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Abstract 

This thesis deds with noise filtering and generation for signal-dependent film grain 

noise that is present in photographic images. For noise filtering, two new filters are 

proposed. The first filter is based on minimizing a higher-order statistics (H.O.S.) 

based criterion that is an extension of the second-order statistics based criterion. 

Another filtering approach is to combine a new local-statistics based technique with 

the generalized homomorphic transformation. The filter mask is adaptive to signal 

activities and can be extended to handle color image. Simulation results show that 

these new filters perform better than existing ones. Finally, for noise generation, 

which has applications in television and motion picture productions, a new procedure 

is successfully applied in grayscale and color images to estimate noise parameter using 

H.O.S. It is found that these two images (compted photographic image and image 

with artificial noise added) have similar noise level and visual appearance. 
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Chapter 1 

Introduction 

1.1 Image Processing in Signal-Dependent Noise 

The problem of extracting information from noisy signals has led to the development 

of many techniques, and most of which have been applied ta image processing. Tradi- 

tional techniques for processing of compted images have primarily assumed additive 

signal-independent noise. These are well developed and applied in applications such 

as detection, filtering, enhancement, and prediction. 

In contrast to the signal-independent, additive noise mode1 assumed in most 

image processing algorithms, many physical noise processes are inherently signal- 

dependent [l]. For example, film grain noise that is present in photographie images 

has been modeled as Gaussian, with a standard deviation proportional to the square 

root of the signal [IO, 11, 12, 131. There are basically two options in processing sig- 

nals degraded by signal-dependent noise : (1) disregard the dependence of the noise 

on the signal and treat it as a signal-independent noise; or (2) develop specific tech- 

niques that take into account the dependence of noise on the signal. In the first 

case, it was shown in [14] that failure to inchde signal-dependence of the noise pays 

a price in performance. In the latter case, h o  approaches that have been used in 



image processing are the derivation of optimum filters for signal-dependent noise, 

and the alternative approach of first transforming the signal-dependent noise model 

to an equivalent signal-independent noise model and then apply filtering algorithms 

designed for signal-independent noise. 

A popular representation for signal-dependent film grain noise is to model the noise 

term as a product of a function of the original signal and a statistically independent 

noise process [IO]. Modifications were made to standard techniques designed for ad- 

ditive signal-independent noise to take the signal-dependence of noise into account. 

Expressions for various optimal estimators [14] (MMSE estimator, MAP es timator, 

ML estimator), Wiener filter 110, 161, and matched filter [Il] for images corrupted by 

signal-dependent film grain noise were derived. Because the resulting structures of 

the optimal estimators are more complicated than those for signal-independent noise, 

suboptimal estimators have been proposed. [17] 

Another approach to remove signal-dependent film grain noise is to f i s t  perform a 

point-wise nonlinear transformation whose purpose is to make the transformed noise 

additive and signal-independent. This technique, c d e d  homomorphic image process- 

ing, was ini t idy applied to decouple signals and multiplicative noise (as in speckle 

images). The corresponding transformation can be shown to be logarithmic. Gen- 

eralized homomorphic transformation was developed to transform different forms of 

signal-dependent noise to approximately additive signal-independent noise [19,20,21]. 

When this is done, standard processing techniques for additive noise can take place, 

which is then followed by an inverse transformation to change the filtered image back 

to the original domain. [I l ,  12, 131 



1.2 Origin and Noise Mode1 for Signal-Dependent 
Film Grain Noise 

1.2.1 Origin of Film Grain Noise 

Image detection and recording by film relies upon the properties of silver halides [2]. 
When the fikn is exposed to light, the silver halide grains absorb optical energy 

and undergo a complex physical change. The grains that have absorbed a sufficient 

amount of energy contain tiny patches of metallic silver called development centers. 

When the exposed film is developed, the existence of a single development center in 

a silver haIide grain can precipitate the change of the entire grain to rnetallic silver. 

After development, the film is "fixedn by chernical removal of the remaining silver 

Lalide grains. 

The recording property of photographic film depends on the optical density D of 

the developed silver halide grains or the dye clouds. However, there is as inherent 

randormess in the distribution of the silver grains. Due to the statistical character of 

the photographic process, the silver grains are randomly located in distance from one 

another in the film emulsion, and they behave randomly under conditions of exposure 

and development. This randonmess is refened to as film grain noise. 

The optical density D is defined as: [3] 

where Il is the intensity of a reference source of light and I2 is the intensity of light 

transmitted through or reflected fiom a film when illuminated by the reference source 

Il. A high optical density implies a s m d  value of I2 and hence a high density of silver 

deposits. Because images are no rmdy  represented in the light intensity domain 1: 

and are within the range [O, 11, optical density D and intensity I are related by: 



The visual sensation of nonuniformity in the developed photographic film is called 

graininess, and an objective measure of the noise is referred to as granularity [4]. 

To obtain granularity of a film requires the measurement of the density across an 

uniformly exposed and developed film. Due to the statistical nature of the noise, the 

measured image r is observed to distribute randomly about the mean density p,. If 
the noise is assumed Gaussian and zero mean, the probability density distribution of 

Regardless of the type of assumed statistics, the rms granularity, or, defined as 

is often used to measure the film's granularity. The property of the noise is such that 

the rms granularity is not a constant and is shown to vary with the mean density. 

1.2.2 Noise Mode1 for Signal-Dependent Film Grain Noise 

Since the formation of an image on photographic film is a highly complex optical 

and chemicd process, modeling this process with a high degree of accuracy, if at all 

possible, often results in models that are too complex and unsuitable for use in any 

mathematical processing. On the other hand, the reliability of restoration techniques 

is directly related to the degree to which the underlying mathematical model sim- 

dates the actual physical process. Therefore, oversimplifying the model makes the 

restoration technique very subop timal. 

As outlined previously, formation of film grain noise is a very complicated pro- 

cess. More physically appropriate models that take into account the distribution of 

grain size [5], the crowding effects of real grains at high densities for monolayers and 

multilayers [6, 71, and the arbitrary geometry of fdm grains [SI, do not appear to be 

mathematicdy attractive in image processing. However, there are a few observations 

which can be stated about f h  gain noise in practical situations: [3] 



0 Film grains are assumed to distribute randomly, that is without crowding or 

clumping. The distribution is Poissonian that in the limit is approximated by 

a Gaussian process (Central Lirnit Theorem) with mean p, and miance a:. 

0 The noise variance is not a constant but varies with the mean density p, .  

0 Film grain noise is a white noise process in the sense that density measurements 

in different spatial positions in p ho tographic fikn are statisticdy uncorrelated 

provided the samples are spaced farther apart than the grain size of the film. 

This is usually the case for typical scanners as their resolution is not high enough 

to discriminate individual film grains (grain size = 0.1 - lpm). 

There are basically three noise models that have been reported to characterize the 

signal-dependence of film grain noise. A brief discussion is as follows. 

Low-Contrast Noise Model 

Falconer (161 employed a low-contrast image assumption in an attempt to fînd a 

mathematical representation for grain noise. S tarting from the exposing intensity 

and using physical arguments, Falconer expressed the observed density D as a sum 

of three components: 

D = bias + signal + noise (1.6) 

where each quantity is related to the amount of exposure and physical properties of 

film. 

Autoregression Noise Model 

In this case the noise n(x, y) is represented as a two-dimensional homogeneous random 

field that satisfies the difference equation: [9] 



where K, C are parameters and w(x, y) is a zero mean white Gaussian noise. The 

above difference equation is then transformed to a twdimensional autoregression 

model. To estimate paramters of K and C, which are assumed to vary with the 

signal, autocorrelation of film grain noise data obtained from experiments and that 

from the above theretical model are used. 

Additive Signal-Modulated Noise Mode1 

A frequently used mathematical model for signal-dependent noise is given by [IO, 11, 

12, 131 
r = s + kf ( s )n  (1.8) 

where r is the observed signal, s is the signal, f (s) is a zero-memory function, n is a 

signal-independent Gaussian noise process, and le is a scalar constant: 

a / A  is the ratio of the grain size to the scanning aperture. Fig. 1.1 shows the signd- 

dependent noise model. The random noise n is u s u d y  assumed to be Gaussian with 

zero mean and unit variance. Notice the noise n is amplitude-modulated by the 

product of k times the nonlinear function f ( s )  of the ideal image S. For film grain 

noise, the nonlinear function f ( s )  takes the form 

f ( s )  = s" 

where p is usually between 0.2 and 0.7 [14, 151 to give the following film gain noise 

model: 

r = s + ksPn (1.11) 

For the secalled ideal film grain noise, p = 0.5, and the model becomes 

Because of the popularity of this model, and its ability to describe the magnitude de- 

pendence of noise on signal, t his additive signal-moduiated model is assumed through- 

out the thesis. 



Figure 1 .l: Noise mode1 for signal-dependent film grain noise. 

1.3 Existing Methods of Noise Filtering 

Since film grain noise is inherently signal-dependent , noise suppression using s t ûn- 

dard techniques for signal-independent noise results in poor performance. Various 

techniques have been proposed, which can be classified into two approaches. The 

first approach is to modify conventional image restoration methods to take into ac- 

count the dependence of noise on signal; The second approach is to fist perform a 

pointwise transformation on the image such that the noise in the transformed image 

becomes additive signal-independent. Once the transformation is performed, conven- 

tional restoration techniques designed for additive noise c m  then be applied. These 

techniques are outlined below. 

1.3.1 Noise Filtering in Density Domain 

The following is a list of techniques that are modifications of those designed for 

additive signal-independent noise. Noise filtering is carried out in the density domain. 



