
VLSI Architectures for the Forward-Backward
Algorithm

Warren Jeffkey Gross

A Thesis submitted in conformity with the requirements
for the degree of Master of Applied Science,

Department of Electrical and Computer Engineering,
University of Toronto

O Copyright by Warren Jeffrey Gross 1999

National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services seivices bibliographiques

395 Wellington Street 395, rue Wellington
ûttawaON K 1 A W OItawaON K1AON4
canada Canada

The author has granted a non-
exclusive Licence aiiowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant a la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/tilm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits saos son
autorisation.

VLSI Architectures for the Forward-Backward Algorithm

Warren Jefiey Gross

Master of Applied Science, 1999

Department of Electrical and Computer Engineering

University of Toronto

Abstract

The forward-backward algorithm, also known as the BCJR or MAP algorithm, is a detection

algorithm that provides soft reliability estimates. This thesis discusses issues relevant to the

practical implementation of the forward-backward algorithm. Two applications are chosen

for more detailed study: (i) turbo decoding and (ii) sofboutput detection of class-IV partial

response signalling. A novel circuit is introduced that eliminates the need for a lookup table

in the computational kernel of the forward-backward algorithm. The design and

implementation of an FPGA-based turbo decoder is presented. The difference-metric

forward-backward algorithm is derived for class-IV partial response signalling. A test chip

was designed in a 0.5 pn CMOS process and is expected to operate at speeds greater than

120 Mbps. The core area is 0.81 mm2 and the overall Silicon area is 7.3 mm2.

Acknowledgments

This thesis would not have been possible without the help of many people and organizations.

1 would like to use this space to make special mention of rny advisor, colleagues, friends and

famïly who helped me towards my goals.

1 wish to thank my advisor Professor Glenn Gulak for his support, ideas and encouragement

throughout the course of this work. 1 hope to continue my collaboration with him in the

future.

Financial support from NSERC as well as fabrication support from CMC are greatly

appreciated.

1 also wish to thank Professors Frank Kschischang, Emmanuel Boutillon, Amir

Banihashemi and Saeed Gazor for their enlightening discussions.

Special mention goes out to Vincent Gaudet for the work which we did together on PRONTO
and the interleaver project. Also, thanks to Jason Podaima for helping with the place and

route of the PRONTO-1 chip.

Thanks to Dave, Marcus, Jaro and Peter for putting up with al1 my questions about the CAD
tools.

1 would like to thank al1 of my colleagues in the Communications Algorithrns Laboratory at

the U. of T.

Thanks to al1 my fkiends in LP392: Ali, And5 Jason A., Javad, Je& Jordan, Ken, Khalid,

Mark, Nirmal, Qiang, Rob, Sandy, Tooraj, Vaughn, Wai Ming and Yaska.

1 am extremely grateful to my parents for their love, support and encouragement.

"Now it is a stmnge thing, but things that are good to have and days that are good to spend

are soon told about, and not much to listen to; while things that are uncornfortable,

palpitating, and even gruesome, may make a good tale, and take a deal of telling anyway."

J. R. R. Tolkien, The Hobbit

iii

Contents
CHAPTER 1 Introduction 1

1.1 Motivation~... 1

.. 1.2 Objectives 2

... 1.3 Organization of the Thesis 2

CHAPTER 2 The Forward-Backward Algorithm 3

2.1 Detection in the Presence of Noise .. 3
................... 2.1.1 The Maximum A-Posteriori and Maximum Likelihood Rules 4

.. 2.1.2 Sequence Detection and the Viterbi Algorithm 4

.. 2.2 The Fornard-Backward Algorithm 7
... 2.2.1 SoR-Output Algorithms 7

...................................... 2.2.2 Description of the Forward-Backward Algorithm 9
2.2.3 The Fomard-Backward Algorithm in the Logarithmic Domain 10

... 2.3 The Sliding Window Forward-Backward Algorithm 12

CHAPTER 3 Implementation of a Turbo Decoder 20

.. 3.1 Turbo Codes 20
... 3.1.1 Concatenated Codes 20

.. 3.1.2 Encoders for Turbo Codes 22
3.1.3 Interleavers for Turbo Codes,...................................... 23

.. 3.1.4 The Iterative Decoding Algorithm 2 3

.. 3.2 Revious Turbo Decoder Implementations 24
... 3.2. 1 CAS5093 [Cornatlas951 2 5

.. 3.2.2 TURBO4 (BCPT951 25
... 3.2.3 JPL FPGA [JPL1997] [BDMP97] 25

... 3.2.4 University of Dresden FPGA [Koora98] 25
.................................. 3.2.5 University of South Australia FPGA [PietrobongB] 25

.. 3 . 2.6 University of Michigan ASIC mS981 2 5
3.2.7 University of Califomia San Diego FPGA [HOCS98] 26
3.2.8 Communications Research Centre SofZware [CRC98] 26

... 3.3 Design of a Hardware-Ready Turbo Decoder 27
.. 3.3.1 Simulation of the Turbo Code 2 7

.. 3 .3.2 Approximating the Channel SNR 2 9
.. 3 .3.3 Fixed-Point Turbo Decoding 29

.. 3.4 TORBO-TM2: An FPGA Implementation 34
... 3 .4.1 The Transmogrifier-2 (TM-2) ... 3 4

..... 3.4.2 System Architecture ... 35
3.4.3 Interface to the SUN Workstation,. 3 6

............................. 3.4.4 Memory Controller 37

3.4.5 Datapath ... 37
3.4.6 Control Unit ... 41

... 3.4.7 Logic Synthesis and Performance 42

CHAPTER 4 A SofbOutput Partial Response Detector 45

.. 4.1 Partial Response for Magnetic Recording 4 5
......................... 4.1.1 Class-IV Partial Response for Magnetic Recording (PM) 45

... 4.1.2 The Diflerence Metric Viterbi Algorithm 46

......... 4.2 The Difference Metric Forward-Backward Algorithm 48
4.2.1 Motivation .. 48

... 4.2.2 Derivation of the Algorithm 5 0
4.2.3 Initialization ... 52
4.2.4 Normalization and Ovedow ... 53

............................. 4.2.5 Summary of the DMFB for Class-N Partial Response 53

... 4.3 VLSI Architectures for Class-IV Partial Response 54
4.3.1 The Limiter Form of the DMFB: MAX-DMFB ... 54

.. 4.3.2 Eliminating the Noise Variance Problem 5 7
.. 4.3.3 The Sliding Window Architecture 5 7

.. 4.4 PRONTO-1: An ASIC Implementation 60
4.4.1 MAX-DMFB Detector Architecture .. 60
4.4.2 Control Unit ... 61
4.4.3 Limiter .. 62
4.4.4 Adders ... 62
4.4.5 Clock Doubler ... 62

... 4.4.6 Test Chip Synthesis and Layout 62

4.5 Summary ... 64

CHAPTER 5 Conclusions 65

... 5.1 Summary and Conclusions 65

... 5.2 Contributions of this Thesis 66

5.3 Suggestions for Future Research ... 66
.. 5.3.1 Serial and hybrid concatenated codes 66

.. 5.3.2 Interleaver design 66
.................. ...*. 5.3.3 Very high speed DSP or microprocessor turbo decoder ... 67

5.3.4 Hardware variance estimation .. 67
...... 5.3.5 Continuous time turbo decoding on the TM-2 .. 6 7

5.3.6 Turbo decoder ASIC ... 67

References 71

List of Figures
................*............... 2-1 The basic digital communication system. 4

2-2 Position of the memory in an ISI channel (a) and a convolutional coding scheme (b). - 5

2-3 A convolutionaI rate R =1/2 encoder with memory length v = 2 6

................. 2-4 A state transition diaqam for the convolutional encoder shown in Fig. 2-3 6

2-5 A 3 stage trellis diagram corresponding to the encoder of Fig. 2-3 and the state diagram

of Fig. 2-4. The highlighted path corresponds to a message sequence of (1,0,1} given the start-

ing state 01 .. 6

.. 2-6 The forward recursion in the Viterbi algorithm. 7

2-7 Trellis processing in an N = 5 stage 4-state Forward-Backward algorithm corresponding

to the encoder of Fig. 2-3. Shown is the calculation of one particular term in the lower sum-

mation of Equation 2-11. The t e m s in the upper summation are dashed while the terms in

.. the lower surnmation are solid .. 10

2-8 Log-domain processing in the forward recursive equation. Multiplications become addi-

tions and additions become the MAX' operation. The shaded components are removed for the

.. approximate algorithm.. 12

2-9 The log-domain sliding window Forward-Backward algorithm for Mb = 1 [DawidMgB].

The shaded boxes represent memory storage. The branch metric generators are not shown.

14

2-10 Space-time diagram for the sliding window Forward-Backward algorithm with Mb= DL

[DawidM95]. The shaded areas represent the memory for the forward state metrics. 14

... 2-11 A snapshot of computation in the trellis 15

2-12 Architecture of the sliding-window Fornard-Backward algorithm with Mb=DL (de"ved

fkom DawidM95j) .. 16

2-13 Implementing the forward state metric memory with a bi-directional shift register. In

(a) results from trellis block i are stored while results kom the previous block i - 1 are sent to

the sof't output unit. In (b) results from blocki + 1 are stored while the previously stored block

i is read out in the opposite order in which it was written. ... 17

2-14 Logical operation of the input buEers. The shift register is reversible in direction and

either writes new data, destroying the old contents or is cyclic. A dual-port RAM implemen-

tation would not explicitly need the feedback.. 1 7

2-15 Pseudo-code for the sliding window algorithm. {A) are the forward state metrics, {B) are

the backward state metrics and (Bi,,,} are the backward state metrics in the learning recur-

sion. The state metric processing elements are represented by smgO and the branch metnc

generators by bmgO. The soft output unit is represented by soft_output(). The forward state

metrics are stored in SM-MEM. The soft output is LLR. Two assignment operators (:=) on the

... same line imply simultaneous assignment. 18

2-16 The cyclie memory access sequence. The values of the control signals DIR and ROUTE

are indicated. j= 0,6,12,. 19

3-1 A serial concatenated eneoder and decoder. The interleaver is denoted by 1 and the
1 deinterleaver by 1- 2 1

3% Classes of concatenated codes. (a) Serial. (b) Parallel. (cl Hybrid 21

3-3 (a) A 4-state recursive, systematic, convolutional code. The recursive nature of the encod-

er is highlighted by the shading and the systematic nature is indicated with a thick line. (b)

........... A Cstate turbo encoder. The coded bits can be punctured to realize a rate Y2 code 22

3 4 The iterative turbo decoder. .. 24

3-5 4-state turbo code performance. Interleaver length 1024. (a) rate Y3. (b) rate l/2 28

3-6 Performance of a 4-state turbo code and a 64-state RSC .. 28

3-7 Approximation of the noise variance in the soft demodulator. Shown are iterations 1,5 and

10. (a) rate Y3. (b) rate Y2 ,... ... 2 9

3-8 Wordlength WL fixed- point representation with WLI integer bits and WLF fractional

bits. ... 30

3-9 Comparison of floating point turbo decoders using log-FB (MAX* operation) and the max-

log-FB (MAX operation) constituent decoders. 4-state codes, interleaver length 1024. Itera-

tions 1, 5 and 10 are shown. (a) rate Y3. (b) rate Y2. 3 2

3-10 Approximation of the correction fùnction flx) in the MAX' operator.titi.. 32

3-11 Simplified MAX* circuit.. ... 32

3-12 Performance of the simplified hardware-ready turbo decoder compared to the ideal float-

ing point turbo decoder. 4-state turbo code, interleaver length 1024. 1 and 10 iterations

shown. (a) rate 1/3. (b) rate V2. .. 33

3-13 Effect of implementing the soft demodulator after the AID converter as a 64 x 6 LUT

compared with the ided floating point turbo decoder. 4-state turbo code, interleaver length

... 1024. 1 and 10 iterations shown. (a) rate 1/3. (b) rate 1/2 33

3-14 Photograph of one board of the TM-2.1. Altera lOk5O FPGAs. 2.1-Cube crossbar switch-

es. 3. SRAM banks (unpopulated) ... 34

... 3-15 TORBO-TM2 system architecture. 36

3-16 TORBO-TM2 datapath. .. 39

3-17 Branch Mehic Generator (BMG). X is the systematic input, Y is the coded input and Z
. . * . . is the a-prion infonnahon input ... 39

3-18 State Metric Generator (SMG). FB-i are the values of the previous state metrics kom

the feedback path. The INIT signal selects the initial state metrics. SM-i are the new state

metrics. All values not otherwise indicated are 8 bits ... 39

3-19 Log-likelihood Ratio Generator (URG) . FSM-i are the forward state metrics recalled

from SRAM. qi are the sum of the backward state metrics and the branch metrics as desaibed

.. in Appendix A. Ali values are 8-bit unless otherwise indicated. 40

3-20 &bit saturating adder. SUM = A+B if the result can be represented in the 8-bit format

otherwise SUM = O1111111 (most positive nwnber) or 10000000 (most negative nurnbe19.40

3-21 TORBO-TM2 memory schedule .. 43

4-1 The general structure of an FIR filter that models the partial response transfer function

... of Equation 4-1 46

4-2 PR4 impulse response (a) and frequency response (b). ... 47

4-3 A PR4 decoder can be built with two independent time-interleaved 1-D decoders. The Vit-

... erbi decoders are clocked a t l/2 the channel rate. 47

4-4 Concatenating a convoluti~nal code with PR4 signalling. The information shared between

the two decoders can either be hard or soft ... 48

4 6 Bit-error rate performance of a serial concatenation of a Cstate 7/5 RSC with PR4.The

blocksize is 1K bits . A soR PR4 detector provides 1.8 dB of gain over a hard output detector

at a BER of IO? The approximate forward-backward algorithm using MAX as the arithmetic

................................... kernel performs nearly as well as the optimum MAX* algorithm 49

4-6 The partial response system with transfer function F(D) = 1 + pD 50

........................ 4-7 The possible combinations of inputs to the forward recursion equation 55

....................... 4-8 The limiter used as the update rule for the forward recursion equation 55

....................... 4 4 A limiter saves an adder in the critical path of the recursion hardware 56

.. 4-10 The sliding window MAX-DMFB for Mb = 1 57

4-11 Parallel processing of the backward recwsion using (a) a lookup table or (b) A tree . 58

4-12 A graphical analogy to a chah of limiters . The chah can be replaced by a single limiter

... which has the same overall effect 59

4-13 The Interval Adjustment Unit (IAU) . (a) Syrnbol . (b) Example of IAU operation . (c) Al-

gorithm . (d) Hardware implementation 59

4-14 The tree architecture for the sliding window MAX-DMFB using IAUs and limiters . (a)

The full tree . Shaded amws indicate intervals defined by two numbers . The shaded IAUs are

.... redundant and can be pruned . (b) The pruned tree using memory to replace hardware 60

4-15 Simulated performance of the PRONTO-1 chip with 6-bit quantization and window

length of L = 9 compared to the optimum floating point block-based forward-backward algo-

rithm with blocksize N = 1024 .. 61

.. 4-16 The PRONTO-1 MAX-DMFB detector architecture 61

... 4-17 PRONTO-1 top-level architecture 6 3

4-18 Layout of the PRONTO-1 test chip .. 63

... A-1 TORBO-TM2 trellis. 68

List of Tables
Summary of M o Decoder Implementations ... 2 6

... TORBO-TM2 Y0 parameters 35

... I/0 signals to the interface unit 3 7

................ Speed and area of the saturating adder using differeiit component adders 38

Vkriables involved in the rnemory schedule for TORBO-TM2 41

PRONTO-1 specifications .. 64

List of Symbols
Fornard state probability at state s and time k

Backward state probability at state s and time k

Branch probability between states s' and s a t time k

Difference mehic

Sum of backward state metrics and branch metrics at time k

Memory length of encoder or intersymbol interference channel

Weight of the delayed input to the adder in a PR4 filter

Noise variance

ShiR register input

F o m d difference metric

Forward state metric a t state s and time k

Backward difference metric

Backward state metric at state s and time k

Expected symbol dong the branch from state s' to state s

Unit delay

Learning period

Bit energy-to-noise density ratio

Turbo decoder clock speed in Hz

Likelihood function.

