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Abstract 

The forward-backward algorithm, also known as the BCJR or MAP algorithm, is a detection 

algorithm that provides soft reliability estimates. This thesis discusses issues relevant to the 

practical implementation of the forward-backward algorithm. Two applications are chosen 

for more detailed study: (i) turbo decoding and (ii) sofboutput detection of class-IV partial 

response signalling. A novel circuit is introduced that eliminates the need for a lookup table 

in the computational kernel of the forward-backward algorithm. The design and 

implementation of an FPGA-based turbo decoder is presented. The difference-metric 

forward-backward algorithm is derived for class-IV partial response signalling. A test chip 

was designed in a 0.5 pn CMOS process and is expected to operate at speeds greater than 

120 Mbps. The core area is 0.81 mm2 and the overall Silicon area is 7.3 mm2. 
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Chapter 

Introduction 

1.1 Motivation 

Error correcting codes in digital communications permit reliable transmission of data in 

noisy channels. The idea is to transmit some extra information along with the original 

message that in some way describes the intended message. The relationship between the 

extra and original information is known and can be exploited in the decoder to make reliable 

bit decisions. 

Turbo codes, introduced in 1993 DGT931 are the best known error correcting codes with a 

practical decoding algorithm. They have bit error rate performance close to the Shannon 

limit. The heuristic iterative decoding algorithm provides remarkable results at a very low 

complexity compared to codes with similar performance. In recent years, researchers have 

made a lot of progress in understanding these codes and in suggesting many promising 

applications. The focus of the research is now starting to turn towards practical hardware 

implementation issues. 

The main component of a turbo decoder is the forward-backward algorithm. The forward- 

backward algorithm differs fiom the well-known Viterbi algorithm in that it  provides 'soft' 

information about the reliability of each bit that it decodes. This soft information can be 

used in a subsequent use of the algorithm to improve its initial estimate. Although known 

for about thirty years, the forward-backward algorithm developed an undeserved reputation 

as being too difficult to implement. Even if it could be simplified somewhat, it was unlikely 

to beat the Viterbi algorithm for simplicity and there was no compelling need for soft 
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outputs. The focus has suddenly shifted to the forward-backward algorithm as i t  provides 

optimal symbol-by-symbol soft outputs for turbo decoders. Initial implementations of turbo 

decoders used the SOVA algorithm, a soft-output variant of the Viterbi algorithm that was 

less complex than the forward-backward algorithm but did not provide optimum soft 

outputs. It would be interesting to design a turbo decoder using the forward-backward 

algorithm and address the implementation issues. 

Another interesting area is the detection of signals in magnetic recording. The principles of 

detection are similar to error correcting coding: the correlation between transmitted signals 

is known and can be exploited in the receiver. A standard technique for detecting one of the 

popular signalling schemes, class-IV partial response, is called the difference metric Viterbi 

algorithm. Are soft outputs useful for this type of system? If so, can an analogous difference 

metric forward-backward algorithm be derived to compete with the difference metric Viterbi 

algorithm? 

1.2 Objectives 

The objective of this thesis is to present examples of practical implementations of the 

forward backward algorithm and to propose suitable VLSI architectures. Specifically, we 

have chosen to implement a turbo decoder and a detector for class-IV partial response 

signalling. 

1.3 Organization of the Thesis 

This thesis contains five chapters and one appendix. Chapter 2 is a review of the forward- 

backward algorithm and simplifications for its practical implementation. Chapter 3 presents 

the design of a turbo decoder for the reconfigurable TM-2 FPGA system. Chapter 4 describes 

the design and implementation of a softsutput decoder for class-IV partial response. 

Chapter 5 is a summary of the work and makes some suggestions for future research. 

Appendix A is a detailed listing of the equations of the forward-backward algorithm used to 

implement the turbo decoder in Chapter 3. 



Chapter H 
The Forward-Backward 
Algorithm 

The forward-backward algorithm is a detection algorithm that provides reliability estimates 

for each symbol that it decodes. Virtually ignored for many years because of its perceived 

complexity, interest in this algorithm has been reignited by the recent discovery of turbo 

codes. This chapter is a review of the forward-backward algorithm and techniques for its 

practical implementation. Section 2.1 defines the problem which the rest of the thesis is 

dedicated to solving: extracting the intended message from a noisy signal. A solution to this 

problem, the forward-backward algorithm is described in Section 2.2. A practical method for 

implementing the forward-backward algorithm is presented in Section 2.3. The main points 

of this chapter are summarized in Section 2.4. 

2.1 Detection in the Presence of Noise 

Signal detection is the attempt to recover a discrete-valued transmitted signal that has been 

corrupted by noise. In this thesis, we are only concerned with a discrete-time system and 

therefore will consider time in intervals of T seconds where T is called the symbol period. 

Fig. 2-1 is a block diagram of a basic digital communication system. The messages to be 

transmitted are equaily likely binary symbols uk where the subscript k refers to the time 

index. Mer transmission through an Additive White Gaussian Noise (AWGN) channel the 

input a t  the receiver, yk is the sum of a noise sample and the modulated signal xk: 
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The detector is a combined demodulator and symbol estimator that gives estimates ûk of the 

original message symbols. 

Digital , Modulator Detector . + 
f k  ûk 

Fig. 2-1: The basic digital communication system. 

2.1.1 The Maximum A-Posteriori and Maximum Likelihood Rules 

The best possible detector is one that makes the fewest errors in estimating the message 

symbols. In other words, an optimum detector minimizes the probability of symbol error 

[HaykinBB] : 

As seen in the above equation, this is equivalent to maximizing P(u1y). This quantity is 

called the a-posteriori probability and is the probability of the information symbol given that 

the noisy value has been received. A maximum-a-posteriori (MAP) decision mle can be 

implemented by calculating the a-posteriori probabilities of the two possible message 

symbols and then choosing symbol u (O or 1) that results in the largest. Using Bayes' rule on 

Equation 2-2 we can write: 

P(u)fy(y I u) 
R ~ Y )  = 

fy(y) 
(2-3) 

where f (y1 u)  is called the likelihood finction. If the message symbols are equally likely 
Y 

then the MAP rule reduces to finding the message symbol that maximizes the likelihood 

function. It is often more convenient to apply the maximum-likelihood (ML) rule in the log 

domain by maximizing the logarithm of the likelihood function. 

2.1.2 Sequence Detection and the Viterbi Algorithm 

The error performance of the system can be improved if a conshin t  is hposed on the 

sequence of transmitted symbols. A channel in which the transmitted symbols are 

dependent on the past history of transmitted symbols is said to have mernory. The channel 
memory can be naturally present or explicitly inserted. One example of a chamel with 
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memory is an intersymbol interference (ISI) channel. Convolutional coding involves inserting 

memory in the transmitter. Fig. 2-2 shows the different positions of the memory between the 

two techniques. Regardless of the source of the memory, the detector can use the constraint 

imposed on the received symbols to make more intelligent decisions. Convolutional codes 

will be described in greater detail in Chapter 3 while Chapter 4 deals with intersyrnbol 

interference channels. 

Fig. 2-2: Position of the memory in an ISI channel (a) and a convolutional coding scheme (b). 

Consider the shift register structure in Fig. 2-3, which is the encoder for a convolutional code 

with a memory length (v) of two. We Say the rate (R) of the code is ü 2  since there are two 

output bits for every input bit. The state of the encoder at a given time is defined by the 

contents of the shif't register. For example, the v = 2 shift register shown here has four 

possible states, namely "OO", 'Ol", '10" and '11". A state machine diagram which shows the 

valid state transitions is shown in Fig. 2-4. The edges of the diagram are labelled with the 

input bit / output bits. A more convenient representation can be derived by adding a time 

axis. Each path fkom the leR hand side through the right hand side of the resulting trellis 

diagram in Fig. 2-5 corresponds to a unique transmitted sequence of bits. 

The problem of detection (which we will cal1 decoding in the case ofa convolutionaI code) can 
now be cast in terms of operations on the hellis. The well-known Viterbi algorithm (VA) 

[viterbi67][Omura69]Forney73] is an application of dynamic programming to digital 
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Fig. 2-3: A convolutional rate R =l/2 encoder with memory length v = 2. 

Fig. 24: A state transition diagram for the convolutional encoder shown in Fig. 2-3. 

Fig. 2.5: A 3 stage trellis diagram corresponding to the encoder of Fig. 2-3 
and the state diagram of Fig. 2-4. The highlighted path corresponds to a 
message sequence of (1.0.l} given the starting state 01 

communications that operates on a trellis. If the edges (branches) in the trellis are labelled 

with a number that is proportional to the probability of that branch being taken, then the 

path with the largest accumulated number will be the most likely path to have occurred. In 

practice, the negative likelihood function is used instead, which reformulates the problem to 

finding the minimum length path through the trellis. For an AWGN channel, a bmnch 

metric is simply the Euclidean distance between the received and expected transmitted 
symbols. Therefore, the Viterbi algorithm, in choosing the sequence with the lowest 

accumulated metric, performs maximum likelihood sequence detection. 
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The key to the algorithm is the obsemation that at time k the shortest path must contain the 

shortest path up to time k-1 and therefore the other paths leading up to tirne k-1 can be 

thrown away. The procedure consists of two steps. In the first step, the accumulated metrics 

are calculated in the direction of increasing time in a forward recursion through the trellis. 

The accumulated metrics, called fonuard state metrics are calculated a t  each state at  time k 

as 

where A&) is the forward state metnc at state s at the current time intenral, A,- ,(s') is 

the forward state metric at a predecessor state s' at the previous tirne interval and GL(st, s) 

is the branch metric associated with the branch between states s' and S. The computational 

kernel of Equation 2-4 which is the critical path of the algorithm is the so-called Add 

Compare Select (ACS) operation (see Fig. 2-6). In the second step, the shortest path is 

determined by tracing back through the trellis according to the decisions made at each time 

interval by the forward recursion. Using the fact that competing paths are likely to have 

merged into the shortest path at about 5v time intervals back fkom the current time 

[ClarkC8ïj, a practical real-time implementation can be built using a finite amount of 

memory. The two methods for performing traceback are the register exchange method and 

the pointer trace back method. The reader is directed to [ClarkCSI 1 Dader811 [FeyginGSZ] for 

descriptions of how to implement the two traceback methods. 

Fig. 2-6: The forward recunion in the Viterbi algorithm. 

2.2 The Forward-Backward Algorithm 

2.2.1 Soft-Output Algorithms 

It can be useful for a decoding algorithm to provide an estimate of the reliability of the 

decoded bits. The 'soft' reliability values can be used in some way to adjust the decoding 

algorithm to provide better performance. As far back as 1973, Forney proposed the use of 



The Fotward-Backward Algorithm 

'augmented outputs' f?om the Viterbi algorithm as a measure of reliability of the decoding 

process b e y  731. Forney's heuristic idea to use the clifference in state metrics between 

the best path and the next shortest path led to the soft-output Viterbi algorithm described 

by Batail Battail871 and Hagenauer and Hoeher [HagenauerHSS]. 

It is important to define what is meant by soR information. The reliability of a decoded bit is 

best described by the a-posteriori probability (APP) P(u1y). For an estimate of bit u (-U+l) 
having received symbol y we define the optimum sofl output as: 

which is called the log-likelihood ratio (LLR). The LLR is a convenient measure since it 

encapsulates both soft and hard bit information in one number. The sign of the number 

corresponds to the hard decision while the magnitude gives a reliability estimate. 

