
Temporal Expert System Shell

Sharad Sachdev
B.E. (Computer Science), 1994,

National Institute of Engineering, Mysore, India.

Thesis

submitted in partial l?üKillmeent of the requirement

for the degree of Master of Science (Computer Science)

Acadia University,
Fall Convocation 1998

O by Sharad Sachdev 1998

Acquisiins and Acquisitions et
Bibliographie Serviœs senrices bibliographiques

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or seli reproduire, prêter, distn-buer ou
copies of this thesis m microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/f3m, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou amernent reproduits sans son
permission. autorisation-

Abstract

By accommodating users with diverse needs and backgrounds,

user interfaces are revolutionizing the application of computers. Intuitive

interfaces allow the user to perform complex tasks with Little knowledge

of the underlying logic. A popular approach in -cial Intelligence for

temporal knowledge representation and reasoning is to use fust order

logic. In order to use logic the user must understand its syntax and

semantics. This thesis presents a logic independent graphical user

interface (GUI) and discusses the principles of user interface desigri. The

GUI dows the user to enter, query, and receive temporal information

using color-coded symbols. The user does not have to be familiar with

the particular logic used by the implementation.

Acknowledgements

I would like to express my heartrelt thanks to Dr. André Trudel for

his guidance, help and support throughout my M. Sc. studies.

1 would like to extend my thanks to Dr. Carolyn Watters and Dr.

Eric Neufeld, for spending their time and being my intemal and extemai

examiners.

Finally, 1 would like to express special thanks to my parents for

their blessings, care and encouragement.

Table of Contents:

.. 1 . INTRODUCTION - 1

2 . TEMPORAL REASONING AND CLP .. 4

. 2 I Constraints ... -4

2.1.1 Temporal Constrahts ... 6

2.2 Logic and Temporal Reasoning .. 7

2.3 Temporal information 8
2.4 Constraint Logic Prograrnrning (CLP) 9

2.4.1 Progranunhg with constraints 11

2.4.2 CLP Vs logic programming 13

2.5 ECLzPSe (CLP) .. -16

3 . GRAPHICAL USER INTERFACE, 18

... 3.1 Introduction 18

3.2 What is Correctness ? .. 19

3.3 Significance of HCI in designing GUI 21

3.4 Tools and techniques for designing a GUI 25

.. 3.4.1 Color 25

.. 3.4.2 Graphics 28

.. 3.4.3 Icons 28

3.5 Other expert system shelis .. 29

. 4 SYSTEM OWCRVIEW ... 31

4.1 Tcl/Tk ... 32

4.2 Conceptuai Model ... -33

4.3 Graphical User Interface ... 34

4.4 System Database ... 53

5 . INFERENCE ENGINE AND KNOWLEDGE BASE 57
5.1 Iderence engine .. -57
5.2 Knowledge base -62

... 6 . EVALUATION OF THE GUI 65

6.1 User Evaluation ... -68

6.1.1 Results of the Evaluation .. 73
......... ... 6.2 User Satisfaction Evaiuation -77

........... 6.2.1 Results of the user satisfaction questionnaire 81

6.3 Conclusions from the observations -82
6.4 Conclusions from the questionnaire -83

6.5 Modifications to the GUI 84

7 . CONCLUSION ... 85
7.1 Future Development ... 87

7.2 Applications .. -89

A . USER MANUAL ... 95

.. . B SOURCE CODE 118

vii

Figure 6.3. User population for the Evaluation 74

Figure 6.4. User Satisfaction Questionnaire .. 78
Figure 6.5. Results of the User Satisfaction Questionnaire 81

List of Tables:
Table 3.4.1: Color Combinations for Graphitai User Interfaces 27

Chapter 1

Introduction

"As natural selection works solely by and for the good of each being, al1
corporeal and mental endowments will tend to progress towards
perfiection. "

Charles Darwin, Origin of Species

Every interesting real world problem has a temporal component.

For example, if we want to simulate a telephone switch in software, the

software must be able to deal with the representation of simultaneous

calls of varying duration. From Our everyday He, we are aware that the

symptoms of a disease change over time. Another exarnple from the

intemet would be an intelligent dynamic web site that monitors the time.

duration and type of hits, and modifies its presentation over a 24 hour

tirne period in order to best serve its clients. Therefore, if we are to use a

cornputer to solve real problems, time must be expïrcitly represented. A

popular approach in -cial Intelligence for temporal knowledge

representation and reasoning is to use first order logic.

One drawback with using logic is that the user must understand

its syntax and semantics in order to interact with the implementation.

This thesis presents a logic independent graphical user interface (GUI).

The GUI allows the user to enter, query, and receive temporal

information using color-coded symbols. The user does not have to be

familiar with the particular Iogîc used by the implementation.

The main research challenge is the definition of the GUI. The GUI

should be designed and irnplemented in such a way that it is easy to

leani, use, efficient and effective. It should d o w the user to enter and

query temporal information using icons and color-coded symbols. For

example, using a pull down menu the user could choose "John is

sleeping". The user then places a dot on a horizontal tirne line a t 2 a.m.

to s p e c e that John is sleeping at this tirne. The user c m alternatively

place a h e to represent a time internai. Precise quantitative point and

interval based information is easy to represent graphicaily. Chdenging

types of information, which are difficdt to represent. are "111 meet you

later", "It rauied throughout the day today", and 'Bob played squash and

tennis for equal amounts of tirne".

Constraint logic prograrnming

introduced in the next chapter.

Chapter three discusses features

friendly GUI'S.

and temporal reasoning is

of effective, efficient and user-

Chapter four gives a system o v e ~ e w . This chapter concentrates on

the processes of representing time, entering and querying information.

Chapter five presents the inference engine, which is the backbone

of the system and the knowledge base.

Chapter six discusses evaluation of the user interface.

Chapter seven presents directions for future work and conclusions.

CEtAPTER 2. TElMPORAL REASON12VG AND CLP

Chapter 2

Temporal reasoning and constraint logic
programming (CLP)

"Any sufficiently advanced technology is indistinguishable from ma@ *
-- Arthur C. Clarke

This chapter introduces constraint properties and temporal

constraints, followed by a discussion on logic and temporal reasoning.

Constraint logic programming is explained in detail with the help of

examples. Finally, we present ECLPSe and its features.

Constraints

Constraints have many properties that make them unique and

flexible for our use in AI and cornputer science applications [Magh95]:

Constraints and multi-obiect relationships: Constraints can involve

relationships between multiple objects:

John and Steve must live in separate towns. (1)

The relationship "live in separate towns* treats John and Steve

equally. It gives the same amount of information about both. It does

not give information of where each one iives, but it gives specific

information about a relationship between the two.

Adirectional propertv: There are no computational directions or flow of

information represented in a constraint. In (1)' there is no

specification of which one is first, and there is no prioriW. Knowing

one of John's or Steve's residence, it gives us information about the

other.

Partial knowledge representation: Constraints allow the specification

of partial knowledge. We do not need to know e v e w g about the

domain of discourse or the relationships between individuals when

writing constraints. For exarnple:

John has a table in his living room.

is acceptable by itself. It is not aecessary to specifjr all the constraints

that apply to John's house.

Constra.int representation: A constraint usuaily does not have a

unique representation. For example:

The Bar is open between 8:00 a.m. and 12:OO p.m.

The Bar is closed between 12:00 p.m. and 8:00 a.m.

C ' R 2. îElMPORAL REASONTNG AND CLP

both have the sarne meaning but are represented in different ways.

The particdar representation chosen usually depends on the problem

domain and implementation.

Soft constraints: An example of a soft constraint is:

John's table c m be red.

This does not mean that John's table is red, but implies that red is a

possible color or an expected color of John's table. These soft

constraints give expectations or predictions.

2.1.1 Temporal constraints

Constraints can be atemporal:

John eats dïrmer.

This const.ra.int does not specify when John eats his dinner. If we

introduce t h e :

John eats dimer at 6:00 p.m.

We know what John is doing at 6:00 p.m. Time can give constraints a

temporal limit, which makes them more accurate and precise. For

example:

Mary works from 9:00 a.m. to 6:00 p.m. (2)

specifies an occupation for Mary between the time limit (9:OO a.m. - 6:00

p.m.). If in addition we have:

Mary works at the Library.

C m 2. ïElMPORAL REASONATG AND CLP

then using (2), we know that Maxy is in the Library between 9:00 a.m. -

6:00 p.m. These two constraints influence any solution sought or

decision to be taken conceming Mary. If for example, something

happened at 10:OO a.m. at the Halifax Shopping Md, we can conclude

that Mary was not involved in it.

Logic and Temporal Reasoning

Logic consists of a formal system for describing states of afYairs,

using the syntax and semantics of the language. Syntax describes how

to write valid sentences and semantics state how sentences relate to

states of affairs. There are various kinds of logic such as propositional,

f ~ s t order, and fuzzy logic [Russ95].

We concentrate on a variant of first order logic for temporal

reasoning, which assumes that the world is ordered by a set of time

points and/or intervals, and includes built in mechanisms for reasoning

about time.

Formulas in a first order temporal logic denote statements whose

truth-value may change over time. Examples of such statements are:

It is presently raining.

John was on the phone between 2 and 4 p.m.

Mary came in at 3 p.m. and left later.

2.3 Temporal information

There are four types of temporal information:

1. Point based qualitative information.

2. Interval based qualitative information.

3. Point based quantitative information.

4. Interval based quantitative information.

An example of point based qualitative information is:

John is w o r h g at time tl.

An example of point based quantitative information is:

John is wallcing at a speed of 5 km/hr at time tl.

A n example of interval based qualitative information is:

John was working from time tl to t2.

An exarnple of interval based quantitative information is:

John worked for 1 hour from tirne tl to t2.

2.4 Constraint Logic Programming (CLP)

Constraint Logic Programming [Fruh93] is a new class of

prograrnming languages combining the declarativity of logic

prograrnrning with the efficiency of constraint solving. New application

areas, amongst them many different classes of combinatorial search

problems such as scheduling, planning or resource allocation can now be

solved, which were intractable for logic programming. The most

important advantage that these languages offer for certain problems is

short development t h e while exhibiting an efficiency comparable to

imperative languages.

Constra.int Logic Programming adds richer data structures to a

logic programmhg system thus allowing semantic objects [e.g.,

arithmetic expressions) to be directly expressed and manipulated. Logic

programming has a uniform but simple computation rule, a depth-fust

search procedure, resulting in a generate and test procedure with its

well-hown performance problems for large search applications [Fmh93].

Constraint logic programrriing overcomes this problem by its active use of

constraints, pruning the search tree in an a priori way. The key aspect

is the tight integration between constraint evaluation and search.

CIUPTER 2. TEMPORAL REASONINGAlVD CLP

Constraint solving has been used in many different application

areas such as engineering, planning and graphics [Fnih93]. Roblerns

such as schedulirig, allocation, layout, fault diagnosis and hardware

design are typical examples of constrained search problems. A reason for

the success of CLP in recent applications has been the choice of

constraint systems integrated into the diDlerent implementations. The

selection of new constraint domains needs to satisfy both technical and

practical criteria [Jaff87] :

The expressive power of the computation domain,

The existence of a complete and efficient constraint solver,

Its relevance in applications.

The constraint solver is complete if it is able to decide the

satisfiability of any set of constraints of the computational domain. To

achieve efficiency the constraint solver needs to be incrementd, i.e. when

adding a new constraint C to an already solved set of conswaints S, the

constraint solver shouid not start solving the new set S u (C } from

scratch.

2.4.1 Programming with constraints

The amalgamation of logic programmhg and constraints is called

constraint logic programming (CLP). A CLP interpreter must have two

components: an inference engine which deals with resolution, and a

domain-specific constraint engine which maintains the constraint store

in a standard form, and upon a request from the iderence engine, is able

to inform it whether the constraints it suggests can be consistently

added to the store.

Examples of CLP systems are CHIP [Dinc88], CLP(R) [Hein921 and

ECLtPSe [Abde95]. An example of ECLtPSe code is shown in figure 2.4.1.

Interval based information is represented using the integral relation.

in tegral (a. b, f , x) is true if and only if the integral of f from a to b is x.

We use a limited version of the integral relation which cari be viewed as

the measure of the duration of tmth of f over the interval (a,b).

For example, "running" is true throughout the intemal (0 , lO) is written

as integral (0,l0, running, 10) . and 'nuuiing for half the time is

integral (Or10,running.5).

CBAPïER 2.7ElMPORAL REASOïENGAND CLP

Information that is true at an isolated point is represented using

the point relation. For example, 'nuuiing" is true at time 5 is written

as point (5 , running) .
point(T,F) :-

A #<= T,

B #>= T,

C #= B-A,

integral (A, B, F, C) .
integral (O,lO,running,lO) .

Figure 2.4.1 ECLPSe code for point and integral

To determine if F is true at an isolated point T, we can look for an

interval (A,B) which contains T and over which F is tme throughout. This

strategy is captured by the first d e in figure 2.4.1.

Computation begins with a goal and an empty set of constraints.

An arïthrnetic constraint or an atom is selected with the usual left-right

atom selection ruie at each stage. When an atom is selected, the set of

d e s is searched in the usual top-down fashion, each time matching that

atom with the head of some nile. Execution proceeds as in PROLOG

untii a constraint is encountered. When a constraint is selected it is

added to the set of collected constraints, and it is detennined whether

the resulting set has a solution. If no solution is found, backtracking

occurs. At every point in the denvation, the set of constraints is

satisfiable.

CHAPTER 2. TEWORAL REASOMNG AND CLP

Let us return to the program in figure 2.4.1, and examine a successN

execution path:

? - point@, running).

(1 ? - point fl, mnning).

{PXD F'running] ? - A# <= T, B# >=T, C# =B-A, integml(A, BD mnning, C).

(PXD F=running, A# <=TI ? - B# >=T, C# =B-A, integral(A, B, running, C).

(P X , Prunning, A# <=T, &# >=Tl ? - C# =B-A, integral(Ay B, mnning, C).

(P X , F=mnning, A# <=T, B# >=T, C# =B-A) ? - integral(A, BD running, C).

(P X y F=running, A# <=T, B#>=T, C#=B-A, A=O,B=l O, C= 1 O] ? -

At each step, the set of constraints is shown on the left of ' ?- ".
Note that at the first step, the set is empty. In the penultimate step,

integravA, BD F, C) unifies with integral(0,l O, mnning, 1 O) ECLPSe solves

the fmal set of constraints and retunis the answer:

This means point(X,running) is true whenever X has a value between O

and 10.

2.4.2 CLP vs. logic programming

Constraint logic programming is a generalization of logic

programming. Program execution in ECLlPSe is similar to PROLOG 's, but

-cation is more general. Executing the code shown in figure 2.4.1 in

CHAP?IER 2. TElMPORAL REASONING AND CLP

ECLlPSe and the PROLOG equivdent code at the top of figure 2.4.2.2

gives the results shown in figure 2 A.2.l.

PROLOG

point(5, running) NO YES

Figure 2 A 2 . l Cornparison between PROLOG and ECL'PSe

PROLOG Code:

point (T,F) : -
A =< T,
B >= T,
C = B-A,
integral (A, B, F, C) .

integral (0,10,running, 10) .

PROLOG execution:

3- point(5, running).

1
Integer required

1
No

? - point(& rurining).