Gk', , , G;: Branch mehies for the log-difference-metric fornard-backward algorithm

Gk(& 9) Branch metric between states s' and s at time k

Interleaver

Deinterleaver

Time index

Log-likelihood ratio corresponding to transmitted symbol u

Number of symbols decoded per leaming recursion

Maximum operator

Maximum adjusted by a correction factor

AWGN noise sample

Block length

A-posteriori probability

Probability of symbol error

Rate

Present state

Predecessor state

Number of atates

Symbol period

Information bit

Extrinsic information

Wordlength

Number of integer bits in a fwed point word

Number of fractional bits in a k e d point word

Systematic output of a turbo encoder

Fust coded output of a turbo encoder

xii

Second coded output of a turbo encoder

Modulated symbol

Received systematic value at the input of a turbo decoder

Received first coded value at the input of a turbo decoder

Received second coded value at the input of a turbo decoder

Received symbol

A-priori information

List of Acronyms
ACS

APP

AWGN

BCJR

BER

CCS

DMFB

DMVA

FB

FPGA

wu

ISI

MAP

MAX-DMFB

ML

PR4

RSC

SOVA

Add-Compare-Select

A-Pos teriori Probability

Additive White Gaussian Noise

Bahl, Cocke, Jelinek and Raviv

Bit Error Rate

Compare-Compare-Select

Difference-Metric Forward-Backw ard algorithm

Difference-Metric Viterbi Algori thm

Forward-backward algorithm

Field Programmable Gate Array

Interval Adjustment Unit

Inters ymbol Interference

Forward-Backward algorithm in the Iogarithmic domain

Maximum Likelihood nile in the logarithmic domain

Forward-Backward algorithm in the log domain using MAX instead of MAX*

Maximum-A-Pos t eriori

Difference-Metnc Forward-Backward algorithm using MAX instead of MAX'

Maximum Likelihood

Class-IV Partial Response

Recursive Systematic Convolutional code

SoR Output Viterbi Algorithm

Signal-to-Noise Ratio

The Transmogrifier-2 field programmable system

Chapter

Introduction

1.1 Motivation

Error correcting codes in digital communications permit reliable transmission of data in

noisy channels. The idea is to transmit some extra information along with the original

message that in some way describes the intended message. The relationship between the

extra and original information is known and can be exploited in the decoder to make reliable

bit decisions.

Turbo codes, introduced in 1993 DGT931 are the best known error correcting codes with a

practical decoding algorithm. They have bit error rate performance close to the Shannon

limit. The heuristic iterative decoding algorithm provides remarkable results at a very low

complexity compared to codes with similar performance. In recent years, researchers have

made a lot of progress in understanding these codes and in suggesting many promising

applications. The focus of the research is now starting to turn towards practical hardware

implementation issues.

The main component of a turbo decoder is the forward-backward algorithm. The forward-

backward algorithm differs fiom the well-known Viterbi algorithm in that it provides 'soft'

information about the reliability of each bit that it decodes. This soft information can be

used in a subsequent use of the algorithm to improve its initial estimate. Although known

for about thirty years, the forward-backward algorithm developed an undeserved reputation

as being too difficult to implement. Even if it could be simplified somewhat, it was unlikely

to beat the Viterbi algorithm for simplicity and there was no compelling need for soft

Introduction

outputs. The focus has suddenly shifted to the forward-backward algorithm as i t provides

optimal symbol-by-symbol soft outputs for turbo decoders. Initial implementations of turbo

decoders used the SOVA algorithm, a soft-output variant of the Viterbi algorithm that was

less complex than the forward-backward algorithm but did not provide optimum soft

outputs. It would be interesting to design a turbo decoder using the forward-backward

algorithm and address the implementation issues.

Another interesting area is the detection of signals in magnetic recording. The principles of

detection are similar to error correcting coding: the correlation between transmitted signals

is known and can be exploited in the receiver. A standard technique for detecting one of the

popular signalling schemes, class-IV partial response, is called the difference metric Viterbi

algorithm. Are soft outputs useful for this type of system? If so, can an analogous difference

metric forward-backward algorithm be derived to compete with the difference metric Viterbi

algorithm?

1.2 Objectives

The objective of this thesis is to present examples of practical implementations of the

forward backward algorithm and to propose suitable VLSI architectures. Specifically, we

have chosen to implement a turbo decoder and a detector for class-IV partial response

signalling.

1.3 Organization of the Thesis

This thesis contains five chapters and one appendix. Chapter 2 is a review of the forward-

backward algorithm and simplifications for its practical implementation. Chapter 3 presents

the design of a turbo decoder for the reconfigurable TM-2 FPGA system. Chapter 4 describes

the design and implementation of a softsutput decoder for class-IV partial response.

Chapter 5 is a summary of the work and makes some suggestions for future research.

Appendix A is a detailed listing of the equations of the forward-backward algorithm used to

implement the turbo decoder in Chapter 3.

Chapter H
The Forward-Backward
Algorithm

The forward-backward algorithm is a detection algorithm that provides reliability estimates

for each symbol that it decodes. Virtually ignored for many years because of its perceived

complexity, interest in this algorithm has been reignited by the recent discovery of turbo

codes. This chapter is a review of the forward-backward algorithm and techniques for its

practical implementation. Section 2.1 defines the problem which the rest of the thesis is

dedicated to solving: extracting the intended message from a noisy signal. A solution to this

problem, the forward-backward algorithm is described in Section 2.2. A practical method for

implementing the forward-backward algorithm is presented in Section 2.3. The main points

of this chapter are summarized in Section 2.4.

2.1 Detection in the Presence of Noise

Signal detection is the attempt to recover a discrete-valued transmitted signal that has been

corrupted by noise. In this thesis, we are only concerned with a discrete-time system and

therefore will consider time in intervals of T seconds where T is called the symbol period.

Fig. 2-1 is a block diagram of a basic digital communication system. The messages to be

transmitted are equaily likely binary symbols uk where the subscript k refers to the time

index. Mer transmission through an Additive White Gaussian Noise (AWGN) channel the

input a t the receiver, yk is the sum of a noise sample and the modulated signal xk:

The Forward-Backward Algorithm

The detector is a combined demodulator and symbol estimator that gives estimates ûk of the

original message symbols.

Digital , Modulator Detector . +
f k ûk

Fig. 2-1: The basic digital communication system.

2.1.1 The Maximum A-Posteriori and Maximum Likelihood Rules

The best possible detector is one that makes the fewest errors in estimating the message

symbols. In other words, an optimum detector minimizes the probability of symbol error

[HaykinBB] :

As seen in the above equation, this is equivalent to maximizing P(u1y). This quantity is

called the a-posteriori probability and is the probability of the information symbol given that

the noisy value has been received. A maximum-a-posteriori (MAP) decision mle can be

implemented by calculating the a-posteriori probabilities of the two possible message

symbols and then choosing symbol u (O or 1) that results in the largest. Using Bayes' rule on

Equation 2-2 we can write:

P(u)fy(y I u)
R ~ Y) =

fy(y)
(2-3)

where f (y1 u) is called the likelihood finction. If the message symbols are equally likely
Y

then the MAP rule reduces to finding the message symbol that maximizes the likelihood

function. It is often more convenient to apply the maximum-likelihood (ML) rule in the log

domain by maximizing the logarithm of the likelihood function.

2.1.2 Sequence Detection and the Viterbi Algorithm

The error performance of the system can be improved if a conshin t is hposed on the

sequence of transmitted symbols. A channel in which the transmitted symbols are

dependent on the past history of transmitted symbols is said to have mernory. The channel
memory can be naturally present or explicitly inserted. One example of a chamel with

The Forward-Backward Algorithm

memory is an intersymbol interference (ISI) channel. Convolutional coding involves inserting

memory in the transmitter. Fig. 2-2 shows the different positions of the memory between the

two techniques. Regardless of the source of the memory, the detector can use the constraint

imposed on the received symbols to make more intelligent decisions. Convolutional codes

will be described in greater detail in Chapter 3 while Chapter 4 deals with intersyrnbol

interference channels.

Fig. 2-2: Position of the memory in an ISI channel (a) and a convolutional coding scheme (b).

Consider the shift register structure in Fig. 2-3, which is the encoder for a convolutional code

with a memory length (v) of two. We Say the rate (R) of the code is ü 2 since there are two

output bits for every input bit. The state of the encoder at a given time is defined by the

contents of the shif't register. For example, the v = 2 shift register shown here has four

possible states, namely "OO", 'Ol", '10" and '11". A state machine diagram which shows the

valid state transitions is shown in Fig. 2-4. The edges of the diagram are labelled with the

input bit / output bits. A more convenient representation can be derived by adding a time

axis. Each path fkom the leR hand side through the right hand side of the resulting trellis

diagram in Fig. 2-5 corresponds to a unique transmitted sequence of bits.

The problem of detection (which we will cal1 decoding in the case ofa convolutionaI code) can
now be cast in terms of operations on the hellis. The well-known Viterbi algorithm (VA)

[viterbi67][Omura69]Forney73] is an application of dynamic programming to digital

The Forward-Backward Algorithm

Fig. 2-3: A convolutional rate R =l/2 encoder with memory length v = 2.

Fig. 24: A state transition diagram for the convolutional encoder shown in Fig. 2-3.

Fig. 2.5: A 3 stage trellis diagram corresponding to the encoder of Fig. 2-3
and the state diagram of Fig. 2-4. The highlighted path corresponds to a
message sequence of (1.0.l} given the starting state 01

communications that operates on a trellis. If the edges (branches) in the trellis are labelled

with a number that is proportional to the probability of that branch being taken, then the

path with the largest accumulated number will be the most likely path to have occurred. In

practice, the negative likelihood function is used instead, which reformulates the problem to

finding the minimum length path through the trellis. For an AWGN channel, a bmnch

metric is simply the Euclidean distance between the received and expected transmitted
symbols. Therefore, the Viterbi algorithm, in choosing the sequence with the lowest

accumulated metric, performs maximum likelihood sequence detection.

The Forward-Backward Algorithm

The key to the algorithm is the obsemation that at time k the shortest path must contain the

shortest path up to time k-1 and therefore the other paths leading up to tirne k-1 can be

thrown away. The procedure consists of two steps. In the first step, the accumulated metrics

are calculated in the direction of increasing time in a forward recursion through the trellis.

The accumulated metrics, called fonuard state metrics are calculated a t each state at time k

as

where A&) is the forward state metnc at state s at the current time intenral, A,- ,(s') is

the forward state metric at a predecessor state s' at the previous tirne interval and GL(st, s)

is the branch metric associated with the branch between states s' and S. The computational

kernel of Equation 2-4 which is the critical path of the algorithm is the so-called Add

Compare Select (ACS) operation (see Fig. 2-6). In the second step, the shortest path is

determined by tracing back through the trellis according to the decisions made at each time

interval by the forward recursion. Using the fact that competing paths are likely to have

merged into the shortest path at about 5v time intervals back fkom the current time

[ClarkC8ïj, a practical real-time implementation can be built using a finite amount of

memory. The two methods for performing traceback are the register exchange method and

the pointer trace back method. The reader is directed to [ClarkCSI 1 Dader811 [FeyginGSZ] for

descriptions of how to implement the two traceback methods.

Fig. 2-6: The forward recunion in the Viterbi algorithm.

2.2 The Forward-Backward Algorithm

2.2.1 Soft-Output Algorithms

It can be useful for a decoding algorithm to provide an estimate of the reliability of the

decoded bits. The 'soft' reliability values can be used in some way to adjust the decoding

algorithm to provide better performance. As far back as 1973, Forney proposed the use of

The Fotward-Backward Algorithm

'augmented outputs' f?om the Viterbi algorithm as a measure of reliability of the decoding

process b e y 731. Forney's heuristic idea to use the clifference in state metrics between

the best path and the next shortest path led to the soft-output Viterbi algorithm described

by Batail Battail871 and Hagenauer and Hoeher [HagenauerHSS].

It is important to define what is meant by soR information. The reliability of a decoded bit is

best described by the a-posteriori probability (APP) P(u1y). For an estimate of bit u (-U+l)
having received symbol y we define the optimum sofl output as:

which is called the log-likelihood ratio (LLR). The LLR is a convenient measure since it

encapsulates both soft and hard bit information in one number. The sign of the number

corresponds to the hard decision while the magnitude gives a reliability estimate.

The LLR can be easily computed by noticing that a decoding algorithm that uses the

maximum a-posteriori (MAP) rule inherently calculates the APPs required. In fact, once

determined and used to choose the most likely bit, the APPs are discarded, throwing away

useful information. MAP algorithms have been proposed by several authors [ChangH66]

[AbendFTO] DCJR741 but were generally ignored because the Viterbi algorithm can provide

nearly identical hard outputs with less computational effort.

In this thesis, we wiU focus on the implementation of what we cal1 the "forward-backward

algorithm" of [ChangH66] BCJR741. In the literature, this algorithm is often referred to as

the MAP algorithm or the BCJR algorithm, which are both somewhat inaccurate names.