The LLR can be easily computed by noticing that a decoding algorithm that uses the 

maximum a-posteriori (MAP) rule inherently calculates the APPs required. In fact, once 

determined and used to choose the most likely bit, the APPs are discarded, throwing away 

useful information. MAP algorithms have been proposed by several authors [ChangH66] 

[AbendFTO] DCJR741 but were generally ignored because the Viterbi algorithm can provide 

nearly identical hard outputs with less computational effort. 

In this thesis, we wiU focus on the implementation of what we cal1 the "forward-backward 

algorithm" of [ChangH66] BCJR741. In the literature, this algorithm is often referred to as 

the MAP algorithm or the BCJR algorithm, which are both somewhat inaccurate names. 

Abend and Fritchman proposed a MAP decoder that is optimal under the constraint of fixed 

decoding delay [AbendF70]. A simplified suboptimal detector (SPS) based on the Abend and 

Fritchman algorithm was derived in [ErfanianP89]. The Abend and Fritchman type 

algorithm has the drawback that the complexity of the decoder is exponentially related to 

the fixed decision delay In &LW3951 a MAP detector is derived that has linear dependence on 

the delay. In Battail871 and [HagenauerHBg] the soR-output Viterbi algorithm (SOVA) is 

derived. The SOVA has received a lot of attention lately due to its ease of implementation 

even though it provides suboptimal soft outputs. In our opinion, the fornard-backward 

algorithm is a feasible alternative to SOVA especially when optimum soR outputs are 

required (for example in turbo decoders). The rest of this thesis is devoted to presenting 

architectures and examples of the practical application of the fornard-backward algorithm. 
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2.2.2 Description of the Forward-Backward Algorithm 

This description of the algorithm is based on [BCJR74] and [HOP961 to which the reader is 

r e f e ~ e d  to for a detailed derivation. The algorithm is based on the same trellis as the Viterbi 

algorithm. The algorithm is perfomed on a block of N received symbols which corresponds 

to a trellis with a finite number of stages N. We will choose the transmitted bit uk fkom the 

set of (-1,+1}. Upon receiving the symbol yk nom the AWGN channel with noise variance o' 

we calculate the branch probability of the transition from state s' to state s as 

where ck(sl, S)  is the expected symbol along the branch from state si to state S .  

The algorithm consists of three main steps: 

Forward Recursion. The forward state probability of being in each state of the trellis 

at each time k given the knowledge of al1 the previous received symbols is recursively 

calculated and stored: 

The recursion is initialized by forcing the starting state to state O and setting 

Backward Recursion. The buckward state probability of being in each state of the 

trellis at each time k given the knowledge of a11 the future received symbols is 

recursively calculated and stored: 

The recursion is initialized by forcing the ending state to state O and setting 

The trellis tennination condition requires the entire block to be received before the 

backward recursion can begin. 
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Log-Likelihood Ratio Calculation. The output LLR for each symbol at time k is 

calculated as 

where the upper summation is over al1 branches with input label +1 and the lower 

summation is over al1 branches with input label -1. The procedure is depicted graphically in 

Fig. 2-7 for a short 5-stage trellis. 

Forward Recursion 
- - - - O - - - - -  

Backward Recursion 

I -----a---- 

time O 1 4 

LLR Calculation 

Fig. 2-7: Trellis processing in an N = 5 stage bstate Foward-Backward algorithm conesponding 
to the encoder of Fig. 2-3. Shown is the calculation of one particular term in the lower summation of 
Equation 2-11. The terms in the upper surnmation are dashed white the terms in the lower 
summation are solid, 

2.2.3 The Forward-Backward Algorithm in the Logarîthmic Domain 

The forwanl-backward algorithm was virtually ignored for many years because of the 

ditnculty in implementing efficient exponentiation and multiplication. If the algorithm is 

implemented in the logarithmic domain like the Viterbi algorithm, then the multiplications 

become additions and the exponentials disappear. Addition is transformed according to the 

d e  described in IKingsburyR711. Following Erfanian and Pasupathy, who ikst applied this 
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d e  to the Abend and Fritchman MAP algorithm [Erf'anianPSS], the additions are replaced 

using the Jacobi logarithm: 

which we call the MAX* operation to denote that it is essentially a maximum operator 

adjusted by a correction factor. The second term, a hnction of the single variable X-Y, can be 

precalculated and stored in a small lookup table with negligible effects on performance 

[ErfanianP89]. 

The forward-backward algorithm will now be restated in the logarithmic domain. As with 
the Viterbi algorithm, logarithms of probabilities are referred to as rnetrics. Define the new 

quantities: 

GL(s1, 5 )  = ln(yk(sl, s)) 

Forward State Metrics: 

A,(@ = In(a,(s)) 

Backward State Metrics: 

Bk@) = In(pk(s)) 

The branch metric calculation eliminates the exponential: 

The forward state metric recursion becomes: 

with initial conditions: 

The backward state metric recursion becomes: 
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with initial conditions: 

The dynamic range of the metrics is much lower than the associated probabilities. Since 

each probability has a value of less than or equal to one, each multiplication results in a 

smaller and smaller number. The metncs tend to grow much more slowly than the 

probabilities. 

The output LLR becomes: 

L(u~) = MF* ( A ~ -  ,(s') + G ~ ( s ~ .  9) + B ~ ( s ) )  - MAX* ( A ~ -  1 ( ~ 1 )  + G ~ ( S ' ,  9)  + B ~ ( s ) )  (2-21) 
( 5 . 9 )  ( 5 .  SI 

Ult = + I  Uk = - 1  

The computational kernel of the algorithm is now the MAX* operation, which is analogous to 

the MIN operation in the Viterbi algorithm adjusted by a correction factor (see Fig. 2-8). If 

the correction factor is ignored then MAX* reduces to MAX and the hard decisions are 
identical to those produced by the Viterbi algorithm and the soft decisions equivalent to 

those fkom the SOVA~ [FBLH98]. 

Fig. 2-8: Log-domain processing in the fomuard recuisive equation: 
Multiplications become additions and additions become the MAX 
operation. The shaded components are removed for the approximate 
algorithm. 

2.3 The Sliding Window Forward-Backward Algorithm 
The forward-backward algorithm as stated is a block processing algorithm. The constraint 

that the ending state be known implies that an entire block of data needs to be received 

before the backward recursion can begin. The memory requirements are therefore quite 

large. For o rate R code with memory length v (2" states) and a block length of N, we have to 
store NR input words and 2?J forward state metrics so that they can be used during the 

1. The SOVA proposed in IBattail871 has higher complexity than the algorithm proposed in 
magenauerH891. 
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backward recursion to calculate the LLRs. The branch metncs rnay require additional 

storage, or they may be recalculated as needed. The basic amount of storage required is 

therefore N(R+zV) words. Unfortunately, turbo codes, one of the most important 

applications, require large values of N for good performance. In addition, high-speed 

applications may not be able to tolerate the delays of block processing. To overcome these 

problems, a modification of the algorithm that operates over a small sliding window allows 

continuous processing with a fixed latency [DawidM95]. The idea is to relax the criterion 

that the ending state be known and to conaider each ending state as equally likely. Viterbi 

makes a cornparison with the Viterbi algorithm's ability to "start cold" in any state 

witerbi9812. If the backward state probabilities are initialized to: 

then aRer a learning or synchronization period the state probabilities (or metrics) will be as 

good as those calculated starting from a known ending state. A learning period of 6 memory 

lengths is usually enough to achieve nearly the performance of the optimal algorithm 

Fiterbi98J. The memory requirements are reduced to DL+2 words where DL is the leaming 

period. Fig. 2-9 shows the simplest form of the sliding window aigorithm. The trade-off is 

that the new algorithm has to compute DL backward stages for each decoded bit. A 

compromise between memory and computational complexity is given in [BDMP97] where 

the backward state metrics, determined by the learning recursion, are used to decode a block 

of Mb symbols. The structure of Fig. 2-9 which corresponds to Mb = 1 is still useful in some 

applications due to its ease of implementation. An example is given in Chapter 4 that is 

simple enough to efficiently utilize this architecture. 

The more efficient sliding window algorithm may be derived by dividing the backwards 

recursion into two distinct parts. First, a learning recursion of DL steps is performed to 

generate reliable backward state metncs. The generated metrics are then used to decode a 

block of Mb = DL symbols. The algorithm is best described by the time-space diagram in Fig. 

2-10 introduced in [DawidM95] which divides the trellis into blocks of DL stages. We will 

now describe the algorithm, refemng to Fig. 2-10. 

2. The Forward-Backward algorithm's recursive step is r e d y  just two Viterbi-like 
algorithms running in opposite directions with a slîghtly different computationd kernel. 
In the case of the approximate algorithm, the kernels are identical. 
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Fig. 2-9: The log-domain sliding window Fonvard-Backward algorithm for Mb = 1 
[DawidM95]. The shaded boxes represent memory storage. The branch metric 
generators are not shown. 

trellis 

A 

Fig. 2-10: Space-time diagrarn for the sliding window Forward-Backward 
algorithm with Mb= DL [DawidM95]. The shaded areas represent the memory 
for the forward state metrics. 



The Forward-Bacbard Algorithm 

The algorithm begins once the fmt  2DL symbols have been received and stored in the input 

memory (not shown in the diagram). Let's consider what happens to a given stage of the 

trellis, Say stage k + DL + j where O < j < DL. If we draw a horizontal line across the diagram, 

it will cut through one of each kind of arrow, forward, backward and learning. Therefore, we 

see the progression through time. The stage is visited by the learning recursion, then the 

forward recursion and lastly the backward recursion. Then, in the next block of tirne, the 

forward recursion proceeds using the results of the learning recursion. The soft outputs are 

generated during the backward recursion, in reverse order3. The hardware requirements 

can be found by drawing a vertical line, Say at  time k + 3DL + j, O < j c DL. It can be seen that 

three recursion processors are required to run simultaneously, one each for the forward, 

backward, and learning recursions as shown in Fig. 2-11. Each processor consists of a branch 

rnetric generator, S = 2" MAX* units and the appropriate trellis routing almg with S 

registers. The fully parallel structure ensures a throughput of 1 decoded bitkycle after an 

initial latency of 4DL. The memory requirements for the forward state metrics can also be 

found this way. At any point after k + 3DL, the state metric memory required will be DL at  

any point in time. Therefore, the state metric memory requirements for a S state trellis are 

SDL. The structure of the decoder is shown in Fig. 2-12, which is derived fkom DawidM95l. 

The input memory needs three independent banks, each of D symbols. The input symbols 

are directed to the correct branch metric generator (BMG) and then to the appropriate 

processing element (PE). A simplification in the soR output calculation may be obtained by 

noticing that the term Bk@) + Gk(st, S) in Equation 2-21 has already been calculated by the 

backward recursion in Equation 2-19 and may be supplied directly to the soR output unit. 

backward recursion forward recursion learning recursion 
and soft output 

Fig. 2-11: A snapshot of camputation in the trellis. 

