o w  in Figure 4.1 la as out-pointers are "bent" around corners. As a result, two 

cntical triangles incident to the same endpoint are mutually referred. Likewise, the out- 

pointers on the boundary of the other partitioned subspace are similarly resolved (Figure 

4.11b). The explanaiion for bending out-pointers is that whenever a traverse is about to 

leave a subspace, it should immediately be directed back if and when the other subspace 

becomes void. 

(a) Resolving out-pointers for M(V(S1)) (b) Resolving out-pointers for M(V(S2)) 

Figure 4.1 1 The resolution of out-pointers 



Applying the method of bending out-pointers completes the justification for the 

irnplementation of the partition technique. The equivalence condition j) and the mapping 

condition k) are satisfied except for the following modification. 

The Modification of the Nearest-Object Search 

The nearest-object search over the Delaunay triangulation uses the simple walking 

algorithm [Green and Sibson 1977; Gold 19771 to traverse the triangular network. It starts 

from any known aiangle and walks towards a triangle connected to an object which is the 

closest to the target location. Figure 4.12 illustrates such an algorithm. The mows indicates 

the search path that one traverses from one triangle to another. The algorithm distinguishes 

the probed object and the questioned object dong the search path. A questioned object is a 

triangle vertex whose closeness to the target location is examined. A probed object is a 

questioned object, which is found closer than the previously probed, and all its neighbours 

are intended to be questioned in a circular sense. The algorithm speculates that 1) when an 

object is questioned with respect to a probed object, the txiangular path is advanced once to 

the adjacent one which is comected to the object in question; 2) when a questioned object 

becomes the probed, a new circular questioning starts from the triangle just advanced in; 

and 3) a complete circle of triangles (with respect to the probed object) must be perfomed 

before claming the probed object the nearest object. In the example shown in Figure 4.12, 

the start triangle (gray) and the probed object a (gray) are on top of the partial triangulation. 

Object b becomes a new probed object when it is questioned. Then a new circular search 

path is atternpted, starting fiom the adjacent triangle below the grayed initial triangle. 

Another new probed object, c, is found before a circle of triangles is formed. The search is 

terminated by dedaring object c the nearest object, as a questioning circle is formed with 

respect the c. 



~ t a r t  triangle 

x Target location 

Object probed 

O Neighbour questioned 

Nearest object 

Figure 4.12 An illustration of a nearest-object search algorithm 

The principles of the algorithm can be extended to the Delaunay tnangdation with points 

and line segments. The only additional concem is about closeness test with regards to a line 

segment. Figure 4.13 illustrates a nearest-object search over a triangulation of points and a 

closed polygon in Si. The polygon boundary is implemented with critical triangles. Notice 

that the search path enters the intenor of the polygon. 

S tart triangle 

Target location 

Object probed 

Neighbour questioned 

Nearest object 

Figure 4.13 An illustration of a nearest-object search over points and h e  segments 



The problem occurs when the interior subspace has been removed from subspace Si. In the 

example shown in Figure 4.13, the search path wiil be broken when one traverses on the 

polygon boundary and is about to enter into the interior of the polygon. This effectively says 

that the target location is "invisible" fkom the start probed object in the sense that there does 

not exist a "straight" search path beîween them. 

On the other hand, the application of "bending" out-pointers alters the direction that leads 

to adjacent triangles. Because of the bending, the nearest-search algorithm may r e m  an 

incorrect answer. The reason is that the search may be terminated prematureiy. Figure 4.14 

illustrates this situation. Notice that the search completes a ckcular questionhg around a 

probed object and reports it as the nearest-object. 

Start triangle 

Target location 

Object probed 

Neighbour questioned 

Neares t object 

Figure 4.14 A prematurely terminated nearest-object search 

The modification of the nearest-object search algorithm adds a test about the type of a 

triangle just traversed: Whenever a traverse w a k  into a critical triangle while probing an 

object on the partition boundary, it should never uses the bent out-pointer to walk back. 

Instead, the traverse should proceed to question other boundary objects in counterclockwise 

order, extending the triangular search path as it proceeds. The traverse continues like this 

until one of three cases occurs: 1) ail objects on the boundary have been questioned; 2) a 

new probed object on the boundary is found; or 3) a probed object in the interior of the 



search space is found. In the f ~ s t  case, a closed search path around the boundary is 

complete and the probed object on the boundary is the answer. For the second case, the 

walk continues until either case 1) or 2) or 3) is encountered. In the third case, the w a W g  

path is away fkom the boundaq and the search is back to the normal algorithm. In the 

example in Figure 4.15; the traverse has encountered case 2) a few times before case 3) is 

found. The algorithm fmally reports a correct answer. 

Start triangle 

Target Iocation 

Object probed 

Neighbour questioned 

Nearest object 

Figure 4.1 5 The nearest-object search after the modification 

The topological concept behind the modification of the algorithm is clear: The hole 

occupied by the partitioned subspace is treated topologicdy as a special point object in the 

left-over search space. It is special because it has a boundary and a geometry, and its 

interior is condensed to a point in the Ieft-over subspace - the v e r =  reason we call it a 

"condensed object". Therefore, once a boundary component of the condensed point is found . 

closer to a target point, the search needs to complete the "circular path" around the point 

before it confirms the answer. We call the condensed objects 'point equivalent classes" in 

the leftsver subspace in a topological sense. 



Traversing WeaMy-Connected Components 

Extending the "point equivalence" concept to weakly-comected components in a subspace, 

the problem of travening the whole subspace is immediately solved. Based on the modified 

traversing algorithm fot the nearest-object search, any two points in a subspace, weakly- 

connected or not, can be traversed by a continuous search path (the left illustration in Figure 

4.16). Denote {os} and {06} the two eqiiivalence points representing the holes in SI, then 

the search space is topologically represented as the one at the right of Figure 4.16. It is no 

different than the ordinary Delaunay eiangulation of an Euclidean plane. 

Figure 4.16 Traversing weakly-connected components and the topological equivdence 

The Pseudocode of the Aigorithm 

The algorithm for partitioning V(O) c S c R' into V(Oi) and V(02) is summarized in the 

pseudocode procedure named Condense. For simplicity, we assume there exist two 

procedures: Identify-bound, which identifies a container polygon in S to be partitioned 

and returns the List of line segments in O, narned bdr, on the partitionhg boundary, in 

counterclockwise order; and Release Mi/M2, which releases the part of the memory space 

in M(V(0)) originally occupied by M(V(02)). Two subprocedures narned Partition Si/!% 

and Compact D called by Condense will be expanded further. 



Procedure Condense (M(D(O), A(0))) 

Begin 

1. Narne M(D(O), A(0)) to be M(D(Ol), A(Ol)), short for Ml, the lefi-over instance of 

the data structure. 

2. Allocate memory space for M(D(02), A(02)), short for M2. 

3. Identifytifybound(Mi, bdr). 

4. Partition Sl/S2(Ml, bdr). In this step, critical triangles in D(O1) are embedded for 

each element in bdr. All critical aiangles are flagged with the Iogical indices of the 

corresponding critical triangles to be embedded in M2. These indices cm be 

calculated. At the same t h e ,  the out-pointers in critical triangles are %ent7'. 

5. Compact D(Ml, M2, bdr). This step fmt embeds cntical triangles on the boundq 

in M2. This is followed by duplicating the partitioning boundary in Mt. Each critical 

triangle is flagged with the index of the corresponding cntical triangle in Ml. Finally, 

starting with a given triangle in Ml, the flood fd algorithm is applied, which 

transforrns D(OZ) and A(Oz) in Ml, bounded by the partitioning boundary and flagged 

cntical triangles, to a contiguous space in M2. 

6. Release M1/M2(MI, M2)- 

End. 

Procedure Partition SI /S2(MI, bdr) 

Begin 

Proceed with each pair of line segments in bdr. 

Collect bordering triangles for the pair, then put them in a temporary variable of 

structure type bt. 

Create four cntical triangles and insert them into the pair of line segments, referring 

to the information in bt. 

Flag each critical triangle with calculated logical triangular indices which will be 

used for the cntical triangles in M2. 



5. ModiQ out-pointers in the critical triangles. Care must be taken with the fïrst critical 

triangle, because its preceding critical triangle is the last one whose logical index 

wiil be calculated when processing the last line segment in bdr. 

6 .  Take another pair from bdr, while repeating Steps 2 through 5 until all line segments 

in bdr are processed. 

End 

Procedure Compact D(Mi, Mt, bdr) 

Begin 

For each pair of line segments in bdr, create cntical triangles and insert them into 

M2. The vertex pointers of each cntical triangle are created and inserted into M2. The 

logical triangular indices created are identical to the ones calculated in Partition 

SI/%- 

ModZy the out-pointers in the critical triangles. Care must be taken of the f ~ s t  

cntical triangle, because its preceding critical triangle is the last one whose logical 

index will be calculated when processing the last line segment in bdr. 

Flag each of the critical triangles with the indices of the corresponding critical 

triangles in M2. 

Flag each of the boundary objects wiîh the indices of the corresponding boundary 

object in M2. 

Repeat Steps 1 through 4 until ail line segments in bdr are processed. 

Apply flood fill. Start fiom any triangle oldt in Mi which lies in the intenor of 

subspace S2. Create a new triangle named newt in M2. Rag oldt with newt and push 

o u t  into the priority queue named pq. 

Pop one triangle oldt from the queue. Obtait the flag from oldt and name the 

triangle indexed by the flag newnnme. 

For each adjacent triangle, adjt, of oldt, both in Mi, in counterclockwise order: 

If adjt is not flagged, create a new triangle newt in Mr, flag adjt with newt, push adjt 

in pq; othenvise let newt be the triangle indexed by the flag. 

Fil1 one topological pointer in newname with newt and one in newt with newnarne. 



Examine the vertex oldv in adjr, opposing oldr. If oldv is not flagged, create a new 

object newv, with the sarne type as oldv, in M2 and flag oldv with newv; otherwise 

let newv be the object indexed by the flag. 

FiIl one object pointer in newt with newv. 

Examine the vertex oldv in oldt, opposing adjt. If oldv is not flagged, create a new 

object newv, with the same type as oldv, nom Mz and flag oldv with newv; otherwise 

let newv be the object indexed by the flag. 

Fill one object pointer in newname with naw. 

I fpq  is not empty, go to Step 6. 

Save M2 as a spatial page in a secondary storage medium. 

Analysis of the Algorithm 

Obviously, additional storage for a flag is required for each triangular element and 

associative object. The cost for storing flags is in the order of O(n), where n is the number 

of objects in V(0) .  

The time spent for the procedure Partition Sl/S2 includes 1) walkïng fiom a known 

triangular index to any triangle incident to the partitioning boundary; 2) colIecting 

bordering triangles to each line segment in Ml;  3) insereing critical triangles in Mi, and 4) 

modifying out-pointers in critical triangles. Traversing from any triangle in D(Oi) to an 

incident triangle of a boundq  line segment costs O(log n) which is worstcase optimal, as 

analyzed in Chapter 3. The upper boundary is in the order of O(n). Processes 2) through 4) 

cost a constant thne for each line segment and the total is proportional to m, the number of 

line segments on the partitioning boundary. Therefore, the upper boundary for Partition 

SI/$ is O@). 

The Compact D procedure, to compact M2, includes creating and inserthg critical triangles 

in line segments on the partitioning boundary in MZ, the total of which takes O(m) tirne; and 



the flood-fd process utilizing a priority queue, for which the worst case can involve al1 

triangles in D(0) and all objects in A(@. The upper boundiïiry is in the order of O(n) based 

on the linear behaviour analysis of the Voronoi graph in Chapter 3. Storage for the priority 

queue has accordingly an upper boundary of O(n), for adjacent triangles in the queue 

covering ail triangles in -D(O). 

The following theorem summaxizes the implementation of the partitioning algorithm: 

Theorem 4.2. The implementation of a 2-partition over the Voronoi diagram V(O), for a 

nnite collection of n points and h e  segments in 0, satismg conditions j) and k), c m  be 

affécted in the worst-case by O(n) in both time and storage. 

4.5 Pasting Together Voronoi Subdiagrams 

In this section, we discuss the reverse process of partitioning a Voronoi diagram into 

subdiagrams which paste together subdiagrams into a seamless whole. Each subdiagrarn is 

constnicted separately. The resulting Voronoi diagrarn will contain single sets of Delaunay 

triangles and spatial objects which are the union of the respective subsets. The union 

diagram can be stored either in a single instance of the data structure, or in separated 

instances. In this section, we deal with the first case that the whole diagram is merged both 

geometrically and in storage. The second case treats the union of the Voronoi diagrarns as 

functioning geometrically and topologically as a whole but the components of the union are 

stored in different instances of the data structure. The dynamic interactions of the latter case 

will be tackled in Chapter 5. 

Two possibilities are considered when pasting a partitioned subset into a Voronoi diagram. 

The fmt  one pastes the partitioned subset (being bounded) back into the original left-over 

subspace of the Voronoi diagrarn, presumably the geometry of the common partition 

boundary has not been modified. The other possibility pastes the partitioned subset into 



another Voronoi diagram, provided that there will be no spatial conflicts on the location of 

the boundary. For clarity, we name the subset of the Voronoi diagram to be pasted the 

source set and the Voronoi d i a m  into which the source set is to be pasted the target set. 

It is assumed that both the source and the target sets have, or can be transformed into, the 

same Cartesian coordinate units and origin in the Euclidean plane. 

The algorithm of pasting a partitioned subdiagram back to its left-over subspace is basicalIy 

the same as that described in procedure cornpress D, with the following changes: 1) the 

fust argument should p s s  in the memory instance of the target set, Mz, and the second one 

passes in that of the source set, M l ;  2)  the first five steps will not be used because the 

critical triangles already exist in the target. Since the critical aiangles and the boundary line 

segments in the source set have flags which are indices referring to critical triangles and 

boundary h e  segments in the target set, the completion of the flood fill (Steps 6 - 10 in 

procedure compact D) appends the storage indices of the data structure for the source set 

to that of the target set. The critical tnangles in the boundary may be removed, if so desired, 

after two subspaces are pasted together. 

TO paste a partitioned subset into another Voronoi diagram, since the partition boundary 

does not exist in the target set, it needs to be inserted into the target set, taking the 

boundary geometry from the source set. If no spatial conflict occurs in inserting the 

boundary, the geometry of the new boundary will be the same as the one in the source set. 

This process adds a closed polygon in the turget space and the interior of the polygon is 

populated by Voronoi regions. The second step is to replace these Voronoi regions with the 

ones contained in the interior of the source set. Since the flags in the criticai triangles of the 

source set are indices refening to cntical triangles in the lefi-over subspace, they are 

unknown to the target set. Additional operations have to be taken to match topological 

pointers in two subsets. This can be done by 1) collecting bordering triangles in the extenor 

of the new polygon in the target set; and 2)  passing the information about the bordering 

triangles to the source set to modify the flags in the critical triangles such that the modified 

flags are indices of the corresponding bordenng triangles in the extenor of the new polygon. 



After this, the modified procedure compact D (as the one used for the fust case) can be 

used to paste together two instances of the storage structure. 

4.6 Partitioning a Spatial Structure Along Designated Triangular Edges 

In geographical applications, it may well happen that geometrical objects embedded in 

space are not contained in any polygons. A good example is the digital terrain mode1 with 

sample points ody. In this case, aii points rnay be stmctured with the Delaunay or other 

trïangulations. We discuss briefly in this section how the spatial object condensation 

technique can be applied to triangulated spatial structures. The objective of this application 

is to solve the more general problem that "Sometimes the data set in the digital terrain 

mode1 is too big to be loaded into the main memory". 

The idea of partitioning a triangulated data set into storage-independent but geometrically 

and topologically integrated subsets is the same as that of partitioning a Voronoi diagram. 

However the partitioning boundary with a tnangulation is not a polygon object but the 

designated triangular edges in a closed loop. To achieve storage and functional 

independence, critical triangles will be implemented in the boundary edges, which will 

become "fixed" (they will be kept unswitched) in the dynamic operations on individual 

subsets after the partition. In the discussion, we deliberately avoid using the dual Delaunay 

triangulation of a Voronoi diagram. The purpose is not to assume the empty circumcircle 

condition for the Delaunay îriangulation. If the partition does use a Delaunay triangulation, 

it shodd be borne in mind that Voronoi regions around the partitioning boundary rnay 

overlap due to the dynamic operations over each partitioned subset, as shown in Figures 

4.17 a) and b). The nearest object search, therefore, cannot be assurned on triangles 

bordenng the boundary. The propertïes and applications of the triangulations wirh some 

"fixed" triangle edges are part of the study of consaained triangulations (cf. Lee and 

Schachter [1980]; Chew [1987, 19891). 
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a) Triagular edge oiq  is 'Ylxed?' on a b) Moving two vertices on bordering trïangIes 
partitioning boundary causes overlapping of Voronoi regions 

Figure 4.17 The loss of the empty circumcircle property on bordering triangles 

With the above background, we phrase our objective for the problem mentioned at the 

beginning of this section: given a tnangulation, with some constcained triangle edges 

forming a closed loop, fmd a method to decompose the aiangulation dong the closed loop, 

called the partitioning boundary, into two subsets such that each subset of the triangulation 

can be stored and dynamically operated on independently in main memory. 

The method we propose generates critical triangles on the partitioning boundary. For each 

constrained edge between points 01 and oz, two bordering triangles, at both sides of the edge 

(Figure 4.18 a), are collected, and used to create critical triangles. It tums out that two 

additional triangles are suficient to serve as the critical triangles with the same purpose as 

the ones embedded in a Linz segment. These two critical triangles can be generated by 

inserting one auxiliary point 03 in the middle of the constrained triangle edge whicb is 

broken into two, 0103 and o3q (Figure 4.18 b). The position of 03 is determined by the 

location vector (ol + 02)/2, where 01 and oz are location vectors of ol and 03 respectively. 



a) Two bordering triangles at both sides of 
constrained edge olm 

b) Two critical triangles, ~ 0 3 0 1 0 2  at the 
down side, and ~030201 at the up side 

Figure 4.18 Generating cntical triangles about a constrained edge 

It can be seen that there are now two constrained edges with the same two vertices. This is 

proper with the triangular element data structure. The two geometrically identicai triangle 

edges belong to the components of two distinct (in topological sense) triangles, Aqoioz and 

Ao30201. The two constrained edges are analogous to the two oriented lines in one line 

segment within which the cntical triangles are embedded. This piece of the partitioning 

boundary is now completely transformed into a "hard boundary segment" and will be saved 

on both partitioned subsets. 

Once aU boundary aiangle edges are transformed, the topological connections between two 

subsets are implemented as out-pointers in cntical triangles, as is shown in Figure 4.19. 

These out-pointers will be ' kn t"  in order for the two subsets Si and S2 to finction 

independently. This can be implemented so that each of them is directed, Say in 

counterclockwise order, to the other critical triangle incident to the same point (Figure 

4.20). Therefore, the out-pointers in Sl form a closed loop around the partitioning boundary 

clockwise (Figure 4.20a). Likewise, the out-pointers in S2 fonn a closed loop in 

counterclockwise order (Figure 4.20b). The rest of the algorithm for transforming viangular 

and object indices is sirnilar to that using the line segment boundary. 



Figure 4.19 Out-pointers in transfonned constrained triangle edges 

a) Resolving out-pointers in SI b) Resolving out-pointers in S2 

Figure 4.20 Resolution of out-pointers in partitioned subspaces 



Chapter 5 

The Voronoi Map Object (VMO) Mode1 

Introduction 

The spatial object condensation technique decomposes the Euclidean plane, and its 

topologicd and geometric representations with data structures, into subsets wrapped 

independently as Voronoi Map Objects (VMO). The technique also encompasses the ability 

of pasting partitioned or individuaily created VMOs to form a larger space and 

representation. What has not k e n  discussed is the managerial mechanism or structure that 

oversees the object condensation process, and that manages and manipulates the resulting 

VMOs as an integral whole. Without the complementary structure at the management level, 

the effort made in condensation could not be M y  utilized. This chapter is devoted to this 

matter, and will cover the following issues: 1) What is the proper structure to collect and 

manage the set of VMOs? 2) What are the spatial objects and relationships that c m  be 

supported and manipulated with the structure? 3) What are the operations and constraints 

appliczible to the spatial objects mauitained in the structure? 