Abend and Fritchman proposed a MAP decoder that is optimal under the constraint of fixed

decoding delay [AbendF70]. A simplified suboptimal detector (SPS) based on the Abend and

Fritchman algorithm was derived in [ErfanianP89]. The Abend and Fritchman type

algorithm has the drawback that the complexity of the decoder is exponentially related to

the fixed decision delay In &LW3951 a MAP detector is derived that has linear dependence on

the delay. In Battail871 and [HagenauerHBg] the soR-output Viterbi algorithm (SOVA) is

derived. The SOVA has received a lot of attention lately due to its ease of implementation

even though it provides suboptimal soft outputs. In our opinion, the fornard-backward

algorithm is a feasible alternative to SOVA especially when optimum soR outputs are

required (for example in turbo decoders). The rest of this thesis is devoted to presenting

architectures and examples of the practical application of the fornard-backward algorithm.

The Fonivard-Bachard Algorithm

2.2.2 Description of the Forward-Backward Algorithm

This description of the algorithm is based on [BCJR74] and [HOP961 to which the reader is

r e f e ~ e d to for a detailed derivation. The algorithm is based on the same trellis as the Viterbi

algorithm. The algorithm is perfomed on a block of N received symbols which corresponds

to a trellis with a finite number of stages N. We will choose the transmitted bit uk fkom the

set of (-1,+1}. Upon receiving the symbol yk nom the AWGN channel with noise variance o'

we calculate the branch probability of the transition from state s' to state s as

where ck(sl, S) is the expected symbol along the branch from state si to state S .

The algorithm consists of three main steps:

Forward Recursion. The forward state probability of being in each state of the trellis

at each time k given the knowledge of al1 the previous received symbols is recursively

calculated and stored:

The recursion is initialized by forcing the starting state to state O and setting

Backward Recursion. The buckward state probability of being in each state of the

trellis at each time k given the knowledge of a11 the future received symbols is

recursively calculated and stored:

The recursion is initialized by forcing the ending state to state O and setting

The trellis tennination condition requires the entire block to be received before the

backward recursion can begin.

The Forward-Backward Aigo rit hm

Log-Likelihood Ratio Calculation. The output LLR for each symbol at time k is

calculated as

where the upper summation is over al1 branches with input label +1 and the lower

summation is over al1 branches with input label -1. The procedure is depicted graphically in

Fig. 2-7 for a short 5-stage trellis.

Forward Recursion
- - - - O - - - - -

Backward Recursion

I -----a----

time O 1 4

LLR Calculation

Fig. 2-7: Trellis processing in an N = 5 stage bstate Foward-Backward algorithm conesponding
to the encoder of Fig. 2-3. Shown is the calculation of one particular term in the lower summation of
Equation 2-11. The terms in the upper surnmation are dashed white the terms in the lower
summation are solid,

2.2.3 The Forward-Backward Algorithm in the Logarîthmic Domain

The forwanl-backward algorithm was virtually ignored for many years because of the

ditnculty in implementing efficient exponentiation and multiplication. If the algorithm is

implemented in the logarithmic domain like the Viterbi algorithm, then the multiplications

become additions and the exponentials disappear. Addition is transformed according to the

d e described in IKingsburyR711. Following Erfanian and Pasupathy, who ikst applied this

The Fonvard-Backward Algorithm

d e to the Abend and Fritchman MAP algorithm [Erf'anianPSS], the additions are replaced

using the Jacobi logarithm:

which we call the MAX* operation to denote that it is essentially a maximum operator

adjusted by a correction factor. The second term, a hnction of the single variable X-Y, can be

precalculated and stored in a small lookup table with negligible effects on performance

[ErfanianP89].

The forward-backward algorithm will now be restated in the logarithmic domain. As with
the Viterbi algorithm, logarithms of probabilities are referred to as rnetrics. Define the new

quantities:

GL(s1, 5) = ln(yk(sl, s))

Forward State Metrics:

A,(@ = In(a,(s))

Backward State Metrics:

Bk@) = In(pk(s))

The branch metric calculation eliminates the exponential:

The forward state metric recursion becomes:

with initial conditions:

The backward state metric recursion becomes:

The Farward-Backward Algorithm

with initial conditions:

The dynamic range of the metrics is much lower than the associated probabilities. Since

each probability has a value of less than or equal to one, each multiplication results in a

smaller and smaller number. The metncs tend to grow much more slowly than the

probabilities.

The output LLR becomes:

L(u~) = MF* (A ~ - ,(s') + G ~ (s ~ . 9) + B ~ (s)) - MAX* (A ~ - 1 (~ 1) + G ~ (S ' , 9) + B ~ (s)) (2-21)
(5 . 9) (5 . SI

Ult = + I Uk = - 1

The computational kernel of the algorithm is now the MAX* operation, which is analogous to

the MIN operation in the Viterbi algorithm adjusted by a correction factor (see Fig. 2-8). If

the correction factor is ignored then MAX* reduces to MAX and the hard decisions are
identical to those produced by the Viterbi algorithm and the soft decisions equivalent to

those fkom the SOVA~ [FBLH98].

Fig. 2-8: Log-domain processing in the fomuard recuisive equation:
Multiplications become additions and additions become the MAX
operation. The shaded components are removed for the approximate
algorithm.

2.3 The Sliding Window Forward-Backward Algorithm
The forward-backward algorithm as stated is a block processing algorithm. The constraint

that the ending state be known implies that an entire block of data needs to be received

before the backward recursion can begin. The memory requirements are therefore quite

large. For o rate R code with memory length v (2" states) and a block length of N, we have to
store NR input words and 2?J forward state metrics so that they can be used during the

1. The SOVA proposed in IBattail871 has higher complexity than the algorithm proposed in
magenauerH891.

The Fotward-Backward Algorithm

backward recursion to calculate the LLRs. The branch metncs rnay require additional

storage, or they may be recalculated as needed. The basic amount of storage required is

therefore N(R+zV) words. Unfortunately, turbo codes, one of the most important

applications, require large values of N for good performance. In addition, high-speed

applications may not be able to tolerate the delays of block processing. To overcome these

problems, a modification of the algorithm that operates over a small sliding window allows

continuous processing with a fixed latency [DawidM95]. The idea is to relax the criterion

that the ending state be known and to conaider each ending state as equally likely. Viterbi

makes a cornparison with the Viterbi algorithm's ability to "start cold" in any state

witerbi9812. If the backward state probabilities are initialized to:

then aRer a learning or synchronization period the state probabilities (or metrics) will be as

good as those calculated starting from a known ending state. A learning period of 6 memory

lengths is usually enough to achieve nearly the performance of the optimal algorithm

Fiterbi98J. The memory requirements are reduced to DL+2 words where DL is the leaming

period. Fig. 2-9 shows the simplest form of the sliding window aigorithm. The trade-off is

that the new algorithm has to compute DL backward stages for each decoded bit. A

compromise between memory and computational complexity is given in [BDMP97] where

the backward state metrics, determined by the learning recursion, are used to decode a block

of Mb symbols. The structure of Fig. 2-9 which corresponds to Mb = 1 is still useful in some

applications due to its ease of implementation. An example is given in Chapter 4 that is

simple enough to efficiently utilize this architecture.

The more efficient sliding window algorithm may be derived by dividing the backwards

recursion into two distinct parts. First, a learning recursion of DL steps is performed to

generate reliable backward state metncs. The generated metrics are then used to decode a

block of Mb = DL symbols. The algorithm is best described by the time-space diagram in Fig.

2-10 introduced in [DawidM95] which divides the trellis into blocks of DL stages. We will

now describe the algorithm, refemng to Fig. 2-10.

2. The Forward-Backward algorithm's recursive step is r e d y just two Viterbi-like
algorithms running in opposite directions with a slîghtly different computationd kernel.
In the case of the approximate algorithm, the kernels are identical.

The Forward-Backward Algorithm

Fig. 2-9: The log-domain sliding window Fonvard-Backward algorithm for Mb = 1
[DawidM95]. The shaded boxes represent memory storage. The branch metric
generators are not shown.

trellis

A

Fig. 2-10: Space-time diagrarn for the sliding window Forward-Backward
algorithm with Mb= DL [DawidM95]. The shaded areas represent the memory
for the forward state metrics.

The Forward-Bacbard Algorithm

The algorithm begins once the fmt 2DL symbols have been received and stored in the input

memory (not shown in the diagram). Let's consider what happens to a given stage of the

trellis, Say stage k + DL + j where O < j < DL. If we draw a horizontal line across the diagram,

it will cut through one of each kind of arrow, forward, backward and learning. Therefore, we

see the progression through time. The stage is visited by the learning recursion, then the

forward recursion and lastly the backward recursion. Then, in the next block of tirne, the

forward recursion proceeds using the results of the learning recursion. The soft outputs are

generated during the backward recursion, in reverse order3. The hardware requirements

can be found by drawing a vertical line, Say at time k + 3DL + j, O < j c DL. It can be seen that

three recursion processors are required to run simultaneously, one each for the forward,

backward, and learning recursions as shown in Fig. 2-11. Each processor consists of a branch

rnetric generator, S = 2" MAX* units and the appropriate trellis routing almg with S

registers. The fully parallel structure ensures a throughput of 1 decoded bitkycle after an

initial latency of 4DL. The memory requirements for the forward state metrics can also be

found this way. At any point after k + 3DL, the state metric memory required will be DL at

any point in time. Therefore, the state metric memory requirements for a S state trellis are

SDL. The structure of the decoder is shown in Fig. 2-12, which is derived fkom DawidM95l.

The input memory needs three independent banks, each of D symbols. The input symbols

are directed to the correct branch metric generator (BMG) and then to the appropriate

processing element (PE). A simplification in the soR output calculation may be obtained by

noticing that the term Bk@) + Gk(st, S) in Equation 2-21 has already been calculated by the

backward recursion in Equation 2-19 and may be supplied directly to the soR output unit.

backward recursion forward recursion learning recursion
and soft output

Fig. 2-11: A snapshot of camputation in the trellis.

3. The outputs can be explicitly reversed using a LIFO. In a turbo decoder (Chapter 3), the
forward-backward algorithm is followed by an interleaver which can perform the reversal
for fÎee.

The Forward-Backward Algorithm

The structure of the four memory banks and the memory access schedule remains to be

defined. We will start with the forward state metric memory. Referring to Fig. 2-10, the

forward recursion writes state metries to the state metric memory that are read out in the

opposite order by the soft output unit during the next tirne block. Since the overall memory

requirements are never greater than DL sets of state metrics, a S x DL dual-port memory can

be used to implement a bi-directional shifi register (Fig. 2-13). To maintain proper shifk

register operation, the read operation should complete before the contents of the memory

address are overwritten. The direction of the shifting should be reversed every DL time

steps.

The input buffers are each DL rows long, but the width depends on the code rate R. For

example, a rate R = 1/2 code requires three (2 word x DL) buflers. In addition to the case

where data is read and then replaced by new data like the state metric memory a non-

destactive read is necessary. If an actual shifi register is used instead of dual-port RAM,
then a feedback path should be added to create a circular bi-directional buffer as shown in

Fig. 2-14.

fkom channel

Routing Network

Fig. 2-12: Architecture of the sliding-window Forward-
Backward algo rit hm with Mb=DL (derived from [DawidMgS])

The input bufCer access schedule may be derived by considering the contiguration of the

architecture for each block ofDL clock ticks. During any given block, one buffer is selected to

write to (destructive write), and two are operating in the cyclic reading mode. The direction

of the accesses for each b s e r reverses every DL clock ticks. finally, we see that there are

three different mutings fiom input buffet to processing element. The cycle of the six distinct

combinations is shown in Fig. 2-16. From this figure, the control sîgnals can be dehed. We

The Forwarci-Backward Algorithm

Fig. 2-13; lrnplernenting the forward state metric memory with a bi-
directional shift register. In (a) results from trellis block i are stored while
results from the previous block i - 1 are sent to the soft output unit. In (b)
results from block i + t are stored while the previously stored block i is read
out in the opposite order in which it was written.

Fig. 2-14: Logical operation of the input buffers. The shiR register is reversible in
direction and either writes new data, destroying the old contents or is cyclic. A dual-port
RAM irnplementation would not explicitly need the feedback.

note that the direction control is also used to control the fomard state metric memory. The
overall period of six is a product of the periods of the following two control signals:

The direction signal DIR with a period of 2.

The routing signal ROUTE, which controls both the input switch and rout ing

network. ROUTE has a period of 3.

The algorithm is described by the pseudo-code in Fig. 2-15:

The Foiward-Backward Algonthm

Fig. 2-15: Pseudo-code for the sliding window algorithm. {A} are the forward state metrics, {B}
are the backward state metrics and {Ble,} are the backward state metrics in the learning
recursion. The state metric processing elementç are represented by smg() and the branch rnetric
generators by bmg(). The soft output unit is represented by softoutput(). The forward state metrics
are stored in SM-MEM, The soft output is LLR, Two assignment operators (:=) on the same line
imply simultaneous assignment.

The Foiward-Backward Algorithm

Block j

Block j + 2

Block j + 4

Block j + 1

I I .. i ROUTE = O I
Block j + 3

Block j + 5

Fig. 2-16: The cyclic mernory access sequence. The values of the control
signals DIR and ROUTE are indicated. j= O,6,12, ...

In this chapter Fe have reviewed the basic theory of the forward-backward algorithm, which

winrill be necessary for the rest of this thesis. The main points of this chapter are:

The forward-backward algorithm is an algorithm for detecting a noisy signal in the

presence of intersymbol interference (ISI) or decoding a convolutional code.

The forward-backward algonthm provides optimum soft outputs, a measure of the

decoding reliability

The main components of the forward-backward algorithm are a fornard recursion, a

backward recursion, and soft output calculation.

The computational complexity can be reduced by working in the logarithmic domain.

In the log-domain the recursions are just like the recursion in the Viterbi algorithm

adjusted by a correction factor that is stored in a small lookup table.

The sliding-window algorithm can be used to reduce the memory requirements and

provide continuous decoding with a fixed delay.

Chapter Q
Implementation of a
Turbo Decoder

Turbo codes, the best known error-comecting codes, use the forward-backward algorithm as

the main component of their decoding algorithm. In addition to their near-optimum

performance, turbo codes are relatively simple to decode. In this chapter, we descnbe the

design of TORBO-TM2, an FPGA implementation of a turbo decoder on the Transmogrifier-

2 reconfigurable system. In Section 3.1 we review the basic theory of turbo codes and their

decoding algorithm. Section 3.2 is a survey of the existing turbo decoder implementations. In

Section 3.3 we present the design of a general turbo decoder for hardware implementation.

Section 3.4 describes the design of TORBO-TM2. Finally, Section 3.5 is a review of the main

points and contributions of this chapter.