I
Integer required

I
No

PROLOG code and its execution for pokt(5, nuining) and point(X,

running) .
Figure 2.4.2.2

C-R 2. TEMPORAL REASOMNGAND CLP

Due to the presence of the arithrnetic constraint A=<T, PROLOG is

unsuccessful with the unification. The PROLOG code and its execution

for point(5, running) and point(X, running) are shown in figure 2.4.2.2.

The proof trees are as follows:

?- point(5, running).

?- A =< 5, B >= 5, C = B-A, integral(A,B,mnning, C).

Fails. (Cannot associate any value with A in the goal A =< 5.)

?- point@, running).

? -A =< X, B >= X, C = B-A, integral(A,B,running,C).

Fails. (Cannot associate any value with A in the goal A =< X.)

In the proof tree for point(5,nuining), PROLOG tries to solve A =< 5

but is not able to uni@ any value with A and fails. Similarly, in

point(X,ninning) , PROLOG is unable to un* any value with A.

A s shown above, PROLOG does not deal with constraints.

Therefore, to handle constraint based problems for temporal reasoning

we need a more powerful constraint-solving environment, whch is

provided by CLP.

2.5 ECLiPS= (CLP)

The CLP system we use in oui implementation is ECLPSe. ECLPSe

(ECRC Common Logic Rogramrning System) [Abde951 is a development

environment for constra.int programming applications. It contains

several constraint solver libraries, which use extended PRO LOG

technology with persistent knowledge base and constraint handling

features.

Features of ECLiPSe:

Incremental Compiler: ECLtPSe is based on an incremental interactive

compiler. ECLtPSe programs are both fast and flexible.

Source Variable Names: ECLPSe is able to remember the source

narnes of variables so that debugging programs becomes easier.

Flexibility: ECLlPSe enables the user to modXy most of the system

features, build separate applications or include new features.

Memorv: All ECLiPSe memory areas are automatically extended when

necessary. There are no limits (other than the available memory) to

the size of atoms or strings or their number, the length of integers and

there is no limit on the complexity of compiled clauses.

Strings: ECLPSe has the data type string whose representation is

compact and compatible with strings in C and Tcl/Tk.

Complete Search Rule: Most PROLOG systems irnplement logic

programrning incompletely because they use the depth-first search,

but ECLlPSealso supports depth-fxst iterative search dong with DFS.

Moduies: ECLPSe has a sophisticated modular concept that rnakes it

possible to buiid large applications, avoid narne clashes and to hide

information frorn unauthorized access.

Stream I/O: The ECLIPSeI/O is based on the concept of streams that

are mapped on the I/O channels of the underlying operating system.

On-line Documentation: The PROLOG Built-in Predicate Reference

Manuai is available on-line. Calling help (PredSpec) will display the

appropriate manual page.

CEDUTER 3. G W ' C A L USER LlVTERFACE

Chapter 3

Graphical User Interface.

"The hope is that, in not too many years, human brains and computing

machines will be coupled together very tightly and that the resulting

partnership will think as no human brain has ever thought and process

data in a way not approached b y the information-handling machines we

know today. " J.C.R Licklider, 1960 o u t h e of "Man-Computer

Syrnbiosis"

3.1 Introduction

A user interface is the boundary between a computer system, comprising

of hardware and software, and the human user. User interface software

is a sigmficant component of contemporary computer systems and

graphical user interfaces (GUI'S), are now ubiquitous.

The main challenge in designhg a temporal expert system sheU is

developing a graphical user interface with the foliowing characteristics

[Nomg S] :

C ' R 3. GRAPHTCAL USER INTERFACE

Easy to use,

Easy to leam,

Effective and efficient,

Cornpletely represents the situation,

Logic system independent,

Incorporates semantic graphic symbols and icons

with meaningfùl colors.

This chapter begins by considering notions of correctness and

means of achieving it. Then, it discusses the sigdicance of Human

Cornputer Interaction (HCI). Finally, this chapter discusses the tools and

techniques for graphical user interface design focussing on the

signifcance of color, graphics and icons.

3.2 What is Correctness?

The IEEE Standard Glossary of Software Engineering Terminology

[Ises94] defmes comectness in terrns of freedom from faults, meeting of

specified requirements, and adherence to user needs and expectations.

Software correctness is more commonly descnbed using the terms

validation and verifcation:

Validation asks

Are we building correct software?

Verification asks

Are we building the software correctly?

Both validation and verification are important. Validation failure

constitutes a breech of contract between the developer and the client for

whom the software is being produced. Verification failure results in

software containing potential faults or fiaws. Clearly, neither is

desirable.

Although correctness is important for software in general, it is

particularly important for graphical user interfaces. The graphical user

interface represents the aspect of the software that is directly perceived

by a user. If the user interface is incorrect, the software will be

perceived as incorrect or inadequate, regardless of the correctness of the

underlying functionality.

Confidence in the correctness of a graphicai user interface is

usually achieved by proto~ping or by testing. Prototyping cari be used to

validate and to verify that the interface meets usability requirements.

CHAPTER 3. GRAPHlCAL USER nVTERFACE

3.3 Sigmfïcance of HCI in designing GUI

Human computer interaction is a discipline concemed with the design,

evaluation and implementation of interfaces for interactive computing

systems for human use and the study of major phenornena surrounding

them.

Donald Norman [Nom951 suggests three key p ~ c i p l e s that help

to ensure good HCI:

Visibility,

Affordance,

Feedback,

Controls need to be visible with good mapping with their effects

and their design should also suggest their functionality. Affordance

refers to the properties of objects, i.e., the operations and manipulations

that can be done to a particular object. For example, doors can afford

opening, and chairs afford support. The concept of feedback is

straightforward, there should be a response to actions. This gives a

sense of closure and certainty that the command has been received or

the operation has been successful.

In order to produce computer systems with good usability, it is

essential to keep in rnind the foIlowing:

CHiAPTER 3. GRAP'CAL USEX INTERFACE

The user interface is a large and complex component of a software

system. Needs of the user are very critical. Designers shouid survey

the intended users of the system before making decisions, since

incorrect assumptions about the users may lead to inappropriate

design decisions.

A new system's interface shouid be compatible with other interfaces,

taking into consideration technology advances. This principle is

demonstrated in software for Microsoft Windows and for the Apple

Macintosh. Most software for these environments have the same

basic interface techniques.

When a designer designs an interface it is a mistake to provide too

much furictionality. This flaw cari result in an interface that is

complex and difficult for novice users to navigate. However, Mayhew

[Mayh92] suggests that it is possible to provide an interface that is

nch in furictionality, but easy to use.

The user interface should be organized so that users can perform

more than one task at a time and switch easily between tasks. This

usabilie feature is demonstrated in the Microsoft Windows

multitasking environment. A modal dialog window requires that the

user interact with it before interacting with any other window, e.g.,

password dialog box.

C . R 3. GRAPHCAL USER IRrllERFACE

5. A system should always respond to a user's input. The user should be

kept abreast with the intemal processes that are being executed by

the computer. Messages like 'Please Wait ..." or Working . .." should

be used to let the user know that the system is executing a process.

6. Facilities for direct manipulation with the interface. The user shouid

be able to perform actions on visual objects instead of using a

command interface. This is a Srpical feature of ail window

environments. The interface usually gives the user point and click

access. Direct manipulation provides a direct and easy to use

interface.

7. Information pe rtaining to the interna1 functions of the system should

not be presented to the user, since this Srpe of information can be

confusing. If this is unavoidable, then the information should be

presented in a simple and convenient manner.

8. Flexibiliw is an important principle, since it accommodates variations

in the user's skills and preferences. This could be one of the difficult

features to incorporate.

9. A system should toierate enors made by the user. System crashes

should be rninirnized and simple recovery measures presented, such

as an U N D 0 button. A n over sensitive system will inhibit the user's

ability to leam the system and their productivity by making them

work slower to avoid errors.

CHWlER 3. GRAPMCAL USER DVTERFACE

Underlying ail HCI research and design is the belief that the people

using a cornputer system should corne first. Their needs, capabilities

and preferences for performing various activities should drive system

design and implementation. People should not have to change radically

to fit in with the system, the system should be designed to match their

requirements.

Our ability to attend to one event from among competing stimuli in

an environment has been psychologically termed as Focused Attention

[Norm95]. The streams of information we choose to attend to, will tend

to be relevant to the activities and intentions that we have at that time.

When we attempt to attend to more than one thing a t a time, it is called

Divided Attention. The means for guiding attention within the context of

a GUI are:

Important information or information that needs irnmediate

attention should be displayed in a prominent place to catch the

user's eye.

Screens should be structured for easy navigation.

Information should be grouped and ordered into meanirigfid

parts.

Alerting techniques such as error dialog box, reverse video and

auditory warnings should be used.

CHAPIllER 3. GRAPHICAL USER DTîERFACE

Windows should be used to partition the cornputer screen into

discrete or overlapping sections.

3.4 Tools and techniques for designing a GUI

People interact with their world through the mental models that they

have developed. Specifically, the ideas and the abilities they b M g to the

job are based on the mental models that they develop about that job. As

interface designers we need to help the user in developing mental models

of the system that will aid hirn or her to understand the job and perform

the task.

The proper use of color, graphics, syrnbols and icons

communicates facts and ideas more quickly and aestheticdy to the user.

In the following sections, color, graphics and icons are discussed in

fùrther detail.

Color provides an effective way to stnicture information as weil as makes

the environment pleasant and enjoyable to look at. Excessive use of

colors, however, results in color pollution. Many cognitive tests have

been performed to fmd out the relevance of colors and the main findings

are:

C . 3. GWHTCAL USER RVI1ERFACE

Sementation: Color is a very powerN way of dividing a display into

separate regions. Color can be used to emphasize as well as

categorize data. It can also facilitate searching through information.

Simvlicitv: It is more difficult to use color effectively that it is to use it

ineffectively. Simplicity is important in the design of color interfaces.

Do not attach more than one meaning to a color.

Restrict number of colors with meaning: The magic number (Mill561

for short-term memory is seven plus or minus two.

Consistenc~: The intuitive ordering of color c m help establish

intuitive consistency in the design. The spectral and percephid order

red, green, yellow, blue c m guide the order of concepts attached to

colors. Red is first in the spectral order and focuses in foreground,

green and yellow focus in the rniddle, while blue in the background.

Prominence: Color should be used to make features prorninent. For

example, currently active files could be shown in a different color.

Standardized interface colors should be established and used across

the development. For example, red is a good color to alert the user for

an error. Yellow is appropnate for a waming message, and green to

show positive progress.

Table 3.4.1 shows good and bad color combinations [Panc95]. As

expiained in the table below, for a white background, the best text color

would be black or blue and the worst color would be cyan and yellow.

Background

White

Black
L

Red

Best Colors

Black, Blue

Yellow, White

Green

Worst Colors

Cyan, Yellow

Blue

Black

I

Blue

Table 3.4.1 Color Combinations for Graphical User Interfaces.

Blue, Magenta
L

Black, Red

cyan

Magenta

Marcus [Marc901 has given some effective suggestions for creating good

interfaces:

cyan

Red, White, Yellow

Use dark colors for background.

Opposite colors go well together.

Black

Blue, Red

Black, Blue

Avoid the simultaneous display of highly saturated, spectrally

extreme colors. For example, bnght violet with red.

Green, White, ~ e l l o w

Cyan, Green

Avoid using adjacent colors that differ only in the arnount of

pure blue.

Use bright colors for danger or for getting the user's attention.

CHAPTER 3. GRAPWICAl; USER IN7ERFACE

3.4.2 Graphics

Graphics help to present objects in a pictorial rather than verbal form. It

is true that a picture is worth a thousand words and a chart is worth a

dozen tables of numbers. The human ability to extract information from

visual scenes is more fundamental than the ability to manipulate data

arithmetically. Graphics can be used for the following [MarcSO]:

To display complex relationships,

To show component relationships (e.g. mimic display of car),

For dynamic data,

Map display for geographic data,

To display trends/projections (e.g. stock market data),

For quick interpolation.

3.4.3 Icons

Icons are s m d pictorial images that are used to represent system

objects, application tools such as those for drawing, utilities and

commands. For example, as part of a desktop metaphor, objects

associated with working at an office desk such as phone diaries,

CWMER 3. GRAPHEAL USER LNTERFACE

schedulers are depicted as icons. These icons reduce the complexity of

the system, making it easier to leam and use.

Advantages to using icons:

Icons are easy to understand.

Icons Save space.

Icons can permit international use.

Icons are effective for tasks that require a diversiSr of

manipulative operations to be performed (e.g., range of drawing

and painting techniques.)

Icons act as mnemonic tags for tasks where large amounts of

information have to be readilv identifïed.

3.5 Other expert
Some of the expert

system shells
system shells are:

ACOUIRE: ACQUIRE [Acqi97] is a knowledge acquisition system and an

expert system sheIl. I t is a complete development environment for

building and maintainhg knowledge-based applications. I t provides a

step-by-step methodology for knowledge engineering that d o w s the

domain experts themselves to be directly involved in structuring and

encoding the knowledge. Features include a stmctured approach to

knowledge acquisition, a mode1 of knowledge acquisition based on

C ' R 3. GRAPWCAL USER I2VTERFACE

production niles and decision tables, handlirig uncertauiw by

qualitative, non-numencal procedures.

FOCL: FOCL (Foc1921 is an expert system sheli written in cornrnon LISP.

It l e m s Horn Clause programs from examples and background

knowledge. The expert system includes a backward-chaining rule

interpreter and a graphical interface to the nile and fact base.

FLEX: FLEX [Flex94] is a hybrid expert system sheli available across a

wide range of different hardware platforms which offers frames,

procedures and rules integrated within a logic programmhg

environment.

BABYLON: BABnON [Baby96] is a development environment for expert

system. I t includes frames, constraints, prolog-like logic formalism, and

a description language for diagnostic applications. I t is irnplemented in

common LISP and has been ported to a wide range of hardware

platfoms.

In summary, user interface software is complex, highly interactive,

modeless, concurrent, graphical, and has user-based real-time

requirements. Emerging user interface technologies such as multi-modal

interaction, muiti-media and intelligent agents will give it a prominent

position in any software development process.

Chapter 4

System

% every thing there i s a season, and a time to e v e q puvose under the

heaven; A time to be bom and a time to die; a time to plant, and a time to

pluck up that which is planted; A time to kill, and a time to heal; a time to

break down, and a time to build up."

- The Bible, Ecclesiastes, 3

Tcl/Tk is a development toolkit for building GUI'S. The Tool

Command Language (Tcl) is the embedded scripting Ianguage and Toolkit

(Tk) builds widgets on top of Tcl.

This chapter begins with an introduction to Tcl/Tk. The model,

illustrating the various phases involved in building a temporal expert

system sheU, is explained. Then, this chapter t a s about system specific

details including entering, representing and querying information.

Tc1 is a scnpting language for controhg and extending

applications. It provides generic programming facilities such as variables,

loops and procedures that are useful for a variety of applications.

Tk is the graphical user intedace extension for applications created

using Tcl. Tk extends core Tc1 facilities with commands for building user

interfaces. Tk is used to create widgets, arrange widgets, and bhd

events to Tc1 commands.

Various advantages [John97] of using Tcl/Tk for developing

graphical user interfaces are:

Scriptbg larimage: While there are a few compilers, the vast majority

of Tc1 users nin their programs as scripts. Scripts are easier to

develop and faster to execute than full-fledged C or C++ programs

because there is no need to compile and link the prograrn. The Tc1

user just executes the Tc1 interpreter and runs the script.

Easv to learn: Unlike other programming languages, Tcl/Tk is easy to

learn and use.