The above issues achially touch the fundamental problems in developing a contemporary 

spatial data model for GIS. The problems with a spatial data model span al l  aspects of 

processing spatial data, especially with the integration of geo-object designing, storing, 

rnanipuiating, analyzing, viewing, and communicating. "Contemporary" may be labeled 

with the increasingly "luxurious" requirements fiom users of GIS who are demanding to 

handle spatial data with more flexibility. Idediy, any interesting data in a large spatial 

database are modelled, manage& and viewed as an operable unit or object. The change of 

focus back and forth between objects should be smooth and transparent, and the database 

should allow both outlined and detailed views. From the systems point of view, these 

requirements impiy that spatial data be geometricdy and topologically stmctured in a 



hierarchical fashion, with varying levels of detail. Each object in the hierarchy 

accommodates a region of arbitrary polygonal shape which again contains both comected 

and discomected points, lineal objects, and smder  regions of different complexity; and the 

objects at each level correspond permanently to disk pages. 

Most traditional spatial data models based on a hybnd architecture are composed of a 

planar graph topological data model and a geometric indexing data model. They can hardly 

satisfy these increasingly sophisticated ne&, the reasons having been analyzed briefly in 

Chapter 2. In recent years, research on spatial data modeIs for GIS has k e n  moving 

towards developing more genenc spatial objects with enhanced expressive power. The 

enhancement has been concentrated on formal descriptions of spatial objects which c m  be 

incorporated with their temporal aspect and with multiple resolutions. 

For example, based on the work by Worboys [1992a], classes of spatial objects embedded 

in the Euclidean plane are formally defmed, together with the operations on hem, using the 

mathematical tool of simplicial complexes. The formalism is extended to model spatio- 

temporal (ST) objects [Worboys 1992bl. The spatial objects constitute an indispensable 

component within a larger frame of geo-objects which is k i n g  attempted with the object- 

oriented approach morboys 19941 e 

In a multiple scaled representation, Bertolotto et al. 119941 report a HPEG (Hierarchical 

Plane Euclidean Graph) for a rnultiresolution representation of a region. The HPEG 

recursively decomposes regions into smaller ones. Region boundaries at one level are 

simplified by creating ehomotopys with line generation algorithms, where E specifies the 

radius of a band convoluted from a chain of edges. Each smaller region in HPEG is a PEG 

(Plane Euclidean Graph) [de Floriani et al. 19931 whose features are refined with smailer 

horizontal error. In order to support navigation in the hierarchy of PEGs, the boundary 

information of a PEG must be recorded and the links to the direct refinements of a PEG 

must be maintained. The HPEG provides a way of browsing a map at different levels of 

resolution. The formalism, based on the cell complexes, for this map model is provided by 

Puppo and Gettori [1995]. The implementation of the HPEG is based on the DCEL 



encoduig structure. A hierarchical geometric indexing structure is suggested in the 

irnplementation in order to speed up data access. 

We propose, in this chapter, a hierarchical data model whose node objects corne from the 

condensation technique described in the previous chapter. This data model is aimed at 

managing a set of meaningfd map objects which together constitute a federated spatial 

database, possibly distributed in a computer network. Each component of the hierarchy 

accommodates a subspace where a collection of spatial objects is embedded and structured 

both geometricaily and topologicdy. In addition, each node corresponds to a disk page and 

c m  be loaded into memory to work independently of other node objects. Dynamic GIS 

operations on the spatial objects in the hierarchy are inhented fkom what has been discussed 

on the Voronoi data model in the previous chapters of this thesis. These operations can be 

defined within each node object to comply with object-orientation technology. A partial 

discussion of this data model is in Yang and Goid [1996]. 

The VMOs created by the condensation technique proposed in Chapter 4 naturally form a 

hierarchical relationship where the object fiom which a partition is made is the parent and 

the newly partitioned object is the child. A parent can have a number of children and each 

child itself can have children when the condensation is recursively applied to the child 

VMO. When a complex polygon is condensed, the partitionhg boundary is duplicated in 

both parent and child objects. At the parent level, the subspace occupied by a child VMO is 

enclosed by a simple polygon whose composing detail is suppressed. Topologically, the 

enclosed subspace is equivalent to a hole in the lefi-over subspace. 

We k t  defme spatial objects accommodated by the proposed data model. This is followed 

by the specification of valid topological relationships between spatial objects. These 

topological relationships are supported by the Voronoi diagram embedded in the Iargest 

spatial object, the VMO. The representation of the data model is a tree of VMOs. 



5.2 The Geometnc Object Classes 

The data mode1 provides support for the following geometric data types or object classes: 

Points, denoted P. A point p E P is charactenzed by a pair of ordered real numbers x, y 

E R, denoted as p(x, y) E lZ2. The pair (x, y) is caiied the coordinates of p. 

Directed and oriented line segments, denoted LSG. A directed and oriented line segment 

Isg E LSG is defined by two endpoints pl, p2, E P, denoted lsg(pi, pz). Each lsg is a 

collection of points satisfj6ng the following convex combinatorid equation 

The line segment lsg(pi, pz) is directed from the endpoint pl to the endpoint PZ- The lefi- 

side of Zsg is defined as a set of points fomiing a halfplane, LJY c lZ2, bounded by the 

line T (cf. Section 3.2) 

such that Vpj E LH, the following determinant condition holds 

Likewise, the right-side of Zsg is a set of points forming a halfplane RH c p, bounded 

by T, such that Vp3 E RH, the deteminant condition D < O. The dual concept is 

introduced to a directed and oriented line segment, such that Vlsg(pi, pz) E LSG, its dm1 

directed and oriented line segment is defined as Zsg(p2, pl) which is also in LSG. For 

simplicity, a directed and oriented line segment (or its dual) is calied simply a line 



segment, when no ambiguity arises. The left-side halfplane is called the referencing 

plane of Lg(p1, pz). 

Directed und oriented Lines, denoted L. A directed and oriented line 1 E L is composed 

of a sequence of comected line segments in LSG, such that each endpoint in P is 

incident to exactly two line segments, except possibly for two endpoints, called the 

extremes of the line. The direction of a line i E L is designated by its two extreme nodes, 

s and e, cdled the starring and endhg nodes, and the line is denoted as  I(s, e). The 

orientation is defined such that walking the line fiom s to e, the reference plane is always 

on the lefi-side of the w-g direction. The dual of a line l(s, e) is l(e, s). When the line 

starts and ends at the same node, it becomes closed. The relationship between the class L 

and the primitive classes LTG and P is (LSG v P) c L, indicating the fact that a line is a 

subset of the union of line segments and points. 

Polylines, denoted PL. A polyline pl E PL is composed of lines which intersect only at 

the extremes of lines. The intersection point can be incident to more than two lines. The 

directions and orientations of each composing line can be worked out based on bat  

represented for the line segments. These properties cannot be properly applied to a 

polyline if it is multi-branched or cornpiexly networked. The relationship between the 

class PL and the class L is simply L c PL. 

Regions, denoted A. A region r E A c R~ is the area enclosed by a closed line. The 

closed line is the boundary of r, denoted i3r (ar E L), for which no extreme can be found. 

The interior of r, denoted rO, together with ar, constitute the region object, r. For 

convenience, the exterior of r is denoted r'. Both r0 and f have a homogeneous infernal 

structure, Le., object composition and topology. A region is a container object where 

points, line segments, lines, polylines, and smaiier regions can be embedded. It is also 

possible that a region r contains holes which represent maps, to be defined. In the case 

that a hole is contained in rO, âr and r' of r will be disconnected. The boundary of the 

hole is the outer bowidary of the hole which is simultaneously the inner boundary of r. 



Maps, denoted M. A rnap rn E M is an appropriate subset of the Euclidean plane R'. It 

can be unbounded or bounded. An unbounded rnap is called the universal map. A 

bounded rnap (denoted as [ml) has an area enclosed by a closed boundary, denoted dm. 

The boundary is disthguished by its intemal side and external side. The internai side is 

connected to mO, the interior of Cm], and the external side is connected to m', the exterior 

of [ml. The boundary of an [ml can be defined either by a subset of L or by a subset of P 

plus some structural lines in @ to luik points in P for a closed polygon. 

Similar to a region object, a rnap is also a container of al l  spatial objects defined abme 

and including smaller maps in M. An [ml and a region r indeed behave the same at the 

object level. The ciifference emerges oniy when putting them in a container level, where 

the intemal structure of m0 is hidden while that of r0 is always visible. The intenor of a 

map object in a container actually constitutes a hole in the container space. When the 

intemal structure of an [ml is homogeneous to the structure of its extenor rn', it c m  be 

pasted back to fill the hole. 

The reasons for having a rnap object class, in addition to the region object class, are: 1) 

the data describing the internai structure of a map may temporarily be unavaitable (such 

as in multi-user and networked applications); 2) the intemal structure may have a 

different format (for multimedia representation and heterogeneous databases); and 3) for 

hierarchical representation and management of large quantities of geomevically and 

topologically stnictured spatial objects. 

A diagrammatic representation of a bounded rnap object is shown in Figure 5.1 which 

depicts the boundary and the intemal objects accommodated in the intenor of the map. The 

grayed area is the embedding space for a set of points, line segments, lines, polylines, 

regions, and holes (white). The holes represent smaller bounded rnap objects whose intemal 

structures are not present at the container level. The detail compositions of the contained 

rnap objects are specifïed at a lower level. On the other hand, the internai object 

composition in a region object is present and visible at the container level. 
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Figure 5.1 Geometric object classes 

5.3 Topologicd Relationships of the Object Classes 

Figure 5.2 illustrates an incomplete set of detail topological relationships between the 

geometric object classes supported by the data model. We follow the terminology of 

describing basic topological relationships defined by Egenhofer and Franzosa [IW 11. The 

terminology is extended to cover some of the topological relations between regions with 

holes pgenhofer et al. 19941. Forrnal definitions based on pointsets for the set of spatial 

relationships are covered in the above mentioned two papes. The VMO data model 

excludes, under the static spatial database context, the general overlapping between spatial 

objects. Instead, dynamic operations are provided to support the overlapping process 

incurred in map overlay. 

The shaded rectangular background represents the embedding space of a bounded map (or a 

region). The category of "area/area" concems the relationships between two areal ([ml E M 

or r E A) objects in the container. They can be disjoint, such as (a); touch at one or more 

common points, such as (b) and (d); or touch at one or more comrnon boundaries, such as 

(c) and (e). The enclosure of the union of areal objects overlaps part of the container region. 

Likewise, the inner boundary of a rnap may be totally comected to the outer boundary of 



another map (f). It should be noted that the relationship (0 is not one of overlapping: the 

intenors of two rnap objects are disjoint. The outer rnap object is therefore a toms. 

Likewise, the inner boundary of a map of the toms shape can be totally connected to the 

outer boundary of a region (g). In this case, the toms disconnects its exterior, i.e. the 

interior of the container, 

In the category "arealline", an areal object and a line are concemed. A line in the interior of 

the container can touch a contained rnap at one point (h). A line enclosed in a region (not a 

map) touches the region boundary at one point (i). Likewise, a line cm also pass through 

the interior of a region (not a map) and intersects the region boundary two or more (but 

finite) times (j). For the relation (j), if the region becomes a rnap object, the segment of the 

h e  enclosed in the interior of the rnap will not be visible at the container level (k). 

The relations in the category of ''line/lineW are trivial. Two h e s  c m  be connected to form a 

longer line (l), or multiple branches of lines intersect at one common extreme point (m). 

The relation (n) depicts isolated points contained in a region (the rectangle). The relations 

between points and lines are implicitly represented in some of the previous relations in the 

diagram. 

Figure 5.2 Topological relationships between spatial objects 



5.4 The Voronoi Map Object (VMO) Class 

The VMû class is an 'implementation of the geometric object classes and t-pological 

relationships presented in the preceding subsections. The implementation inherits directly 

the fact, resulting from the spatial object condensation technique, that the Voronoi diagram 

is embedded in the interior of a map object in M, and that the boundary of a VMO 

preserves the outline geometry of the rnap object in both comected subspaces. The 

following definitions would cl- the terminology to be used to defme the VMO class. 

We note that this section is developed from a preliminary version, published in Yang and 

Gold [ 19961. 

Definiton 5.1: The outline image is the partitioning boundary left on the subspace Si from 

which the partitioning occurs. The object outline is the partitioning boundary duplicated on 

the partitioned subspace Sz whose extent is confined in the enclosure of S2. 

Definition 5.2: An object embedding of a rnap in M implements the geometric properîies of 

its composing objects in 2. Except for that of the universal map, the object embedding is 

bounded by the object outline of the rnap and possibly outline images of other maps 

contained in the map. 

For a single map, the object embedding disallows general intersection between objects, 

following the concept of the single valued vector rnap wolenaar 19891. This ensures the 

planarity of the map. The object embedding can be dynamic. That is, the components of the 

rnap object can be changed. However, any change to a bounded rnap object must be 

confmed by the intemal side of the object outline. 

Defiition 53: A topologicd embedding of a rnap in M implements topological 

relationships in R ~ ,  over the object embedding of the map. Except for that of the universal 

map, the embedding is bounded by the object outline of a rnap and possibly outline images 



of other maps contained in the map. The topological relationships are specified in the 

topological data structures. 

The topological embedding is aiso dynamic, due to the dynamic property of the object 

embedding. The change of the topologicai structure depends on the dynarnic object 

embedding and will also be confuied by the internal side of the object outline. 

Note that both object and topologicai embeddings of a map do not apply to the interiors of 

condensed objects in the map because the internal structures of these objects are 

suppressed. However, the outline image of a condensed object is topologicdy embedded in 

the map object as part of its object components. 

Defiition 5.4: The class VMO is a set of topologicdy and geometrically stnictured maps 

in M. Each instance of VMO has a topological embedding over an object embedding of the 

map instances. Denote M = (P,  LSG, L, PL, A, M,), where P is the class of points, LSG the 

class of Line segments, L the class of lines, PL the class of polylines, A the class of regions 

with closed boundaries, and Ms the bounded subclass of the class M which are 

geometrically presented as holes in M. The object and topological embeddings of a VMO 

are represented by the Voronoi diagram V(M). 

The definition is recursive. An instance of the VMO class can result in a hierarchy of maps. 

Nevertheless, a VMO may not have aii classes of objects presented. The following 

implementations are valid for the object and topological embeddings of a VMO instance: 

1) V(M) = V(P, LTG, L, PL, A, Ms). This is the Voronoi diagram for a complete 

composition of spatial object classes. The existence of Ms class indicating that there are 

holes in the object embedding of the VMO. 

2) V(M) = V(P, LSG, L, PL, A, 0) = V(P, LSG, L, PL, A). This is the Voronoi diagram of 

regions, polylines, lines, line segments and points. 



3) V(M) = V(P, LSG, L, PL, 0, 0) = V(P, LSG, L, PL). This is the Voronoi diagram of 

polylines, lines, line segments and points. There will be b e  networks but no closed area 

in the correspondent map. 

4) V(M)= V(P, L, 0, 0, 0, 0) = V(P, L). This is the Voronoi diagram of points and Line 

segments. No more complicated objects are represented in the corespondent map. 

5) V O =  V(P, 0,0,0,0,0) = V(P). This is the point Voronoi diagram. 

6) V(M)= V(O, 0,0,0,0,0) = V(0) .  This is the map with no components and is caiied 

a null map or nul1 object. 

It is understood that it is impossible to implement relatively more complex objects without 

first implementing primitive objects. The implementations 2) through 6) are Voronoi 

diagrarm without holes, al l  spatial objects and their structures are presented at one Bat 

level. The above deffition has emphasized the spatial aspects of the VMO class. It is not, 

however, exclusive of any reasonable extensions to other data types to be included in the 

definition. For example, by extending some attribute types mapped to weil defmed attribute 

domains (e.g. stand-no => string, tree-type => string, densixrate => integer), an VMO 

object becomes a geo-object representing forest stands. 

5.5 The VMO-Tree Organization of the VMO Class 

Definition 5: A VMO-tree is a graph G = (N, E) with node set N and edge set E. The 

components of any node x in N include a VMO object, denoted rVMO. For any pair uc, y> 

E N, an edge e E E exists between x and y iff the object embedding of rVMO contains the 

outline image of y.VM0. The node x is called a parent, and the node y is a child. The VMO 

of the root node corresponds to the implementation of the universal map. 

Each node in N is of the following data type: 



where Node-ID and ParentJD are unique idenufiers of the node itself and its parent. 

Child-ID-List is a list of Node-IDs for the children immediately descendent from the node, 

and VMO-ID is the identifier of a properly defined VMO map. 

An important design decision for the VMO-uee, as for a general distributed information 

system, is the implementation of object identity [ozsu and Valduriez 19911. Object identiv 

is the property of an object that distinguishes it from a l l  other objects, which is independent 

of content, type, and addressability. It is the only property rnaintained across structural and 

behavioral modifications of an object. The objects manipulated by a general information 

system include persistent objects, the disk-resident objects concurrently shared by a l l  users, 

and transient objects, the main memory-resident objects local to a program execution. 

There are two solutions for the implementation of object identity: the physical and the 

logical identifier approaches. The physical identifier approach equates the OID with the 

physical address of the corresponding object. For a database with a single server, 

implementation of the identity of persistent objects can generally differ nom that of 

transient objects. Transient object identity can be implemented more efficiently with 

programming techniques such as using pointers. Problems with this approach occur when a 

distributed database is served and shared by different object managers. The reason for the 

problems is that physical addresses are not unique when boundaries of serves are crossed. 

The logical identifier approach, promoted by object-oriented programming, consists of 

allocating a system-wide unique OID (i.e. a surrogate) per object. The dilemma for 

managing object identification is a trade-off between generality and efficiency. The general 

support of the object mode1 incurs a certain overhead. 

We prefer the logical identifier approach. That is, every object managed by the VMO-tree 

must be uniquely identified by a bgical identifier. This involves identiwing nodes across 

the tree as  weU as spatial objects accommodated in each node. The identifier of a node can 

contain the foliowing components: 

An integer number assigned by the tree constructor. 



The location of the metadata describing the node and its VMO. The description may 

include the owner of data in the node, the creation date and time, the object classes and 

services provided by the VMO, the authentic-check code for security of the map, etc.. 

The host name serving the VMO data and its operations. 

The M O - I D  may be composed of 

The name and location of the map. 

The customized interface ID. 

The object outline. 

As far as spatial objects within a VMO are concemed, they are either persistent or transient. 

The persistent spatial objects created in a VMO are imrnediately integrated in both object 

and topological embeddings, which constitute the contents of the spatial database structure. 

The transient spatial objects are inctmed mostly due to a spatial operation performed on a 

VMO. For example, another container VMO object may be created to hold a set of buffer 

zone boundaries. This VMO contauiing buffer zone is confined within the object outline of 

the host VMO. A transient object exist for the purpose of perforrning spatial analysis but 

may not be permanently preserved. It has the option to transform itself as persistent object 

if desired. In this case, the transient object is associated with the VMO from which it is 

derived and preserved as a layer. 

There is one problern here. A spatial object wrapped in one VMO node does not have a 

unique identity in general. Since a VMO can be constructed within a host data management 

system which is independent of other hosts on the tree, the logical OID (integers) of spatial 

structures for two VMOs may weil start from the same number and increment the value of 

OID as a new object is inserted. The OID generated by a local data management system is 

cailed the local object identifier (LOD) A LOD has to be globalized when the object it 

stands for is presented to other Local object servers. This can be done by an OID module 

implemented into the base class of the VMO node. The OID module manages dynamic 

assignment of global object identifiers (GOID) to node objects on the tree, and mapping 



between L O D  and GOID [Schmitt and Saake 19951. The working principle of the OID 

manager is based on a uniqueness scope model (Figure 5.3) [Kent 19911 which identifies 

objects across a federated (maybe heterogeneous) database management system. 1t tums out 

that the scope structure has a direct application to object identification accommodated by 

the VMO-tree, 

LOID, e.g. name of the RDBS 
ID, e.g. name of the FDBS \ LOD. e-g. name of the relation 

\ \ LOI?, e.g. key-value of the tuple 

/ LOD, e.g. OID of the object 

LOID, e.g, name of the OODBS 

Figure 5.3 The scope model (adapted from [Kent 19911) 

5.6 The Construction of the VMO-Tree 

The construction of a VMO-tree can be either top-down. bottom-up, or a combination of 

both [Yang and Gold 19961. There are two scenanos when the top-down strategy is used. In 

either case, the universai map of the root node is f ~ s t  created. One scenario of the top-down 

approach condenses a set of map objects for each smaUer geographical area such that the 

whole study region is completely partitioned by the outiine images of these ndl  objects. 

The nodes corresponding to these map objects are added into the VMO-tree at Level 1. Each 

map object is assigned to a host whose location is known to the root node. Before the 

assignment, the semer of the root node negotiates with the child-server for the proper 

location of the map. Once the agreement is reached, the data about the VMO child is 



transmitted to the child-server. The child-server can then load the map in memory and work 

on the detail of the map. Even smaller map objects can be added in the tree at lower levels 

(Figure 5.4). 