3.1 Turbo Codes

3.1.1 Concatenated Codes

Concatenated codes were intmduced by Fomey in [Forney66] as a way of combining the

power of two relatively simple codes. The classic example of a concatenated code is the serial

concatenated code shown in Fig. 3-1. The code is constructed by concatenating an inner and

an outer code separated by an interleaver. The decoder is a mirror image of the encoder. The

results of the inner decoder are deinterleaved and used as inputs to the outer decoder. The
purpose of the interleavedde-interleaver pair is to spread any errors caused by burst noise to

make them appear as random error events. One popular technique is to use an inner Reed-

Solomon code to correct the output of the convolutional code which typically contains burst

errors. The advantage of a concatenated technique is that the combined complexity of the

lmplementation of a Turbo Decoder

component decoders is less than that of a decoder for a single code with comparable

performance.

Fig. 3-1: A serial concatenated encoder and decoder. The interleaver is denoted
by I and the deinterleaver by 1".

In recent years, the ideas behind concatenated codes have been extended and improved

greatly The two new ideas are:

Soft decoding: Soft reliability information is exchanged between the decoders

instead of hard bit decisions. Performance improves as the inner decoder has more
information to work with.

Iterative decoding: Instead of separately decoding the inner and outer codes, the
decoder considers the combined code. Maximum likelihood decoding of the joint code
is too complex because of the interleaver, so a heuristic itemtioe technique is used
instead.

The three main categories of concatenated codes are serial [BDMP96], parallel DGT93J and

hybrid (both serial and parallel) [DivsalarPg'l] codes as shown in Fig. 3-2. Although parallel

(4

Fig. 3-2: Classes of concatenated codes. (a) Serial. (b) ParaIlel. (c) Hybrid

lmplementation of a Turbo Decoder

codes have been shown to achieve the performance closest to the Shannon limit they are

outperformed by serial codes at very low bit error rates (10-~ or below) DDMP961.

3.1.2 Encoders for Turbo Codes

A turbo code is the common name for a parallel concatenation of recursive, systematic,

convolutional codes separated by a random interleaver. The idea of parallel concatenation of

convolutional codes (and the iterative decoding algorithm) was published in LYHH931 and

[BGT93] simultaneously. The "turbo codes" in [BGT93] however, significantly outperformed

the codes presented in LYHH931 due to the use of recursive, systernatic convolutional (RSC)
codes. Fig. 3-3(a) gives an example of the recursive systematic version of the 4-state

convolutional code introduced in Fig. 2-3. Systernatic codes are codes in which the input bits

are copied directly to the output. Recursive codes possess a feedback structure, like an IIR
filter. The reason for using RSC codes is left to the thorough explanations of menedettoM961

and [BDMP96], which determine that they are necessary to achieve outstanding

performance in a concatenated coding scheme. Turbo encoders use RSC codes with 4,8 or 16

states as higher-order codes do not provide any significant performance improvement. Fig. 3-

3(b) shows a turbo code composed of two 4-state recursive systematic convolutional codes.

The natural rate of the encoder is U3 but higher rates can be achieved by puneturing or

selecting only some of the bits to be transmitted. For example, a rate V2 code can be

constmcted by transrnitting a bit alternating between the two coded bits each symbol

interval.

Fig. 3-3: (a) A 4-state recunive, systematic, convolutional code. The recursive nature of
the encoder is highlighted by the shading and the systematic nature is indicated with a thick
line. (b) A 4-state turbo encoder. The coded bits can be punctured to realize a rate 112 code.

Implementation of a Turbo Decoder

3.1.3 Interleavers for Turbo Codes

The single most important factor in the performance of a turbo code is the interleaver

length. Interleaver lengths range fkom about 100 bits to 64k bits. The choice of interleaver

permutation determines the asyrnptotic performance of the turbo code. Turbo codes suffer

fkom a flattening of the BER curve known as an error floor. Careful selection of a

permutation can help alleviate this effect. The most successful technique aims to preserve a

separation or spread of at least S symbols between any two symbols in the interleaved

sequence that were adjacent in the non-interleaved sequence [DivsalarP95]. Once computed,

a permutation is stored in a lookup table of size N. As we will show, a turbo decoder needs to

access the inverse permutation as well (deinterleaver) and therefore the permutation

storage required in a turbo decoder is 2N. One proposal is to restrict the choice of

permutations to the class whose interleaver and deinterleaver are identical at the expense of

potential performance losses. This reduces the permutation storage requirements in the

decoder to N. Recent work has shown that it is indeed possible to find these "symmetric"

interleavers that perform as well or outperform randomly chosen ones iTakeshitaC981

[HPG98]. Another solution is to use a linear feedback shift register (LFSR) with logzN

memory spaces to generate a pseudo-random sequence. The interleaver is realized by

writing the data in a memory sequentially and reading it out using the addresses generated

by the LFSR. The deinterleaver writes the data in the permuted order and reads it out

sequen tially [HYS98].

3.1.4 The Iterative Decoding Algorithm

Maximum likelihood decoding of twbo codes is too complex to be practical due to the

presence of the interleaver. Instead, a practical suboptimal decoding algonthm was proposed

in [BGT93] that provides outstanding performance and low complexity. The idea is to use

two forward-backward decoders to decode each of the component codes of the turbo code

((hVk, x ~ ~ , ~ } and {xsk, +2 k}) to get soR estimates of the information bits (ukJ The soft

estimates are then circulated to the other decoder to be used in the next iteration of decoding

to improve its estirnates. The new estimates are then distributed to the other decoder and so

on. Berrou showed that the output of the forward-backward algorithm is a sum of the input

scaled by a constant and the new information about the data bit extracted by the algorithm

called the extrinsic information BGT93 1 :

lmplernentation of a Turbo Oecoder

Consider the turbo decoder shown in Fig. 3-4. The sofi dernodulator. whieh simply multiplies

the input by W2, scales the received symbols so they can be combined with the extrinsic

information. To compensate for this pre-scaling, we remove the multiplication by 2/a2 in the

branch metric calculations inside each forward-backward decoder. The first fornard-

backward decoder receives the channel information about the first code (y,, yCl) as well as a-

priori information (2) about the information bits from the other decoder. The a-priori

information is added to y,, which is the noisy systematic bit, to bring the new information to

the decoder. After decoding, the a-priori infomation is subtracted from the log-likelihood

ratio to leave the sum of the extrinsic infomation and the systematic received value. m e r

interleaving to compensate for the interleaver in the encoder, the updated estimate of the

information bits are used as a-priori information for the second decoder, which uses the

other coded information y,z to decode the second code. The extrinsic information is extracted

fkom the output, de-interleaved and then passed to the first decoder as a-priori information.

One iteration of the process is defined as the use of two forward-backward decoders. An

estimate of the information bits at the end of each iteration can be obtained by using a slicer

on the log-likelihood ratio produced by the second forward-backward decoder. The

complexity of the decoder is relatively independent of the power of the code since only small

codes with 4 to 16 states are needed. The main factor in the code strength is the length of the

interleaver, which increases the memory requirements and latency of the decoder. For high-

speed operation, the feedback loop can be cut and the decoder can be unrolled into a

pipelined sys tem.

Fig. 3-4: The iterative turbo decoder.

3.2 Previous Turbo Decoder Implementations

In this section, we briefly review the existing hardware for turbo decoding p d l e l

concatenated convolutional codes. We also include a recently developed high-speed software

decoder. The important characteristics of the designs are summarized in Table 3-1.

lmplementation of a Turbo Decoder

This chip was developed by Cornatlas SA of France. The decoder integrates 2.5 iterations of

8-state turbo decoding into a single 0.8 pm CMOS ASIC. The SOVA algorithm is used

instead of the forward-backward algorithm for lower complexity The maximum decoding

rate is 40 Mbps.

3.2.2 TURBO4 [BCPT95]

TURBO4 is a multi-chip turbo decoding solution built by France Telecom in 0.8 pn CMOS.

Each ASIC, representing a single iteration, contains two 16-state SOVA decoders, an

interleaver and deinterleaver. Multiple iterations can be achieved by cascading modules in a

pipeline. The decoding rate is 40 Mbps.

3.2.3 JPL FPGA [JPL1997][BDMP97]

This FPGA turbo decoder consists of a single custom FPGA circuit board. A forward-

backward decoder is implemented that is capable of decoding up to 64 states at interleaver

lengths of up to 64k. Speed performance figures have not been published but persona1

communications with JPL indicate the decoder operates roughly at 10 Kbps.

3.2.4 University of Dresden FPGA [Koora98]

This FPGA turbo decoder implements an &state SOVA decoder in a single FPGA.
Performance is 14 Mbps with a planned future version running at 30 Mbps. The maximum

interleaver length is 448 which is slightly longer than the length of an ATM frame.

3.2.5 University of South Australia FPGA [Pietrobon98]

This FPGA design utilizes multiple circuit boards to realize a pipelined turbo decoder. The

interleaver is programmable up to 64k, and a wide range of code rates can be selected. The

turbo decoder modules are composed of log-forward-backward algorithms that calculate the

state metrics in a serial manner. A 16 state code with an interleaver length of 64k can be

decoded at 356 Kbps. Although a turbo decoder speed for a 4-state code was not quoted, a

speed of 624 Kbps was reported when using the decoder as a 4-state stand-alone FB decoder.

We therefore predict that this speed probably can be extended to turbo decoding as well.

3.2.6 University of Michigan MIC [HYS98]

This ASIC integrates 4 iterations of a block-based turbo decoder in a 0.6 pm CMOS process.

The 16-state component decoders use the MAX-LOEFB algorithm. The highest reported

speed is 1 Mbps.

lmplementation of a Turbo Decoder

3.2.7 University of California San Diego FPGA [HOCS98]

This decoder is implemented on a reconfigurable FPGA system called the ReConfigurable

Processor Board (RCP). The number of states is configurable fkom 2 to 512. The maximum

interleaver length is 64k. A nice feature of this decoder is that number of bits used to

represent the data is programmable. The decoder has been implemented in VHDL and is

currently being tested in hardware.

3.2.8 Communications Research Centre Software [CRC98]

The Canadian Communications Research Centre (CRC) has developed an ultra-fast turbo

decoder for Pentium-II class PCs. The decoding algorithm reported is an "approximate APP"
algorithm which we think is probably an integer arithmetic implementation of the forward-

backward algorithm. The output of the MAX-LOG-FB algorithm is adjusted after each

iteration by a correction factor. The decoding speed is 400 Kbps for 4 iterations on a 400 MHz
Pentium II processor.

Table 3-1: Summary of Turbo Decoder Implementations

Design Technology Interleaver 1 M ~ ~ ~ ~ d 1 Y 1 Longth

1 0.8 pmCMOS 1 40 1 16 1 2048 1 SOVA

Component
Decoder

1 FPGA 1 0.01 1 up to 64 1 up to 64K 1 LOG-FB

1 FPGA 1 14 1 8 1 up to 448 1 SOVA

FPGA 0.356
(16 state)

LOGFB

(4 state) 1
MAX-LOG-FB

FPGA 1 ? LOGFB

Software
400 MHz PII

ualimi ted MAX-LOGFB

This Work FPGA 1 0.75 LOGFB

lmplementation of a Turbo Decoder

3.3 Design of a Hardware-Ready Turbo Decoder

This section describes the design of a turbo decoder intended for hardware implementation.

Previously published information on turbo decoder implementations has been very vague

about the design choices and implementation issues. The goal of this section is to document

the design process of a turbo decoder.

3.3.1 Simulation of the Turbo Code

The first step in the design of the turbo decoder is the selection of an appropnate turbo code.

We decided to use the 4-state turbo code selectable between rate Y2 or rate 1/3 with an

interleaver length of 1024 (see Fig. 3-3(b)) on an AWGN channel. Interleaver lengths of 16K

or 64K are only useful for squeezing out the last bit of performance near the Shannon limit.

For more practical decoding applications, the interleaver length of 1024 represents a

medium size interleaver that offers a reasonable mix of performance, memory requirements

and latency. Some examples of applications that would benefit from a block size ranging

from 100-1000 bits are IS-136 wireless transmission (162 bits) and ATM (424 bits), The four

state codes were chosen to facilitate the design of a fully-parallel state metric unit. We will

show in Section 3.4 that for our chosen architecture it is convenient to keep the number of

states low to conserve memory bandwidth. For the turbo decoder we have naturally chosen

the forward-backward algorithm for the constituent decoders. The decoder will be

implemented in the logarithmic domain as described in Section 2.2.3.

Simulations were performed on a SUN workstation to determine the performance

characteristics of the turbo code. Benchmark results are very scarce in the turbo decoding

literature since it is necessary to know the exact interleaver permutation to perform an

accurate comparison. Montorsi has published a set of turbo decoding results for the exact

code that we have chosen to implement [Montorsi98]. The interleaver permutation was

included with the results. Fig. 3-5 shows our benchmark floating point simulations of rate 1/

3 and rate 1/2 turbo codes. We have found that the performance of the code does not improve

beyond 10 iterations. Montorsi's results for the rate l/3 turbo code have been superimposed

in Fig. 3-5(a). As a comparison with conventional convolutional codes we have plotted the

performance of a rate 1/2 64-state RSC decoded by the FB algorithm (blocksize 1024) in Fig.

3-6. The turbo decoder uses (2 x # iterations) FB decoders and so a 64-state FB decoder is a

fair comparison to a turbo decoder with 1-10 iterations.

Irnpfementation of a Turbo Decoder

Fig. 3-5: 4-state turbo code performance. lnterleaver length 1024. (a) rate 1/3. (b) rate 112

.
. a -O-. I uncoded
. - 64-state RSC

Fig. 3-6: Performance of a 4-state turbo code and a 64-state RSC

lmplementation of a Turbo Decoder

3.32 Approximating the Channel SNR

One of the difficulties in turbo decoding is estimating SNR of the channel in the soft

demodulator. Hoeher has suggested that using a fixed estimate of the SNR does not degrade

performance [Hoeher97]. Our simulations in Fig. 3-7 show that this is hue on an AWGN

channel using an estimate of 1.0 dB in the sofi demodulator. We note however, that this

result does not likely hold in fading channels where a more sophisticated estimation

algorithm is probably required [ReedA97] [SummersW98]. A fixed SNR estimate also helps

control the dynamic range of the metrics

Fig. 3-7: Approximation of the noise variance in the soft demodulator.
Shown are iterations 1,s and 10. (a) rate 113. (b) rate 112.

3.3.3 Fixed-Point Turbo Decoding

The next step in the design of the decoder is to determine the wordlength and format

required for a tixed-point integer implementation. Since both positive and negative numbers

are required, two's complement notation was used as described in Fig. 3-8. We define the

wordlength WL as:

WL = I + WL, + WLF (3-2)

for a word with one sign bit, WLr integer bits and WLF fiactional bits. Saturating arithmetic

operations are used so that a number that lies out of the range of the representation is

assigned the most positive or most negative value as appropriate.

lmplernentation of a Turbo Decoder

Fig. 3-8: Wordlength WL fixed-
point representation with WL,
integer bits and WLF fractional bits.