Works on manv different platforms: Tc1 works weLl in the Unix

environment, particularly because developing graphical applications

on Unix under Motif tends to be a troublesome task. This is one of

the main reasons for the success of Tcl/Tk. On the Windows side,

versions of Tc1 exist for Windows 3.1, Windows 95 and Windows NT.

The latest version of Tc1 also runs on Apple's Macintosh platform.

Extension and modification: One of the main uses of Tc1 is that it is

possible to add commands to Tcl, thereby, extending the language.

The Tc1 interpreter is a C function that can be linked with various

applications.

Tcl/Tk is free: Tcl/Tk is available for free, on the Internet. This

feahire of the language makes it popular amongst the student

community.

Works well with the Internet: Tc1 inclrides a number of built-in

features that make working with World Wide Web pages easier. The

text widget, for example, supports tags that help in creating hypertext

links in the text. Tc1 is good for CG1 scripts as well.

4.2 Conceptual Model

We use Tcl/Tk to implement the GUI. The GUI is one component of OUT

system. The block diagram in figure 4.2 gives an oveMew of the system.

Inference Know ledge
Engine

Figure 4.2 Conceptual Model

The GUI provides the environment for representing, entering and

querying information. The translator is a set of Tc1 instructions, which

provides a link between the graphical user interface and the inference

engine. It maps the information entered by the user ont0 the logical form

and stores it as facts in the knowledge base. Every fact contains the

following information:

Unique color that represents an event.

Temporal information associated with that event.

The inference engine is the backbone of the temporal expert system

shell. It interacts with the knowledge base, which contains facts to solve

the queries requested by the user. The result of the query is sent back to

the translator, where it is mapped from logical to user understandable

graphical form. The inference engine and knowledge base are discussed

in chapter 5. The graphical user interface and translator are discussed

in the remainder of this chapter.

4.3 Graphical User Interface

Entering Information:

The screen shown in figure 4.3.1 is used to enter information. An

event is defined as a single item of temporal information. Every event has

a name, description and a temporal component. For example:

John had a meeting at 4 p.m.

The event name for this event is 'Meeting", the event description is

'John had a meeting at 4 p.m." and the temporal component is that it is

true at 4 p.m. Another example is:

1 went jogging between 5 p.m. and 5:30 p.m.

The event name for this event is Vogging", the event description i s "1

went jogging between 5 p.m. and 5:30 p.m." and the temporal component

i s that it is true between 5 p.m. and 5:30 p.m.

The text entry box labeled 'Event Name" is used for entering the

name of an event. The 'Event description" text box provides a location

for adding event details. The user can move from one data field to

another either by tabbing to, or by clicking in the desired field. The

system prompts the user with an error message, if any of these text

boxes are left empty.

Figure 4.3.2 Color Window

The next step is to pick a color. The "Pick ColoP button in figure

4.3.1 invokes the color window shown in figure 4.3.2. The user can

select a color for an event by filling in the numerical values for red, green

and blue. Numerical values for each of these primary colors range

between O and 254. I t is also possible to select a color by sliding the

triangular tab on the color scale for each color. The selection text box

and the color display window (they both appear in the right hand side of

the window in figure 4.3.2) change their color values as the user slides

the triangular tab on the color scale. The user confirms his/her selection

by clicking on the "OK" button.

Every event is represented by a unique color. This unique color is

used as an index for the event. We c m represent a total of 255*255*255

events.

The unique color associated with each event is used in querying

information from ECLPSe and in maintaining database integrity. It

should be noted that if the user attempts to pick the sarne color for more

than one event, the system flags an error message and prompts the user

to pick another color. As a visual cue, symbolic icons used later w u

have the sarne color as the event. The user can change or modify any

information entered up to this stage.

There are dif'ferent categories of events that can be represented.

Depending upon the category of an event, the user chooses an icon from

one of the boxes labeled "Point Evenf', "Limitless Event", etc. in figure

4.3.1 and appropriately places it on the tirne scale. The time scale

appears near the center of figure 4.3.1. The user can modify or change

the position of the icon/icons on the time scale. The scale represents a

12-hour time period between 12 a.m. and 12 p.m. The minimum unit of

time on the scale is 15 minutes, which corresponds to 0.25 centirneters

on the d e r . The smdest unit of thne that can be represented on the

scde is called a grid interval.

In order to select an icon, the user points and clicks on the desired

icon, which can then be dragged dong with the mouse pointer to any

position on the tirne scale. The icon may be positioned at any of the grid

intemals. The user may modif'y the position of the icon on the time scale

by pointing and clicking on the icon and dragging it dong with the

mouse pointer to a new position.

It is important to note that an icon can only be positioned on the

time scaie and it becomes invisible if the user tries to place it at any

other location on the canvas. As a visual cue, clicking on an icon will

change its color to red, which indicates that it is currently selected by the

user. Icons are drawn to resemble the temporal extent that they

represent.

After entering the current event, the user clicks on the "Continuen

button to add another event. Finally, clicking on the "Donen button

closes the current window, saving the detaiis to a file and control is

transferred back to the main application window. As the name suggests,

the 'CariceP button aborts the current operation, clears the screen and

takes the control back to the 'Event Name" text box. The "Help" button

provides an online help facility for the current screen and guides the user

during the processing sequence. This helps the user to leam the

interface, and lessens the probability of undesired results.

The following explains the various categories of information that

cari be represented using the symbolic icons.

Point event: It represents those events which occur at precise points.

For example,

John calied at 2:30 a.m., 4:45 a.m., 6: 15 a.m. and 12 p.m. (1)

This cari be represented using the "Point Event? by placing the icon a t

the appropriate time points on the scaie, as shown in figure 4.3.3. It

is important to note that the user selects the "Point Event" icon four

times in order to position it at four different locations - 2:30 a.m.,

4 4 5 a.m., 6:15 a.m. and 12:OO p.m.

Figure 4.3.3 Point Event.

Limitless Event: This icon represents an event that started at some

unknown tirne in the past and continues until an unknown time in

the future. For example,

It was raining throughout the day. (2)

(Note that in this example, 'day" represent a 24 hour time period.)

This event possibly started before 12 a.m. and ended after 12 p.m. but

was definitely true between 12 a.m. and 12 p.m. When the user

places the 'Limitiess Event* icon on the time scale, it automatically

configures itself to cover the entire scale, as shown in figure 4.3.4.

Figure 4.3.4 Lirnitless Event

Fixed Event: I t represents those events, which have a precise starting

and ending point. For example,

1 went jogging between 6 a.m. and 8 a.m. (3)

"Jogging" has a precise starting and ending point and is represented

using the 'Fixed Event" icon. The above event is true between 6 a.m.

and 8 a.m. To position it on the time scale, the user points and clicks

on the 'Fixed Event" icon and drags it to the appropriate position on

the time scale.

The user can modify the length of this icon on the time scale

by clicking on a small square attached to the icon (one is shown at 8

a.m. in figure 4.3.5) and dragging it with the mouse. This configures

the 'Fixed Event" icon to a desired length. As a visual cue, the smail

square attached to this icon changes its color to red, when the user

brings the rnouse pointer over it. The minimum time interval that this

icon cari represent is 15 minutes.

FixedLeft Event: This icon represents an event which starts at a

known fixed point and continues h to the future. For example,

The basketbail game started at 9 am. and finished in the afternoon.

(4)

This event is defuiitely true between 9 a.m. and 12 p.m. and it ends

after 12 p.m. The user places the left end of the "FixedLeft Event" icon

at 9 am. on the tirne scale and the right end of the icon automatically

covers the rest of the scale indicating that the event continues into the

future as shown in figure 4.3.6.

Figure 4.3.6 FixedLeft event

FixedRiaht Event: An event that started at some unknown time in the

past and has a fxed ending point is represented by this icon. For

example,

The Snow stonn started last night and ended today at 10 a.m. (5)

I t is important to note that the event started at some point before 12

a m . and continued till 10 am. Event "Snow storm" was defiriitely

tme between midnight and 10 am.

The user places the right end of the icon at 10 am. on the time

scale and the ieft end automatically covers the rest of the scale. It

indicates that the event started sometime before 12 a.m. and

continued till 10 a.m. as shown in figure 4.3.7.

Figure 4.3.7 FixedRight Event

I t is possible to represent events that require the use of more than one

type of symbolic icon. For example,

The telephone switch had its peak load at 4 a.m., 6 a.m., 10 a.m.

1 1 :30 a.m. and between 10:OO till 1 1:30 a.m. (6)

Example (6) requires the use of 'Point EvenP and 'Fixed Event" to

capture the event details as shown in figure 4.3.8.

Figure 4.3.8 Point Events and Fixed Event

The user selects the "Point EvenF icon four t h e s in order to

position it at four different locations: 4 a.m., 6 a.m., 10 a.m., 11:30 a.m.

The 'Fixed Event" icon is selected once and positioned between 10 a.m.

and 11:30 a.m.

Example (6) represents the case where the event occurred between 10

a.m. and 1 1 :30 a.m. including the end points. This is a closed intemal.

Figure 4.3.5 represents the event '1 went jogging between 6 a.m. and 8

a.m.* which is defuiitely tme between 6 a.m. and 8 a.m. No cornmitment

is made at the end points. We represent this event with an open intemal.

Querying the system:

The user can perform the following queries:

1. 1s an event true at the given time 2

2. What is true about an event ?

The screen shown in figure 4.3.9 is used to queq information. The

layout of the query window is similar to the enter information window.

Providïng consistency among different windows is essential to the design

of the graphical user interface.

Figure 4.3.9 Screen for Querying the System

"Select Event" is the label for the dropdown event list box shown by

a button with a downward arrow sign. The user can view the list of

events by clicking on this button as shown in figure 4.3.10. An event is

selected from the Est by pointuig and clicking on it. The user confis

his/her selection by clicking on the 'Or button.

Figure 4.3.10 Query Screen with dropdown List

To query the system about an event, the user selects and positions

the appropnate icon on the tirne scale and clicks on the "Query" button.

The system displays the result(s) of the query in a separate dialog

window. As the name suggests the 'New Q u e 4 button allows the user

to perform a new query by clearing the screen and retuming control to

the "Select Evenf' dropdown list box. The "Exit" button closes the

curent window and transfers control back to the main application

window. The 'Help" button provides an online help for the current screen

and guides the user during the processing sequence.

When the user clicks on the "Query" button, Tc1 opens a pipe. This

pipe is used to send properly formatted the query commands to ECLLPSe.

The ECLPSe inference engine interacts with the knowledge base, which is

the repository of facts, to solve the queries requested by the user. Output

from the Merence engine is written to a file, which is parsed by the

translator and the results are displayed in a dialog window.

Figure 4.3.1 1 Q u e m g Point Event

We conclude with a few query examples. The frst one is:

John called at 2:30 a.m., 4:45 a.m., 6: 15 a.m. and 12 p.m.

The event name for this event is *Phone cds" and is true at 2:30 a.m.,

4:45 a.m., 695 a.m. and 12 p.m. The user selects this event from the

dropdown event list box by clicking on it and c o n f i s his/her selection

by clicking on the 'OK" button. The user selects the "Point Event" icon

four times and places it at the foilowing four positions on the time scale:

2:30 a.m., 4:45 a.m., 6:15a.m. and 11 a.m.

Ciicking on the "Query" button initiates the query procedure and

the system dispiays the result of the qmry in a dialog window as shown

in figure 4.3.1 1. This query results in "No". The user should place the

"Point Event" icon at 12 p.m. instead of 11 a.m. for the query resuit to be

true.

Figure 4.3.12 shows another query example.

I t was raining throughout the day.

The event name for this event is "Rain", the event description is "It was

raining throughout the day". This event possibly started before 12 a.m.

and ended

p.m.

after 12 p.m., but was definitely true between 12 a.m. and 12

The user confirms his/her selection by clicking on the 'OK" button

and then positions the "Fixed Endn icon between 4 a.m. and 7 a.m. The

query procedure is initiated by clicking on the ' Q u e 4 button.

As shown in the figure 4.3.12 the query results in Tnie". It means the

event "Rain" is true between 4 a.m. and 7 a.m.

Figure 4.3.12 Querying Limitless Event

The user can fmd out what is true about any event by selecting an

event from the dropdown list box and confirming his/her selection by

clicking on the 'OK" button. Finally, clicking on the 'What's True" icon,

displays a dialog window showing the tirne at which the event is true.

For example, the user selects the event 'Phone calls" from the

dropdown list of events and clicks on the 'OK" button to c o d m the

selection. The user then clicks on the m a t ' s True" icon and the system

displays the results of the query using the dialog window shown in figure

4.3.13. The event "Phone c d s * is true at points 2:30 a-m., 4:45 a.m.,

6: 15 a.m. and 12 p.m.

C ' R 4. =STEM OVERWEW

Figure 4.3.13 Query using What's True

We can also do open and closed i n t e d queries. Recall example (3):

1 went jogging between 6 a.m. and 8 a m .

The event name for this event is 'Jogging" and is tme over the open

interval between 6 a.m. and 8 a-m. The 'Fixed EvenV icon is positioned

between 6 a.m. and 8 a.m. on the tirne scale dong with the "Point Event?'

icons at 6 a.m. and 8 a.m. respectiveiy, as shown in figure 4.3.14. This

makes the event Vogging" true in a closed intenral. The user initiates the

query procedure by clicking on the 'Query" button. The query resuits in

'No" because the event 'Jogging" is not true in a closed interval between

6 a m . and 8 a.m.

Figure 4.3.14 Point Event and Fixed Event (closed i n t e d)

Let's perform the same query again over the open interval between

6 a.m. and 8 a.m. The 'Fixed Eveni? icon is positioned between 6 a.m.

and 8 a.m. on the tirne scale as shown in figure 4.3.15.

The user initiates the query procedure by clicking on the "Que$

button. The query results in "True" because the event "Jogging" is true

between 6 a.m. and 8 a.m.

Figure 4.3.15 Point Event and Fixed Event (open interval)

4.4 System Database

Information about the events is stored in the database fde and can

be viewed by the user. The main application window is shown in figure

4.4.1 with its 'Options" menu p d e d dom.

The 'Optionsn menu provides the following choices: View

Database", 'Colors Used" and "Symbols".

Figure 4.4.1 Main application window

At any point during the processing sequence, the user may access

the database.

Figure 4.4.2 Event Details

Choosing View Database" from the 'Options" menu opens a dialog

window showing "Event Name", 'Associated Colof and "Event

descriptionn in a tabular form as shown in figure 4.4.2.

Similady, choosing "Colors Used" fkom the "Options" menu opens a

dialog window showing the colors currentiy in use. The user can scan the

colors along with their hexadecimal values. The color window has a

vertical and horizontal scroil bar for easy navigation as s h o w in figure

4.4.3

Figure 4.4.3 Colors Used

Clicking on the "Symbols" under the "Options" menu opens a window

that displays a list of symbols used. Each symbol is displayed along with

its name and meanhg as shown in figure 4.4.4.

Figure 4.4.4 Symbols

These dialog windows help keep the user updated about the state

of the system.

There is an on-line tutorial that explains the complete working of

the graphical user interface for the temporal expert system shell. It helps

the user to learn the interface, and lessens the probability of undesired

results.

C-R 5. LAFERENCE ENGINE AND K N O W D G E RASE

Chapter 5

Inference engine and Knowledge base

Again I saw that under the sun the race is not to the swift, nor the battle to

the strong, nor bread to the wise, nor riches to the intelligent, nor favor to

the man of skill; but time and chance happen to them all.