Wiener Filtering 

Given an observed noisy version r (x, y) of a noiseless ideal image s(x, y), the objective 

of the Wiener filter is to produce an estimate i(x, y) which minimizes the mean of 

the squared e r r a  [i(x, y) - s ( x ,  Y)]'. The form of the ideal image or signal s(x, y) 

is unknown, but its spectral density, and that of the noise are assumed known. The 

twdimensional Wiener filter has a spatial frequency domain transfer function of the 

form 

The terms #r6 (u, v )  and #r,(u, v) represent the cross-spectral density of r (x ,  y)  with 

s(x, y), and the spatial density of r ( x ,  y) respectively. 

Walkup and Choens (101 assumed the noise model to be the additive signal- 

modulated noise model, repeated here for convenience: 

Since in this model the noise n(x,  y) is assumed zero mean and statistically inde- 

pendent of the ideal image, it can easily be shown that 4 - 8  = 4sa. -4s a result, the 

two-dimensional Wiener filter has the following transfer function 

with 4,4,1 represents the spectral density of s l ( x ,  y) = f [s(x, y)]. A4ssuming further 

that the noise process n(x, y) is white, that is dnn(u, v )  

function may be simplified to 

- 
where ( s ' ) ~  is the mean squared value of st(x, y). 

S i d a t i o n s  have been performed on images degraded 

signal-modulated noise model with the function 

f (s) = s1I3 

8 

= Nor then the t r a d e r  

according to the additive 



Three filters were studied based on different assumptions about the noise. The first 

filter is referred to as the signal-modulated colored (SMC) noise filter (Eq. (1.15)), 

with the assumption that the effective noise t e m  is signal-modulated and colored 

(non-white). The second filter (Eq. (1.16)) assumes the noise is signal-modulated 

but white (the SMW filter). The last flter is the signal-independent white (SIW) 
noise filter. The results shows that the SMC filter was generaliy superior to the 

SMW and S W  filters. 

Optimal Estimators Based on Bayesian Approach 

The model that includes both signal-dependent and signal-independent noise is given 

by 
r = s + kf (s)ni  + n2 (1.18) 

Optimal estimators for the above noise model are derived by Froehlich [14], which, 

as expected, have more complicated e.xpressions than that for the classical case of 

signal-independent noise. Due to the mathematical complexity of these estimators, 

various suboptimal estimators were purposed in [17]. The six estimators, with the 

first three being optimal and the rest suboptimal, are summarized in Table 1.1: 

1. Minimum mean square error (MMSE) 

2. Maximum a posterior probability (MAP) 

3. Maximum likelihood (ML) 

4. Weighted spatial averaging (WSA) 

5. Modified signal-independent MAP (MSIMAP) 

6. James-Stein (JS) 

One characteristic shared by the MMSE, MAP, and ML estimators is computa- 

tional complexity. It is generally undesirable to integrate numerically at every pixel, 



1 Estimator 1 Expression 

MMSE 

MAP 
Q M M S E  = l-ma sp(+)ds 

solution of + uLap + + d = O 

ML 

WSA 

MSIMAP 

I 1 within a moving window of size (2N+l) x (2N+l) ,  cr: is estimated 

where a, b, c, ônd d are functions of k, O:, cri, and p.. 
2- i /2  y 2  

-3- 
2 & 

SWSA = F = (2N+1)2 1 cK-N x j = - ~  Pl 

within a moving window of size ( 2 N f l )  x ( 2Nf l )  

~ M S I M A P  = f &f 

JS 

Table 1.1: Summary of different estimators. The quantities 0:) 0:) O:, and 0: are the 

variances of r ,  s, ni, and nl respectively. Mean of the signal s is designated p .  

within a moving window of size (2N+1) x (2N+l),  u: is known 

iJs = F + (1  - $(r - 7) 

just as it is undesirable to solve a polynomial at every pixel. To sacrifice some theo- 

retical performance for ease of implementation, adoptive suboptimal estimators were 

proposed and were found to perform slightly worse than optimal estimators. If the 

original image contains a lot of fine detail, i.e. hi&-frequency content, the WSA 
estimator should not be used because it is essentidy a lowpass filter. 

1 A.2  Generalized Hornomorphic Transformation 

A different approach to process images degraded by signal-dependent film gain noise 

is to perform a pointwise transformation whose purpose is to transform the noise into 

approximately signal independent additive Gaussian noise. From the noise model 

in Eq. (1.8), the nonlinear coupling of signal noise makes linear filtering not very 

attractive. Therefore, decouplng of the noise fiom the signal is highly desirable. This 

is obtained by passing the observed image r through a memoryless nonlinearity g( r ) ,  



such that: 

where t ( s )  is a nonlinear function of s and N ( n )  is a signal-dependent noise terni. 

Once this is done, conventional filtering techniques for additive signal-independent 

noise can be employed. The sequence of operations is shown in Fig 1.2. 

It was shown in [39] that the only type of signal-dependent noise that can be 

decoupled exactly (and hence signal-independent) by g(r)  is the multiplicative noise. 

In the case of speckle noise (a type of multiplicative noise), a logarithmic transforma- 

tion was shown to transform the noise into additive and signal-independent, with its 

probability density distribution becomes approximately Gaussian [la]. In cases where 

it is desired to have variance of the noise independent of the signal, Arsenault and 

Denis (19, 20, 211 derived a generalized transformation for signal-dependent noise of 

arbitrary fom.  Consider a noisy image r with film grain noise having a probability 

distribution p(r) .  Since the noise is signal-dependent, the standard deviation of r is 

a known function of the mean value p,, and so we can write 

where H(=) represents the signal-dependence functionality of or. The objective here 

is to find a transformation 

w = d r )  (1.21) 

such that u, = g(r) will contain constant-variance noise over a wide range of image 

values. The mean of the variable w is equal to 

Figure 1.2: Block diagram showing the sequence of operations employing homomor- 

phic transformation. 

P input H 
linear 
filtering boutput K1 



Expanding the function g(r)  into a Taylor series about the mean p, gives 

Similarily the variance is given by 

Integrating the above expression term by term, and setting the mriance to a constant 

K2, with the assumption that the terms of order higher than the first are negligible 

gives 

The solution 

ou> = K = g'(pr)gr = g ' ( p r ) ~ ( p r ) .  

to this differential equation is obviously 

For any signal-dependent noise, once the relationship between the variance and the 

signal has been d e t e d n e d ,  the above formula can be used to fmd a transformation 

that will make the variance of the noise additive and signal independent. With the 

noise mode1 in Eq. (1.8) at a given pixel ( x ,  y), we have 

for 0: = 1. It then follows that 

H ( r )  = krP 

Substituting Eq. (1.29) into Eq. (1.26) and integrating gives 

For the typical case of p = 0.5, the above expression becomes 

and transfonns the signal-dependent noise into additive signal independent noise with 

variance P. 



Accuracy of the 'Ikansformation 

To determine the accuracy of the transformation zo = g ( r ) ,  w can be expanded into 

a Taylor series about s as: 

Using a similiar procedure to compute the miance oi gives [21] 

The fist  order estimate of the enor on the variance, assuming negligible higher order 

terms, is 

thus the relative error is mi t  ten as 

With the following typical values of paiarneters fûï photographie film (211 

and E < IO%, the range of s must be greater than 0.09, which is usually the case in 

practice. This shows that the transformation can be used over a wide range of signal 

densities. 

Applications 

For extraction of information from images cormpted by signal-dependent noise, gen- 

eralized homomorphie transformation can be combined with numerous techniques 



developed for signal-independent noise. This approach has the advantage that it al- 

lows the application of conventional image processing techniques on images corrupted 

by signal-dependent noise without sacrificing performance. The p i ce  to pay is the 

additional step of pre-processing the data. 

Experiments were carried out by Arsenault and Denis [13] to perform Wiener fil- 
tering on film grain noise. The image was fmt  transformed to make the noise additive 

and signal-independent, and then followed by Wiener filtering, where the transformed 

quantities were used. Local-statis tics processing combined wi th homomorphic trans- 

formation was done by Arsenault and Levesque (121 to process images degraded by 

film grain noise and by multiplicative noise. It was found that filtering designed 

for signal-independent noise combined with homornorphic transformation produced 

better results. 

1.4 Motivations of the Thesis 

Over the past years research has been conducted on suppressing film grain noise. 

The signal-dependence of the noise has been considered and specific noise filtering 

techniques were developed. These techniques only employ second-order s t atis tics of 

the image. Because photographic images are usually non-Gaussian, and film grain 
noise is nonlinearly related to the signal, higher-order statistics (H.O.S.) offers a new 

signal processing tool that can capture the non-Gaussian information in the image. 

Furthemore, the noise is usually assumed signal-dependent Gaussian, but virtually 

no work has been reported on under what circumstances this assumption is valid. 

The nature of the noise distribution will affect the choice of filtering schemes to be 

used. Moreover, existing techniques only concentrate on removing images compted 

by signal-dependent noise, but not the reverse process: film grain noise generation. 

Since images photographed on film contain a characteristic look that is different from 

images generated by a computer or photographed by video, accurate noise generation 

has applications in television and motion picture productions, as digitized film images 

axe routinely combined with computer generated images into one fiame. Artificial 



noise must be added in order for the result to appear realistic. Based on the above, 

the motivations of this research are the following: 

1. Determine under what circumstances do the assumption on film grain noise 

being Gaussian is valid. Knowledge on the nature of noise distribution is desired. 

2. Investigate new filtering techniques that are based on H.O.S. for grayscale and 

eventudy to color images. 

3. Develop techniques for film grain noise generation for applications in television 

and motion picture productions. 

1.5 Contributions of the Thesis 

The major contributions of this thesis are listed below: 

1. By extracting actual fikn grain noise and computing its variance and higher- 

order statistics, some deviation from Gaussiani ty was observed. The noise dis- 

tribution was modeled as a generalized Gaussian distribution and its parameters 

were estimated. Nevertheless, over a practical range of signals film grain noise 

was observed to exhibit Gaussian behavior. This material is presented in Chap  

ter 2. 