Simulations show that the FB decoders need an WL = 8 bit representation with WLI = 4 and

WLF = 3 for the interna1 branch metrics, state metrics and soft-output calculations. Al1

values extemal to the FB decoders need only a WL = 6 bit representation with WLI = 3 and

WLF = 2. This includes the output of the A D converter and the extrinsic info exchanged

between decoders and in the interleavers. Not surprisingly, some previous work came to the

same conclusions about the total number of bits required [Pietrobon98I1. However, since the

performance of the decoder was not compared to one with infinite precision then the trade-

offs in making such s choice were not apparent. In [RHV97], such a cornparison is made for a

16-state code with interleaver length of 1024 and 8 iterations. A loss of 0.2 dB at BER = 10-~
is reported using a quantized version of the log-FB algorithm relative to a floating-point FB
algorithm. The authors report an overall loss of about 0.5 dB. Four bits were used for the

input data and eight bits were used for the metrics in the FB decoders.

The next task is to determine the size of the LUT required to represent the correction factor

f (x) = ln (i + exp (-lx()) in the MAX* operation. We first considered eliminating the table

completely and implementing the max-log-FB algorithm as some authors have suggested

m g $] . Simulations shown in Fig. 3-9 (floating-point) motivate the need to find an efficient

way of implementing the complete log-FB algorithm so the focus shifted to minimizing the

size of the lookup table. Previous work reports lookup tables of 2k x 16 [BDMP97] and 81 x 4

[Pietrobon98]. If more than one state metric generator is to be implernented in parallel then

multiple copies of the table are needed, which is cumbersome for the LUT sizes reported.

Good results are reported in [RHV9'7] for an 8-word LUT but it is not clear in their reference

whether this refers to the FB algorithm alone or to turbo decoding. The reference is likely to

turbo decoding since the max-log-FB and log-FB algorithms have identical hard decision

performance. Since we use an 8-bit representation with 5 integer bits and 3 fkactiond bits,

the smallest value of flx) we can represent is 118 corresponding to a maximum value of x of

1. The scaling used in [Pietrobon981 is not the same as in this work.

Implementation of a Turbo Oecoder

about 2.0 Our simulations show that for +l/-1 signalling and using a k e d S N R estimation,

the following d e provides excellent results [GrossG98]:

Fig. 3-10 shows the function f(x) and the approximate function we have implemented. The

implication of the above rule is that the lookup table for fl x) can be reduced to a simple logic

circuit, which either adds or does not add a constant to the output of the maximum selection

circuit. The sirnplified circuit we have implemented is shown in Fig. 3-11. The difference, d,

from the maximum circuit is used as input to the correction function circuit. We check if the

number is less than 2.0 by considering the upper 4 bits. For positive numbers, they will al1

be zero if the number is strictly less than 2.0 and for negative numbers they will al1 be ones

if the number is less than or equal to -2.0. This is the reason for the asymmetry of the rule.

The correction circuit generates a 1 or a O that is repeated and padded with zeros at the

input to the final adder to form the 3 bit number 00000011 (0.375) or 00000000 (0.0). The

new simplified circuit has the added advantage of only requiring the difference X-Y and does

not need the difference YX. We briefly note that in full-custom VLSI implementations, the

difference Y-X can be made available for free at the output of the subtractor and pass

transistor logic can be used to implement an &LUT with 60 transistors. The new simplified

circuit can be implemented with 20 transistors. Synthesis to standard cells in 0 . 5 ~ CMOS
results in a 40% area savings. The savings are even more pronounced when considering

FPGA or DSP applications. In these cases, the LUT may require storage in memory, possibly

creating a memory bottleneck2. The simplified nile does not suffer from these restrictions.

Fig. 3-12 shows the results of the simulations including al1 of the simplifications; fixed SM(
estirnate, quantization and simplified operation. The simplified decoder has

performance comparable to the ideal floating point decoder.

The simulations shown here were al1 performed with the sofi-demodulator implemented in

floating-point arithmetic, in other words, before the 6-bit A/D converter. It may be desirable

however to place the soft demodulator after the A/D converter. We investigated the effect of

irnplementing the soR demodulator as a 64 x 6 LUT and plot the results in Fig. 3-13. At a
BER of IO-^ there is a small loss of 0.15 dB at R = î/3 and 0.1 dB at R = i / 2 .

2. Some FPGAs have configurable memory blocks that could be used to implement a LUT.

lmplernentation of a Turbo Decoder

Fig. 3-9: Cornparison of floating point turbo decoden using log-FE (MAX' operation) and the
max-log-FB (MAX operation) constituent decoders. Gstate codes, interleaver length 1024.
lteratiok 1, 5 and 10 are shown. (a) rate 1/3. (b) rate 1/2.

1

1

O
I

1 2 3 4 5 6
I

Fig. 3-10: A~proxirnation of the correction function
f(x) in the MAX operator.

w
Fig. 3-11: Simplified MAX* circuit.

lmplementation of a Turbo Decoder

Fig. 3-12: Performance of the simplified hardware-ready turbo decoder compared to the ideal
floating point turbo decoder. Cstate turbo code. interleaver length 1024. 1 and 10 iterations
shown. (a) rate 1/3. (b) rate 112.

Fig. 3-13: Effect of implementing the soft dernodulator after the N D converter as a 64 x 6 LUT
compared with the ideal floating point turbo decoder. 4-state turbo code, interleaver length 1024.
1 and 10 iterations shown. (a) rate 113. (b) rate 1/2.

lrnplementation of a Turbo Decoder

3.4 TORBO-TM2: An FPGA Implementation

3.4.1 The Transmogrifier-2 (TM-2)

The Transmogrifier-2 (TM-2) is a multi-FPGA reconfigurable system [LGVRC98]. The goal

of the TM-2 is to provide a scalable testbed for rapid prototyping. The TM-2 is made up of a

number of circuit boards, each containing two large Altera 10k50 FPGAs, 4 1-Cube crossbar

routing switches and up to 8 Mbytes of SRAM. The newer TM-2A revision uses lOklOO

FPGAs. When complete, the TM-2A will consist of 16 such boards giving a total

programming capacity of 2 million gates. Fig. 3-14 is a photograph of one board of the TM-2.
The TM-2 can be programmed using HDLs such as VHDL, Altera's proprietary AHDL or the

TM-2 specific C-based Transrnogrifier C [Galloway95]. From the user's (designer) point of

view, the details of the TM-2, such as routing between FPGAs, were not important. We

essentially see it as a big collection of gates, with one exception. Currently, the TM-2
compiler software does not automatically partition a design among the FPGAs so that task

has to be done manually Communication with a host SUN workstation is via a 4-bit "nibble"

bus that is handled on the FPGAs by an automatically generated circuit. Each of the two

FPGAs can simultaneously access two 64-bit wide SRAM banks.

Fig. 3-14: Photograph of one board of the TM-2. 1. Altera 10k50 FPGAs. 2. 1-Cube
crossbar switches. 3. SRAM banks (unpopulated).

34

lmplementation of a Turbo Decoder

3.4.2 System Architecture

TORBO-TM2 is a configurable Pstate turbo decoder implementing one log-FB algorithm

block that is reused to produce the desired number of iterations. Although the code

construction is fixed to the 4state code described above, the interleaver length, permutation

and number of iterations are user selectable. The inputloutput parameters are described in

Table 3-2. The TORBO-TM2 system architecture is shown in Fig. 3-15. The design is

pwtitioned into two FPGAs. The entire turbo decoder easily fits into one lOklOO FPGA but

the second FPGA is needed to provide access to a third bank of RAM. The SUN workstation

prepares the 6-bit quantized input data by generating random bits, encoding them, and

adding Gaussian noise. Currently, the soft-demodulator is also contained in the workstation

sothoare, but this could be migrated into the decoder by using the LUT described in Section

3.3.3. The LUT could be placed in the unused bank of RAM connected to FPGA-1. The data

bits are sent to the decoder along with the soft input and compared to the hard decisions a t

the end of the decoding process. The number of errors detected is sent back to the

workstation. The soft decisions themselves are not sent back to the SUN to conserve

bandwidth on the communications link, which is cumently very limited. The SUN
workstation also generates the interleaver permutation and sends it to the decoder during

its initialization phase. Almost al1 of the functionality of the decoder is in FPGA-O, which

reduces the number of pins required to route signals between the two FPGAs. The RAM
banks alone use more than half of the pin budget of FPGAO (e.g. 174/304 user pins on a

10k50).

Table 3-2: TORBO-TM2 UO parameters.

Signal (I/0 1 #bits 1 Value 1 Description

CLK 1 input i 1 1 {O,lI 1 clock

ITER 1 input 1 5 1 1-31 1 # iterations

ERROR-COUNT 1 output 1 16 (0-65535 (# decoding errors

The decoder is made up of four main blocks: A datapath, control unit, host interface and

memory controllers. The data block transferred fkom the SUN workstation is stored in

SRAM. Each iteration of decoding is divided into two half iterations (one FI3 algorithm),

which in tum are divided into forward and backward passes for a total of four stages per

lmplementation of a Turbo Decoder

iteration. In the first stage, the data is read from SRAM and the forward state metrics are

calculated and stored in another SRAM. In the backward stage, the data is read again to

calculate the backward state metrics that are combined with the stored forward state

metrics to create the log-likelihood ratio and extrinsic information. The extrinsic

information is stored in a permuted order back in the SRAM where it will be read out during
the next two stages, which represent the second FB decoder in the turbo decoder. The second

decoder pmceeds in a sunilar fashion except that the results are stored using the inverse

permutation so that it is in the original order. The interconnection and schedule that govern

the decoder will be described in the following sections.

Fig. 3-15: TORBO-TM2 system architecture.

3.4.3 Interface to the SUN Workstation

The TM-2 is connected to the SUN workstation via a &bit 'nibble busn. The TM-2 compiler

automatically generates a circuit that handles the data transfers over the nibble bus and a

software ports package is provided on the host side. Unfortunatelx this bus was not

designed for high-speed transfer and currently the turbo decoder is not expected to be able to

decode at real-time speeds. An S-bus interface for the TM-2 is being planned and will help
alleviate this problem.

The interface unit controls the transfer of the interleaver permutation and the input data to

the decoder from the host as well as retuming the b h k error count to the host. The

lmplementation of a Turôo Decoder

interface unit is a state machine that implements a handshaking data protocol. The
interface signals are summarized in Table 3-3.

Table 3-3: UO signals to the interface unit.

Signal 1 y0 1 #bits 1 Description

SUN-DATAJN 1 input 1 shared between the interleaver
permutation and input data

SUXDATA-OUT 1 output 1 16 1 error count

WANTED-IN

READYJN

READY_oUT I output indicates that data for the host is
valid

output

input

indicates that the host received
the data

3.4.4 Memory Controuer

1

1

1

The memory controller is a synchronous interface between the FPGA circuits and the SRAM
banks. The main purpose of this unit is to covert the tri-state data bus to separate input and

output signals. The TM-2 memory control register is 5 bits wide while the TM-2A uses a 10-

bit register. The IO-bit control word used in the turbo decoder is translated to the correct

format by the memory controller. This means that when migrating h m the TM-2 to the TM-

2 4 only the memory controller needs to change.

indicates the TM-2 wants to
receive data

indicates that data for the TM-2
is valid

3.4.5 Datapath

The datapath of the turbo decoder consists of: a branch mehic generator (BMG), state metric

generator (SMG) and a log-likelihood ratio generator (LLRG) as shown in Fig. 3-16.

The BMG is shown in Fig. 3-17. Appendix A lists the equations for the log-FB algorithm

used in the decoder. For the log-FB algorithm we cal1 the received data (ysBk, ylk, A&) the a-
priori information for the first decoder q , k and the a-priori information for the second

decoder zz,k For the upper RSC of the turbo code, the four possible branch metrieri are 0, y,&

+ zlb ylh and (yst + qk) + yi,k The possible branch metrics for the lower RSC are 0, zz k,

lmplernentation of a Turbo Decoder

y2k and zz,k + y%. Multiplexers select the appropriate input depending on whether the FB

algorithm is decoding the upper o r the lower constituent code.

The Mly-parallel state metric unit that calculates both forward and backward state metrics

is shown in Fig. 3-18. The critical path in the decoder is the state metric unit because of the

feedback loop. When the backward metrics are being calculated, the branch metrics are

added to the previous state metrics and these values are sent to the LLRG. The exact

grouping of state and branch metncs is derived in Appendix A. This simplification

eliminates repeating the same calculation in the LLRG. Alternatelx the forward state

metrics could be used in the grouping, but this would mean that 8 state metrics would have

to be stored in rnemory instead of 4. The state metrics are normalized by subtracting the

largest value at each time step from al1 of the metrics. Finding the maximum is time

consuming especially considering that this operation is in the critical path of the decoder.

Unfortunately, our simulations showed that alternative normalization techniques such as

subtracting a constant value from al1 of the state metrics, were not effective. The LLRG that

operates in parallel with the SMG is shown in Fig. 3-19.

Fig. 3-20 shows the circuit used as a saturating adder in al1 datapath operations. We used

the Altera MAX-PlusII sofiware to compare the speed and area of the saturating adder using

three &bit component adders: a c a r r y propagate adder (CPA), carry look-ahead adder (CPA)
and an Altera provided module (LPM). The results shown in Table 3-4 indicate that there is

no advantage to using the LPM adder or CLA adder over the CPA for &bit adders.

Table 3 4 Speed and area of the aaturating adder using different component adders

8-bit CPA

8-bi t CLA

&bit LPM 1 28 1 29.7

Implementation of a Turbo Decoder

L

Fig. 3-16: TORBO-TM2 datapath.

Fig. 3-17: Branch Metric Generator (BMG). X is the systematic
input, Y is the coded input and Z is the a-priori information input.

SM-O

SM-1

SM-2

SM-3

Fig. 3-18: State Metric Generator (SMG). FB-i are the values of the previaus state metrics from the
feedback path. The INIT signal selects the initial state metrics. SM-i are the new state metrics. All
values not othewise indicated are 8 bits.

lmplementation of a Turbo Decoder

Fig. 3-19: Log-likelihood Ratio Geneiator (LLRG). FSMJ are the foiward state
metrics recalled from SRAM. ql are the sum of the backward state rnetrics and the
branch metrics as described in Appendix A. All values are 8-bit unless otherwise
indicated.

Fig. 3-20: 8-bit saturating adder. SUM = A+B if the result can
be reptesented in the 8-bit format otherwise SUM = 01 1 11 1 11
(most positive number) or 10000000 (most negative number).

lmplementation of a Turbo Decoder

3.4.6 Control Unit

The control unit directs the decoding process by contmlling the operation of the other units

and the SRAMs. In this section we describe the processing schedule and use of the SRAMs

implemented in the control unit. We note that the SRAMS are addressed starting at location

1 and not O because location O may be overwritten upon TM-2 initialization. The SRAMS are

64-bits wide and individual bytes can be selected for reading and writing. This is why we use

multiples of 8-bits to hold data that is only quantized to 6-bits. A variable name in this

section actuaily refers to a block of values. The interleaver length is N. Note that the

transmitted data cornes in blocks of N+2 words, the extra two words are used to force the

encoder state to zero. The variables involved in the memory schedule are described in

Table 3-5:

Table 3-5: Variables involved in the memory schedule for TORBO-TM2.