- The Bible. Ecclesiastes7 9

This chapter discusses the inference engine and knowledge base.

The inference engine, written in ECLlPSe, is the backbone of the system.

The inference engine interacts with the knowledge base, which is the

repository of facts, to solve the quenes requested by the user.

5.1 Inference engine

Our inference engine consists of ECLlPSe and d e s for

solving queries about interval and point based information [Good92].

CH4RER 5. LAFERENCE ENGINE AND KlVOWLEDGE BASE

Interval based information is represented using the integral nile.

integral (a, b, f , x) is true if and only if the integral of f from a to b is x.

We use a iimited version of the integral nile which can be viewed as

the measure of the duration of truth of f over the interval (a,b). For

example, Togging" is true throughout the interval (0,10) is written as

integral(~.ï~, jogging,~O) and Togging" is tme for half the time is

integral (O, 10, j ogging, 5) . Note that in the latter case, "jogging" may

not have been true over a single sub-interval of length 5.

Information true at an isolated point is represented using the

point mie. point (t , f , x) is true if and only if f(t)=x. For example,

Yrunning" is tnie at tirne 5 is written as point (5, running, 1) . The "1"

represents 'truen.

For the examples that follow in this section, assume the knowledge

base consists of the following facts:

point (5,running, 1) .
integral (0 , 10, jogging, 10) .

We conclude this section with a description of the rules used to

implement the point and integral relations.

CEDPï73R 5. DKFFERENCE E N G . AND KNOWGEDGE BASE

Point relations:

p t (T , F , X) :-

point (T, F,X) .

p t (T , F , l) :-

A #< T,

B #> T,

C #= B-A,

integral (A, B, F, C) .

Figure 5.1 Point relations

The p t (T ,F ,X) rule shown in figure 5.1 (l), is tme if there is a

corresponding fact point (T I F , X) in the knowledge base. For example, to

fmd out if the event 'running" is true at 5, the inference engîne checks

the knowledge base for the fact point (5, running ,1) . On fmdùig the

above fact, it successfully satisfies rule (1) and returns with Tes".

To determine if F is tme at an isolated point T, we c m also look for

an interval (A,B) which contains T and over which F is true throughout.

This strategy is captured by the second nile in figure 5.1. For example, to

fmd out if the event "jogging is true at 5, the inference engine checks the

knowledge base and fmds integral(0,l0,joggingIi~).

integral (A, B I joggings) is unifïed with integral

(O , i O, j ogging , i 0) . At the given point T=5, the ECLFSe inference

CHAITER 5. LNFERENCE ENGllVE AND KIVOU?LEDGE BASE

engine successfully satisfies rule (2) and therefore the event ujogging" is

true at point 5.

Integral relations:

int(A,B,F,X) :-

fntegral(A,B,F,X), 1 .

int(A,B,F,C) :-

X #<= A,

Y #>= B,

z #= Y-x,

integral (&Y, F, 2) ,
C #= B-A.

int(A,B,F,C) :-

X #<= A,

Y #> A,

Y #c B,

z #= Y-X,

integral(X,Y,F,Z) ,

int(Y,B,F,Temp),

C #= Y - A + T q .

Figure 5.1.1 Integral relations

Interval based information is solved using the integral d e s in

figure 5.1.1. The int (A,B,F,X) rule shown in (3), is true if there is a

corresponding fact int egral (A, B , F , X) in the knowledge base. For

CEiAPTER S. INFERENCE ENGINE AND KNOWLEDGE BASE

example, to fmd out if the event 'jogging is true between the interval O

and 10, the inference engine checks the knowledge base for the fact

integral (O , 10, j ogging, 10) . On fmding the above fact, it matches it

with the goal in (3) and returns with Tes".

The inference engine uses the d e int (A, B. F, C) shown in (4). to

fmd out if an event F is true over a super-interval (X,Y) of (A,B). I t is

important to note that this integral rule checks the tmth-value of an

event F over a closed intend. An event F is tme over the interval (A,B), if

there exists an integral(X,Y,F,Z), such that its lower limit X is less than

or equal to A, its upper M t Y is greater than or equal to B, the

difference of X and Y is Z and the difference of A and B is C.

For example, event ujogging is tme throughout the interval (0 , lO) .

To find out if "jogging" is true between the i n t e ~ d (5,8), the inference

engine checks the knowledge base for integral (O, 10, jogging, 1 O) .
For the given interval (5,8), the ECLlPSe inference engine successfully

satisfies nile (4) and therefore the event 'jogging" is true between (5,s).

The rule int (A, B, F, C) shown in (5)) impiements the following

additive property of integrals:

lab f(x) dx = lac f(x) dx + Icb f(x) dx.

integral (lO,ll, jogginw) .

For example, the event Togging" is true between [O, 1 O] and (10,111.

The inference engine uses the nile int (A, B , F r C) in (5) to prove that

C m 5. LAFERENCE ENGllVE AND KNOUiZEDGE BASE

"jogging" is true between [O, Il]. Note that we use 'int" and "integrai" in

the code in order to distinguish between the niles and the facts in the

knowledge base. This helps to avoid infinite loops. Similarly for "pt? and

"point"

Knowledge base

The point and the interval d e s are static. On the other hand, the

knowledge base is dynamic because facts are added as a result of user

interaction.

The user enters the event name, event description, color and

temporal information for every event into the system. The translater

maps the information entered by the user to a logical form and stores it

as facts in the knowledge base. The unique color that represents each

event is used to index that event. Every fact in the knowledge base

contains the following information:

Unique color that represents the event.

Temporal information associated with that event.

The foIlowing example illustrates what gets stored in the knowledge

base as a result of the translation from the graphical to the logical form.

CHAITER 5. llVFERENCE E N G m AND KlVOWLEDGE BASE

Figure 5.2 Fact representation in the knowledge base

Mary wiU be in her office at 8 a.m. and between 10 a.m. and 1 1 a.m.

This event is represented by positionhg a 'Point Evene icon at 8 a.m.

and 'Fixed Event" icon between 10 a.m. and 1 1 am. as shown in figure

5.2.

The translater maps the event details entered by the user into the

l o g i d form and stores it in the knowledge base as the foliowing facts:

CHAPTER 5- INFERENCE ENGINE AND KNOUiLEDGE RASE

point (8 . 0 , bc7a60,I) .
integral (l 0 . 0 , l l . 0 , bc7a60,l) .

Note that "bc7a60n is the code for the color associated with the event.

Every tirne the user enters information, new facts are added to the

knowledge base.

The inference engine and the knowledge base constitute the back

end of the system and are transparent to the user. Due to the loose

coupling between the implementation and the interface, we can change

the underlying implementation without changing the interface. This

feature makes the design more robust. New features can be easily added

to the existing system.

Chapter 6

Evaluation of the GUI

It were not best that w e should think alike; it is difference of opinion that
makes horse races.

-Mark Twain

The designer is faced with the task of estimating the effectiveness

of the user interface. A complete evaluation of the user interface design

is an expensive process. It requires the support of cognitive scientists

and trained technicians in graphical design. I t involves designing and

performing a number of statistically signif~cant experirnents with typical

users. This type of experiment may be economically feasible for large

projects, but for comparatively smaii development projects, this Srpe of

experiment is unrealistic. However, user interface evaluation is an

important part of the design process and it should not be ignored, but

should be scaled to suit the particular design. These types of evaluations

may be less reliable but they serve as a measure of user preferences and

to detect particular error prone operations.

CHlLPTER 6. EVALUAïTON OF THE GLll

An evaluation technique that can be used is an observation

process. The user is assigned specific tasks to carry out, and the results

gathered by observïng their interaction with the interface. This is a form

of diagnostic analysis and is a subjective method of evaiuation. Laurel

[LaubSO] proposes several steps to foilow when doing this type of

evaluation:

Set UP the observation: This involves preparing the questions or tasks

that the user will be doing in the observation. These tasks should

emphasize all the important parts of the interface being evaluated.

Create a realistic situation for the obsemation; that is, set up the

environment ssimar to one, which would be used normdy by the

user.

Recruit users for the evaluation: In recruiting users, make sure that

the subjects have approximately the same expenence level as Spical

users of the system. Also they should not be familiar with or have

pre-conceived notions about the product.

Describe the purpose of the observation: Set the users at ease by

stressing that they are involved in a design process and emphasize

that it is the product that is being tested, and not the skills of the

users.

User's claim: Tell the user that he/she can quit anytime.

Emlain how to think aloud: Ask users to Say what cornes to mind

when they work. Laurel [LaubgOJ suggests that by listening to users

talk and plan, the administrator will be able to examine the user's

expectations of the product as weU as their intentions and problem

solving strategies.

Demonstrate the eauipment to be used: Perform a demonstration of

the equipment that the user will use during the evaluation. This

allows the user to become familiar with the equipment.

Explain that help will not be provided: It is important that the

administrator allow users to work with the product without

interference or extra help. This is the best way to observe how users

really interact with the product. If there is on-line help available, then

point this out to the user, if it has not already been noticed.

Describe the tasks and introduce the product: Describe to the user

the overall function of the product and explain what each task

requires. If a demonstration of the product is required beforehand,

make sure that something to be tested is not demonstrated.

A s k the user to voice questions before the evduation begins: The user

should be given tirne to browse through the interface for a set amount

of time and ask generai questions before the evaluation begins.

Conclude the observation: After the observation is over, re-explain to

the user the reason for the observation and answer any remaining

questions. Also provide some form of user satisfaction questionnaire

to obtain the users' overd opinion of the product.

6.1 User Evaluation

The evaluation of the temporal expert system sheii's user interface

is based on the observation process outhed above. The user is given

tasks to perform using the functions of the user interface. These tasks,

presented in figure 6.1, cover d the important aspects of the user

interface: entering information, querying the system, and general tasks.

When entering information, the user enters the event details, picks

a color for the event and adds temporal information for the event by

positioning the required icon on the time scale. When queIying the

system, the user perfonns queries using two methods:

1. Is an event tnie at the given time ?

2. What is true about an event ?

During the general tasks section of the evaluation, the user verifies

the database for the total number of events and prints the active

database frle.

A s the user is performing these tasks the evaluator uses an

observation form (figure 6.2) to record the results of the evaluation. To

categorize the user's skills, information is gathered pertauiin . . g to a user's

experience with cornputers and windows environment. For each task

performed, the foliowing information is recorded:

The time it took to perform a task: This information is used to

determine the rate at which the user learnt the user interface

procedures.

The type of help required by the user: This information determines the

ease with which the user l e m s the interface, and whether or not on-

line help is being used.

Problems the user encounters: This information is used to determine

the user's understanding of the interface and whether the furictions of

the user interface are properly defmed.

The user's comments: This information gives the user's satisfaction

with the interface functions, and features that they th* should be

included in the interface.

General observations: These are observations made by the evaluator

about the user's interaction with the interface.

Evaluation Tasks
Part 1 : Enterina the Idormation

Enter the foiiowing event details:

Event Name: Meal Scheduie,

Event Description: Tim had breakfast at 8 a.m. and lunch at 12 p.m.

Pick Color: Red=607 Green= 120, Blue=85.

Place one "Point Event" icon at 8 a m . and another "Point Event* icon

at 12 p.m.

Event Name: Homework.

Event Description: Henry did his homework between 7 a.m. and 9

a-m.

Pick Color: Red=50, Green= 100, Blue=50.

Place the icon "Fixed Event" between 7 am. and 9 a m . on the time

scale.

Event Name: Snow.

Event Description: It was snowing throughout the day.

Pick Color: Red=95, Green=200, Blue= 175.

Place the icon "rlimitless Event* on the time scaie.

Part 2: Quervinn the Svstem

4. Find out the time points at which the ment "Meai Schedule" is true?

5. Select the event "Jogging" nom the event list and find out if this ment

is true between 10 a-m. and 11 a.m.? Also, check if the event is tnie

at point 10 a.m. and point 11 am. on the time scale? (Note: Event

details for ''Jogging aiready exist in the Knowledge base).

Figure 6.1 Evaluation Tasks
70

C-R 6. EVALUATXON OF THE GUI

6.Find out at what time the event 'Phone cds" is true and verify the results.

What are the steps involved in verification?

7.1s the event "Snow" true between 5 a.m. and 8 a-m.?

Part 3: General tasks

8. H o w many events are cumently stored in the database?

9. Print the active database file.

10.1s "Black" one of the colors used to represent an ment.

Note: Black has a hexadecimal value of #000000.

Figure 6.1 Evaluation Tasks cont'd

CI-lAPlER 6. EVALUAZTON OF THE GUI

Observation Fonn

User Information

1. Experience with Cornputers.

- Novice Intermediate

2. Fxperience with Windows.

- Novice - Intermediate
3. Experience with Unix.

- Novice Intermediate

Task Information

4. Task Number:

4. Time taken to perform the task:

Yes 5. Did user require help: - No

If yes, what kind of help:

Problems with interface:

Comments user made:

8. General Observations:

Figure 6.2 Observation Form

6.1.1 Results of the Evaluation

There were ten participants in the evaluation, and their computer

expertise was categorized as novice, intermediate or expert. The number

of participants in the individual categories is represented in figure 6.3.

This characterization was based on the users' knowledge and experience

with cornputers and the windowing environment. This user population

was chosen because the interface is targeted towards novice and

intermediate users. The expert users were chosen to obtain the opinion

of individu& who have had experience with similar products and could

give informed ideas about the interface.

Each participant in the evaluation was introduced to the interface,

and the novice users were given a demonstration on how to use the

window environment on the workstation, and a brief summary on how to

manipulate windows in the interface and the widgets using the mouse.

The following general steps were given in the introduction along

with the steps that were outüned for this evaluation process:

Explain how to use on-he help.

Explain the structure of the interface. The user was instructed

that ali the major functions could be reached through the main

window, and that each function perfonned in the interface is

done through a specific window.

CHAPTER 6. EVALUAîTON OF THE GUI

Explain that the only help given will be to interpret the tasks

and inform them of the type of function required to perform the

task.

- - pp

Figure 6.3 User population for the evaluation

6.1.1.1 Observations

Task 1: Enter the event details for the event "Meal Schedule".

As it was the fxst task, 70% of the users had to be informed that to

position an icon on the üme scale, the user has to single click on the icon

and with the mouse button-l depressed, drag the icon to a specified

position. The expert users were easily able to pick the color for an event

by füling in the numencal values for red, green and blue. Novice users

took more t h e to select the color as they used the mouse to point and

select the red, green and blue values from the color scales.

This task took the longest for all users to perform, since they were

learning to navigate the interface.

Task 2: Enter event detaiis for the event "Hornework?.

90% of the users understood how to enter the event name, event

description and pick a color. The main cornplaint that the experienced

users had was that tabbing from one text field to another was not

functioning. Hence, mistakes were made in typing the values into the

correct field. Also the process of selecting, positioning and configuring

the "Fixed Event" icon on the time scde was not obvious to the users.

Task 3: Enter event details for the event "Snod'.

80% of the users were able to complete this task easily. The novice

users took more time to select and position the "Limitless Event" icon on

the fime scale. Users complained that there was no way to deletelchange

the information once entered into the database file.

Task 4: Querying the system for the event "Meal Schedule".

Once the use of the T h a t ' s Tme" query icon was explained to the

users, all of them were able to fmd out the time points at which the event

"Meal Schedule" is true.

Task 5: Q u e m g the system for the event "Jogging".

60% of the users were able to execute the quex-y. However, 40% of

the users had to be told that it is possible to position one type of icon

over the other.

Task 6: Querying the system for the event "Phone calls".

