THE USE OF ISDN SIGNALING FOR REAL-TIME
APPLICATIONS AT HOMES AND SMALL BUSINESSES

By
NISHEETH PRAKASH

B.Tech (Computer Science & Engineering), Govind Ballabh Pant University - Pantnagar,
UttarPradesh, India - 1993

Thesis

Submitted in partial fulfillment of the requirernents for the Degree of
Master of Science (Computer Science)

Acadia University
Fall Convocation 1998

© Copynght by Nisheeth Prakash, 1998

i~l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fie Votre reférence
Cur Nl Nowe résdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Biblioth¢que nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-33825-8

Table of Contents

LiSt Of FIUIES ..couvneiniiiiiiiii e eaeee viil
F\o 11 o U] RN X1
List of Definitions of Abbreviations..........c.cooceiiiiiiiiiiiiiiiiiiininan... xil
Acknowledgments.......occoiiiiiiiiiiiiiiiiiiii e X1v
SR 41 o Te 11 (o1 1T) ¢ DO PP 1
2. Overview of ISDN, its interfaces and Protocols............cccoceeeeinoee... 4
2.1 Introduction to ISDN.....icuuuuiiiiinrecnenniiioinentieierionseecossonnonsnnnes 4
2.1.1 The basic principles 0f ISDN....cviiitrnrereneererreerenneresneeeneesens 4

2.1.2 ISDN Chamnels........cccveiiuieeeeeetieeianeeeenuinieeeeeeeannaneeeeans 6

2.1.3 ISDN transmiSSion StrUCIUIES. ceveeeeneerrerenerrsaeerenarsnncnnnnnns 6

2.2 ISDN interfaces, functional devices and reference points............cccueeun.... 7
2.2.1 ISDN functional deviCes.......ccveueerieeereererrrnereresnannnnnneseranns 7

222 ISDNreferencepoints..................................: 7

2.3 ISDN PrOtOCOIS. o uuuutiiriretenenatresaneesensecsscsnestsaronesosensrssessrannes 8
2.3.1 Thelayer2—Q.921 /LAP-D Protocol.ceuuuereerreeieerrernneenneennennns 8

23.1.1 Layer 2 FUNCHOMS. ...cvvienereneienneerersereeneenennnnsenneesnnes 9

2.3.1.2 LAP-D Frame Format and Frame Types.........cccveevveennnnnnn. 9

23.1.3 LAP-D Message Flow and Operation..............ccoveeeennnnn. 12

23.14 LAP-D (Q.921) State TranSition.....c.ovveverenneraerneencacnaens 13

2.3.2 ISDN Network Layer Protocol / Call Control Protocol / Q.931.......... 14

2321 Layer 3 FUunCtONS. ..couunereeeeeeeenaaenncnceereesonceanonanenen 14
2322 Layer3MessageFormat........ccoiviiiiieniniininnncnnennannan 15
2323 Q.931 Message Flow and Operation..........coceveevevieneennne 17
2.3.3 User-to-User Signaling......coveeieeienrecnnieeieceecereeeeenaneeanan 22
2.3.3.1 Implicit User-to-User Signaling..........cccoeeeeeiiiiainnnn... 22
2.3.3.2 Explicit User-to-User Signaling........c.ccccviiiiuriiiieciennnnn 22
3. High Level Scenarios for Real Time Applications at Homes and Small
BUSIIESSES. .. v e ceeeenieeeiieiiiiatenetitsiaaeeeeinniiennsssrtieeareneainnces 25
3.1 Classification of Real Time Applications.......ccveeeeeneserosrnrnnnacenensaans 25
3.1.1 TeleMOMtOTINg. cvueerieeieeererereeanneeeeenseeeecnnsassonesonnncnsenes 25
X0 B2 (- 1T600) 11 ¢ o) D 25
3.1.3 TelePOllIE. covveereierniereeereieereaanennesasseesosenernsecnnenennnns 26
3.2 High Level Scenarios for the above Applications.cceveinieiennnnnn. 26
3.2.1 TeleMOMItOTINE. ... eveverreerrnnerneeeenecaseaseeresersreseessannnnennees 26
3.2.1.1 OnDemand MODItOMING. ... cuveereennrnnnreeensnnerenereneenns 27
3.2.1.2 Monitoring on Periodic BasiS.......ccoveeieieiireeiarnenncananss 29
3.2.1.3 Monitoring on Emergency Basis.......c.cccvieeiiniiiiinancnnnnns 31
3.22 TeleControl...c.ccuiiiiiiiiiaiarececctecsoceascsnsaosssnsesssscsnnsns 33
3.2.3 TelePolliNg..cuueieriiiiiiaieieeeererieecssecccnsersonneansssesasanacnns 35

4. Detailed Message Level Scenarios for the Real Time Applications at
Homes and Small BuSINESSES......oviiuiuiineniiiniiiiiiiiuiiiineennenane 38

4.1 Detailed Message Level Scenario for the TeleMonitoring Applications.........38

4.1.1 SETUP MeSSAZC.uvvereereenenssressoaranerannarasaresaasesssnnnnsennnn 38
4.1.2 CALL PROCEEDING MeSSage.......cuuurureereerecnneeenserannncoans 43
4.1.3 CONNECT MeSSaZC..cuuuuerrersnnnnerenenanennnreeesennssnnnensnnnnss 44
4.1.4 DISCONNECT MeSSABEC...cceiettrrararnnnnnnenncresnnncaseennseeananns 45
4.1.5 RELEASE and RELEASE COMPLETE Messages.........ccevvuenn.... 46
4.2 Message Level Scenario for the TeleControl Applications..........ccccueen.... 47
4.3 Message Level Scenario for the TelePolling Applications...................... 49

. The Design and Implementation of the Selected Protocol Model.........52

5.1 INrOQUCHON. .. vtiinieiiiieentiiieeititeeeaetereeeeeencnesneaesnccasenannenane 52
5.2 The Selected Protocol Model.....coveeietiiiiiiiiiiiiiieiiiiieeieieeaeennans 53
5.3 Q.921 Multiplexing Device DIIVer. .c..uuiiiiiiiieiiiieieirinnaeeeaienennneaens 55
5.4 Implementation of ITU-T Defined Q.921 Recommendations................... 58
5.5 Data Link Provider Interface and STREAMS.........c.ccvviiiirirenenannnnnnnn 62
5.5.1 Implementation of DLPI in the Q.921 Module.......c.cccuuueennneennnn. 65
5.5.2 Implementation of DLPIin Q.931 Module.......covveueeecnrenananneans 67
5.6 Implementation of ITU-T Defined Q.931 Recommendations................... 69
. Design and Implementation of the Framework for the Applications at
Home and Small BuSiness.ccooiiiiiiirniniinenieereneaeeitennennn. 75
6.1 Description of the FrameworkK.coeeveinriiviernnnreererecssnsnnnannnnnns 75
6.2 The Message Flow between the Peer Protocol Entities...........cccovevnenn... 76
6.3 Switch SImMUlator.cuuiieiiiiiiiiiiiaaieieerarrieneecesnrerecsccsescesoaases 77

6.4.1 Message Flow Over the ISDN Protocol Stacks for the TeleMonitoring

APPHCAtION. c.uiiiereeeeeeaeeeeeseecanserssnsnennneseetencncenos 81

7. Conclusion and Future Works..........cooovveiiiiniiiiiiiiiiiiiiiiinnaee 96
Bibliography.......ccoieiirii e 98
Appendix — A The Unix System Calls for the Q.931 Server and the Applications
... 100

Appendix — B The Source Code for the Device Driversc..ccueue...... 104
Appendix — C The Source Code for the Applications.............cceueeeenn.... 110

Appendix — D Source Code for the Q.931 Server........c.c.oeuieniininnnnnnn.. 117

List of Figures

1. Figure2.l Conceptual View of ISDN Connection Features..........ccceeinaan.n, 5
2. Figure 2.2 ISDN Reference points and Functional Groupings..........cccoevenen... 8
3. Figure 2.3 ISDN Protocols at User-Network Interface...........cceeieieinaannnn... 8
4, Figure2.4 LAP-D Frame Format.........coccvvueiiieiiinnnnnineieeininnnnnennnn. 10
5. Figure 2.5 LAP-D State Transition Diagram..........ccceiiieiviinininiinian.., 14
6. Figure 2.6 Layer 3 Message Format..........cccoevviiiiinnnnna.... eeeeereeenenn. 15
7. Figure 2.7 Two types OF Single Octet Information Element....................... 17
8. Figure 2.8 Variable Length Information Element............cccciiiieennnaaii. 17
9. Figure2.9 Q.931 State Transition Diagram and Message Flow during

Call Establishment at Calling Party End...........ccoviviiiiinniinnnn 18
10. Figure 2.10 Q.931 State Transition Diagram and Message Flow during

Call Establishment at Called Party End........ccovieiiiniiiiiniiinnnn. 19
11. Figure 2.11 Q.931 State Transition Diagram during Call Clearing.................. 21

12. Figure 2.12 Message flow in Explicit User-to-User Signaling Temporary
Connection on the D-Channel..........ccccoveiiiiiinniiniieneniinnnn 23

13. Figure 3.1 On-Demand Monitoring of the Meter Readings by the Utility Meter
Reading Company......ccooeiiieuiieriieriercinneririeenseesanneeannn 27

14. Figure 3.2 Periodic Monitoring of the Meter Readings by the Application.........30

15. Figure 3.3 Remote Monitoring of the Fire Detector/Carbon Monoxide Detector or
on Emergency BasiS.....cveeeiiiieieriiiiertetseiiiiirinncncieeennns 32

16. Figure 3.4 TeleControl, Controlling an Air Conditioner at Home from the Work

17. Figure 3.5 TelePolling of Surveillance Cameras from the Central Control Room..36

18. Figure 4.1 Message Level Scenario for TeleMonitoring Applications........ eaaae 39
19. Figure 4.2 Call Reference Information Element........c...ooevvieniieeiiecannnnnn. 40
20. Figure 4.3 Message Level Scenario for TeleControl Application.................. 47
21. Figure 4.4 Message Level Scenario for TelePolling Application..........ccuvee.n. 49
22. Figure 5.1 ISDN Protocol Model..........coviiiiiinniiiieiiiiiiiineneenenenennn 54
23. Figure 5.2 DLPIMOdUIES....ccoiunueeemeeriiiiiinneiiiiiieneeiesaneeenennnnseeenes 63
24 Figure 6.1 Framework for Real-Time Applications on the Sun Sparc Station in
Solaris ENVIromment.uueeeeeeieniarenneeneeoresinacsnnneeeeeeceeaes 76
25. Figure 6.2 Testing Framework for TeleMonitoring Application............ee ... 80

26. Figure 6.3 Stepl for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring ApPliCation.cccvveeieiieriirieiiririineenennnnes 82

27. Figure 6.4 Steps 2 and 3 for Message Flow over the ISDN Protoco] Stacks for
TeleMonitoring AppliCation.cevvereriiieieneierriiaiiiraeeeeeennnn 82

28. Figure 6.5 Step 4 for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring AppliCation.uueeueerieeiiiiniieeeennnneranannn 33

29. Figure 6.6 Step 5 for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring Application.cveueeeeeerearerensenecrecnnnnrenenne 84

30. Figure 6.7 Steps 6,7 and 8 for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring AppHCation. ceeeuemriiereiserereceecsneieesannns 85

31. Figure 6.8 Step 9 for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring AppHCAtioN.ouvieiirnemrieriirininneeersereeeien 86

32. Figure 6.9 Steps 10,11 and 12 for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring AppliCation.......cccceeeeereirersesreeessscssesasnnane 87

33. Figure 6.10 Steps 13 and 14 for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring Application.ceceeecreeireerieieeiiiererrneence 89

34. Figure 6.11 Steps15, 16, 17, 18 & 19 for Message Flow over the ISDN Protocol
Stacks for TeleMonitoring Application.ccevvieieierrveieienne. 91

35 Figure 6.12 Step 20 for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring Application.......cceoceeeeiraeeririuineinieeineeeannn. 93

36 Figure 6.13 Steps 21, 22 & 23 for Message Flow over the ISDN Protocol Stacks for
TeleMonitoring AppLCation.......ccceueeeeeirerunnneiiiineeiirnennnen. 94

ABSTRACT

Integrated Services Digital Networks (ISDN) is an end-to-end digital telecommunications
network providing the capability to transmit voice, data, facsimile, telemetry, signaling,
and slow motion video. In this thesis, the use of the narrowband ISDN has been explored
for the real-time applications at homes and small businesses. We have classified some of
the real-time applications at homes and small businesses into different categories and
have investigated LAP-D protocol (Q.921) and Call Control Protocol (Q.931) to support
the real-time applications. The user-to-user signaling connection over the D-Channel has
been explored to develop a framework for these real-time applications. High level
scenarios and the protocol message and bit level scenarios have been designed for these
real-time applications at homes and small businesses. A testing model has been
developed on the SUN SPARC station in Solaris environment and few of the applications

have been successfully tested using our model.

ISDN
B-Channel
D-Channel
PCM
Kbps

PBX

LAN
LAP-D

LAP-B

TE2
TA
DLCI

HDLC

SAPI
C/R bit
P/F bit
SABME

DISC

List of Definitions of Abbreviations

Integrated Services Digital Networks
Bearer Channel
Delta Channel
Pulse Code Modulation
Kilo bits per seconds
Private Branch Exchange
Local Area Network
Link Access Protocol for Delta Channel
Link Access Protocol for Bearer Channel
Network Termination 1
Network Termination 2
Terminal Equipment type 1
Terminal Equipment type 2
Terminal Adapter
Data Link Connection Identifier
High Level Data Link Control
Terminal Endpoint Identifier
Service Access Point Identifier
Control/Response bit
Poll/Final bit
Set Asynchronous Balanced Mode Extended

Disconnect

FCS
UA
PRI
BRI
DME
DGE
TCP/TP

DLPI

DLS

Receive Ready

Receive Not Ready

Frame Reject

Frame Check Sequence

Unnumbered Acknowledgement
Primary Rate Interface

Basic Rate Interface

Data Monitoring End.

Data Generating End

Transport Control Protocol / Internet Protocol
Data Link Provider Interface
Reject

Data Link Service

Xiv

Acknowledgement

I would like to thank Dr. Ali Elkateeb, my thesis supervisor, for his dedication, patience
and the valuable time he contributed towards this thesis. He was a constant source of
inspiration and encouragement at times when I came across several problems and
difficulties in the research.

I would like to thank the Jodrey School of Computer Science and the Research and
Graduate Studies Department that considered me eligible for the Acadia Graduate
Fellowship and the Teaching Assistantship during my stay at Acadia as a Graduate
student.

I would like to thank TARA (Telecom Applications and Research Alliance - Halifax) for
awarding me the TARA scholarship for my research work and at times providing with the
useful pointers in the industry to clarify certain doubts about the industry standards being
followed in ISDN. I would also like to thank Mr. Bill McMullin of Info-Interactive —
Halifax, for being an industry affiliate in this research.

I would like to thank Dr. Andre Trudel for lending me his Sparc work station to do testing
in the research work and also helping us out in his capacity as a Director of the School and

the Graduate Coordinator.

Finally I would like to thank my parents and dedicate this thesis to them, who encouraged
me to go for the Masters degree. Without their support this thesis would not be possible.

Chapter 1

Introduction

The Integrated Services Digital Networks (ISDN) is a public end-to-end digital
telecommunications network providing the capability to transmit voice, data, facsimile,
telemetry, signaling, and slow motion video. The main feature of the ISDN concept is the
support of a wide range of voice and non-voice applications in the same network. ISDN
provides a range of services using a limited set of connection types and multipurpose
user-network interface arrangements. ISDN supports a variety of applications, including
both the switched and non-switched connections. The switched connections in an ISDN
include both the circuit switched and packet switched connections.

The number of applications that can be supported by telecommunication networks is
endless. Some of the many applications that are supported by ISDN and mentioned in
[BellISDNapp96],[Kess93] and [Nitz90] are as follows:

1) Enhanced Phone Services - ISDN number is issued for life. Wherever you move in
the world, the number moves with you. Automatic callback, selective call forwarding
and selective call blocking are other enhanced services that ISDN provides.

2) High Speed Data Transfer - ISDN can provide a data transfer rate equivalent to that
of T1 (1.544 Mbps).

3) TeleConferencing - Teleconferencing is a method by which images of individuals, at
different locations in the world can simultaneously transmit voice and data to each

other. The bandwidth provided by ISDN can support teleconferencing.

4)

5)

6)

7

8)

9)

TeleFinancing - Services such as telebanking, teleaccounting will be provided at
homes through ISDN.

TeleMedicine - Doctors will provide on-line outpatient monitoring at homes and
surgeons will transmit 3-D pictures to others while they are performing surgery.
TeleCommuting - TeleCommuting will allow individuals to work at home, without
going to the office.

TeleControl - is the ability to automatically control remote device at different
locations.

TelePolling - Remote Surveillance of security cameras located in different buildings
from a central control room is one example of TelePolling.

TeleMonitoring - Monitoring of utility meters, burglar alarms or fire detectors from a

remote location is also possible through ISDN.

This thesis addresses a few of the above mentioned applications like TeleControl,

TelePolling and TeleMonitoring that can be supported through ISDN. Keeping in view

the bandwidth requirements of the above applications, the ISDN call control protocol

and LAP-D protocol have been analyzed in detail to support these applications. The high

level scenarios have been designed for these applications. The protocol message and bit

level scenarios have also been designed. An implementation model has been developed

to show how the ISDN protocols can be used to support the above applications. The

model has been developed on Sun Sparc work station in Solaris environment. A few

applications, such as TeleMonitoring and TeleControl have been tested using the model.

The organization of this thesis is as follows. Chapter 2 gives an overview of ISDN in
general, ISDN interfaces, LAP-D protocol specified in [TTUQ921] (ISDN User-Network
Interface Layer-Data Link Layer Specification) and Q.931 call control protocol specified
in [ITUQ931] (ISDN User-Network Interface Layer 3 Specification for Basic Call
Control). Chapter 3 consists of the high level scenarios for the applications which have
been considered for detailed analysis. Chapter 4 lists the message and bit level scenarios
at the protocols level (LAP-D & Call Control). Chapter 5 describes in detail the design
and implementation of the protocol model which has been chosen for the applications.
Chapter 6 describes the testing model that is designed and implemented to support the
above applications, using the protocol model described in Chapter 5. Chapter 7 is the

conclusion and the future works. Finally the Appendix contains the source code for the

applications.

CHAPTER 2

Overview of ISDN, its Interfaces and Protocols

2.1 Introduction to ISDN

ISDN had been proposed in early 80’s to support a large variety of services that the

existing network did not support. ISDN refers to simultaneously carrying of digitized

voice and a variety of data traffic on the digital transmission links and the digital
exchanges. The following sections describe the main features of ISDN such as the basic
principles of ISDN, ISDN channels and transmission structures as specified in [Stall95],

ISDN protocol architecture, and the state machines of the protocols. The features of the

protocols that have been explored to support the real-time applications at homes and

small businesses are also described in detail.

2.1.1 The Basic Principles of ISDN

The basic principles of ISDN can be summarized as follows:

a) Support of voice and non-voice applications - ISDN supports a variety of services
related to voice communications (telephone calls) and non-voice communications
(digital data exchange).

b) Support of switched and non-switched applications - ISDN supports both circuit
switching and packet switching.

c) Reliance on 64-kbps connections - The basic rate with which ISDN supports the
circuit and packet switched connections is 64Kbps, as it is a standardized rate for

digitized voice.

d) Layered protocol architecture — The protocol model developed for user access to
ISDN can be mapped directly to the OSI model. At the data link layer level, ISDN
supports the LAP-D (Link Access Protocol for Delta Channel which carries signaling
information) and LAP-B (Link Access Protocol for Bearer Channel which carries
digitized voice or digital data). At the layer 3 level, X.25 can be used for packet
switching services that ISDN provides, and for call establishment and release Q.931
call control protocol is used at the layer 3.

e) Variety of configurations - Several physical configurations are possible for

implementing ISDN, as shown in Figure 2.1.