Another scenario of the top-down consmiction is that the root server works on the detail 

with the universal map and adds components in it. Some heuristic approach can be taken to 

aid the decision on when and where a cluster of components c m  be condensed. Suggestions 

on the heuristic criteria include using a threshold for the total size of the map, localized 

thresholds for the density of spatial objects in heterogeneous clusters, or some artificially 

implemented triggering methods. Whenever a new object is dynamically condensed, the 

node representing the object is inserted into the tree. Meanwhile, the server decides, in 

consulting with the database administrator, where the condensed map should be stored. 

b. A VMO-tree Representation 

a. A Partition of a Region 

Figure 5.4 The top-down partition and its VMO-tree (after Yang and Gold [1996]) 

The bottom-up strategy works in a reverse way where the smallest distinct objects are first 

composed as maps separately. The construction assumes the existence of  the root and 

inserts into the universal map al1 the object nodes corresponding to the maps created 

previously. This involves pasting Voronoi diagrams into the universal map. AU the pasted 

objects will be at level 1. This resdts in a flat tree where a i l  children have the root as the 

parent. A generalization process can then take place which aggregates smaller objects into 

bigger ones. When a bigger object rn aggregated from k smaüer objects at level i is formed, 

the object m becomes the parent of the k objects. Note that the aggregation happens at level 



i - 1, The new node representing object rn will therefore be at level i and the k children are 

dropped to level i + 1. The Iist of the children in the original parent at level i - 1 will be 

updated, which excludes the k objects and includes the new aggregated object m. Likewise. 

the Parent-ID in each of the k objects needs to be modified. After the generalization, the 

tree becomes narrower-by k - 1 branches at level 1, and deeper if the generalization is 

applied to a number of leaf nodes. The generation process c m  be performed heuristically, 

with predefined d e s  and possibly interactive instructions fiom the database administrator. 

It is dso  possible that intermediate nodes are generalized without the knowledge of the 

root. These intermediate nodes serve temporarily as roots of subtrees. A forest can exist 

during the whole process. A bigger tree is federated by inserthg a nurnber of roots of 

smaUer trees. 

Both the top-down and the bottom-up approaches may be interchangeably applied during 

the construction of a distributed spatial database, which either partitions a map of an 

intermediate node, or aggregates srnaller maps. 

From a cartographer's point of view, the top-down approach works from smaller scale, 

larger sized objects towards larger scaie, smailer objects. The deeper down in the VMO- 

tree. the more details an object cm expose. On the contrary, the bottom-up approach works 

from larger scale, smailer shed objects towards smaller scale, larger objects. The higher a 

node is in the VMO-tree, the more abstract it becomes. 

Inserthg an existing condensed object into the VMO-tree, or aggregating smaller 

condensed objects into a bigger one, is a compound operation which takes severai steps. 

The principal technique for rnanaging the geometry and topolagy has k e n  descnbed in 

Chapter 4. The realization of the technique depends on intelligent decisions on choosing the 

boundary of a partition or an aggregation. It also relies on effective communication through 

the computer network if different VMO servers comected to the network are distributed at 

separated geographical sites. 



It is without doubt that building a distributed or federated spatial database for a region or an 

enterprise based on the VMO data model is not just a technicd issue, but more an endeavor 

which requires institutional, societal, and cultural change. The data model makes the 

technology available. The adoption of the technology for a region-wide spatial DSS, 

however, needs the cornmitment of policy makers, and managers in the public and private 

sectors at strategic, operational, and user levels. 

It is noted here that at the first glance the VMO-tree looks similar to some of the other trees 

such as the R-tree or Cell-tree. They are essentially different in two major aspects: 

Fintly, the R-tree or Ceil-tree like structures are geornetric ones. The partitionhg of the 

geometric objects is the primary concem when those trees are constnicted. The VMO tree 

is not only a geometric, but also a topological structure. The reason is that within each 

partitioned cell of the VMO tree there implemented with an topological structure. Because 

of the topological representation, the VMO tree is ready to answer topological queries and 

to perform spatial analysis. While the objects in the cells of other geometnc trees are not 

topologicdy organized (spatidy-unaware linked list is one cornmon data structure), they 

are not ready to answer topological queries or to perform spatial analgsis. This is the very 

reason to categorize them as geometric structures. 

Secondly, the partition cntena and mechanism of the VMO tree is ~ i ~ c a n t l y  different 

from those of the geometric trees. In each subspace to be partitioned, the topological 

construction and hinctions with the VMO tree makes the selection of paaitioning boundary 

:'intelligent7' in that it is topologically, thematically, and semantically conscious. As a 

result, the partitioning is not restncted by a ngid shape or size and produces rneaningful 

objects. 



5.7 Constraints of the VMO Mode1 

The VMO mode1 is ccmposed of a set of properly defmed VMO objects which may be 

physically distributed and are rnanaged by the VMO-tree. The VMO-tree represents a more 

abstract topological strbcture which is mapped from the partition of a Euclidean space 

structured with a neighbourhood relationship. Hence the VMO-tree is a directory of a 

repository of integrated maps which may be operated upon by different database servers. 

Each server can update the directory below its node, which makes the directory dynamic. In 

order to maintain the integity of the whole database, constraints have to be applied to each 

node of the tree. Whenever the directory is updated, the checking of the constraints needs to 

be û-iggered. 

In general database theory, constraints operate in parailel with the structures of a database 

schema They can be used as guidelines for deciding the schema's structure according to 

three principles: representation, nonredundency, and separation peeri  et al. 19781. The 

representation of a constraint needs to include the natural relationships between objects. 

The constraint c m  be thought of as a propem of the schema which should be true with 

respect to al l  such natural relationships represented in the schema Nonredundency is a 

property of constraints which emphasizes that a constraint, derived fiom the structures and 

other constraints already specified in a schema, should not be redundently specified. It may 

be confushg to represent the same information in more than one way. Separation is 

devoted to a schema in such a way that information units, as represented by constraints, are 

separated and do not interfere with one other. 

Based on the above guidelines, we define the following constraints for the VMO-tree 

structure. Let A = ( a i ,  az, ..., a,} be a finite set of condensed objects contained in a rnap 

object. A is the parent and ai (i = 1,2, ..a) are children. These constraints state: 

Constraint 1. Every node of a VMO-tree, except for the root node, has one and only one 

parent. The root node corresponds to the universal map which is unbounded. 



Constraint 2: The number of condensed objects contained in one rnap object corresponds 

to the number of children under the node representing the map object Adding a child node 

under a parent node adds a condensed object in the rnap corresponding to the parent node. 

Deleting a node from the tree deletes the corresponding condensed object in the parent map 

and a l i  cMd nodes descendent from it. 

Technically, the deletion of a node can be achieved by pasting the corresponding condensed 

map back to its parent map and making the map a region. In this case, ail the immediately 

descendent nodes of the source node need to be promoted one level higher and to have the 

target node as their parent (Figure 5.5). 

Constraiot 3: For ai, aj E A, (i # j), aio n = 0. That is, interior spaces of any two 

distinct condensed child objects must be disjoint at the same level. Overlapped or partialiy 

overlapped subspaces enclosed by outline images are disallowed. The non-empty 

intersection of distinct member of A may only happens on the outline images. 

Constraint 4: U outline(a) c outline(A). That is, the union of outline images of al1 child 
a E A  

maps is a subset of the outline of the parent map. The complete outline set of A is the union 

of the object outline of A and U outline(a) . 
LI EA 



(a) A partial VMO-tree 

@) The partial VMO-tree after node B merged into node A 

Figure 5.5 A partial VMO-tree before and after deleting a node 

5.8 Operations on the VMO Model 

The VMO model is composed of a set of geometnc object classes which are topologicaily 

implemented with the VMO class. The integral relationship between VMO objects and the 

other spatial objects is represented by the VMO tree. The VMO tree also serves as the 

directory of the federated spatial database. 

Based on this understanding, operations on the VMO model can be categorized as  the ones 

on the VMO tree and the ones on the spatial objects addressed by each node of the tree. We 

have just seen the construction operations and constraints on the VMO tree in the previous 

sections. We have also discussed adding, deleting, and moving primitive spatial objects, as 

well as typical GIS operations with Voronoi diagrams, in Chapter 3. What needs to be 

explored in this section are additional operations and constraints particular to the 

introduction of the map object class and the tree structure. These include set-theoretic 



operations, spatial queries and their optimizations, and operations related to multiuser 

database h c t i o n  and network c~mmunications. 

The set-theoretic operations typically involve two object sets which c m  have either 

identical or different attribute types or themes. Forma1 and detailed discussions about the 

set-theoretic operations on sets of areal objects can be found in Worboys [1992a]. These 

include calcuIating unions, intersections, and complements, with respect to given themes 

and objects. New instances of the VMO-tree can be generated by a set operation. An 

example of this calculates the intersection of two objects, each £Yom a VMO-tree instance. 

A third instance of the VMO-tree can result if the calculation results in a non-empty subset 

of objects. 

A special care must be taken when any of the two VMO objects contains maps, i.e. holes. 

Figure 5.6 illustrates a binary operation involving VMO objects A and B, while B contains a 

map object presented as a hole C. The binary operation has to be perfomed fxst on A and B 

and then on A and C. The final result will be the union of the two-step calculations. It is 

possible to repeat this process when C again contains holes. 

Figure 5.6 Binary operations involving objects containing holes 

Spatial quexies can be greatly facilitated by the VMO-tree, which provides a fast search 

along the edges of the tree, and the topological embedding within each spatial object, which 

enables navigation and searches over components of a map object. This ability to search 

objects vertically and horizontally resembles that of the B+ tree. 

Both set-theoretic and spatial search operations involving multiple VMO objects cm be 

distributed and executed in parallel. That is, instead of sequentially perfomiing an operation 

at the entry level objects and then preceding to lower level ones with a single processor, a 



quick detennination of any lower objects involved should be fired with the help of the node 

structure. The operation can then be divided and executed concurrently on all sites or 

processors hosting these objects. Certain optimizing criteria need to be considered 

conceming the efficiency of this feature. This may involve factors such as the cost and 

complexity of the operation, the size of the object set. and the cost-effect cornparison on 

data transmissions through the network. 

The VMO-tree manages map objects, some of which may reside in or be accessed fiom 

remote sites. The object networking hinctions must ensure the data security, integrity and 

concurrency controls, and dynarnic communications. The integration of database systems 

technology and a network environment leads to a new class of problems and consequently 

to new means to solve them. These problems and solutions are active research topics of 

cornputer science. An important aspect of the problem is the need for network-wide 

definition (or directory) of the location and characteristics of data objects. This definition 

should include the details about how information is paaitioned and if it is replicated on 

different nodes of a network. When a user fxes a query access to data, the local node must 

determine where the data is located, if the data is on a remote mode, and if the user has 

permission to access the data. 

A client-server architecture can be designed to allow node objects of the VMO-tree to be 

linked to client applications. The client-server architecture is based on the concept of 

distributeci processing, with the front end (or the user application) being the client and the 

back end (the database access and manipulation), the server. This facilitates setting up 

enterprise-wide connectivity. The functions perfonned by the server include: 

Centralized data management 

Data integrity and database consistency 

Database security 

Concurrent operations (for multiuser access) 

Centralized processing (e.g. stored procedures precompiled and stored in a database -> 

encapsulated functions akin to objects) 



The client is responsible for handling user-specific database access tasks, and the server for 

managing shared data. The functions of a client: 

Custornized user interface 

Front-end processing data 

Initiation of the server remote procedure c d s  

Access to a database server across a network 

A data dictionary pIays an important role in applications using the client-semer 

architecture. A data dictionary is a manual or automatic repository, usually rnanaged by the 

database, containing information about applications, databases, logical data models and 

constituent objects, users and user access authorizations, and any other information usefui 

for defuiing the organization and use of data within the database. It provides location 

transparency for the user/developer in viewing data dispersed around the network. The 

contents of an object data dictionary contains the following key components: 

Class definitions 

Class hierarchy 

Object access authorizations 

Indexes 

O Server definitions (and locations) 

An issue of interest is that the dictionary itself must be distrîbuted; either there are identical 

copies on each semer or each server maintains a data dictionary that describes components 

on that server only. W e  hope these issues will be explored more deeply conceming the 

clierrt-server architecture with the VMO tree, as research and development continues to 

progress. The defuùtion and organization of the VMO class with a clear boundary seerns to 

be a promising way of implementing distributed client-server applications. 



Chapter 6 

The Design of the VMO Forestry Data Management System 

We propose, in this chapter, the design of a forestry data management system based on the 

VMO model to handle spatial properties of the real world. For simplicity, we name the 

software systeem FORMONET, meaning FORestry Map Object NETwork. The design 

process is guided by an object-onented methodology, called the Object Modelling 

Technique ( O W  [Rumbaugh et al. 199 11. We note here that the result of the design in this 

chapter will not be a complete application system - more issues other than technological 

ones must be addressed and resolved for that. Instead, the design is aimed at an ou the  of 

the spatial data management component, especidy the linkage between system components 

and the VMO class. Three closely inter-related models (object, dynarnic, and function) will 

be sketched. G s e l l  methods of major classes will be identified and described, with the 

purpose of demonstrating the roles of object classes in the system. In the detail design and 

implementation phases, a geographical entity must be associated with a spatial object in 

order to complete the database of the system. Given the VMO model, most geographical 

entities can be associated with types of spatial objects. The design c m  be used for 

understanding and communication between software requesters and developers, and as a 

framework for detail design and implementation. 

While the design in this chapter is concentrated on the system architecture in which the 

VMO spatial object mode1 is used, other works conducted in the Centre for Research in 

Geomatics at Laval University have identified more specificaliy forestry entities and 

relationships. Doucet [1990] described the development of a spatially referenced 

information prototype system for forestry data management. The design in this project is 

currentiy evolving into an operational system, named Système d'Aménagement Forestier 

Monnatisé 2 Référence Spatiale (SAFIRS) (cf. Szarmes [1997]). Bédard et al. [1993] 

proposed a prototype of spatio-temporal forestry database where a forestry data dictionary is 



compiled. Theoretical solutions to the management of changes in forestry objects, using a 

commercial GIS (MGE-Dynamo). were discussed (Bédard [1993]). Felten [1998] reported 

an experiment under the MGE environment to integrate time into forestry maps, based on 

real forestry data fÎom Montmorency Forest which is located at the north of Quebec city. It 

would be beneficial to entail the attributes of spatial object classes proposed in this chapter, 

with the descriptions about forestry seen in these previous results. 

Foliowing the guideline of the 0MT method, the fxst analysis task is to formulate the 

problem statement. The statement speculates on what needs to be done, not how this can be 

done. Based on the discussion in Chapter 1, the forestry domain knowledge, and current 

practice in the forestry industry and in govenunent departments, the statement for 

developing a software system FORMONET can be documented as foilows: 

FORMONET is a computerized system to support forestry data modelling 

and management. The system must be maintained through a dedicated 

network of hardware, software, and cultural componentç (ref. Ch. 1). There 

are three kinds of management mandates which involve managers at the 

strategic, managerial, and operational levelç corresponding to geographical 

entities at national, regional, and temtorial geographical scales. The fully 

functional system needs to support the gathering and analyzing of forestry 

domain information from the national office in order to faditate policy- 

making and to support strategic planning concerning sustainable forestry. 

The regional offices in turn prepare timely forestry information which is 

updated and which bears on natural and man-made processes o c h g  

throughout the territory. A territory iç composed of forest stands, which are 

the atomic u ~ t s  for harvesting, planting, and silvicultural operations. 



The core of the system must store and manage digital maps at various scales 

over a set of geographically diverse sites. The sources of data include existing 

paper maps, airborne photographs, remotely sensed images, GPS and other 

field sunrey records, and any documents describing or relevant to these data. 

AU data must be digitized and stored in the geo-database of the system 

(allowing diffeïmt formats). Data initialization can be done at authorized 

sites. These sites are consequently owners and hostç of the distributed data 

within a federated database. The host is responsible for maïntaining, 

updating, and accessing information upon request. The practice of quality 

checking and calibration for the data on each site must be performed as a 

result of agreement between responsible members of the system. For spatial 

objects contained in a map, an integrated topology and geometry needs to be 

maintained at progressively larger scales for smaller regions. Aspatial data ïs 

associated with spatial data. In the case that the detailed data of a partidar 

site is temporally unavailable, the outline shape and general information 

about the corresponding spatial region needs to be present at a higher level. 

The system needs to support different types of accesses to the database for 

system developers, application programmers, and occasional users through 

various interfaces. The access to the information system should be controlled 

through the assignment of privileges to use the system. A dedicated graphie 

user interface should be provided for each public outlet of the system. The 

interface accepts and launches user queries, analysis, and simulations, and 

preçents results retumed by the system. Duplicated storage of data is not 

encouraged, for the sake of data consistency. Some users can have a copy of a 

part of the data retrieved from the system for research and analysis. Whether 

the modified information of the copy needs to be incorporated into the 

system is the decision of managers at appropriate levels of the system. 



In the following, we include an example concemuig data resources and user required 

services when considering setting up a Forestry Geographic Information System &amont 

19881 in the province of Manitoba, Canada Conditions may Vary from project to project 

and site to site. The example illustrated some rather common features of a forestry 

information system in real world. 

The input information of the system cornes fiom the following maps: 

Forest Resource Inventory Maps 

Forest Wildlife Maps 

Natural Disaster Maps 

- Wind, drought, flood 

Forest Insect and Disease Maps 

Silviculture Activity Maps 

Timber Management Activity Maps 

Soi1 Maps 

Land and Resource Use Maps 

Utility Comdor Maps 

- Proposed and/or actual 

Forest Capability Canada Land Inventory Map 

Satellite Imagery 

- Landsat and variations 

User required services from the system (partial): 

Data Manipulation 

- Analysis of effect of management decisions 

- Area analysis 

- Buffer zone analysis 

- Wildlife loss analysis 

- Overlay analysis (125,000 polygons at a time) 



Updating 

- Review map and attribute files 

- Review status and ownership boundaries 

- Enter new features as they are constmcted 

- Wildlife area and loss cdculation and revision of original forest cover data 

Thematic Mapping 

- Colour code and shading code options to iden- selected forest stand attributes 

- Determine a new colour or shading code based on results of polygon overlay 

Site Specific Information 

- Integration of town street maps into the database where specific items at large scale 

(1500 - 1:2,ûûû) are to be positioned 

S ystem Functions 

- Polygonization - areas connected to form polygons 

- Merging and dropping h e s  

- Subdivision of polygons 

- Browsing 

- Define comdors dong straight or convoluted lines 

- Complex polygons 

- Windowing 

- Scale changes - full range performed in cornputers 

- Projections - to increasing grapnic capabiiities for iarge-area mapping 

The example shows that forestry data may come from a variety of sources and disciplines, 

with differing formats, types, and scales. The services of a forestry GIS also fails in a large 

range, fkom manipulating individual forestry objects to operations on whole maps with 

large volumes of polygons. Sorne of the required services are dynamic, such as merging and 

dropping lines and subdividing polygons, forming polygons from comecting areas, and 

inseaing new features as they become exist. There are ako some technically challenging 

services, such as changing the scales which requires automated mapping generalization 

capabilities, and revising original forest data coverage which requires temporal rnodelling, 



manipulation, and queries. The requirements shown in this real world example demonstrate 

a close correspondence to the analysis presented in Chapter 1. 

6.2 The Object Model 

Based on the problem statement, major object classes are identified and their relationships 

are presented as the object model shown in Figure 6.1. The diagram uses the OMT 

connotations to denote object classes and their associations. The class USER represents a 

collection of users of the systern, which can be managers, developers, decision makers, or 

casual information seekers. GEO-DATABASE class is the data store, which contains 

relevant geo-objects according to a forestry inventory. USERS can access GEO- 

DATABASE through interfaces of the data store. Closely related to the geo-object database 

is the WORKSPACE class. The objects in this class constitute part of the geo-objects in the 

geo-object store. The spatial objects loaded in WORKSPACE are implemented as VMO 

objects. FORESTRY PROJECT is the class that contains tools for users to specify, set up, 

and to manage and manipulate an application project. Besides accessing geo-objects fiom 

the geo-database, located through WORKSPACE, a user works on a forestry project c m  

also coliect and integrate any related documents and multimedia information for the project. 

1 

FORESTRY PROJECT work_on 

Figure 6.1 The object model for FORMONET system 
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WORKSPACE GEO-DATABASE 



For the USER class, attributes may include name, address, and account information which 

properly identifies the role and access privilege of a user and the nature of using the 

systems. When integrated with a corporation information system, the comection between 

the USER class and the corporate database would have to be established. 