All the users were able to find out the time points at which the

event 'Phone c a s n is true. 80% of the users had to be explained the

meaning of the task in detail. Users found the verification task to be the

most difficult of all the queries.

Task 7: Querying the system for event "Snow".

This query was easily performed. However, one user inquired

whether he could place "Point Event" icons at all points between the tirne

interval 5 a.m. and 8 a.m. to check if the event is tme. The meaning of

"Fixed event" icon was explained later to the user.

Task 8: Finding the total number of events in the database.

AU the users were able to accomplish this task. 40% of the users

found an alternative method of dohg this task by choosing "Show

database" under the "Optionsn menu.

Task 9: hlIlting the database file.

Users had to be explained that the print option by default prints

the active database file. Everyone found it relatively easy to print the file

after the exphnation.

Task 10: Finding out if "BlacV was one of the colors used for an event.

AU the users easily performed this task.

6.2 User Satisfaction Evaluation

Chin et al [ChapgO] mention that user acceptance of a system is a

critical measure of the system's success. Although a system may be

evaluated favorably on every performance measure, the system may not

be used very much, because of the user's dissatisfaction with the system

and its interface.

The questionnaire that will be used to perform this part of the user

evaluation will be based on the QUIS S.Ol(shown in figure 6.4).

' Questionnaire for User Interface Satisfaction developed by the Human-Compter Interaction Laboratory
at the University of MaryIand [Chap90].

77

User Satisfaction Questionnaire

Overd reactions to the user interface.

temble
O 1

difncult
O 1

ngid

Organization of information.

confusing

O 1

Sequence of screens.

confusing

O 1

Use of terrns throughout system.

inconsis tent

O I 2 3 4

wonderfiil
7 8 9

easy
7 8 9

flexible
7 8 9

very clear

7 8 9

very clear

7 8 9

consistent

7 8 9

Computer terminology (icons) related to task you are doing.

never alway s

O 1 2 3 4 5 6 7 8 9

Figure 6.4 User Satisfaction Questionnaire

Messages on screen which prompt user for input.

confushg

O 1 2 3 4

Computer keeps you informed about what it is doing.

Error Messages.

unhelpful

O 1 2 3 4

Learning to operate the user interface.

difficult

O 1 2 3 4

Exploring features by trial and error.

diacult

O 1 2 3 4 5

Remembering use of commands.

mcu1t

O 1 2 3 4 5

always

7 8 9

easy

7 8

easy

7 8 9

easy

6 7 8 9

Figure 6.4 User Satisfaction Questionnaire cont'd

. --

13. Tasks can be performed in an obvious manner.

never

O

always

5 6 7 8 9

15. Experienced

consideration.

never

O

easy

6 7 8

and inexperienced users needs are taken into

always

6 7 8 9

Figure 6.4 User Satisfaction Questionnaire cont'd

6.2.1 Results of the user satisfaction questionnaire

-- --

Figure 6.5 R e s d t s of the User Satisfaction Questionnaire

Figure 6.5 represents the results of the user satisfaction

questionnaire shown in figure 6.4. The users responded to the

questionnaire after completing the evaluation tasks. From figure 6.5 we

see that the rneans Vary by a srnall amount across questions and the

standard deviations are low.

The two highest standard deviations occurîed in question number

5, which dealt with recogniang icons, and question number 14, which

dealt with correcting mistakes. In question number 5, a possible reason

for this is that the user either likes working with the icons, or thinks it is

inconvenient to remember the functionality of each icon. In question

number 14, a possible reason is that experienced users make more

mistakes in typing, therefore they have more mistakes to correct, while

novices are much more careful in checking that the data was correct

before adding it to the database file.

6.3 Conclusions from the observations

The conclusions that cari be made from these observations are:

There should be tabbing provided between fields, since users fmd it

more natural when typing to use the tab key instead of having to

move from the keyboard to the mouse.

There should be either an up front description of icons, or some

facility other than on-line help that notiiïes the user of the furictions

of icons. However, icons help users leam the functions of the

interface more easily, since they do not have to remember cornmands,

but can iristead use recognition.

On-line help is very useful in explaining processes that are not

obvious to users.

The consistency in the layout of the windows and the sirnilarity

between "Entering Information" and "Querying the systemn screens

helped users to rapidly learn the functions of the interface.

There should be imrnediate feedback to the user about the latest

action perfomed. It helps in deciding the next step.

Changes to data before writing to the database fde should be easier in

the window where the data is being added, so that the user does not

have to deletelchange the database file. There should be a means for

modifying the data already entered into the database file.

User actions are unpredictable, it is useful to provide a method of

undoing an action or an 'UNDO" button.

6.4 Conclusions from the questionnaire

The conclusions drawn from the results of the user satisfaction

questionnaire are:

The general reaction to the interface was favorable, although the

flexibility was not highly regarded.

Icons are only appreciated by some users, hence an alternative should

be provided.

The error messages are adequate and useN in helping the users to

perform the correct procedures.

Learning to operate the interface is simple and straightforward.

Understanding the functionality takes tirne.

The on-line help is beneficial to the user.

The interface can be used by both novices and experienced users

efficiently.

Correcting rnistakes should be as easy as possible.

CItAPTER 6. EVALUAî'TON OF ïXtE GUI

6.5 Modifications to the GUI

Following the results of the user evaluation, several changes were

made to the user interface to refïect user preferences and to improve the

structure:

In the "Entering Information" window, a tabbhg function has been

provided for easy movement from one text box to another. Now, the

user can either use the keyboard or mouse pointer to move frorn one

field to another.

Labels have been added to all the icons used for enterkg temporal

information. This will help the user in iden-g the icons.

Whenever the user points and selects an icon, the icon changes its

color to red, giving a visual cue to the user that the icon is currentiy

selected. After the user positions the icon on the time scale, the icon

takes the color of the event that it represents.

In "Querying the System", the What's True" icon changes its color to

blue when the user clicks on it. This gives feedback to the user that

the query operation has been hitiated.

A window explaining the use and furictionality of ail the icons used to

represent temporal information has been added to the main

application window. This wül help the user in selecting the right icon

for an event.

Chapter 7

Conclusion

Never remind someone of a kindness or ad of generosity you have shown

him or her. Bestow a favor and t h m forget it.

-Little Book on Wisdom.

The aim of this thesis was to present a logic independent graphical

user interface (GUI). The main research challenge was the defuiition of

the GUI. The GUI is developed using the p ~ c i p l e s of user interface

design and irnplemented in a way that it is easy to lean , use, efficient

and effective. The GUI allows the user to enter, query, and represent

temporal information using color-coded syrnbols. The user does not have

to be familiar with the particular logic used by the implementation.

Following the design of the interface and the background research

that was required the foilowing conclusions were drawn:

C ' 7. CONCLUSION

The user interface design is cmcial to the success of a product. The

user interface defines the qyality of a product and the ease of use and

learning of the system.

The three most important principles in user interface design are:

1. The interface should be designed to suit the needs and the abilities

of the anticipated user. Users should not be forced to adapt to an

interface because it is convenient to implement or because it is

suited to the system's designer.

2. User interfaces must be consistent. Consistency should be

maintained within a system and across subsystems.

3. User interfaces should have on-line help. Help should be accessible

and context sensitive.

Object-oriented concepts have made a huge impact on user interfaces.

Designers are applying object-onented concepts to the design

presentation and the integraiion of user interfaces.

The GUI to the temporal expert system d o w s the user to successfidly

enter and query temporal uifonnation u s h g the icons and symbols.

The temporal expert system sheil uses various icons such as 'Point

EvenP, 'Limitless Evenf', etc. to capture temporal information. The

C ' 7. CONCLUSION

mode1 has been successf'ui with the smali subset of the temporal

information.

Meaningful icons can be added to the system to handle more

categories of events. Logic used is more powerful than the GUI.

The iriference engine and knowledge base of the system are kept

transparent to the user.

The loose coupling between the implementation and interface makes

the design more robust. One can change the underlying

implementation without changing the graphical user interface.

The evaluation of a user interface is a vaiuable process in making the

design decisions that improve user satisfaction and quaiity of the

in terface.

The user does not have to faniiliar with the particular logic used by

the implementation. I t is easy to use GUI for entering, representing

and querying information compared to using Eclipse and the logic

directly .

CHARTU? 7. CONCLUSION

7.1 Future Development

The functionality of the GUI can be improved in

Enhance the capabilities of the system to handle

several areas:

more categories of

events. For example, include icons to handle the following events:

+ John played squash and tennis for equal amounts of time

between 5 p.m. and 7 p.m.

The following icon could represent this event:

O
The length of the line AB represents the tirne between 5 p.m. and 7

p.m. The horizontal bars O and (2 represent the two activities

squash and tennis. The horizontal bars O and 8 have the same

length because squash and tennis were played for the same

amounts of time. Making these bars oscillate between A and B

represents that these activities occurred between 5 p.m. and 7

p.m. The above icon becomes complicated when there are more

than 3 or 4 activities. We conclude that it is not an obvious

problem. One solution could be mixing graphics and text to

capture the event details. The underlying ECLlPSe inference engine

has the capability of handling such events.

Another example is:

CHAITER 7. CONCLUSION

+ Paul ran 1 hour between 12 p.m. and 6 p.m.

Extend the capabiiity of the system to handie true, false and unknown

information for the events like:

+ Henry was in Halifax yesterday but he will not be in

Halifax today. We do not know where he will be tomorrow.

Extend the capability of the system to handle conjunction and

disjunction for the events like:

+ 1 was either at Tim Hortons or the Coffee Merchant for

lunch.

Enhance the capability of the system to handle implications for the

events like:

+ My dog sits whenever 1 whistle.

Vt, if whistle blows at time t, then dog sits at tirne t.

Vt point(t, whistle, 1) 3 point(t, dogsits, 1).

Add a feature to delete or mode the events already entered into the

system.

7.2 Applications

The GUI could be used in schedulùig applications. The user enters

the tirne at which a person is available during the day and system stores

the details in the knowledge base. This information cari be used later in

setting up appointments.

Bibliography:

[Alle9 11 James F. Men. Temporal Reasoning and planning, In Reasoning

about plans. Morgan Maufinann publishers Inc., 1: 1-68, 199 1.

[Acqi96] http: l / wv.com/ai/acquire /acouire.html

[Abde951 Eclipse 3.5 ECRC, Cornmon Logic Programming System, User

Manual Dec 1995.

[Baby96] http: / / www.grnd.de

[Chapg O] Chapians, A. and Burdurka, W . Specifying Human-Computer

Interjkce requirements. Behavior and Information Technology, Vol 9,

1990, 479-492.

[Dinc88] M. Dincbas, P.Van Hentenryck, H. Simonis, A. Aggoun, T. Graf,

and F. Berthier. The constraint logic programming CHIP, In proceedings

of the International Conference on Fifth Generation Computer Systems,

Tokyo, Japan, December 1988,693-702, 1988.

[Debr89] The SB-Prolog System Version 3.1, A User Manual, Department

of Computer Science, Universiw of Arizona, Tucson, Arizona, Dec 89.

[Fnih93] Constraint logic pmgramming - An Informal Introduction,

technical report ECRC-93-5

[Fole96] Foley, J.D. Van Dam, A., Feiner, S. K. and Hughes, J.F.

Cornputer Graphies: - ninciples and Practice. Addison-Wesley Publishing

Company, Inc., 1996.

[Foc1921 "l%e role of prior knowledge in inductive leaming", Machine

learning 9:54-97, 1992.

[Flex94] http: / / www.lpa.co.uk

[Gabb95] Gabbay, Dov M., Hogger C. J. and Robinson J. A. Handbook of

Logic in Artificial Intelligence and Logic Programming, Vol-4, Epistemic

and Temporal Reasoning 1995. Pages 175-247.

[Good92] S.D.Goodwin, E.Neufeld and A.Tmdel (1992). Temporal

reasoning with real valued fundions. Pacific Rim International

Conference on Artifïcial Intelligence (PRICAI 92), Sept 23-25, Seoui

Korea P. 1266- 127 1.

[Hein921 Neim C. Heintze, Joxan Jaffar, Spiro Michaylov, Peter J.

Stuckey, and Roland H.C. The CLPW) programming manual, S e p '92.

[Ises94] lEEE Standard Glossary of Sofhuare Engineering Tenninology. In

IEEE Software Engineering Standard Collection. IEEE, 1994. Std 6 10.12-

190.

[Jaffü7] Joxan Jaffar and Jean-Louis Lassez. Constraint logic

programming. In Roceeding of the 14th ACM Symposium on Pririciples of

Programrning Languages, Munich, Germany, pages 1 1 1 - 1 19. ACM Jan

'87.

[John971 Eric Foster-Johnson, Graphical applications with Tc2 and Tk,

second edition, M&T Books, 1997.

[hubgo] Laurel, B. 7 7 ~ art of Human-Computer Interjace Design,

Addison-Wesley, 1990.

[Magh95] Karnel Maghur, A constraint based multi-agent planner, 1995.

[Monu74] U. Montanari. Networks of constraints: Fundamental properties

and application to picture processing. Information Science, 7 (Z) :95- 132,

1974.

[Marc901 Marcus, A. Designing Graphical User Inteface. UnixWorld (Oct

PO) , 135-138.

[Mayh92] Mayhew, D. Principles and Guidelines in Software User Interface

Design, Prentice-Hall 1992.

[Mill561 Miller, G. The Magical Number Seven Plus or Minus Two: Some

Limits on Our Capacity for Processing Information. The Psychological

Review 63, (Mar. 1956), 81-97.

[Nom951 Norman, D. "=m Signals Are the Facial Expressions of

Automobiles", Addison-Wesley Publishing Company, 1995.

[Panc95] Pancake, C. M. Pn'nciples of Color Use for Software Developers.

Tutonal M 1 from Supercomputing '95, 1995.

[Russ95] Norvig, Russell, Artifcial Intelligence, A Modem Approach,

Rentice Hall, Inc., 1995.

[Suth631 I.E. Sutherland. Sketchpad: A man-machine graphical

communication system, In Proceeding of the AFIPS Spring Joint

Cornputer Conference, Detriot, MI, USA, 329-46, 1963.

[Tyug70] Enn ljmgu. Solving problems on computation models, J.

Computational Mathematics and Math. Phys., 10:7 16-33, 1970.

Appendix A

APPENDX A. USER MANUAL

User Manua l

Figure A. 1 : Start Window

To start the temporal expert system sheii, type in the command:

w elwme. tcl

APPENDRA. USER ïWLNUAL

The execution of this command opens a welcome window as shown in

figure A. 1. By clicking on the "Continue button", a window opens which

gives access to the user interface and the tutorial (figure A.2).

Figure A. 2: Interface Window

To start the interface:

Click on the "Start SheU" button to open the main application window as

shown in figure A.3.

To start the tutorial:

Click on the "Start Tutonai" button to give the user access to the tutorid

functions which are discussed later.

A. 1 Using the main window:

The main window acts as a controi point for the h c t i o n s of the

interface.

APPENDLX A. USER W A L

Figure A.3: Main application window

A. 1.1 File menu:

The File menu provides

Create a new file:

Click on the "New"

the following functions:

button to open the dialog window as shown in

figure A.4. This d o w s the user to create a new fde to Save event

details .

Enter the name of the file as shown in figure A.4.

User clicks on the "Or button to confirm the file name. The "Cancel*

button aborts the operation.

APPENDX A. USER ïWNU,AL

Figure A.4: New file window

Open an existing file:

1. Click on the "Open" button to open the dialog window shown in figure

A.5. This allows the user to open an existing file, which wiii be used to

Save event details.