Packet
 Telephone| Netwark
Telephone Netwaork

Digital
Pipes
Circuit
Computer / Switched
) ISDN Network
PBX Customer ISDN Digital Pipe Central
{nterface
Office — Other
Network
Digital
Alarm .
Data
TL
Local Area Network
Other
(LAN) Services

Figure 2.1: Conceptual View of ISDN Connection Features

2.1.2 ISDN Channels

The digital pipe between the central office and ISDN subscriber is used to carry a

number of communication channels, namely the B-Channels and the D-channel.

2)

b)

B-Channel - (also called bearer channel) has a capacity of 64Kbps and is used to
carry digital data and PCM encoded digital voice. Three kinds of connections are
supported: circuit switched, packet switched and semi-permanent (leased line).

D-Channel - (also called delta channel) has a capacity of 16Kbps (Kilo bits per
seconds) and is used to carry signaling information to control circuit switched calls

on the associated B Channels. The channel can also be used for packet switching.

2.1.3 ISDN Transmission Structures

The above channel types are grouped into two different transmission structures, which

are offered to the user as a package:

a)

b)

Basic Rate Access - It provides two full duplex B Channels and one full duplex D-
Channel (2B+D = 144Kbps). Framing and synchronization overhead bits, that are
added t o each frame makes it 192Kbps. Basic access is suited to the most individual
users, residential subscribers and small offices and allows simultaneous use of
several voice and data services like fax, telephone and Internet.

Primary Rate Access - In US, Canada and Japan, it provides 23 full duplex B-
Channels and one 64Kbps D-Channel (1.544Mbps). In Europe it provides 30 full
duplex B Channels and one 64Kbps D-Channel (2.048Mbps). It is intended for users
with higher capacity requirements such as offices with digital PBXs or a LAN. In
primary rate access the D-Channel has a higher capacity (64 Kbps) than the basic rate

access (16Kbps) as it carries signaling information of 23 or 30 B-Channels.

2.2 ISDN Interfaces, Functional Devices and Reference Points [Stall95]

2.2.1 ISDN Functional Devices

The various ISDN functional devices as shown in figure 2.2 are as follows:

Network Termination 1 (NT1) is the termination of the physical connection between
the user site and the local exchange. NT1 performs line performance monitoring and
timing, used for power transfer and multiplexes the B-Channel and the D-Channel.
Network Termination 2 (NT2) is an intelligent device that may include up through OSI
layer 3 functionality. NT2 can perform switching, multiplexing and concentration
functions. Example of NT2 is a digital PBX, LAN etc.

Terminal Equipment type 1 (TE1) refers to the devices that support the standard ISDN
interface like digital telephone, standard voice/data terminals etc.

Terminal Equipment type 2 (TE2) refers to existing non-ISDN equipment. Examples
are equipment with a physical interface, such as RS-232C, and host computers with an
X.25 interface. Such equipment needs a Terminal Adapter (TA) which converts the non-
ISDN protocols into ISDN protocols.

2.2.2 ISDN Reference Points

R, S and T (Figure 2.2) are the reference points used to separate the group of functions.
The R reference point separates the non-ISDN device from Terminal Adapter (TA). The
S reference point separates Terminal Equipment (TE1) or Terminal Adapter (TA) and
network termination equipment (NT1 or NT2). The T reference point separates customer

site switching equipment (NT2) and the local termination (NT1).

MRl INT2
TE2 | TA NT2
R S
Figure 2.2: ISDN Reference points and Functional Groupings
2.3 ISDN Protocols

2.3.1 The Layer 2 - Q.921 / LAP-D Protocol —

T

The Layer "2, also called Link Access 'Protocol for delta channel is specified in

[TTUQ921] (LAP-D or Q.921 as shown in Figure 2.3). It describes the high level data

link procedures.

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

End-to-End
User

Signaling

Network
Layer

Q.931 Call Control X.25 Packet
Level

Data Link
Layer

LAP-D (Q.921)

X.25 Packet
Level

V.120

LAP-B

Physical
Layer

1.430 Basic Interface + [.431 Primary Interface

Figure 2.3: ISDN Protocols at User-Network Interface

2.3.1.1 Layer 2 Functions

The major functions of the layer 2 also called as LAP-D (Q.921) as specified in

{ITUQ921] are as follows:

a)

b)

d)

e)

g)
h)

the provision of one or more data link connections on a D-channel. Discrimination
between the data link connections is by means of a data link connection identifier
(DLCI) contained in each frame

frame delimiting, alignment and transparency, allowing recognition of a sequence of
bits transmitted over a D-channel as a frame

sequence control, to maintain the sequential order of frames across a data link
connection

detection of transmission, format and operational errors on a data link connection
recovery from detected transmission, format and operations errors

notification to the management entity of unrecoverable errors

flow control

Layer 3 Call Control information is carried in the information field of the LAP-D

frame and is delivered to the peer Layer 3 entity

2.3.1.2 LAP-D Frame Format and Frame Types

The LAP-D protocol is modeled after the LAP-B protocol used in X.25 and on HDLC

(High Level Data Link Control). Both user information and parameters are transmitted in

the form of frames. The various fields of the LAP-D frame are as follows:

Flag Field - The flag field delimits the frame at both ends with the unique pattern

011,111,10. In order to avoid the occurrence of the similar pattern inside the frame, the

10

technique known as bit stuffing is used. Between the transmission of the starting and the
ending flags, the transmitter will always insert an extra 0 bit after each occurrence of five

consecutive 1’s in the signaling unit.

FLAG ADDRESS | CONTROL INFORMATION FCS FLAG
ST a—r< > >
8 BITS 16 8orlé VARIABLE 16 8

a) LAP-D FRAME FORMAT
The FLAG FIELD delimits the frame at both ends with the unique pattern 01111110

1 2 3 4 5 6 7 8 9 10 It 12 13 14 15 16

0 |CR SAPI | THEI
b) ADDRESS FIELD FORMAT

C/R = Command/Response
SAPI = Service Access Point Identifier
TEl = Terminal End Point [dentifier

I 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16
0 N(S) P/F N(R) Information Transfer
t|lo| s s 000 0 |PF NR) Supervisory

1| 1jM M PFl M M M Unnumbered

c) CONTROL FIELD FORMAT

N(S): Transmitter send sequence number
N(R): Transmitter receive sequence number
S : Supervisory function bit
M : Modifier function bit
P/F :Poll/Final bit
Figure 2.4: LAP-D Frame Format
Address Field - A LAP-D frame has a two part address field, consisting of a terminal

end point identifier (TEI) and a service access point identifier (SAPI). Since multiple

user devices share the same physical interface at a subscriber site, each device is given a

11

unique TEI. The service access point identifier (SAPI) identifies a layer 3 user of LAPD
and thus corresponds to a layer 3 protocol entity within the user device. SAPI and TEI
together are called DLCI (Data Link Connection Identifier).
Typical SAPI values are:
0 - Call Control procedures for managing B-Channel circuits
16 - packet mode communication on the D-Channel using X.25 as layer 3
63 - used for exchange of layer 2 management information
1 - packet mode communication using Q.931.
The address field also includes the command/response (C/R) bit. All LAP-D messages
are categorized as either commands or responses, and this bit is used to indicate which
type of message is contained in the frame.
Control Field - LAP-D defines three types of frames.
a) Information Frames (I- frames) carry the data to be transmitted for the user
b) Supervisory Frames (3 different S - frames :- RR receive ready , RNR receive not
ready, REJ reject) provide the Automatic Repeat Request flow control mechanism
¢) Unnumbered Frames (SABME - request logical connection, DM Disconnected Mode
- unable to establish or maintain connection, DISC Disconnect - terminate logical
connection, UA Unnumbered Acknowledgment - Acknowledge SABME or DISC,
FRMR frame reject - reports receipt of unacceptable frame)
The Control field identifies each of these different types of frames. The control field
format contains the poll/final (P/F). In Command frames it is referred to as P bit and is

set to 1 to solicit a response from the peer LAP-D entity. In response frames, it is

12

referred to as F bit and is set to 1 to indicate the response frame transmitted as a result of

a soliciting command.

Information Field - This field is present only in I-frames and some unnumbered frames.

The field can contain any sequence of bits and must consist of an integral number of

octets (group of eight bits). The maximum number of octets is 260.

Frame-Check Sequence Field - It is an error detecting code calculated from the

remaining bits of the frame, exclusive of flags.

2.3.1.3 LAP-D Message Flow and Operation

a) Connection Establishment - A request for service from the customer results in layer
3 requesting a service from Q.921 by sending a DL_ESTABLISH primitive. In its
response the LAP-D entity sends SABME (containing the SAPI & TEI of the Q.931
entity to which the connection is requested) to the peer LAP-D entity, and starts a
timer T200 to wait for an acknowledgment. The peer LAP-D entity passes up this
connection request to the appropriate layer 3 entity. The layer 3 entity responds with
DL-CONNECT_CON to indicate its acceptance of the connection. The LAP-D entity
on receiving the connection acceptance, will respond with Unnumbered
Acknowledgment (UA) to the LAP-D entity which requested the connection. If the
LAP-D entity receives the UA before the timer T200 expires, it enters a state where
they can exchange Information Frames. This state is called Multiple Frame
Establishment state. If the timer T200 expires before receiving UA, then the LAP-D
entity retries to establish connection by sending SABME again. Only three retrials

are allowed (N200 parameter).

b)

d)

13

Data Transfer - Once the two communicating LAP-D entities enter a muitiple frame
establishment state, the corresponding Layer 3 entities can begin sending the user
data in the LAP-D Information frames starting with sequence number 0. N(S) and
N(R) fields of the I-frame are sequence numbers that support flow control and error
control. Receive Ready (RR) supervisory frame is used to acknowledge the last I;
frames received and Receive Not Ready (RNR) supervisory frame is used to ask the
peer entity to suspend transmission of I-frames. Reject (REJ) supervisory frame
indicates that the last I-frame received has been rejected and that the retransmission
of all I-frames beginning with number N(R) is required.

Disconnect - In case of fault or on a request from the Layer 3 user , the LAP-D entity
can initiate the connection disconnect by sending a DISC frame to the peer LAP-D
entity. The remote LAP-D entity responds with an Unnumbered Acknowledgment
and also informs its layer 3 user that the connection has been terminated.

Frame Reject (FRMR) - Frame Reject is used to indicate that an improper frame
has arrived (ex - a frame with undefined control field, S-Frame or U-Frame of
incorrect size). The effect of the FRMR is to abort the connection and start re-

establishment of the data link.

2.3.1.4 LAP-D (Q.921) State Transition:

Figure 2.5 shows the states that the Q.921 LAP-D protocol can be in. Initially the state

machine is in TEI unassigned state and the LAP-D entity sends a physical interface

(ISDN card) activation request. On receiving the physical activation acknowledgment,

the LAP-D entity sends the TEI assignment request to the network. On getting the TEI

from the network the LAP-D entity enters the Multiple frame establishment state and

14

stays in that state as long as layer 3 peer-to-peer communication requires a reliable

communication channel. After that LAP-D entity moves to the TEI assigned state.

1

TE!?
I Unassigned
A
2
Assign H 3
Awaiting TEI E stablish
Awaiting TEI
—_— 4
- TEI
Assigned
h

A 4 y

[
6 Awaiting
Awaiting establishment

release Y
3 [Y

4

7
M ultipie frame
established

Yy

8
Timer

Recovery

Figure 2.5: LAP-D State Transition Diagram

2.3.2 ISDN Network Layer Protocol / Call Control Protocol / Q.931

The ISDN network layer protocol (Q.931) is a D-Channel protocol used to establish,
maintain, and terminate network connections on the B channel.

2.3.2.1 Layer 3 Functions

The basic set of functions to be performed at the network layer, for call control are:

a) Interacting with the data link layer (LAPD) to transmit and receive messages.

b) Generation and interpretation of layer 3 messages.

c) Administration of timers and logical entities used in call control messages.

15

d) Administration of the access resources, including B-Channels and packet layer
logical channels used in X.25.

e) Includes mechanisms for providing network connections making use of data link
connections.

f) Provides mechanisms to convey user to network and network to user information
with or without the establishment of circuit switched connection on the B-Channel.

2.3.2.2 Layer 3 Message Format

All the layer 3 (Q.931) messages are built up by a certain message body. The layer 3

message format is described in the Figure 2.6.

8 7 6 5 4 3 2 1 Octets
PROTOCOL DISCRIMINATOR 1
0 0 0 0 Length of Call Reference Value 2
Call Reference Value 3
0 Message Type 4
Other Information Element as Required 5

Figure 2.6: Layer 3 Message Format

The various fields of the layer 3 message format are described as follows:

Protocol Discriminator - It is used to distinguish messages for the user-network call
control messages from other messages. Its value for Q.931 call control messages is
0001000.

Call Reference - The purpose of call reference is to identify the call or facilitate the
registration/cancellation request at the local user-network interface to which the
particular message applies. The call reference has only local significance, rather than

having an end-to-end significance across ISDNs. The length subfield identifier specifies

16

the length of the remainder of the fields in octets. Its value is one for the basic rate

interface and two for the primary rate interface. The call reference value is the number

assigned to a particular call, it uniquely identifies the call and is used by future messages
to specify a connection.

Message Type - The purpose of this field is to identify the function of the message being

sent. This field has a separate bit pattern for each of the different messages. As an

example, Alerting message is represented by 00000001 and Call Proceeding by

00000010. Q.931 messages can be grouped on the basis of the applications they support.

The various applications are:

a) Circuit Mode Connection Control - refers to the functions needed to setup, maintain,
and clear a circuit switched connection on the B-Channel.

b) Packet Mode Access Connection Control - refers to the functions needed to setup a
circuit switched connection to an ISDN packet switching node, which connects the
user to the packet switching network.

c) User-to-User Signaling not associated with circuit-switched calls - allows two users
to communicate without setting up a circuit switched connection on the B-Channel.
A temporary signaling connection is established and cleared in a manner similar to
the control of circuit switched connection. Signaling takes place over the D-Channel

and thus does not consume the B-Channel resources.

Other Information Element - Two categories of information elements are defined
a) Single Octet Information Element: represented as in figure 2.7

8 7 6 5 4 3 2 1

Information Contents of Information
element Identifier element type 1
Information element Identifier type 2

Figure 2.7: Two types of Single Octet Information Element
b) Variable Length Information Element: represented as in figure 2.8

8 7 6 5 4 3 2 1

Information Element Identifier
Length of Contents of Information Element (Octets)

Contents of Information Element

Figure 2.8: Variable Length Information Element

2.3.2.3 Q.931 message flow and Operation

17

The Q.931 message flow and operation has been described in the [ITUQ931] — ISDN

User- Network Interface Layer 3 Specification for Basic Call Control (Q.931).

The Q.931 Call establishment module forwards the SETUP message to the LAP-D

entity, which forwards that message on the D-Channel, to the network. The Q.931

Calling Module enters the Call Initiated State. The SETUP message contains the

address of the Called Party. The network forwards the SETUP message to the Called

Party and replies with the Call Proceeding to the Calling Q.931 module. The Called

18

Party and replies with the Call Proceeding to the Calling Q.931 module. The Called
Party on receiving the SETUP enters thQ Call Present State. The Calling Q.931 module
on receiving the Call Proceeding, enters the Qutgoing call Proceeding state and is
waiting for Alert message.

a) Call Establishment at the Calling Party End -

Null
State

SETUP| Request

Call
Initiated
State

CALLPROCEEDING|Received

Outgoing
Call Proceeding
State/ Awaiting
Alert

ALERT | Received

y

Call Clearing
Module

No Answer /Delivered state/\ Connect
Awaiting Alert

Figure 2.9: Q.931 State Transition Diagram and Message Flow
during Call Establishment at Calling Party End

b) Call Establishment at Called Party End

Null State/
Awaiting
SETUP

SETUP| Received

y

Call
Present State

CALLPROCEEDING | Sent

Incoming
Call Proceeding
State

ALERT | Sent

Call

Received
State

CONNECT |Sent

4

Connect req
CONN.ACK
tate/ awaiting

Figure 2.10: Q.931 State Transition Diagram and message flow
during Call Establishment at Called Party End

19

20

The Called Party Q.931 module on receiving the SETUP message responds with a Call
Proceeding message to the network, and comes to Incoming Call Proceeding state.
Once the phone at the Called Party end starts ringing, the Q.931 Called Module sends
the ALERT message to the network and comes to the Call Received state. The network
forwards the ALERT message to the Calling Party. The Calling Q.931 module on
receiving the ALERT, enters Call Delivered State and waits for the Connect message.
When the user at the Called end picks up the phone, the Called Q.931 module sends the
Connect message to the network and waits for the CONNECT ACK from the network.
The network forwards the Connect message to the Calling module, and the Calling
Module enters the Active state in which the user information is being transferred. The
Called Module on receiving the CONNECT ACK enters the Active State.

The Call Clearing Module takes care of terminating the call. The termination of the call
can be initiated by the user or the network or in case of fault situation. The user initiates
by sending the DISCONNECT message to the network. The user disconnects the B-
Channel and waits for the RELEASE message from the network. If the user receives the
RELEASE message from the network, it releases the B-Channel and sends the

RELEASE COMPLETE message to the network and enters the NULL state.

21

c) Call Clearing

Disconnect Received Disconnect Sent

Disc B Channel Disc B Channel
Send Release Awaiting Release
Release | Sent Release Received
Release Release B Channel
Complete

Release] Complete Received

Release Complete /Sent

Release B Channel
& Call Reference
Value

B-ChannR

Released

Figure 2.11: Q.931 State Transition Diagram during Call Clearing

If the DISCONNECT message is received from the network, the user disconnects the
B-Channel, sends the RELEASE message to the network and enters the release request
state. If the network sends the RELEASE COMPLETE message, the Q.931 entity at the

user end releases the B-Channel and the Call Reference value.

2.3.3 User-to-User Signaling

The User-to-User Signaling allows two users to communicate without setting up a
circuit switched connection as specified in the [ITUQ957] ~ Stage 3 description for
additional information transfer supplementary services using DSS1: User-to-User
Signaling. The User-to-User Signaling can be implicit or explicit.

2.3.3.1 Implicit User-to-User Signaling

In the SETUP, CONNECT, DISCONNECT, RELEASE, ALERTING and RELEASE
COMPLETE messages there is a USER-to-USER information field. The purpose of this
field is to convey information between ISDN users. This information is not interpreted
by the network, but is rather carried transparently and delivered to the remote user(s).
The User-to-User information element has network dependent maximum size of 35 or
131 octets. The user information is structured according to user needs. This is called
Implicit User-to-User signaling as these messages are primarily used to establish circuit
mode connection, but implicitly deliver information from one user to the other, keeping
the network transparent.

2.3.3.2 Explicit User-to-User Signaling

Explicit User-to-User Signaling allows the two users to communicate by means of
User-to-User signaling on the D-Channel without setting up a circuit switched
connection on the B-Channel. Temporary signaling connection is established and
cleared on the D-Channel, in a manner similar to the control of circuit switched

connection on the B-Channel.