The GEO-DATABASE itself forms a subsystem and provides rather independent functions. 

The subsystem c m  be decomposed into a few functional components, such as a database 

modelling tool, a component taking care of storing and accessing geo-objects, and a graphic 

user interface. The database modelling tool helps users to conceptualise and class@ geo- 

entities and their relationships. A good example of such a modelling facility is Modul-R, a 

CASE tool based on an E/R mode1 and used to formalise geo-spatial phenomena in a 

database and to generate data dictionary for it [Caron 199 1, Caron and Bédard 19931. The 

geo-object storing and accessing component c m  be a commercial database such as Access, 

or Oracle. The database schema cornes fkom the result of the modelling tool. It is noted that 

some relational databases nowadays are extended to accommodate spatial objects. An 

example is the Spatial Cartridge, employed by 0rac le8~ .  Figure 6.2 illustrates partial 

forestry geo-objects for the GEO-DATABASE. Note that each geo-object class has in its 

attribute list an Id of the correspondhg VMO object. 

GEO-OB JECT 

Hydo-Pole 
Id 
Height 
Year-built 
VMO-Pointid 

Figure 6.2 Partial Fores try Geo-Objects 



FORESTRY PROJECT is the component that helps users to set up, manage, and operate on 

forestry projects. Project name, purpose, developers, and history are among important 

attributes associated with the class. Included with the class are metadata describing 

locations and nature of data resources and auxiliary documents related to a project. 

QUERY, ANALYSIS, and SIMULATION are functional components of the class, which 

work through the WORKSPACE class. For each of these functions, some templates can be 

constructed through which instruction statements from users wili be accepted. The 

functions will then vdidate and optimize the statements and parameters. Corresponding 

actions on the WORKSPACE and GEO-DATABASE will be triggered. Results are sent 

back to FORESTRY PROJECT and presented via users desired reporting templates. One of 

the templates for QUERY couid be a dialog box for composing SQL statements. Other 

templates featuring pictonal languages can also be developed. 

The class WORKSPACE is the central concem of this chapter, and is directly related to the 

VMO data model developed in this thesis. The primazy role of the class provides users 

visual platform and tools to design, edit, manipulate, query and analyse spatially referenced 

geo-objects. The visual plaîform contains a graphic window displaying those interested geo- 

objects. The graphic representation of geo-objects is calied a map in common sense. An 

instance of the class is the workspace s p e ~ ~ c a l l y  designed for an instance of FORESTRY 

PROIECT. A workspace may involve one or many rnaps covering dif5erent geographical 

areas or themes. Most important attributes of the WORKSPACE class include the narne of 

a workspace, the number, names, and locations of maps, and the layout or settings of maps 

preserved from the last login. 

The class WORKSPACE can be directly associated with the VMO Node class developed in 

Chapters 4 and 5. The dependency and the spatial aspect of the VMO object model is 

shown in Figure 6.3. Note that the arrow from Geometry to Topology represents a dynamic 

process to construct topology fkom geometric objects. Dynamic modelling will be discussed 

in the next section. 
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Figure 6.3 Dependency between WORKSPACE and the VMO mode1 

In Figure 6.3, the WORKSPACE is represented as a specialised VMO NODE which further 

refers to VMO class. One specialisation adds graphic object manipulation tools in the visual 

platform of WORKSPACE. A VMO object is implemented with geometry and topology, 

which enables the VMO object to provide topological quenes and spatial analysis. The 

VMO presents a seamiess accessibility to geo-objects, whether they corne from a single or 

multiple geo-databases. Recent software technology such as COM (Common Object 

Model), DCOM (Distributeci COM-1, anu ÛLE i3S for ÛLkn jûniine Aiaij6ca.l 

Processing) ensures this capability. 

6.3 The Dynamic Model 

The dynamic mode1 shows the time-dependent behaviour of the system and the objects in it 

[Rumbaugh et al. 1991, pp. 1691. An interactive system or object acts upon events. A 

contemporary GIS necessarily involves human-computer interaction. In this context, any 

actions generated by users and devices send messages to the system which are interpreted as 



events. The objectives of the dynamic modelling are therefore to fmd out possible events 

associated with the components of the system and to design proper responses for them. 

Note that some responses fiom a component may incur events to other inter-related 

components within the system. The flow of events is a scenario which describes things 

happening between objects as a result of extemal stimuli murnbaugh et al. 199 1, pp. 1731. 

For a complex system such as FORMONET, there are many scenarios for various 

application tasks. These include tasks for construcMg and populating a geo-database, for 

preparing and performing spatial analysis, the result of which may or may not become 

permanent objects in the database, for various quenes which requise searching through the 

database and which nevertheless do not m o d e  the status of the database, etc. It should be 

noted that most of these tasks generate events requiring responses fÎom the geo-database 

management system and that the fulfilment of the triggered tasks relies on the intemal 

processes enabled by the database system. The intemal processes interact with objects in the 

database and are transparent to the user. Therefore, the interactions at the surface level 

between the system and user involve only a few object classes. Based on the object mode1 

developed in the previous section, these objects typically include USER, FORESTRY 

PROIECT, WORKSPACE, and GEO-DATABASE. This implies that a general scenario 

involving these objects can be generated (Figure 6.4). 

Figure 6.4 illustrates an event flow diagram from USER to GEO-DATABASE, after a 

FORMONET GUI interface is created. The classes Window and Message loop are objects 

provided by the operating system under which the application is executed. They are 

included in the diagram to show the acnial process by which application events are 

generated. A USER gives instructions through manipulating system devices on the GUI 

interface, which generates events. These events are fxst received by the operating system 

which then sen& messages to a Message loop associated with the application instance- 

Messages are then taken one at a t h e  (for a single processor application) and dispatched to 

the message handler embedded within the GUI interface. Window class objects 

automatically handle a set of predefined messages whose execution is taken care of by 



methods implemented within a Window object. Customized messages have to be handled 

by an Application whose major components are shown w i t h  the dashed-line rectangle. In 

the diagrarn, it is shown that FORESTRY PROJECT receives customized messages and 

generates events to occur within a WORKSPACE. The WORKSPACE further invokes a 

VMO-semer which could be bounded by the WORKSPACE. The VMO-semer takes care 

of comectivity issues and parses events with the DDL or the DML database languages to be 

deveioped with the spatial database management system. 

USER Window 
(operathg systerns) 

GEO-DATABA VMO-server 

WORKSPACE 

1 

Figure 6.4 A general event flow diagram for FOECMONET 
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The general scenario for the sequence of events is by no means complete. For example, for 

an event sender, an immediate response from the event receiver (occasionally the sender 

itself) is required before any subsequent event is sent. The event flow diagram nevertheless 

demonstrates the main path central to the system. 

input dispatch 
immcrions Messages 

FORESTRY 
PROJECT 

More detailed design of the dynarnic mode1 should include an event trace diagrarn for each 

particula. scenario, in which the the-dependent order of events between objects is 

scheduled according to results of a preceding event. State diagram for each object class 

should then be worked out which entai1 the dispatch of events and the control of an event 

flow by a state with more than one exit transition. A state diagram shows the dynamic 

Message loop of the 
programming environment 

7 Application 

- 
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behaviour of an object at a particular state. When an event occurs, the next state of an 

object depends on the curent state as weil as the event; a change of state caused by an event 

is a transition. Therefore a state diagram is a graph whose nodes are states and whose edges 

are transitions labelled by event names Eumbaugh et al. 1991, pp. 173-1791. The OMT 

technique provides various basic and advanced constmcts for the design, generalization, 

and control of event fiow and state d iagrm.  W e  will elaborate only one state diagram as 

an example and leave the rest for future development and implementation. 

We note here that customized dynamic events can correspond to evolution of an object. 

Catching, processing, and saving these events contribute to the temporality of the database. 

It has been discussed in Chapter 3 that the underlying topological and geometrîc operations 

of the VMO model are associated with a log f i e  which preserves the history of a map at the 

scale of points and line segments. We Uustrate here how a node of a dynarnic model can be 

refined into a state diagram within a workspace, which handles events for the creation, 

update, and destruction of higher level objects such as a region or a map. 

Figure 6.5 shows a scenario for an interactive operation "close polygon" and the 

corresponding message passing section in a high-level dynarnic model. The event will be 

handIed by the VMO-server associated with the WORKSPACE. The state diagram for 

VMO-server may be modeiied as that shown in Figure 6.6 which is a simplified version of 

the actuai impiementation. 

The "close polygon" 
opemion 

Figure 6.5 A "close polygon" dynamic event and a section of the dynamic model 
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Figure 6.6 The state diagram for the VMO-server in the WORKSPACE 

to handle the "close polygon" event 

6.4 The Functional Model 

Â ~ c t i o n a i  modei describes the computations withîn a system, Uirough the use of muitipie 

data flow diagram mumbaugh et al. 1991, pp. 1241. A data flow diagrarn is a graph 

consisting of processes as nodes, and data flows as edges. It also attaches actor objects that 

produce and consume data, and data store objects that store data passively. Each data flow 

diagram shows the flow of values from extemal inputs, through operations and intemal data 

stores, to extemal outputs. A data Bow diagrarn does not generally show control 

information, such as the time at which processes are executed or decisions arnong 

alternative data paths; this information belongs to the state diagrarns in the dynamic model. 

A data flow diagram does not show the organization of values into objects; this information 

belongs to the object model [Rumbaugh et al. 199 1, pp. 124, 180-18 11. 



A process traasforms data values. 1t may be a high-level functional tool set or an indivisible 

function. The lowest-level processes are pure functions without side effects mumbaugh et 

al. 1991, pp. 124-1321. Typical pure hnctions include the sum of two numbers, the 

recording of a transaction into a log, and the drawing of a line through a List of points. A 

complex system needs to generalize reaiiy high- level processes to make data 

hansformations clear. An entire data flow graph is a high-level process. Law-level 

processes need to be worked out as the design rnoves more towards implementation. For 

example, calculating the tree volume for a territory is not a pure functional process. It 

involves searching individual stands covered in the territory and calculating areas for the 

stands. A process may have side effects if it contains non-functional components, such as 

data stores or externai objects. "The hnctional model does not uniquely specify the results 

of a process with side effects. It only indicates the possible functional paths without 

showing which path will acniaily occur" [Rumbaugh et al. 199 1, pp. 1251. 

As with the dynamic model, we provide in this section a general functional model for 

FORMONET Figure 6.7). The idea of the functional model is to demonstrate data flows 

transformed through major processes for the system. It is assumed that a digital map of the 

working area, in addition to other interface templates, is required. The digital map displays 

itself on a graphics window as users interact with the system to achieve goals. 
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Figure 6.7 The functiond mode1 for FORMONET 
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Major processes shown in the diagram include the usual functionality of the system. 

GEO- 
DATABASE 

"Select" aliows users to choose a project to work with. Menus are provided by the GUI 

interface. The inputs of the process are rnouse positions (or information fIom using other 

input devices). The output of the process is a particular menu selected. The "Open" process 

Lists all project mes from a data store from which uses pick up one project to open. This 

process also needs to locate a workspace and geo-objects contained in a project and 

possibly to connect a geo-database to use other geo-servers. "Open" then outputs project 

data-fdes for display and manipulation. The "Display" process obtains graphical data to 

draw digital maps with proper symbols, scales, and position. "Manipulate" then takes place, 

with the help of the graphics and al1 available tools. This process can launch query, 

analysis, and simulation processes. The input of cbManipuIate" can also corne from the 

Function class of the Forestry application which may concem factors such as growth, cut, 

and plant of trees, as well as natural processes such as wind and fues. The output of 

b'Manipulatey' either updates the graphics display or is sent to "Presenty'. The result buffer 

stores any results from the "Present" process which regulates presentation formats. The 

results c m  be delivered in any meaningful manner. 



AU processes in Figure 6.7 are high-level ones which need to be expanded. For example, 

the display process m g  be broken down into generalizing, centring, clipping, etc. which 

require the knowledge of window size, location, and other relevant information. The most 

complex one is perhaps the "Manipulate" process which may be fuaher specified with any 

lower processes that help users to achieve goals. Most object classes attached to the data 

flow diagram corne fkom the object model. Sorne of the objects are treated as data stores for 

the reason that only trivial operations are expected from them. Rrhich object cm be attached 

to which processor should be based on the class accessibility provided by the object model. 

The Result buffer was not in the object model. It represents a temporary object allocated by 

the system. Its object structure should be defined based on the possible types of results. 

6.5 The Software Architecture 

While the object, dynamic, and functional models concentrate on individual aspect of a 

system, the sofMtare systems architecture describes how the whole system needs to be 

decomposed into software components. The architecture concems aggregating of objects 

with cornmon functionality into subsystems, defining of communication topology between 

the subsystems, and their inter-processing interfaces. The decision about grouping classes 

into a component needs to involve the following factors: 1) There are classes close to users 

and classes close to hardware and hardware-dependent software. The system should be 

structured such that tasks can be fulfilled without users worrying too much about the 

intemal complexity close to the machine level. Intermediate classes between users and 

machine dependent facilities should be formed if necessary. 2) The construction of the 

software architecture needs to observe trade-offs between flexibility and effkiency. A 

flexible component is hardware independent and may be used in various programming 

environments. It c m  dso survive future changes or extensions to its intemal structure and 

hnctionality. However, flexibility is usually achieved at the cost of performance because 

additional software layers have to be used to hide hardware dependent instructions and to 



support modularity. This implies overheads when executing instructions from higher level 

layers to lower ones. 3) The decornposition of a complex system rnay produce largely, but 

not entirely, independent components. This means that some software components may not 

be fùnctioning without the presence of other supportive ones. 

The software industrial trend is moving toward client-semer architectures with service 

providers wrapped as software components whose interfaces are well-designed to allow 

Uiformed access with different privileges. Modification to the intemal States and structures 

of components are restricted. A component is often a subclass of some superclass. 

Therefore most common services designed for the superclass can be directly inhented or 

customized. This encourages reuse of code and contributes to shorter development periods. 

The software systems architecture for FORMONET is illustrated in Figure 6.8. It follows 

the principle of a layered systems design [Rumbaugh et al. 199 1, pp. 200-20 11. Ail software 

components are organized into tlxee layers. The top layer is the user layer which is 

composed of a GUI interface supported by a set of virtual GIS, SDSS, and application 

modelling tools. Users can be responsible for customizing the appearance of the interface, 

using publicly available components and tools. The second layer is exposed to application 

developers who are domain experts and have knowledge about the functions and interfaces 

of the VMO-server. The components at this layer provide functionality support to the GUI 

interface. The services that require database and expert systems support are providea DY rhe 

VMO-semer. The bottom layer is the most important one. which develops the VMO- 

workspace engine, the management of metadata about the federated database, and the 

expert systems engine. Developing internai services is the responsibility of systems 

designers and developers. Intemal services are linked to the VMO-semer which M e r  

exports them to the layer immediately above it. The VMO-semer provides a level of 

abstraction over location and implementation of the components below it. Through the 

VMO-semer, application programmers obtain fimctional support from the databases using 

standard interfaces. How and where this support is provided become transparent. 
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Figure 6.8 The software systems architecture for FORMONET 
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In summary, this chapter foliows the 0MT method to provide a general design of the 

foresûy data management software system (FORMONET) based on the VMO model. The 

OMT spans analysis, systems design, and object design phases. The central content of the 

OMT methodology is emphasized on the production of object, dynamic, and functional 

models. The object mode1 of the FORMONET is discussed in view of the problem 

statement and domain knowledge. Relevant classes are extracted through the analysis of the 

problem, together with the associations arnong them. One of the associations establishes the 

linkage between the WORKSPACE class and the VMO classes. In addition to diagrams 

showing structures of objects, descriptions and the data dictionary are al l  important part of 

the object model. The dynamic mode1 aims to capture events stimulated extemally and 

actions of objects in response to messages. Instead of entailing individual scenarios of 

events and interactions, this chapter presents a general event flow diagram for 

FORMONET, which encompasses major classes and accommodates most types of user 

stimulated events. An example of the state diagrams for the VMO semer interacting an 

event is also given in this chapter. The functional model consists of diagrams showing data 
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values transfomiing through processes. As with the dynamic model, a general functional 

model for FORMONET is presented in this chapter. The hinctional model involves several 

major processors each of them need to be decomposed. Nevertheless, the fimctionai model 

demonstrates the accessibility of data stores and actors modelied in the class andysis. Given 

software components covered in the three models, a three-layer software architecture is 

presented at the end of the chapter, with the expectation that the system is flexible to the 

addition of new components and to modifications. With this architecture, developers at 

each layer c m  concentrate on the problems more relevant to that layer. 

6.6 Relationship to the Research Objectives 

In closing this chapter, it is desirable to examine how the research objectives are achieved 

through the operation of the prototype system. In other words, we need to question if the 

FORMONET GIS, once implemented, will possess the advanced features specified in 

Chapter 1. 

The fust feanire concems capabilities for the system to support spatial objects, to ailow 

cartographic operations and topological analysis over the spatial objects. This feature is 

ensured through the inclusion of the GEO-DATABASE and especially, the WORKSPACE 
-1-crac 
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performed through the Voronoi construction. Cartographic operations such as colouring, 

applying symbols to, and labelling objects are trivial but need to be implemented. The main 

restriction to cartographic capabilities is the changing of projections of VMO objects. It 

appears necessary to reconsûuct the Voronoi diagram after objects are re-projected. 

Spatial concepts, the second feature, are supported through the provision of spatial data 

types in Chapter 5. The VMO model distinguishes two types of areal objects: maps and 

regions. These areal objects can be irregular in shape. Kierarchical spatial structures are 

recursively entailed through the containing of other maps. With the topological 



implementation, spatial searches and analysis can be done intelligently - by always knowing 

neighbours. In the scenario of foresw application, the rnap object can be used to establish 

management zones which aUow team work. Repetitive work over a whole larger area can 

be avoided. At the operational level, maps can be used to combine forest stands together to 

form blocks based on which analyses are applied. 

With the implementation of the VMO components for distribution, a forest management 

project can use the WORKSPACE to collect maps residing on different servers. Maps can 

be constmcted and maintained by responsible teams working on management zones. This 

feature not oniy allows the whole project to be operated on updated data, but fiees higher 

level managers from worrying technical details involved in individual maps so that they can 

concentrate on more important work. On the other hand, a VMO rnap rnay be used by 

multiple projects and usen. The theoretical base of the VMO mode1 and the current 

software technology demonstrate the feasibility of the clienilserver architecture for the 

VMO COM objects. Further design and implementation are needed to achieve the goal. 

The dynamic feature of the FORMONET, through its comection to VMO servers, allows 

maps to be updated in short periods, and any updates can be seen by users (clients) of the 

data components. During the maintenance, the map semer will be temporarily blocked, 

clients can however continue to work on other area of the container map. 

As is discussed in Chapters 4 and 5, the VMO wraps geometry and topology of spatial data, 

and can be provided with interfaces to access GIS functions over each data type. The 

implementation of functions can be hidden from users. This feature ensures the reusability 

of the software code and compatibility of the software components versioning through time. 

The requirement for this feature is that the VMO component must be designed following 

the COM specification. 

Finally, the incremental process of the VMO topological structure makes it possible to track 

down the rnap history. The tracking process can also be accompanied by topological queries 



at any point of time, hence topological history of the evolving objects is also tractable. A 

scenario of applications of this feature fmds the auto-correlation between the yield of forest 

product and silvicdture operations on forest stands over a long time frame. As was pointed 

out in 3.7, the full temporality of the database using the VMO can only be realized after 

more structures are designed for cornplex objects. 

With the above, we wodd Say that most of the research objectives are attainable through 

the application of the VMO model to forestry. The implementation of the dynamic Voronoi 

constniction, spatial searches and GIS operations, the forwardhackward reconstruction of 

the Voronoi maps, and the partitioning/pasting of the Voronoi diagrams in a prototype 

system should support this conclusion. What left to be done, however, are the 

implementation of the VMO model with the Common Object Mode1 (COM) specification 

and architecture, and the deployment of the VMO COM objects with the FORMONET 

application design. 