2. Select the type of the file and file name to open.

3. The 'Cancel" button aborts the operation. The Directory options menu

allows the user to choose any directory. The user gives his/her

--

confirmation by clicking on the "Open" button.

Figure A.5: File open window

APPENDDC A. USER MANUAL

Save a file:

As the narne suggests, clicking on this button saves the current file.

Print a file:

1. The Print button dows the user to print the active database fie.

Ci ichg on the print button opens up a confikm window as shown in

figure A.6.

2. The user can confirm by clicking on the ''Or button. The "Cancelm

button aborts the print operation.

Figure A.6: Print confirm window.

Exit:

The "Exit" cornmand closes all the windows and ends the application.

A. 1.2 Edit menu:

The Edit menu provides the following functions:

APPENDLX A. USER lMANUAL

Figure A.?: Main window (Edit menu)

Cut, Copy and Paste operations:

They function as expected on text.

Ente- information:

Click on "Enter Informatiod menu option under "Edit" menu to open a

window as shown in figure A.8. This window is used to enter

information.

To enter a "Point Event":
Consider the following example:

Mary has a meeting at 10 a.m.

APPENDlX A. USER IM;ANUAL

Figure A.8: Entering information

The event name for this event is "Meeting", the event description is "MW

had a meeting at 10 a.m." and the temporal component is that it is tme

at 10 am.

The steps to enter event (1) are:

1. Enter the event name 'Meeting for this event as shown in figure A.8.

2. Enter the event description in the specified text box.

3. Pick a color by clicking on the "Pick Color" button. This opens a color

window as shown in figure A.9.

APPENDE A. USER lMANUAL

The user can select a color for the event by füling in the numencal

values for red, green and blue. It is also possible to select a color

sliding the triangular tab on the color scale for each color.

Click on the "OK" button to c o n h the selection.

Select the "Point EvenC icon in figure A.8 by pointing and clicking

it. Then drag the icon

a.m. on the time scale.

Click on the "Continue"

dong with the mouse pointer to position

button to add another event.

Figure A.9 Color window

8. The "Cancel" button aborts the operation and takes the control to the

"Event Name" text box.

9. The "Help" button provides help on the "Enter information" screen.

10. Clicking on the "Donen button will close the current screen and will

take the control back to the main window.

To enter a "Limitless Event":

Consider the foiiowing example:

APPENZ)lX A. USER IM3UVUAL

The water pump was working throughout the day. (2)

The event name for this event is Water pump", the event description is

The water pump was working throughout the day." and the temporal

component is that this event possibly started before 12 a.m. and ended

after 12 p.m.

Steps followed to enter event (2) are:

1. Enter the event name 'Water pump" for this event as shown in figure

A. 10.

Enter the event description in the specified text box.

Pick a color by clicking on the 'Pick ColoP button.

explained above.

Click on the 'OK" button to c o n f i i the selection.

This operation is

Select the 'Limitless Event" icon by pointing and clicking on it. Then

drag the icon dong with the mouse pointer to position it on the time

scale. When the user places the "Limitless Evenr icon on the time

scale, it automatically configures itself to cover the entire scale as

shown in figure A. 10.

Click on the "Continue" button to add the another event.

Figure A. 10 Limitless Event

To enter a "Fixed Event":

Consider the following example:

Henry was watching TV between 8:30 am. and 10 a.m. (3)

The event name for this event is Watching TV", the event description is

"Henry was watching TV between 8:30 a.m. and 10 a.m.* and the

temporal component is that the event is t m e between 8:30 a.m. and 10

a.m.

APPENDIX A. USER MANUAL

Figure A. 1 1 Fixed Event

Steps followed to enter event (3) are:

1. Enter the event name 'Watching TV" for this event in the "Event

Namew text box.

2. Enter the event description in the specifïed text box.

3. Pick a color by clicking on the "Pick Colof button.

4. Click on the "OK" button to c o n f m the selection.

APPENDX A. U S . IM;ANUAL

5. Select the 'Fixed Event" icon by pointing and clicking on it and then

drag it to the appropriate position on the tune scaie. (In this case,

between 8:30 a.m. and 10 a.m.)

6. The user can modify the length of this icon on the time scale by

clicking on a smali square attached to the icon and dragging it with

the mouse. This conf~gures the "Fixed Event* icon to a desired length

as shown in figure A. 1 1.

7. Click on the "Continue" button to add another event.

To enter a "FixedLeft Event":

Consider the foliowing example:

Sonia started the painting at 10 a.m. and worked on it till late

afternoon. (4)

The event name is 'Painting and the event description is 'Sonia started

the painting at 10 a.m. and worked on it till late aftemoon." This event is

definitely tnie between 10 a.m. and 12 p.m.

We use the "FkedLeft Event" icon to represent event (4) and the steps

foUowed are:

1. Enter the event name "Painting for this event as shown in figure A. 12

2. Enter the event description in the specified text box.

3. Pick a color by clicking on the "Pick Colof button as explained in the

previous examples.

4. Ciick on the "OK? button to c o n f i the selection.

APPENDIX A. USER MAMIAL

Select the 'FixedLeft Event" icon by pointing and clickhg on it and

then drag it to the appropriate position on the time scale.

The user places the left end of the 'FixedLeft event" icon at 10 a.m. on

the time scde and the nght end of the icon automaticdy covers the

rest of the scale as shown in the figure.

Click on the "Continuew button to add another event.

To enter a "FixedRight Event":

Consider the following example:

The snow storm started last night and ended today at 10 a.m. (5)

APPENDLX A. USER MANUAL

I t is important to note that the event started at some point before

12 a.m. and continued tili 10 a.m. Event "Snow stormn was definitely

true between midnight and 10 a.m. and therefore we use the "FixedRight

Event" icon to represent it.

Figure A. 13 FixedRight Event

After entering the event name, description and color, the user

positions the 'FixedRight Event" icon on the time scale. The user places

the right end of the icon at 10 a.m. on the time scale and the left end

automaticdy covers the rest of the scale as shown in figure A. 13.

APPENDLX A. USER IWUVUAL

Quervin~ the svstem:

Ciicking on the "Query Information* option under "Edit" menu opens a

window shown in figure A. 14. This screen is used to query the system.

The user can perform the folIowing queries:

1. 1s an event true at a given time 2

2. What is tnie about an event ?

The following example (3) wiu be used to perform the query:

Henry was watching TV between 8:30 a.m. and 10 a.m.

To perfonn a query using (A):

Select the event Watching TV" from the dropdown List box by clicking

on the down arrow button next to the 'OK" button (figure A.14)

User cadis his/her selection by clicking on the "OK" button.

Configure the 'Fixed Event" icon on the time scale between 8:30 a.m.

and 10 a.m.

Click on the "Query* button to execute the query. Figure A. 14 displays

the result for the query.

APPENûlX A. USER IM;ANUAL

Figure A. 1 4 Query window for Fixed Event

To perform a query us- (BI:

1. Select an event Watching TV" from the dropdown list box by clicking

on it,

2. Click on the "OKw button to confirrn the selection,

3. User then points and clicks on the What 's Tme" icon and the system

displays the results of the query as shown in figure A. 15.

APPENDX A. USER IM;ANUAL

Figure A. 15 Query u s h g What's Tme

A. 1.3 Options menu:

The "Option" menu as shown in figure A.16 provides the following

functions:

View Database:

1. Click on the View Database" button under the "Optionsn menu to

open a window that displays event name, event description and color

used for all the events in the database as shown in figure A. 17.

2. Click on the "OKm button to close this window.

AFPENDLXA. USER lWllWAL

Figure A. 16 Main window (Options menu).

Figure A. 17 View Database

APPENDlX A. USER lMANUAL

Colors Used:

1. Click on the 'Colors Used" button under the "Optionsn menu to open

a window that displays d the colors in use.

2. hrery color is displayed along with its hexadecimai value as shown in

figure A. 18. Note that every color in figure A. 17 also appears in figure

A. 18.

3. Click on the "OK" button to close this window.

Figure A. 18 Colors Used

Symbols:

1. Click on the 'Symbols" button on the "Options" menu to open a

window that displays a list of syrnbols used.

2. Each symbol is displayed along with its name and meaning as shown

in figure A. 19.

APPE1VDLXA. USEX W A L

3. Click on the "OK" button to close this window.

Figure A. 19 Symbols

A.2 Tutorial

Figure A.20 hitonal window

To start the tutorial:

Click on the start tutorial button in the Interface Window (figure A.2)

to open the Tutorial Window (figure A.20).

This window provides help on various topics such as ' O v e ~ e w of the

System", "Entering the Information" etc., as shown in figure A.20.

The help topics shown above have a "hypertext? behavior.

Clicking on the appropriate topic opens the help for that topic in the

same window as shown in figure A.2 1.

APPENDIXA. USER MAAW4A.L

To get help on O v e ~ e w of the System:

Click on the " O v e ~ e w of the Systemw to get help on the ovenriew of

the system as shown in figure A.2 1.

Click on the 'Return to Main Menuw to get back to the main menu.

The user can also get back to the main menu by clicking on the

"Original Topics* from the 'File" menu. (Figure A. 2 1).

Click on the "Close" button to terminate the Tutorial.

The Edit menu provides a "copy" function for copying any text from

the Help screen.

Figure A.2 1 Ovemiew of the system

APPENDLX B. SOURCE CODE

APPENDLX B. SOURCE CODE

Canvas widget w i t h t h e welcome in fo rma t ion

proc call-main {) {
source i n t e r f a c e - t c l
d e s t r o y . can

1

Crea te s t h e r e q u i r e d f o n t .

f o n t c r e a t e t e x t f o n t -family Helve t ica - s i z e 27 -weight bold \
- s l a n t i t a l i c

set big£ t e x t f o n t
f o n t c r e a t e t e x t f o n t l - family Cour ier -size 16 -weight bold \

- s l a n t i t a l i c
s e t medf t e x t f o n t l
f o n t c r e a t e t e x t f o n t 2 -family T i m e s - s i z e 16 - s l a n t i t a l i c \

-weigbt b o l d
set namef t e x t f o n t 2

Canvas wi th v a r i o u s canvas i t e m s .

canvas .can -width 7c -height IOc
.cm c r e a t e r e c t a n g l e .25c .25c 6 . 7 5 ~ 9 . 7 5 ~ - o u t l i n e black \

-width 2

.can c r e a t e t e x t 3 . 2 5 ~ 1 . 5 ~ -font Sbigf \
- t e x t "WELCOME" - f i l 1 red

.can c r e a t e l i n e l c 2c 5 . 5 ~ 2c - f i l 1 b l a c k -width 2

.can c r e a t e t e x t 3 . 5 ~ 3c -font Smedf \
- t e x t "Ton - f i l 1 b l u e

.can c r e a t e t e x t 3 . 5 ~ 4c -font Smedf \
- t e x t "The Temporal Expert " -fil1 b l u e

.can c r e a t e t e x t 3.25~ 5c -font Smedf \
- t e x t "System S h e l l " - f i l 1 b lue

.can c r e a t e bi tmap 3c 6c -bitrnap gray12 -foreground black

.can c r e a t e bi tmap 3 . 5 ~ 6c -bitmap gray25 -foreground black

.can c r e a t e t e x t 3 . 5 ~ 7c -font Smedf \
- t e x t "Designer" - f i l 1 maroon

.can c r e a t e t e x t 3 . 2 5 ~ 7 . 5 ~ -font Smedf \
- t e x t "Sharad Sachdev" - f i l 1 maroon

but ton .can .b - t e x t "Continue" - font Snamef \
-command {cal l -main)

.can c r e a t e window 3 - S c 9c -window .can.b

pack .can

A P P E ~ ~ B. SOURCE CODE

Frame widgets within the interface window

proc s-shell (1 (

source application.tc1
destroy .fl

1

Creates the required font

font create txtfont -family Times -size 18 -slant italic\
-weight bold

set namef txtfont

Frames with buttons.

frame .fl -relief raised -borderwidth 1
button .fl.bl -text "-- Start Shell --" -font Snamef \
-foreground maroon -borderwidth 5 -cornand { s shell)
button . fl.b2 -text "-- Start Tutorial --" -font-$nanef \
-foreground maroon -borderwidth 5 -cornand { source helpdlg.tc1)

button .fl.b3 -text "-- Close --" -font Snamef \
-foreground maroon -borderwidth 5 -command { exit)

pack .fl.bl .fl.b2 .fl.b3 -padx 5 -pady 1 -ipadx 4 -ipady 6 -fil1 bath

pack . fl

#Creating the application menu

#setting global variable for storing file name.
global nfname
set nfname ""

Create images for toolbar bitmaps,

image create bitmap tool-new -file ../toolbar/new.xbm
image create bitmap tool-open -file ../toolbar/open.xbm
image create bitritap tool-save -file ../toolbar/save.xbrn
image create bitmap tool-cut -file ../toolbar/cut.xbm
image create bitmap tool-copy -file ../toolbar/copy.xbm
image create bitmap toolpaste -file ../toolbar/paste.xbm

Old way to create a menubar

frame . menubar -relief raised -borderwidth 1

#File menu

menubutton .menubar.file -text "File" \
-menu .menubar.file.menu -underLine O

pack .rnenubar.file -side left

APPENDDC B. SOURCE CODE

menu .menubar.file.menu

add command -label "Newn \
O -cornand { source file-new.tc1)
add command -label "Open-.." \

-command { source filedlg.tc1)
add separator
add command -label "Savew \

-conunand { proc-save)
add command -label "Printn \

-command { procjrint)
add separator
add command -label "Exitn \

-conunand { destroy . 1

#Edit menu

menubutton .menubar,edit -text "Edit" \
-menu -menubar.edit.menu -underline O

pack .menubar.edit -side left

menu

add command -label "Cut" \
-accelerator "Ctrl+xn -cornand "edit cut allw -
add command -label "Copyn \
-accelerator "Ctrl+cW -command "edit-copy alln
add command -label "Paste" \
-accelerator "Ctrl+vW -command "editjaste allw
add separator
add command -label "Enter informationw \
-cornand { source Aruler.tc1)

.rnenubar.edit.menu add command -label "Query Informationw \
-underline 5 -command { source 1query.tcl)

#Options menu

menubutton .menubar.options -text "Options" \
-menu .menubar.options.rnenu -underline O

pack .menubar.options -side left

menu .menubar.options,menu

.menubar . options .menu add command -label "View Databaser* \
-underline O -conunand {source show~fact~color.tcl)

.rnenubar.options.menu add command -label "Colors Used" \
-underline O -cornand {source show-color.tc1)

.menubar.options.menu add command -label "Symbolsn \
-underline O -conunand {source show-symbol.tc1)

#Help menu

menubutton .menubar.help - tex t "Help" \
-menu .menubar.help.menu -underline O

pack .menubar.help -side right

APPENDlX B. SOURCE CODE

menu .menubar.help.menu

.menubar.help.menu add command -label "Ab~ut..,~ \
-underline O -command "help-about .menubarn

#Create a faked main area.

label .main -text wn

pack .menubar -side top -fil1 x -expand true

Toolbar

frame .toolbar -bd 2 -relief raised

Group for new, open, save.
set frm .toolbar.file-group
frame Sfrm -bd O

button $frm.new -image tool-new -cornmanci {puts new)
button $fm-open -image tool-open -cornand {puts open}
button $frm.save -image tool-save -cornand (puts save)
pack $frm.new $frm.open Sfrm-save -side left
pack $frm -side left