3. The outputs can be explicitly reversed using a LIFO. In a turbo decoder (Chapter 3), the 
forward-backward algorithm is followed by an interleaver which can perform the reversal 
for fÎee. 
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The structure of the four memory banks and the memory access schedule remains to be 

defined. We will start with the forward state metric memory. Referring to Fig. 2-10, the 

forward recursion writes state metries to the state metric memory that are read out in the 

opposite order by the soft output unit during the next tirne block. Since the overall memory 

requirements are never greater than DL sets of state metrics, a S x DL dual-port memory can 

be used to implement a bi-directional shifi register (Fig. 2-13). To maintain proper shifk 

register operation, the read operation should complete before the contents of the memory 

address are overwritten. The direction of the shifting should be reversed every DL time 

steps. 

The input buffers are each DL rows long, but the width depends on the code rate R. For 

example, a rate R = 1/2 code requires three (2 word x DL) buflers. In addition to the case 

where data is read and then replaced by new data like the state metric memory a non- 

destactive read is necessary. If an actual shifi register is used instead of dual-port RAM, 
then a feedback path should be added to create a circular bi-directional buffer as shown in 

Fig. 2-14. 

fkom channel 

Routing Network 

Fig. 2-12: Architecture of the sliding-window Forward- 
Backward algo rit hm with Mb=DL (derived from [DawidMgS]) 

The input bufCer access schedule may be derived by considering the contiguration of the 

architecture for each block ofDL clock ticks. During any given block, one buffer is selected to 

write to (destructive write), and two are operating in the cyclic reading mode. The direction 

of the accesses for each b s e r  reverses every DL clock ticks. finally, we see that there are 

three different mutings fiom input buffet to processing element. The cycle of the six distinct 

combinations is shown in Fig. 2-16. From this figure, the control sîgnals can be dehed.  We 
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Fig. 2-13; lrnplernenting the forward state metric memory with a bi- 
directional shift register. In (a) results from trellis block i are stored while 
results from the previous block i - 1 are sent to the soft output unit. In (b) 
results from block i + t are stored while the previously stored block i is read 
out in the opposite order in which it was written. 

Fig. 2-14: Logical operation of the input buffers. The shiR register is reversible in 
direction and either writes new data, destroying the old contents or is cyclic. A dual-port 
RAM irnplementation would not explicitly need the feedback. 

note that  the direction control is also used to control the fomard  state metric memory. The 
overall period of six is a product of the periods of the following two control signals: 

The direction signal DIR with a period of 2. 

The routing signal ROUTE, which controls both the input switch and  rout ing 

network. ROUTE has a period of 3. 

The algorithm is described by the pseudo-code in Fig. 2-15: 
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Fig. 2-15: Pseudo-code for the sliding window algorithm. {A} are the forward state metrics, {B} 
are the backward state metrics and {Ble,} are the backward state metrics in the learning 
recursion. The state metric processing elementç are represented by smg() and the branch rnetric 
generators by bmg(). The soft output unit is represented by softoutput(). The forward state metrics 
are stored in SM-MEM, The soft output is LLR, Two assignment operators (:=) on the same line 
imply simultaneous assignment. 
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Block j 

Block j + 2 

Block j + 4 

Block j + 1 

I I .. i ROUTE = O I 
Block j + 3 

Block j + 5 

Fig. 2-16: The cyclic mernory access sequence. The values of the control 
signals DIR and ROUTE are indicated. j= O,6,12, ... 

In this chapter Fe have reviewed the basic theory of the forward-backward algorithm, which 

winrill be necessary for the rest of this thesis. The main points of this chapter are: 

The forward-backward algorithm is an algorithm for detecting a noisy signal in the 

presence of intersymbol interference (ISI) or decoding a convolutional code. 

The forward-backward algonthm provides optimum soft outputs, a measure of the 

decoding reliability 

The main components of the forward-backward algorithm are a fornard recursion, a 

backward recursion, and soft output calculation. 

The computational complexity can be reduced by working in the logarithmic domain. 

In the log-domain the recursions are just like the recursion in the Viterbi algorithm 

adjusted by a correction factor that is stored in a small lookup table. 

The sliding-window algorithm can be used to reduce the memory requirements and 

provide continuous decoding with a fixed delay. 



Chapter Q 
Implementation of a 
Turbo Decoder 

Turbo codes, the best known error-comecting codes, use the forward-backward algorithm as 

the main component of their decoding algorithm. In addition to their near-optimum 

performance, turbo codes are relatively simple to decode. In this chapter, we descnbe the 

design of TORBO-TM2, an FPGA implementation of a turbo decoder on the Transmogrifier- 

2 reconfigurable system. In Section 3.1 we review the basic theory of turbo codes and their 

decoding algorithm. Section 3.2 is a survey of the existing turbo decoder implementations. In 

Section 3.3 we present the design of a general turbo decoder for hardware implementation. 

Section 3.4 describes the design of TORBO-TM2. Finally, Section 3.5 is a review of the main 

points and contributions of this chapter. 

3.1 Turbo Codes 

3.1.1 Concatenated Codes 

Concatenated codes were intmduced by Fomey in [Forney66] as a way of combining the 

power of two relatively simple codes. The classic example of a concatenated code is the serial 

concatenated code shown in Fig. 3-1. The code is constructed by concatenating an inner and 

an outer code separated by an interleaver. The decoder is a mirror image of the encoder. The 

results of the inner decoder are deinterleaved and used as inputs to the outer decoder. The 
purpose of the interleavedde-interleaver pair is to spread any errors caused by burst noise to 

make them appear as random error events. One popular technique is to use an inner Reed- 

Solomon code to correct the output of the convolutional code which typically contains burst 

errors. The advantage of a concatenated technique is that the combined complexity of the 
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component decoders is less than that of a decoder for a single code with comparable 

performance. 

Fig. 3-1: A serial concatenated encoder and decoder. The interleaver is denoted 
by I and the deinterleaver by 1". 

In recent years, the ideas behind concatenated codes have been extended and improved 

greatly The two new ideas are: 

Soft decoding: Soft reliability information is exchanged between the decoders 

instead of hard bit decisions. Performance improves as the inner decoder has more 
information to work with. 

Iterative decoding: Instead of separately decoding the inner and outer codes, the 
decoder considers the combined code. Maximum likelihood decoding of the joint code 
is too complex because of the interleaver, so a heuristic itemtioe technique is used 
instead. 

The three main categories of concatenated codes are serial [BDMP96], parallel DGT93J and 

hybrid (both serial and parallel) [DivsalarPg'l] codes as shown in Fig. 3-2. Although parallel 

(4 

Fig. 3-2: Classes of concatenated codes. (a) Serial. (b) ParaIlel. (c) Hybrid 
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codes have been shown to achieve the performance closest to the Shannon limit they are 

outperformed by serial codes at very low bit error rates (10-~ or below) DDMP961. 

3.1.2 Encoders for Turbo Codes 

A turbo code is the common name for a parallel concatenation of recursive, systematic, 

convolutional codes separated by a random interleaver. The idea of parallel concatenation of 

convolutional codes (and the iterative decoding algorithm) was published in LYHH931 and 

[BGT93] simultaneously. The "turbo codes" in [BGT93] however, significantly outperformed 

the codes presented in LYHH931 due to the use of recursive, systernatic convolutional (RSC) 
codes. Fig. 3-3(a) gives an example of the recursive systematic version of the 4-state 

convolutional code introduced in Fig. 2-3. Systernatic codes are codes in which the input bits 

are copied directly to the output. Recursive codes possess a feedback structure, like an IIR 
filter. The reason for using RSC codes is left to the thorough explanations of menedettoM961 

and [BDMP96], which determine that they are necessary to achieve outstanding 

performance in a concatenated coding scheme. Turbo encoders use RSC codes with 4,8 or 16 

states as higher-order codes do not provide any significant performance improvement. Fig. 3- 

3(b) shows a turbo code composed of two 4-state recursive systematic convolutional codes. 

The natural rate of the encoder is U3 but higher rates can be achieved by puneturing or 

selecting only some of the bits to be transmitted. For example, a rate V2 code can be 

constmcted by transrnitting a bit alternating between the two coded bits each symbol 

interval. 

Fig. 3-3: (a) A 4-state recunive, systematic, convolutional code. The recursive nature of 
the encoder is highlighted by the shading and the systematic nature is indicated with a thick 
line. (b) A 4-state turbo encoder. The coded bits can be punctured to realize a rate 112 code. 
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3.1.3 Interleavers for Turbo Codes 

The single most important factor in the performance of a turbo code is the interleaver 

length. Interleaver lengths range fkom about 100 bits to 64k bits. The choice of interleaver 

permutation determines the asyrnptotic performance of the turbo code. Turbo codes suffer 

fkom a flattening of the BER curve known as an error floor. Careful selection of a 

permutation can help alleviate this effect. The most successful technique aims to preserve a 

separation or spread of at least S symbols between any two symbols in the interleaved 

sequence that were adjacent in the non-interleaved sequence [DivsalarP95]. Once computed, 

a permutation is stored in a lookup table of size N. As we will show, a turbo decoder needs to 

access the inverse permutation as well (deinterleaver) and therefore the permutation 

storage required in a turbo decoder is 2N. One proposal is to restrict the choice of 

permutations to the class whose interleaver and deinterleaver are identical at the expense of 

potential performance losses. This reduces the permutation storage requirements in the 

decoder to N. Recent work has shown that it is indeed possible to find these "symmetric" 

interleavers that perform as well or outperform randomly chosen ones iTakeshitaC981 

[HPG98]. Another solution is to use a linear feedback shift register (LFSR) with logzN 

memory spaces to generate a pseudo-random sequence. The interleaver is realized by 

writing the data in a memory sequentially and reading it out using the addresses generated 

by the LFSR. The deinterleaver writes the data in the permuted order and reads it out 

sequen tially [HYS98]. 

3.1.4 The Iterative Decoding Algorithm 

Maximum likelihood decoding of twbo codes is too complex to be practical due to the 

presence of the interleaver. Instead, a practical suboptimal decoding algonthm was proposed 

in [BGT93] that provides outstanding performance and low complexity. The idea is to use 

two forward-backward decoders to decode each of the component codes of the turbo code 

((hVk, x ~ ~ , ~ }  and {xsk, +2 k}) to get soR estimates of the information bits (ukJ The soft 

estimates are then circulated to the other decoder to be used in the next iteration of decoding 

to improve its estirnates. The new estimates are then distributed to the other decoder and so 

on. Berrou showed that the output of the forward-backward algorithm is a sum of the input 

scaled by a constant and the new information about the data bit extracted by the algorithm 

called the extrinsic information BGT93 1 : 
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Consider the turbo decoder shown in Fig. 3-4. The sofi dernodulator. whieh simply multiplies 

the input by W2, scales the received symbols so they can be combined with the extrinsic 

information. To compensate for this pre-scaling, we remove the multiplication by 2/a2 in the 

branch metric calculations inside each forward-backward decoder. The first fornard- 

backward decoder receives the channel information about the first code (y,, yCl) as well as a- 

priori information (2) about the information bits from the other decoder. The a-priori 

information is added to y,, which is the noisy systematic bit, to bring the new information to 

the decoder. After decoding, the a-priori infomation is subtracted from the log-likelihood 

ratio to leave the sum of the extrinsic infomation and the systematic received value. m e r  

interleaving to compensate for the interleaver in the encoder, the updated estimate of the 

information bits are used as a-priori information for the second decoder, which uses the 

other coded information y,z to decode the second code. The extrinsic information is extracted 

fkom the output, de-interleaved and then passed to the first decoder as a-priori information. 