Chapter 7 

Other Applications of the VMO Mode1 

7.1 Introduction 

Most GIS projects involve large quantities of complex spatial data With the development 

of data acquisition techniques, the accumulation of widely dispersed digital data resources, 

and the improvement of telecommunication technology, the availability of GIS data has 

steadily increased compared with some years ago. Accordingly, the worry about the initiai 

cost of data collection has been reduced while the demands becorne more acute as to how to 

get data into GIS applications so as to best represent reality quickly. There are severai 

problems which are worth noting for future GIS data modelling and development: 

Rapid prototyping. By rapid prototyping is meant the ability for GIS application developers 

to formulate and test their initial solutions to application problems at an early stage of the 

software life-cycle. This requires software engineering techniques and a visual 

programming environment to specify object, dynamic, and functional models of the 

problem without fust considering the detailed implementaîion. The purpose of prototyping 

is to make sure that ail componenis arc riecessary and fuactiou as an inîegiiîed w b k .  h 

ninning a prototyped system many problems may emerge and be treated at early stages, 

instead of k i n g  found only &er large amounts of effort have k e n  spent. Rapid 

prototyping in GIS applications would be enhanced if the required spatial data types and 

operations are modelled and wrapped as components which are readily included into 

problem specincations. 

Dynamiring. Dynamizing refers to the ability to update a modelled spatial database when 

new data become available. This capability is very useful in whatever area when dynamic 

changes to spatial configurations are observed and need to be modelled and analysed 



promptly. Besides forestry applications, which motivated the research in this thesis, 

telecommunication and route navigation applications have emerged favouring this feature. 

The transmitting of signals for cellular telecommunication and way-fmding in automobiles 

are aEected largely by urban dynamic environment [e.g. Lee 1995 pp.103-1561. Modelling 

of these changes must be realized within a realistic tirne-frame. 

Parallel processing. Cornputhg spatial problems in paralle1 presents a futuristic attraction 

to GIS applications which hande very large quantities of data and which require real-ùme 

responses. Modelling forest fires, digital terrains, and forest watersheds belongs to this kind 

of applications. In order to support parallel processing, a large spatial problem has to be 

decomposed into subproolems, which presents a key challenge to workers of geographical 

information systems. Parallekation has not been considered as of priority in the major 

Stream of GIS development today. The author feels this situation will be changed as 

computers with multiprocessors become affordable, as application needs become more 

acute, and of course, as cornpetition of processing power in GIS industry becomes reality. 

Autornated map generalization. Automated rnap generalization is a longstanding problem 

in GIS development which was traditionally related only to cartographic representation of 

rnap objects. In reality, cartographic generalization alone has been very difficult. The 

problems in traditional rnap generalization include: most algorithms are applied in isolation 

to individual objects; localized neighbourhood relationships are not included, which often 

raises errors and conflicts; the results are unfavourably sensitive to the changes of scaling 

factors; the resulting rnap is fxed on a uniform scale; and data certainty information is not 

usudy utilized and therefore the data uncertainty of a resulting rnap is left uncontroiled. 

Because of these problems, recent work on rnap generalization seeks integrated solutions 

which encompass ail aspects of GIS from data modelling to the use of GIS products [Mark 

199 1; Müller et al. 1995; Weibel 1995; Joao 19953. 

Cognitive process. An increasingly important problem with GIS development and 

applications, as with other computerized systems, is how much human intelligence can be 

artifcially incorporated into a system. This may includes allowing data modelling 



processes to consider mental models of space; understanding and mimicking cognitive 

processes in a problem solving environment; modelling and updating incomplete domain 

knowledge; presenting easy-to-understand results; and communicating with users using 

semanticaily meaningful dialogues [Head 1984, Hayes-Roth, 1985; Eastman 1985; Blades 

and Spencer 1986; Moulin 1990; Edwards 1991; Kuhn 19961. 

The dynamic VMO model is potentially usehl for the fmt  two problems Listed above. The 

main supporting argument lies in the very modularity of objects. That is, every container 

object is equipped with topology and geometry about its components, and dynamic 

methods to maîntain these properties. These object modules can be wrapped nahirally as 

classes of components to be used in an application prograrnrning environment. Including a 

VMO object is as simple as including a dialogue box. It is possible to allow a map object to 

be modified at either design or nui time. During designing and running an application, 

detailed spatial components and their attributes can be filled. Application designers do not 

have to worry about implementing algorithms to manipulate these objects and to obtain 

values derived from spatial properties. This feature, that combines dynamics and 

modularity of spatial objects, makes it substantially different from traditional ways of 

handihg spatial data. 

The VMO mode1 may also be appropnate for tackling the hard problems such as map 

generalization, and futuristic problems such as pardel processing and embedding 

"intelligence" into objects to allow cognitive treatment of spatial applications. In the rest of 

this chapter, we will first look into problerns with parallelizing spatial processes and outline 

the solution using the VMO model. The integrated approach to map generalization is then 

presented, which includes a preliminary attempt to incorporate an intelligent map agent to 

oversee the map generalization and map use processes. These are not completed 

applications, but they suggest funire directions. 



7.2 Paralle1 Processing of Spatial Problems 

Paralle1 processing means to compute tasks in parailel, in contrast to processing instructions 

in series with the von Neumann architecture. The hardware requirement must include a 

computer with more than one processor. The number of processors in processor mays 

varies dramatically. A coarse-grained parael computer can have between two and several 

hundred processors, while a fine-grained one contains anywhere between several hundred 

and many thousands of small processors wower 19921. Multiprocessor architectures also 

fall into two extremes, the share-everything and share-nothing architectures [OZSU and 

Valduriez f 99 11. 

In a share-everything architecture (Figure 7.1), any processor has access to any main 

memory component or disk unit through a fast interconnection. Since every single access to 

a data item requires access to the cornmon interconnect, such architectures may suffer from 

a communication bottleneck caused by contention for the interconnection. One way to 

solve the problem is to have a limited nurnber of powerful processors. In the context of 

database management, meta-information (e.g. the directories to data and the data 

dictionary) and control information (e.g. the lock table in concurrent access control) can be 

shared by al1 processors. 

. 1 Fast Interconnection 1 ... 

Figure 7.1 S hue-everythng architecture (after 0zsu and Valduriez [199 11) 



In a share-nothing architecture (Figure 7.2), each processor has exclusive access to one or 

more memory components and one or more disk units. A node with this architecture 

includes a processor, a local cache memory, and a disk unit on which resides a local 

database. Diskless nodes rnay be used to interface with application servers or to process 

intermediate computation in parailel. The term share-nothing refers to the fact that there is 

no sharing of main memory or disks by the nodes. The only shared resource is the 

interconnection, with which nodes c m  exchange messages. This architecture can be viewed 

as a particular implementation of a disûibuted database system. The main idea is that a 

powerfd cornputer may be built out of several srnaller and less powerful ones. One 

similarity with the distributed database approach is that each node can be managed by the 

same local system. Therefore, each node must implement solutions to the global data 

directory, distributed data defuütion and control, distributed query processing, and 

distributed transaction management. However, the major difference with a distributed 

database system is that a node of the multiprocessor is not a site at which a user can nui an 

application program. Application programs run typically on an application semer and 

interface the multiprocessor system through a specific communication channel. 

Fast Intercomection 

Figure 7.2 Share-nothing architecture (after 0zsu and Valduriez [ 199 11 

The share-nothing architecture is more able to achieve two important objectives: 

performance and extensibility. Performance improvement is obtained by using two 



complementary solutions. First, data shodd be carefdly fiagmented across many nodes so 

that paraüelism is maximised when processing a distributed query. Second, distributed data 

management should be efficiently supported by a distributed database operating system. 

The main difficulties are the partitionhg of the data so that most of the queries get 

processed in parallel, and the development of efficient paralle1 aigorithms for performing 

database operations. Extensibfity is the ability to smoothly increment the growth of the 

system by adding new nodes. A share-nothing architecture is unifoxm and thus extensible. 

Furthemore, the sarne architecture and same system can be used for a large range of 

database sizes- 

Declustering and assigning data and operations to processors are major concerns in 

designing algorithms for parallel processing. This includes determining the size of clusters 

to each processor in order to obtain optimized performance. In the context of spatial 

applications, it is often the case that operations nui by one processor needs to get 

information passed fiom processors handling its spatial neighbours. Performance of paralle1 

processing is largely dependent on whether neighbouring processors (in multi-dimensional 

processor arrays) correspond to neighbouring spatial clusters, as al l  messages must compete 

for the right-of-way through common colxununication channels. 

In view of the structure of the VMO model, it naturally favours the share-nothing 

architecture. The data declustering has been taken care of by the partitionhg technique. 

One imrnediately thinks of assigning each map object to one processor. The topological 

structure embedded in the map object c m  help to preserve the processor-object 

neighbourhood relationships. Two possible problems with this database onented partition 

based on the natural spatial configuration are: 1) a processor may not be large enough to 

handle one map object; 2) unbdanced assignment may result, which contributes to either 

very busy or idle processors. More research is needed on this respect of the problem. 



7.3 Automated Map Generalization 

This section presents a system approach to tackle problems involved in automated map 

generalization. The objectives are to combine database generalization and dynamic object 

generalization capabilities in the system, and to couple a map agent on top of a map object 

which constmcts user maps for navigating, performs tasks on behalf of, and communicates 

with, the users. The object classes are topologically and geometrically stntctured with the 

dynamic VMO-tree. This approach is based on a popuiar consensus that automated rnap 

generalization is actudy part of a fiindamental problem in GIS development, and a 

satisfactory solution cannot be achieved without an integrated consideration of database 

modelling, artificial intelligence methods, individual object generalization algorithms, and 

object-oriented technology Müller et al. 1995; Weibel 1995; Buttenfield 199 1, 1995; 

Keller 1995; Nyerges 1991; Mark 199 11. 

7.3.1 The Schematic View of Automated Map Generalization 

Automated map generalization is a complex decision-making process which must be 

steered by goals and d e s  fiom the geographical application domain, so that the generalized 

representation conveys knowledge consistent with reality. Taking generalized map 

production as an integral part of a GIS, it can be used as early as during the geo-database 

modelling, al l  the way the interactive process of querying and presenting information in a 

problem-solving environment where a map is intelligently used (Figure 7.3). 

7.3.2 Database Generalization 

Database generalization utilises data modelling formalisms to capture the map structure of 

applications at a given point of t h e .  The formalism describing geometnc objects and their 

relationships has been discussed in previous chaptes. The construction of the VMO 

structure reflects an information abstraction process in which higher level objects represent 

outline views of geographic spaces and details can be examined in lower level objects with 

successively finer resolutions (Figure 7 -4). 
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An important step to construct a generalized geographic database is to recognise geometric 

structures that correspond to geographical phenomena [Mark 19891. This requires applying 

on-line knowledge representation techniques to catch structural and process knowledge 

[Nyerges 19911. Znference rules need to be devised for generating structural knowledge 

[Buttenfeld 19911 based on neighbourhood reasoning in a geographical context. The 

dynamic feaîure and the object-onented design of the VMO mode1 enhance triggering 

appropriate procedures and rules at the right time and place. The Voronoi diagram is 

proved to be a reliable local structure to reason and extract perceptual structures fiom 

atomic objects [Ahuja and Tuceryan 19891. An experiment in utilising the Voronoi diagram 

for analyzing building clusters was reported recently Begnauld 19961- 

7.3.3 Map Agents 

The relatively static database design incorporates geographic knowledge and cartographers' 

intuition on structural constraints of maps. The dynamic database generalization process 

would rely on both declarative and procedural knowledge and, especially, on mechanisms 

to integrate and e ~ c h  both types of knowledge through the evolution of the database. A 

rnap agent serves such a the mechanism in an interactive environment. An aaificial agent is 

an object which possesses formal venions of a mental state, and in particdar forma1 

versions of beliefs, capabilities, choices, commitments, and a few other qualities 

wooldridge and Jennings 1994; Shoharn 19941. Autonomous agents are primarily 

developed from the field of distributed artificial intelligence (DAI) and play active roles in 

a dynamic environment of a cornplex system which involves multiple, CO-operative 

decisions by different autonomie components with goals. 

The map agent is an object class whose state is a repository of declarative metadata about 

the mapping classes and d e s  derived from geographical and cartographie expert 

knowledge. An example of generalization mles of a bay is given in Mark [1991]. Functions 

of a rnap agent constitute the inference engine conducting knowledge collection and 

representation. The inference engine contains the logic to control and direct search and 

reasoning techniques. The logic techniques cm be charactensed as having four basic pa-rts 



Flichaelsen et ai. 1985J: 1) selection of the relevant rules and data elements; 2) matching 

the active d e s  against data elements to determine which rules have been triggered, 

indicating they have satisfied the antecedent condition; 3) scheduling which triggered mles 

shouid be flred; and 4) executing (Mng) of the rule chosen during the scheduling process. 

The choice of an appropriate control strategy to address these four actions is dictated by the 

problem under consideration, the content of the object database, and the structure of the 

knowledge base. 

There is aIso a technical reason for coupling a rnap agent on top of the geo-database. A geo- 

database must have classes of geometric objects as well as thematic objects. It is desirable 

that complex geometric objects are implemented with some generalization capabilities such 

as that they know how to generaüze themselves before being presented graphically at a 

given scale. It would be inappropnate to include geographical knowledge in the 

generalization procedure because one geometric object may be dynamicdy associated with 

different geographical objects. On the other hami, a thematic object is a conceptual one 

which refers to, but is not, a geometric object. It would be awkward to include specific 

generalization rules in the thematic object because of loss of generality. A rnap agent 

understanding both thematic and geometric models can serve as the CO-ordinator between 

them. 

In the context of map generalization, the primary role of the rnap agent is to control, 

schedule, and validate dynarnic generalization operations enacted by objects. More about 

dynamic object generalization is explained in the next section. Another imperative role of 

the rnap agent is to aid rnap uses. To achieve success in automated rnap generalization, the 

purposes of mapping must be understood and intended users must be integrated [Dymon 

1989; Blades and Spencer 19871. Typical uses of maps include navigation, measurements, 

and visualization (of landscape patterns) [Head 19841, for the purposes of spatial andysis, 

planning, designing, simulation, and decision making. We argue here that of the three uses 

of a map, the most important one is navigation. The other two functions rely on the result of 

navigating a rnap (albeit in a broad sense). In a cornputer environment where data of a rnap 

are stored in a database, navigation means to intelligently "search" through the database for 



usefbi information. Navigation differs from the farniliar search functions in that: 1) 

Navigation is not driven by precisely defned parameters such as the range of a search, or 

specific object types expected; it is rather driven by goals which are formulated £iom 

problems and which may change over tune. 2) Navigation is accornpanied by some 

mernory models to store knowledge and reasoning abilities to influence decisions about 

what information would be usefd and where to find the information. 3) Unlike search 

functions with simplistic objectives, the navigation process needs to be stnictured into a 

model of a few components. The functions of these components would include 

automatically denning objectives and performing interchangeable outline and detailed 

search processes. One of the main purposes of the navigation model is to aUow users to 

concentrate on their problems, with less distraction, and to f ~ s h  tasks with non-surplus 

and sufficient information. 

Generating a schedule for a generic navigation model in an autonomous fashion would be a 

highiy desirable goal of the map agent. For this purpose, the map agent needs to perform 

communication. This includes communication between computer systems, between a 

system and humans, and among humans with various Ievels of knowledge. Studies show a 

strocg dissatisfaction conceming current maps ability to convey knowledge. The difference 

between the functional abilities of geographic information systems and the expectations of 

users is iremendous. Maps developed in current spatial databases may not be the sarne as 

those understood by a user. For a specific task, a user may have herlhis own interpretation 

of the space and construct herhis own mental models for the task. The mental models or 

mental maps are centred with respect to the observer. With a goal specified, a mental rnap 

is constructed through a repetitive process, exchanging and updating information between 

shoa term and long term memory spaces. Psychological studies show that cognitive models 

of spaces in a human brain form hierarchical structures and that a more generdized 

perception about a space is obtained by moving his eyes dong more detailed small parts of 

the space [Steinke 1987; Eastman 1985; Blades and Spencer 1986; Dobson 1985; Head 

l984]. 



Programming a rnap agent in order to mimic rnap users presents a long-standing challenge. 

Ahhough the geo-database briefly descnbed earlier represents progressively generalized 

views of the world, it reflects only one state of limited expert knowledge. How to navigate 

through the structure and construct different views to present to various users can not be 

answered very easily. We hope that understanding and developing rnap agents will lend a 

hand to solve such problems. 

7.3 -4 Dynamic Object Generalization 

Dynamic object generalization is the process activated before an object is drawn. How 

many and what objects to draw is the decision of the rnap agent in accordance with the 

purpose of the rnap use. When an object receives the message to draw itself, it invokes the 

built-in generalization procedure to prepare the graphics data The container rnap object 

controls the generalization by providing search functions to detect any positional conflicts 

(Figure 7.5a), or topological errors (Figure 7.5b) of a proposed generalization with other 

existing objects to be drawn. Furthemore, if an object has a property descrïbing its 

certainty, an uncertainty band (comdor) can be superimposed to control the quality of the 

generalization (Figure 7.5~). Searching functions and making conidors can be performed 

easily with the support of native geometric and topological structures (in our 

implementation, the Voronoi diagram). The function and data flows of the dynamic object 

generalization process may look like the one in Figure 7.6. 

a. Position confiict b. Topological error c. Uncertainty band 

Figure 7.5 Detecting conflicts and errors, and controlling uncertainty 

in dynamic object generalization 
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Figure 7.6 Function and data flows of dynamic object generalization 

One of the advantages of having dynamic object generalization is that a rnap cari have 

different scale versions simultaneously in one representation, that is, more details in the 

area of interest with a more outlined global picture elsewhere to visualise landscape 

patterns. Because generalization procedures are built in each geometric object, individual 

messages concerning the resolution of a generalization can be passed to the object 

concemed. 

In summary of this section, we have discussed that although the problem of automated map 

generalization appears to corne from the "hardware" limitation of mapping media, it has in 

fact a strong intellectual background and the true solution of it is never simple. The system 

needs to include individual generalization techniques and, more importantly, a mechanism 

of representuig and inducing inference mles to support the choice of decisions when one 

individual method alone fails. The final result, i.e., a generalized map (which may even not 

need be drawn), must convey an understandable message to help the user to complete tasks. 

The system approach incorporating database generalization through off- and on-line data 

modelling, dynamic object generalization, and map agents looks promising for providing 

desirable solutions. 



Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

In the final chapter of this thesis, we take a last look at the problems stated and objectives 

set in the first chapter. As shown in 6.6, many of the original objectives are attainable for 

foresm. Tn addition, the research result is useful to other applications, as outlined in 

Chapter 7. The research and development presented leads to the following conclusions: 

1. Motivated by the needs of forestry data management, the thesis sets its prime objective 

to designing an advanced spatial data model. The data model is aimed to be suitable for 

constructing a spatial database management system to support decisions conceming 

sustainable forestry. In order to satisQ the practical needs and achieve the objectives of 

the research, we started with investigating what is really meant by "sustainable forestry 

development" and major factors that may stand out as "charactenstics" of the 

sustainable forestry data management system. The characteristics of sustainable forestry 

management strongly suggest that the data management system m u t  be: i) of large 

spatio-temporal scale; ii) dynamic to changes caused by new data, goals, and 

technology; iii) able to support management and operations at strategic, managerial, and 

operational levels; iv) allow multi-user access to the data and information which are 

created and rnaintained by different owners; v) be geographically distributed, with 

integxated global meta-information; and vi) be flexible to data modelling, analysis, and 

simulation. In addition, effort was made to understand general problems and processes 

involved in decision-making. The philosophy and concepts discussed in this matter 

have helped the development of the thesis and should influence the future development 

of a SDSS. 



2. Following the initial investigation, the basics and tools comrnonly used for data 

m o d e h g  and database development were examined (Appendix B). After this, we 

discussed the special properties of spatial objects, which may be represented in a variety 

of ways. It was found that the curent prevailing practice of spatial data handling does 

not treat the issues well. The prevaîling spatial data management systems are based on a 

hybrid architecture in which the geometry and topology are modelled separately. The 

geometric reference framework, resulted from a decomposition of the space, is rigid in 

that it does not generally care about the extent, shape, and complexity of the embedded 

objects. The topological representation of spatial objects, often based on a planar graph, 

does not support the geometric decomposition scheme and is not dynamic. The 

globalized construction of a topological structure makes the hybrid architecture diffcult 

to apply to a distributed, federated spatial database. Besides, the architecture does not 

support t d y  hierarchical objects and object-oriented data modelling and therefore is 

not flexible to user needs. The analysis concludes that the hybrid data model finds itseif 

difficult to satisQ the requirements identified for an integrated sustainable forestry data 

management and decision support system. We do not yet fully understand geographical 

spaces and as a consequence, a convincing theory which can be used to describe them is 

still in question. 