Set up short help.
bind $frm.new <Enter> \

". status configure -text {New file)
bind $frm.new <Leave> \

n,status configure -text {) "

bind $frm.open <Enter> \
".status configure -text {Open file)"

bind $frm.open <Leave> \
".status configure -text { 1 "

bind $frm.save <Enter> \
".status configure -text {Save file)"

bind $frm.save <Leave> \
".status configure -text {) "

Group for cut, copy, paste.
set twidget 1
set f rm .toolbar-clip-group
frame Sfrm -bd O

button $frm.cut -image tool_cut -cornand (editcut . }
button Sfrm.copy -image tool-copy -cornand {editcopy .)
button $frm.paste -image toolpaste

pack $frm.cut $frm.copy $frrn.paste - s i d e left

APPENDDC B. SOURCE CODE

bind

proc

1

bind

bind

beforePaste {textw) {
global twidget
set twidget Stextw

".status configure -text
bind $frm.cut <Leave> \
".status configure -text

bind $frm.copy <Enter> \
".status configure -text

bind $frm.copy <Leave> \
". status configure -text

bind $frm.paste <Enter> \
". status configure -text

bind Sfrm-paste <Leave> \
". status conf igure -text

Pack second group with X
pack S f m -side left -padx

padding to space out.
10

pack .toolbar -side top -fil1 x

pack .main -ipady 150 -ipadx 250 -expand true -side top

Status area

label .statu -relief sunken -anchor w -borderwidth 1 \
-text "Status"

pack .status -fil1 x -side bottom

bind .menubar.file <Enter> \
".status configure -text {Operations:New,Open,Save,Print,Exit)"
bind .menubar.file <Leave> \
". status configure -text {) "

bind .menubar.edit <Enter> \
".status configure -text \

IOperations:Cut,Copy,Paste,Enter Info,Query Info)"
bind .menubar.edit <Leave> \
".status configure -text () "

bind .menubar.options <Enter> \
".status configure -text (0perations:View Database,Colors
Used, Symbols) "
bind .rnenubar.options <Leave> \
".status configure -text {) "

APPENDE B. SOURCE CODE

bind .menubar.help <Enter> \
".status configure -text {Helplw
bind . menubar. help <Leave> \
".status configure -text {) "

Implementing the cut action for a text widget.

proc edit-cut { textwidget) {

Check if any text is selected in textwidget.
set owner [selection own]

clear clipboard
clipboard clear

catch (

set text [selection get]
clipboard append Stext

Delete selected text.
Sowner delete sel.first sel-last

1
puts "Calling from cutl'
puts "textwidget is Stextwidget"

Implementing the copy action for a text widget,

proc edit-copy (textwidget 1 {

Check if any text is selected in textwidget
set owner [selection own]

clear clipboard
clipboard clear

catch (
clipboard append [selection get]

1
puts "Calling from copy"
puts "textwidget is Stextwidget"

Implementing the paste action for a text widget.

proc editpaste {textwidget) {

puts "Called from editpaste"
set owner [selection own]

APPENDIX B. SOURCE CODE

p u t s "textwidget is Stextwidget and owner is $ownern
c a t c h {

set c l i p [s e l e c t i o n g e t - se lec t ion CLIPBOARD]
1

set i d x [Stextwidget index i n s e r t]
c a t c h {

Stextwidget i n s e r t S idx $ c l i p

b ind . CControl-Key-x> " e d i t c u t . ;breakn
b ind . ~Control-Key-c> n e d i t ~ c o p y . ; breakn
b ind . CControl-Key-v> " e d i t g a s t e . ;breakm

proc help-about { t o p l e v e l } {
tk-messageBox -de fau l t ok - icon i n f o -message \
"GUI f o r Temporal Expert System,
- by Sharad Sachdev" \

-parent Stoplevel - t i t l e "About System" -type ok
1

P r i n t i n g opt ions

p r o c p r o c j r i n t {) (

g l o b a l nfname
i f {Snfname != " " } (

s e t pmess [tk-messageBox -parent .menubar\
- t i t l e (P r i n t ?) - type okcancel -icon warning\
-message\

"Confirm f i l e p r i n t . "1
i f {Spmess == "ok") (

set command " l p r -P CS- lw4 Snfname"
eva l exec Scommand

) e l s e i f {Spmess =="cancelW) ()

1 e l s e (
s e t pmess [tk-messageBox -parent .menubar\
- t i t l e (E r r o r) - type ok - icon e r r o r \
-message\

"No f i l e t o p r i n t . Select a f i l e before p r in t ing . "]
1

This f i l e reads t h e f i l e which s t o r e s t h e f a c t s t d e s c r i p , c o l o r
in fo rmat ion and d i s p l a y s t h e c o l o r i n t h e canvas widget.

Procedure f i le - read given below s t o r e s t h e f a c t , d e s c r i p ,
c o l o r information i n t h e g l o b a l v a r i a b l e list-of-events,
l i s t - o f d e s c r i p v a r i a b l e s .

APPENDIX B. SOUZCE CODE

set g .colorwindow
toplevel Sg -class Dialog
wm title Sg "Colors Usedn
wm transient Sg .
wm geometry Sg +300+300

set filename event-details-dat

global list-of-events
global list-of-descrip
global list-of-colors

set data ""
set list-of-events ""
set list-of-descrip ""
set list-of-colors ""
if {[file réadable Sfilename]) {

set fileid [open Sfilename "r"]
while ([eof Sf ileid] ! = 1) (

gets Sfileid data
set list-of-events [linsert Slist-of-events end $data]
gets Sfileid data
set list-of-colors [linsert Slist-of colors end $data] -
gets Sfileid data
set list-of-descrip [linsert $list-of descrip end -

$data]
)
close $ f ileid

1

canvas $g.clr-can -width 12c -height 6c -yscrollcomnand \
"$g.v-scroll set" -xscrollcommand "Sg-h-scroll set" \
-scrollregion { O O 500 600)

scrollbar $g.v-scroll -command "$g.clr-can yview"
scrollbar $g.h-scroll -cornInand tl$g.clr-can xview" -orient horizontal

#Create the heading

font create txtfontl -family Times -size 18 -slant italic \

-weight bold
set namef txtfontl

font create txtfont2 -family Courier -size 10 -slant italic
set namef2 txtfont2

$g.clr_can create text 6c .5c -font Snamef - t e x t \
"- Following colors are in use -" -fil1 blue

#Fil1 in canvas,

#Postion paramters x and y
set xl 1; set y1 2

APPENDX B. SOURCE CODE

set len [llength Slistof-colors]
set len [expr Slen-1]
for {set i O) {Si < Slen) {incr i) {

set tmp [lindex Slist-of-colors Si]
if (Sxl = 13) {

set y1 [expr Syl + 2.51
set xl 1

1
set x2 [expr $xl + 11
set y2 [expr $y1 + 11

$g.clr can create rectangle Stxl)c S{yl)c Stx2)c S(y21c \ -
-0utline black -fil1 Stmp -width 1.25

set ytext-pos [expr $y2 + .51
set xtextjos Iexpr Sxl + -51
$g.clr - can create text ${xtextgos}c S(ytext-poslc \

-font Snamef2 -text Stmp -fil1 maroon
set xl [expr Sxl + 21

frame $g.frame -relief raised
pack $g.frame -side bottom -fil1 x -pady 2m
button $g.frame.b -text " OK " -conunand {destroy Sg)
pack $g.frame.b -side left -expand 1

pack Sg. v-scroll -side right -fil1 y
pack $g.h-scroll -side bottom -fil1 x

pack $g.clr-can -side left -expand 1

font delete txt font 1 txtfont2
#!/usr/local/bin/wish

This file reads the file which stores the facts,descrip,color
information and displays the same in form of MuliColurnn list.

Procedure file-read given below stores the fact,descrip,
color information in the global variable list-of-events,
list-of-descrip variables.

set t .multilist
toplevei $t -class Dialog
wm title St "Event Details"
wm transient $t .
wm geometry St +300+300

set filename event details.dat -

global list-of-events
global list-ofdescrip
global list-ofcolors

APPENDIX B. SOURCE CODE

set data ""
set list-of-events
set listof-descrip ""
set listof-colors
if { [file readable Sfilename] 1 {

set fileid [open Sfilename "r"]
while { [eof Sf ileid] ! = I) {

gets Sfileid data
set list-of-events [linsert $list-of - events end $data]
gets Sfileid data
set list-of-colors [linsert $list-of-colors end $data]
gets Sfileid data
set list-of-descrip [linsert Slist-of - descrip end

$data]
1

close S f ileid
1

Tc1 script that creates multiple listboxes
with

This
from

one scrollbar.

proc scrolls a number of listboxes al1 together
one scrollbar .

The scroll - list holds a list of the widgets
to scroll. This must be a list, The args
hold al1 the remaining arguments, which
corne from the scrollbar. Al1 these are
passed to each widget in the scroll-List.

proc multi-scroll { scroll - list args) {

global t
Get info on list of listboxes.
set len [llength Sscroll-list 1

for (set i O) {Si < Slen] {incr i) (

set temp-list [lindex Sscrolf-list Si]
eval Stemp-list yview Sargs

1

Fil1 in list with various data.

proc FillListl { listvar) {

global list-ofevents
set len [llength Slist-of-events]
set tmp "Event Narnen
eval Slistvar insert end {Stmp)
set tmp "----------"

APPENDLX B. SOURCE CODE

eval Slistvar insert end (Stmp)

for {set i O) { Si <= Slen) (incr i) (
set trnp (lindex Slist of-events Si]
eval Slistvar insert end (Stmp}

1

proc FillList2 (listvar) (
global list of-colors
set len [ïlength Slistof colors]
set tmp "Associated color"
eval Slistvar insert end {Stmp}
set tmp Ir----------------"

eval Slistvar insert end {$tmp)

for (set i O) (Si <= Slen) (incr i} {

set tmp [lindex Slist of-colors Si]
eval Slistvar insert end {Stmp}

1
1

proc FillList3 { listvar } {
global list_of_descrip
set len (llength Slist of descrip] - -
set tmp "Event Descriptionn
eval Slistvar insert end {Stmp)
set tmp "----------------IV

eval Slistvar insert end (Stmp)

for (set i O) { Si <= Slen) {incr i) {

set tmp [lindex Slist-of-descrip Si]
eval Slistvar insert end {Stmp)

Use a frame around al1 lists.

frame $t.frame -relief groove -borderwidth 3
button $t.button -text " OK " -cornrnand (destroy St}

listbox $t.frame,listl \
-borderwidth 1 \
-relief raised \
-selectmode single \
-yscrollcommand "St . frame. scroll set" \

listbox St.frame.list2 \
-borderwidth 1 \
-relief raised \
-selectmode single \
-yscrollcommand "St.frame.scroll set" \

listbox St.frame.list3 \
-borderwidth 1 \
-relief raised \

APPENDLX B. SOURCE CODE

-selectrnode single \
-yscrollcommand n$t,frame.scroll setn \

Fil1 lists with data.
FillListl St.frame.list1
FillList2 St.frame.list2
FillList3 St.frame.list3

scrollbar $t.frame.scroll \
-command \
(multi-scroll ($t.frame.listl St.frame-list2 $t.frame,list3})

pack St.frame.scrol1 -side right -fil1 y

pack $t.frame.listl St.frame.list2 \
St.frame.list3 -side left

pack $t.frame
pack $t.button

#This file shows the various symbols which are used in
#the program. This includes symbols for entering and
#querying information.

set u ,symbolwindow
toplevel Su -class Dialog
wm title Su "Symbols"
wm transient Su .
wm geometry Su +300+300

canvas $u.sym_can -width 1% -height 6c -scrollregion { O O 600 800) \
-yscrollcommand "Su,v-scroll set"

scrollbar $u.v-scroll -command "Su-sym-can yview"

#Create the heading

font create txtftl -family Times -size 18 -slant italic \

-weight bold
set namef txtitl

font create txtft2 -family Courier -size 10 -slant italic \
-weight bold

set namef2 txtft2

font create txtft3 -family Courier -size 10
set namef3 txtft3

$u.sym-can create text 8c lc -font Snamef - t e x t \
"- Symbols and their rneanings - l m -fil1 blue

APPENDDC B. SOURCE CODE

set c $u.sym_can

The fol lowing procedures c r e a t e t h e symbols on the canvas.

rulerMkTab --
This procedure c r e a t e s a new c i r c u l a r polygon i n a canvas t o
represen t a p o i n t event ,

Arguments:
c - The canvas window.
& Y - Coordinates a t which t o c r e a t e the t a b s t o p .

proc rulerMkTab {c x y) {
s e t vl [winfo £pixels Sc .3c]
Sc c r e a t e ova l [expr Sx-Sv1/21 [expr Sy-Svl/2j [expr Sx+Sv1/21 \

[expr $y+$vl/2] - f i l 1 b lack

rulerMkTabIL --
This procedure c r e a t e s a new I n f i n i t e l i n e item i n a canvas.

Arguments:
c - The canvas window.
X , Y - Coordinates a t which t o c r e a t e the I L i tem.

proc rulerMkTabIL {c x y) (
set v l [winfo f p i x e l s Sc lc]
SC c r e a t e l i n e Sx $y [expr $x+Svll Sy \

-arrow both -fil1 black -width 8

rulerMkTabFE --
This procedure c r e a t e s a new Fixed End l i n e item i n a canvas.

Arguments:
c - T h e cacvas window.
X , Y - Coordinates a t which t o c r e a t e the FE item.

proc rulerMkTabFE tc x y) (
set v l [winfo f p i x e l s Sc l c]
SC c r e a t e l i n e Sx $y [expr Sx+$vl] \

$y - f i l 1 b lack -width 8

rulerMkTabFL
This procedure c r e a t e s a new Fixed L e f t i tem i n a canvas.

Arguments :
c - The canvas window .
x , Y - Coordinates a t which t o c r e a t e the FE item.

APPElVDE B. SOURCE CODE

proc rulerMkTabFL { c x y) (
set v l [winfo f p i x e l s Sc Ic]
Sc c r e a t e l i n e Sx $ y [expr $x+$vl] \

$y - f i l 1 b lack -width 8 -arrow l a s t

rulerMkTabFR
This procedure c r e a t e s a new Fixed Right i t em i n a canvas.