U I I I N I expected bit values

Name

XI 1 6 1 N+2 1 received systematic values

bits 1 block zer description

received terminating sequence for the
lower code

YI 1 6 1 N+2 (received upper coded values

Y2 1 6 1 N+2 1 received lower coded values

16 1 N 1 inverse interkaver permutation

Z

W

A

1

The interleaver is implemented differently than is usually described. The standard

procedure is to write an array of values in sequential order and then read them out in a

permuted order. Our schedule uses sequential reads but out-of-order writes to simpli@ the

control due to a limited number of independent memory ports. The only difference is that

interleaving is done using the inverse permutation and de-interleaving is done using the

regular permutation.

6

6

32

16

N

N

N+2

N

a-priori information.

extrinsic information

forward atate metrics (4 x 8 bits)

interleaver permutation

Implementation of a Turbo Decoder

Assume the input data is initially in RAM-A. If this is the e s t iteration, Z will be set to

zeros, otherwise it is the a-priori information provided by the previous iteration. The

interleaver permutation and inverse permutation are stored in RAM-B. The "tail" X2 is
stored in the appropriate location in RAM-C. Each iteration can be broken down into two FB
passes each with two recursions for a total of four stages, FORWARDO, BACKWiiRDO,
FORWmD 1 and BACKWARDl:

FORWARW: the received data for the upper code (XI, Yi) and the a-priori information (2)

are read from R A M A and used to calculate forward state metrics (A) that are stored in

RAM-B. The coded information for the second code (Xz) is transferred to RAM-C.

BACKWARDO: the received data (XI, YI) and a-priori information (2) are read from RAM-A
again and the backward state mehics are calculated. The extrinsic information (W) is
calculated, interleaved, and stored in RAM-C. The expected bit decisions (U) are also read

kom RAM-A, interleaved, and stored in RAM-C.

FORWARDI: W, X2 and Y2 are read fkom RAM-C and used to calculate the forward state

metrics (A) that are stored in RAMB.

BACKWARDl: A, W, X2 and Y2 are used to calculate the backward state metrics and the

log-likelihood ratios. The extrinsic information derived from the LLRs is deinterleaved and

stored in RAKA (2) where it is available for the next iteration. The expected decisions,

interleaved during BACKWARDO are compared with the hard decisions (sign bit of the U R)
and the error count is updated.

The procedure is shown in Fig. 3-21. The forward stages take N+2+2 clock cycles and the

backward stages take N+2+3 cycles due to the latency introduced by the datapath pipeline.

The overall decoding efficiency of one iteration is therefore: N/(4N + 18) decoded bits/ clock

cycle. The total memory required is 40(N+2) + 64(N+2) + 24(N+2) bits or 16(N+2) bytes. For

N = 1024, this corresponds to just over 16Kbytes. With the current interface scheme, the

total tirne to decode one block is actually dominated by the transfers to the TM-2 from the

host. With an improved interface, the received blocks could be buffered in memory and the

decoder could decode at its maximum speed.

3.4.7 Logic Synthesis and Performance

The decoder was described in VHDL and was verified against the C simulation as a

benchmark. The VHDL simulations showed that the decoder provided the exact same bit-

for-bit results as the C simulation and therefore the FPGA decoder is expected to perfimn as

lmplementation of a Turbo Decoder

I 1 1 1-'

E
i? FORWARDO

Fig. 3-21: TORBO-TM2 memory schedule.

the simulations in Section 3.3.3 predict. FPGA-O, which contains most of the logic, occupies

3343 logic blocks or 66% of a lOklOO FPGA on the TM-2A. FPGAl uses 127 logic blocks (2%).

The Altera MAX-PlusII software reported that the design would operate at 3.66 MHz. The

actual speed of operation is expected to be lower due to the routing through the 1-cube chips

and miscellaneous circuits on the TM-2. If the data transfer bottleneck can be eliminated by

developing an S-bus interface, the decoding rate is expected to be

where f is the decoder

iteration decoder would

speed in Hz. For example, if N = 1000 and f = 3 MHz, then a 5

decode 149 kbps and a 10 iteration decoder would decode 74 kbps.

lmplementation of a Turbo Decoder

3.5 summary

This chapter described the design of an FPGA turbo decoder. The main contributions of this
chapter are:

Turbo decoding can be implemented efficiently with small wordlength integer arithmetic

(&bit maximum) with low losses in BER performance.

The MAX* operation can be implemented with a very small lookup table. A novel circuit

realizing the simplified MAX* operation was introduced.

An FPGA implementation of a turbo decoder, TORBO-TM2 was described.

Chapter E I
A Soft-Output Partial
Response Detector

Magnetic disk drives are an example of a communication system that exhibits intersymbol

interference (ISI). In recording, the information transmission is not through space as in

most communication systems, but rather in time. Nonetheless, the same models of ISI and

error-control coding can be applied. Modern disk drive read channels have adopted the

Viterbi algorithm to combat ISI as recording densities increase. This chapter introduces a

novel soft-output detector for magnetic recording read channels. Section 4.1 is a brief

introduction to the PR4 signalling scheme and the special difference-metnc Viterbi

algorithm (DMVA) used to decode it. An analogous soft-output difference-metric forward

backward (DMFB) algorithm is denved in Section 4.2. Section 4.3 describes VLSI
architectures for the DMFB. PRONTO-1, an ASIC implementation of the DMFB is described

in Section 4.4. Finally, Section 4.5 summarizes the main contributions of this chapter.

4.1 Partial Response for Magnetic Recording

4.1.1 Class-IV Partial Response for Magnetic Recording (PR4)

As hard disk recording densities increase, the pulses detected by the magnetic read head

interfere with each other introducing intersymbol interference (ISI). Modem disk cirive read

channels use a known mode1 for the ISI to combat it in the receiver with advanced signal

processing. Partial response signalling is a technique where a controlled amount of

intersymbol interference (ISn is introduced into a communications system to shape the

spectrum of the transmitted signal. For example, partial-responae systems can be realized to

elirninate fkequency components that the channe1 cannot effiuently transmit, such as DC or

A Soft-Output Partial Response Detector

high-ftequencies. The ISI can be modeled by a FIR filter (tapped feedforward shiR register),

much like a convolutional encoder with real instead of modulod addition. The output of the

encoder is therefore multi-level. Partial-response FIR filters have the general transfer

function

shown in Fig. 4-1 where D is a unit delay.

Fig. 4-1: The general structure of an FIR filter that models the
partial response transfer function of Equation 4-1 .

Class-IV partial response (PR41 signalling for magnetic recording was proposed by

Kobayashi in [Kobayashi'll) ' and has the transfer function:

Fig. 4-2 illustrates the impulse and fkequency responses of PR4 signalling. A consequence of

F(D) being dependent only on D~ is that the transfer function can be broken down into two

independent time-interleaved l-D functions. The detection problem therefore is reduced to

decoding unit memory ISI which can be easily done with 2-state Viterbi detectors as shown

in Fig. 4-3.

4.1.2 The Ditference Metric Viterbi Algorithm

The Viterbi detector required to decode PR4 signalling has just two states. A well known

property of the VA is that a constant value can be subtracted from al1 of the state metrics at

1. As recording densities increase, extended class4V partial response (EPR4) with trader
fundion F(D) = 1 + D - D~ - D~ is becoming more popular.

46

A Soft-Output Partial Response Detector

Fig. 4-2: PR4 impulse response (a) and frequency response (b).

VA for 1-D -Ll-
Fig. 4-3: A PR4 decoder can be built with two independent
time-interleaved 1-0 decoders. The Viterbi decoders are
clocked at 1/2 the channel rate.

each time interval without affecting the correctneas. This property is often used to limit the

dynamic range of the state metrics through renormalizing. Applying this concept to a two-

state trellis, it is possible to distribute only one value, the state metric difference between

stages of the trellis instead of the individual state metrics. This idea is the basis of the

difference metric Viterbi algorithm (DMVA) introduced in [Ferguson72].

Although the DMVA can be applied to any partial response system of the form:

we present the specific case of PR4 signalhg where p = 1 without loss of generality. Define

the difference rnetric as:

A Soft-Output Partial Response Detector

The DMVA compares the difference metric a t each stage to the received signal yk and
updates it as:

where the graphics on the right hand side correspond to the update required in the

traceback unit. The operation in Equation 4-5 is a type of adaptive limiter that has efficient

digital FKSTOB] and analog implementations [SJM98]. A consequence of the limiter

operation is that the value is either passed through to the next stage, or a new value is

brought in, which eliminates cumulative calculation e m r and also the need to re-normalize

the metrics.

4.2 The Difference Metric Forward-Backward Algorithm

The difference metric fonvard-backward algorithm (DMFB) is a soft-output detector for two-

state partial response systems with the form of Equation 4-1 such as PR4 signalling.

4.2.1 Motivation

The first question to be answered is what is the use of soft outputs in the PR4 channel. We

motivate the need for soR outputs by considering the classical serial concatenated system in

Fig. 4-4 that was introduced in Chapter 3. The inner code in this case is the PR4 FIR filter

and the outer code is chosen to be the 4-state RSC shown in Fig. 3-3(a). The choice of outer

code is rather arbitrary and we could substitute a higher power code in its place.

Fig. 4-4: Concatenating a convolutional code with PR4 signalling. The
information shared between the two decoders can either be hard or sok

The standard way of implementing the PR4 decoder is the difference metric Viterbi

algorithm. Of course, since it c m only produce hard outputs, some vital infornation has

been thrown away. It would be nice to be able to provide sofi information to the RSC decoder

to improve the performance. In fact, the simulation results of Fig. 4-5 show that a soft PR4

A Soft-Output Partial Response Detector

decoder using the forward-backward algorithm provides a 1.8 dB improvement at a bit-error

rate of IO-? Also plotted is the performance of the approximate forward-backward algorithm

which uses MAX instead of MAX*. We will show in Section 4.3 that it may be much more

convenient to implement the MAX forward-backward algorithm and these simulations show

that the soft outputs generated are nearly as good as the optimum soft-outputs.

Fig. 4-5: Bit-error rate performance of a serial concatenation of a Gstate 715 RSC with
PR4.The blocksize is 1 K bits. A soft PR4 detector provides 1.8 dB of gain over a hard output
detector at a BER of IO-? The approximate forward-backwarc! algorithm using MAX as the
arithmetic kernel performs nearty as well as the optimum MAX algorithm.

The second question concerns complexity. The simplicity of the DMVA is very attractive in

terms of VLSI implementation and leads us to ask if there is an analogous implementation

for the forward-backward algorithm. Intuitivelx the prospects are encouraging since the

forward-backward algonthm is essentially two Viterbi-like algorithms running in opposite

directions. In fact, a difference metric forward-backward algorithm (DMFB) does eaoist as we

will show in Section 4.2.2. In Section 4.3, we will further develop the MAX version of the new

DMFB algonthm and show that the same limiter structure nom the DMVA c m be used.

A Soft-Output Partial Response Detecfor

4.2.2 Derivation of the Algorithm

The difference metic forward-backward algonthm can be applied to any two-state partial

response trellis where the information bit labels on the two branches entering each state are

equal. This fact, noticed by Gaudet, will allow the algebraic manipulations that reveal the
difference mehic implementation [GaudetgB] .

Consider the partial response system with ttansfer function

F(D) = i + p D (4-6)

as show in Fig. 4-6. The h o states are labelled -1 and +1, the input symbols are -1 and 1 and
the time index is k.

Fig. 4.6: The partial response system with transfer function F(D) = 1 + pD.

The branch probabilities for received symbol yk are:

The forward recursion can be expressed as:

A Soft-Output Partial Response Oetector

and the backward recursion as:

We write the expression for the LLR expiicitly:

The structure of the trellis lets us factor out Fk:

The resulting expression contains the forward recursion equations. Substituting Equation 4-

8 into Equation 4-11 we get:

The LLR is now expressed in t ems of a sum of the quotients of forward and backward state

probabilities. Since al1 the state probabilities can be scaled by the same number without

affecting the comectness of the algorithm, the recursions can propagate the quotient of the

state probabilities instead of the h o individual probabilities. In the log domain we would

express Equation 4-12 in t ems of the difference metrics Ak and Bk:

where

So the algorithm is reduced to recursively calculating a single forward metric, recursively

calculating a single backward metric and then simply adding them together.

A Soft-Output Partial Response Detector

To derive the fornard difference metric recursion equation, use Equation 4-8 to write:

Substituting the expressions for the branch probabilities fkom Equation 4-7, followed by

dividing and simplifying we get:

In terms of the difference metric and the MAX* notation:

Similarly, the backward recursion is:

For a block-based decoder, the starting and ending states are forced to -1. The initial values

of the recursions are:

W e note that the initial values of the difference metrics are never actually used in the U R
calculation, which only needs to decode symbols at k = 1 .. .N - 1 .

A Soft-Output Partial Response Detector

Substituting A. and Bo into the expressions for Ai and BN-l we get:

= lim
6-

and

which eliminates the need for infinite values anywhere. For a sliding window

implementation, the ending states are equiprobable and

4.2.4 Normalization and Overflow

The DMFB is equivalent to explicitly calculating both states and then subtracting one from
each to normalize the state metrics. The redundant value of zero does not need to be

propagated. The DMFB is therefore self-normalizing. Overfiow can occur at large values of

the SNR, just as in the regular formulation of the FB algorithm since there is a division by a

very small noise variance in the branch metrics. Although not a practical concern in floating

point arithmetic for most channels, the growth of the state metrics with increasing SNR can

affect the wordlength required for an integer implementation. This issue will be considered

and a solution proposed in Section 4.3, which describes practical VLSI imptementations.

4.2.5 Summary of the DMFB for Class-IV Partial Response

Branch Metrics

A Soft-Output Partial Response Detector

Forward Recursion

A, = G;'

A ~ +] = MAX*(A~G~:~)-MAX*(O,A~-G;C,) k = L . . N - 2

* Backward Recursion

B ~ - = MAX'(B~, -G;;') -MAX'(O, B ~ - G ~ I) k = N - 1 ... 2

soft Outputs

L, = A,+Bk k = 1 . J - 1

4.3 VLSI Architectures for Class-IV Partial Response

4.3.1 The Limiter Form of the DMFB: MAX-DMFB

We have shown that a difference metric formulation of the forward-backward algorithm does

indeed exist. It then seems reasonable that if the MAX approximation of the FB algorithm is

used, then the recursion update can be done using a limiter as in the DMVA. The
simulations of Fig. 4-5 show that the approximation is reasonable. In fact, the soft decisions

will be equivalent to those provided by Battail's SOVA [BattailB'l]. The MAX DMF'B that we

will derive can therefore be thought of as an alternative derivation for a difference metric

SOVA.