SETUP Message « SETUP Message ‘
N CALL PROCEEDING,
——-—_—_’
C‘%'Slé? ALERTING ALERTING CALLING
CONNECT CONNECT USER
CONNECT ACK
Q.931| | USER INFORMATION USER INFORMATION] | Q931
USER INFORMATION USER INFORMATION|
N/W
Q.921 Q221
LAP-D DISCONNECT DISCONNECT LAP-D
RELEASE RELEASE
RELEASE COMPLETE] RELEASE COMPLETE;

Figure 2.12 : Message flow in Explicit User-to-User Signaling Temporary
Connection on the D-Channel
The message flow for temporary connection establishment is as shown in figure 2.12.
The calling user sends a SETUP message identifying, within Bearer capability and
channel identification information elements, a temporary signaling connection to be
established on the D-Channel, with SAPI = 0. The bearer capability information
element indicates unrestricted digital information in the information transfer capability
field, packet mode in the transfer mode field, and D-Channel in the Channel indicator
field. The called user accepts the temporary signaling connection request by sending a
CONNECT message towards the calling user. After the called user has received a
CONNECT ACKNOWLEDGE and calling user receives CONNECT, the temporary

signaling connection is set up. Once the temporary signaling connection is established,

24

both users can transfer information between themselves by transferring User
Information messages across user-network interface. The network provides for the
transfer of such messages from the called user to the calling user side and vice versa.
The User information messages includes the Call reference, the Protocol discriminator,
and the User-to-User information elements. This provides entire 16Kbps bandwidth of

the D-Channel for the transfer of User-User Information messages.

25

CHAPTER 3

High Level Scenarios for Real-Time Applications at Homes
and Small Businesses

3.1 Classification of Real-Time Applications

There is a number of applications that can be supported by ISDN. We will be
concentrating on the real-time applications that are suitable for home and small
businesses. We have broadly classified these applications under three main headings:
3.1.1 TeleMonitoring

The term TeleMonitoring is the ability to monitor the data generated in real-time at
remote locations. The data generated can be emergency data such as in the case of smoke
detector and burglar alarms. TeleMonitoring allows us to monitor this data on the
emergency basis. In case of utility meters (power, gas and water) the data is generated as
and when the power, gas and the water is consumed. Such data needs to be monitored by
the utility meter reading company on a periodic basis or on a demand basis.
TeleMonitoring allows both the periodic and on demand monitoring of such data.

3.1.2 TeleControl

The term TeleControl is the ability to automatically control a device from a remote
location. As an example, a person before leaving the work place, could call his home

and turn on/off the air conditioner or the heater.

26

3.1.3 TelePolling

The term TelePolling is the ability to poll several devices from a distance. The remote
video surveillance of different security cameras installed in different buildings, from a
central control room is one of some examples. ISDN allows temporary connections to be
established to the cameras at remote sites. The fast call setup time of ISDN allows a
central operator to switch between the various cameras monitoring the sites. The high
speed digital service and the high bandwidth provided by ISDN, makes it possible to
transmit the image captured by the surveillance camera to the central office with a
reliable quality of service.

3.2 High Level Scenarios for the Above Applications

3.2.1 TeleMonitoring
As mentioned in the section 3.1, there are three types of TeleMonitoring applications.

1) On Demand Monitoring - Utility meter reading company requests the meter readings
from a particular customer’s meter is one of the examples. This may help the
company to study the power consumption behavior of a particular customer (such as
an industry) in different hours of the day, and can generate power as per requirements.

2) Periodic Monitoring - All the customer’s meters transmit the meter readings to the
meter reading company on a monthly or periodic basis is an example of periodic
monitoring. This will eliminate the need of meter reader to go to the site of the meter
in order to collect the meter readings.

3) Monitoring on Emergency Basis - Devices such as burglar alarm, fire detector or
carbon monoxide detector, go on/off as and when the emergency arises. The
monitoring of such devices from a remote location such as fire department or the
police department is one of the examples.

In the following section more detailed scenarios will be discussed to explain the

functionality of these services over the ISDN.

27

3.2.1.1 On Demand Monitoring

Here we consider the example of On Demand Monitoring of the meter readings by the
Utility Meter Reading Company. The On Demand Monitoring has to be initiated by the
Utility Meter Reading Company, as the customer computers transmit the meter readings

only on the periodic basis.

Utility Meter
Company’s

| Computer with
a Software

Application and
Database of all
the Customers

Figure 3.1: On-Demand monitoring of the meter readings by the utility meter
reading company

In the above scenario, the computers at the customer’s and the utility meter company’s
premise, have an ISDN interface card which is hooked to the ISDN line. The ISDN line
provides 2B+D (Basic Rate Interface). Each computer has an ISDN LAP-D protocol
entity on top of the ISDN physical layer (which is the ISDN card) and ISDN call control
protocol entity (Q.931) sitting on top of LAP-D protocol. The applications at both ends
are interfaced with the respective Q.931 entities. The above scenario can be accomplished

by the Implicit User-to-User Signaling on the D-Channel.

28

The scenario is described in the following sequence of steps:

a) The application residing on the computer of the utility meter reading company
maintains a database of their customers phone numbers. The application interacts with the
ISDN call control protocol entity (Q.931). When the company needs the meter readings
of a particular customer, the application triggers the Q.931 entity to establish an ISDN
connection with the customer, via the ISDN switch using the ISDN protocol. As per the
ISDN protocol, the connection establishment process involves the message
communication between the calling party, ISDN switch and the called party via the D-
Channel. The application on the computer of utility meter reading company sends the
request on the D-Channel to the switch for a particular customer’s meter reading. The
request is sent as a part of one of the call control messages used for setting up a
temporary connection between the two users, on the D-Channel.

b) The switch forwards the connection establishment message (which contains the
request of meter readings also) to the customer’s computer, via the D-Channel. The
request goes as a part of one of the messages used for setting up a temporary connection,
between the two users.

c) The application on the customer’s computer is also interfaced with the ISDN call
control protocol entity (Q.931). The ISDN call control protocol entity is sitting on the
top of the ISDN LAP-D protocol entity. The application is polling on the call control
protocol entity, for the particular call setup message, which also contains the request for
meter readings. The application on receiving the request, in the setup message, will insert

the meter readings in one of the reply messages for the temporary connection setup.

29

d) The switch on receiving the reply message, forwards the message to the computer of
the meter reading company.

e) The application on the computer of the meter reading company is polling the Q.931
call control protocol entity for the reply message, for the connection which it had
initiated. Once the Q.931 protocol entity receives the message, the application extracts
the meter readings and stores in the database. The above sequence of steps allow the
meter reading company to monitor the customer’s meter reading as and when needed i.e.
on-demand basis.

3.2.1.2 Monitoring On Periodic Basis

In this case the periodic monitoring of the meter readings is done by the switch. The
hardware setup of the computers, ISDN card and an ISDN line at the customer and the
meter reading company’s premises is the same as in the previous scenario. The protocol
setup at both the sites is the same. The application at the customer’s computer responds
to the meter reading request from the switch. The application at the utility meter reading
company’s computer, maintains the database of the meter readings which it receives from
the switch. The difference in the setup is only at the switch. The switch has an application
that interacts with the Q.931 entity at the switch and maintains the database of the
customers phone numbers and the meter readings. All the Q.931 call control messages
which are passed to the LAP-D entity, are sent to the destination LAP-D entity in the
information field of the LAP-D frame, via the D-Channel. The destination LAP-D entity
will pass the Q.931 call control message to the destination Q.931 call control entity.

In this scenario the application at the utility meter reading company does not have to

interact with the customers for the meter readings. It will interact with the application at

30

the switch which is maintaining the database of the customers meter readings. This
scenario will be using Implicit User-to-User signaling for the interaction between the
switch and the customers and Explicit User-to-User signaling for interaction between the

switch and the Utility meter reading company.

ISDN N/W with
the Database of all
the Customers of the
Utility Meter ili
Company sdmn Compnys
Application which Forwards a Set of Computer with

can request/obtain Readin
meter readings from & :::m.’:n

customers. The
switch stores the
readings , and
RequesiN for Reading | forwards them in

c stom lcrNI bunch to the meter
ormpu ReadingN reading company

Figure 3.2 : Periodic monitoring of the meter readings by the application
on the switch

a) The application at the switch will initiate the connection establishment process with
all the customers. The connection establishment process involves the message
communication between the calling party (which is the application on the switch), ISDN
switch and the called party via the D-Channel. The application on the switch sends the
request for the meter readings to each customers computer via the D-Channel. The
request is sent as a part of one of the call control messages used for setting up a
temporary connection between the two users, on the D-Channel (Implicit User-to-User
Signaling).

b) The application on each customer’s computer is also interfaced with the ISDN call

control protocol (Q.931). The ISDN call control protocol is sitting on top of ISDN LAP-

31

D protocol. The application is polling on the call control protocol entity, for the particular
call set up message, which also contains the request for meter readings (Implicit User-to-
User Signaling). The application on receiving the request in the setup message will insert
the meter readings in one of the reply messages for the temporary connection setup.

c) The application on the switch is polling the Q.931 call control protocol entity for the
reply message, for the particular connection which it had initiated. Once the Q.931
protocol entity on the switch receives the message, the application extracts the meter
readings and stores it in the data base.

d) Once the application on the switch receives all the meter readings, it initiates the
connection establishment with the application on the utility meter reading company. The
application on the switch establishes a temporary connection on the D-Channel, with the
application on the utility meter reading company. Once this connection is established, the
application on the switch starts sending the meter readings of all the customers in the user
to user information messages, on the D-Channel (Explicit User-to-User Signaling). The
application on the switch retrieves the meter readings from these User-to-User
information messages, and stores them in the company’s database. This process could be
done every week, bi-weekly or monthly depending on the demand of the Utility meter
reading company.

3.2.1.3 Monitoring On Emergency Basis

Remote Monitoring of the Fire Detector/Carbon Monoxide Detector or Burglar Alarm
are few examples of the monitoring on emergency basis.

The following scenario explains the use of an ISDN connection, for monitoring of the

detectors/alarms in general (Fire detector/Carbon Monoxide detector or Burglar Alarm)

32

from a remote location (figure 3.3). This application can let an alarm blow at 2 remote
location because of fire or carbon monoxide leakage or blowing of a burglar alarm at a
distant site. The hardware setup (computers, ISDN card and ISDN line) at the fire
detector/burglar alarm site and police or fire department site is the same as in previous
scenarios. The protocol architecture is the same as in previous scenarios, only the
applications have different functionality. The detectors and the alarms are connected to

one of the input/output ports of the computer.

Fire Detector/ Carbon
Monoxide Detector or

Burglar Alarm

The application on
remote computer
extracts the reading
and makes the
alarm to blow and
display all
information about
the user

: Police or Fire
Home or Small Department
Business '

Figure 3.3 : Remote Monitoring of the Fire Detector/Carbon Monoxide Detector or
Burglar Alarm on Emergency Basis.
a) As soon as the detector (fire/carbon monoxide) detects smoke/carbon monoxide or the
burglar alarm detects the burglar, it creates a digital signal which is passed on to the
computer via the input/output port. This signal will trigger the Q.931 entity to establish a
temporary signaling connection with the monitoring site via the D-Channel. This

connection establishment process involves message communication between the switch

33

and the calling party. Thus the application sends the setup message to the switch
indicating the address of the remote site to which it wants to connect. The digital
information of fire/carbon monoxide detection or burglar detection is passed in one of the
fields of this message (Implicit User-to-User Signaling).

b) The switch on receiving the message, forwards it to the destination via the D-Channel.
The destination LAP-D entity receives the message and passes it on to the Q.931 call
control entity.

c) The application at the monitoring end is polling the Q.931 call control entity for that
message. Once the Q.931 entity receives that message, the application extracts the
relevant digital information about the fire/carbon monoxide detector or the burglar alarm.
The application then sends an emergency signal to the alarm, hooked to the computer at
the monitoring site, in order to indicate an emergency.

3.2.2 TeleControl

TeleControl allows a user to send the control information to any device at a remote
location. The following scenario explains the use of an ISDN connection for controlling
any remote device such as an air conditioner. The hardware setup (computers, ISDN card
and the ISDN line) and the protocal architecture are the same as in previous scenarios.
The applications are interfaced with the Q.931 call control protocol entity. The devices
are connected to one of the input/output ports of the computer.

a) When the user wants to send the control information to the air conditioner, he/she
invokes the application. He/She passes the destination address of the remote computer to
which the air conditioner is hooked as well as the temperature to which the air

conditioner is to be set. The application now activates the Q.931 call control entity to

34

initiate a temporary signaling connection establishment with the destination. The Q.931
entity forms a setup message, and the application inserts the temperature and other
control information of the remote device in one of the fields of the message. This setup
message is passed on to the LAP-D entity, which forms a LAP-D frame, by placing the

setup message in its information field. The LAP-D entity sends this frame via D-Channel

to the switch.
Air

Personal Comput ISDN : The application on
having an : remote computer

Application Forwards the Control | extracts the control
which the user nformation on the Intormation on the information and
uses to send the D-Channel N/wW D-Channcl sends an appropriate
control informatio : : signal to the air
1o the remote air conditioner
conditioner at
home

Home

Office

Figure 3.4 : TeleControl, Controlling an air conditioner at home from the work place

b) The switch on receiving the message forwards it to the destination via the D-Channel.
The destination LAP-D entity receives the message and passes it on to the Q.931 call
control entity.

c) The application at the remote end is polling the Q.931 entity for any setup message to
be received, with a request for temporary signaling connection establishment. The LAP-D
entity on receiving the setup message, removes the LAP-D header and passes the message

to the Q.931 entity. As the Q.931 entity receives the message, the application extracts the

35

desired control information from the specific field of the message and sends the signal to
the device accordingly (Implicit User-to-User Signaling). This scenario is similar to the
scenario of TeleMonitoring on emergency basis.

3.2.3 TelePolling

Here we discuss in detail the remote video surveillance of different security cameras
installed in different buildings, from a central control room. The surveillance cameras are
connected to the input/output port of the computers in the building. The hardware setup
(computers, ISDN card and the ISDN line) is the same as in previous scenarios. The
protocol architecture is also the same. In this scenario the application in the central
monitoring room will establish temporary signaling connections with the computers
hooked to different security cameras in the different buildings. The entire snap shot
(image) of the camera has to be transmitted from the site of the camera to the central
control room. The amount of data is huge and cannot fit into the user-user information
field of the setup message (Implicit User-to-User Signaling). Thus, once the temporary
signaling connection is established between the two ends, the comp;xters will exchange
User-to-User information messages (Explicit User-to-User Signaling). In these messages,
the image is transmitted from the security camera end to the central control room.

a) The operator in the central control room invokes the application to initiate a temporary
signaling connection establishment with the computer to which the security camera is
interfaced. The application passes the ISDN number of the remote computer to the Q.931
entity which forms the SETUP message. In the SETUP message the Q.931 entity will

indicate that the D-Channel will be used for a temporary signaling connection. Once the

36

link is established, unrestricted digital information will be transferred on the D-Channel,

between the two users.

Security
Camena D
/
Requestl for Ternporary " Computer
- Temporary Connection m
Coﬂwt:f at t Ac Bulldingl
control room
having an ISDN - Image Transferred
application that
allows the operator
to switch from one
camera o another N/W B
cmporary Connection Computer
tae v in
| Image Transferred BuildingN

= b
/ \

Figure 3.5: TelePolling of Surveillance cameras from the Central Control Room

b) The switch forwards the SETUP message to the destination computer and responds
with the CALLPROCEEDING message to the calling Q.931 entity. The called Q.931
entity on getting SETUP will send ALERT to the switch which will forward the ALERT
message to the calling Q.931 entity. The called Q.931 entity then sends the CONNECT
message to the switch and the switch forwards that CONNECT to the calling Q.931
entity. At this stage the temporary signaling connection has been established between the

two users.

37

¢) The application at the security camera end is informed by the Q.931 entity that the
temporary signaling connection is established. The application now inserts the digital
image into the User-to-User information messages, which the Q.931 entity will pass on to
the switch. The switch forwards these messages to the calling Q.931 entity.

d) The application at the central controi room end is polling the Q.931 entity for the User-
to-User information messages. Once the Q.931 entity receives the User-to-User
information messages, the application extracts the digital information from them.

e) The application at the central control room end will initiate the connection release once
it has received the entire image in the User-to-User information messages, and the two

ends will release the D-Channel.

38

CHAPTER 4

Detailed Message Level Scenarios for the Real-Time
Applications at Homes and Small Businesses

The high level scenarios for the Real-Time Applications at homes and small businesses
have been described in the previous chapter. The main focus of this chapter is to describé
in detail the ISDN protocol and the message level scenarios for these real-time
applications.

4.1 Detailed Message Level Scenario for the TeleMonitoring Applications

The peer Q.931 entities exchange a series of Q.931 call control messages to establish and
release a call. As shown in Figure 4.1, the SETUP, CALL PROCEEDING, ALERTING,
CONNECT and CONNECT ACKNOWLEDGE messages are used by the peer Q.931
entities to establish the call. The DISCONNECT, RELEASE and RELEASE
COMPLETE messages are used to disconnect the call. The bit level details of these
messages are specified in [ITUQ931] — ISDN User-Network Interface Layer 3
Specification for Basic Call Control (Q.931).

The bit level details of the messages used in the TeleMonitoring Applications are given
in the following sections.

4.1.1 SETUP Message

The application at the Data Monitoring End (DME) triggers the Q.931 entity to initiate a
connection establishment with the Data Generating End (DGE). The Q.931 entity of the
DME prepares a SETUP message, to send it to the Q.931 entity of the DGE. The
applications make use of Implicit User-to-User Signaling (described in Chapter 2). The

application at the DME sends the request for remotely generated data to its Q.931 entity.

39

The Q.931 entity inserts the request string in the User-to-User information field of the

SETUP message.
SETUP Message SAPI=0 SETUP Message
Application | [camiesthe Data Request’ carmics the Data Kequ Application
CALL PROC/ —CALLPROC/
Q'9.3 1 ALERTING ALERTING Q'9.3 L
Entity Entity
CONNECT ISDN CONNECT
Q.921 carries the Data N/W carries the Data Q921
Enaty CONNECT ACK Entity
DISCONNECT »> DISCONNECT
Physical Physical Layer
Layer ISDN RELEASE RELEASE ISDN Interface
Interface Card Card
RELEASE COMPLETE RELEASE COMPLETE
Data Monitoring End Data Generating End

Fig4.1 Message Level Scenario for TeleMonitoring Applications

The specific details of the fields of the SETUP message are as follows:

Protocol Discriminator: The Protocol Discriminator is one of the Mandatory Fields in
every Q.931 message. The purpose of the protocol discriminator is to distinguish
messages for user-network call control from other messages. For user-network call
control messages the value of the protocol discriminator is one octet and its value is
0000 1000.