One iteration of the process is defined as the use of two forward-backward decoders. An 

estimate of the information bits at the end of each iteration can be obtained by using a slicer 

on the log-likelihood ratio produced by the second forward-backward decoder. The 

complexity of the decoder is relatively independent of the power of the code since only small 

codes with 4 to 16 states are needed. The main factor in the code strength is the length of the 

interleaver, which increases the memory requirements and latency of the decoder. For high- 

speed operation, the feedback loop can be cut and the decoder can be unrolled into a 

pipelined sys tem. 

Fig. 3-4: The iterative turbo decoder. 

3.2 Previous Turbo Decoder Implementations 

In this section, we briefly review the existing hardware for turbo decoding p d l e l  

concatenated convolutional codes. We also include a recently developed high-speed software 

decoder. The important characteristics of the designs are summarized in Table 3-1. 
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This chip was developed by Cornatlas SA of France. The decoder integrates 2.5 iterations of 

8-state turbo decoding into a single 0.8 pm CMOS ASIC. The SOVA algorithm is used 

instead of the forward-backward algorithm for lower complexity The maximum decoding 

rate is 40 Mbps. 

3.2.2 TURBO4 [BCPT95] 

TURBO4 is a multi-chip turbo decoding solution built by France Telecom in 0.8 pn CMOS. 

Each ASIC, representing a single iteration, contains two 16-state SOVA decoders, an 

interleaver and deinterleaver. Multiple iterations can be achieved by cascading modules in a 

pipeline. The decoding rate is 40 Mbps. 

3.2.3 JPL FPGA [JPL1997][BDMP97] 

This FPGA turbo decoder consists of a single custom FPGA circuit board. A forward- 

backward decoder is implemented that is capable of decoding up to 64 states at interleaver 

lengths of up to 64k. Speed performance figures have not been published but persona1 

communications with JPL indicate the decoder operates roughly at  10 Kbps. 

3.2.4 University of Dresden FPGA [Koora98] 

This FPGA turbo decoder implements an &state SOVA decoder in a single FPGA. 
Performance is 14 Mbps with a planned future version running at 30 Mbps. The maximum 

interleaver length is 448 which is slightly longer than the length of an ATM frame. 

3.2.5 University of South Australia FPGA [Pietrobon98] 

This FPGA design utilizes multiple circuit boards to realize a pipelined turbo decoder. The 

interleaver is programmable up to 64k, and a wide range of code rates can be selected. The 

turbo decoder modules are composed of log-forward-backward algorithms that calculate the 

state metrics in a serial manner. A 16 state code with an interleaver length of 64k can be 

decoded at 356 Kbps. Although a turbo decoder speed for a 4-state code was not quoted, a 

speed of 624 Kbps was reported when using the decoder as a 4-state stand-alone FB decoder. 

We therefore predict that this speed probably can be extended to turbo decoding as well. 

3.2.6 University of Michigan MIC [HYS98] 

This ASIC integrates 4 iterations of a block-based turbo decoder in a 0.6 pm CMOS process. 

The 16-state component decoders use the MAX-LOEFB algorithm. The highest reported 

speed is 1 Mbps. 
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3.2.7 University of California San Diego FPGA [HOCS98] 

This decoder is implemented on a reconfigurable FPGA system called the ReConfigurable 

Processor Board (RCP). The number of states is configurable fkom 2 to 512. The maximum 

interleaver length is 64k. A nice feature of this decoder is that number of bits used to 

represent the data is programmable. The decoder has been implemented in VHDL and is 

currently being tested in hardware. 

3.2.8 Communications Research Centre Software [CRC98] 

The Canadian Communications Research Centre (CRC) has developed an ultra-fast turbo 

decoder for Pentium-II class PCs. The decoding algorithm reported is an "approximate APP" 
algorithm which we think is probably an integer arithmetic implementation of the forward- 

backward algorithm. The output of the MAX-LOG-FB algorithm is adjusted after each 

iteration by a correction factor. The decoding speed is 400 Kbps for 4 iterations on a 400 MHz 
Pentium II processor. 

Table 3-1: Summary of Turbo Decoder Implementations 

Design Technology Interleaver 1 M ~ ~ ~ ~ d  1 Y 1 Longth 

1 0.8 pmCMOS 1 40 1 16 1 2048 1 SOVA 

Component 
Decoder 

1 FPGA 1 0.01 1 up to 64 1 up to 64K 1 LOG-FB 

1 FPGA 1 14 1 8 1 up to 448 1 SOVA 

FPGA 0.356 
(16 state) 

LOGFB 

(4 state) 1 
MAX-LOG-FB 

FPGA 1 ? LOGFB 

Software 
400 MHz PII 

ualimi ted MAX-LOGFB 

This Work FPGA 1 0.75 LOGFB 
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3.3 Design of a Hardware-Ready Turbo Decoder 

This section describes the design of a turbo decoder intended for hardware implementation. 

Previously published information on turbo decoder implementations has been very vague 

about the design choices and implementation issues. The goal of this section is to document 

the design process of a turbo decoder. 

3.3.1 Simulation of the Turbo Code 

The first step in the design of the turbo decoder is the selection of an appropnate turbo code. 

We decided to use the 4-state turbo code selectable between rate Y2 or rate 1/3 with an 

interleaver length of 1024 (see Fig. 3-3(b)) on an AWGN channel. Interleaver lengths of 16K 

or 64K are only useful for squeezing out the last bit of performance near the Shannon limit. 

For more practical decoding applications, the interleaver length of 1024 represents a 

medium size interleaver that offers a reasonable mix of performance, memory requirements 

and latency. Some examples of applications that would benefit from a block size ranging 

from 100-1000 bits are IS-136 wireless transmission (162 bits) and ATM (424 bits), The four 

state codes were chosen to facilitate the design of a fully-parallel state metric unit. We will 

show in Section 3.4 that for our chosen architecture it is convenient to keep the number of 

states low to conserve memory bandwidth. For the turbo decoder we have naturally chosen 

the forward-backward algorithm for the constituent decoders. The decoder will be 

implemented in the logarithmic domain as described in Section 2.2.3. 

Simulations were performed on a SUN workstation to determine the performance 

characteristics of the turbo code. Benchmark results are very scarce in the turbo decoding 

literature since it is necessary to know the exact interleaver permutation to perform an 

accurate comparison. Montorsi has published a set of turbo decoding results for the exact 

code that we have chosen to implement [Montorsi98]. The interleaver permutation was 

included with the results. Fig. 3-5 shows our benchmark floating point simulations of rate 1/ 

3 and rate 1/2 turbo codes. We have found that the performance of the code does not improve 

beyond 10 iterations. Montorsi's results for the rate l/3 turbo code have been superimposed 

in Fig. 3-5(a). As a comparison with conventional convolutional codes we have plotted the 

performance of a rate 1/2 64-state RSC decoded by the FB algorithm (blocksize 1024) in Fig. 

3-6. The turbo decoder uses (2 x # iterations) FB decoders and so a 64-state FB decoder is a 

fair comparison to a turbo decoder with 1-10 iterations. 
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Fig. 3-5: 4-state turbo code performance. lnterleaver length 1024. (a) rate 1/3. (b) rate 112 

. . . . . . . . . . . . .  
. a . . . . . . . . . . . . . .  -O-. . . . . . . . . . . . . . . .  I uncoded 
. . . . . . . . . . . . . .  - 64-state RSC 

Fig. 3-6: Performance of a 4-state turbo code and a 64-state RSC 
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3.32 Approximating the Channel SNR 

One of the difficulties in turbo decoding is estimating SNR of the channel in the soft 

demodulator. Hoeher has suggested that using a fixed estimate of the SNR does not degrade 

performance [Hoeher97]. Our simulations in Fig. 3-7 show that this is hue on an AWGN 

channel using an estimate of 1.0 dB in the sofi demodulator. We note however, that this 

result does not likely hold in fading channels where a more sophisticated estimation 

algorithm is probably required [ReedA97] [SummersW98]. A fixed SNR estimate also helps 

control the dynamic range of the metrics 

Fig. 3-7: Approximation of the noise variance in the soft demodulator. 
Shown are iterations 1,s and 10. (a) rate 113. (b) rate 112. 

3.3.3 Fixed-Point Turbo Decoding 

The next step in the design of the decoder is to determine the wordlength and format 

required for a tixed-point integer implementation. Since both positive and negative numbers 

are required, two's complement notation was used as described in Fig. 3-8. We define the 

wordlength WL as: 

WL = I + WL, + WLF (3-2) 

for a word with one sign bit, WLr integer bits and WLF fiactional bits. Saturating arithmetic 

operations are used so that a number that lies out of the range of the representation is 

assigned the most positive or most negative value as appropriate. 
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Fig. 3-8: Wordlength WL fixed- 
point representation with WL, 
integer bits and WLF fractional bits. 

Simulations show that the FB decoders need an WL = 8 bit representation with WLI = 4 and 

WLF = 3 for the interna1 branch metrics, state metrics and soft-output calculations. Al1 

values extemal to the FB decoders need only a WL = 6 bit representation with WLI = 3 and 

WLF = 2. This includes the output of the A D  converter and the extrinsic info exchanged 

between decoders and in the interleavers. Not surprisingly, some previous work came to the 

same conclusions about the total number of bits required [Pietrobon98I1. However, since the 

performance of the decoder was not compared to one with infinite precision then the trade- 

offs in making such s choice were not apparent. In [RHV97], such a cornparison is made for a 

16-state code with interleaver length of 1024 and 8 iterations. A loss of 0.2 dB at BER = 10-~ 
is reported using a quantized version of the log-FB algorithm relative to a floating-point FB 
algorithm. The authors report an overall loss of about 0.5 dB. Four bits were used for the 

input data and eight bits were used for the metrics in the FB decoders. 

The next task is to determine the size of the LUT required to represent the correction factor 

f (x) = ln ( i + exp (-lx( )) in the MAX* operation. We first considered eliminating the table 

completely and implementing the max-log-FB algorithm as some authors have suggested 

m g $ ] .  Simulations shown in Fig. 3-9 (floating-point) motivate the need to find an efficient 

way of implementing the complete log-FB algorithm so the focus shifted to minimizing the 

size of the lookup table. Previous work reports lookup tables of 2k x 16 [BDMP97] and 81 x 4 

[Pietrobon98]. If more than one state metric generator is to be implernented in parallel then 

multiple copies of the table are needed, which is cumbersome for the LUT sizes reported. 

Good results are reported in [RHV9'7] for an 8-word LUT but it is not clear in their reference 

whether this refers to the FB algorithm alone or to turbo decoding. The reference is likely to 

turbo decoding since the max-log-FB and log-FB algorithms have identical hard decision 

performance. Since we use an 8-bit representation with 5 integer bits and 3 fkactiond bits, 

the smallest value of flx) we can represent is 118 corresponding to a maximum value of x of 

1. The scaling used in [Pietrobon981 is not the same as in this work. 
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about 2.0 Our simulations show that for +l/-1 signalling and using a k e d  S N R  estimation, 

the following d e  provides excellent results [GrossG98]: 

Fig. 3-10 shows the function f(x) and the approximate function we have implemented. The 

implication of the above rule is that the lookup table for fl x) can be reduced to a simple logic 

circuit, which either adds or does not add a constant to the output of the maximum selection 

circuit. The sirnplified circuit we have implemented is shown in Fig. 3-11. The difference, d, 

from the maximum circuit is used as input to the correction function circuit. We check if the 

number is less than 2.0 by considering the upper 4 bits. For positive numbers, they will al1 

be zero if the number is strictly less than 2.0 and for negative numbers they will al1 be ones 

if the number is less than or equal to -2.0. This is the reason for the asymmetry of the rule. 