2. A higher-order statistics based filter is introduced in filtering signal-dependent 

film grain noise. This filter employs H.O.S. of the image and minimizes a 

H.O.S. based criterion. It was found that the proposed filter performed better 

than existing one that used second-order statistics by 1 dB (in SNR) on average 

in both high and low SNR cases. Moreover, a new method for estimating noise 

parameters using second and higher-order statistics is desmibed. These are 

dismssed in Chapter 3. 



3. By using the generalized homomorphie transformation, a local-statistics based 

filtering algorithm is proposed in Chapter 4. This new filter has excellent edge 

preserntion and selective noise smoothing properties. The proposed flter can 

be applied in grayscale and color images corrupted with signal-dependent film 
grain noise. On average this new filter outperformed existing local-statistics 

based filters by 1 dB (in SNR) for grayscale images and resulted in 12% less 

error (in L2 n o m )  for color images. 

4. Using the proposed local-statistics based filter and the noise parameter estima- 

tion method, realistic film grain noise generation for grayscale and color images 

by matching the higher-order statistics of the noise was studied. The noise- 

added image and the original noisy image were similar in visual appearance and 

in their noise level, 

Conclusions of this research, as well as future directions, are summarized in Chapter 

5. Detailed derivations of some results are given in the Appendix. 



Chapter 2 

Review of H. O.S. and Investigation 
on Film Grain Noise 

To test the validity of the noise model, some experimental work on extracting ac- 

tual film gain noise was carried out. In particular, the assumption that fikn grain 

noise is Gaussian with signal-dependent variance was investigated. Once the noise 

is extracted, statistics of the noise as well as properties of the noise distribution can 

be computed. The noise distribution is modeled by the three-parameter generalized 

Gaussian density, and parameters of this distribution are then estimated. This chap 

ter is organized as follows. First a short review of higher-ordcr statistics (H.O.S.) and 

the parametric generalized Gaussian distribution (GGD) are provided, then results 

of actual film grain noise statistics are presented. 

2.1 Review of H.O.S. 

?Zigha-order statistics, dso known as cumulants, are closely related to the more 

familias moments and can be expressed in terms of them. For example, the familiar 



first and second moments are the mean and variance, respectively, whereas the second- 

order cumulant is the wiance itself. One attractive property of H.O.S. is that al1 

kth-order cumdants of Gaussian processes are identicdy equal to zero for k > 2. By 

working with cumulants of order greater than two, extraction of non-Gaussian signals 

from Gaussian signals is possible. Moreover, another attractive property of cumulants 

is that the cumulant of the sum of two statistcdy independent random processes is 

the sum of the cumulants of the individual processes. It is therefore very convenient 

to work with cumulants than with moments, which do not have that property. 

The following serves as a brief overview of definitions and properties of H.O.S. 

2.1.1 Definitions and Properties 

Given a collection of n random variables, x = [y,, yz, . . . the n-th order cumulants 

of the random variables is defined as: (221 

where v = [ui, . . . , u,IT. For zeremean real random variables, the nth order station- 

ary random process (x(t)), the 2nd, 3rd, and 4th order cumulants are given by 

The quanthies = Cz,(O), c$ = C3,(0, O), < = C4,(0, O, O) are known as variance, 

skewness, and kurtosis respectively. Assuming that the n-th order cumulant is abso- 

lutely summable, the n-th order polyspectrum is defined as the (n - 1)-dimensional 



discrete Fourier transform of the n-th order cumulant: (221 

In the case of continuous-time signals, the above Fourier transform is replaced by 

the rnultidimensional Fourier transform. For n = 2, S2,= is the well-known power 

spectrum; for n = 3, S3,= is called the bispectrum; and for n = 4, S4,, is known as 

the trispectnun. 

Following is a Est of some important properties of cumulants: [22], [23] 

1. If CI, . . . , c, are constants, and y1 , . . . , yn are random miables, then: 

2. Given the random variables $0,  yo, 21, .  . . , Zn, cumulants of sums equal sums of 

cumulant s : 

3. If (il, . . . , in) is a permutation of (1, . . . , n), then cumulants are symmetric in 

t heir arguments : 

CUm(x1,. xn) = C T ~ ~ ' T ~ ( X ~ ~ ,  . . . y xin) (2*8) 

4. If c is a constant, then 

mm(c + 11, x2,. . . , x,) = cum(xl,. . . ,xn)  (2.9) 

5. If the random process {y(i)) is independent identically distributed (i.i.d.), then 

where b(r) is the delta function. 



6. If the random variables ( x i )  are independent of the random variable ( y i ) ,  then 

mm(z1 + y l , * - - , ~ k + y k )  = ~ m ( ~ l , * - * ~ ~ k ) + ~ m ( y l , - - - , ~ k )  (2.11) 

7. If a subset of the n random variables (yi) is independent of the rest, then 

mm(yl ,***,yk)  = O (2.12) 

2.2 The Parametric Generalized Gaussian Distri- 
but ion 

The parametric generalized Gaussian distribution (GGD) is a distribution that is 

closely related to the more familiar Gaussian distribution. This parametric family of 

distribution is obtained by generalizing the Gaussian distribution to obtain a variable 

rate of exponential decay p. It has the following form: [;?4, 251 

where 

r(-) is the gamma function, cr2 is the variance, and p is the mean of the distribution. 

Note that p = 1 gives the Laplacian distribution function, and p = 2 gives the familiar 

Gaussian distribution. The three parameter values are such that 

0 < p , o 2 < m  and - o s < p < o o  (2 .15)  

Note that for O < p < 1 the distribution has more heavy tails, while as p  -t oo, the 

distribution becomes more uniform. 



2.3 Extraction of Actual Noise Statistics 

To acquire actual film gain noise data, it is desirable to scan an unifonnly exposed 

and developed print. In other words, the ideal image in this case has a constant value 

throughout. Assuming the light source to be purely uniform, and measurement noise 

being negligible, any fluctuations in the digitized output image are due to film grain 

noise. The noise extraction procedure is shown in Fig. 2.1 

From the signal-dependent film grain noise model, it can be observed that the noise 

variance is directly proportional to the mean of the signal p, (assuming p = 0.5), in 

this case a constant: 

4iie P r  (2.16) 

Images with different uniform color were photographed using Canon AF35MII camera, 

with Kodak Gold ASA 400 film. The developed prints were then digitized using 

Canon IX-4025 digital image scanner at a resolution of 300 dpi (dots per inch). This 
resolution was used simply because it is commonly used in practice. For a constant 

signal, the noise model predicts that the variance of the noise is linearly related to the 

signai, the skewness and kurtosis are identically zero. Relationships between noise 

vitriance and signal mean for red, green, and blue channels are plotted in Fig. 2.2. 

For cornparsion, skewness and kurtosis of the noise are also included. 

From the figures, some trends are observed: 

film grain noise rneasurernent noise 

( uniform distribution ) 

* f 

Figure 2.1: Procedure for noise extraction. 
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The noise variance increases with the signal, and therefore signal dependency of 

film grain noise is observed. It appears that the relationship between noise vari- 

ance and signal is linear, as least for density levels smaller than 1, as predicted 

by the noise model for p = 0.5. 

For signals with relatively low densities (p,  < l), film grain noise increased 

steadily. However, as signds are greater than one, a larger rate of increase for 

film grain noise variance is observed. This rnay suggest that at high densities, 

the noise model is inadequate in describing the observed pheonomenon. 

Higher-order statistics of film grain noise are relatively small at low signal densi- 

ties, but are substantidly large at high signal densities. This indicates that the 

assumption of Gaussian film grain noise may not be valid under those situations. 

density 

Figure 2.2: Relationship between noise variance and signal for different channels. 

Data for red channe1 are shown with 'o', green channel with 'x', and blue channel 

with '+'. 
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Figure 2.3: Relationship between noise skewness and signal for different channels. 

Data for red channel are s h o w  with 'O?, green channel with lx', and blue channel 

with '+'. 

2.4 Determination of the Parameters for the GGD 

From the last section, it is observed that at low signal densities the noise mode1 

works well, while at high densities the rate of increase for noise variance is higher. 

Moreover, the skewness and kurtosis of film gain noise are large. These suggest that 

the Gaussian assumption about the noise may not be valid at high densities. In this 

section, the generalized Gaussian distribution (GGD) is assumed. Parameters for this 

noise distribution are estimated over the range of the signal. 

There are three parameters in the GGD, the mean p, variance 02, and rate of 

exponential decay p. The mean and variance are estimated using sample averaging 

for an image r of size M x N: 



Figure 2.4: Relationship between noise kurtosis and signal for different channels. 

Data for red channel are shown with 'o', green channel with 'x', and blue channel 

with '+'. 

and 

The parameter p is obtained by selecting the p that resdts in the minimum mean 

square error. The procedure to determine p is to first select the range 1 < p 5 3 in 

increments of 0.1. Then for each value of p compute the mean square error between 

the actud noise distribution and the GGD. The value of p desired is the one having 

the minimum mean square error. This procedure is repeated for each chaanel. Noise 

histogram with the estimated GGD are plotted in Figs. 2.5 - 2.7. Results of estima- 

tion of p are summarized in Table 2.1. 

It is clear fiom the Table that as  signal density inneases, the assumption on Gaus- 

sian f i  grain noise may not be valid. The noise becomes more impulsive in nature. 

The observation may be explained by noting that a very high signal density in the 

print means a small optical energy detected by film grains. Under those circumstzuices 



only a s m d  number of silver halide grains are converted to silver during development, 

and hence the Central Limit Theorem may not apply. Nonetheless, over a practical 

range of signal densities film grain noise is observed to be Gaussian. 

Channel 

red 

Table 2.1: Estimated parameter p of the GGD for different channels. 
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Figure 2.5: Noise histogram of the red channel. The dotted cuve  is the Gaussian 

distribution while the solid cunre is the estimated GGD. 
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Figure 2.6: Noise histogram of the green channel. The dotted curve is the Gaussian 

distribution while the solid c u v e  is the estimated GGD. 
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Figure 2.7: Noise histogram of the blue channel. The dotted curve is the Gaussian 

distribution while the solid c u v e  is the estimated GGD. 