Call Reference: It is another mandatory field. The call reference information element is
shown in Figure 4.2. The first four bits in the Octet one indicates the length of the call
reference value and the next four bits are left for the future use. For the SETUP message

in this scenario, the call reference value can be set to any value, though the flag field will

40

be zero, as it has local significance and it indicates that the message originates from this

interface.
8 7 6 54 3 2 1
0 0 0 ojo 0 0 1] Octet!?
flag
0 Call Reference Value Octet2

Figure 4.2: Call Reference Information Element
Message Type: It is the third field of every message. It identifies the function of every
message being sent. For a setup message as part of call establishment message the value
of this field is set to 0000 0101.
Sending Complete: The purpose of the Sending Complete information element is to
optionaily indicate completion of the called party number and also indicates that all
information necessary for call establishment is included in the SETUP message. It is a
one octet information field and is coded as 1010 0000. This field is an optional field and
is not required in our application.
Bearer Capability: The purpose of bearer capability information element is to indicate a
bearer service to be provided by the network. The various octets of the Bearer Capability
information field in the SETUP message are encoded as follows :
Octet 1 : Bearer Capability Information Element Identifier - 0000 0100
Octet 2 : Length of bearer capability contents
Octet 3 :
bits7& 6 : 00 CCITT Standard coding
bits 5,4,3,2,1 : 01000 Unrestricted Digital information (Information Transfer
Capability)
Octet 4:
bits7& 6 : 10 Packet mode (Transfer Mode)

bits 5,4,3,2,1 : 00000 (Information transfer rate - in case of packet mode - none)
Octet 5 : is omitted in case of Packet Mode as Transfer Mode

41

Octet 6 :

bits 5,4,3,2,1 : 00010 Recommendation Q.921 (User Information layer protocol)
Octet 7 :

bits 5,4,3,2,1 : 00010 Recommendation Q.931(User Information layer protocol)

Channel Identification Information Element : The purpose of Channel Identification
Information element is to identify a channel within the interface controlled by these
signaling procedures. This element includes the following :

Octet 1 : Channel identification information element identifier 0001 1000
Octet 2 : Length of channel identification contents
Octet 3 :
bit7 : 0 Interface Implicitly identified. The interface which includes the D -
Channel carrying this information element is indicated. (Interface
Identifier Present)
bit6 : 0 Basic Interface (Interface type)
bit4 Exclusive, Only the indicated channel is acceptable.
Preferred/Exclusive has significance
only for B-Channel selection. (preferred/exclusive)
bit3 : O Channel identified is not the D-Channel (D-Channel indicator)
bits 2,1 : 11 B Channel - The information channel selection does not apply to
the D-Channel (Information Channel Selection)
bit 0 : left for future use

—

Network Specific facility: It is an optional field and can be omitted in this message. The
purpose of this element is to indicate which network facilities are to be invoked.

Display information element: This field is not included in the message because it goes
only in one direction, i.e. from the network to the user. The purpose of the Display
information element is to supply display information that may be displayed by the user.
This information element is included in the message, if the network provides information
that can be presented to the user.

Keypad facility Information Element : This is an optional field and can be omitted in

this message. This information element includes the Called Party number information

42

when user wants to convey that number to the network, during overlap sending. In this
scenario (TeleMonitoring) the field is not included in the message, as overlap sending is
not used.

Calling Party Number Information Element: It is an optional field and is included in
the message from both directions i.e. from the user to network and from the network to
the user. It may be included by the calling user or the network to identify the calling user.
In our scenario (TeleMonitoring), this field is not included in the SETUP message.
Called Party Number Information Element : This is an optional field inciuded in the
message if the Called Party Number is to be conveyed by the user to the network or by
the network to the user. In this scenario the called party number is conveyed by the
application to the Q.931 entity and has to be conveyed to the network, hence this field is
included in the message.

User-to-User Information Element : This information element is not a part of the
regular message, but is used to enhance the capability of User-to-User signaling. Details
on this capability are given in recommendations Q.957 [ITUQ957] (Explicit and Implicit
Type 1 user-user signaling). In the TeleMonitoring scenario, we are using the Implicit
User-to-User signaling. The request string forwarded by the application to the Q.931
entity for the remotcly generated data is inserted into this field. The size of this element
is either 35 or 131 octets. This information element is the part of the SETUP message in
the TeleMonitoring application.

All the other optional information elements in the SETUP message can be omitted,

including the Calling Party Subaddress, Called Party Subaddress, Transit network

43

selection, Low Layer Compatibility, High Layer Compatibility, as they are not carrying
any information relevant to the TeleMonitoring application.

4.1.2 CALL PROCEEDING Message

The SETUP message with the above details is transferred to the network. The network
transfers the SETUP message to the Called Party or DGE after analyzing the Called Partsf
Number. The network sends the CALL PROCEEDING to the Calling Party or DME. The
Called Party (DGE) also responds with the CALL PROCEEDING message in response to
the SETUP message from the network. The details of the CALL PROCEEDING message
are as follows:

Protocol Discriminator: This field has the same value (00001000) as that in the SETUP
message, as CALL PROCEEDING is also a User-Network call control message.

Call Reference: The Call Reference value will be the same as set in the SETUP message.
Only the flag field will be 1 in this case as this message is not coming from the
originating side, but is coming from the network to the originating end. When this
message is coming from the Called Party to the network, the flag field will still be 1 since
it is not coming from the originating end, but a new Call Reference value will be
assigned.

Message Type: The message type field for the CALL PROCEEDING message is 00010.
Channel Identification: This field is mandatory since it is the first message in response
to the SETUP message, from the network to the user. The field is the same as that in the
SETUP message.

User-to-User Information Element: This element is not included in the CALL

PROCEEDING message in this scenario as the message is coming from the network and

44

we do not have any data to be transmitted from the network to the Calling User. When the
CALL PROCEEDING message is coming from the Called Party to the network, this field
is still not included in the message, as the network does not transfer this message back to
the Calling party (Data Monitoring End). Hence any data which the Called Party wants to
send to the Calling Party won’t be delivered through this field.

4.1.3 CONNECT Message

The Called Party (Data Generating End) now responds with the CONNECT message to
the network. The network transfers this CONNECT message to the Calling Party (Data
Monitoring End) to indicate the acceptance of the call by the Called Party. As the
CONNECT message is transferred by the network to the Calling Party (Data Monitoring
End), the application at the Data Generating End (Called Party) inserts the requested data
in the User-to-User Information element of this message. The application at the Data
Monitoring End extracts the Data from the User-to-User information field of this
message. The details of the various fields of the CONNECT message are as follows:
Protocol Discriminator: This field is the same as in earlier messages as it is one of the
user-network call control message.

Call Reference: When the message is coming from the Called Party to the network, the
Call Reference value will be the same as in the CALL PROCEEDING message sent from
the Called Party to the network and the flag value is 1 as the message is not from the
originating side. When the message is going from the network to the Calling Party the
Call Reference value is the same as set in the SETUP message (from the Calling Party to
the network) and the flag value is still 1 as the message is from the network to the

Originating side.

45

Message Type: The message type field for the CONNECT message is 00111.

Channel Identification: By the time this message is transmitted and received by the
Called Party and the network, the Channel has already been identified by the Called
Party, Calling Party and the network through the SETUP message, thus this field is not
required in this message.

User-to-User Information Element: In this scenario, this information element will be
included in the message. We are exploring Implicit User-to-User signaling, as the size of
the data to be transferred can easily fit in the 131 octets of t.he User-to-User information
Element of the Call Control messages. The generated data forwarded by the Application
at the DGE to the Q.931 entity is inserted into this field of the CONNECT message. The
CONNECT message from the Called Party to the network carries the remotely generated
data. This data is transferred to the Calling User in the User-to-User information field of
the CONNECT message transferred from the network to the Calling User. The size of
this element is 131 octets.

4.1.4 DISCONNECT Message

Once the application at the DME extracts the data from the User-to-User information
field of the CONNECT message, it triggers the Q.931 entity to clear the call. The Q.931
entity at the DME sends a DISCONNECT message to the network. The network forwards
the DISCONNECT message to the Called Party (DGE). The various fields of the
DISCONNECT message are as follows:

Protocol Discriminator: DISCONNECT is also a user-network call control message,

thus its protocol discriminator field is 0000 1000.

46

Call Reference: The Call Reference value for the DISCONNECT message from the
Calling user to the network will be the same as set in the SETUP message from the
Calling User to the network. The flag field will be O as the message is coming from the
call originating end to the network. The Call Reference value for the DISCONNECT
message from the network to the Called Party has the same value as set in the CALL
PROCEEDING message from the Called Party to the network. The flag value will be 1 in
this case as the message is coming to the call originating end.

Message Type: The message type field for the DISCONNECT message has a value of
00101.

4.1.5 RELEASE and RELEASE COMPLETE Messages

The network on receiving the DISCONNECT message from the Calling Party responds
with a RELEASE message to the Calling Party. The Calling Party responds with a
RELEASE COMPLETE to the network indicating that all the resources have been
released and the call has been cleared at this end.

The Called Party responds with the RELEASE message to the network in response to the
DISCONNECT message from the network, indicating the release of resources at its end.
The network responds with the RELEASE COMPLETE to the Called Party, indicating
the clearing of the call from its end.

The Protocol Discriminator, Call Reference values for the RELEASE and RELEASE
COMPLETE messages will be the same as in the previous messages. The Message type
field of the RELEASE message has a value of 01101 and that of RELEASE COMPLETE

is 11010.

47

4.2 Message Level Scenario for the TeleControl Application

The detailed message level scenario for the TeleControl Application is described in the
figure 4.3. This scenario is a subset of the TeleMonitoring application as the control
information is transferred in the User-to-User Information element of the SETUP
message from the site of control to the site of the remote device. The call is released

immediately after the SETUP message is received by the site of the remote device.

L. Application
Application | [SETUP message SAPI=0 SETUP message
Q 931 carries the control DATA carries the control DATA 5'231
. nti
Entity ISDN ty
DISCONNECT N/W DISCONNECT Q921
Q.921 N -
Entity Entity
RELEASE RELEASE ———

- ysic yer
Physical Layer ISDN Interface
[SDN: I’“"’fl ace| | PEIEASE COMPLETE RELEASE COMPLETE Card

Site of Control Site of Remote
Device

Fig4.3 Message Level Scenario for TeleControl Application

In the above scenario there is a site from which the remote device is controlled and the
site at which the remote device is installed. The configuration at both the sites has been
described in the previous chapter. The application at the site of Control triggers the Q.931
entity to initiate the connection establishment with the remote site at the which the device
is installed. The Q.931 entity prepares a SETUP message, to send it to the network. The

applications make use of Implicit User-to-User Signaling (described in chapter 2). The

48

application sends the control data for the device to the Q.931 entity. The Q.931 entity
inserts this control data in the User-to-User information field of the SETUP message. The
bit level details of this SETUP message are exactly the same as in the TeleMonitoring
scenario, except that the User-to-User information field contains the Control data for the
remote device.

The SETUP message with the above details is transferred to the network. The network
transfers the SETUP message to the Called Party (Remote Device End) after analyzing
the Called Party Number. It transfers the User-to-User information field received from the
Calling Party (Control site) to the Called Party (remote device end). The application at
the Remote Device end extracts the Control information from the User-to-User
information field of the SETUP message and puts that control information on the port at
which the remote device is connected in order to control the device. The application at
the remote device end initiates the Call Clearing by sending the DISCONNECT to the
network. The network responds with the RELEASE message to the Called Party and
forwards the DISCONNECT to the Calling Party. The Called party responds with the
RELEASE COMPLETE to the network indicating the resource clearing at its end. The
Calling Party in response to the DISCONNECT message, sends RELEASE to the
network. The network responds with RELEASE COMPLETE to the Calling Party
indicating call clearing at its end. The details of the bits in these messages are the same as

in the TeleMonitoring Application.

4.3 Message Level Scenario for the TelePolling Applications

49

The High level Scenario and the bandwidth requirement of the TelePolling Application

has been described in the previous chapter. The detailed message level scenario is

described in the figure 4.3. In this scenario we are making use of explicit User-to-User

signaling on the D-Channel.
SETUP Message SAPI=0 I SETUP Message
Application | {cames the Uaia Keques carries the Data Request’| | Application
Q.931 CONNECT CONNECT Q.931
Entity CONNECTACK Entity
ISDN
User Information N/W | User Information
Q.921 carries the Data carries the Data Q.921
Entity Entity
carries the Data carries the Data
DISCONNECT DISCONNECT
Physical Layer Physical Layer
ISDN Interface RELEASE RELEASE ISDN Interface
Card Card
RELEASE COMPLETE RELEASE COMPLETE
Central Control Remote Site at which
Room Site the cameras are polled

Fig 4.4 Message Level Scenario for TelePolling Application

The operator in the central control room will use the Application to trigger the Q.931

entity, so that the Q.931 entity initiates a temporary signaling connection establishment

with the remote site at which the camera is installed. Firstly, the Q.931 entity prepares a

SETUP message. The encoding of the SETUP message is similar to what was described

in the previous scenarios, excluding the following elements:

50

Bearer Capability information element
- Unrestricted digital information in the information transfer capability field.
- Packet mode in the transfer mode field.

- User information layer 2 protocol is Recommendation Q.921 and user information
layer3 protocol is Q.931, in the layer and protocol identification fields

respectively.

Channel Identification information element

- Exclusive in the preferred/exclusive field.

- D-Channel in the Channel indicator field.

- No channel in the channel selection field (B-Channel selection).
The network transfers the SETUP message to the Called Party (remote camera site). The
Called Party accepts the temporary signaling connection request by sending a
CONNECT message towards the network. The details of the CONNECT message are the
same as in the previous scenarios. The network transfers the CONNECT message to the
Calling Party (Central Control Room and sends the CONNECT ACKNOWLEDGE to the
Called User i.e. the remote camera site). After the called user has recgived a CONNECT
ACKNOWLEDGE and calling user receives CONNECT, the temporary signaling
connection is set up. Once the temporary signaling connection is established, both users
can transfer information between themselves by transferring User Information messages
across the user-network interface. The network provides for the transfer of such messages
from the called user to the calling user side and vice versa. The Q.931 User Information
message includes the Call reference, the Protocol discriminator, and the User-to-User
information elements. This provides entire 16Kbps bandwidth of the D-Channel for the
transfer of User-User Information messages. Thus the application at the camera site

inserts the digital image in the User Information message which is extracted by the

51

application at the Central control room. Once the entire image is transmitted the
application at the Central control room site initiates the clearing of the connection in the
manner similar to the release of a nommal connection by following a sequence of
DISCONNECT, RELEASE and RELEASE COMPLETE messages between the two
users and the network. The application at the Central control room can now initiate the
connection establishment with the different camera in the building in order to switch from

one camera to another.

52

CHAPTER 5

The Design and Implementation of the Selected Protocol Model

5.1 Introduction

In order to perform operational testing for the applications described in the previous

chapters, an ISDN platform is required. There are three possible approaches for such

testing:

1.

The first approach requires two workstations interfaced with basic rate ISDN cards.
The ISDN cards are connected to the existing ISDN connections that gives
connectivity to the Telecommunications networks (ISDN switch). It is important to
have an access to the internal details of the software existing on the ISDN card (LAP-
D and Q.931 call control protocols) in order to interface our applications with the
protocols. Such details would be very useful for our work in order to trace all the
activities involved within the ISDN protocols. But manufacturers of these cards do
not provide an access to these intemal details, which makes it impossible to use this
approach. Also, not all the ISDN switches provide telemetry (User-to-User signaling)
support, which is usually provided as an optional feature with the switches. Finally,
the lack of resources (ISDN lines and interface cards) is another reason, to search for
another approach for our testing method.

A second approach deals with the building our own protocol model for LAP-D and

Q.931 call control protocols. But implementing such protocols is a time consuming

process and that is not our primary concern in this research.

53

3. The failure of using the previous two approaches, led to our search for an available
protocol model, with an access to the source code. This gives us the flexibility to

interface our applications with the protocols and test our applications.
5.2 The Selected Protocol Model

We have selected an available protocol model that implements the ITU-T (Intemationzﬂ
Telecommunication Union - Telecommunication) defined recommendations, Q.921 and
Q.931 in Sun Solaris environment. The protocol model as shown in Figure 5.1 has been
developed in Helsinki Institute of Technology by the Sunshine project development team
and is freely available with the entire source code for any research, educational or
commercial purposes [Suns96]. The protocol model is developed on SUN SPARC
workstation in Solaris environment and is interfaced with the Dual Basic Rate ISDN
Card. We have studied the implementation of this protocol model in detail, and have
modified this model to develop a framework to support the real-time applications.

The original Sunshine protocol model as shown in Figure 5.1 has three main modules,
the Q.921 pseudo muitiplexing device driver, Data Link Provider Interface (DLPI) and
the Q.931 server. The Q.921 module is implemented in the kernel, as a pseudo
multiplexing device driver. The pseudo multiplexing device driver provides a pair of
queues, a read queue and a write queue. The lower queues of the pseudo multiplexing
device driver are linked with the D-Channel of the Dual Basic Rate ISDN interface card.
The upper queues of the pseudo multiplexing device driver are linked with Q.931
module via Data Link Provider Interface. The Data Link Provider Interface provides an

interface to the services of the Data Link Layer. This interface is the boundary between

54

the network and the data link layer of the Open System Interconnection (OSI) model.
The network layer entity is the Data Link service user, whereas the Data Link Layer
entity is the Data Link Service provider. The Q.931 entity is implemented as a server on
the TCP/IP network. The Q.931 entity opens a socket port and listens for a connection
on that port. The application which wants to connect to this server can reside anywhere
on the TCP/IP network, and will connect to the port on which Q.931 server is listening to
accept a connection. This allows different applications on the TCP/IP network to connect

to the Q.931 server, so several applications can make use of single ISDN connection.

Q 9 3 1 Implemented as
= ; . = Server on TCP/IP
£] =1 é" Network
g] g |k
] [] (-] an
write queue read |queue
y A 4
DLPI Interface
streams head streams head | oreamns head
N
-]
=
§ B
E 2
write queue | read | queue (upper queues)
Q.921 Implemented as Psuedo
c Device Driver
putnext putnext
fvrite queuel read |queue (lower queues)

ISDN driver D ISDN driver B ISDN driver B

A 4 A

A y
ISDN Interface card with 2B + D (Basic Rate Interface)

Figure 5.1: ISDN Protocol Model

55

5.3 Q.921 Multiplexing Device Driver
The Q.921 protocol is built into a STREAMS device driver, within the kernel in the
SUN Solaris environment. STREAMS provides a full duplex connection between a user
process and a device driver. It provides an alternative to the traditional Unix character
input/output. The top portion of the STREAM in the kernel is known as STREAM head.
It defines /O within the kernel and between the kernel and user space. STREAMS
supports implementations of the data communication protocols and has mechanisms for
implementing flow control and multiplexing. A nice feature about STREAMS is that a
process can add modules between the stream head and the device driver. The Q.921
pseudo multiplexing device driver supports multiplexing by cloning. Every time a new
clone is opened, a new stream to the user space will be opened. The clones share the
same data structures. Therefore every time a new stream is opened from user space, new
queue pointers have to be saved. All the clones will have different queue pointers and
different state information. In this implementation maximum of three clones is
permitted.
The system dependent functions which have to be implemented in all drivers are as
follows :

a) _init - It initializes the driver when loading it into the kernel. All the data

structures that store the queue pointers, the Q.921 state information and the
counters in the Q.921 module are also initialized in this function.

b) _fini - It removes the driver from the kernel when issuing modunload' command.

! modunload command unloads a loaded module from the kernel.

56

¢) _info - It returns a data structure which contains the information about the loadable
module.
d) mux_identify - It is used to identify if the driver drives a specified device.
e) mux_probe - It is used to determine if the driver is loaded into the kernel.
f) mux_attach - It is used to attach a device instance to the system.
g) mux_detach - It is used to detach a device instance from the system.
STREAMS provide functions for flow control, that will check if the queues are full
before putting any message on them. The major functions of the Q.921 pseudo
multiplexing device driver that take care of multiplexing and flow control are as follows:
a) Q921UWPUT - It gets the messages from the write queue in the user space
(upper write queue as shown in figure 5.1). It processes the high priority messages,
such as ioct]’ requests, immediately and puts the remainder of the messages back
on the queue, to be serviced by the service procedure. It takes care of flush
handling of the upper queues. The device driver sends the M_FLUSH message to
itself whenever it receives an unknown message type (error condition). On
receiving M_FLUSH message (message type demanding the flushing/clearing of
the queue) for the upper queue, Q921UWPUT calis flushq for that queue. This
clears the queue of all the messages it was holding.
b) Q921UWSRY - It processes all the messages which were put back in the queue
by the Q921UWPUT procedure and sends the messages downstream to the Q.921

from DLPI. In other words takes care of the flow control on the write side.