If the MAX approximation is used, then the forward recursion becomes:

for which there are the four distinct cases as illustrated in Fig. 4-7. Since the inputs to each
MAX term are related, this imposes a constraint that makes the fourth case impossible. By

considering the three possible cases, the new recursion becomes:

A Soft-Output Partial Response Oetector

Equation 4-29 can be interpreted as the limiter in Fig. 4-8. A simiiar expression can be

derived for the backward recursion:

IMPOSSIBLE

2 2 2 2 A k > 2 (~ k + i - l) and ' k - - (~ k + l + ~) < ~ A k < ~ (~ k + l - l) and A ~ - ~ ~ Y ~ + > O
O 2 s a

Fig. 4-7: The possible combinations of inputs to the forward recursion equation.

Fig. 4-8: The limiter used as the update rule for the fomard recursion equation.

A Soft-Output Partial Response Detector

One of the advantages of the limiter formulation is that no arithmetic computation is

required. At each recursion step, the input or one of the two threshold levels is copied to the

output eliminating any calculation error propagation.

The limiter enables us to build very fast circuits. To see this more ciear1~ we can rederive

the same result from a hardware viewpoint. Fig. 4-9 shows the hardware implementation of

Equation 4-28 as well as the limiter of Equation 4-29. The 'naive' circuit in Fig. 4-9(a) uses

redundant hardware to implement the impossible case fkom Fig. 4-7. The final subtractor is

naeded only when point Q is non-zero. i.e:

This implies that Ak > ;(Yk + - 1) i.e., node P will always be:
6-

Therefore:

A,+, = P - Q

which is just one of the inputs, eliminating the need for the final subtractor. The critical path

of the resulting limiter is just one adder and two multiplexers. Since only the MSB of the

subtractions are used in the limiter, the adders can be replaced by comparator circuits

resulting in a Compare-Select-Select (CSS) operation.

(a) (b)

Fig. 4-9: A limiter saves an adder in the critical path of the recursion hardware.

A Soft-Output Partial Response Detector

4.3.2 Eliminating the Noise V ' a n c e Problem

The presence of the noise variance in the branch mehic expressions complicatea the

implementation of the DMFB. As mentioned in Section 4.2.4, the word length of the metrics

needs to accommodate the smallest value of S. Multiplication is also a highly undesirable
2 operation. These problems can be eliminated by simply eliminating the term from the
6-

branch metrics so:

This is a valid solution since the new state metric at each stage is either one of the current

branch metrics or the previous state metric. Therefore, each state metnc wïll take on the

value of either the initial state metric or one of the 2(N-1) branch metrics each of the form in

Equation 4-34. There is therefore no cumulative error in this approximation and the new

soft output will simply be the desired value scaled by a h .

4.3.3 The Sliding Window Architecture

The sliding window architectures introduced in Section 2.3 can be easily applied to the

MAX-DMFB. An efficient irnplementation (for Mb=DL) requires only 3 limiters and 4DL

words of memory. Although the architecture for Mb =1 shown in Fig. 2-9 is not as efficient in

the general case, it still provides a competitive alternative in the MAX-DMFB case where

there is only one state metric propagated and DL will generally be small. The pipelined

version of the architecture is shown in Fig. 4-10. This architecture is ideal for rapid

hardware prototyping. Since the whole process is self-regulating, with no control unit i t is

easy to implement quickly as a proof-of-concept.

shin register
2L - -ci1

Fig. 4-10: The sliding window MAX-DMFB for Mb = 1 .

A Soft-Output Partial Response Detector

An interesting computational challenge will now be considered. The backward recursive

calculation is really not necessary in one sense because al1 of the inputs to the calculation

(the branch metrics and the initial state metric) are always available in the shiR register at

once. Therefore, in theory at least, al1 possible inputs and outputs could be tabulated in a

very large lookup table (see Fig. 4-lHa)) PTzouD81J. Of course, a lookup table that large

could never be practically built, and if it could, the access time would be a still be a h c t i o n

of the table size. For example, if DL = 10, then with Say 6-bit input symbols the input address

to the table would be 60 bits wide! A compromise is to use a tree-like structure with logZDL

stages as proposed in [FetweisMSl] for the Viterbi algonthm (see Fig. 4-ll(b)). The question

remains of how to implement the new type of processor required. Fortunately, the limiter

concept we introduced provides an interesting and simple solution.

LLR

Fig. 4-11: Parallel processing of the backward recursion using (a) a lookup table or (b) A tree.

The concept can be derived by a simple analogy with a high-rise building that has developed

a leak in its roof (see Fig. 4-12). If each floor also has a hole in it, then assuming the floor

dips towards the hole, the water will run along the floor until it falls through the hole. If the

hole on two adjacent floors overlap, then the water can possibly pass right through both

holes without ever creating a puddle on the floor! The chain of limiters in our problem are

like the stack of floors in the building. Each floor represents the number line, with the linear

part of the limiter represented by the hole and the cutoff regions represented by the concrete

floor. The relative location of the hole is detennined by the value of the input symbols by way

of the branch metrics. If al1 the floors of the building were tom out and replaced by a single

floor with one hole in the correct place then the puddle in the basement would still be in the

same place.

The lookup table approach cdculates the equivalent overall limiter in one step while the

tree approach uses rlog2DL1 steps by considering pairs of adjacent limiters. The new limiter
bc t i ons are then paired up and the calculation is repeated until the overall limiter function

A Soft-Output Partial Response Detector

is known. We will cal1 one of these new pmcessors an interual adjustment unit or IAU as
shown in Fig. 4-13. The IAU uses one more multiplexer than two limiters and the delay is

one multiplexer less than that of two limiters in series.

Fig. 4-12: A graphical analogy to a chain of limiters.
The chain can be replaced by a single limiter which has
the sarne overall effect.

Fig. 4-13: The Interval Adjustment Unit (IAU). (a) Symbol.
(b) Example of IAU operation. (c) Algorithm. (d) Hardware
implementation.

A Soft-Output Partial Response Detector

The tree architecture offers a trade-off between complexity and latency. We note that

significant savings in latency are only realized for large values of DL. The length of the

critical path for the kee architecture can be controlled by inserting pipeline registers where

desired. A trade-off between memory and hardware is possible within the tree architecture

by recognizing that some IAUs are performing redundant calculations since the same input

was available to other IAUs at an earlier point in the shift register [Farhang-BoroujenyG941.

An example for DL = 10 is shown in Fig. 4-14.

LOJ 1
LLR

LOJ 1
LLR

Fig. 4-14: The tree architecture for the sliding window MAX-DMFB using lAUs and
limites. (a) The full tree. Shaded arrows indicate intervals defined by two numben. The
shaded lAUs are redundant and can be pruned. (b) The pruned tree using memory to
replace hardware.

4.4 PRONTO-1: An ASIC Implementation

In this section we describe the design and implementation of a test chip for verification of

the MAX-DMFB: PRONTO-1. The goal was to design a chip capable of decoding at least 100

Mbps. For the test chip, only one MAX-DMFB detector was implemented. A complete PR4
detector would include two identical detectors as depicted in Fig. 4-3.

4.4.1 MAX-DMFB Detector Architecture

The sliding window architecture of Fig. 4-10 was chosen because of its ease of rapid

implementation. If a memory module generator were available, the more efficient three-

processor architecture of Fig. 2-12 could have been used to avoid implementing a shiR
register, reducing the power requirements.

Simulations were performed to determine the performance of the PRONTO-1 chip. A 6-bit

two's complement format with 1 sign bit, 1 integer bit and 4 fractional bits was used for all

variables. The window length was chosen to be L = 9. The projected performance of the chip

plotted relative to a floating point block-based fornard-bachard detector (N = 1024) is

plotted in Fig. 4-15. There is a 0.3 dB loss a t low SNR which disappears as the S N R

A Soft-Output Partial Response Oetector

increases and the BER approaches the desired operating conditions. The architecture shown

in Fig. 4-16 requires 10 limiters, 301 registers, a BMG and a two's-complementor, a MUX for

initialization and a final 6-bit adder.

10" t I 1

." ,.- - -.. .. - - - FB- floatln Polnt N - 1024 :
U*X-DM~: 6-bu. L; 10

Fig. 4-15: Simulated performance of the PRONTO-1
chip with 6-bit quantization and window length of L = 9
compared to the optimum floating point block-based
foward-backward algorithm with blocksize N = 1024,

Fig. 4-16: The PRONTO-1 MAX-DMFB detector architecture.

4.4.2 Control Unit

The state of the detector can be reset to state O by asserting the RESET signal for one dock

cycle, which is delayed by a shiR register the appropriate amount to generate the INIT
signal to the forward recursion unit. The initial design used a counter to implement this

function but it was discovered that the counter requîred was in the critical path and

therefore was replaced by the shift register scheme to impnwe the speed performance. The

A Soft-Output Partial Response Detector

reset scheme can be eliminated if the first few decoded bits are ignored while the detector

state is synchronized.

4.4.3 Limiter

The presence of a limiter in the forward feedback toop means that it has the potential to lie

in the critical path if it is too slow. The limiter (see Fig. 4-9(b)) is designed using a logical

comparator circuit instead of a subtractor for speed.

4.4.4 Adders

Initial simulations using the fast limiter design showed that the speed-limiting circuits were

the adders in the BMG, NEG unit and the final soft-output adder. The saturation circuit

introduced in Chapter 3 was used. A 6-bit carry-look-ahead adder (CLA) design was used for

speed. The BMG and NEG units add a constant value to a variable and therefore their kgic

equations could be simplified greatly.

4.4.5 Clock Doubler

The IC tester available for chip venfication is only capable of stimulating the UO pins at a

maximum speed of 60 MHz, which is below our performance targets for PRONTO-1. To work

around this limitation, a clock doubler circuit was added to the chip to enable the core to be

tested at speeds of up to 120 MHz. The new system can be operated in either single speed

(DBL = O) or double-speed mode (DBL = 1). In double-speed mode, the two parallel inputs

and outputs CYl,Y2) and (LI, L2) are used while in single-speed mode only Y1 and L1 are

used. Fig. 4-17 shows the PRONTO-1 top-level architecture with the clock-doubler support

circuits added around the MAX-DMFB detector.

4.4.6 Test Chip Synthesis and Layout

The test chip, PRONTO-1 was synthesized to a 0.5 pn CMOS standard cell technology using

Synopsys tools. The synthesized netlist was verified by simulation with one million test

vectors. Synopsys reported a speed estimate for the chip core of 300 MHz. Taking into

consideration the effect of pad loading, clock skew and the fact that this estimate was

performed before placement and routing, it would be reasonable to expect the chip to

perforrn at the maximum testable speed (60 MHz at the pins, 120 MHz core). The placement

and routing was performed using Cadence, which resulted in a core area of 0.81 mm2 and an

overall silicon area of 7.3 mm2. M e r manually fixing some design rule violations the chip

passed a design d e check with no errors. Table 4-1 is a summary of the specifications of the

PRONTO-1 chip. Fig. 4-18 is a layout plot of the chip.

A Soft-Output Partial Response Detector

DBL DBL RSP

Fig. 4-17: PRONTO-1 top-level architecture.

Fig. 4-18: Layout of the PRONTO-1 test chip.

A Soft-Output Partial Response Detector

Table 4-1: PRONTO-1 specifications.

Pwpose

Design name

SoRoutput detector for
ISI with F(D) = 1-D

PRONTO-1

Algorithm 1
6 bits

states

Process 1 0.5 pm CMOS (3MlP)

Supply voltage

Core area

Total area I 7.3 mm2

Pins

In this chapter we developed a soft-output detector based on the forward-backward

algorithm for the detection of class-IV partial response signals. The contributions of this

chapter are:

44

Estimated speed

O The difference metric forward-backward algonthm (DMFB) was developed for a two-

state partial response trellis.

z 120 Mbps

a An approximation of the DMFB, the MAX-DMFB was developed. It was shown that the

computational kernel of the MAX-DMFB is a limiter.

a A test chip of the MAX-DMFB, PRONTO-1 was implemented.

Chapter

Conclusions

5.1 Summary and Conclusions

In this thesis we have described two applications of the forward-backward algorithm and

their hardware implementations.

Chapter 2 provided background for discussions of implernenting the forward-backward

algorithm. In Chapter 2 we e s t reviewed the sot'tsutput forward backward (FB) algorithm

and compared it to the well-known hard-output Viterbi algorithm. T ' en , the logarithmic

form of the algonthm (log-FB) was reviewed to show that the log-FB algorithm is really just

two Viterbi-like algorithms operating in opposite directions dong the trellis. The sliding

window FB algorithm was then described for continuous-time soft-output decoding.

Chapter 3 presented the implernentation of a turbo decoder. After a brief introduction to

concatenated codes, turbo codes were introduced as a parallel concatenation of recursive

systematic convolutional codes. The iterative decoding algorithm, which uses the FB
algorithm, provides near-optimal performance and low complexity. The exiating collection of

hardware turbo decoders were reviewed. Most of the work to date has focused on

implementing turbo decoders using the SOVA wbich is a variant of the FB algorithm that

only provides approximate soft output. The designs published in the past year or so are now

turning to the FB algorithm using the simplifications discussed in Chapter 2. The design of a

general hardware-ready turbo decoder was then presented. The most significant

simplification described was a novel low-complexity circuit for the MAX* operation which
replaces a traditional LUT and does not sipnificantly affect BER performance. Using this

Conclusions

new circuit, an FPGA turbo decoder, TORBO-TM2, was designed for the TM-2
reconfigurable FPGA system.

A soft-output detector for partial response signalling was introduced in Chapter 4. The new

algorithm is a form of the log-FB algorithm specifically designed for the two-state PR4 trellis

popular in magnetic recording. M e r a brief review of PR4 and the difference metric Viterbi

algorithm, the difference metric forward-backward algorithm was derived. A simplification,

the MAX-DMFB allows a significant hardware reduction by reducing the computational

kemel to a limiter operation. Next was a discussion of VLSI architectures for the sliding

window MAX-DMFB. Finally, the design of a test chip, PRONTO-1 was described.

5.2 Contributions of this Thesis

The contributions of this thesis are:

r A novel low-complexity MAX* circuit was introduced which eliminates the need for a

lookup table.

An architecture for turbo decoding on the TM-2, TORBO-TM2.

a The MAX-DMFB algorithm was introduced. The implementation uses a limiter as its

computational kernel just as in the difference metric Viterbi algorithm.