Chapter 3 

Film Grain Noise Removal Based 
on Higher-Order Statistics 

In this chapter, use of higher-order statistics (H.O.S.) in film grain noise removal 

is considered. Because photographie images aze highly non-Gaussian and film grain 
noise is nonlinearly related to the original image, a lot more information can be 

extracted from their higher-order statistics, and filtering schemes based on H.0 .S. 
can give better performance. Moreover, in the presence of Gaussim measurement 

noise, higher-order statistics of the observed image would contain contributions from 

the non-Gaussian image and signal-dependent fdm gain noise ody, which allows more 

reliable estimation of film grain noise parameters. 

3.1 Film Grain Noise Mode1 

The image model used for film g a i n  noise is the additive signal-modulated noise 

model described in Chapter 1: [IO, 11, 12, 131 



where s is the noiseless image rneasured in density, and r is the observed image. The 
above noise model does not include a signal-independent noise term which accounts 

for measurement noise. If this noise term is added, the above model becomes: 

with kspn being signal-dependent noise, and w being the signal-independent noise. 

The range of k and p are: 

k > O and 0.2 5 p 5 0.7 (3.3) 

where a typical value of 0.5 is held for p. Assumptions made above are: 

Film grain noise is a Gaussian process. Furthemore, film grain noise is a white 

noise in the sense that density measurements in different spatial positions in 

photographic film are statistically uncorrelated provided the samples are spaced 

farther apart than the grain size of the film. Thus, the noise tenn n is i.i.d. 
Gaussian with zero mean and unit variance (0: = 1). 

Measurement noise w is Gaussian (colored or white) with zero mean and un- 

known variance CL. 

The ideal image s, noise terms n, and w ,  are statistically independent of each 

other. 

3.2 Design of Higher-Order Statistics Based Filter 

Assuming the proposed filter h(x, y) be a finite impulse response (FIR) filter with a 

support region of 

the filter coefficients h ( x ,  y) can be solved by minimizing a higher-order statistics 

criterion that is an extension of the  mean square error (MSE) criterion used in the 



correlation based Wiener filter. Let the error signal e ( x ,  y) be defined as: 

the proposed flter h(x, y) is designed by minimizing the following cri terion [27] : 

with e,, = e(x, y )  and h(z, y )  being the optimum filter based on the cumulant based 

cri terion JY. 

3.2.1 Cumulant-Based Wiener-Hopf Equation 

To compute the optimum filter coefficients, we can extend the correlation based 

Wiener-Hopf equation and the orthogonality principle to higher-order s tatis tics. It is 
well known that the conelation based Wiener-Hopf equation has the fom:  

where &, is the cross correlation of the observed and ideal images. The above 

equation can be ob tained by the orthogonality principle, which states that: 

Analogously, by using a cumulant based orthogonality principle, a cumulant based 

Wiener-Hopf equation can be derived. By using the idea described in [28], let h(z, y) 

be the filter satisfjhg the following cumulant based orthogonality condition: 

where a 5 i $ b, c 5 j 5 d is the support region of the optimum filter. Then it can 



be shown that h is the optimum filter associated with the criterion JY (for detailed - 
derivation see Appendix). Thus we have for hij = hi,, 

To derive the cumulant based Wiener-Hopf equation, we start with the orthogonality 

condition (Eq. (3.9)), and substitute the expression for e ( x ,  y) into Eq. (3.9): 

where Cs, and Cr, are defined as 

The above derivation can be applied similarly to moments, i.e., moment based 

criterion leading to a moment based orthogonality condition and a moment based 

Wiener-Hopf equation. The corresponding criterion to be minimized now and the 

orthogonali ty condition are 



and 

whick lead to another HOS-based Wiener-Hopf equation: 

with 

3.2.2 Estimation of Higher-Order Statistics 

The use of Eqs. (3.11) and (3.15) requires that Car, Cr,, &, and .&Ir. are known. 

In practice, higher-order cumulants and moments are estimated by replacing the 

expectation operator by sample averaging over the data. Estimation of Cr, and Mrr 
c m  be done since we have access to the observed signal. However, Cs, and Mar are 

not easy to obtain unless we know the signal exactly, which is impossible. Thus it is 

important to determine their relationships with the original signal statistics Cs, and 

Mss, which are assumed known. 

By substituting the noise mode1 (Eq. (3.1)) into the definitions of Cr, and C,, 
we have for M = 3 and p = 0.5: 

and 



S imilarly, 

and 

where R, and p, are the autocorrelation and the mean of the signal s respectively: 

So estimate the sample moment for an image of size M x N, the following esti- 

mator is used: 

The third-order cumulant is related to the third-order moment through the following: 

Note from the definitions of ilIr, and Crr that the range of a and 0 is from negative 

inh i ty  to positive infinity. In practice this is impossible, hence a smaller range 

must be used. Through experimentation a good compromise between the number of 

computations (speed) and performance is the range: 

-2 < cr 5 2 and -2 si? 5 2 (3.25) 

3.3 Parameter Estimation 

The caldations of Eqs. (3.18) and (3.19) require that the constant k be known. 

However, when this information is not available, we must estimate the constant from 



the observed image statistics and the a prior ideal image statistics. In the case of 

signal-dependent noise only, the variance, skewness, and kurtosis of the received image 

are related to that of the original image by the following equations: 

with $ and c; representing the skewness and kurtosis of the observed image respec- 

tively. In the special case of p = 0.5, the above relationships cas be simplified to: 

Similady, for both signai-dependent and signal-independent Gaussian noises, with 

p = 0.5, we have: 

o: = o: + k2 E [s] + O: (3.32) 



The d u e  of k can then be solved by substituting the statistics of the observed 

image (which can be estimated) and the a prior image statistics (oz, c:, and c:) 

into any of the above equations. Note from the above equations that the use of 

higher-order statistics in the presence of Gaussian rneasurement noise leads to better 

estimation of k, as cumulants of Gaussian noise are identicdly zero. 

3.4 Simulation Results 

In this section, the above proposed methods in estimation of the parameter k, and 

signal-dependent film grain noise removal based on H.O.S. are applied. Four test 

images of size 256 x 256 are used: Lema, Peppers, Melon, and Mountain. They are 

shown in Fig. 3.1 - 3.4. 

3.4.1 Results on Parameter Estimation 

To test the validity of parameter estimation of k, a number of simulations were per- 

formed for the following two cases: 

0 signal-dependent noise only 

0 mixture of signal-dependent/signal-independent noise 

Signal-dependent film grain noise and Gaussian measurement noise are added to the 

image 'Lema'. Sample cumulants are calculated using the following relationships : 



Figure 3.1: Test image: 'Lenna'. 

Figure 3.2: Test image: 'Peppers'. 



Figure 3.3: Test image: 'Melon:. 

Figure 3.4: Test image: 'Mountain:. 



The quantities m;, mi, mj ,  and mi are estimated from an M x N image using sample 

averaging: 

The signal statistics O:, 4, and c; of the image 'Lenna' are h o w n  a prior  and are 

used to solve for k. The parameter p was fixed to be 0.5 throughout the experiments 

since this is typical for a variety of film stocks. Because the variance of the signal- 

independent noise is assumed unknown, k is solved using Eq. (3.29). Two values of 

la were selected, and correspond to moderate and severe noise corruption: 

k = 0.1 and k = 0.2 (3.43) 



The value of k determines the degree of degradation, as can be seen from the variance 

of the signal-dependent noise term: 

2 2 2 
%&,e = k (3.44) 

Fifty independent runs were performed, with the results summarized below. 

1 1 es timated k (meanf standard deviation) : 1 

Table 3.1: Estimation of k with true value k=0.1. 

cri 
O 

1 1 estimated k (mean& standard deviation): 

2nd order statistics 

0.0999k0.0015 

Table 3.2: Estimation of k with true value k=0.2. 

cri 
O 

The advantage of using B.O.S. in estimation is evident from the tables. Second- 

order statistics results in high bias and low variance, whereas estimation using H.O.S. 
has low bias but higher variance. It is clear that estimating k using H.O.S. is better 

than using second-order statistics in the presence of Gaussian measurement noise. 

3rd order statistics 

0.0999~t0.0024 

4th order statistics 

0.0998k0.0033 

2nd order statistics 

0.1998k0.0013 

3rd order statistics 

O. 1995=t0.0027 

4th order statistics 

0.1996k0.0064 



3.4.2 Results on Noise Filtering 

For noise filtering, again two different cases were investigated: 

0 signal-dependent noise only 

a mixture of signal-dependent/signal-independent noise 

The value of p for signal-dependent noise was held to be 0.5 in all cases. For signal- 

dependent noise only two different values of k were used (k = 0.1 and k = 0.2) to 

determine the effect of noise on the performance. For a mixture of signal-dependent 

and signal-independent noise, only the value k = 0.1 was selected. Variance of mea- 

surement noise oi is chosen to be 0.005. 

Four test images, shown in Figs. 3.1 - 3.4, were used in the simulations. The cri- 

teria used in evaluating the performance were 1) signal-to-noise ratio (SNR), 2) mean 

absolute error (MAE), and 3) mean square error (MSE) which is similar to SNR. AU 
the criteria were calculated in the density domain. These are defined below for an 

image of size M x N: 

M-1 N-l+, Y) E-O CF0 SNR (in dB) = 10 loglo M- c,,ol C:;~ [% Y )  - 4x7 y)12 

MAE = 2- [â(x, p) - s(x, y)] 
M N  ==O -0 

MSE = [i(x, y) - s(x, y)]* 
M N  ,O ~o 

where s and B are the ided and estimated images, respectively. Two filter sizes were 

chosen in this simulation: 3 x 3 and 5 x 5. Although using filters with a larger 

size (e.g. 7 x 7 or 9 x 9) would improve performance, they tend to smear the edges 

(boundaries or contours a t  which a s igdcan t  change in pixel value occurs) in the 

image which axe pleasing to the eye, thus smaller filter sizes were selected. Wiener 

filter designed based on the usual correlation based criterion [IO] (designated 1Vf2) and 



the two proposed higher-order statistics based criteria (third-order moment 1W3 and 

third-order cumulant C3) are compared. Results are summarized in Tables 3.3 -3.14. 