Z joctl system call performs variety of control functions on terminals, devices, sockets and streams.

c)

57

Q921LRPUT - It receives the messages from the D-Channel of the ISDN card and
processes all the high priority messages like IOCTL messages. It puts the
M_DATA (message type carrying the data coming from the higher layer) and
M_PROTO (message type carrying the control information for flow control)
messages back on the queue to be serviced by the service procedure. It takes care
of the flush handling of the lower queues. On receiving M_FLUSH for the lower

queue, Q921LRPUT calls flushq for that queue.

d) QI921LRSRY - Takes care of the flow control on the read queue side. It sends

e)

M_DATA and M_PROTO messages up to the Q.921 module. The Q.921 module
processes the message, and if the message is addressed to the Q.931 module, it
passes on the message to the DLPL.

Q921LWSRY - This procedure is responsible for the flow control. It enables the
upper write queue whenever the driver is in a state to receive messages from the
user space (Q.931 module).

Q921URSRY - This procedure is also responsible for the flow control on the read
side. It enables the lower read queue whenever the stream is in a state to receive

messages from the ISDN card.

58

5.4 Implementation of ITU-T defined Q.921 Recommendations
The ITU-T defined Q.921 recommendations have been implemented using a modular
approach [Suns96]. The major functions which implement the Q.921 recommendations
are as follows :
a) dl_establish_request - This function is called when the Q.921 entity receivesA
a DL_ESTABLISH_REQ from the Q.931 entity via the DLPIL. If Q.921 module is in
TEI (Terminal End Point Identifier) UNASSIGNED state, the function sends a TEI
REQUEST (calls send_tei_req function) to the peer LAP-D entity in the switch and
changes the state to AWAIT TEI. If the Q.921 module is in TEI ASSIGNED state, it
calls the est_data link function to initiate the data link establishment with the peer
LAP-D entity, and changes the state of Q.921 to WAIT ESTREL.
b) send_tei_req - This function first calls the function phys_activate for the
physical activation of the ISDN card. On getting an acknowledgment for the physical
activation it sends a request to the network side (switch) for the assignment of the
TEI (Terminal End Point Identifier) in Unnumbered Information frame. The function
fills the SAPI value in the header and fills MGT_TEI_REQUEST in the message
type field. The function also puts the message on the D-Channel queue, in order to
deliver it to the network (switch).
c) phys_activate - This function sends a physical activation request to the ISDN card
(physical layer) using the M_IOCTL (an IOCTL message) message type and the
command set to ISDN_PH_ACTIVATE_REQ.
d) phys_activate_ack - This function processes the acknowledgment received for

the physical activation request of the ISDN card. It checks if the message type is

59

MIOCACK (an ACK for IOCTL message) and indicates whether the physical
activation is successful or not.

e) recv_mgt_msg - This function processes the management messages coming from
the network such as the message concerning TEI MANAGEMENT. It receives the
management message which contains the TEI, which was requested by the LAP-D
entity. The function extracts the TEI from the message and stores it in the data
structures maintained by the Q.921 streams device driver and changes the state of the
Q.921 module from the TEI_UNASSIGNED to TEI_ASSIGNED.

f) est_data_link - This function sends SABME(Set Asynchronous Balanced Mode
Extended) command in an Unnumbered frame to the peer LAP-D entity to initiate
the data link establishment between the two LAP-D entities. It starts the timer T200
(2 sec) in order to receive an unnumbered acknowledgment for the SABME from the
peer LAP-D entity, within that time.

g) send uframe - This function is used to send Unnumbered frames to the peer
LAP-D entity. It prepares the header for the frame by filling the SAPI and TEI values
in the header and fills in the command SABME /DISC (DisconnectyDM
(Disconnect Mode)/UA (Unnumbered Acknowledgment)/FRMR (Frame Reject) as
per the requircments. The function puts the message on the D-Channel queue to
deliver it to the peer LAP-D entity.

h) recv_uframe - This function caters to receiving various unnumbered frames
such as SABME, Unnumbered Acknowledgment, Disconnect and Frame Reject. On
receiving SABME, it sends Unnumbered Acknowledgment to the peer LAP-D entity

after confirming that the Q.921 is in TEI ASSIGNED state. It initializes the

60

variables that keep track of the sequence numbers, and sends DL_ESTABLISH_IND
to the Q.931 module via the DLPI module indicating the establishment of multiple
frame state. It finally starts the timer T203. T203 is a 10 seconds timer and is a
maximum time for which no frames are exchanged between the peer LAP-D entities.
The state of Q.921 module is changed to ESTABLISHED TIMER STATE.
Receiving the Unnumbered Acknowledgment indicates that the SABME has been
successfully received by the peer LAP-D entity. This function on receiving the UA
frame initializes the counters that keep track of multiple frames. It starts the timer
T203. Then it informs the Q.931 module via the DLPI that muiltiple frames state is
ESTABLISHED TIMER using the DL_ESTABLISH_CON primitive.

On receiving the Disconnect frame, the function calls dl_release_req function that
sends unnumbered acknowledgment to the peer LAP-D entity , stops the timer T200,
clears the upper message queues and changes the state of the Q.921 module to TEI
ASSIGNED. It sends a DL_RELEASE IND to the Q.931 entity, indicating the
release of data link connection.

On receiving the frame reject, the function calls for re-establishment of the data link
with the peer LAP-D entity by calling est_data_link function.

i) send_iframe : This function is used to send an information frame to the peer
LAP-D entity. The function puts the information frame back on the queue if the
previous information frame has not been acknowledged. The function also prepares
the header for the information frame by filling in the SAPI, TEI from the data

structures maintained by Q.921 streams device driver and C/R (Command/Response)

61

bit. The function links the header with the data frame received from the Q.931 entity,
starts the timer T200 and puts the frame on the D-Channel queue.

j) receive_iframe : This function receives the information frame from the peer. It
sends the appropriate response to the peer LAP-D entity. If there is a sequence
number mismatch, the function sends a Receive not Ready supervisory frame as a
response, otherwise it sends a Receive Ready supervisory frame as a response.

k) receive_sframe : This function caters to receiving different types of supervisory
frames from the peer LAP-D entity. If it receives Receive Ready frame, it resets a
flag so that the LAP-D entity can send the next information frame to the peer LAP-
D entity. If it receives the Receive not Ready information frame, it sets a flag which
prohibits the LAP-D entity from sending the next information frame to peer LAP-D
. entity.

) send_sframe : This function provides for sending the Receive Ready (RR),
Receive not Ready (RNR) or Reject (REJ) supervisory frame to the peer LAP-D
entity. It prepares the header for the message by filling up the SAPI and TEI values
in the address field from the data structures maintained by the streams device driver
and fills up the command (RR, RNR or REJ) as per the condition. It puts the
message on the D-Channel queue to deliver it to the peer LAP-D entity.

m) dlphi_to_q921 - This function is called when a message is received from the
physical interface. It checks for the SAPI value within the message. If the SAPI
value is SAPI_MGT indicating a management message, it calls recv_mgt_msg. If the
SAPI value is SAPI_Q931_8 , the message is a call control message meant for the

Q.931 entity. For the call control message, the function further checks the frame

62

type. If the frame type is Unnumbered frame, it calls recv_uframe function, if the
frame type is information frame, it calls recv_iframe function and if the frame type is
supervisory frame, it calls recv_sframe function.

5.5 Data Link Provider Interface and STREAMS.

The DLPI module has been implemented both in Q.921 module and the Q.931
module.The major functions of the DLPI as specified in [Steve96] can be described in the
following points :

1) The Data Link Provider Interface specifies an interface to the services of Data Link
Layer. This interface is the boundary between the network and Data Link Layers of
the OSI model. The network layer entity is the Data Link Service (DLS) user; the
Data Link Layer entity is the DLS provider.

2) The DLPI primitives are exchanged between the Data Link Service User and the Data
Link Service Provider. The DLPI primitives are defined in terms of STREAMS
messages.

3) There are three types of STREAMS messages that can be passed from one
STREAMS module to another: M_DATA, M_PROTO, M_PCPROTO. M_DATA
carries data within a stream. M_PROTO or M_PCPROTO carry both data and control
information. Control information includes the attaching and binding the streams to a
module, releasing a streams connection etc. The M_PCPROTO message has the same
general use as an M_PROTO, but moves faster through a stream as it has a higher
priority.

4) STREAMS provides the PUTMSG and GETMSG system calls that are used by the

modules to send and receive STREAMS messages. The PUTMSG system call

63

provides a data buffer which is converted into an M_DATA message, and also
provides a separate control buffer to be placed into an M_PROTO or M_PCPROTO
block. The GETMSG system call is used by the module to accept the STREAMS
messages. It can accept both the data and the control information.

5) The DLPI module is implemented both in the DLS user and DLS provider. The DLPI
module in the DLS provider will translate the primitives of the DLS provider to DLPI
primitives. These primitives are sent as STREAMS messages to the DLS user. The
DLPI module in the DLS user will translate the DLPI primitives received from the

DLS provider to the primitives that can be understood by the user.

6) There are four major modules that are supported by DLPI (figure 5.2)

Local Data Connection

Connection
Management Establist t Transfer Release

Figure 5.2: DLPI Modules

a) Local Management - This module takes care of initializing the STREAMS. It

provides services such as attaching and binding. Attaching means providing a

b)

d)

64

physical point of attachment (PPA - relates to the file descriptor of the pair of
queues that are used for message communication between the network and the data
link layer) to the STREAMS within a module and Binding means associating the
Data Link Service Access Point to STREAM within the module. These primitives
are sent using the control buffer of M_PROTO message types supported by
STREAMS.

Connection Establishment - This module establishes a2 data link connection
between a local DLS user and a remote DLS user for the purpose of sending or
receiving data. The user issues a DL_ESTABLISH_REQ which is mapped to the
DLPI primitive DL_CONNECT_REQ. The provider issues
DL_ESTABLISH_CONFIRM which is sent back as DL_CONNECT_CON as an
acknowledgment. These pnimitives are sent using the control buffer of the
M_PROTO message type.

Connection Release - It releases the data link connection between a local DLS user
and remote DLS user. The user issues a DL_RELEASE_REQ, which will be sent to
the DLS provider as DL_DISCONNECT _REQ. The provider will send back a
DL_OK_ACK as an acknowledgment for the release request. These primitives are
sent using the control buffer of M_PROTO message type.

Data Transfer - The DLS user sends the data using the data buffer of M_DATA
message type. To receive data, it uses DL_DATA_IND primitive in the M_DATA

message type. These primitives are not acknowledged by the DLS provider.

65

5.5.1 Implementation of DLPI in the Q.921 Module

The major functions that implement the Data Link Provider Interface in the Q.921

module [Suns96] are as follows:

a) dlpi_to_q921 - This function receives the messages from the Q.931 module and

calls appropriate DLPI functions or the Q.921 functions based on the message type or

the DLPI primitive within the message. If it is M_PROTO type message, the function

further checks the DLPI primitive which indicates the control information. Here are all

the possibilities that occur due to the check process :

If DL_CONNECT _REQ is the DLPI primitive, it calls dI_establish_req function
the functionality of which has been explained in the Q.921 module.

If the DLPI primitive is DL_DISCONNECT_REQ, it calls dl_release_req
function the functionality of which has been explained in the Q.921 module.

If DL_ATTACH_REQ is the DLPI primitive, it calls dl_attach_req function which
confirms that the Q.921 is in DL_UNATTACHED state and provides a physical
point of attachment by updating the data structurss maintained by the Q.921 device
driver, changes the Q.921 state to DL_UNBOUND and sends a DL_OK_ACK
primitive to the DLS user using M_PCPROTO type message.

If DL_BIND_REQ is the DLPI primitive, it calls dl_bind_req function which

binds the service access point to the data link user. It changes the state of Q.921 to

66

TEI_ASSIGNED and sends the DL_BIND_ACK primitive using the
M_PCPROTO type message to the DLS user as an acknowledgment.

e If DL_DETACH_REQ is the DLPI primitive, it calls dl_detach req function
which detaches the physical point of attachment of the DLS user by initializing the
data structures maintained by the Q.921 device driver, stops all the timers that are
possibly running and changes the state of Q.921 module to DL_UNATTACHED.

e If DL _UNBIND_REQ is the DLPI primitive, it calls dl_unbind_req function
which unbinds the DLS user from the service access point and changes the state of
Q.921 module to DL_UNBOUND.

b) dlpi_from_q921 - This function receives the messages coming from the Q.921

module, meant for the Q.931 module via the DLPI. The function checks the Q.921

- primitive in the message and translates it into a DLPI primitive and calls the
appropriate function that sends the primitive along with any data to the Q.931 module.

Here are all the possibilities that occur due to the check process.

o If the Q921 primitive is DL_ESTABLISH_CON, it calls the dl_connect_con
function which sends DL_CONNECT_CON (DLPI) primitive to the Q.931 module
using the M_PROTO type message. This primitive indicates to the Q.931 module
that a data link has been established with the remote end.

e If the Q921 prnmitive is DL_RELEASE CON or DL_RELEASE IND, it calls
dl_disconnect_ind function which sends a DL_DISCONNECT_IND (DLPI)

primitive to the Q.931 module using M_PROTO type message. This primitive

67

indicates to the Q.931 module that the data link has been disconnected with the
remote end.

e If the Q.921 primitive is DL_DATA_IND, it calls dl_data_ind function which sends
the message up to the Q.931 module using M_DATA type message. This function is
used to route data from Q.921 module to Q.931 module via the DLPL

5.5.2 Impiementation of DLPI in Q.931 Module

The major functions that implement DLPI in the Q.931 module are as follows :

a) dlpi_attach_req - This function sends a request for a physical point of attachment to
the Q.921 module. It sends a DL_ATTACH_REQ primitive to the Q.921 module,
in the control buffer using the PUTMSG system call of the STREAMS.

b) dipi_bind_req - This function requests binding of Service Access Point of
Q.931 module tothe Q.921 module. It sends a DL_BIND_REQ primitive to the
Q.921 module, in the control buffer using the PUTMSG system call of the
STREAMS.

¢) dlpi_detach_req - This function sends a request to the Q.921 module to detach the
physical point of attachment. It sends DL_DETACH_REQ primitive to the Q.921
module in the control buffer using the PUTMSG system call of the STREAMS.

d) dipi_unbind_req - This function sends a request to the Q.921 module to unbind the

Service Access Point of the Q.931 module. It sends a DL_UNBIND_REQ primitive
to the Q.921 module in the control buffer using the PUTMSG system call of

the STREAMS.

e) dipi_open - This function opens a stream to the Q.921 pseudo multiplexing device

the dl_attach_req function which requests a physical point of attachment for the

stream (file descriptor) to the Q.921 module. On getting a positive acknowledgment

68

for this request, the function calls the dl_bind_req function which binds the stream (file

descriptor) with the Service Access Point within the Q.921 module.

f) dipi_close - This function closes the stream to the Q.921 module by using the close

system call on the file descriptor of the stream. Before closing the stream it calls
the dl unbind_req function that sends a request to the Q.921 module to
unbind the stream with the service access point, and then calls the dl_detach_req
function which requests the Q.921 module to detach the physical point of attachment
of the stream.

dipi_put - This function gets the message from the Q.931 module. It translates the
Q.931 primitives to DLPI primitives, puts the message in either the control buffer or
the data buffer and sends the message down to the Q.921 module using the PUTMSG
system call. Depending on the Q.931 primitives three cases arise. If the Q.931
primitive is DL_ESTABLISH_REQ, the dlpi_put function calls the
dlpi_connect_req function which sends a DL_CONNECT_REQ (DLPI) primitive
to the Q.921 module indicating to the Q.921 module to establish a data link
connection with the peer LAP-D entity.If the Q.931 primitive is
DL_RELEASE_REQ, the dlpi_put function calls the dlpi_disconnect_req
function which sends a DL_DISCONNECT_REQ (DLPI) primitive to the
Q.921 module, indicating to the Q.921 module to release the established data

Link connection with the peer LAP-D entity.If the Q.931 primitive is

69

DL_DATA_REQ, it puts the Q.931 message in a data buffer and sends it to
the Q.921 module using the PUTMSG system call.
h) dipi_get - This function gets the message from the Q.921 module using the
GETMSG system call. It translates the DLPI primitives received in the message
to the Q.931 primitives, in order that they can be understood by the Q.931
module. If the DLPI primitive received is DL_CONNECT_CON, it
translates it to the DL_ESTABLISH_CON (Q.931) primitive, which sends a
confimation to the Q.931 module that a data link has been established with the
peer LAP-D entity. If the DLPI primitive received is DL _DISCONNECT_IND,
it translates it toa DL_RELEASE_IND (Q.931) primitive, which informs the
Q.931 module that the data link has been disconnected with the peer LAP-D entity. If
the DLPI primitive received is DL DATA_IND, it extracts the data from the data
buffer attached to the message and stores the data in the data structures of Q.931
module.
5.6 Implementation of ITU-T Defined Q.931 Recommendations
The major functions that implement Q.931 recommendations are as follows :
a) q931_call - This function handles the calls made by the local user. It also receives
different incoming Call Control messages and depending on the message type and the
previous state of the Q.931 entity, it changes the state of the Q.931 entity. Initially the
Q.931 entity is in NULL STATE.
When a local user makes a call, this function prepares the Call Control SETUP

message. It fills the protocol discriminator and call reference field in the message, sets

70

changes the Q.931 state to CALL INITIATED state. It finally passes this call record to

q931_dlpimsg_write function that fills the remainder of the fields and sends it to the

Q.921 entity via DLPL

The handling of incoming Call Control messages is as follows.

If the incoming message type is CALL PROCEEDING , and the current Q.931
state is CALL INITIATED, the function changes the Q.931 state to OUTGOING

CALL PROCEEDING.

If the incoming message type is ALERTING and the Q.931 state is OUTGOING
CALL PROCEEDING, the function changes the Q.931 state to
CALL_DELIVERED.

If the incoming message type is CONNECT and the Q.931 state is
CALL_DELIVERED, the function changes the Q.931 state to ACTIVE. On
reaching the ACTIVE state the function prepares a Q.931 message with message
type Q931_CONNACK (CONNECT ACKNOWLEDGE), fills the protocol
discriminator and call reference field, and sets the DLPI primitive to
DL_DATA_REQ. It passes this message record to the q931_dlpimsg write
function (described in detail later in the chapter) that fills the remainder of the

fields and sends it to the Q.921 entity via DLPL

b) q931_receive - This function receives incoming calls from the network. It receives

the Call Control messages for the incoming calls. It checks the message type and the

present state of the Q.931 entity and takes action accordingly:

71

e If the incoming message type is SETUP and the Q.931 state is NULL, this
function prepares the Q.931 reply message with message type CALL
PROCEEDING and changes the Q.931 state to the CALL PRESENT state. It fills
the protocol discriminator, call reference, and the DLPI primitive as
DL DATA_REQ. It passes this message record to the q931_dlpimsg_write
function that fills the remainder of the fields and sends it to the Q.921 entity via
DLPI. After sending the CALL PROCEEDING message, it changes the Q.931
state to INCOMING CALL PROCEEDING and prepares another Q.931 message
with message type ALERTING. It passes this message record to the
q931_dlpimsg_write function that fills the remainder of the fields and sends it to
the Q.921 entity via DLPI. After sending the ALERTING message, it changes the
Q.931 state to CONNECT REQ and prepares another Q.931 message with
message type CONNECT. It passes this message record to the
q931_dlpimsg_write function that fills the remainder of the fields and sends it to
the Q.921 entity via DLPIL

e The Q.931 entity waits for a CONNECT ACK message from the network. On
receiving the Q.931 message type CONNACK, the function checks if the Q.931
state is CONNECT REQ and changes the Q.931 state to the ACTIVE state.