3. Fortunately, there do exist some tools worth developing: the concept of Voronoi 

diagrams and the idea of dynamically constmcting them. It was demonstrated that the 

very concept of "neighbours" centred in Voronoi diagrams catches the essential 

property of the constructs for geographicai spaces and that the concept combines both 

field- and object-based views embedded in geographical modelling. Based on this, this 

thesis reviewed and explored important properties of the dynamic Voronoi diagrams 

and its dual, the Delaunay triangulation. The data structures for, and the kinematic 

incremental process of, constructing a Voronoi diagram were explained in length. The 

representation of the data model integrates the geometric object definition and preserves 

the fundamental neighbourhood relationship fiom which other topological properties of 

spatial objects can be conveniently derived. Using this representation, GIS operations 

are realized with ease, and in a topologicaily informed fashion. The topologically 



informative operations on spatial objects form the bais of intelligent data models. 

Intended to use the Voronoi diagram as a dynamic GIS data model, this thesis also 

extended the coverage of the temporal ability required in contemporary spatial data 

handling. Aigorithms for typical GIS operations were elaborated in the light of their 

graph-theoretic equivalence and the combined view of space using the Voronoi data 

model. 

4. The thesis identifïed problems with the primitive Voronoi diagrams of points and h e  

segments. These problems prevent the Voronoi data model from being applied to large 

data volumes and k i n g  treated in modular and hierarchical fashion in t e m  of cornplex 

spatial objects. A spatial object condensation technique was devised during the thesis 

research which led to an elegant resolution of these problems. The technique partitions 

a Voronoi diagram along natural container boundaries into disjoint and independent 

subdiagrams, in t e m  of spatial structures, the storage of their representations, and their 

functions. There is no restriction on the shape and size of containers. Smaller Voronoi 

diagrarns constmcted separately c m  be pasted together to defme a larger Voronoi 

diagram. The partition uses a time proportional to the number of line segments forming 

the partitioning boundary to break the dependency between neighbouring subdiagrarns 

on the memory model. The overaIl partitioning algorithm is affected in the worst-case 

by O(n) in both time and storage. The spatial object condensation can also be applied to 

partition any triangulation networks along designated triangular edges forming closed 

polygons. This application produces independent memory modules of subtnangulations, 

such that a large tnangulation network can be stored and worked with separately. The 

outcome of the spatial object condensation technique breaks through conventional ways 

of spatial data modeiling and brings up a novel paradigm of construction and 

management of large spatial databases. 

5. The extended application of the spatial object condensation technique in this thesis is 

the design of a dynamic spatial object database scheme called the Voronoi Map Object 

(VMO) model. Covered by the VMO model are forma1 definitions of basic geomevic 

object classes and a description about spatial relationships between these objects. The 



implementation of geornetrïc and topological structures within a map object tums it into 

a VMO. With a VMO, a l l  previously developed operations based on the dynamic 

Voronoi diagrams are inhented. The embedding of geometry and topology, as weli as 

dynarnic operations within a VMO, makes it stand out as an independent object class to 

be used in geographical applications. The VMO model is enhanced naturally by the 

VMO-tree which can be constructed via both top-down and bottom-up approaches, with 

the support of the spatial object condensation technique. The constrained VMO-tree 

forms a global organization about VMOs which may be geographicdy distributed. The 

thesis also speculated about operations over VMO-~ees and their nodes. These 

operations cover issues related to distributed spatial database management systems 

supported by the client-semer architecture. 

6. In response to the needs of sustainable forestry data management and decision support 

systems, the thesis outlined a design of such a system based on the VMO model. The 

design was based on the Object Modelling Technique (OMT) which covers object, 

dynamic, and functionai models. The object model comes fiom a problem statement 

and constitutes structural support to the other two models. The relationship between 

system objects and the object in charge of dynamic spatial database management using 

the VMO model is placed and described. In the dynamic model, the interactions 

between objects through dynamic events were Uustrated. The data and information 

flow between sequentially invoked processors was demonstrated in the functional 

model. The software architecture of the system was devised, which organizes the 

system components into three layers each of which is intended for different developers. 

Although the whole design was at a rather coane stage, it nevertheless sets up an 

integrated framework from which detailed elaboration can be completed in later 

development . 

7. It is hoped that the VMO model can be applied in many different ways, corresponding 

to contemporary requirements for spatial data handling. It is especially useful in 

situations that require dynamic topology and integrated spatial data management 

systems whose database is constructed and managed by different teams at various sites. 



The thesis briefed two application examples: parallel processing and automated map 

generalization envisaged from their database, dynamic, and intelligent aspects. 

8.2 Original Contributions of This Research 

The research covered in this thesis is based on the primitive dynamic Voronoi data model 

developed by Dr. Gold, without which the enhanced treatrnent of this thesis would be 

impossible. Theories and applications of the original dynamic Voronoi data mode1 have 

been widely published in various national and international joumals. The context of the 

early model covers the basic algonthms and implementation of the Ïncremental and 

kinematic construction of Voronoi diagrams of points and line segments; the idea of the log 

file structure for preserving history of the construction; applications of the dynamic 

Voronoi diagrams in digital terrain rnodelling, intelligent navigation over and through 

spatial structures; and most of the general algorithms for GIS operations used in this thesis. 

The author of the thesis has k e n  greatly benefited by the opportunity of participating in the 

implementation of the primitive Voronoi data model. This experience and numerous 

discussions with Dr. Gold and other researchers working in this area helped to forrn the 

shape of the spatial object condensation technique and the VMO model advanced in this 

thesis. Specifically, the thesis bnngs up the following contributions to the Voronoi based 

GIS research and development. 

1. Provided the proof for Property 4.6 conceming the configuration types of the three 

objects fiom which Voronoi vertices are calculated. 

2. Complemented the description, in an algorithmic fashion, of the incremental and 

kinernatic construction process for the Voronoi diagram of points and h e  segments. 

3. Described and implemented the log fde structure, and the forward- and backward- 

reconstruction of the dynamic Voronoi diagram. 



Designed and implemented algorithms for network analysis (depth-fmt and breadth- 

fmt searches, minimum spanning tree, shortest path) and range seanih, based on the 

Voronoi data structure. The algorithm for polygon overlay was elaborated. 

Designed and implemented algorithms for the spatial object condensation technique 

dong the boundaries of containers. The method of partitioning triangular networks was 

described. 

As a by-product of the spatial object condensation technique, the flaw in the current 

theory and practice of Voronoi diagrams of h e  segments in dealing with weakly- 

comected components is remedied. 

The nearest-object search algonthm is modified to work for spaces with holes and 

weakly-connected components. 

The VMO model is formally described, which encompasses the geometric object 

classes and spatial relationships, the VMO class, the data structure, the constraints, and 

the constructions and operations. 

A design for a forestry data management software system is outlined, covering the 

object, dynamic, and functional models, and the software architecture. 

10. The thesis describes the development of an operational prototype, as  demonstrated by 

all of the Voronoi diagram illustrations used in this thesis. 

8.3 Suggested Future Work 

The objectives of the thesis were to define the appropnate spatial model, not to implement a 

full system. Therefore, the VMO model is by no means complete, either in theory, 

implementation, or applications. The thesis has nevertheless set up the skeleton of the data 

model. It is suggested that the following efforts need to be made in future work: 

1. Experimenting and analyzing the condensation algorithms against large volumes of 

real, preferably forestry data. 

2. The development of a dynamic configuration capability for automatically identifying 

partitioning boundaries for clusters of spatial objects. Without an automated clustenng 



or grouping process, the partitioning boundaries have to be manually identifîed or to be 

selected through some SQL quenes. 

3. Completing the VMO class design and implementation for wrapping it into software 

components. The interface design and implementation needs to follow the COM 

specification. Mer- VMO COM objects are available, applications c m  be rapidly 

developed by plugging and playing with these components. With the current COM 

technology, remote access and operations on the VMO objects c m  be enabled without 

being noticed by users. 

4. Detailed design and implementation of FORMONET. The production of the prototype 

system can set up an example for the deployment of the VMO components. 

5. Researching the temporal aspects for the VMO model and implementing spatio- 

temporal queries over the model with different versions of VMO objects. The log file 

structure and forwardhackward reconstruction mechanism provided in this research 

works on the primitive objects. The real temporality of the database using the VMO c m  

only be realized after more structures are designed for the other VMO objects. 

6. Completing the formal description for topologicai relationships and operatiom. This is 

felt to be important, as with other data rnodels, for the discourse and communication 

with a clearly defmed language. 
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Appendix A 

Geographic Information and Decision Support Systems 

A.l Geographic Information Systems 

DefInition. A geographic information system (GIS) is usually defked as a computer-based 

information system that enables capture, modelling, manipulation, retrieval, analysis, and 

presentation of geographicdy referenced data morboys 1995, pp. 1 1. 

The above and similar BCGIA 19891 definitions actually summarize the cornmon 

bctionalities of a GIS. Other practicai definitions may m e r  emphasize typical 

applications of GIS. For example, Cowen [1988] argues that ''A GIS is best defined as a 

decision support system involving the integration of spatially referenced data in a problem 

solving environment." There is also a tendency to include users (e.g. organizational context 

as descnbed by Burrough [1986]) of a GIS in the definition. The key argument is that a GIS 

is a complex system the proficient use of which needs human-computer interactions. A 

team of trained staff with GIS skill and application domain expertise is indispensable to 

successful operations of GIS applications. This point of view expresses a popular concern 

that curent GIS is not easy to understand and use. Mastery of it requires comprehensive 

training to know the tools it provides, the data models and data structures on which it is 

built, and more importantly, the weakness and limitations it brings to bear on certain 

applications. 

GIS hardware. The general hardware components of a GIS include the computer and its 

peripherals (Figure A.1). The computer system must have a central processing unit (CPU), 

and is configured with a random access memory (RAM) as well as an internal hard disk. 

The penpheral devices consist of: a keyboard, a screen display monitor, a floppy disk drive, 

a compact disk (CD) drive, a tape drive, a digitizer, a plotter, and optiondy, a scanner. The 



CPU is in charge of executing instructions designated by computer programs. During the 

execution of an application, data and programs have to be read and temporady stored in 

the RAM. One use of the hard disk is to persistently save data and program files. Floppy 

disks and CDS are also storage media which can be used for communication. Nevertheless, 

more and more communications between users of computers nowadays are performed 

through a network of computers. An effective network connection to intemet and intranet 

becomes a dispensable penpheral when configuring a computer hardware for a GIS. The 

monitor provides the visual display of data, programs, and control panels for human- 

computer interaction, normally with the help of a keyboard and a mouse. Digitizers and 

scanners are used for converthg data on maps and documents into digital f o m  The results 

of the data processing c m  be presented via a hard copy obtained by means of a plotter. 

1 connection / / Tape 1 Ihloniior 1 / Digitizer drive 1 
Cornputer 

CD drive (CPU+RAM+ Flotter 
Hard disk drive) 

"OPPY 1 / Kcyboard 1 Maure 1 1 Scanna disk drive 

Figure A.1 The general hardware components of a GIS 

GIS software. The GIS software constitutes a more important and usuaily more expensive 

component of the system, in cornparison with the hardware. The basic software component 

is divided into closely related functional modules or sub-systems which handle data 

input/edit, presentation, query/analysis, datz modelling and database management, and 

human-computer interface, respectively. A schematic view of these basic modules and the 

building architecture is s h o w  in Figure A.2. 

Data inpuü'edit. A AGIS is useless without data. Data can be spatial or non-spatial. Spatial 

data are usually supposed to represent something that c m  be located in the real world. Non- 



spatial data in a GIS are usualiy subordinate. They are associated to and descnbe spatial 

data AU data, spatial or non-spatial, must be in digital f o m  of some formats before they 

are entered into a GIS. A GE normaily captures data through scanners, digitizers, and 

standard input peripherals as for ail information systems (keyboard, mouse, CD and disk 

readers, internethtranet). Each of these devices is supported by appropnate software called 

drivers. Commonly involved processes in this module include format conversion, error 

detection and correction, rectification and registration, and line simplification. Most of 

these processes are highly humadmachine interactive. Editing data after its initial input to 

resolve topological errors is tedious manual work with most commercial GIS. 

Figure A.2 The main software components of a GIS 

Capturing spatial data in a GIS contributes a major cost which can be as high as 70 per cent 

of total GIS system expenses [Dickinson and Callllns 19881. The digitizing process is slow 

and expensive, but it does deliver a weU structured and information Bch vector data source. 

Scarming is fast and cheaper, but the raster end-product is limited in structure and in the 

ability to add values by attaching attributes to spatial references. Two possibilities for 

improving spatial data capturing exist: 1) increasing automation and reliability in raster- 

vector conversion; 2) improving a raster-based system to provide equai or enhanced 

functionality with vector systems. Recent research and development in the Industrial 

Research Chair in geomatics applied to forestry, at Laval University has demonstrated a 



great potential for reducing cost on data capninng. Three techniques have been developed: 

1) interactive digitizing with dynamic topology [Gold 19941; 2) rapid digitizing for 

environmental data [Gold et al. 19961; and 3) map scanning plus automated raster-vector 

conversion with simple vector topology [Gold 19971. 

Query and analysis. Data query and analysis constitute a major software block of a GIS. 

Querying a GIS for information can be thought of as the process of asking @y users) and 

answering @y a GIS) questions. Application related questions are numerous, no tably 

c o v e ~ g  three aspects of geographical data: spatial, aspatial, and temporal. Some of these 

general questions are the following [Burrough 1986, pp. 91: 

(a) Where is object A? 

(b) Where is A in relation to place B? 

(c) How many occurrences of type A are there within distance D of B? 

(d) What is the value of function Z at position X? 

(e) How large is B (area, primeter, count of inclusions)? 

(f) What is the result of intersecting various kinds of spatial data? 

(g) What is the path of least cost, resistance, or distance dong the ground from X to Y? 

(h) What is at points X 1, X2, ... ? 

(i) What objects are next to objects having certain combinations of attributes? 

(j) Reclassfi objects having certain combinations of attributes. 

Oc) Using the digital database as a mode1 of the red world, simulate the effect of 

process P over time T for a given scenario S. 

Some of these and other questions can be answered easily, some with diff~culty, and some 

cannot be answered given current theory and technology. Most of the questions inquiring 

about temporal properties and topological dynamics of geographical phenornena cannot be 

easily answered using the majority of commercial GIS on the market. Difficult questions 

often rely on the underlining data models and the analytical processes of a system. Analysis 

of geographical data usually refers to processes that need to manipulate the spatial or 

temporal aspects of data in order to calculate or denve the geornetric, topological and 



temporal properties of the data Geometric properties of spatial data concern theh shape, 

size, or location in an embedding space. Topological properties are the ones that are 

invariant under "rubber-sheetY7 transformations, which continuously defom the underlying 

space without breaking it. Examples of topologid properties include: neighbourhood. 

adjacency, connectivity, and inclusion. Temporal properties concem the evolution, 

disturbance events, and precedence relationships of geographical data in a certain t h e  

h e .  A part of forestland F transfomed into an industrial park IP in 1990 may be an 

example indicating an evolution of F, and at the same the,  a creation of a new entity called 

industrial park (P). 

Query and analysis WU inevitably retrieve the geographical database for the desired data, 

which involves search and access operations. Retrieval, search, and access of data are often 

used ambiguously to mean "getting data from databases". They do, however, have 

distinctions. Retrieving is a collective terni which treats a database as a blackbox without 

really referring to intemal data organization and search operations provided by the database 

management. Searching data from databases concems more of the logicai structures of data 

organization and of the operations to locate relative addresses of desired data in the whole 

structure. The whole structure may be divided into severai logically related fies which 

reside in storage media. Accessing data is the set of methods which actuaily 'ctouches" the 

physical records of the desired data, based on their relative addresses in each file. To access 

a data record, the file containing the data must fmt be opened. Other important accessing 

operations include fmd, read, delete, modiw, insert. Finally, the file opened must be closed. 

How efficiently data in the database can be searched and accessed in order to be retrieved, 

and sometimes modified depends on the construction of data models and supporting data 

stmctures. Construction of data models and data structures for building a spatial database 

management system is the central concern of this thesis. 

Data presentation. This module concems how data and results of query/analysis from a 

GIS can be presented to users through output devices. Traditional general purpose 

databases provide output in the f o m  of text and numbers in tabular form. A report 

generator is a standard feature of a DBMS and allows the embedding of database output in 



a high-level document format which c m  be enhanced by colourful charts and graphies. GIS 

requires a m e r  step to the presentation of maps and images. Such presentation should 

enable the user to visualize their base maps and results of analysis, which may be multi- 

dimensional. Information wili be required at varying scales, and appropnate detail should 

be presented at each scale. This is closely related to the issue of geographical database and 

cartographic generuiization which will be discussed in this thesis in a rather integrated 

way. 

Geo-object database, data rnodeiling, and dntabase management. The geo-object database 

stores geographical data. The depositing of geographicd data in the database, however, 

must follow pre-defmed database structures which themselves are translations of data 

modelling processes with compatible database languages. The essence of data modelling is 

to identify and describe entities and relationships in reality, with respect to the real world 

processes affecting them. In the computer world, entities and relationships are often called 

objects and relations, respectively. Geographical data in the database need to be represented 

as objects with varîous cornplexities. Each geographical object (geo-object) has to be 

described with a few references or characteristics. Typical aspects of a geo-object may be 

spatial, textuaVnumerica1, graphical, and temporal charactenstics. 

The spatial aspect of a geo-object concems the specification and structure of the object in 

an embedding space. Geometnc and topological data models are often used to study spatial 

structures of and operations upon geo-objects. Geometric and topological data models are 

ofien referred to collectively as spatial data models. A good spatial data mode1 should be 

closed under operations on the objects concemed, and expressive with respect to a wide 

range of object types and relations. The value of a geo-object is primarily reflected from its 

textuaVnumerical aspect. The identification of a geo-object in a database requires a unique 

value together with its spatial description. The textuaUnurnerical aspect of a geo-object is 

also referred to as the thematic aspect and is often studied with thematic data models which 

concem the semantics of objects in the application domain. The graphical aspect of a geo- 

object concerns how the object is presented or visualized. It was traditionally thought of 

merely as a cartographic issue. More and more, the approach now is to consider it an 



integral part of the spatial data modelling. The temporal aspect of a geo-object concems its 

changes over space and tirne. A meaninghil change in an object occurs when its spatial or 

textuaVnumerical stahis is altered at a particular tirne. Data models must encompass a long 

t h e  frame and capture meaninghil changes such that the previous statu of an object can 

be retneved and restored if desired. Another issue associated with the temporal aspect of a 

geo-object is how data models can reflect changes in a localized and dynarnic fashion. A 

data model is dynamic if integraiion among its components can be maintained upon 

changing events without restructuring the whole model. 

Computerized database capabilities are enabled by a collection of pragrams called a 

database management system (DBMS). The DBMS is hence a software system that 

facilitates the process of defining, constructing, and manipulating databases for various 

applications. Defning a database involves specifying the types of data to be stored in the 

database, dong with a detailed description for each type of data Constnrcting the database 

is the process of storing the data itself in some storage medium that is controlled by the 

DBMS. Manipulating a database includes functions such as querying the database to 

retrieve specific data, updating the database to reflect changes in the real world, and 

generating reports from the data. A database in a GIS must be spatial, which distinguishes a 

GIS from other information systems. Nevertheless, Like any other standard database, a 

DBMS in a GIS should possess the following basic capabilities: 

1. Controlling redundancy: Redundancy refers to storing the same data multiple times. 

This happas in traditional fie processing systems where each user group 

independently keeps data files for their own use. Redundancy leads to problems such as 

duplication of effort, wasted storage space, and more senously, inducing data 

inconsistency. The database system controls redundancy by integrating the views of 

different user groups during database design which ensures that each logical data item 

is to be stored in one place only. 

2. Sharing of data: A database may be accessed by multiple users at the same time. This 

is essential if data for multiple applications is to be integrated and maintained in a 



single database. Sharing of data is an important way of reducing die high cost of data 

capturing. It also promotes inter-discipline cooperation to achieve more optimized 

results. By sharing data, authorized updating of data can be incorporated by multiple 

applications in a timely fashion. By allowing multiple access, a database system must 

include concurrency control methods to ensure that several users trying to update the 

same data do so in a controlled rnanner so that the result of the update is correct. 

Besides, security and authorization procedures must be placed to assign privileges to 

different users for the retrieval or updating of data. 

3. Providing backup and recovery: If the compter system fails in the rniddle of a 

complex update program, the recovery subsystem is responsible for making sure that 

the database is restored to its state before the program started executing. Altematively, 

the recovery subsystem could ensure that the program is resumed from the point at 

which it was interrupted so that its full effort is recorded in the database. This requiics 

that the backup subsystem should keep track of database update operations and should 

record updates and data necessary for the future recovery. This capability is essential to 

maintainhg the temporality of databases. 