Filtered Lenna using different filters are depicted in Figs. 3.6 - 3.8. 

A number of observations can be made: 

a The performance of higher-order moment based filter is comparable to that 

using the usual correlation based criterion in all cases. On average higher-order 

moment based filter achieved better SNR than the correlation based filter by 1 

dB. This improvement may be due to the fact that more information about the 

image statistics was utilized. In the case of third order statistics, both third 

order moment and correlation of the original image (see Eq. (3.21)) were used. 

0 The cumulant based filter performed as good as the higher-order moment and 

correlation based filters in the case of signal-dependent noise only. However, 

for a mixture of film grain noise and measurement noise, the cumulant based 

filter is not suitable. By examining the cumulant based Wiener-Hopf equation 

in Eq. (3.11): 
6 d 

C ~ P ,  (11 = 4, j)Crr(p - & q - II (3.48) 
i=a j=c 

we have for a mixture of noise: 

C,, ( mixture of noise ) x Ca, ( f i l m  grain noise only ) 

and Cr, ( mixture of noise ) Cr, ( f i l m  grain noise only ) (3.49) 

thus the cumulant based criterion cûnnot not recognize the Gaussian measure- 

ment noise. The filter perfonned as if only film grain noise is present. 

0 Performance of cuniulant based filter depends heavily on the properties of the 

image. For third-order cumulant, if the distribution of an image is close to 

Gaussian or is symmetric, then it is not appropriate to use the cumulant based 

filter, because images with those properties have zero third-order cumulant. 

Table 3.15 shows the skewness, as well as the mean and variance, of the four 



images. It can be observed that the image 'Mountain' has the lowest skewness, 

thus third-order cumulant based filter did not perform well in that case. If 
fourth-order cumulant is used, the filter should perform well in the case of film 

grain noise only, as indicated in Table 3.16. 

0 For severe noise conditions, a flter size of 5 x 5 has a better noise suppression 

than a filter size of 3 x 3, as expected. Moreover, the effect of blurring for large 

filter size is not noticeable with size 5 x 5. Thus, in ernploying H.O.S. based 

Elters this filter size is recomrnended for severe noise corruption. 

3.4.3 Comput ational Complexity 

In this section, the complexity issue of the proposed H.O.S. based filters is discussed. 

In particular, the number of multiplications involved for different fdters is considered, 

since multiplication is the most costly arithmetic operation in teAns of time. We c m  

find the total number of multiplications for each filter, but since the only difference 

for these filters is the choice of signal statistics, we only need to compute the number 

of multiplications in estimating signal statistics. 

For correlation based Wiener filter, the mean estimator of the autocorrelation for 

an M x N image is: 

The number 

moment, the 

of multiplications involved is approximately (MN). For third-order 

mean estimator has the form: 

whereas for third-order cumulant the number of multiplications required is of the 

same order as that of the third-order moment. Using a direct approach would end 

up having approximately 50 (MN) multiplications for third-order moment. Thus the 

approximate number of multiplications for correlation based and third-order statistics 



based methods are (MN) and 5 0 ( M N )  respectively. 

The above analysis may discourage the use of H.O.S. based algonthms because of 

the higher computational load. However, there exists fast algorithms for estinating 

higher-order statistics of the signals which speeds up computational time. As pro- 

posed in (311, expression for estimating third-order moment can be separated into 

two parts: r(x, y)r(x - i, y - j )  and r(x - a, y - ,û), one depends on (i, j) and the 

other on (a, P ) ,  so that the fkst part can be calculated and stored in memory for 

different values of (a, ,O). From the results in [31] the number of multiplications saved 

using this method was 50%. With efficient methods in estimating signal statistics, 

combined wi th  the a,dvance of computing technology, it is becoming less of a concern 

for comput ational complexity. 



Table 3.3: Test image 'Lema' with signal-dependent noise only (k=O. 1). 

filter size 

unfiltered 

1 1 SNR (dB) 1 MAE 1 MSE 1 
filter size 1 3x3 1 5x5 3x3 5x5 3x3 5x5 

r 

3x3 

16.7591 

Table 3.4: Test image 'Lenna' with signal-dependent noise only (k=0.2). 

5x5 

16.7591 

Table 3.5: Test image 'Lenna' with mixture of signal-dependent noise (k=0.1) and 

memurement noise (oz = 0.005). 

filter size 

3x3 

4.6375e-2 

SNR (dB) 

3x3 1 5x5 

5x5 

4.6375e-2 

3x3 

3.6820e-3 

MAE 

5x5 

3.6820e-3 

MSE 
3x3 3x3 5x5 5x5 



1 1 SNR(dB)  1 MAE 1 MSE 1 

Table 3.6: Test image 'Peppers' with signal-dependent noise only (k=0.1). 

Table 3.7: Test image 'Peppers' with signal-dependent noise only (k=0.2). 

filter size 

unfiltered 

- -  - 

Table 3.8: Test image 'Peppers' with mixture of signal-dependent noise (k=0.1) and 
measurement noise (0: = 0.005). 

SNR (dB) 
3x3 

10.0312 

5x5 

10.0312 

MAE 
3x3 

8.0373e-2 

MS E 
5x5 

8.0373e-2 

3x3 

1.1027e-3 

5x5 

1.1027e-3 



Table 3.9: Test image 'Melon7 with signal-dependent noise only (k=0.1). 

filter size 

unfiltered 

MAE MSE 

3x3 

15.8383 

Table 3.10: Test image 'Melon' with signal-dependent noise only (k=0.2). 

5x5 

15.8383 

filter size 

u d t e r e d  

Table 3.11: Test image 'Melon7 with mixture of signal-dependent noise (k=0.1) and 
measurement noise (ai = 0.005). 

3x3 

3.9878e-2 

3x3 

9.9375 

filter size 

unfiltered 
L 

l'M2 

M 3  

(73 

5x5 

3.9878e-2 

5x5 

9.9375 

SNR (dB) 

3x3 

2.7628e-3 

3x3 

7.8637e-2 

3x3 

8.5227 

16.5695 

16.6166 

16.0607 

5x5 

2.762%-3 

5x5 

8.5227 

17.3293 

17.3538 

14.0968 

hf AE 

5x5 

7.8637e-2 

3x3 

9.6386e-2 

3.7451e-2 

3.7313e-2 

3.9314e-2 

MSE 
5x5 

9.6386e-2 

3.4009e-2 

3.3833-2 

4.9320e-2 

3x3 

1.4891e-3 

2.3347e-3 

2.3095e-3 

2.6249e-3 

3x3 

1.0751e-3 

5x5 

1.489le-3 

1.96OOe-3 

1.949Oe-3 

4.1257e-3 

5x5 

1.0751e-3 



1 1 SNR (dB) 1 MAE 1 MSE 1 

Table 3.13: Test image 'Mountain' with signal-dependent noise only (k=0.2). 

1 1 SNR (dB) MAE 1 MSE 1 

Table 3.12: Test image 'Mountain' with signal-dependent noise only (k=0.1). 

filter siz? 

u d t e r e d  

rl.12 

M 3  

c3 

&ISE 

Table 3.14: Test image 'Mountain' with mixture of signal-dependent noise (k=0.1) 
and measurement noise (o: = 0.005). 

MAE 
3x3 

3.4005e-3 

1.0936e-3 

9.1283~2-4 

1.1204e-3 

SNR (dB) 
3x3 

4.5280e-2 

2.5644e-2 

2.1905e-2 

2.3356e-2 

5x5 

3.4005e-3 

1.0565e-3 

9.6637e-4 

3.7379e-3 

3x3 

15.9772 

20.9042 

21.6888 

20.7989 

5x5 

4.5280e-2 

2.5126e-2 

2.3844e-2 

4.7584e-2 

5x5 

15.9772 

21 .O538 

21.4412 

15.5664 



Figure 3.5: Cornipted Lenna (k=0.1). 

Figure 3.6: Lenna filtered by the correlation-based filter. 



Figure 3.7: Lenna filtered hy third-order moment based fiIter. 

Figure 3.8: Lema Ntered by third-order cumulant based filter. 



Table 3.15: Image statistics of various test images. 

Image 

1 1 SNR (dB) 1 MAE 1 MSE 1 

Image Statistics 

mean 1 variance 1 skewness 

Table 3.16: Performance of fourth-order cumulant based filter wit h test image 'Moun- 

tain'. The value of k is held to be 0.1. 

, 



Chapter 4 

Generalized Hornomorphic 

Adaptive Filtering 

Because of the computational load of the A.O.S. based filter, a more efficient filter 

is desired. In this chapter a new nonlinear adaptive filtering technique is described. 

The f i s t  step in the removal of film grain noise is to apply the generaiized homomor- 

phic transformation, which approximately decouples the noise from the signal. Since 

film grain noise is signal-dependent and Gaussian, using the generalized homomor- 

phic transformation to stablize its variance and utilizing second-order statistics only 

may be sufficient. A linear adaptive filtering operation utilizing the local-statistics 

of the image then takes place, and is followed by an inverse transformation. This 

proposed technique belongs to a class of contrast enhancement techniques and can 

be extended to multivariate signals, i.e. color images. First, the generalized homo- 

morphic transformation is revisited, then the proposed filter is discussed. This filter 

can be combined with the technique developed in Chapter 3 to estimate the noise 

parameter for film grain noise generation. The correct amount of artificial film grain 

noise can be added to the ided image to match any film pattern for applications in 

television and motion picture productions. 