¢) insert_info - This function fills the information field of the Q.931 call control

message. The q931_call function fills the protocol discriminator, call reference and the

message type field. The information field is composed of a linked list of records. The

first byte of each record indicates the type of the information stored in the record (e.g.

72

called party number, calling party number), the second byte indicates the length of the
information and the remaining bytes are the actual information. The last field is the
pointer to the next record. For a new call , the first record contains the calling party
number, and the second record contains the called party number. Some of the records
can contain User-to-User Information.

d) message_encode - This function converts the complete call record into a stream of
bytes, so that they can be inserted into the data buffer of M_DATA message type of
DLPL. It allocates enough memory for the data buffer and stores each field of the call
record in the consecutive locations of the data buffer in a set pattern, so that the
information about each field can extracted by the peer Q.931 entity, by following that
pattern.

e) message decode - This function extracts the stream of bytes from the M_DATA
message type of the DLPI and interprets the stream of bytes using a set pattern, as set
by the message encode function. From this stream of bytes, it fills the call record i.e.
the protocol discriminator, call reference value, the Q.931 message type and the
information field. Since the information field is implemented as a linked list of records
with each record storing different information, this function prepares the linked list
from the stream of bytes. The Q.931 entity only refers the call record to change its
state and to take further action.

f) q931_dlpimsg_write - This function gets the partially filled call record from the
q931_call function. It calls the insert_info function, which fills the information field of
the call record. Then it calls the message_encode function that converts the entire call

record into streams of bytes. Finally it calls the dlpi_put function that stores these

73

streams of bytes into the data buffer of M_DATA message type of DLPI and uses the

PUTMSG system call to deliver it to the DLPI of Q.921 module.

g) q931_disconnect - This function handles various cases that can lead to call
disconnection and release. The various cases are as follows :

e Once Q.931 has sent CONNECT to the network it comes to the CALL RECEIVED
state. If it does not receive a CONNECT ACKNOWLEDGE from the network within
the time set in the timer (T313), the Q.931 entity initiates call clearing. In this state
the function prepares a Q.931 message with message type DISCONNECT, and fills
the call reference value and protocol discriminator field. It sets the DLPI primitive to
DL_DATA_REQ. It passes this call record to the q931_dlpimsg_write function that
fills the remainder of the fields and sends it to the Q.921 entity via DLPI. It changes
the Q.931 state to DISCONNECT REQUEST.

o If the user receives RELEASE from the network, and the function finds Q.931 in the
CALL INITIATED state, it prepares a Q.931 message with message type RELEASE
COMPLETE. It fills in the protocol discriminator field and the call reference value
and sets the DLPI primitive to DL_DATA_REQ. It passes this call record to the
q931_dlpimsg_write function that fills the remainder of the fields and sends it to the
Q.921 entity via DLPL. It changes the Q.931 state to the NULL STATE.

o If the Q.931 entity is in the ACTIVE state and the user disconnects, the function
prepares the Q.931 message with message type DISCONNECT. It fills the protocol
discriminator and call reference value fields and sets the DLPI message type to

DL_DATA_REQ. It passes this call record to the q931_dlpimsg_write function that

74

fills the remainder of the fields and sends it to the Q.921 entity via DLPL. It changes
the Q.931 state to the DISCONNECT REQUEST state.

If the Q.931 entity is in the DISCONNECT REQUEST state and it receives a
RELEASE message from the network in response to the DISCONNECT message,
the function prepares the Q.931 message with message type RELEASE
COMPLETE. It fills the protocol discriminator and call reference value fields and
sets the DLPI message type DL_DATA_REQ. It passes this call record to the
q931_dlpimsg_write function that fills the remainder of the fields and sends it to the

Q.921 entity via DLPI. It changes the Q.931 state to NULL.

75

CHAPTER 6

The Design and Implementation of the Framework for the
Real-Time Applications at Home and Small Businesses

6.1 Description of the Framework

We have developed a framework for real-time applications based on the Sunshine’s
protocol model described in the previous chapter. In the Sunshine’s protocol model, the
lower queues of pseudo multiplexing device driver were linked to the D-Channel of the
ISDN interface card. The ISDN interface card is connected to the ISDN line (2B+D basic
rate interface). The ISDN line gives connectivity to the ISDN switch. The ISDN switch
itself has its LAP-D entity and Q.931 entity and it switches the D and B Channel traffic
to appropriate D and B channels depending on the ISDN number of the Calling and the
Called party. The equipment at the user interface connected to the ISDN line has to be
assigned a TEI (Terminal End Point Identifier) by the switch.

In our implementation model we do not have connectivity to the ISDN switch. We have
developed a model where we show how the peer LAP-D and peer Q.931 entities interact
to support the real-time applications (Figure 6.1). We have implemented a switch
simulator and have removed the interface of the Q.921 pseudo multiplexing device driver
with the ISDN card. For testing purposes we have put the protocol stack of the calling
user and the remote user on the same workstation. We have linked the lower queues of
the Q.921 pseudo multiplexing device driver of each user via the switch simulator. These

two queues carry the D-Channel traffic between the peer LAP-D entities. The lower

76

write queue sends the D-Channel messages to the peer LAP-D entity, and the lower read
queue receives the messages from the peer LAP-D entity. Thus the write queue of one

entity is linked with the read queue of the other, in order to allow full two way

communication.
o oo Application on
Application on
the TCP/IP the TCP/IP
network

Socket interface

Q.931 Server
Writ
Qu eue
DLPI Interface DLPI Interface

Write{ [Read writ1 L3 Read

Queu Queue

Q.921 Multiplexing
Psuedo Device
Driver

Psuedo Device
Driver

Read Queue for
Write Queue for

Write Queue D-Chann

for D-Channel

ISDN SWITCH Read Queue

for D-Channel
SIMULATOR or ne

Figure 6.1 Framework for real-time applications on Sun Sparc
Station in Solaris Environment

6.2 The Message Flow between the Peer Protocol Entities

The Q.921 entity has been implemented as a pseudo multiplexing device driver:
therefore it is installed in the kernel. As per our framework, we have two LAP-D entities
residing in the kemel. The Q.931 entities of both the protocol stacks issue an OPEN
system call for their respective Q.921 pseudo multiplexing device drivers. As a result,

each Q.931 entity gets a pair of queues (file descriptor to the queues) to communicate

77

with the LAP-D entity residing in the kernel. The read queue and the write queue
constitute the pair and are called as upper queues with reference to the Q.921 pseudo
muitiplexing device driver. The DLPI module, which is implemented in both the Q.921
and Q.931 module, attaches and binds the file descriptor of these queues with a service
access point in the LAP-D entity. The write queue carries all the messages from the
Q.931 module down to the LAP-D entity via DLPI. The read queue carries all the
messages from the LAP-D entity up to the Q.931 entity via the DLPL

The function that links the lower queues of the Q.921 pseudo multiplexing device driver
issues an OPEN system call for each of the Q.921 pseudo multiplexing device drivers.
This opens another pair of queues (called lower pair of queues) from each of the Q.921
device drivers and returns file descriptors to each of the queue pairs. These queue pairs
are referred to as lower queue pairs for each of the Q.921 device drivers. These lower
queue pairs of each Q.921 device driver have to be linked, so that any message coming
from one LAP-D entity placed on the lower write queue is delivered to the peer LAP-D
entity of the peer pseudo device driver via the lower read queue. In order to link the
lower queues of the two device drivers, the function calls an ioctl (system call described
in Chapter 5) with an I_LINK parameter and the two file descriptors as parameters.
I_LINK links two streams represented by two different file descriptors in order to allow
message communication between the different streams. This links the write queue of one
device driver with the read queue of the other and vice versa.

6.3 Switch Simulator

In SunShine’s model, prior to initiating any communication with the peer entity, the

LAP-D entity has to ensure that the physical layer is activated. The LAP-D entity sends

78

a physical layer activation request to the physical layer (i.e. ISDN card) and waits for an
acknowledgment. On receiving the acknowledgment, the LAP-D entity enters the TEI
UNASSIGNED state. In our model, we do not have an ISDN card, so we have to provide
this message interface to the LAP-D entity from outside.

Initially the LAP-D entity is in the TEI UNASSIGNED state. As stated in Chapter 2, the
service access point identifier (SAPI) identifies a layer 3 user of LAP-D and thus
corresponds to a layer 3 protocol entity within a user device. The SAPI values are unique
within a TEI (Terminal End Point Identifier). That is for given TEIL, there is a unique
layer 3 entity for a given SAPI. This TEI is assigned by the switch. The LAP-D entity
sends a TEI request to the switch and switch responds with a unique TEI for the layer 3
entity, and the LAP-D entity comes to a TEI ASSIGNED state. It is from this state that
the LAP-D can communicate with the peer LAP-D entity. In our model, we do not have
connectivity to the switch, so we have to provide the TEI ASSIGNMENT message to the
LAP-D entity from the external source, so that the LAP-D entity enters the TEI
ASSIGNED state.

In order to fulfill the above two requirements, we need a switch simulator. The switch
simulator will be an entity which would recognize the messages meant for the switch and
the ISDN interface card. It would give the appropriate response back to the LAP-D entity
so that it enters a state where it can communicate with the peer LAP-D entity. The
functionality of the switch simulator has been built within the pseudo multiplexing
device driver. For any message coming from its lower read queue, the device driver
checks if the message is meant for the switch. If so, it sends an appropriate response

back to the LAP-D entity from which the message was coming. Thus the LAP-D entity

79

can change its state and enter a state where it can communicate with the peer LAP-D
entity.

6.4 Design and Implementation of the TeleMonitoring Application

In the Sunshine’s model the Q.931 entity is implemented as a server on a TCP/IP
network. The server opens a port and is listening for a connection. The TeleMonitoring
application can reside anywhere on the TCP/IP network as long as it knows the server’s
host address and the port number on which it is listening. The TeleMonitoring
application communicates with the Q.931 module via a socket interface. The reason we
are having a connection between the application and the Q.931 entity via the TCP/IP
network is that the Q.931 entity is implemented as a server in the Sunshine’s model and
it does not really affect our testing. The application can also be directly integrated with
the Q.931 entity without using the socket connection. The Figure 6.2 shows how the
application at the Data Monitoring End and the application at the Data Generating End
fits in our testing framework for real-time applications. Both the applications can reside
anywhere on the TCP/IP network and can connect to their respective servers using the
specified port on which the server is listening.

The application and the Q.931 server both call the socket system call to create a new
socket that can be used for communication between the two. The parameter in this case
indicate TCP/IP as the protocol and STREAM socket as the socket type. The Q.931
server calls the bind system call to specify the local endpoint address for a socket. The
Q.931 server then calls the listen system call, in order to listen for a connection from the
application. The Q.931 server calls the accept system call after the listen system call in

order to receive a connection request from the application. The applications at both ends

80

call the connect system call, that allows the applications to have a socket connection to
their respective Q.931 servers.

The Q.931 server at the Data Monitoring end calls the read system call to accept the
ISDN number of the called party and the request string, which will be transmitted over
the ISDN connection in order to request data from the Data Generating end. Once the
Q.931 server receives the data from the Data Generating end, the Application at the Data
Monitoring end calls the read system call to read the data from the server. The
Application at the Data Generating end calls the read system call, to receive the Data
request from its Q.931 server, which the Q.931 server has received from the Q.931 server
at the Data Monitoring end. The Q.931 server at the Data Generating end calls the read
system call to receive the Data from the Application, in order to transmit it over the

ISDN connection to the Data Monitoring end.

Application on thg Application on
Data Monitoring the Dat.a
LEnd era
Socket interface
Q.931 Server
Writ
Que cue
DLPI Interface
Write kRead Write 3 Read
Queu Queue Queu Queue
Q.921 Multiplexing Q.921 Multiplexing
Psuedo Device Psuedo Device
Driver Driver
Read Queue for

Read Queue for

Write Queue
for D-Channel

ISDN SWITCH Write Queue

for D-Ch
SIMULATOR or annel

Figure 6.2: Testing Framework for TeleMonitoring Application

81

The Application at the Data Monitoring end uses the write system call to send the called
party number and the request string to its Q.931 server, so that it can transmit that over
the ISDN connection. The Q.931 server at the Data Generating end calls write system
call, to transfer the Data Request to the Application, which the server received from its
peer server. The Application at the Data Generating end calls the write system call to
send the generated data to the Q.931 server, so that it can transmit over the ISDN
connection. The Q.931 server at the Data Monitoring end calls the write system call, in
order to send the data to the Application, that it has received over the ISDN connection
from the Q.931 server at the Data Generating end.

6.4.1 Message flow over the ISDN protocol stacks for TeleMonitoring Application

The following sequence of steps explain the functionality of the TeleMonitoring

application, using our model explained before. The detailed functionality of all the

functions that have been referred to in the following sequence of steps is explained in

Chapter 5.

1) The applications at the Data Monitoring end (DME) and at the Data Generating End
(DGE) connect to their respective Q.931 servers via the socket connection. The
application sends a message containing the ISDN number for the Q.931 server at the
DGE. The message also includes a request string to request certain data from the

Data Generating End, that has to be delivered to the Q.931 server at DME.

Application calls
socket()

bind() &
connect(),
system calls, to
connect to the
Q.931 socket
server

Message containing ISDN number of DGE

82

and request string for data request from DGE.

Q.931 Server calls
socket() & bind()
system calls to start the
socket server and
listen(), accept()
system calls to accept
a connection from the
application.

Figure 6.3: Step 1, The activities at the Data Monitoring End

2) The Q.931 server, on receiving the request from the application, initiates the ISDN

3)

connection establishment with the DGE. The Q.931 entity opens a streams

connection with the Q.921 pseudo multiplexing device driver using the open system

call, and it gets a pair of queues (read & write) to communicate with the Q.921 entity.

The Q.931 entity attaches and binds the file descriptor of those queues with the

Q.921 module using the DLPI interface. The DLPI module in the Q.931 entity calls

dlpi_attach_req and dlpi_bind_req (described in chapter 5) functions to send the

attach and bind request respectively to the DLPI module in the Q.921 entity. The

DLPI module in the Q.921 module on receiving the attach and bind requests calls the

dl_attach_req and dl_bind_req functions that allows the Q.931 entity to have a

service access point within the Q.921 entity.

Q.931 Server
— SOCKET | fd=OPEN(a.921) | yrite queue Q.921 Pseudo
Application at | >) »! Multiplexing Device
DME Connection| dipi_attach req read DLPI | queue Driver

dlpi_bind_req

Fig 6.4 Steps 2 and 3

RC) di_attach_req
dl_bind req

83

4) The Q.931 entity sends a DL_ESTABLISH_REQ to the Q.921 entity through the
DLPI interface. The DLPI module translates the DL._ESTABLISH_REQ primitive
into the DLPI primitive called DL_CONNECT_REQ and forwards it to the Q.921

module using the PUTMSG system call.

»| Q.931 server dL lish_req dl_connect_req Q-92. 1 Pscgdo

DME PUTMSG DLPI Device Driver
write qucue write queue Q921UWPUT()
phys_activate()

Figure 6.5 Step 4
5) The Q.921 pseudo device driver receives the DL_CONNECT_REQ through its
Q921UWPUT procedure and sends a physical activation request to the physical
layer (ISDN interface card) by calling phys_activate function. The phys_activate
function puts the physical activation request message on the lower write queue of the
device driver. In our model we do not have an ISDN interface card, and the lower
write queue of one device driver is linked with the lower read queue of the other.
Therefore the physical activation request message goes to the peer device driver via
the lower read queue of that device driver. The Q921LRPUT procedure of the device
driver has been modified to respond to the physical activation request message, and it
responds with a positive acknowledgment by calling phys_activate_ack function. The
phys_activate_ack function puts the positive acknowledgment message on its lower
write queue using the QREPLY system call, and this message reaches the requesting
driver via its lower read queue. The QREPLY system call sends the message back on
the peer queue i.e. if the message was received on the read queue (write queue), the

reply is put back on the write queue (read queue), in order to deliver the reply to the

84

entity that had sent the message. The Q.921 entity on getting the positive

acknowledgment changes its state to TEI UNASSIGNED state.

Q.921(DME) | ISDN physical Activate request Qxfnfll 5(335)
null state LowerWnteQ| LowerReadQ Q921LRPUT()
Q921UWPUTY(oREPL YO
phys_activate ISDN physical activate ack € phys activate AckQ)
TEI UNASSIGNED | LowerReadQ | LowerWriteQ phys_activate_Ac
STATE
Data Monitoring End Data Generating End
Figure 6.6 Step 5

6) Next the Q.921 pseudo device driver sends a TEI (Terminal End Point)
assignment request to the switch. It puts the TEI request message on its lower write
queue. A unique TEI has to be assigned to the Q.931 entity, that has a physical
point of attachment in the Q.921 entity. The lower write queue of the pseudo device
driver is linked with the lower read queue of the peer device driver. The TEI
request message goes to the peer device driver. Each device driver has been
modified to understand the messages meant for the switch and send back an
appropriate reply. The peer device driver on receiving the TEI request, generates a
TEI and puts the TEI message on its lower write queue. The write queue of this
driver is linked with the read queue of the requesting driver. The message
containing the TEI is received by the Q921LRPUT procedure of the requesting
Q.921 device driver from its lower read queue. The Q.921 entity changes its state to

TEI ASSIGNED state.

85

7) The Q.921 entity now initiates the data link establishment with the peer LAP-D
entity. It calls the send_uframe function which puts the unnumbered message with
a SABME command on the lower write queue of the device driver. This message is
delivered to the peer Q.921 entity via its lower read queue. The Q921LRPUT
procedure on receiving the unnumbered frame, calls the recv_uframe function. The
recv_uframe function on finding the command to be SABME, prepares an
unnumbered acknowledgment message and puts it on the lower write queue of the
device driver, to send it to the peer LAP-D entity. The function initializes the
variables that keep track of the sequence numbers, and sends
DL_ESTABLISH_IND to the Q.931 entity (DGE) via DLPIL It indicates the
establishment of muitiple frame state to the Q.931 entity (DGE). It starts the timer
T203 (10 SEC -Max time with no frames exchanged). The state of the Q.921

module is changed to ESTABLISHED TIMER state.

Q.921 (DME) TEI request Q921 (DGE)

TEI Unassigned » QREPLY
state. / JEI assigned
send_tei_req(assign_tei()
TEI assigned state | SABME
931 > recv_uframe() 931
Q di_establish_|send_uframe(*Umnumbered ACKIE di establ_xi' h Q
Server | indication starts Timer indicatio!
recv_uframg T203 Server
Established
starts Timer T203 Timer State
Established
Timer State
Data Monitoring End Data Generating End

Figure 6.7 Steps6,7 and 8

86

8) The Q.921 entity (DME) that had sent SABME, on receiving the Unnumbered
Acknowledgment (UA frame) from the peer LAP-D entity calls the recv_uframe
function. This function on receiving the UA frame, initializes the counters that keep
track of the multiple frames. It starts the timer T203. It informs the Q.931 entity
(DME) via the DLPI that the multiple frame state is ESTABLISHED TIMER using
the DL_CONNECT_CON primitive.

9) The dlpi_get function of the DLPI module in Q.931 entity (DME), translates the
DL_CONNECT_CON primitive to DL_ESTABLISH_CON primitive and delivers it
to the Q.931 entity. The Q.931 entity on receiving this primitive, enters a state where

it can send call control messages to the peer Q.931 entity.