The correction circuit generates a 1 or a O that is repeated and padded with zeros at  the 

input to the final adder to form the 3 bit number 00000011 (0.375) or 00000000 (0.0). The 

new simplified circuit has the added advantage of only requiring the difference X-Y and does 

not need the difference YX. We briefly note that in full-custom VLSI implementations, the 

difference Y-X can be made available for free at  the output of the subtractor and pass 

transistor logic can be used to implement an &LUT with 60 transistors. The new simplified 

circuit can be implemented with 20 transistors. Synthesis to standard cells in 0 . 5 ~  CMOS 
results in a 40% area savings. The savings are even more pronounced when considering 

FPGA or DSP applications. In these cases, the LUT may require storage in memory, possibly 

creating a memory bottleneck2. The simplified nile does not suffer from these restrictions. 

Fig. 3-12 shows the results of the simulations including al1 of the simplifications; fixed SM( 
estirnate, quantization and simplified operation. The simplified decoder has 

performance comparable to the ideal floating point decoder. 

The simulations shown here were al1 performed with the sofi-demodulator implemented in 

floating-point arithmetic, in other words, before the 6-bit A/D converter. It may be desirable 

however to place the soft demodulator after the A/D converter. We investigated the effect of 

irnplementing the soR demodulator as a 64 x 6 LUT and plot the results in Fig. 3-13. At a 
BER of  IO-^ there is a small loss of 0.15 dB at  R = î/3 and 0.1 dB at R = i / 2 .  

2. Some FPGAs have configurable memory blocks that could be used to implement a LUT. 
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Fig. 3-9: Cornparison of floating point turbo decoden using log-FE (MAX' operation) and the 
max-log-FB (MAX operation) constituent decoders. Gstate codes, interleaver length 1024. 
lteratiok 1, 5 and 10 are shown. (a) rate 1/3. (b) rate 1/2. 

1 

1 

O 
I 

1 2 3 4 5 6 
I 

Fig. 3-10: A~proxirnation of the correction function 
f(x) in the MAX operator. 

w 
Fig. 3-11: Simplified MAX* circuit. 
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Fig. 3-12: Performance of the simplified hardware-ready turbo decoder compared to the ideal 
floating point turbo decoder. Cstate turbo code. interleaver length 1024. 1 and 10 iterations 
shown. (a) rate 1/3. (b) rate 112. 

Fig. 3-13: Effect of implementing the soft dernodulator after the N D  converter as a 64 x 6 LUT 
compared with the ideal floating point turbo decoder. 4-state turbo code, interleaver length 1024. 
1 and 10 iterations shown. (a) rate 113. (b) rate 1/2. 
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3.4 TORBO-TM2: An FPGA Implementation 

3.4.1 The Transmogrifier-2 (TM-2) 

The Transmogrifier-2 (TM-2) is a multi-FPGA reconfigurable system [LGVRC98]. The goal 

of the TM-2 is to provide a scalable testbed for rapid prototyping. The TM-2 is made up of a 

number of circuit boards, each containing two large Altera 10k50 FPGAs, 4 1-Cube crossbar 

routing switches and up to 8 Mbytes of SRAM. The newer TM-2A revision uses lOklOO 

FPGAs. When complete, the TM-2A will consist of 16 such boards giving a total 

programming capacity of 2 million gates. Fig. 3-14 is a photograph of one board of the TM-2. 
The TM-2 can be programmed using HDLs such as VHDL, Altera's proprietary AHDL or the 

TM-2 specific C-based Transrnogrifier C [Galloway95]. From the user's (designer) point of 

view, the details of the TM-2, such as routing between FPGAs, were not important. We 

essentially see it as a big collection of gates, with one exception. Currently, the TM-2 
compiler software does not automatically partition a design among the FPGAs so that task 

has to be done manually Communication with a host SUN workstation is via a 4-bit "nibble" 

bus that is handled on the FPGAs by an automatically generated circuit. Each of the two 

FPGAs can simultaneously access two 64-bit wide SRAM banks. 

Fig. 3-14: Photograph of one board of the TM-2. 1. Altera 10k50 FPGAs. 2. 1-Cube 
crossbar switches. 3. SRAM banks (unpopulated). 

34 
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3.4.2 System Architecture 

TORBO-TM2 is a configurable Pstate turbo decoder implementing one log-FB algorithm 

block that is reused to produce the desired number of iterations. Although the code 

construction is fixed to the 4state code described above, the interleaver length, permutation 

and number of iterations are user selectable. The inputloutput parameters are described in 

Table 3-2. The TORBO-TM2 system architecture is shown in Fig. 3-15. The design is 

pwtitioned into two FPGAs. The entire turbo decoder easily fits into one lOklOO FPGA but 

the second FPGA is needed to provide access to a third bank of RAM. The SUN workstation 

prepares the 6-bit quantized input data by generating random bits, encoding them, and 

adding Gaussian noise. Currently, the soft-demodulator is also contained in the workstation 

sothoare, but this could be migrated into the decoder by using the LUT described in Section 

3.3.3. The LUT could be placed in the unused bank of RAM connected to FPGA-1. The data 

bits are sent to the decoder along with the soft input and compared to the hard decisions a t  

the end of the decoding process. The number of errors detected is sent back to the 

workstation. The soft decisions themselves are not sent back to the SUN to conserve 

bandwidth on the communications link, which is cumently very limited. The SUN 
workstation also generates the interleaver permutation and sends it to the decoder during 

its initialization phase. Almost al1 of the functionality of the decoder is in FPGA-O, which 

reduces the number of pins required to route signals between the two FPGAs. The RAM 
banks alone use more than half of the pin budget of FPGAO (e.g. 174/304 user pins on a 

10k50). 

Table 3-2: TORBO-TM2 UO parameters. 

Signal ( I/0 1 #bits 1 Value 1 Description 

CLK 1 input i 1 1 {O,lI 1 clock 

ITER 1 input 1 5 1 1-31 1 # iterations 

ERROR-COUNT 1 output 1 16 ( 0-65535 ( # decoding errors 

The decoder is made up of four main blocks: A datapath, control unit, host interface and 

memory controllers. The data block transferred fkom the SUN workstation is stored in 

SRAM. Each iteration of decoding is divided into two half iterations (one FI3 algorithm), 

which in tum are divided into forward and backward passes for a total of four stages per 
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iteration. In the first stage, the data is read from SRAM and the forward state metrics are 

calculated and stored in another SRAM. In the backward stage, the data is read again to 

calculate the backward state metrics that are combined with the stored forward state 

metrics to create the log-likelihood ratio and extrinsic information. The extrinsic 

information is stored in a permuted order back in the SRAM where it will be read out during 
the next two stages, which represent the second FB decoder in the turbo decoder. The second 

decoder pmceeds in a sunilar fashion except that the results are stored using the inverse 

permutation so that it is in the original order. The interconnection and schedule that govern 

the decoder will be described in the following sections. 

Fig. 3-15: TORBO-TM2 system architecture. 

3.4.3 Interface to the SUN Workstation 

The TM-2 is connected to the SUN workstation via a &bit 'nibble busn. The TM-2 compiler 

automatically generates a circuit that handles the data transfers over the nibble bus and a 

software ports package is provided on the host side. Unfortunatelx this bus was not 

designed for high-speed transfer and currently the turbo decoder is not expected to be able to 

decode at real-time speeds. An S-bus interface for the TM-2 is being planned and will help 
alleviate this problem. 

The interface unit controls the transfer of the interleaver permutation and the input data to 

the decoder from the host as well as retuming the b h k  error count to the host. The 



lmplementation of a Turôo Decoder 

interface unit is a state machine that implements a handshaking data protocol. The 
interface signals are summarized in Table 3-3. 

Table 3-3: UO signals to the interface unit. 

Signal 1 y0 1 #bits 1 Description 

SUN-DATAJN 1 input 1 shared between the interleaver 
permutation and input data 

SUXDATA-OUT 1 output 1 16 1 error count 

WANTED-IN 

READYJN 

READY_oUT I output indicates that data for the host is 
valid 

output 

input 

indicates that the host received 
the data 

3.4.4 Memory Controuer 

1 

1 

1 

The memory controller is a synchronous interface between the FPGA circuits and the SRAM 
banks. The main purpose of this unit is to covert the tri-state data bus to separate input and 

output signals. The TM-2 memory control register is 5 bits wide while the TM-2A uses a 10- 

bit register. The IO-bit control word used in the turbo decoder is translated to the correct 

format by the memory controller. This means that when migrating h m  the TM-2 to the TM- 

2 4  only the memory controller needs to change. 

indicates the TM-2 wants to 
receive data 

indicates that data for the TM-2 
is valid 

3.4.5 Datapath 

The datapath of the turbo decoder consists of: a branch mehic generator (BMG), state metric 

generator (SMG) and a log-likelihood ratio generator (LLRG) as shown in Fig. 3-16. 

The BMG is shown in Fig. 3-17. Appendix A lists the equations for the log-FB algorithm 

used in the decoder. For the log-FB algorithm we cal1 the received data (ysBk, ylk, A&) the a- 
priori information for the first decoder q , k  and the a-priori information for the second 

decoder zz,k For the upper RSC of the turbo code, the four possible branch metrieri are 0, y,& 

+ zlb ylh and (yst + qk) + yi,k The possible branch metrics for the lower RSC are 0, zz k, 
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y2k and zz,k + y%. Multiplexers select the appropriate input depending on whether the FB 

algorithm is decoding the upper o r  the lower constituent code. 

The Mly-parallel state metric unit that calculates both forward and backward state metrics 

is shown in Fig. 3-18. The critical path in the decoder is the state metric unit because of the 

feedback loop. When the backward metrics are being calculated, the branch metrics are 

added to the previous state metrics and these values are sent to the LLRG. The exact 

grouping of state and branch metncs is derived in Appendix A. This simplification 

eliminates repeating the same calculation in the LLRG. Alternatelx the forward state 

metrics could be used in the grouping, but this would mean that 8 state metrics would have 

to be stored in rnemory instead of 4. The state metrics are normalized by subtracting the 

largest value at  each time step from al1 of the metrics. Finding the maximum is time 

consuming especially considering that this operation is in the critical path of the decoder. 

Unfortunately, our simulations showed that alternative normalization techniques such as 

subtracting a constant value from al1 of the state metrics, were not effective. The LLRG that 

operates in parallel with the SMG is shown in Fig. 3-19. 

Fig. 3-20 shows the circuit used as a saturating adder in al1 datapath operations. We used 

the Altera MAX-PlusII sofiware to compare the speed and area of the saturating adder using 

three &bit component adders: a c a r r y  propagate adder (CPA), carry look-ahead adder (CPA) 
and an Altera provided module (LPM). The results shown in Table 3-4 indicate that there is 

no advantage to using the LPM adder or CLA adder over the CPA for &bit adders. 

Table 3 4  Speed and area of the aaturating adder using different component adders 

8-bit CPA 

8-bi t CLA 

&bit LPM 1 28 1 29.7 
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L 

Fig. 3-16: TORBO-TM2 datapath. 

Fig. 3-17: Branch Metric Generator (BMG). X is the systematic 
input, Y is the coded input and Z is the a-priori information input. 