4.1 Generalized Hornomorphic Transformation 

From Chap ter 1, the generaiized homomorphie transformation g (r) has the following 

f o m  (19, 20, 211: 

where or = H(pr) is the standard deviation of the noisy image r and p, = E[r (x ,  y)] = 

s(x, y) is the mean value for the noise model: 

The above expression assumes negligible measurement noise because in many practical 

cases the main source of degradation for photographie images is film grain noise only. 

With Eq. (4.2) we have for p = 0.5: 

The transformed image model (for K = 1) then becomes [29] 

Notice the noise in the transformed domain is approxirnately additive Gaussian and 

signal-independent . 
It is interesting to see the effect of a square-root operation on the corrup ted signal 

in Eq. (4.2). Ignoring the proportionality constant (2 Klk) in the transformation 

(Eq. (4.3)), the output of this nonlinear system can be approximated as a Taylor 

expansion of g ( r )  about s with an order M :  



The above expression is of the familias form with noiseless signal fi and 'additive' 

noise X, where X is defined as: 

Since the value of k is leçs than unity, and the order of the magnitude for the ratio 

(n lJS)  is normally of 1, a small Taylor expansion of order il1 is sdc i en t .  For 

example, with an order of M = 4, X takes the form: 

It is observed that even for the second term the order of magnitude is srnaller than that 

for the first term. Thus contributions from higher order t e m s  are negligible compared 

with the first one. When only the signal-independent h s t  term of X is retained, the 

noise variance becomes (assuming n is zero mean, unit variance Gaussian): 

If, in addition, fi is multiplied by the proportionality constant 2 / k  in the transfor- 

mation, then the resulting noise variance (assuming kigher order terms are negligible) 

becomes the miance of n, narnely 

4.2 Generalized Homomorphie Adaptive Filtering 

From the transfonned image mode1 (additive signal-independent Gaussian noise), 

we see that conventional linear filtering techniques can be applied. Example of a 

classical linear filter is the Wiener filter, which takes a 'global' view of the image 

statistics and applies the same iked filter to the entire image. In this way noise is 

smoothed, but some details are d so  destroyed. Or in another case edges are preserved 

well, but noise in uniform regions may not be smoothed sufliciently. The objective 

here is to adjust filter coefficients accordingly such that Iess smoothing is performed 



when near the edge and more smoothing when away from edge. One class of filters 

that showed some success in edge presemtion aad selective noise smoothing is the 

contrast enhancement filters [30, 33, 34). These techniques consider a 'local' rather 

than 'global' view of image statistics to determine signal activity in different regions in 

order to minirnize the blurring effect and at the same time smooth noise. The generd 

approach is to separate the image into two parts: lowpass and highpass components. 

A scded version of the highpass component, whose weight is determined by the local- 

statistics of image, is usually added back to the filtered image to enhance its contrast. 

Thus, based on this approach, the proposed filter has the form: 

Û = h * w + a ( w - h * w )  (4.10) 

where û is the estimate of the ideal image u, w is the corrupted image after trans- 

fonning r, * denotes 2-d convolution, a is a signal-adaptive variable constrained to 

have a value between O and 1: 

05 a 51 (4.11) 

and h is a filter mask d e h e d  as a weighted window of size (2N + 1) x (2N  + 1) on the 

current pixel ( x ,  y). Interpretation of this filter is described in 

the concept developed in (321, the filter mask h  is expressed as: 

section 4.2.1. Using 

(4.12) 

The idea used here is to calculate the filter coefficients through a discriminating 

function (in this case a Gaussian f'ction) that tends to 1 for pixels having value 

similar to that of the curent pixel, and tends to O for the others. The f i s t  term in 

Eq. (4.10) can be interpreted as a low fiequency component, whereas the last term a 

high frequency component. To determine the adaptive variable a, we can optimize it 

by minimizing the mean square error (MSE) . Denoting 

the criterion to be minimized is: 

M S E  = E[(u - C)*] (4.14) 



with u is the ideal image after transforming S.  After simplification (for derivation see 

Appendix), we have 

For ease of computation, a sub-optimal solution can be obtained by treating the first 

term h * w as the sample mean, and therefore a has the form 

By definition on has a value of unity, thus we can further simpliS the above equations 

to 

The miable  b in Eq. (4.12) which controls the dope of the discriminating Gaussian 

function is left as a design parameter. Through experimentation a good choice for b 

is the value a,. 

4.2.1 Interpretation of the Filter 

The proposed filter can be interpreted as a combination of lowpass and highpass 

component as depicted in Fig. 4.1. The lowpass component is the first terrn h * w, 

while the highpass component is the difference between the corrupted image w and 

its lowpass component h * w ,  weighted by a nonstationasy variable a. The filter mask 

h in the lowpass component is a function of the differences between the current pixel 



mmip ted Genernlized transfonned 
I 

filâered filtered 
image i Homomorphie image w ernpioying imaqe U' + lnvûr~e image ' Transformation Transformation local-statiçtics 

w-s(r) 

Figure 4.1: Adaptive noise smoothing fdter structure. 

(i, j) and other pixels within the moving window. If the pixels are widely different , 
which corresponds to a large pixel distance Iw(i, j )  - w(x, y)l, the estimated lowpass 

pixel value will put more weight on the current pixel. The parameter b in the filter 

mask fwther controls the width of the Gaussian curve, and is taken the value cr,. If 
the variance is high, which corresponds to a large b and may indicate a high level of 

noise, the dope of the Gaussian function is s m d .  This results in more smoothing of 

pixels. However, if the variance is low, then more emphasis is on edge preservation. 

To further understand the filter structure, Eq. (4.10) can be rearranged as: 

In this form the filter output is seen as a weighted sum of the lowpass component of 

the observation w(x, y) and the observation itself. To selectively smooth noise and 

preserve edge, the parameter a is dowed to be nonstationary to minimize local mean 

square error. In situations where the signal-to-noise ratio (SNR) is hi&, the estimate 



C puts more weight on the observation to preserve edges. On the other hand, when 

the SNR is low, the filter outputs the lowpass version of the observation because the 

observation is too noisy. 

4.2.2 Computation of Local Statistics 

The computation of the parameter a in Eq. (4.15) requires the use of ensemble s tatis- 

tics. In practice, ensemble statistics are replaced by local spatial statistics. This 

method for estimating local statistics has the underlying assumption that an image is 

locally ergodic [33]. For example, to ob tain E [w2],  we cm use the following maximum 

likelihood estimate for w Gaussian within a moving window centered in (x,y) of size 

(2N + 1) x (2N + 1 ) :  

For the qiiantity E[uh(w)],  h(w)  can be computed and is accessible but not the 

transformed ideal image u, therefore the following estimate is used: 

The above estimate is justified because the noise n has zero mean. Computation of 

E[h2(w)] is done similady. 

4.3 Mult ichannel Image Filt ering 

Since almost all practical applications now use color images, extension of the above 

algorithm to handle color image signals is of great importance. One obvious approach 

is to perform noise filtering independently in three different color channels, but this 

approach has a fundamental assumption that the three channels are independent and 



ignore relationships among different channels. Therefore, the proposed scheme treat 

the signal as multivariate and has the following form: 

The above expression assumes the following noise mode1 is valid after channel-wise 

generalized homomorphie transformation: 

with w being a vector of 3 (red, green, and blue) channels in the 

density domain: 

w = W(X,Y) [ 1::::: ] 
In vector notation, the multichannel filtering scheme is: 

W R  - ~ ( w R )  
û = 

W B  - h(ws) 

transforrned op tical 

The discriminating function in the new filter mask is now a function of differences in 

three channels for a moving window M of size (2N + 1) x (2N + 1) centered on the 

current pixel (x, y): 

and II (1 is the Euclidean distance: 

Again the fîlter mask h(i, j) is allowed to vary from pixel to pixel, and the same 

weighted window is to be applied to three charnels. To find the optimum expression 

for a,  the criterion to be minimized is the following: 

min 

û(x, Y) E M 
E[ I I  û(x, Y) - N x ,  Y) I l2 1 



Thus, minimization of the above cri terion yields: 

with u h(w) denoting the dot product. To simpliS. the computational complexity of 

the parameter a ,  we can assume the weighted window to be the sample mean filter. 

The parameter will then have the following expression: 

For the parameter b, again a good choice is the value b2 = cr&. 

The most common way to estimate the statistics of local multivariate signal (eg. 

&(x, y)) is to average over the moving window M (341 

where mw(x, y )  is the mean of the signal w: 

4.4 Film Grain Noise Generation 

As outlined in Chapter 1, film grain noise generation has applications in television and 

motion picture productions since digitized film images, video images and computer 

generated images are routinely combined into one fiame. In this process artificial noise 

is added to the video and computer generated images to match the grain pattern of 



Proposect filter I 

Figure 4.2: Block diagram for noise generation. 

comipted image r b 
I 

the film. To add the right amount of artificial film grain noise, the noise parameter k 
must be known. 

One procedure to test the above noise generation method is the following. Given a 

noisy photographic image, perform the generalized homomorphie transformation (to 

decouple noise from signal), and then filter the transformed image using the proposed 

filter. The filtered image is transformed back and is assumed the ideal image. Then 

statistics of the 'ideal' and the noisy image are computed to solve for k. When k is 
known, add the noise back to the 'ideal' image according to Eq. (4.2) to compare the 

two noisy images. By modifying the weight a in the proposed filter, it is possible to 

perform filtering without knowing the a prior information regarding the noise. The 

weight a now has the form 

combineci with 
Generalized 

Homomorphie 
Transformation 

where a is the mean of the denominator of a, meaning half of the time the filter 

pedorms more smoothing and half of the time preserves edge. The noise generation 

procedure is shown in Fig. 4.2. 

filtered image s' + noisy s ' 
b 

I 

H.O.S. H.O.S. 
Compu talon Computation 

\ 
\ .\. '.* # 0' /' - - I I o  

Parameter 
Estimation and 

Noise Generation 

artifi cial film grain noise 



4.5 Performance Cornparison 

To assess performance of the new nonlinear adaptive filter, existing contrast enhance- 

ment filters like the Lee's algorithm is chosen for cornparison: [30] 

where rn, is the sample mean of the transformed 

The value of p for signal-dependent noise is held 

typical for a variety of film stocks [IO, 11, 12, 131, 

and 

image w within a moving window. 

to be 0.5 in al1 cases since this is 

The transformation pair used is 

A filter size of 3 x 3 is used throughout the simulations. 