Q.921 (DME) Q.931 (DME) enters
recv_uframe . NULL state. Ready to
starts timer dl_connect_con DLPI dl_establish_con send/receive call

T203. control messages like
Established SETUP, ALERTING
Timer State

Data Monitoring End Data Monitoring End

Figure 6.8 Step 9
10) The Q.931 entity (DME) is in the NULL state. It calls the q931_call function that
prepares the call control SETUP message to establish a call between the Data
Monitoring end and the Data Generating end. The function fills the protocol
discriminator and the call reference field in the message, sets the message type field

to SETUP and sets the DLPI primitive DL_DATA_REQ. It changes the Q.931 state

87

to the CALL INITIATED state. It finally passes this call record to the

q931_dlpimsg_write function.

11) The q931_dlpimsg_write function calls the insert_info function that fills the Calling

and Called party number in the message. The Called party number was sent by the

Data Monitoring Application. The insert_info function also fills the request string in

the User-to-User information field of the message . The request string was sent by the

Data Monitoring application in order to request the data from the Data Generating

end. The q931_dlpimsg write function calls the message_decode function that

converts the entire call record into stream of bytes. Finally the q931_dlpimsg_write

function calls the dlpi_put function that stores the stream of bytes into the data buffer

of M_DATA message type of DLPI and uses the PUTMSG system call to deliver it to

the DLPI of Q.921 module.

Q.931 Null State
q931_call(), prepares
SETUP message, fills

a) protocol discriminator
b) call reference value

¢) message type
enters Call Initiated state
q931_dlpimsg_write()

insert_info(} fills

a)called party number

b)calling party number

c)request string for data
message_decode()
dlpi_put()

M_DATA Message type

I

Data Monitoring End

PUTMSG (SETUP)

DLPI

SETUP message

Figure 6.9 Steps 10, 11 and 12

Q.921
mutiple frame
establish state, calls
q92luwput() &
q92luwsrv() - calls
send_iframe()

makes LAP-D frame

fills SAPI & TEI
fills Q.931 m_data
message in the
information field of
LAP-D frame.
starts timer T200

puts the LAP-D
frame on the lower
write queue to
deliver to the peer

Data Monitoring End

88

12) The Q.921 pseudo device driver receives the M_DATA message in its Q921 UWPUT
procedure and puts it back on the queue to be serviced by the Q921UWSRV
procedure. This procedure calls the send_iframe function. The send_iframe method
prepares a LAP-D information frame. It fills the SAPI and TEI values in the address
field of the frame, sets the command bit and inserts the Q.931 databuf information in
the information field of the frame. It starts the T200 (1 SEC to wait for an ack) timer
and sends the LAP-D frame on the D-Channel queue, which is the lower write queue
of the device driver.

13) The peer Q.921 pseudo device driver receives the LAP-D information frame from the
lower read queue, through the Q921LRPUT procedure. This procedure calls the
diphi_to_q921 function as the message is coming from the lower read queue. The
function checks the SAPI value in the message and finds it to be SAPI_Q931_8 (call
processing message). It checks the frame type of the message and on finding it to be
an information frame, calls the recv_iframe function. The recv_iframe function
matches the sequence number of the Information frame received, updates the counters
that keep track of the sequence numbers and calls the send_sframe function to send
back the receive ready acknowledgment to the peer LAP-D entity. The send_sframe
function fills the SAPI and the TEI values in the address field of the message and RR
(Receive Ready) in the command field. It puts the message on the lower write queue
(D-Channel queue) to deliver it to the peer LAP-D entity, that had sent the
information frame. The recv_iframe function also calls dlpi_from_q921 function to

send the Q.931 part of the message to the Q.931 entity.

89

Q.921 (DME) Q.921 (DGE)
send_iframe() lower write queue lower read queue multiple frame est state
ol QI2ILRPUT()
sends the information SETUP message cont3ining the request string | diphi_to_q921()
frame to the peer LAP-D recv_iframe) -
entity containing the
SETUP message checks SAPIto find it is
a call processing
message, checks the
Q921LRPUTY() calls sequence no. and update
dlphi_to_q921() counters for sequence no.
recv_sframe() lower read queue lower write queue |calls send_sframe()
checks SAPI & frame receive ready ach:owlLdgmcnt (Supervisory frmjnakes receive ready ack
type to find it to be call fills SAPI & TEI
processing and puts the message on
supervisory lower write queue.
message. calls dlpi_from_q921()
resets timer T200
Data Monitoring End Data Generating End

Figure 6.10 Steps 13 & 14

14) The Q.921 entity (DME) that had sent the SETUP message receives the Receive

Ready acknowledgment from its lower read queue via the Q921LRPUT message.

This procedure calls the dlphi_to_q921 function as the message is coming from the

lower read queue. The function checks the SAPI value in the message and finds it to

be SAPI_Q931 8 (call processing message). It checks the frame type of the message

and on finding it to be a supervisory frame, calls the recv_sframe function. The

recv_sframe function on finding the Receive Ready acknowledgment resets a flag so

that the LAP-D entity can send the next information frame to the peer LAP-D entity.

The function also resets the T200 timer, which was started by the LAP-D entity to

wait for a Receive Ready acknowledgment.

15) The dlpi_from_q921 function calls the dl_data_ind function of the DLPI which sends

the Q.931 part of the LAP-D frame received, up to the Q.931 module in M_DATA

90

type message, using the PUTNEXT system call. The primitive used is
DL_DATA_IND.

16) The DLPI module implemented in the Q.931 entity (DGE) calls the dlpi_get function
to receive the message coming from the DLPI of the Q921 module. The dlpi_get
function uses the GETMSG system call to extract the message from the queue. The
function on finding the DLPI primitive received to be DL_DATA_IND, extracts the
data from the data buffer attached to the message and stores the data in the data
structures of the Q.931 module. It calls the q931_receive function to handle the
incoming call.

17) The Q.931 entity (DGE) is in NULL state. The q931_receive function finds the
message type of the incoming message to be SETUP. It prepares the Q.931 reply
message with the message type as CALL PROCEEDING and changes the Q.931
state to CALL PRESENT. It fills the protocol discriminator field, call reference value
and the DLPI primitive as DL_DATA_REQ. It passes this call record to the
q931_dlpimsg_write function.

18) The q931 dlpimsg_write function (DGE) calls the insert_info function that fills the
Calling and Called party number in the message. The Calling party number comes in
the SETUP message. The insert_info function also fills the requested data from the
Data Generating Application in the User-to-User information field of the message .
This data was sent by the Data Generating application and was requested by the Data

Monitoring end in the SETUP message.

Q.921 receives SETUP
message, calls
dlpi_from_q921()
dl_data_ind()

sends the Q.931 entity
the SETUP message,
using PUTNEXT call

Q921UWPUTY()
Q921UWSRV()
send_iframe() - makes
LAP-D info frame
fills SAPI & TEI
fills Q.931 info - call

proceeding message in

the Information field of

LAP-D frame

starts timer T200

puts the frame on the

lower writeQ to deliver

to the peer.

dl_data_ind

91

Data Generating End

m_data (SETUP)

Call Proceeding

————— 2.
with the generated

data

DLPI

m_data (SETUP)

Q.931 Null State, calls
dlpi_get() - GETMSG
q931_receive()

handles incoming call
finds incoming message
to be SETUP, extracts
the data request string
from user-to-user info
field.

Makes Call Proceeding
message. fills protocol
discriminator, call

reference value and calls
q931_dlpimsg_write()
insert_info() -

fills called party & calling
party number

fills the generated data in
the User-to-User Info
field, calls dipi_put()

Q931 state Call Present

Fig 6.11 Steps 15,16, 17, 18 & 19

Data Generating End

The q931_dlpimsg_write function calls the message_decode function that converts the

entire call record into a stream of bytes. Finally the q931_dlpimsg_write function calls

the dlpi_put function that stores the stream of bytes into the data buffer of the M_DATA

message type of DLPI and uses the PUTMSG system call to deliver it to the DLPI of

Q.921 module.

19) The Q.921 pseudo device driver receives the M_DATA message in its Q921UWPUT

procedure and puts it back on the queue to be serviced by Q921UWSRYV procedure.

This procedure calls the send_iframe function. The send_iframe function prepares a

LAP-D information frame. It fills the SAPI and TEI values in the address field of the

frame, sets the command bit and inserts the Q.931 databuf information in the

92

information field of the frame. It starts the T200 (1 SEC to wait for an ack) timer and
sends the LAP-D frame on the D-Channel queue, which is the lower write queue of
the device driver.

20) The peer Q.921 pseudo device driver receives the LAP-D information frame from the
lower read queue, through the Q921LRPUT procedure. This procedure calls the
dlphi_to_q921 function, as the message is coming from the lower read queue. The
function checks the SAPI value in the message and finds it to be SAPI_Q931_8 (call
processing message). It checks the frame type of the message and on finding it to be
an information frame, calls the recv_iframe function. The recv_iframe function
matches the sequence number of the Information frame received, updates the
counters that keep track of the sequence numbers and calls the send_sframe function
to send back the receive ready acknowledgment to the peer LAP-D entity. The
send_sframe function fills the SAPI and the TEI values in the address field of the
message and RR (Receive Ready) in the command field. It puts the message on the
lower write queue (D-Channel queue) to deliver it to the peer LAP-D entity, that had
sent the information frame. The recv_iframe also calls dlpi_from_q921 function to

send the Q.931 part of the message to the Q.931 entity.

93

Q.921 (DGE) receives
m_data (call proceeding) . 9.921 (DME)
send_iframe() lower write queue lower read queue multiple frame est state
Q921LRPUT()
sends the information Call Proceeding msg dontaining the generated | diphi_to_q921()
frame to the peer LAP-D data recv_iframe() -
entity containing the
Call Proceeding message checks SAPItofinditis
a call processing
message, checks the
Q921LRPUTY) calls sequence no. and update
diphi_to_q921() lower read queue lower write queue [counters for sequence no.
recv_sframe() < calls send_sframe()
receive ready acknowﬁzdgment (Supervisory .
checks SAPI & frame frame) makes receive ready ack
type to find it to be call fills SAPI & TEI
processing and puts the message on
i . lower write queue.
supervisory
message. calls dlpi_from_q921() to
resets timer T200 send Call Proceeding to
the Q.931 entity.
Data Generating End Data Monitoring End

Figure 6.12 Step 20

21) The dipi_from_q921 function calls dl_data_ind function of the DLPI which sends the
Q.931 part of the LAP-D frame received, up to the Q.931 module in M_DATA type
message, using the PUTNEXT system call. The primitive used is DL_DATA_IND.

22) The DLPI module implemented in the Q.931 entity calls the dlpi_get function to
receive the message coming from the DLPI of the Q.921 module. The dlpi_get
function uses the GETMSG system call to extract the message from the queue. The
function on finding the DLPI primitive received to be DL_DATA_IND calls the
message_decode function, that extracts the data from the data buffer attached to the
message and stores the data in the data structures of the Q.931 module. It calls the

q931_call function to handle the incoming message for the call initiated by itself.

Q.921 (DME) receives
Call Proceeding , calls
dlpi_from_q921()
dl_data_ind()

m_data (Call Proceed

dl_data_ind

DISCONNECT

Data Monitoring End

DLPI

Call Proceeding

o] calls dipi_get()

Q.931 Call Initiated
State

contains generated data

DISCONNECT m_data

GETMSG()
message_decode()
q931_call() -

extracts the
generated data from
User-to-User info
field.

Pass the data to the
Data Monitoring

Figure 6.13 Steps 21,22 & 23

Application via
socket

Data Monitoring End

23) The Q.931 entity (DME) is in NULL state. The q931_call function finds the

message type of the incoming message to be CALL PROCEEDING. It extracts

the remotely generated data from the User-to-User information field of the

message and stores it in to the data structure from where the Q.931 entity can

send that data to the Data Monitoring Application via the socket connection. The

q931_call

function now initiates the call disconnection by preparing the

DISCONNECT message and sending it to the Q.921 entity using the same

procedure as was used to send the SETUP message. The peer Q.931 entity on

receiving the DISCONNECT message, will send the RELEASE message to the

peer. The peer will again respond with RELEASE COMPLETE to end the

connection.

24) The Q.931 server sends the received data to the Data Monitoring application via

the socket connection. It uses the WRITE system call for that.

95

As described in the above steps, we are able to successfully test the TeleMonitoring
application. The above steps demonstrate how the protocols (LAP-D & Call Control -
Q.931) and the D-Channel can be used to support real-time applications at homes and
small businesses. The testing framework is a generalized framework and can easily be
used to test the TeleControl and the TelePolling application. The TeleControl application
is a sub application of the TeleMonitoring application and the control information can be
transferred in the User-to-User information field of the SETUP message. Once the control
information is transferred, the call clearing can be initiated as described in the above
steps. For the TelePolling application, the same testing framework can be used with
different sequence of steps. The Call Control application is used to establish a temporary
signaling connection on the D-Channel and once the connection is established, the two
Q.931 entities can exchange User Information messages. The applications will insert and

extract the image in these messages.

96

Chapter 7

Conclusion and Future Works

This thesis demonstrates how ISDN can be used to support real-time applications at
homes and small businesses. We have explored the ISDN protocols in detail and have
shown the protocol features well suited for real-time applications at homes and small
businesses. The fast call setup time over the D-Channel makes the D-Channel preferable
for real-time applications [Holl97]. The idea of using the D-Channel for real-time
applications, leaves the B-Channel free for the circuit switched connections for other
services such as voice calls. The thesis focuses on three real-time applications namely
TeleMonitoring, TeleControl and TelePolling. The high level scenarios for these
applications, the ISDN protocol message and bit level scenarios and the implementation
&@ework for these applications gives us an insight as to how other real-time
applications can be supported by the ISDN. These applications strengthen the increasing
penetration of narrowband ISDN and the telecommunication industry into the residential
markets. The applications also allow the ISDN switch companies to generate revenue
from other businesses such as utility meter reading companies. The testing framework
developed for these applications provides an ideal platform for the testing of other real-
time applications. Therefore, based on the ideas put forth in this thesis, it is hoped that the

future work would explore more real-time applications for homes and small businesses.

97

One of the future projects that has a great potential in residential markets and small
businesses is the integration of ISDN with the IEEE1394 serial bus as described in
[Wick97] and [Hoff97]. IEEE1394 is a high speed serial bus that provides a high speed
method of interconnecting digital devices, consumer electronics products and computers,
and transports digital data for these devices. IEEE1394 enables high performance
multimedia connections and control of business and consumer electronic devices such as
televisions, stereos and CD changers, as well as traditional PC devices such as hard
drives, CD-ROM drives, printers and scanners. The bus transports data at rates up to 400
Mb/s and its protocol supports guaranteed delivery of time sensitive information, so that
digital data, video and audio can be transmitted in real-time. Most of the companies have
started providing the support for [IEEE1394 interfaces in their products. Microsoft Corp.
is providing the IEEE1394 serial bus interface standard in Microsoft Windows operating
systems.

As a future work for this thesis , in order to come out with more real-time applications at
homes and small businesses, we propose an ISDN and IEEE1394 bridge. ISDN will
provide remote access to the IEEE1394 serial bus connected to several home appliances
and remote devices. It is expensive to connect ISDN to every single device at home and
offices. [EEE1394 is inexpensive and has a packet structure similar to the ISDN frame, in
order to allow bridging with ISDN. Thus the first 10 feet and the last 10 feet of the
information super highway can be IEEE1394 and the remaining can be the ISDN

network.

98

BIBLIOGRAPHY

[BellISDN96] Bellsouth Telecommunications., “Integrated Services Digital Networks”,

http://www.bst.bls.com/products-services/isdn-main.htmi, 1996

[BellISDNapp96] Bellsouth Small Business District., “Applications — ISDN Means
Useful”, http://www smallbiz. bellsouth.com/bssbi2.html, 1996
[FTellISDN97] FranceTelecom North America, Products and Solutions — Voice and Data
Services, “ISDN: A User’s Guide”
http://www.francetelecom.com/ps/ps_voda/isdn/isdnindex.html, 1997
[Hoff95] Hoffman G., and Moore D., “IEEE 1394: A Ubiquitous Bus” COMPCON Conf.
in San Francisco, 1995
[ITUQ931] ITU-T., “Digital Subscriber Signaling System No. 1 (DSS 1) — ISDN
User-Network Interface Layer 3 Specification for Basic Call Control
(Q.931)”, International Telecommunication Union, 1993
[ITUQ920] ITU-T., “Digital Subscriber Signaling System No. 1 (DSS 1) — ISDN
User-Network Interface Data Link Layer — General Aspects (Q.920)”,
International Telecommunication Union, 1993
[ITUQ921] ITU-T., “Digital Subscriber Signaling System No. 1 (DSS 1) — ISDN
User-Network Interface Layer — Data Link Layer Specification (Q.921)”,

Intermational Telecommunication Union, 1993

[ITUQ957] ITU-T., “Digital Subscriber Signaling System No. 1 (DSS 1) - Stage 3
description for additional information transfer supplementary services using
DSS 1: User-to-User Signalling (UUS)”, International Telecommunication
Union, 1996

[Holl97] Holliday C. R., “The Residential Gateway”, IEEE Spectrum, May 1997

[Kess93] Kessler, C. Gary., “ISDN Concepts, Facilities, and Services”, McGraw-Hill,
1993

[Nitz90] Nitzberg K. G. “ISDN Applications and Society”
http://www.nitzspace.com/gary/papers/tmisdn.html, 1990

[Stall95] Stalling W., “ISDN and Broadband ISDN with Frame Relay and ATM”,
Prentice-Hall, 1995

[Stall94] Stalling W., “Data and Computer Communication”, Prentice-Hall, 1994

[Stev96] Stevens W. Richard., “Unix Network Programming”, Prentice-Hall, 1996

[Suns96] Bengt Sahlin, “SunShine., Implementation of the ISDN Recommendations —

Q.921 & Q.931”,http://www.tcm hut. fi/~bos/ISDN/sunshine/SunShine html, 1996

[Wick97] Wickelgren., “The Facts About Firewire”, IEEE Spectrum, April 1997

100
Appendix — A

The Unix System Calls For Q.931 Server and the Applications

The various system calls that the Q.931 server and the Applications use to communicate
with each other are as follows:

a) Socket System Call

int socket(int family, int type, int protocol) ;

The call returns a descriptor to the newly created socket. Arguments to the call specify
the protocol family that the application will use (eg., PF_INET assigned for TCP/IP or
Internet Protocols). The type is set to SOCK STREAM for stream socket and
SOCK_DGRAM for datagram socket. For a socket that uses the Internet protocol family,
the protocol or type of service argument determines whether the socket will use TCP or
UDP. For example if the protocol family indicated is PF_INET (Internet Protocol) and
the type is set to SOCK_STREAM, it means TCP/IP and stream sockets are used by the
application.

b) Bind System Call

int bind(int sockfd, struct sockaddr *myaddr, int addrlen) ;

The bind system call assigns a name to an unnamed socket. The call takes arguments that
specify a socket descriptor (sockfd) and an endpoint address (sockaddr), and the size of
this address structure (addrien). For TCP/IP protocols, the endpoint address uses the
sockaddr_in structure.