S orne researchers feel that current geographical database s ystems lack proper database 

management support. This shortcoming leads to lack of portabiiity, maintainability, 

reusability and sometimes correctness [Stuth and Smith 19931. Over the past twenty yean, 

most of the theoretic research on DBMS in GIS have emphasized developing appropriate 

spatial data models. Ln current practice, the majonty of spatial DBMS are composed of 

carefully devised programs to handle the management of spatial data. These systems have 

gained needed functionalities by developing customized, individual stand-alone programs. 

Standard capabilities of a DBMS, especially the ones dealing with multiple access and 

update of spatial data and management of time in the database system, have not been fully 

realized. A satisfactory solution to these DBMS issues still relies on the promise of a 

modem spatial data mode1 and open system architecture. 



GIS intetj%aces. A GIS is not just a store for depositing geographical data One of its 

purposes is to support and to facilitate the use of data. A GIS should provide a variety of 

user interfaces. The types of interface include query languages for casual users, 

programrning ianguage interfaces for application programmen, forms for parametric users, 

menu-driven or iconic interfaces for naive users, and natural language interfaces. On-line, 

context-sensitive help facilities also constitute an important part of the interface. 

A.2 Spatial Decision Support Systems 

Definition. A Decision Support System (DSS) can be viewed as an integrated solution to 

help people to make their decisions. It can encompass methodologies as diverse as 

cornputer models, expert systems, information systems, discussion groups, and structured 

thought and evaluation processes. The use of a DSS can improve the objectivity of decision 

making, especially where complex interactions are involved. A Spatial Decision Support 

System (SDSS) is one that involves the integration of spatially referenced data in a 

pro blem-solving environment. 

One of the key characteristics of a SDSS, as with a general DSS, is that problems to be 

solved are often ill-defmed or ill-structured. As is put by Simon 119771, "Decisions are non- 

programmed to the extent that they are novel, unstructured, and consequentid. There is no 

cut-and-dried method of handling the problem because it hasn't arisen before, or because its 

precise nature and structure are elusive or complex, or because it is so important that it 

deserves a custom-tailored treatment." Seeking solutions for unstructured problems requires 

the integration of our understanding of the problerns themsekes. In these processes, 

additional data, information and knowledge rnight be required and there is no obvious 

stopping mie for the investigation. Understanding problems involves such aspects as 

identiwing observable and controiling process variables, discovering casual relationships, 

and developing a preference structure to rank outcornes [Cameron and Abel 1996). As the 

investigation proceeds, some unstmctured problems may become semi-stmctured or 

structured. 



In the consuuction of a DSS, it is important to understand the human decision making or 

problem-solving processes. Research on human problem solving supports Simon's claim 

that al1 cycles of problem solving can be broken down into three phases of activities: 

intelligence, design, and choice [Simon 19771. The intelligence activity searches the 

environment for conditions calling for decision; the design process invents, develops, and 

analyzes possible courses of action; and the choice activity selects a course of action fiom 

those available. Nomaily, intelligence precedes design, and design proceeds choice. The 

cycle of phases is. however, far more complex than the sequence suggests. Each phase in 

making a particular decision is itself a complex decision-making process. The design phase, 

for example, may cail for new intelligence activities; problems at any given level generate 

subproblems that in tum have their intelligence, design, and choice phases, and so on. 

These problem-solving stages all contribute to the answering of the questions: "What is the 

problem", ' m a t  are the alternatives", and " W c h  alternative is best". 

Another indispensable consideration in building a DSS concems the nature and type of 

decisions within an application domain. It is realized that the nature and type of decisions 

are closely related to the organizational structure of the application which designs, 

implements, and uses the DSS. For each leveI of the structure, decision activities and 

bctional  requirement of the system are significantly different from that at other levels. A 

classification scheme differentiatïng planning, controlling, and operating activities within 

an organization is developed by Anthony [1965]. This scheme consists of three categories 

of managerial decisions and suggests that these categories represent activities suffïcienùy 

different in kind to require the development of different systems. 

The fmt category is sîrategicplanning. It is the process of deciding on the objectives of the 

organization, on the changes in these objectives, on the resources used to attain these 

objectives, and on the policies that are to govern the acquisition, use, and disposition of 

these resources. This process focuses on the choice of objectives for the organization and 

on the activities and means required to achieve these objectives. As a result, a major 



problem in this area is predicting the future of the organization and its environment. 

S trategic planning does not follow a routine procedure. 

The second category is munagement control in which managers assure that resources are 

obtained and used effectively and effkiently in the accomplishment of the organization's 

objectives. Key aspects of activities in this area include I) inter-personal interaction; 2) the 

activity takes place within the context of the policies and objectives developed in the 

strategic planning process; 3) the paramount goal of the activity is the assurance of 

effective and efficient performance. 

The third category is operational control. It is the process of assuring that specifïc tasks are 

caxrïed out effectively and efficiently. The boundaries between these categones are often 

not clear. The classification, however, helps to identiQ the fundamental character of 

information needed by different decision-making and management levels [Gorry and 

Morton 19751. 

Strategic planning O ften needs aggregate information which is obtained main1 y from 

sources extemal to the organization itself. Both the scope and variety of the information are 

quite large, but the requirements for accuracy are not particularly stringent. The nonroutine 

nature of the strategic planning process means that the demand for information occurs 

infrequently. The information needed for operational control stand in sharp contrast to 

those of strategic planning. The task orientation requires information of a well-defined and 

narrow scope. The information is quite detailed and arises largely from sources within the 

organization. Very fiequent use is made of this information, and it must therefore be 

accurate. The infonnation requirernents for management control faii between the extremes 

for operational contrd and strategic planning. Much of the information in this area cornes 

fiom the process of interpersonal interaction. 

In addition to understanding the decision process in an organization, knowledge about 

information flow and assumptions made in the design of a DSS help to justify its 

appropriate use and hence the decision outcornes. Any information system assumes views 



of the world which reflect in some way the opinions of the designer about the information 

needed at each stage of decision within an organization. These assumptions are intrinsic to 

the intemal architecture of a DSS and are vital to its flexibility and success. The following 

diagram (Figure A.3) (modified from Mason [1975]) austrates the information flow and 

general assumptions inûorporated at each stage of a decision. 

Source El 
Assumptïons about the 
confidence, trust and 
credibility the &cisiop 
rnaker places in the 
assumptions made in the 
previous steps. 

Assumpîions about the vaiues, purposes and 
objectixs pertinent to this decision and about 
the criteria for choice. 

Assumptions about functional relationships, especially 
cause and effect relationships, among data items and 
b e ~ e n  present and future States of the system 

Assurnptions about ucltiich of the manifold of phenornena occming at the source should be 
obsemd, selected, filtered, classified (inîo which categories), measured (on h c h  
scales) and recorded as data items and about *ch items are reIemt to subsequent . - -  

Figure A.3 Assumptions at each stage of information flow 

The information flow in Figure A.3 is compatible with the three phases of the problem- 

solving process discussed earlier. The processes involved in identiQing and collecting 

infornation sources and assimilating data correspond to the intelligence phase; the 

problem-solving models, which may include predicting, analyzing, simulating, and logic 

deducting rnodels and tools to the design phase; and the outcorne, values and choice of a 

decision to the ch~ice  phase. 

Structured much like a GIS, a modem SDSS might in addition incorporate an expert system 

which nuis over a nile-base for an application domain (Figure A.4). The expert system 

fonnalizes, stores, manages, and manipulates domain specific knowledge needed for 



problems. The subsystem interface takes care of interactions between the geo-object 

database and the expert system. The integrating of the problem-solving models and tools 

transfers the total system to a more specific application system. Consequently, the user 

interface may need to be customized to suit domain experts or decision-makers who are 

novices to computerized system. 

Figure A.4 The software architecture of a SDSS 

Stuth and Smith [1993] reviewed the development of a SDSS for ecosystems, from an 

domain expert point of view. The following aspects have arisen as a wish list of a future 

SDSS: 

Graphical inte?fizce, multimedia and data visuulizution. Appropriate and attractive 

forms of data display are a vital part of helping people to make better decisions. Good 

maps, graphs, flowcharts, and other displays aid people to interpret data and to 

appreciate its significance much more rapidly, and if honest, more objec tively . 

Spatial landscape analysis. Greater emphasis is king placed on seamless, application- 

specific spatial landscape analysis to address planning applications which have both 



temporal and spatial responses. This requires spatial aualyzers to be flexible enough to 

be Linked to planning models without disrupting a planning session. 

Integrating data from RS, digital photography and GPS systems. Directiy importing 

these data sources into a SDSS c m  help monitor the effectiveness of management 

strategies imposed on landscapes. 

Experî systems. Considerable interest is focusing on using speciaiized, well-focused 

expert systems embedded in SDSS to help users with parameterizing simulation models 

and to match technological development options with management systems. 

Embedded simulation models. The core of many SDSS will always be good simulation 

models, varying fkom simple spreadsheet-style aids tu complex representation of system 

function where data and understanding exist. Developers will need to pay greater 

attention to controlling mode1 complexity for the sake of users and their input data 

needs while maintainhg the quality and integrity of results. 

Natural resource infomtion networks. There is a growing need to create on-line data 

for regional, national, and international databases to service these data requirements 

including soils, land use, weather, plant attributes, endangered species, etc. 

Open systems architectzues. SDSS should meet current users needs yet have sufficient 

flexibility to adapt to future technology. Especially, on-line communications through 

the internet need to break software, hardware, and technology banîers to allow different 

operating systems, databases, and applications, interact with each other. 

Staruhrdization and CO-operation. There is an increasing need to standardize data and 

applications to facilitate data exchange. For SDSS to have widespread value and ready 

accessibility to users, some display standards are needed. 



Appendix B 

Tools And Concepts In Data Modelling 

The appendix discusses the role and nature of models in information modelling, fiom which 

the generd phases of developing data models and methodologies applied to each stage can 

be presented. The development starts fÏom the real world, through different levels of 

abstractions, to the implementation with a compter. The real world concemed is 

prescnbed by the geographical phenornena occumng in a forest ecosystem with respect to 

the environment wherein a fores t SDSS works. S pecial treatments for spatial information 

are considered within the context The purpose of discussing basic tools and data modellllig 

concepts in this part is to have an overall understanding of the hindamentals involved in 

consmicting database models, instead of taking them for granted. More complex m o d e h g  

structures and processes, like the ones addressed in Chapter 2, have these basic structures 

and simple processes. 

B.1 The Role and Nature of Data and Process Models 

A rnodel is a human-obsewed representation or reflection of sornething in the real world. 

The primary reason for using a model is because the real world is often so large and 

complex that the comprehension of it is very dificult and sometimes impossible by a 

human k ing  without the help of a model. The understanding of positional relationships 

between continents, for example, might be outside human capacity if some kind of overall 

perception (verbal description, drawing, sketch) is not present in hisher mind. This 

knowledge is obtained by reading a world map which is a representation with simplified 

contents, reduced size, and rounded accuracy. This illustrates the important use of a model 

for communicating knowledge and provides a basis for the study of the real world at some 

resolution level. A data model is a model conceming data. The emphasis put on a data 



model is the data, Le., the measurement, observation, and description captured fkom the real 

world. The types and charactenstics of data detennine how complex a modelling process 

must be to effectively represent the real world. The existence of data, together with a host 

of models, transfers the study of the real world into the study of data models of the real 

world. 

It must be noted that studying a representation of the real world is not the sole objective of 

data rnodelling. A more interesting consideration in data modelling is that data models 

provide a background on which such processes as analysis, reasoning, planning and 

simulation can occur. In order to have a meanin@ and useful data model of the real 

world, modelling processes occurring in the real world must proceed in pardel. This 

requires that the intemal structures of a data model match the specific needs of process 

modelling. 

Any representation of the real world is an abstraction. It is impossible to accommodate dl 

aspects of the real world in the construction of a model. Important factors need to be 

selected. This includes identifying application-signifkant entities (things, concepts, events), 

and the relationships, processes, and constraints or conditions that delimit these 

components. These constrained components constitute the information content of a data 

model. The abstract nature of data rnodels determines that they are not exact replicas of the 

real world but partial views of it. Therefore, the development of data models must contend 

with the inverse process: transferring results from data and process models back to the part 

of the real world modelled. 

Questions concerning the study of a data mode1 are: 1) which entities are covered by the 

model; 2) which relationships between entities are explicitly expressed; 3) what are the 

operations on those entities and relationships; 4) what are the constraints that bound 

operations and relationships, the dynamic interactions of one operation with another, as 

well as the interactions with entities; 5) is the data model closed under valid operations; and 

6) how accurate and precise are the information contents of the model in cornparison to 

their counterparts in the real world. 



This section introduces 'some basic mathematical concepts and tools usefid in constnicting 

complex models of the real world. The power of these mathematical basics lies in their 

abstract ability. The abstract constructions, operations, axioms and theorerns c m  then be 

applied to interpreting real world situations. The most important and axiomatic concept in 

the construction of mathematical models cornes fiom set theoretic notions- 

B.2.1 Sets 

A set is a collection of things (cailed its members or elements), the collection being 

regarded as a single object. Whenever possible, we will use italic capital letters as names 

for the sets we introduce and italic small letters for elements that may or may not be 

memben of a paaicular set. If S is a set, we indicate the fact that a is an element or member 

of S by the notation of a E S. Similady, we write a E S to Say that a is not a member of S. 

"Set" and "membef' are two primitive notions within the axiomatic method of the set 

theory. Other concepts will be defmed in terms of these two primitives which themselves 

will remain undefined. Instead, a List of axioms c o n c e d g  the primitive notions is adopted: 

Equality: If two sets, A and B, have exactly the same members, then ihey are equal: 

Empty set: The set B having no members, denoted 0, is called the empty set: 

3B (Vx I x g B).  



Subset: For two sets, A and B, if every member of A is a member of B, then A is a subset of 

B, denoted A B: 

VA VB[Vx(x E A  s x  E B) = A  5 BI- 

A is said to be contained in B if A G B. IfA G B but A # B, then we Say that A is a proper 

subset of B and wnte A c B. 

Power set: For any set A, there is a set B whose members are exactly the subsets of A. The 

set B is said to be the power set of A, denoted p (A): 

B.2.2 Operations on Sets 

We are going to discuss several ways of composing new sets fiom old ones. These 

operations constitute part of the algebra of sets. 

Union: For two sets, A and B, their union, denoted A u B, is the set whose elements are 

members of either A or B: 

Intersection: For two sets, A and B, their intersection, denoted A u 23, is the set whose 

elements are rnembers of both A and B: 

Diifference: For two sets, A and B, their difference, denoted NB, is the set whose elements 

are members of the fmt set A but not the second set B: 



Relative complement: This operation is usuaiiy appLied to a single argument A S, where 

the complement of A, denoted A', is a set whose elements are mernbers (of S) not in A: 

The diagrammatic representations of the previous operations are shown in Figure B. 1. The 

shaded regions represent the new sets resdtuig from the respective operations. 

A u B  A n B  N B  A' 

Figure B. 1 Set union, intersection, difference, and relative complement 

The union and intersection operations can be generalized to n arguments without regard to 

the order of the composition. In complete analogy with the use of the summation symbol in 

arithmetic, we may therefore define 

= ( a  l a E Ai for some i = 1,2, --, n} 

Using the generalized union and intersection, the intuitive notion of the partitionhg of a set 

can be defined. Before definhg partition, we need to agree to Say that the sets A and B are 



disjoint if A n B = 0 (intuitively, they do not overlap). More generally, any finite number 

of sets At, AZ, ---, An is said to be disjoint (or, for the sake of clarity, mutually disjoint) if 

Partition: A collection n = {Ai, A*, --, A.} of nonempty subset Ai S is a partition of S if 

(a) (oj Ai = S (the Ai are a covenng of S), and 
i=1 

(b) Ai Aj = 0 for al1 i # j (they are mutually disjoint, no overlap) 

The subsets Ai are cded  the blocks of the partition. A partition of S into k nonempty blocks 

is called a k-partition of S. Figure B.2 intuitively illustrates the partition operation. 

Figure B.2 A partition of the set S 

B.2.3 Relations and Functions 

The simplest mathematical structure of al1 is the unstructured set. However, sets on their 

own are limited in their applications in modelling. As everything in the real world is related 

to something else, and sets cm be used to hold things, it is of paramount importance to 

define relational structures between sets. This can be treated with the aid of the set product 

construction, which in turn will lead quite natüraliy to the important definition of 

relationshîps and functions. Without the latter, a meaningful analysis of Our subsequent 

mathematical structures would be impossible. 



Product: Given any sets A and B, the product, denoted A x B, is defined to be the collection 

of ail ordered pairs (a, b) such that a E A and b E B. That is 

By an ordered pair, we mean that (a, b) and (a', b') are regarded as equal only when a = a' 

and b = b'. Thus (a, b) z (a', b'), in general. In fact, when A = B = R, the set of real 

numbers, then A x B is recognized as the set of points in the Cartesian plane. For this 

reason, the product A x B is quite often referred to as the Canesian product of the sets A 

and B. 

As in the case of unions and intersections, we can extend the definition of products to 

arbitrarily n (for n 2 2) factors: 

= {(al, a*, O - - ,  ad I ai E Ai for each i = 1,2, ---, n) 

In the special case where all the Ai are the same, Say AI = At = ---  = A, = A, we denote this 

product set by An. Thus for any set A we have 

An = ((ai, a2, --•, a.): ai E Ai for all i = 1, 2, a-, n} 

and the elements of such a product set are usualiy called the n-tuples from the set A. The 

term n-tuple is just the generalized terminology: pair, triple, quadruple, ---, n-tuple. 

Binary relation: A binary relation R from a set A to a set B is simply a subset R A x B. 

We Say that a E A is related to b E B (by the relation R) if (a, 6) E R. The notation a R b is 

used in the connection, 



Given a relation R on a set A, the following three important properties are often used to 

classi@ relations on a set, we use the symboIs x, y, z to denote members of A: 

(i) Regexive: x R x, -for ail x (i') irreflexive: x R x, for no x 

(ii) Symmetn'c: x R y y R x (ii') antisymmetric: x R y, y R x x = y 

(iii) Transitive: x R y, y R z = x R z 

The graphical representation of the three properties is given in Figure B.3, where the 

arrowhead edges depict the relation. 

(i) Reflexive (ii) Symmetric (5) Transitive 

Figure B.3 Reflexive, symmetric, and transitive relations 

The binary relation R is reflexive if it satisfies (i); symmetric for (ii); and transitive for (iii). 

If a relation R satisfies al1 the three properties, the relation is said to be an equiva[ence 

relation, denoted -. The properties of an equivalence relation express important aspects of 

being the sarne, which are ordinady taken for granted, and are usually obvious for specific 

equivalence relations. Equivalence relations are the primary tools employed in the process 

of abstraction, or selectively ignoring differences which are irrelevant to the purpose at 

hand. Within a given context, we Say that two things are equivalent if the differences 

between them do not matter. Another way of looking at equivalence relations is as ways of 

dividing things into classes. The result of this process is a collection of new sets. For aay a 

E A, an equivalence class [a] determined by a can be defined, which is the subset of A 

consisting of a l l  the elements that are related (equivalent) to a. That is, 



It is interesting to note that the partition of a set A induces an equivalence relation on A 

which relates elernents of A in the same block. AU elements in one block constitute an 

equivalence class. 

Partial ordering relation (denoted b y  I): The relation I is a binary relation which is 

transitive, reffexive, and antisymmetric. For a set A, it is called a partially ordered set or 

poset if the partial ordering relation is on A. Two elements a and b in A are said to be 

comparable under S if either a 2 b or b I a; otherwise îhey are incomparable. If every 

pair of elements of A are comparable, then we Say that [A; I] is totally ordered or that A is 

a totally ordered set or a chain. In this case, the relation 2 is caIled a total order. 

Function: Afwtction is a special type of relation between elements of one set S and those of 

another T, denotedf: S + T. The first set S is called the domain, and the second set T the 

range. The distinction of a function from a relation is that it transforms each x E S into one 

and only one element Ax), called the imge  of x, in the range T. Thus fimctions are by 

nature single valued in that 

Ax>*fi)=x*r 

The image is a subset of the range. The relationship between hinctionfix), domain, range, 

and image is illustrated in Figure B -4. 

Figure B.4 Sets forflx) (adapted from Worboys [1995], pp. 109) 



A function f is said to be injective (or one-to-one) if it transforms two distinct elements in 

the domain into two distinct elements in the range, that is 

A function f is surjective (or onto) if each t E T can be written as t =As) for some s E S, 

that is, if every element of the range is an image. That is 

A function that is both injective and surjective is bijective (or one-to-one correspondence). 