4.5.1 Grayscale Images 

For gray scale images k is held to be 0.1 for moderate noise corruption. The criteria 

used in evduating the performance are 1) signal-to-noise ratio (SNR), 2) mean abso- 

lute error (MAE), and 3) mean square error (MSE). All the criteria are calculated in 

the density domain. Four test images of size 256 x 256 were used: Lenna, Peppers, 

Mountain, and Melon. Results are summarized in Tables 4.1 - 4.4, and filtered Lenna 

images are shown in Fig. 4.4 and 4.5. 

As Tables 4.1 - 4.4 show, the results obtained with the proposed algorithm are 

better than the Lee's algorithm in both the mean absolute error (M.4E) and the mean 

square error (MSE). Moreover, edge preservation is satisfactory and noise smoothing 

using the proposed filter is better than the Lee's algorithm. This is due to the fact 



that the filter mask for computing lowpass component of the proposed scheme is non- 

stationary for different regions. In regions near the edge less smoothing is done in the 

lowpass component, while in regions away from edge more smoothing is done. 

To determine the sensitivity of the proposed algorithm on the a pnor knowledge 

of the noise variance O:, a series of experiments were performed. Now the generalized 

homomorphic transformation is the square-root operation without the proportionality 

constant 2 / k .  It was shown in Eq. (4.5) that the following is true: 

Because n is zero mean and unit variance by dehition, we have 

and expression for a becomes: 

The true value of k is held to be 0.1? but the actual value used in the cornputation of 

the weight a is allowed to vary in the range 0.04-0.16 in increments of 0.02 to see the 

robustness of the proposed algorithm. Simulation results for two test images (Lenna 

and Peppers) are listed in Table 4.5. 

It can be observed from Table 4.5 that the proposed scheme is more robust to the 

value of k used. The variation in performance for the proposed scheme is smaller. 

This is important, because often k (which directly affects the noise variance) is not 

known exactly and is estimated. 

It is anticipated that in the case of severe noise conditions (which is less likely in 

practice), a larger filter size should be used for more noise smoothing. For complete- 

ness, the effect of filter size on performance for different noise levels was investigated. 

Severe noise (corresponding to a value of k = 0.2) is added to the image 'Lenna', and 

a filter size of 3 x 3 and 5 x 5 are used in the simulations. From Table 4.6, some 

interesting observations can be made: 

r In the case of severe noise (this corresponds to k = 0.2) , the proposed filter 

does not perform as good as the existing method. To understand this, consider 



I Lee's 1 20.5460 1 2.7635e-2 ( 1.5396e-3 1 

filt er scheme 

no filtering 

Table 4.1: Performance of different filtering schemes with image 'Lenna'. 

SNR (dB) 

16.7591 

Proposed scheme (sub-optimal solution) 

Proposed scheme (exact solution) 

1 Proposed scheme (sub-optimal solution) 1 20.5840 1 2.1658e-2 1 9.7093e-4 1 

MAE 

4.6375e-2 

20.8879 

21.0246 

filter scherne 

no filtering 

Lee's 

Proposed scheme (exact solution) 1 20.8932 1 2.1008e-2 1 9.042Oe-4 1 

MSE 

3.682Oe-3 

Table 4.2: Performance of different fiitenng schemes with image 'Peppers'. 

2.6434e-2 

2.6076e-2 

SNR (dB) 

15.9961 

20.3319 

a large value of k that corresponds to a high noise variance. Although the 

slope of the discriminating Gaussian function is low, meaning more averaging 

in the fdter mask h, there exists a point where the noise is so severe that sample 

averaging is more effective in suppressing noise. 

1.4230e-3 

1.3789e-3 

r A large filter size generdy means more noise smoothing. For filter size 5 x 5, 

the proposed filter results in smaller MSE in the case of severe noise. More noise 

is removed, as can be seen from the SNRs of the f2tered images with different 

filter size. It can be said that in moderate noise corruption, which is usually 

the case, a filter size of 3 x 3 is sufficient. 

MAE 

4.0384e-2 

2.2355e-2 

4.5.2 Computational Complexity 

MSE 

2.7924e-3 

1.029Oe-3 

To obtain a rough estimate of the proposed scheme, consider a filter mask of size n 

x n, and an image size of M x N. The main computational load is in computing the 



fîl ter scheme 

no filtering 

Table 4.3: Performance of different filtering schemes with image 'Mountain'. 

Proposed scheme (sub-optimal solution) 

Proposed scheme (exact solut ion) 

SNR (dB) 

15.9772 

1 no filtering 1 15.8393 1 3.9878e-2 1 2.7628e-3 1 

21 .2219 

21.7363 

iilter scheme 1 SNR(dB) 
1 

1 Lee's 1 20.6913 1 2.193Oe-2 1 9.0376e-4 1 

MAE 

4.528Oe-2 

MAE 1 MSE 1 
3 

1 Proposed scheme (sub-optimal solution) ( 21.0896 1 2.1008e-2 1 8.2456e-4 1 

MSE 

3.4005e-3 

2.3611e-2 

2.2613e-2 

1 Proposed scheme (exact solution) 1 21.6563 1 1.9980e-2 1 7.2369e-4 1 

1.0164e-3 

9.029Oe-4 

Table 4.4: Performance of different fltering schemes with image 'Melon'. 

Figure 4.3: Corrupted 'Lenna' with k = 0.1. 



Figure 4.4: Filtered 'Lenna' using the Lee's algori thm. 

Figure 4.5: Filtered 'Lenna' using the proposed scheme (exact). 



k 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.16 

filter size 

Table 4.6: Effect of filter size on performance with different L. 

Table 4.5: Performance of different filtering schemes for the images 'Lenna' and 'Pep- 

pers' when the wrong k is used. The correct value of k is 0.1. SNR for the corrupted 

'Lenna' is 16.76 dB, and that for the corrupted 'Peppers' is 16.00 dB. 

no filtering 

Lee's algorit hm 

Proposed scheme 

lowpass component with filter mask h and the adaptive weight a. Two mathematical 

operations considered in this case are addition ( @ ) and multiplication ( @ ), with 

multiplication being the most costly. 

SNR (dB) for 'Lenna' 

SNR (dB) with k = 0.1 

3 x 3  1 5 x 5  

In computing the lowpass component, approximately 2n2 additions and n2 multi- 

plications are needed: n2 additions and 2n2 multiplications for computing the filter 

ma& and another n2 additions/multiplications for perforrning lowpass filtering. For 

the adaptive weight, roughly 3n2 additions and multiplications are required. The 

total number of computations per pixel for the proposed scheme is summarized in 

Table 4.7, with Lee's algorithm listed beside as a comparison. 

Lee's algorithm 

17.6348 

18.6386 

19.7407 

20.5460 

20.8309 

20.7076 

20.3979 

SNR (dB) for 'Peppers' 

16.7591 

20.5460 

21.0246 

Proposed scheme 

18.1119 

19.5490 

20.6830 

21.0246 

21.0338 

21.0310 

21.0308 

Lee's algorithm 

16.9616 

18.0904 

19.3628 

20.3319 

20.7663 

20.9259 

20,6449 

SNR (dB) with k = 0.2 

Proposed scheme 

17.4797 

19.0946 

20.4314 

20.8932 

20.9258 

20.9259 

20.9259 

3 x 3  

16.7591 

20.4159 

20.9123 

5 x 5  

10.8349 

15.7317 

15.0405 

10.8349 

16.0371 

15.7725 



Lowpass 

Proposed filter 

computation 1 no. of operations 

Lee's algorithm 

computation 1 no. of operations 

Table 4.7: Computational complexity of the proposed filter. 

Adap tive weight 

Total 

4.5.3 Color Images 

For color images the following noise mode1 is assumed after transformation: 

w = g(r) = u + n (4.40) 

The transformation pair has the form: 

@: 3n2 

@: 3n2 

$: 5n2 

and 

To select k for different charnels, several issues need be considered. First, the choice 

of k should reflect the relative noise levels in actual color-sensitive emulsion layers 

that lead to amount of noise in different channels (RGB channels). Second, it should 

also take into account the human visual system, that is, the channel with heavy noise 

should have the greatest effect on perceived graininess. With the above consider- 

ations, noise power in red channel should be the least, followed by blue and green 

Adap tive weight 

Total 

$: n2 

8: n2 

@: 2n2 



channel (35, 361. In simulations two 

kl = 

and k2 : 

sets of values of k are kl: 

Different algonthms were selected for noise filtering: 

3 independent mns of Lee's algorithm for single-channel filtering 

1 mn of Lce's algorithm for multichannel filtering 

3 independent runs of proposed algorithm for single-channel filtering 

a 1 run of proposed algonthm for multichannel filtering 

Simple extension of the Lee's algorithm for grayscale images to color image gives: 

Two test color images are used: 'Lerma' and 'Melon7 (see Fig. 4.6 - 4.7). Two popular 

metrics used in evaluating the distance (and hence the performance) between the ideal 

image and the filtered image are 1) the LI n o m  and 2) the L2 norm, dehed as: [37] 

and 

Ali the criteria are calculated in the density domain. Results are summarized in Ta- 
bles 4.8 and 4.9 for filter size of 3 x 3. Corrupted and filtered images are depicted in 



Fig. 4.8 - 4.10. 