Struct sock_addr {

short sa_family ; /* socket address family */
union {

101

}

sockaddr_in structure uses the address family as internet protocols (PF_INET), next two
bytes are the port address and the next four bytes are the host ID. ¢) Listen System Call
int listen(int sockfd, int backlog) ;

When a socket is created, the socket is neither active, nor passive until the application
takes further action. Connection oriented servers call listen system call to place a socket
in passive mode and make it ready to accept incoming connections. The sockfd argument
is the same as in the previous system calls. The backlog argument specifies how many
connection requests can be queued up by the system while it waits for the server to
execute the accept system call.

d) Acccept System Call

int accept(int sockfd, struct sockaddr *peer, int *addrlen) ;

After a server calls socket system call to create a socket, and bind system call to specify a
local endpoint address, and listen system call to place it in passive mode, the server calls
accept system call to extract the next incoming connection request from the queue. If
there are no connection requests pending, this call blocks the caller until one arrives.
Accept system call creates a new socket with the same properties as sockfd, for each new
connection request, and returns the descriptor of the new socket to the caller. The peer
and addrlen arguments are used to return the address of the connected peer process(the
client). Addrien is called a value-result argument: the caller sets its value before the
system call, and the system call stores a result in the variable.

e) Connect System Call

&Y

int connect(int sockfd, struct socka(fdr *servaddr, int addrlen) ;

102

After creating a socket, a client calls connect system call to establish an active
connection to a remote server. The second argument to connect system call allows the
client to specify the remote endpoint, which includes the remote machine's IP address
and the port number at which the socket connection is opened. Once 2 connection has
been made, a client can transfer data across it.

f) Read System Call

int read(int sockfd, char *buff, unsigned int nbytes) ;

Both clients and servers use read system call to receive data from a TCP connection.
Usually, after a connection has been established, the server uses a read system call to
receive a request that the client sends by calling write system call. After sending its
request, the client uses read system call to receive a reply. To read from a connection, an
application calls read system call with three arguments. The parameter sockfd specifies
the socket descriptor to use, the parameter buff is the buffer where the data is to be
stored. The parameter nbytes is the length of the buffer. The read system call extracts
data bytes that have arrived at that socket, and copies them to the user's buffer area. If
more data has amved, read system call only extracts enough to fill the buffer. If less data
has arrived, read system call extracts all the data and returns the number of data bytes
obtained.

g) Write System Call

int write(int sockfd, char *buff, unsigned int nbytes) ;

Both clients and servers use write system call to send data across a TCP connection.
Clients usually use write system call to send requests, while servers use it to send replies.

A call to write system call requires three arguments. The application passes the

103

descriptor of a socket to which the data should be sent, the address of the data to be sent
and the length of the data. Usually write system call copies outgoing data into buffers in
the operating system kernel, and allows the application to continue execution while the
write system call transmits the data across the network.

h) Close System Call

int close(int sockfd)

The close system call is used to deallocate a socket once a client or server finishes using
it. If only one process is using the socket, close system call immediately terminates the
connection and deallocates the socket. If several processes share a socket, close system
call decrements a reference count (the count keeps track of the number of processes that
are actively using the socket connection at present) and deallocates the socket when the

reference count reaches zero.

104

Appendix — B

The Source Code for the Device Drivers

Source code of the device driver that links the lower queues of the Q.921
Multiplexing Device Drivers

/‘
¢ insertmux.c

§ Opens the lower queues of both the Q.921 Multiplexing Device Drivers
$ Links the lower queues of the Q.921 Multipiexing Device Drivers

* j.e Links the read queue of one device driver with the write queue

¢ of the other

* Finally Unlinks the lower queues of the two device drivers and closes

* them

*/

#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>

#include <errno.h>

static char *progname;

/t
Main gets as argument open or close and calls the appropriate
function to either open the device drivers or to close the device
drivers..

*/

void main(int argc, char *argv(])
{
progname = argv{0];

if (arge !=2) {
fprintf(stderr, "Usage: %s openiclose\n", argv[0]);
exit(1);

}

if (strcmp (argv(1]}, "open”) = 0)

muxopen(); /* opens the lower queues of both the device drivers */
if (strcmp (argv(1], "close”) == 0)

muxclose (); /* closes the lower queues of the device drivers */

105

/‘
muxopen opens the D-Channel queues (lower queues } and makes
links to these in the kernel. The file descriptors for the channels are
saved in a file - muxvals - for use when closing the links. The
persistent links are opened after issuing an I_ LINK-ioctl.

*/

void muxopen(void)
{

int cardfdl, cardd_mgt_fdl, cardmuxdmuxmgt!l ;
FILE *fpp, *fppl;

fpp = fopen("muxvals”, "w");

if (fpp =NULL)
{
fprintf{stderr, "%s: Cannot open muxvals for writing\n", progname);
exit(1);
}

fppl = fopen("drivervals”, "w");

if (fppl = NULL)
{
fprintf{stderr, "%s: Cannot open muxvals for writing\n", progname);
exit(1);
}

cardfdl = cardfd2 =0;

/* gets the file descriptor to the lower queues of one of the
device drivers */

if ((cardfdl = open ("/dev/q921", O_RDWRY)) < 0)
{
perror("Cannot open /dev/q921");
punlinks(cardfdl, cardmuxdmuxmgtl);
closes(cardfdl, cardd_mgt_fd1);
exit(1);
}

printf{"/dev/q921 opened, cardd_mgt_fd1 %d\n", cardd_mgt_fd1);

/* gets the file descriptors to the lower queues of the peer
device driver */

if ((cardfd2 = open ("/dev/q922", O_RDWR)) < 0)
{
perror("Cannot open /dev/q922 first time\n");
punlinks(cardfd!, cardmuxdmuxmgtl);
closes(cardfdl, cardd_mgt fd1);
exit(1);
}

printf{"/dev/q922 opened, cardfdl %d\n", cardfdl);

/* Links the lower queues of both the device drivers */

if{(cardmuxdmuxmgt] = ioctl(cardfd2, I_LINK, cardfd2)) < 0)

{
perror("cardmuxdmuxmgtl {_PLINK fails");
printf{"error value is : %d ", cardmuxdmuxmgtl);
punlinks(cardfdl, cardmuxdmuxmgtl);
closes(cardfdl, cardfd2);
exit(1);

}

printf{"cardmuxdmuxmgtl = %d plink\n", cardmuxdmuximngt!)

fprintf{fpp, "%d \n", cardmuxdmuxmgt1);
fprintf{fpp1, "%d \n", cardfd2);

fclose (fpp);

fclose (fppl);

closes(cardfd1, cardfd2);

return;

/‘
muxclose closes the links between the lower queues
of the two device drivers.

*/

void muxclose(void)

{
int cardfdl;
int cardmuxdmuxmgti;
int cardfd2;

FILE *fpp;

cardfdl = cardfd2 = 0;
cardmuxdmuxmgt] = 0;

106

107

fpp = fopen("muxvals”, "r");
if (fpp =NULL)
{
fprintf(stderr, "%s: Cannot open muxvals for reading\n”, progname);
exit(1);
}
/* reads the descriptor that links the two lower queues from the file
in which it was saved */

fscanf{fpp, "%d", &cardmuxdmuxmgtl);
fclose (fpp);

punlinks(cardfd1 , cardmuxdmuxmgt!); /* unlinks the two lower queues */

closes(cardfdl , cardfd2); /* closes the file descriptors to the lower queues
of the two device drivers */

return;

/‘

L]

*® punlinks, unlinks the links that have been made.

* between the lower queues of the two device drivers
* This is done in error situations and when exiting.
»

*/

void punlinks(int cardfd, int cardmuxdmuxmgt)

{
int retval = 0;

if (cardmuxdmuxmgt != 0)

{
/* uses the I_UNLINK IOCTL */

if ((retval = ioctl(cardfd, I_UNLINK, cardmuxdmuxmgt)) < 0)
perror("cardmuxdmuxmgt punlink failed");
}

return;
}

1*

»

* The closes function closes file descriptors that are passed

® to it as parameters. The function is called in error situations
¢ and when exiting.

®

*/

void
closes(int cardfd1, int cardfd?)

{
int retval = 0;

if (cardfd1 !'=0)
{

* closes the file descriptor of first device driver */

if{(retval = close(cardfdl)) < 0)
perror(“closing cardfd1 failes");
}

if (cardfd2 !=0)
{

/* closes the file descriptor of the second device driver */
if{(retval = close(cardfd2)) < 0)
perror("closing cardfd2 failes");
}

return;

}

/* The close_fd function reads the open file descriptors from the

* file in which they were saved, when the device drivers were
® opened, and close those file descriptors in order to close the
* file descriptors.

*/

void close_fd (void)

{
int cardfdl , cardfd2 ;
int retval = 0;
FILE *fpp;

cardfdl = cardfd2 = 0;

fpp = fopen("drivervals”, "r");

108

}

if (fpp =NULL)
{
fprintf{stderr, "%s: Cannot open muxvals for reading\n", progname);
exit(1);
}

fscanf{fpp, "%d %d ", &cardfdl, &cardfd2);
/* reads the file descriptor of the first device driver */

fclose (fpp);

if (cardfd] != 0)
{
if{(retval = close(cardfdl)) < 0)
perror("closing cardfd] failes");
}

if (cardfd2 '=0)
{
if{(retval = close(cardfd2)) < 0)
perror("closing cardfd2 failes”);
}

return;

109

110

Appendix - C
Source Code for the Applications

Source code for the Application that connects to the Q.931 Socket Server
and sends the request for the call establishment with the remote end along
with the request for remotely generated data.

/* This file contains the code for the Applications that
® opens the socket connection to the Q931 server and
® sends to its Q.931 entity, the phone number and a
* connection establishment request with the remote
* Q.931 entity .
*/

#include "q932.h"
#include "isdn_clienth”
#include <stropts.h>
#include <poll.h>

#define RBUF_LEN 1024
#define BUFF 1024

int callopt = FALSE;
int verbose = FALSE;

void main (int argc, char *argv[])
{
unsigned char
recv_string{fRBUF_LEN};

char
*phonenumber,
*request_msg,
*host_string;

int
port_selected = FALSE,
first_time = TRUE,
b_sock =0,
s_sock=-1,
aflg = FALSE,
pflg =FALSE,

errflg = FALSE,

<

u_short
connect_port,

extern char
*optarg;

/* Default values */

phonenumber = "80410000";
connect_port = STANDARD_PORT;
host_string = "dragon.acadiau.ca";

while((c = getopt(argc, argv, "P:h:p:va")) !=-1)
{
switch(c)
{
case'p':
if{afig)
errfig++;
else
{ /* phone number to be entered by the user */

pflg++;
phonenumber = optarg;
printf{*"Phone = %s\n", phonenumber);
break;
}
case'a’:
if(pflg)
errflg++;
else
{
aflg++;
break;
}
case'h':
host_string = optarg;
break;

case 'P' : /* enter the port number of the Q.931 server */

connect_port = atoi(argv[optind - 1]);
if (connect_port <=0)
errflg++;
port_selected = TRUE;
break;
case'v':
/* take all the default arguments */

verbose = TRUE;
break;
case'? :

fprintf{stderr, "Option %c not recognized\n"”, optopt);

111

112

errflg++;
break;

case'’:
fprintf{stderr, "Option %c requires an argument\n”, optopt);
errflg++;
break;
default:
errflg++;
break;
}
}
if{errflg)
errmsg();

if (verbose)
{
printf ("Verbose mode\n");
printf ("Host = %s\n", host_string);
printf ("Phonenumber = %s\n", phonenumber);
printf ("Connect_Port = %i\n", connect_port);

H
s_sock = server_function(host_string, connect_port);

if (aflg)
{
msg = "C_ACTIVE";
printf{"Client: Set server to wait for incoming call = %s\n", msg);
}
clse

{
/* number validation */
if (check_number(phonenumber) < 0)
{
printf{"Unknown number: Discarding\n");
exit(0);
}
if (verbose)
printf{"Client: Calling phonenumber: %s \n", phonenumber);
msg = phonenumber;

}

if (send(s_sock, msg, strlen(msg), 0) = -1)
{
perror("Client: cannot write to server”);
exit(1);
}

/‘
Read the data from server until DISCONNECT is received
*/

while (TRUE)
{
if (verbose)
printf{"Client: reading from server..\n");

if (recv(s_sock, recv_string, RBUF_LEN, 0) =-1)
{
printf{"SOCK = %i\n", s_sock);
perror("RECV fails™);
exit(1);
H

if (stremp(recv_string,"VCONNECT™) = 0)
{
if (verbose) :
printf("Client: %s recieved - creating new socket connection for B-channel data\n",
recv_string);

b_sock = server_function(host_string, b_channel_port);
get_b_channel_data(b_sock);
}

else if (stremp(recv_string,"DISCONNECT™") =0)
{
printf{"Client: %s recieved - closing connection\n", recv_string);
/.
shutdown(s_sock, 2);
close(s_sock);
exit(0);
*/
}
else
{
printf{"Hey You !!! %s called at: %s", recv_string);
get_time();
H
memset ((void *)&recv_string, 0, sizeof{recv_string));
}
}

/#
* Check the validity of the phonennumber number
*/
int check_number(char *nr)
{
char
*foo;

while (*(nr) I=NULL)

113

114

{
foo = *(or++);
if (tisdigit(foo))
{
printf{"ERROR: understanding number %u\n", foo);
return (-1);
}
}
return (1);
H

/* The function server_function , takes the Q.931
server address and the port number on which the
server is listening. It calculates the TCP/IP address
of the server and creates a socket for the Application.
Then it tries to connect to the port on which the server
is listening.
*/

int server_function(char *host_string, u_short port)
{

struct sockaddr_in server_addr;

struct hostent *serv_host;

int
s_sock,
s_addr_len = sizeof{server_addr);

u_long
host_addr;

memset((void*)&server_addr, 0, s_addr_len);

host_addr = inet_addr(host_string); /* gets the TCP/IP address of Q.931 server*/

/* GET HOST ENTRY */
if ((long)host_addr != (long)(-1))
memcpy ((void *)&server_addr.sin_addr,
(void *)&host_addr,
sizeof(host_addr));

else
{
if ((serv_host = gethostbyname(host_string)) = NULL)
{
perror("Client error: Cannot get host entry");
exit(1);
}

memcpy(&server_addr.sin_addr,
serv_host->h_addr,
serv_host->h_length);

server_addr.sin_port = htons(port);
server_addr.sin_family = htonl(AF_INET);

/* CREATE SOCKET */
s_sock = socket(AF_INET, SOCK_STREAM, 0);
if (s_sock =-1)
{
perror("Client: Creating socket fails");
exit(1);
}

/* CONNECT */
if ((connect(s_sock,
(struct sockaddr *)&server_addr,
s_addr_len)) ==-1)
{
printf{"HOST = %s\n", host_string);
perror("Client error: Connection fails ");
exit(1);
}
return s_sock;

}

/t

* Gets the time of incoming call

® Returns string with date & time "120496 at 14:43"
*/
int get_time(void)

{

struct timeval tp;

struct timezone tzp;

struct tm *time;

long *clock;

if (gettimeofday(&tp, &tzp) =-1)
{
perror("Error asking for time");
return (-1);
H

clock = &tp.tv_sec;
time = ctime(clock);
printf{"%s", time);

return (1);
}

115

116

/‘
Standard Error messages
s/
void errmsg(void)
{
printf{"Usage of isdn_test_client: -h host [-v] -p phonenumber | -a [-P port]\n");
exit(1);
}

117

Appendix -D
Source code for the Q.931 Server

Source code for the Q.931 Server part that connects to the application and
the Q.921 module. It initiates the call establishment with the peer Q.931
entity.

/* This file contains the main function for the Q.931 entity.
The main function starts the socket server. It opens the
Q.922 device driver i.e. gets the file descriptor to the
upper queues of the Q.922 device driver. It receives the
connection establishment request from the Applications
with the phone number of the remote Q.931 entity and the
request for data from the remote entity. The function calls
the protocols functions to initiate the connection establishment
with the peer Q.931 entity and the remote Application */

#include "q932.h"
#include "my_socket h"”

#define BUFFSIZE 1024

int dlpi_data_req();
void notify_client();
int T308_counter = 0;

struct pollfd pollfdsINPOLL];
struct sockaddr_in client_addr;

int main(int argc, char *argv(])
{

int
retval,
c_sock,
c_addr_len =sizeof{client_addr),
count,
MFS_count =0,
L
u_short
port =0;

c_state->first_call = TRUE;
c_state->bc_sock =-2;
c_state->client_active = FALSE;
c_state->Ib_sock = -3;
c_state->client_socket = -2;

gs.timerset = FALSE;

switch(argc)

{

case 1:
break;

case 2:
port = atoi(argv{1]);
break;

default:
printf{"Usage: %s [PORT}\n", program);
exit(1);

}

/* opens q922 device driver and gets file descriptor with the
pair of queues */

if ((fd.dlpi_fd = dlpi_open(0)) < 1)
{
printf{"q932: Unable to open dlpi interface \n");
undefined_function();
}

if{(retval = memalloc()) < 0)
{
perror("ERROR allocating memory for struct!");
undefined_function();

}

/* prepares the Call Establishment record, in case there is request for call

establishment from the Application */

callinfo.len = 0;

callinfo.primitive = DL_ESTABLISH_REQ;
callinfo.q932_encode = NULL;
gs.polltimeout = ESTABLISH;
gs.q922_state = UFS;

gs.connect_nro = 0;

gs.timerset = FALSE;

gs.state =NULL_STATE;

gs.politimeout = ESTABLISH;

count = poll(pollfds, NPOLL,gs.polltimeout);

callinfo.primitive = DL_ESTABLISH_CON ;

118

if{callinfo.primitive = DL_ESTABLISH_CON)
{
qs.q922_state = MFS;

/* Starts the socket server on the specified port */

printf{("Q922 now in state: %d\n", gs.q922_state);
if{(fd.socket_fd = start_socket_server(port)) < 0)
{
perror("Sockserver start”);
undefined_function();
H
}

polifds[1].fd = fd_socket_fd;
pollfds[1].events = POLLIN;

/* polis the socket's file descriptor for incoming connection request from the

application ¢/

if(polifds[1].revents)
{
c_sock = accept(fd.socket_fd,
((struct sockaddr *)&client_addr),
&c_addr_len);

/* calls accept system call to receive any request from the application */

printf{"Client call accepted\n");

pollfds[2].fd = c_sock;

polifds[2].events = POLLIN;

c_state->client_active = TRUE;

c_state->client_socket = ¢_sock;

c_state->listen_socket = fd.socket_fd;
}

free(callinfo.q932_encode);

pollfds[3].fd = fd.dlpi_fd;
polifds[3].events = POLLIN;

while (TRUE)
{
/* in a loop polls on the file descriptors of the socket to
accept input from the Application and also polls
on the file descriptor of the Q.921 device driver upper
queue to check if any input is coming from that side */

119

poll(pollfds, NPOLL,gs.polltimeout);
/* Check for incoming requests, case 0: => no data */
for (i=2;i<NPOLL; i++) {
printf{"POLLING!!\n");
switch (pollfds[i].revents) {

default:
perror("pollerror”);
undefined_function();
break;

case O:

break;
case POLLIN:

ifli=2)
{
if{(retval = client_read(c_sock)) <0) /* reads the message from the Application *?

{
perror("ERROR reading client !"™);
undefined_function();
}
break;
}

elseif 1 =23)

{
printf("POLLFD = 3\n");

free(callinfo.q932_encode);
if{(retval = dlpi_get(&callinfo, fd.dlpi_fd)) <0) /* receives the message from the Q.921
device driver */
{
perror("Fail to write q922 info into struct !");
undefined_function();
}

if{(retval = q932_dlpimsg_read(msg)) < 0)
{
perror("Error reading data from dipi !");
undefined_function();

120

121

msg = (q932_message_t *) malloc(sizeof{q932_message_t));

iflmsg = NULL)
return(-1);
else

return(1);

33 3

2

SEEE

HEEERPTIT

IMAGE EVALUATION
TEST TARGET (QA-3)

.25

1.6

|
Il

14

150mm

I

 onmm—

© 1993, Applied image, Inc., All Rights Reserved