B.2.4 Grapbs and Trees 

Abstract graphs: A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset 

of the set of unordered pairs of V. The set of V is the set of vertices and E is the set of 

edges. E c m  be any relation on V. V = V(G) is the vertex set of G and E = E(G) is the edge 

set. G' = (V, B) is a subgraph of G if V c V and E c E, we write Gr c G. If Gr contains 

all edges of G that join two vertices in Ir then G' is said to be the subgraph induced or 

spanned by V and is denoted by G[VI. 

The order of G is the number of vertices; denoted by IGI. The same notation is used for the 

number of elements (cardinality) of a set: Ki denotes the number of elements of the set X. 

Thus IGI = IV(G)l. The size of G is the number of edges; denoted by e(@. We write Gn for 

an arbitrary graph of order n. Similady, G(n, m) denotes an arbitrary graph of order n and 

size m. 

Two graphs are isomorphic if there is a correspondence between their vertex sets that 

preserves adjacency. Isomorphic means "having the same fom". Thus G = (V, E)  is 

isomorphic to G' = (Y, B) if there is a bijection 0: V + V' such that xy E E iff 0 ( x )  DO>) 

E Er. Clearly, isomorphic graphs have the sarne order and size. Usually we do not 



distinguish between isornorphic graphs, unless we consider graphs with a distinguished or 

labelled set of vertices (e.g. subgraphs of a given graph). In accordance with this 

convention, if G and H are isomorphic graphs we wnte either G i H or simply G = H. 

Trees: A tree is an acyclic graph. 

B.3 Conceptual Data ModeIlhg Techniques 

The mathematical basis presented in the preceding section provides a preiiminary 

formalism to defme abstract sets, relations, and functions. Modelling the real world requires 

identifLing components, i.e. entities, relationships, and operations, from the real world and 

representing them with these mathematical constructs. However, the real world is often a 

complex one in that most of the components identified cannot be directly modeiled with 

basic mathematical tools which are based on homogenous sets. Some rigorous and 

systematic modelling techniques have to be employed to defme and constrain compound 

smicnires from basic ones, to practice operations on these structures, and to present the 

model to othes. This section introduces some general concepts on how complex structures 

can be constructed from simple ones, and then specific modelling techniques for the entity- 

relationship (ER) data model and the object-oriented (00) data model wiU be discussed. 

These two data models are used, primarily, to descnbe inter-related concepts from the real 

world without considering any implementation details with a computer. They are therefore 

generall y called conceptuul data models. 

B3.1 Modeiiing Concepts 

Classification: The process of classification involves classifying sirnilar objects or concepts 

into classes. A class is andogous to a set. Some traditional set theory claims that a class is 

too large to be a set. In data modelling, objects in a class correspond to named things in the 

real world and their internid structures and behaviour often need further definition and 

explmation using some more primitive concepts. In general, objects of a class have similar 



structures and the values of particular properties descnbing these objects belong to identical 

atûtbute domains. However, some of the objects may display properties that make them 

differ in some aspects from the other objects in the class. These exception objects need to 

be modelled using additional constraints. Instantiation is the inverse of classification and 

refers to the generation- and specific examination of distinct objects of a class. Hence. an 

object instance is related to its object class by an "IN" or "1s-AN-INSTANCE-OF' 

relationship. 

Observing and c lass img similar objects in the real world and pu thg  them into classes is 

necessary when a bottorn-up approach is adopted in data modelling. This process produces 

abstract data types and altows us to describe or ta& about classes rather than the individual 

objects themselves. Certain properties may apply to the class as a whole and not to the 

individual objects themselves. For example, the class name and the number of objects in the 

class are class properties. The average value of an attribute over aIl members of a class is 

another example of a class property. Incorporated with other modelling concepts, 

classification can result in fairly complex data types. 

Abstraction: One of the main ways of structuring and visualizing data is through the use of 

abstraction [Tsichritzis and Lochovsky 19821. Abstraction is the ability to hide detail and 

concentrate on general, common properties of a set of objects. An elementary f o m  of 

abstraction distinguishes between the token level and the type Ievel. A token is an actual 

value or a particular instance of an object. Abstraction is used to defme a type from a class 

of similar tokens. For instance, abstraction is applied to a set of Bowers to form the generic 

concept FLOWER. In data modelling, abstraction is used to obtain categories of data and 

combine categories into different levels of more general categories. Data in the sarne 

category are supposed to have similarities. Sometimes these similarities are stated as 

properties of the category. There are two techniques for abstraction: generalization and 

aggregation [Smith and Smith 19771. 

Generalization: This process views a set of tokens or a set of types as one genenc type. 

Token-type generalization is usually differentiated fkom type-type generalization. The 



formai process is referred to as classification, while the latter process is called 

generalization. For instance, viewing a set of individual river tokens as one generic type 

RIVER is considered classification. Viewing the types RIVER and LAKE as one generic 

type WATERBODY is considered generalization. Therefore, generalization is used to 

describe a phenomenon involving a family of types inhenting sorne common property 

which is essential to the phenomenon. It would be more general to use a single concept 

"waterbody" to refer to the percentage of a surface area covered with water than using 

concrete concepts such as "river", "lake", "stream", etc.. Analogous to instantiation versus 

classincation, specification is the opposite process to generalization. Thus, a river token is 

an instantiation of the type RIVER, but the type RIVER is a specialization of the type 

WATERBODY. 

Aggregation: This abstraction structure is composed from its constituent objects- For 

instance, a city can be characterized by its name, population, and centroid (coordinates of 

its centre). Hence the attribute types "NAME", "POPULATION", "CEhTTROID" are 

aggregated to describe the object type "CITY'. The more rigorous use of the aggxegation is 

to relate one object with other higher level objects to fonn some compound object. To 

evduate the land use of a city, for example, it is usual to include objects such as residential 

areas, commercial areas, parks, etc.. These objects constitute the use of the land within the 

city and each of them needs fmer structures to be completely described. Some of these 

objects are themselves aggregated from smaller objects and they are essentiaiiy different 

from each other. The reason for bounding them together is because of the specific relation, 

'land-use", involved. There can be other relationships that bound a city with the objects 

within it. For example, as parts of the city, residentiai areas, commercial areas, and parks al1 

"lie in" the vicinity of the city. 

B.3.2 The Entity-Relation (ER) Mode1 

The entity-relationship (ER) model (or entity-attribute-relationship model) is one of the 

best known conceptual models of an information system. It was orïginally proposed by 



Chen Cl9761 and has been extended with many variations. In the following description, we 

generdy do noî distinguish which version of relevant concepts were coined. 

The basic components of an ER model, as the narne suggested, are: entities, attributes, and 

relationships. An entiîy-may be a person, object, place. concept, or event of interest to be 

represented in the database. An entiv type is used to represent a class of similar entities 

occurrhg in the real world and is usually identified by a group name. Thus FOREST- 

STAND, ROAD, RIVER are types of entities. In the type of RIVER, we have an 

occurrence of a specific river named "Saint Lawrence". An attribute (or amibute rype) is 

one of the properties identified to describe characteristics of an entity (or entity type). The 

entity type RIVER, for instance, has one attnbute types called NAME, and one called 

LENGTH, in addition to other possible ataibute types. Therefore, the river named "Saint 

Lawrence" has a specific Iength of, Say 450.0 km. 

The ER model features the graphical notation used to represent its components. An entity 

type can be diagramatically represented by a rectangle box containing the name of an entity 

type, whiie its attribute types are represented by ellipses each containing the name of an 

attribute type. The subordination of an attribute type to an entity type is represented by a 

line linking a rectangle box and an ellipse. The diagrams of m o d e h g  components 

following this notation are called entity-relationship or ER diagrams. For example, the ER 

diagram for the entity type RIVER and its possible attribute types is drawn in Figure B.5. 

Sometirnes attribute types of an entity type can be omitted from the ER diagrams. 

Figure B -5 An entity type and its attribute types 



A relationship type in the ER model, graphically represented by diarnond rectangles, is 

used to descnbe an association between one entity type and another. The entity type 

RIVER and the entity type CITY can be associated with the relationship type PASS- 

THROUGH. An instance of this relationship finds that Saint Lawrence River passes 

through the city of Quebec. Sometirnes a relationship type can also have attributes which 

M e r  spec- the nature of a relation. Relations c m  be constrained by cardinalities. A 

cardinaliv of a relation defines the number of times the relationship can occur between two 

entities (occurrences). Cardinalities are expressed by four numbers indicatuig the minimum 

and maximum numbers of entities occurring in a relation. Figure B.6 illustrates the PASS- 

THROUGH relation. The cardinality number of the river indicates that a river may pass 

through zero or n number of cities. Similady, an occurrence of a city may be passed 

through by zero or rn nurnber of rivers, as indicated by the cardinality numbers by the city. 

The relation in Figure B.6 is also called many-to-many (or mm) relationship, as suggested 

by the maximm cardinality numbers at both sides of the relation. Potentially, one-to-many 

(or lm), one-to-one (or 1: 1) relationships can be found in the real world. 

Figure B.6 A rnany-to-many relation involving two entities 

The ER model has been extended in various ways to meet practical needs. The extended 

entiry-relationship @ER) model adds constructs of more complicated entity types by 

applying generalization/specification and aggregation techniques described earlier. This 

leads to the definition of class, superclass, subclass, and category in the EER model. 

Associated with these concepts is the important mechanism of anribute inheritance. 

A class is a set of entities; this includes any of the EER constructs that group together 

entities such as entity types, subclasses, superclasses, and categories. An entity type Ei is a 

subclass of an entity type E if every occurrence of type El is also an occurrence of type E. 

Accordingly, the type E is said to be the superclass of El.  The superclass/subclass 



relationship is often cailed an IS-A relationship because of the way one refers to the 

concept. A category T is a class that is a subset of the union of n defining superclasses Di, 

4, ---, 4, n > 1. The EER diagrams representing a general superclass/subclass relationship 

and category are shown in Figure B.7. The subset symbol c attached to the Linking lines 

indicates the subclass/superclass relationship. A letter in the circle of each diagram 

indicates the relationship between classes at the same level, as determined by set 

operations. For our generai example, the letter 'd' in Figure B.7a indicates that El,  E2, and 

E3 are disjoint in E, while 'U' in Figure B.% shows that the category T is a subset of the 

union of DI,  D2, and D3. 

a Generating El,  E2, E3 into E b. Category T is a subset of the union 
of Di, Dz, and D3 

Figure B.7 A class/subclass and a category 

B.3.3 The Object-Oriented (00) Mode1 

The most appealing data modeliing technology is provided by the paradigm of the object- 

onented approach. In the object-onented approach the concept of object dominates the 

whole modelling, design, and programming philosophy. An object has not only static 

structures for its definition, similar to the constnicts in the ER model, but also dynamically 

behavioural ability. The unification of object states (data) and its functions (procedures) in 

the specification of an object distinguishes the object-onented approach from those that 

separate data and the procedures mnning the data. The object-oriented approach has the 

following features that are missing from or weakened by a non-object-oriented approach: 



Object classes and inheritance: "An objecr is a concept, abstraction, or thing with cnsp 

boundanes and meaning for the problem at hand" [Rumbaugh et al. 199 1, pp. 2 11. The 00 

model puts a great deal of emphasis on the design of objects. Objects serve two purposes: 

they promote understanding of the real world and provide a practical ba i s  for computer 

implementation. All objects have distinguishing identities which persist through time and 

are independent of their attnbute values. The identity of an object may be considered to be 

represented by a system-generated object identifier (OID). Objects are explicitly created 

and destroyed. Attributes of an object can be updated without destroying it's identity. "A 

class is a group of objects with similar properties (attributes), common behaviour 

(operations), commoo relationships to other objects, and common semantics (the meaning 

that holds objects together)" [Rumbaugh et al. 1991, pp. 221. Similar to the description in 

the ER model, subclasses and superclasses can be defined to represent the static aspects of 

object structures. The difference with the 00 approach is that each class knows how to 

operate on itself. By deciaring a superclass/subclaçs relationship, the subclass inherits all 

the attributes and operations from the superclass as well as adding it's own. Inheritance 

makes most of the design and programming effort previously made in the construction of 

classes to be better utilized. 

Methods and polymorphism: "An operation is a function or transformation that may be 

applied to or by objects in a class" [Rumbaugh et al. 1991, pp. 251. Calculating area, 

drawing, and colouring the intenor are operations on class AREAL-OBJECT. AU objects in 

a class share the same operations. In the 00 paradigm, a method is the implementation of 

an operation for a class. The same operation c m  be irnplemented in different classes with 

different procedures. This phenornenon is called polymorphism. For example, the class 

AREAL-OBJECT may have RECTANGLE, CIRCLE, and TRIANGLE as its subclasses. 

Al1 these subclasses inherit the method "calculate-area". The codes implemented in eac h 

subclass, however, are different. Polymorp hism becomes powerful in combination with 

inheritance. It provides flexibility for execution of processes in information systems, 

because operations need only be bound to implementations at nui-time. 



Encapsulation: Encapsulation (also referred to as information hiding) consists of 

separating the extemal aspects of an object, which are accessible to other objects, frorn the 

intemal implementation details of the object, which are hidden fiom other objects. 

Encapsulated objects or components c m  be used and reused in developing computerized 

systems, which prevents a system from becoming so interdependent that a small change has 

massive npple effects. The implementation of an object can be changed without affecting 

the applications that use it m b a u g h  et al. 199 1, pp. 71. 

With the 00 approach, an object knows how to act itself. To activate an object to invoke its 

methods, however, needs messagps communicated kom another object. Extemal stimuli are 

generated by events which occur when objects in a system participate in activities. 

Therefore, from the system's point of view, a data model should be equipped with an 

environment in which processors (embedded in objects), correspondkg to system 

functions, c m  be managed, coordinated, and controlled. The environment serves as an 

interface exposed to objects. The public interface of an object contains a collection of 

messages to which the object responds by altering its state or r e h n g  an object. The 

interpretation of the messages passing between objects shows what happened to the objects 

in a system. These concepts address three important aspects of an information system based 

on the 00 data model: "the object model represents the static, structural, 'data' aspects of a 

system; the dynamic model represents the temporal, behavioural, 'control' aspects of a 

system; and the functional modei represents the transformational, 'function' aspects of a 

systern" m b a u g h  et al. 1991, pp. 171. Modelling these aspects is the content of a 

particular methodology named the Object Modelling Technique (OMT) [Rumbaugh et al. 

19911. The philosophy, concepts, and notations will be applied in this thesis for the design 

of applications ushg our spatial data model. 

B.4 Database Modelling and Design Process 

In this section, we discuss commonly practiced rnodeliing processes for the design of 

applicational database systems. It tums out that different phases of data modelling exist 





information contents of a database. The presentation of this information is ofien called a 

conceptual rnodel. A good conceptual model should also allow flexible manipulation of 

concepts and relationships to denve new concepts and relations. Conceptual modellîng 

plays a paramount role in designing an information system. Ir influences the expressive 

power and operational capability of the information system build from it. The conceptual 

model is, however, rnost general and is independent of any software or hardware. The 

conceptual model should possess the following charactenstics [Elmasri and Navathe 1989 

pp. 4621: 

1. Expressiveness: The data model should be expressive enough tu point out commody 

occuriing distinctions between diflerent types of data, relationships, and constraints. 

2. Simplicity: The model should be simple enough for typical usen to understand and 

use; its concepts should be easily understood by end users. 

3. Minimai: The model should have a srnaIl number of basic concepts that are distinct 

and nonoverlapping in meanuig. 

4. Diagrammatic representation: The model should have a diagrammatic notation for 

displaying a conceptual schema that is easy to interpret. 

5. Formality: A conceptual schema expressed in the data mode1 must represent a formaI 

nonambiguous specification of the data. Hence, the model concepts must be 

accurately and unambiguously defied. 

A conceptual model c m  be obtained by an incremental approach. One starts with a 

preliminary schema constmcted fiom the previous phase, and incrementdly modifies and 

refines it. For large databases it is sometimes difficult to try to design the whole database 

schema at once. In such cases, individual views (srnail schema) can be designed first by 

using a bottom-up, top-down, or mixed strategy and then integrated p2lmasri and Navathe 

1989 pp. 463-4641. 

Phase 3: Logicai design. The next step after conceptual modelling transforms a conceptual 

schema into the schema of a particular DBMS. A DBMS schema consists of structures, 

constraints, and languages. A collection of structures specifies data and attribute types, and 



relationships a DBMS schema supports. The set of constraints is used to ensure the 

integration of schema structures, which is done by examinhg functional dependencies of 

the structural components. The languages provide a host of vocabularies and syntax that 

one can use to define allowable structures (called data definition language DDL) and 

dynamic actions to manipulate data and structures (called data manipulation language 

DML). 

It is apparent that a DBMS schema has an inherent data model based on which the DBMS 

is built. The basis of a DBMS data model encompasses some mathematical theory and 

structures which operate on more or less homogenous entity and attribute domains (abstract 

sets) and generates mathematical constnicts for complex relationships. Concepts and 

relationships fiom a conceptuai model sometimes need to be broken into homogenous 

components at this level. The relationships between components are maintained by logical 

links provided by the DBMS schema- For this reason, the representation produced by 

following a DBMS schema is referred to as a logical model. Except for mathematical 

concepts used to capture and manipulate relationships, a logical model does not directly 

involve any computing data structures. In fact, it hides the actual data structure from the 

user. The way of constnicting a logical data model, however, affects data structures chosen 

to implement a system. 

Since the late 1960s, the development of DBMS data models has experienced several 

evolutions. The earliest data models, such as the network and hierarchical models, were 

drawn from early file processing and report generation systems Fry and Sibley 19761. 

They have graduaily k e n  replaced by a more popular data model, the relational model fmt 

proposed by Codd [1970]. A significant reason for the popularity of relational data models 

is that they are simple in nature and are strongly based on the mathematical theory of 

relations. 

The only data structurîng tools used by original relational data models is a relation. The 

definition of a relation in relationai models is identicd to the mathematical one except that 

database relations are time varying. That is, tuples are inserted, deleted, and modified in 



database relations. The def~tion of a database relation [Codd 19701 is: given sets Di, D2, 

--, 4 (not necessarily distinct), R is a relation on these n sets if it is a set of n-tuples or 

simply tuples each of which has its f i s t  element from Di, second element from LI2, and so 

on. The sets Di are called the domains of R. The nmber  n is the degree of R, and the 

number of tuples in R is c d e d  its cardinality. 

From the basic dennition, a relationai database c m  be specified by a relational schema 

which consists of one or more relation schemes. A relation scheme is a listing of a relation 

name and its corresponding attribute narnes. In a relational model, relation schemes are 

represented as named tables with rows king tuples and columns k i n g  named amibutes. 

An instance of a relation scheme, i.e. a relation, is a finite set of tuples each containing as 

many data items as there are attribute names in the relation scheme. Each data item has a 

value from the domain with which its attribute type is associated. A relation has the 

following properties: 

The ordering of tuples in the relation is not significant; 

Tuples in a relation are al l  distinct from one another; and 

Columns are ordered so that data items correspond to the anrïbute in the relation scheme 

with which they are named. 

Traditional set operations, such as union, intersection, and difference; together with 

relational ones, such as project, join, and divide; are supported in a relational database and 

are the basis of the so c d e d  relational algebra. Constraints applied to a relational schema 

are guided according to the three directions: representation, nonredundancy, and 

separatiun. They constitute important contents of the schema analysis or fonnalization 

[Tsichritzis and Lochovsky 19821 which are used to obtain a good schema Data definition 

and manipulation with a relational database are faciiitated by the süuctured q u q  language 

(SQL) which provides a standardized syntax and semantics for users to define relation 

schemes and then insert, modiQ, and retrieve data from a relational database. 



Phase 4: Physical design. This is the process of choosing specific storage structures and 

access paths for the database files to achieve good performance for the various database 

applications. The design of physical data structures is concemed with various type of 

indexing, clustering and linking of related records on disk blocks via pointers, hashing 

keys, and so on. Cntena for the choice of physical data structures may include space 

utilization for data and their structures, and response time needed for execution of 

transactions. 

The whole data modelling process involves transforming one data model to another. It is 

possible that not a l l  information fiom a source rnodel may be preserved or realized 

efficiently in a target model. The information loss between representations of different data 

models is termed impedance mismatch porboys 1995, pp. 85, 931, which can be 

aggravated if the chosen data rnodels do not have a high compatibility in data and 

relationship types. 