It can be observed that for both moderate and large noise power (ki and k2), the 

proposed multichannel scheme has excellent noise suppression over single channel fil- 
tering scheme. This is because information between channels is utilized in computing 

the filter mask and the adaptive weight . Moreover, the proposed multichannel scheme 

outperforms the Lee's dgorit hm in both noise smoothing and edge preservation. 

4.5.4 Film Grain Noise Generation 

To test the noise generation procedure, the image 'Lema' is used for noise generation 

in grayscale and in color. Film grain noise with k = 0.1 is added to the ideal image 

and the corrupted image is filtered using the modified proposed algorithm. Then k is 

computed using fourth-order statistics of the two images. Although k can be solved 

by matching their variances, it  was found that variance of the filtered image is lower 

than that of the cornipted image because edges are blurred to some extent. Thus 
using variance to obtain k would lead to over-estimation, and the final image would 

be too noisy. To compare the noise level of the original corrupted and the final image, 

single-channel and multichannel mean square error (MSE) were used. blultichannel 

MSE is defined as the sum of the three signal-channel MSE's. For the original cor- 

rupted image the signal power is the ideal signal power, whereas the signai power of 

the final image is that of the filtered image. In the case of color images, the c o m p  ted 

image with ki = [0.07 0.1 0.1IT is Ntered independently in each channel. Both 

grayscale images are shown in Fig. 4.11. MSE's of noise-added grayscale and color 

images are listed in Tables 4.10. It can be observed that not only both the original 

and noise-added images are similar in appearance, but also they have similar noise 

level as well. 



Metric 

no filtering 

Lee's (single-channel) 

Lee's (rnult ichannel) 

Table 4.8: Performance of different filtering schemes with color 'Lema'. 

Proposed scheme (single-channel) 

Proposed scheme (multichannel) 

I Metric 

LI norrn 

1.1962e-1 

7.2873e-2 

7.106Oe-2 

- - 

LI norm 

1.7836e-1 

7 - 

L2 norm 

9.4434e-2 

- - 

L2 norm 

1.4154e-1 

6.1423e-2 

6.0018e-2 

7.0978e-2 2.9972e-2 

no filtering 

Lee's (single-channel) 

1 Proposed scheme (multichannel) (1 6.1034e-2 1 4.9899e-2 11 8.1438e-2 1 6.5996e-2 1 

- -  

1.0284e-1 

8.8142e-2 6.6231e-2 

Lee's (mult ichannel) 

Proposed scheme (single-chasnel) 

- - - --- - . - 

Table 4.9: Performance of different filtering schemes with color 'Melon'. 

9.8572e-2 

9.5113e-2 
- 

8.6439e-2 

7.3373e-2 5.6045e-2 

I 

1.1903e-1 

7.0296e-2 

1 statistics 1 Single channel MSE 1 Multichannel MSE ( 

8.3698e-2 

S.0531e-2 

1 

6.8166e-2 

6.4591e-2 

1 second order 1 4.2929e-3 1 1.155Oe-2 1 

9.4497e-2 

5.8016e-2 

1 thiid order ( 4.5206e-3 1 1.1570e-2 ( 

5.6054e-2 

5.2762e-2 

Table 4.10: MSE's of noise-added Lenna images. Single channel MSE for the original 
compted image is 3.68e-3, while multichannel MSE for the original corrupted color 

image is 8.92e-3. 

1.7731e-1 

9.3516e-2 

1.4092e-1 

7.7756e-2 

8.9841e-2 

9.4298e-2 

7.4023e-2 

7.7939e-2 



Figure 4.6: Test image: color 'Lenna'. 

Figure 4.7: Test image: color 'bIelon'. 



Figure 4.8: Compted color 'Lenna' with noise parameters k2 = [0.10 0.15 0.151~. 

Figure 4.9: Image filtered using the Lee's algorithm (multichannel). 
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Figure 4.10: Image filtered using the proposed filter ( rntiltichannel ) . 



Figure 4.11: Compaaion of images generated by the proposed noise generation tech- 

nique. The upper three images are the ideal (above left), corrupted (above middle), 
and noise image of 'Lenna' (above right). Filtqed image (below Mt), noise added to 
filtered 'Lerma' (below middle) and noise image (below right) are shown below. 



Chapter 5 

Conclusions 

5.1 Summary and Conclusions 

The aims of the research were to examine statistical properties of fiim grain noise, 

and to investigate new algorithms for noise filtering and generation. 

These objectives were accomplished by employing higher-order statistics (H.O.S.) 
of the non-Gaussian image and signal-dependent fiim grain noise. By using the prop- 

erty that any Gaussian process has zero skewness and kurtosis, statistical nature of 

actual film ga in  noise in photographic images was investigated. A more general noise 

distribution, namely the generalized Gaussian distribution (GGD), was assumed, and 

parameters of this noise distribution were estimated. It was found that under high 

signal densities, film grain noise exhibited non-Gaussian behavior. Nonet heless, over 

a practical range of signal Gaussian behavior was observed. 

For noise filtering, two new methods have been proposed. The first method is 

based on extending the use of second-order statistics to H.0 .S. A higher-order statis- 

tics based criterion was optimized and a cumulant-based Wiener-Hopf equation was 

used to solve for the optimum fîlter coefficients. It was found that this new filter 

has performance comparable to the farniliar Wiener filter. On average the new filter 



outperfonned the Wiener filter by approxirnately 1 dB in SNR. Because of the com- 

putational Ioad of the H.O.S. based filter, a different approach was proposed. The 

first step in noise filtering is to ikst perform a generalized homomorphie transfor- 

mation to decouple the noise from the signal, and then filter the transformed image 

using a new local-statistics based technique. The filter mask is non-stationary and 

adaptive to signal activities for a balance of edge preservation and noise suppression. 

This approach can be extended to multivariate signals (i.e. color images) and showed 

some promising results. An almost 1 dB SNR improvement by this new filter over 

existing one was observed in the case of grayscale images. For color images, as much 

as 12% less error (in t e m s  of L2 norm) was achieved by this filter over existing one. 

Moreover, the proposed filter has been shown to have excellent edge preservation and 

noise smoothing properties. 

Cornparsion of these two proposed filters shows that while the H.O.S. based filter 

uses the 'global' image statistics, the other utilizes the local-st atistics of the image. 

Because the adaptive filter used local-statistics, a good balance between edge preser- 

vation and noise suppression in moderate noise corruption was acheived. In terms of 

computational complexity, the H.0 .S. based filter requires more computations than 

the adaptive local-statistics based filter in estimating signal statistics and computing 

filter coefficients. However, the H.O.S. based filter was shown to be more insensitive 

to the noise level. In the case of severe noise corruption (low SNR), the H.0 .S. based 

Nter still perfonned satisfactorily, but the local-statistics based filter did not perform 

well. 

For film grain noise generation, a new procedure has been proposed and success- 

M y  applied in grayscale and color images. To test the validity of this procedure, 

photographic images were filtered using the proposed local-statis tics filter and then 

the filtered image was assumed the 'ideal image'. A method to estimate the noise 

parameter using H.O.S. was proposed so that artificial noise c m  be added to the 

'ideal image'. It was found that these two images (comp ted photographic image and 

filtered image with artificial noise added) have similar visual appearance and noise 

ievel. 



5.2 Further Research 

Below is a list of possible improvements that require further research: 

For more accurate extraction of actual film grain noise, film negative should 

be scanned and digitized instead of the print. With our available equipment, 

scanning the photographie print is the only option. 

Extension of the H.O.S. based filter to multichannel signals. Current research 

has been limited to single channel, twedimensional signals only. Because color 

images can be modeled as tri-channel two-dimensional signals, definitions of the 

proposed filter can be extended to the case of multichannel images by exploiting 

the algebraic properties of Kronecker products. 

A better way to completely decouple signal-dependent noise from signal is de- 

sired. The generalized homomorphic transfomat ion can only approximately 

separate noise from signal by using a memoryless transformation to stablize its 

variance. Nonlinear transformation with memory may provide a better soiution. 

Procedure for noise generation can be refbed. In particular, noise generation 

can be done by matching cumulants of actual film g a i n  noise to the cumulants 

of the output of a multichannel linear system driven by a stochastic input. 

Current noise generation technique is limited to matching the magnitude of the 

noise. By incorporating spectral and magnitude dependence of noise on image, 

a more realistic result is anticipated. 

The proposed noise filtering and generation algorithms can be applied equally to 

other signal-dependent noises like speckle [38] (modeled as multiplicative with 

gamma distribution), photoelectronic shot noise (101 (modeled as Poisson pho- 

tocounting process), and magnetic tape noise [14]. For example, the generalized 

homomorphic transformation combined with the proposed local-statistics filter 

can be used to handle different types of signal-dependent noise. 



Appendix A 

Detailed Derivat ions 

To show the filter satisfying the cumulant based orthogonality condition is optimum, 

e,, is first expressed as: 



Thus for hij = X i j 7  

A.2 Derivation of Eq. (4.15) and Eq. (4.29) 

The following is the detailed derivation for Eq. (4.15) and Eq. (4.29). First we begin 

with the case of single-channel image. Expand the expression for mean square enor 

(MSE) : 

MSE = E[(u - û)2] 

= E[u2 - 2uû + û2] 

= E[u2-2u(h(w) + a ( w - h ( w ) )  +h2(w)  +2awh(w) -2ah2(w) 

+ a2(w2 - Pwh(w) + h2(w))]  

= E[u2] - 2E[uh(w)] + E[h2(w)] 



Taking the d e r i ~ t i v e  of MSE and set it to zero yields: 

Therefore a becomes: 

as in Eq. (4.15). 
For multichannel image, expression for a is obtained similarly. Observe that 

then expanding the above leads to an expression similar to Eq. (A.4). Following the 

same approach and using vector notation, Eq. (4.29) results. 
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