SM-O 

SM-1 

SM-2 

SM-3 

Fig. 3-18: State Metric Generator (SMG). FB-i are the values of the previaus state metrics from the 
feedback path. The INIT signal selects the initial state metrics. SM-i are the new state metrics. All 
values not othewise indicated are 8 bits. 
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Fig. 3-19: Log-likelihood Ratio Geneiator (LLRG). FSMJ are the foiward state 
metrics recalled from SRAM. ql are the sum of the backward state rnetrics and the 
branch metrics as described in Appendix A. All values are 8-bit unless otherwise 
indicated. 

Fig. 3-20: 8-bit saturating adder. SUM = A+B if the result can 
be reptesented in the 8-bit format otherwise SUM = 01 1 11 1 11 
(most positive number) or 10000000 (most negative number). 
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3.4.6 Control Unit 

The control unit directs the decoding process by contmlling the operation of the other units 

and the SRAMs. In this section we describe the processing schedule and use of the SRAMs 

implemented in the control unit. We note that the SRAMS are addressed starting at location 

1 and not O because location O may be overwritten upon TM-2 initialization. The SRAMS are 

64-bits wide and individual bytes can be selected for reading and writing. This is why we use 

multiples of 8-bits to hold data that is only quantized to 6-bits. A variable name in this 

section actuaily refers to a block of values. The interleaver length is N. Note that the 

transmitted data cornes in blocks of N+2 words, the extra two words are used to force the 

encoder state to zero. The variables involved in the memory schedule are described in 

Table 3-5: 

Table 3-5: Variables involved in the memory schedule for TORBO-TM2. 

U I I I N I  expected bit values 

Name 

XI 1 6 1 N+2 1 received systematic values 

# bits 1 block zer description 

received terminating sequence for the 
lower code 

YI 1 6 1 N+2 ( received upper coded values 

Y2 1 6 1 N+2 1 received lower coded values 

16 1 N 1 inverse interkaver permutation 

Z 

W 

A 

1 

The interleaver is implemented differently than is usually described. The standard 

procedure is to write an array of values in sequential order and then read them out in a 

permuted order. Our schedule uses sequential reads but out-of-order writes to simpli@ the 

control due to a limited number of independent memory ports. The only difference is that 

interleaving is done using the inverse permutation and de-interleaving is done using the 

regular permutation. 

6 

6 

32 

16 

N 

N 

N+2 

N 

a-priori information. 

extrinsic information 

forward atate metrics (4 x 8 bits) 

interleaver permutation 
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Assume the input data is initially in RAM-A. If this is the e s t  iteration, Z will be set to 

zeros, otherwise it is the a-priori information provided by the previous iteration. The 

interleaver permutation and inverse permutation are stored in RAM-B. The "tail" X2 is 
stored in the appropriate location in RAM-C. Each iteration can be broken down into two FB 
passes each with two recursions for a total of four stages, FORWARDO, BACKWiiRDO, 
FORWmD 1 and BACKWARDl: 

FORWARW: the received data for the upper code (XI, Yi) and the a-priori information (2) 

are read from R A M A  and used to calculate forward state metrics (A) that are stored in 

RAM-B. The coded information for the second code (Xz) is transferred to RAM-C. 

BACKWARDO: the received data (XI, YI) and a-priori information (2) are read from RAM-A 
again and the backward state mehics are calculated. The extrinsic information (W) is 
calculated, interleaved, and stored in RAM-C. The expected bit decisions (U) are also read 

kom RAM-A, interleaved, and stored in RAM-C. 

FORWARDI: W, X2 and Y2 are read fkom RAM-C and used to calculate the forward state 

metrics (A) that are stored in RAMB. 

BACKWARDl: A, W, X2 and Y2 are used to calculate the backward state metrics and the 

log-likelihood ratios. The extrinsic information derived from the LLRs is deinterleaved and 

stored in RAKA (2) where it is available for the next iteration. The expected decisions, 

interleaved during BACKWARDO are compared with the hard decisions (sign bit of the U R )  
and the error count is updated. 

The procedure is shown in Fig. 3-21. The forward stages take N+2+2 clock cycles and the 

backward stages take N+2+3 cycles due to the latency introduced by the datapath pipeline. 

The overall decoding efficiency of one iteration is therefore: N/(4N + 18) decoded bits/ clock 

cycle. The total memory required is 40(N+2) + 64(N+2) + 24(N+2) bits or  16(N+2) bytes. For 

N = 1024, this corresponds to just over 16Kbytes. With the current interface scheme, the 

total tirne to decode one block is actually dominated by the transfers to the TM-2 from the 

host. With an improved interface, the received blocks could be buffered in memory and the 

decoder could decode at its maximum speed. 

3.4.7 Logic Synthesis and Performance 

The decoder was described in VHDL and was verified against the C simulation as a 

benchmark. The VHDL simulations showed that the decoder provided the exact same bit- 

for-bit results as the C simulation and therefore the FPGA decoder is expected to perfimn as 
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I 1 1 1-' 

E 
i? FORWARDO 

Fig. 3-21: TORBO-TM2 memory schedule. 

the simulations in Section 3.3.3 predict. FPGA-O, which contains most of the logic, occupies 

3343 logic blocks or  66% of a lOklOO FPGA on the TM-2A. FPGAl uses 127 logic blocks (2%). 

The Altera MAX-PlusII software reported that the design would operate at 3.66 MHz. The 

actual speed of operation is expected to be lower due to the routing through the 1-cube chips 

and miscellaneous circuits on the TM-2. If the data transfer bottleneck can be eliminated by 

developing an S-bus interface, the decoding rate is expected to be 

where f is the decoder 

iteration decoder would 

speed in Hz. For example, if N = 1000 and f = 3 MHz, then a 5 

decode 149 kbps and a 10 iteration decoder would decode 74 kbps. 
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3.5 summary 

This chapter described the design of an FPGA turbo decoder. The main contributions of this 
chapter are: 

Turbo decoding can be implemented efficiently with small wordlength integer arithmetic 

(&bit maximum) with low losses in BER performance. 

The MAX* operation can be implemented with a very small lookup table. A novel circuit 

realizing the simplified MAX* operation was introduced. 

An FPGA implementation of a turbo decoder, TORBO-TM2 was described. 



Chapter E I  
A Soft-Output Partial 
Response Detector 

Magnetic disk drives are an example of a communication system that exhibits intersymbol 

interference (ISI). In recording, the information transmission is not through space as in 

most communication systems, but rather in time. Nonetheless, the same models of ISI and 

error-control coding can be applied. Modern disk drive read channels have adopted the 

Viterbi algorithm to combat ISI as recording densities increase. This chapter introduces a 

novel soft-output detector for magnetic recording read channels. Section 4.1 is a brief 

introduction to the PR4 signalling scheme and the special difference-metnc Viterbi 

algorithm (DMVA) used to decode it. An analogous soft-output difference-metric forward 

backward (DMFB) algorithm is denved in Section 4.2. Section 4.3 describes VLSI 
architectures for the DMFB. PRONTO-1, an ASIC implementation of the DMFB is described 

in Section 4.4. Finally, Section 4.5 summarizes the main contributions of this chapter. 

4.1 Partial Response for Magnetic Recording 

4.1.1 Class-IV Partial Response for Magnetic Recording (PR4) 

As hard disk recording densities increase, the pulses detected by the magnetic read head 

interfere with each other introducing intersymbol interference (ISI). Modem disk cirive read 

channels use a known mode1 for the ISI to combat it in the receiver with advanced signal 

processing. Partial response signalling is a technique where a controlled amount of 

intersymbol interference (ISn is introduced into a communications system to shape the 

spectrum of the transmitted signal. For example, partial-responae systems can be realized to 

elirninate fkequency components that the channe1 cannot effiuently transmit, such as DC or 
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high-ftequencies. The ISI can be modeled by a FIR filter (tapped feedforward shiR register), 

much like a convolutional encoder with real instead of modulod addition. The output of the 

encoder is therefore multi-level. Partial-response FIR filters have the general transfer 

function 

shown in Fig. 4-1 where D is a unit delay. 

Fig. 4-1: The general structure of an FIR filter that models the 
partial response transfer function of Equation 4-1 . 

Class-IV partial response (PR41 signalling for magnetic recording was proposed by 

Kobayashi in [Kobayashi'll) ' and has the transfer function: 

Fig. 4-2 illustrates the impulse and fkequency responses of PR4 signalling. A consequence of 

F(D) being dependent only on D~ is that the transfer function can be broken down into two 

independent time-interleaved l-D functions. The detection problem therefore is reduced to 

decoding unit memory ISI which can be easily done with 2-state Viterbi detectors as shown 

in Fig. 4-3. 

4.1.2 The Ditference Metric Viterbi Algorithm 

The Viterbi detector required to decode PR4 signalling has just two states. A well known 

property of the VA is that a constant value can be subtracted from al1 of the state metrics at 

1. As recording densities increase, extended class4V partial response (EPR4) with trader 
fundion F(D) = 1 + D - D~ - D~ is becoming more popular. 

46 
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Fig. 4-2: PR4 impulse response (a) and frequency response (b). 

VA for 1-D -Ll- 
Fig. 4-3: A PR4 decoder can be built with two independent 
time-interleaved 1-0 decoders. The Viterbi decoders are 
clocked at 1/2 the channel rate. 

each time interval without affecting the correctneas. This property is often used to limit the 

dynamic range of the state metrics through renormalizing. Applying this concept to a two- 

state trellis, it is possible to distribute only one value, the state metric difference between 

stages of the trellis instead of the individual state metrics. This idea is the basis of the 

difference metric Viterbi algorithm (DMVA) introduced in [Ferguson72]. 

Although the DMVA can be applied to any partial response system of the form: 

we present the specific case of PR4 signalhg where p = 1 without loss of generality. Define 

the difference rnetric as: 
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The DMVA compares the difference metric a t  each stage to the received signal yk and 
updates it as: 

where the graphics on the right hand side correspond to the update required in the 

traceback unit. The operation in Equation 4-5 is a type of adaptive limiter that has efficient 

digital FKSTOB] and analog implementations [SJM98]. A consequence of the limiter 

operation is that the value is either passed through to the next stage, or a new value is 

brought in, which eliminates cumulative calculation e m r  and also the need to re-normalize 

the metrics. 

4.2 The Difference Metric Forward-Backward Algorithm 

The difference metric fonvard-backward algorithm (DMFB) is a soft-output detector for two- 

state partial response systems with the form of Equation 4-1 such as PR4 signalling. 

4.2.1 Motivation 

The first question to be answered is what is the use of soft outputs in the PR4 channel. We 

motivate the need for soR outputs by considering the classical serial concatenated system in 

Fig. 4-4 that was introduced in Chapter 3. The inner code in this case is the PR4 FIR filter 

and the outer code is chosen to be the 4-state RSC shown in Fig. 3-3(a). The choice of outer 

code is rather arbitrary and we could substitute a higher power code in its place. 

Fig. 4-4: Concatenating a convolutional code with PR4 signalling. The 
information shared between the two decoders can either be hard or sok 

The standard way of implementing the PR4 decoder is the difference metric Viterbi 

algorithm. Of course, since it c m  only produce hard outputs, some vital infornation has 

been thrown away. It would be nice to be able to provide sofi information to the RSC decoder 

to improve the performance. In fact, the simulation results of Fig. 4-5 show that a soft PR4 
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decoder using the forward-backward algorithm provides a 1.8 dB improvement at  a bit-error 

rate of IO-? Also plotted is the performance of the approximate forward-backward algorithm 

which uses MAX instead of MAX*. We will show in Section 4.3 that it may be much more 

convenient to implement the MAX forward-backward algorithm and these simulations show 

that the soft outputs generated are nearly as good as the optimum soft-outputs. 