0 An ASIC irnplementation of the MAX-DMFB, PRONTO-1.

5.3 Suggestions for Future Research

ReseaFch in the area of soft-output decoding is now starting to emerge fkom the conceptual

stage to practical realizations. We are certain of the existence of unpublished turbo decoder

implementations in indus- There are many unanswered questions to solve, and we

therefore provide a sample of interesting research projects as our final comment.

5.31 Serial and hybrid concatenated codes

These codes provide excellent performance down to very low bit error rates avoiding the

error floor of turbo codes. It would be interesting to build hardware to enable experiments at

bit error rates not possible by cornputer simulation.

5.3.2 Interleaver design

Interleaver design for hardware turbo decoders is still an open question. The shift register

sequences described in Chapter 3 do not necessarily give the best possible performance.

Conclusions

Algorithms to produce random looking interleavers that can be easily irnplemented in

hardware are needed. We have started a project on general interleaver design during the

course of the thesis research but the results are not ready at the time of this writing.

5.3.3 Very high speed DSP or microprocessor turbo decoder

CRC's 400Kbps software decoder demonstrates that high speed microprocessor or DSP
implementations are possible. Our software simulations already run at tens of Wps with no

specific optimizations for speed.

5.3.4 Hardware variance estimation

For fading channels, methods of implementing hardware variance estimation for turbo

decoding should be explored.

5.3.5 Continuous time turbo decoding on the TM-2

The turbo decoder implemented in this thesis was a block decoder, which is area-efficient

and suitable for applications where the transmission speed is low or the data ia already

available in block format. For continuous high-qeed decoding, a pipelined turbo decoder can

be implemented on the TM-2, using multiple boards with the goal of implementing one

iterationhoard. With two lOklOO FPGAs 1 board, we think this is a reasonable. A ldboard

system is therefore capable of 16 iterations.

5.3.6 Turbo decoder ASIC

It would be interesting to apply the ideas described in this thesis to the design of a turbo

decoder ASIC.

Appendix

Algorithm

Consider the code in Fig. 3-3(a) whose trellis can be expressed as the two independent

buttedies shown in Fig. A-1. The state is defined as {akd, ak.l). We will explicitly state the
equations used to implement the FB algorithm for this trellis. Define the input of the rate l/

2 code as (xk, ykJ In a turbo decoder, xk is the sum of the systematic information and the a-
priori information and yk is the coded information fkom either the upper or lower codes. The
blocksize is N and 2 tail bits are added to force the final state to O.

Fig. A-1: TORBO-TM2 trellis

The branch metrics are (k = l..N+2) [Barbulescu96]:

Appendix A

The forward state metrics are (k = 1..N-1):

subject to the initial conditions:

Grouping the backward state metrics and branch metrics, define:

The backward state rnetrics are (k = N+2..2):

subject to the initial conditions:

Appendix A

Define:

Reference
[AbendF70] KAbend and B. Fritchman, "S tatistical Deteetion for Communication ChanneIs

with Intersymbol Interference," Proceedings of the IEEE, Vol. 58, No. 5, pp. 779-785. May

1970.

[Barbulescu96] S. A. Barbulescu, "Iterative Decoding of Turbo Codes and Other

Concatenated Codes, " Ph.D. thesis, University of South Australia, 1996.

[Battail871 G. Battail, "Ponderation des symboles decodes par l'algorithme de Viterbi," Ann.

Telecommun., vol. 42, pp. 31-38. Jan. 1987.

(BCJR74J L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, 'Optimal Decoding of Linear Codes

for Minimizing Symbol Error Rate," IEEE Transactions on Information Theory, pp.284-287.

March 1974.

[BCPT95] C. Berrou, P. Cornbelles, P. Penard and B. Talibart, "An IC for Turbo-Codes

Encoding and Decoding," IEEE International Solid State Circuits Conference, San.

Francisco, CA, pp.90-9 1. Feb. 1995.

(BDMP96J S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, "Serial Concatenation of

Interleaved Codes: Performance Analysis, Design and Iterative Decoding," TDA Progress

Report 42-126, Jet Propulsion Lab, Pasadena CA, pp. 1-26. Aug. 15, 1996.

[BDMP97] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, "Turbo Codes: Principles

and Applications," UCLA Short Course, UCLA, Los Angeles CA, October 28-31, 1997.

[BenedettoMgB] S. Benedetto and G. Montorsi, "Unveiling Turbo-Codes: Some Results on

Parallel Concatenated Coding Schemes", IEEE Transactions on Information Theory, vol. 42,

no. 2, pp. 409-429, Mar. 1996.

[BGT93] C. Bemu, A. Glaview and P. Thitimajshima, "Near Shannon Limit Enor-

Correcting Coding and Decoding: Turbo Codes," Proc. ICC'93, Geneva, Switzerland, May 23-

26,1993. pp. 1064-1070.

[BlackM97] P. J. Black and T. H.-Y. Meng, "A 1-Gbls, Four-State, Sliding Block Viterbi

Decoder," IEEE Journal of Solid State Circuits, Vol. 32, No. 6, pp. 797-805. June 1997.

[ChangH66] R. W. Chang and J. C Hancock, "On Receiver Structures for Channels Having
Memory," IEEE ltansactions on Information Theory, Vol. IT-12, No. 4. pp. 463-468. October

1966.

[ClarkC81] G. C. Clark and J. B. Cain, "Error-Correction Coding for Digital

Communications", New York. Plenum Press, 1981.

[Cornatlas951 CAS 5093 Data Sheet, Rev 4.1, Cornatlas SA, May 1995.

[CRC98] Communications Research Centre. http://www..crc.ca/fee/tcintro.htm

[DawidM95], H. Dawid and H. Meyr, "Real-Time Algorithms and VLSI Architectures for SoR

Output MAP Convolutional Decoding," Proceedings of the IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications, PIMRC'95, New York NY, pp. 193-197.

1995.

(DivsalarP951 D. Divsalar and F. Pollara, "Multiple Turbo Codes for Deep-Space

Communications," TDA Progress Report 42-121, Jet Propulsion Lab, Pasadena CA, pp. 66-

77. May 15,1995.

[DivsalarP97] D. Divsalar and F. Pollara, "Hybrid Concatenated Codes and Iterative

Decoding," TDA Progress Report 42-130, Jet Propulsion Lab, Pasadena CA, pp. 1-23. Aug. 15,

1997.

[ErfanianPBg]. J. A. Erfanian and S. Pasupathy, "Low-Complexity ParaIlel-Structure

Symbol-by-Symbol Detection for ISI Channels," IEEE Pacific Rim Conference on

Communications, Cornputers and Signal Processing, June 1-2 1989. pp. 350-353.

[Farhang-BoroujenyG941 B. Farhang-Boroujeny and S. Gazor, "Generalized Sliding FFT and

its Application to Implementation of Block LMS Adaptive Filters," IEEE Dansactions on

Signal Processing, Vol. 42, No. 3. pp. 532-538. March 1994.

[FBLH98] M. P. C. Fossorier, F. Burkert, S. Lin and J. Hagenauer, "On the Equivalence

Between SOVA and Max-Log-MAP Decodings? IEEE Communications Letters, Vol. 2. No. 5,

pp. 137-139, May 1998.

[Ferguson721 M. J. Ferguson, "Optimal Reception for Binary Partial Response Channels,"

Bell Systems Technical Journal, Vol. 51, No. 2, pp. 493505, Feb. 1972.

[FettweisM91] G. Fettweis, H. Meyr, "High-Speed Parallel Viterbi Decoding: Algorithm and

VLSI-Architecture: IEEE Communications Magazine, Vol. 29, No. 5. pp 46-55. May 1991.

[FeyginGSl] G. Feygin, P. G. Gulak, "Sumivor Sequence Memory Management in Viterbi

Decoders," University of Toronto Cornputer Systems Research Institute Technical Report

CSRI-252. January 1991.

FKST951 G. Fettweis, R. Karabed, P. H. Siegel and H. K. Thapar, "Reduced-Complexity

Viterbi Detector Architectures for Partial Response Signalling," Proceedings Globecom'95.

pp. 559-563. 1995.

[Forney66] G. D. Forney Ji., "Concatenated Codes," Cambridge, Ma: MIT Press, 1966.

Forney731 G. D. Forney Jr., "The Viterbi Algorithm," Proceedings of the IEEE, vol. 61, pp.

268-278, Mar. 1973.

[Galloway95] D. Galloway, "The Transmogrifier C Hardware Description Language and

Compiler for FPGAs," IEEE Symposium on FPGAs for Custom Computtng Machines, FCCM
'95, April1995.

[GaudetgB] V Gaudet, Private discussions, July 1998.

[GrossGgB] W. J. Gross and P. G. Gulak, "Simplified MAP Algorithm Suitable for

Implementation of Turbo Decoders," Electronics Letters, Vol. 34, No. 16. pp.1577-1578. 6'th

August 1998.

[HagenauerHBgJ J. Hagenauer and P. Hoeher, "A Viterbi Algorithm with Soft-Decision

Outputs and its Applications," Proceedings IEEE Globecorn Conference, Dallas TX. pp. 1680-

1686. Nov. 1989.

Eaykin88l Simon Haykin, "Digital Communications," New York. John Wiley & Sons. 1988.

[HOCS98] S. Halter, M. Obert, P. M. Chau and P. H. Siegel, "Reconfigurable Signal Rocessor

for Channel Coding & Decoding in Low SNR Wireless Communications," IEEE Workshop on

Signal Processing Systems, pp. 260-274, 1998.

[Hoeherg?] P. Hoeher, "New Iterative ("Turbo") Decoding Algorithms," International

Symposium on lkrbo Codes, Brest, France. pp. 63-70. 1997.

BOP961 J. Hagenauer, E. Offer and L. Papke, "Iterative Decoding of Binary Block and

Convolutional Codes," IEEE Dansactions on Information Theory, Vol. 42, No. 2. pp. 429-445.

March 1996.

D G 9 8 1 M. S. C. Ho, S. S. Pietrobon and T. Giles, "Interleavers for Punctved Turbo Codes,"

IEEE Asia-Pacific Conference on Communications and Singapore International Conference

on Communications Systems, Singapore, Nov. 1998.

m 9 8] S. Hong, J. Yi and W. E. Stark, %SI Design and Implementation of Low-

Complexity Adaptive Turbo-Code Encoder and Decoder for Wireless Mobile Communication

Applications," IEEE Workshop on Signal Processing Systems, pp. 233-242, 1998.

(JPL1997J Jet Propulsion Laboratory. http://ww~33l.jpl.nasa.gov/public/T~~boDecoder.html

IJGngsburyR'il] N.G. Kingsbury and P.J.W. Rayner, "Digital Filtering Using Logarithmic

Anthmetic," Electronics Letters, Vol. 7, No. 2. pp. 56-58, Jan. 1971.

[Kobayashi71] H. Kobayashi, "Application of Probabalistic Decoding to Digital Magnetic

Recording Systems," IBM Journal of Research and Deuelopment, vol. 15, pp. 64-74. Jan.

1971.

[Koora98] K. Koora. Dresden University of Technology. http://entnw2.et.tu-dresden.de/

cgiwrap/tc.sh

LeeM941 Edward A. Lee and David G. Messerschmitt, "Digital Communication, Second

Edition, " Boston. Kluwer Academic Publishers, 1994.

[LGVRCgB] D. Lewis, D. Galloway, M. van Ierssel, J. Rose and P. Chow, "The Transmogrifier-

2: A 1 Million Gate Rapid Prototyping System," IEEE Trnnsactions on VLSI, Vol. 6, No. 2, pp

188-198. June 1998.

[LVS95] Y. Li, B. Vucetic, and Y. Sato, "Optimum Soft-Output Detection for Channels with

Intersymbol Interference," IEEE Dansactions on Information Theory, Vol. 41, No. 3 pp.704-

713. May 1995.

L m 9 3 1 J. Lodge, R. Young, P. Hoeher and J. Hagenauer, "Separable MAP "Filters" for the
Decoding of Roduct and Concatenated Codes," Proceedings ICC'93, Geneva, Switzerland,

May 23-26,1993. pp. 1740-1745.

wontorsi98] G. Montorsi. Politecnico Di Torino. http://www.tlc. poli to.it/-mon t o r d

simulation.htm1

[Omura69] J. K. Omura. "On the Viterbi Decoding Algonthrn," IEEE Itansactions on

Infornation Theory, Vol.IT-15, No.1. pp. 177-179. Jan. 1969.

[PietrobongB] S. S. Pietrobon, "Implementation and performance of a turbo/MAP decoder,"

International Journal of Satellite Communications, vo1.16, pp. 23-46, Jan.-Feb. 1998.

BabinerG751 L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal

Processing," Englewood Cliffs, NJ, Prentice-Hall, p. 606. 1975.

[Radersl] C. M. Rader, "Memory Management in a Viterbi Algorithm," IEEE Wznsactions

on Communications, 29:1399-1401, Sept. 1981.

[ReedA97] M. C. Reed and J. Asenstorfer, "A Novel Variance Estimator for Turbo-Code

Decoding," Proceedings International Conference on Telecommunications, Melbourne,

Australia, pp. 173-178, April 1997.

[RHV97] P. Robertson, Hoeher and E. Villebrun, "Optimal and Sub-Optimal Maximum a

Posteriori Algorithms Suitable for Turbo Decoding," European Dansactions on

Telecommunications, Vol. 8, No. 2, pp. 119-125. MarchlApril 1997.

[SJM98] M. H. Shakiba, D. A. Johns and K. W. Martin, "An Integrated 200-MHz 3.347

BiCMOS Class-IV Partial-Response Analog Viterbi Decoder: IEEE Journal of Solid State

Circuits, Vol. 33, No. 1. pp. 61-65. Jan. 1998.

[SummersW98] T. A. Summers and S. G. Wilson, "SNR Mismatch and Online Estimation in

Turbo Decoding," IEEE Zkansactions on Communications, Vol. 46, No. 4. pp. 421-423. April

1998.

[TakeshitaC98] O. Y. Takeshita and D. J. Costello Jr., "New Classes of Algebraic Interleavers

for Turbo-Codes," International Symposium on Information Theory, ISIT 1998, Cambridge

MA, Aug 16-21,1998.

[TzouDBl] K. Tzou and J. G. Dunham, "Sliding Block Decoding of Convolutional Codes;"

IEEE Dansactions on Communications, Vol. Cohl-29, No. 9. pp. 1401-1403. Sept. 1981.

[Viterbiô'l] A. J. Viterbi, 2rror Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm," IEEE Transactions on Information Theory, Vol. 13, No. 2, pp.

260-269, Apr. 1967.

[ViterbigB] A. J. Viterbi, "An Intuitive Justification and a Simplified hplementation of the

MAP Decoder for Convolutional Codes," IEEE Journal on Selected Areas in

Communications, Vol. 16, No. 2 pp. 260-264. Feb. 1998.