Fig. 4-5: Bit-error rate performance of a serial concatenation of a Gstate 715 RSC with 
PR4.The blocksize is 1 K bits. A soft PR4 detector provides 1.8 dB of gain over a hard output 
detector at a BER of IO-? The approximate forward-backwarc! algorithm using MAX as the 
arithmetic kernel performs nearty as well as the optimum MAX algorithm. 

The second question concerns complexity. The simplicity of the DMVA is very attractive in 

terms of VLSI implementation and leads us to ask if there is an analogous implementation 

for the forward-backward algorithm. Intuitivelx the prospects are encouraging since the 

forward-backward algonthm is essentially two Viterbi-like algorithms running in opposite 

directions. In fact, a difference metric forward-backward algorithm (DMFB) does eaoist as we 

will show in Section 4.2.2. In Section 4.3, we will further develop the MAX version of the new 

DMFB algonthm and show that the same limiter structure nom the DMVA c m  be used. 
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4.2.2 Derivation of the Algorithm 

The difference metic  forward-backward algonthm can be applied to any two-state partial 

response trellis where the information bit labels on the two branches entering each state are 

equal. This fact, noticed by Gaudet, will allow the algebraic manipulations that reveal the 
difference mehic implementation [GaudetgB] . 

Consider the partial response system with ttansfer function 

F(D) = i + p D  (4-6) 

as show in Fig. 4-6. The h o  states are labelled -1 and +1, the input symbols are -1 and 1 and 
the time index is k. 

Fig. 4.6: The partial response system with transfer function F(D) = 1 + pD. 

The branch probabilities for received symbol yk are: 

The forward recursion can be expressed as: 
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and the backward recursion as: 

We write the expression for the LLR expiicitly: 

The structure of the trellis lets us factor out Fk: 

The resulting expression contains the forward recursion equations. Substituting Equation 4- 

8 into Equation 4-11 we get: 

The LLR is now expressed in t ems  of a sum of the quotients of forward and backward state 

probabilities. Since al1 the state probabilities can be scaled by the same number without 

affecting the comectness of the algorithm, the recursions can propagate the quotient of the 

state probabilities instead of the h o  individual probabilities. In the log domain we would 

express Equation 4-12 in t ems  of the difference metrics Ak and Bk: 

where 

So the algorithm is reduced to recursively calculating a single forward metric, recursively 

calculating a single backward metric and then simply adding them together. 
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To derive the fornard difference metric recursion equation, use Equation 4-8 to write: 

Substituting the expressions for the branch probabilities fkom Equation 4-7, followed by 

dividing and simplifying we get: 

In terms of the difference metric and the MAX* notation: 

Similarly, the backward recursion is: 

For a block-based decoder, the starting and ending states are forced to -1. The initial values 

of the recursions are: 

W e  note that the initial values of the difference metrics are never actually used in the U R  
calculation, which only needs to decode symbols at k = 1 .. .N - 1 . 
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Substituting A. and Bo into the expressions for Ai and BN-l we get: 

= lim 
6- 

and 

which eliminates the need for infinite values anywhere. For a sliding window 

implementation, the ending states are equiprobable and 

4.2.4 Normalization and Overflow 

The DMFB is equivalent to explicitly calculating both states and then subtracting one from 
each to normalize the state metrics. The redundant value of zero does not need to be 

propagated. The DMFB is therefore self-normalizing. Overfiow can occur at  large values of 

the SNR, just as in the regular formulation of the FB algorithm since there is a division by a 

very small noise variance in the branch metrics. Although not a practical concern in floating 

point arithmetic for most channels, the growth of the state metrics with increasing SNR can 

affect the wordlength required for an integer implementation. This issue will be considered 

and a solution proposed in Section 4.3, which describes practical VLSI imptementations. 

4.2.5 Summary of the DMFB for Class-IV Partial Response 

Branch Metrics 
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Forward Recursion 

A, = G;' 

A ~ + ]  = MAX*(A~G~:~)-MAX*(O,A~-G;C,) k = L . . N - 2  

* Backward Recursion 

B ~ -  = MAX'(B~, -G;;') -MAX'(O, B ~ -  G ~ I )  k = N -  1 ... 2 

soft Outputs 

L, = A,+Bk k = 1 . J - 1  

4.3 VLSI Architectures for Class-IV Partial Response 

4.3.1 The Limiter Form of the DMFB: MAX-DMFB 

We have shown that a difference metric formulation of the forward-backward algorithm does 

indeed exist. It then seems reasonable that if the MAX approximation of the FB algorithm is 

used, then the recursion update can be done using a limiter as in the DMVA. The 
simulations of Fig. 4-5 show that the approximation is reasonable. In fact, the soft decisions 

will be equivalent to those provided by Battail's SOVA [BattailB'l]. The MAX DMF'B that we 

will derive can therefore be thought of as an alternative derivation for a difference metric 

SOVA. 

If the MAX approximation is used, then the forward recursion becomes: 

for which there are the four distinct cases as illustrated in Fig. 4-7. Since the inputs to each 
MAX term are related, this imposes a constraint that makes the fourth case impossible. By 

considering the three possible cases, the new recursion becomes: 
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Equation 4-29 can be interpreted as the limiter in Fig. 4-8. A simiiar expression can be 

derived for the backward recursion: 

IMPOSSIBLE 

2 2 2 2 A k > 2 ( ~ k + i - l )  and ' k - - ( ~ k + l + ~ ) < ~  A k <  ~ ( ~ k + l - l )  and A ~ - ~ ~ Y ~ +  > O  
O 2 s a 

Fig. 4-7: The possible combinations of inputs to the forward recursion equation. 

Fig. 4-8: The limiter used as the update rule for the fomard recursion equation. 
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One of the advantages of the limiter formulation is that no arithmetic computation is 

required. At each recursion step, the input or one of the two threshold levels is copied to the 

output eliminating any calculation error propagation. 

The limiter enables us to build very fast circuits. To see this more ciear1~ we can rederive 

the same result from a hardware viewpoint. Fig. 4-9 shows the hardware implementation of 

Equation 4-28 as well as the limiter of Equation 4-29. The 'naive' circuit in Fig. 4-9(a) uses 

redundant hardware to implement the impossible case fkom Fig. 4-7. The final subtractor is 

naeded only when point Q is non-zero. i.e: 

This implies that Ak > ;(Yk + - 1 ) i.e., node P will always be: 
6- 

Therefore: 

A,+, = P - Q  

which is just one of the inputs, eliminating the need for the final subtractor. The critical path 

of the resulting limiter is just one adder and two multiplexers. Since only the MSB of the 

subtractions are used in the limiter, the adders can be replaced by comparator circuits 

resulting in a Compare-Select-Select (CSS) operation. 

(a) (b) 

Fig. 4-9: A limiter saves an adder in the critical path of the recursion hardware. 
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4.3.2 Eliminating the Noise V ' a n c e  Problem 

The presence of the noise variance in the branch mehic expressions complicatea the 

implementation of the DMFB. As mentioned in Section 4.2.4, the word length of the metrics 

needs to accommodate the smallest value of S. Multiplication is also a highly undesirable 
2 operation. These problems can be eliminated by simply eliminating the term from the 
6- 

branch metrics so: 

This is a valid solution since the new state metric at each stage is either one of the current 

branch metrics or the previous state metric. Therefore, each state metnc wïll take on the 

value of either the initial state metric or one of the 2(N-1) branch metrics each of the form in 

Equation 4-34. There is therefore no cumulative error in this approximation and the new 

soft output will simply be the desired value scaled by a h .  

4.3.3 The Sliding Window Architecture 

The sliding window architectures introduced in Section 2.3 can be easily applied to the 

MAX-DMFB. An efficient irnplementation (for Mb=DL) requires only 3 limiters and 4DL 

words of memory. Although the architecture for Mb =1 shown in Fig. 2-9 is not as efficient in 

the general case, it still provides a competitive alternative in the MAX-DMFB case where 

there is only one state metric propagated and DL will generally be small. The pipelined 

version of the architecture is shown in Fig. 4-10. This architecture is ideal for rapid 

hardware prototyping. Since the whole process is self-regulating, with no control unit i t  is 

easy to implement quickly as a proof-of-concept. 

shin register 
2L - -ci1 

Fig. 4-10: The sliding window MAX-DMFB for Mb = 1 .  
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An interesting computational challenge will now be considered. The backward recursive 

calculation is really not necessary in one sense because al1 of the inputs to the calculation 

(the branch metrics and the initial state metric) are always available in the shiR register at 

once. Therefore, in theory at least, al1 possible inputs and outputs could be tabulated in a 

very large lookup table (see Fig. 4-lHa)) PTzouD81J. Of course, a lookup table that large 

could never be practically built, and if it could, the access time would be a still be a h c t i o n  

of the table size. For example, if DL = 10, then with Say 6-bit input symbols the input address 

to the table would be 60 bits wide! A compromise is to use a tree-like structure with logZDL 

stages as proposed in [FetweisMSl] for the Viterbi algonthm (see Fig. 4-ll(b)). The question 

remains of how to implement the new type of processor required. Fortunately, the limiter 

concept we introduced provides an interesting and simple solution. 

LLR 

Fig. 4-11: Parallel processing of the backward recursion using (a) a lookup table or (b) A tree. 

The concept can be derived by a simple analogy with a high-rise building that has developed 

a leak in its roof (see Fig. 4-12). If each floor also has a hole in it, then assuming the floor 

dips towards the hole, the water will run along the floor until it falls through the hole. If the 

hole on two adjacent floors overlap, then the water can possibly pass right through both 

holes without ever creating a puddle on the floor! The chain of limiters in our problem are 

like the stack of floors in the building. Each floor represents the number line, with the linear 

part of the limiter represented by the hole and the cutoff regions represented by the concrete 

floor. The relative location of the hole is detennined by the value of the input symbols by way 

of the branch metrics. If al1 the floors of the building were tom out and replaced by a single 

floor with one hole in the correct place then the puddle in the basement would still be in the 

same place. 

The lookup table approach cdculates the equivalent overall limiter in one step while the 

tree approach uses rlog2DL1 steps by considering pairs of adjacent limiters. The new limiter 
bc t i ons  are then paired up and the calculation is repeated until the overall limiter function 



A Soft-Output Partial Response Detector 

is known. We will cal1 one of these new pmcessors an interual adjustment unit or IAU as 
shown in Fig. 4-13. The IAU uses one more multiplexer than two limiters and the delay is 

one multiplexer less than that of two limiters in series. 

Fig. 4-12: A graphical analogy to a chain of limiters. 
The chain can be replaced by a single limiter which has 
the sarne overall effect. 

Fig. 4-13: The Interval Adjustment Unit (IAU). (a) Symbol. 
(b) Example of IAU operation. (c) Algorithm. (d) Hardware 
implementation. 
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The tree architecture offers a trade-off between complexity and latency. We note that 

significant savings in  latency are only realized for large values of DL. The length of the 

critical path for the kee  architecture can be controlled by inserting pipeline registers where 

desired. A trade-off between memory and hardware is possible within the tree architecture 

by recognizing that some IAUs are performing redundant calculations since the same input 

was available to other IAUs at an earlier point in the shift register [Farhang-BoroujenyG941. 

An example for DL = 10 is shown in Fig. 4-14. 

LOJ 1 
LLR 

LOJ 1 
LLR 

Fig. 4-14: The tree architecture for the sliding window MAX-DMFB using lAUs and 
limites. (a) The full tree. Shaded arrows indicate intervals defined by two numben. The 
shaded lAUs are redundant and can be pruned. (b) The pruned tree using memory to 
replace hardware. 

4.4 PRONTO-1: An ASIC Implementation 

In this section we describe the design and implementation of a test chip for verification of 

the MAX-DMFB: PRONTO-1. The goal was to design a chip capable of decoding at least 100 

Mbps. For the test chip, only one MAX-DMFB detector was implemented. A complete PR4 
detector would include two identical detectors as depicted in Fig. 4-3. 

4.4.1 MAX-DMFB Detector Architecture 

The sliding window architecture of Fig. 4-10 was chosen because of its ease of rapid 

implementation. If a memory module generator were available, the more efficient three- 

processor architecture of Fig. 2-12 could have been used to avoid implementing a shiR 
register, reducing the power requirements. 

Simulations were performed to determine the performance of the PRONTO-1 chip. A 6-bit 

two's complement format with 1 sign bit, 1 integer bit and 4 fractional bits was used for all 

variables. The window length was chosen to be L = 9. The projected performance of the chip 

plotted relative to a floating point block-based fornard-bachard detector (N = 1024) is 

plotted in Fig. 4-15. There is a 0.3 dB loss a t  low SNR which disappears as the S N R  
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increases and the BER approaches the desired operating conditions. The architecture shown 

in Fig. 4-16 requires 10 limiters, 301 registers, a BMG and a two's-complementor, a MUX for 

initialization and a final 6-bit adder. 

10" t I 1 

. . . . . . . . . . .." ,.- - -.. .. - - - FB- floatln Polnt N - 1024 : 
U*X-DM~: 6-bu. L; 10 

Fig. 4-15: Simulated performance of the PRONTO-1 
chip with 6-bit quantization and window length of L = 9 
compared to the optimum floating point block-based 
foward-backward algorithm with blocksize N = 1024, 

Fig. 4-16: The PRONTO-1 MAX-DMFB detector architecture. 

4.4.2 Control Unit 

The state of the detector can be reset to state O by asserting the RESET signal for one dock 

cycle, which is delayed by a shiR register the appropriate amount to generate the INIT 
signal to the forward recursion unit. The initial design used a counter to implement this 

function but it was discovered that the counter requîred was in the critical path and 

therefore was replaced by the shift register scheme to impnwe the speed performance. The 
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reset scheme can be eliminated if the first few decoded bits are ignored while the detector 

state is synchronized. 

4.4.3 Limiter 

The presence of a limiter in the forward feedback toop means that it has the potential to lie 

in the critical path if it is too slow. The limiter (see Fig. 4-9(b)) is designed using a logical 

comparator circuit instead of a subtractor for speed. 

4.4.4 Adders 

Initial simulations using the fast limiter design showed that the speed-limiting circuits were 

the adders in the BMG, NEG unit and the final soft-output adder. The saturation circuit 

introduced in Chapter 3 was used. A 6-bit carry-look-ahead adder (CLA) design was used for 

speed. The BMG and NEG units add a constant value to a variable and therefore their kgic 

equations could be simplified greatly. 

4.4.5 Clock Doubler 

The IC tester available for chip venfication is only capable of stimulating the UO pins at a 

maximum speed of 60 MHz, which is below our performance targets for PRONTO-1. To work 

around this limitation, a clock doubler circuit was added to the chip to enable the core to be 

tested at speeds of up to 120 MHz. The new system can be operated in either single speed 

(DBL = O) or double-speed mode (DBL = 1). In double-speed mode, the two parallel inputs 

and outputs CYl,Y2) and (LI, L2) are used while in single-speed mode only Y1 and L1 are 

used. Fig. 4-17 shows the PRONTO-1 top-level architecture with the clock-doubler support 

circuits added around the MAX-DMFB detector. 

4.4.6 Test Chip Synthesis and Layout 

The test chip, PRONTO-1 was synthesized to a 0.5 pn CMOS standard cell technology using 

Synopsys tools. The synthesized netlist was verified by simulation with one million test 

vectors. Synopsys reported a speed estimate for the chip core of 300 MHz. Taking into 

consideration the effect of pad loading, clock skew and the fact that this estimate was 

performed before placement and routing, it would be reasonable to expect the chip to 

perforrn at the maximum testable speed (60 MHz at the pins, 120 MHz core). The placement 

and routing was performed using Cadence, which resulted in a core area of 0.81 mm2 and an 

overall silicon area of 7.3 mm2. M e r  manually fixing some design rule violations the chip 

passed a design d e  check with no errors. Table 4-1 is a summary of the specifications of the 

PRONTO-1 chip. Fig. 4-18 is a layout plot of the chip. 
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DBL DBL RSP 

Fig. 4-17: PRONTO-1 top-level architecture. 

Fig. 4-18: Layout of the PRONTO-1 test chip. 
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Table 4-1: PRONTO-1 specifications. 

Pwpose 

Design name 

SoRoutput detector for 
ISI with F(D) = 1-D 

PRONTO-1 

Algorithm 1 
6 bits 

# states 

Process 1 0.5 pm CMOS (3MlP) 

Supply voltage 

Core area 

Total area I 7.3 mm2 

Pins 

In this chapter we developed a soft-output detector based on the forward-backward 

algorithm for the detection of class-IV partial response signals. The contributions of this 

chapter are: 

44 

Estimated speed 

O The difference metric forward-backward algonthm (DMFB) was developed for a two- 

state partial response trellis. 

z 120 Mbps 

a An approximation of the DMFB, the MAX-DMFB was developed. It was shown that the 

computational kernel of the MAX-DMFB is a limiter. 

a A test chip of the MAX-DMFB, PRONTO-1 was implemented. 
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Conclusions 

5.1 Summary and Conclusions 

In this thesis we have described two applications of the forward-backward algorithm and 

their hardware implementations. 

Chapter 2 provided background for discussions of implernenting the forward-backward 

algorithm. In Chapter 2 we e s t  reviewed the sot'tsutput forward backward (FB) algorithm 

and compared it  to the well-known hard-output Viterbi algorithm. T ' en ,  the logarithmic 

form of the algonthm (log-FB) was reviewed to show that the log-FB algorithm is really just 

two Viterbi-like algorithms operating in opposite directions dong the trellis. The sliding 

window FB algorithm was then described for continuous-time soft-output decoding. 

Chapter 3 presented the implernentation of a turbo decoder. After a brief introduction to 

concatenated codes, turbo codes were introduced as a parallel concatenation of recursive 

systematic convolutional codes. The iterative decoding algorithm, which uses the FB 
algorithm, provides near-optimal performance and low complexity. The exiating collection of 

hardware turbo decoders were reviewed. Most of the work to date has focused on 

implementing turbo decoders using the SOVA wbich is a variant of the FB algorithm that 

only provides approximate soft output. The designs published in the past year or so are now 

turning to the FB algorithm using the simplifications discussed in Chapter 2. The design of a 

general hardware-ready turbo decoder was then presented. The most significant 

simplification described was a novel low-complexity circuit for the MAX* operation which 
replaces a traditional LUT and does not sipnificantly affect BER performance. Using this 
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new circuit, an FPGA turbo decoder, TORBO-TM2, was designed for the TM-2 
reconfigurable FPGA system. 

A soft-output detector for partial response signalling was introduced in Chapter 4. The new 

algorithm is a form of the log-FB algorithm specifically designed for the two-state PR4 trellis 

popular in magnetic recording. M e r  a brief review of PR4 and the difference metric Viterbi 

algorithm, the difference metric forward-backward algorithm was derived. A simplification, 

the MAX-DMFB allows a significant hardware reduction by reducing the computational 

kemel to a limiter operation. Next was a discussion of VLSI architectures for the sliding 

window MAX-DMFB. Finally, the design of a test chip, PRONTO-1 was described. 

5.2 Contributions of this Thesis 

The contributions of this thesis are: 

r A novel low-complexity MAX* circuit was introduced which eliminates the need for a 

lookup table. 

An architecture for turbo decoding on the TM-2, TORBO-TM2. 

a The MAX-DMFB algorithm was introduced. The implementation uses a limiter as its 

computational kernel just as in the difference metric Viterbi algorithm. 

0 An ASIC irnplementation of the MAX-DMFB, PRONTO-1. 

5.3 Suggestions for Future Research 

ReseaFch in the area of soft-output decoding is now starting to emerge fkom the conceptual 

stage to practical realizations. We are certain of the existence of unpublished turbo decoder 

implementations in indus- There are many unanswered questions to solve, and we 

therefore provide a sample of interesting research projects as our final comment. 

5.31 Serial and hybrid concatenated codes 

These codes provide excellent performance down to very low bit error rates avoiding the 

error floor of turbo codes. It would be interesting to build hardware to enable experiments at 

bit error rates not possible by cornputer simulation. 

5.3.2 Interleaver design 

Interleaver design for hardware turbo decoders is still an open question. The shift register 

sequences described in Chapter 3 do not necessarily give the best possible performance. 
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Algorithms to produce random looking interleavers that can be easily irnplemented in 

hardware are needed. We have started a project on general interleaver design during the 

course of the thesis research but the results are not ready at  the time of this writing. 

5.3.3 Very high speed DSP or microprocessor turbo decoder 

CRC's 400Kbps software decoder demonstrates that high speed microprocessor or DSP 
implementations are possible. Our software simulations already run at tens of Wps with no 

specific optimizations for speed. 

5.3.4 Hardware variance estimation 

For fading channels, methods of implementing hardware variance estimation for turbo 

decoding should be explored. 

5.3.5 Continuous time turbo decoding on the TM-2 

The turbo decoder implemented in this thesis was a block decoder, which is area-efficient 

and suitable for applications where the transmission speed is low or the data ia already 

available in block format. For continuous high-qeed decoding, a pipelined turbo decoder can 

be implemented on the TM-2, using multiple boards with the goal of implementing one 

iterationhoard. With two lOklOO FPGAs 1 board, we think this is a reasonable. A ldboard 

system is therefore capable of 16 iterations. 

5.3.6 Turbo decoder ASIC 

It would be interesting to apply the ideas described in this thesis to the design of a turbo 

decoder ASIC. 
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Algorithm 

Consider the code in Fig. 3-3(a) whose trellis can be expressed as the two independent 

buttedies shown in Fig. A-1. The state is defined as {akd, ak.l). We will explicitly state the 
equations used to implement the FB algorithm for this trellis. Define the input of the rate l/ 

2 code as (xk, ykJ In a turbo decoder, xk is the sum of the systematic information and the a- 
priori information and yk is the coded information fkom either the upper or lower codes. The 
blocksize is N and 2 tail bits are added to force the final state to O. 

Fig. A-1: TORBO-TM2 trellis 

The branch metrics are (k = l..N+2) [Barbulescu96]: 
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The forward state metrics are (k = 1..N-1): 

subject to the initial conditions: 

Grouping the backward state metrics and branch metrics, define: 

The backward state rnetrics are (k = N+2..2): 

subject to the initial conditions: 



Appendix A 

Define: 
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