Arguments :
c - T h e canvas window.
X, Y - Coordinates a t which t o c r e a t e t h e FE item.

v l p lays an important r o l e i n pos i t ion ing t h e i tem.

p roc rulerMkTabFR { c x y) {
s e t v l [winfo f p i x e l s Sc I c]
S c c r e a t e l i n e Sx $y [expr Sx+Svll $y \

- f i l 1 bfack -width 8 -arrow f i r s t
1

rulerMkTabQues
This procedure c r e a t e s a new Question i tem i n t h e canvas.
Cl ick ing on t h i s te l ls everything about t h e s e l e c t e d event

proc rulerMkTabQues I c x y) (
Sc cxea t e bitmap 2c 18c -bitrnap questhead

1

F i l 1 i n t h e canvas.
#Cxeates t h e symbol and assoc ia ted message window

Sc addtag wel l wi thtag [Sc c r ea t e r e c t 1 . 5 ~ 3 . 5 ~ 2 . 5 ~ 2 . 5 ~ \
- 0 u t l i n e black - f i l 1 [l index [Sc con f ig -bg] 4 1 1

Sc addtag wel l wi thtag [rulerMkTab Sc [winfo p i x e l s Sc 2c] \
[winfo p i x e l s Sc 3c]]

Sc c r e a t e t e x t 2 ~ 4c - t e x t "Point Event" \
- font Snamef2 - f i l 1 maroon

message $c.ml -width 10c - t e x t "Used f o r even t s which occur a t p r e c i s e \
p o i n t s over t h e given time s c a l e . E.g., Phone rang a t 2:00 pm."
Sc c r e a t e window 9c 3c -window $c.ml

Sc addtag w e l l wi th tag [Sc c r ea t e r e c t 1 . 5 ~ 6 ,Sc 2 . 5 ~ 5 . 5 ~ \
- 0u t l i ne black - f i l 1 [l index [Sc con f ig -bg] 4 1 1

Sc addtag w e l l wi th tag [rulerMkTabIL Sc [winfo p i x e l s Sc 1 . 5 ~ 1 \
[winfo p i x e l s Sc 6c]]

Sc c r e a t e t e x t 2c 7 . 1 5 ~ - t e x t "Limitless Event" \
- font Snamef2 - f i l 1 maroon

APPENDDC B. SOURCE CODE

message Sc.& -width 10c - t e x t nEvent t h a t occured a t some unknown\
t i m e i n p a s t and continues i n f u t u r e . E. g . , I t has been r a i n i n g today. "
Sc c r e a t e window 9c 6c -window Sc.rn2

Sc a d d t a g w e l l wi th tag [Sc c r e a t e rect 1 . 5 ~ 9-Sc 2 . 5 ~ 8 . 5 ~ \
- o u t l i n e black -fil1 [l i n d e x [Sc conf ig -bg] 4 1 1

Sc a d d t a g w e l l wi th tag [rulerMkTabFE Sc [winfo p i x e l s Sc 1. Sc] \
[winfo p i x e l s Sc 9 .0Scj j

Sc c r e a t e t e x t Sc 1 0 . 1 5 ~ - t e x t "Fixed Event" \
- f o n t Snamef2 - f i l 1 maroon

message Sc.rci3 -width 10c - t e x t "Event t h a t occured between two p o i n t s \
on t h e g i v e n t i m e s c a l e . A c t i v i t y h a s p r e c i s e s t a r t and end p o i n t s . \
E.g., W e had lunch between 2 & 3 pm. "
Sc create window 9c 9c -window Sc.rn3

Sc a d d t a g w e l l wi th tag [Sc c r e a t e rect 1 . 5 ~ 1 2 . 5 ~ 2 . 5 ~ 1 1 . 5 ~ \
- 0 u t l i n e black - f i l 1 [l i n d e x [Sc conf ig -bg] 4 1)

S c a d d t a g w e l l wi th tag ErulerMkTabFL Sc [winfo p i x e l s S c 1 . 5 ~ 1 \
[winfo p i x e l s Sc 12.OSc]]

Sc create t e x t 2c 1 3 . 1 5 ~ - t e x t "FixedLeft Event" \
-font Snamef2 - f i l 1 rnaroon

message Sc.rn4 -width 10c - t e x t "Event t h a t s t a r t s a t a known f i x e d \
p o i n t and c o n t i n u e s i n f u t u r e . E.g. , Basketba l l game s t a r t e d a t 6 pm\
and went on till l a t e eveningw
Sc c r e a t e window 9c 12c -window Sc.rn4

Sc a d d t a g w e l l wi th tag [Sc c r e a t e rect 1 . 5 ~ 1 5 . 5 ~ 2 . 5 ~ 1 4 . 5 ~ \
- 0 u t l i n e black - f i l 1 [l i n d e x [Sc conf ig -bg] 4 1 1

Sc a d d t a g w e l l wi th tag [rulerMkTabFR Sc [winfo p i x e l s Sc 1 . 5 ~ 1 \
[winfo p i x e l s Sc 15.OSc]]

Sc c r e a t e t e x t 2 c 1 6 . 1 5 ~ - t e x t "FixedRight Event" \
- f o n t Snamef2 - f i l 1 maroon

message Sc.rn5 -width 10c - t e x t "Event which s t a r t e d a t some unknown\
p o i n t i n p a s t and has f i x e d end p o i n t . Cornplement of F ixedLef t Event.\
E.g., A f t e r a long s l eep , 1 woke up a t 12:OO pm."
$ c c r e a t e window 9c 15c -window Sc.rn5

Sc a d d t a g w e l l wi th tag [Sc c r e a t e rect 1 . 5 ~ 1 8 . 5 ~ 2 . 5 ~ 1 7 . 5 ~ \
- o u t l i n e black - f i l 1 [l i n d e x [Sc conf ig -bg] 41]

Sc a d d t a g w e l l withtag [rulerMkTabQues Sc [winfo p i x e l s Sc 1 . 5 ~ 1 \
[winfo p i x e l s Sc 18 .05c]]

Sc c r e a t e t e x t 2c 1 9 . 1 5 ~ - t e x t "What's True" \
- f o n t Snamef2 - f i l 1 maroon

message Sc.m6 -width 10c - t e x t "This symbol is used f o r que ry ing t h e \
system. I t tel ls , a l 1 what is t r u e f o r a s e l e c t e d e v e n t w
Sc c r e a t e window 9c 18c -window Sc.rn6

frame Su. f rame - r e l i e f r a i s e d
pack $u . f rame - s ide bottom - f i l 1 x -pady 2m
b u t t o n $u.frame.b - t ex t " OK " -cornand {des t roy Su)

APPENDIX B. SOURCE CODE

pack $u.frame.b -side left -expand 1

pack Su-v-scroll -side right -fil1 y

pack $u.sym-can -side left -expand 1

font delete txtftl txtft2 txtft3
#!/usr/local/bin/wish

ruler.tc1 --

This script creates a canvas widget that displays a ruler
with tab stops that can be set, moved, and deleted.

A list of al1 global variables
user-filename is the name of the file entered by the user.

set user-filename event-details.dat

proc positionwindow to sets the position of the Window on the screen.

proc positionwindow w (
m geometry Sw +300+300

1

#Font variable
set font {Courier 12)

#Color for the widget items
set color #2230f0

rulerMkTab --
This procedure creates a new circular polygon in a canvas to
represent a point event.

Arguments :
c - The canvas window.
X, Y - Coordinates at which to create the tab stop.

proc rulerMkTab {c x y) {
set vl [winfo fpixels Sc .3c]
Sc create oval [expr Sx-$v1/2] [expr $y-$v1/2] [expr $x+$vl/2] \

[expr $y+$v1/2] -fil1 black
1

This procedure creates a new Infinite line item in a canvas.

Arguments :
c - The canvas window.
X , Y - Coordinates at which to create the IL item.

Arguments:

APPENDGrC B. SOURCE CODE

proc rulerMkTabIL {c x y) (
set v l [winfo f p i x e l s Sc lc]
SC c r e a t e l i n e Sx $ y [expr Sx+$vl] $y \

-arrow b o t h - f i l 1 black -width 8

rulerMkTabIL2 --
This procedure creates a new I n f i n i t e l i n e i t e m i n a canvas.
Behaves s i m i l a r t o t h e above but cove r s t h e e n t i r e length .

proc rulerMkTabIL2 {c x y) {
g l o b a l c o l o r
set v l [winfo f p i x e l s Sc lSc]
Sc c r e a t e l i n e $x $ y [expr $x+$vl] $y -arrow b o t h - f i l 1 S c o l o r \
-width 8

Set no. of f i x e d o b j e c t s as numFE
set numFE O
rulerMkTabFE --
This procedure c r e a t e s a new Fixed End l i n e i t e m i n a canvas,

Arguments:
c - The canvas window.
X , Y - Coord ina te s a t which t o create t h e FE i t e m .

proc rulerMkTabFE (c x y) (
set v l [winfo f p i x e l s Sc l c]
SC c r e a t e l i n e Sx $ y [expr $x+$vlf \

$y - f i l 1 b l a c k -width 8

rulerMkTabFL
This procedure c r e a t e s a new Fixed Left i t e m i n a canvas.

Arguments :
c - The canvas window.
X , Y - Coord ina te s a t which t o c r e a t e t h e FE item.

proc rulerMkTabFL {c x y} {
s e t vl (winfo f p i x e l s Sc l c]
Sc c r e a t e l i n e Sx $y [expr $x+$vl] \

$y - f i l 1 b l a c k -width 8 -arrow l a s t
1

rulerMkTabFL2
This procedure creates a new Fixed l e f t i t e m i n a canvas.
Behaves s i m i l a r t o t h e above but cover s t h e r i g h t l eng th .

p roc rulerMkTabFL2 {c x y) {
upvar # O demo-rulerInfo v

APPENDDC B. SOURCE CODE

global color
set vl [winfo fpixels Sc lc]
Sc create line Sx $y $v(right) \

$ y -fil1 Scolor -width 8 -arrow last

rulerMkTabFR
This procedure creates a new Fixed Right item in a canvas.

Arguments :
c - The canvas window.
X , Y - Coordinates at which to create the FE item.
VI plays an important role in positioning the item.

proc rulerMkTabFR {c x y) (
set vl [winfo fpixels Sc lc]
$c create line Sx $ y [expr $x+$vl] $y \

-fil1 black -width 8 -arrow first
1

rulerMkTabFR2
This procedure creates a new Fixed Right item in a canvas.
Behaves similar to the above but covers the left length.

proc rulerMkTabFR2 { c x y) {
upvar #O demo-rulerInfo v
global color
set vl [winfo fpixels Sc lc]
Sc create line $v(left) $y $ x $ y -fil1 black -width 8 \
-fil1 $color -width 8 -arrow first

setting up the window manager options.
set w .ruler
global tk-library
catch {destroy Sw)
toplevel $w
wm title Sw "Entering Information"
wm iconname Sw "ruler"
positionwindow $ w
set c $w.c

Creating the first section of the entering information screen.
frame $w.entry -borderwidth 1 -relief raised
label $w.entry.event-name -text "Event Name:"
entry $w.entry.event-entry -width 25 -textvariable event

label $w.entry.fact-name -text "Event Description:"
entry $w.entry.fact-entry -width 25 -textvariable descrip

button $w.entry.color -text "Pick Color" \
-command { source colordlg.tcl)

button $w.entry.ok - t e x t "OK" -cornand {
puts ltEvent N a m e : Sevent"

puts "Fact Description: $descripn

APPENDLY B. SOURCE CODE

puts "Color selected for this fact: Scolorw

Important file manipulation steps . .
if { Sevent == "" I I Sdescrip == "" 1 {

set result [tk-messageBox -parent . ruler \
-title Error -type ok -icon error \
-message \

"Missing Event Name or Event description ! ! "1
focus $W. entry.event-entry

) else {
file-write event-details.ternp Sevent Scoior Sdescrip

1
1

Using grid manager to place the objects-
grid config Sw.entry.event-name -column O -row O -sticky e
grid config $w.entry.event-entry -column 1 -row O -sticky snew
grid config $w.entry.color -column 2 -row O -sticky snew

grid config Sw.entry.fact-name -colümn O -row 1 -sticky e
grid config $w.entry.fact-entry -column 1 -row 1 -sticky snew
grid config $w.entry.ok -colurnn 2 -row I -sticky snew

pack $w.entry -side top -fil1 x -ipady lc -ipadx lc

frame $w.buttons
pack $w.buttons -side bottorn -fil1 x -pady 2m
button $w.buttons.cancel -text " Cancel " -comrnand { cancel Sw)
button $w.buttons.continue -text "Continue" \

-conunand {continuegroc Sw knowledge-base Scolor)

button $w.buttons.done -text " Done " -command (
done $w knowledge-base Scolor

1
button Sw.buttons.help -text " Help " -comrnand { source
enterHelp. tcl)
pack $w.buttonsocancel Sw.buttons.continue Sw.buttons.done \

$w.buttons.help -side left -expand 1

#File fox storing event-details.
proc file-write i filename event color descrip) (

return [catch {
set fileid [open Sfilename "a+"]
puts $fileid Sevent

puts Sfileid Scolor
puts Sfileid Sdescrip

puts "Data written to file Sfilename"
close Sfileid
11

1

#Cancel procedure, invoked when user clicks on the Cancel button.
proc cancel { w) {

puts "Procedure cancel called "

APPENDDC B. SOURCE CODE

upvar #O point-Obj po
upvar #O infiniteobj ie

upvar #O finitel Obj fl
upvar #O finiterI0bj fr
upvar #O finite-Obj f
global count count IL count FL

global count FR count FE
global EventNameEntered
global user-filename
$w.entry,event-entry delete O end
$w.entry.fact-entry delete O end
set color #2230f0
$ w . c delete box1 tab tabl tab2 tab3 tab4 active active1 \

active2 active3 active4 box fend1 fixed

#Copy the $user-filename event-details.temp

if {[file exists $user-filename]) {
file copy -force $user-filename event-details.temp

) else {
file delete event-detai1s.temp

1

Unsetting the arrays
if ([array exists po]} (unset po }

if { [array exists ie]) { unset ie)
if ([array exists £11) { unset fl)
if I [array exists fr] 1 { unset fr)
if { [array exists f]) (unset f)

Reinitializing the variables used arrays
set count -1

set countIL -1
set countFL -1
set countFR -1
set countFE -1

upda t e
focus $w,entry.event-entry

#Procedure invoked when user clicks on the "Continue" button.
proc continue proc { w filename color) {

puts "~Focedure continue called '
upvar #O point-Obj po
upvar #O infinite-Obj ie
upvar #O finiter-Obj fr
upvar #O finitel-Obj fl
upvar #O finite-Obj f

global event-details.temp
global user-filename nfname

global count countIL countFL
global count FR count FE
global numFE
set numFE ScountFE

APPENDlX B. SOURCE CODE

$w.entry.event-entry delete O end
$w.entry.fact-entry delete O end
Sw.c delete box1 tab tabl tab2 tab3 tab4 active active1 \

active2 active3 active4 active4 box fend1 fixed

Copy the file event-cietails.temp to $user-filename

file copy -force event-details.temp $user-filename

Writing the details of the events to the file.
Information related to point objects will be stored in
point.dat and rest will be in integral.dat

set color f string trirnleft "$colorw " # "]
set color cScolor

set fileid [open point.dat "a+"]

if ([array exists po]) (
foreach index [array names po] (

set val Spo ($index)
if ($val == -1) {

continue
) else {

set val [expr int ($val) *100]
set input "point ($val, Scolor, 1) .
puts Sfileid Sinput
1

1
set input ""
puts $fileid Sinput
puts "Data written to file point.datw
close $ f ileid

set fileid [open integral.dat "a+"]

if { farray exists ie]) {
foreach index [array names ie3 (

set val $ie($index)
if {$val == -1) (

continue
) else {
set val [expr int ($val) *100]
set input "integral (0,1200, Scolor, 1200) . "
puts Sfileid $input
1

1
1

if ([array exists fr]) (
foreach index [array names fr] (

set val $fr($index)
if ($val == -1) (

continue
) else {

set val [expr int ($val) *100]

APPElVDE B. SOURCE CODE

set input "integral (O, $val, Scolor, $val) .
puts Sfileid $input
1

1
1

if { [array exists fl] } {
foreach index [array names fl] {

set val $fl ($index)
if ($val == -1) {

continue
else (

set val [expr int ($val) *100]
set diff [expr 1200 - $val]
set input "integral ($val, 1200, $color, $di£ f 1 .
puts Sfileid Sinput
1

if ([array exists f]) {
for {set indexl O) ($indexl<=$countFE) {incr indexl) {

set vall Sf (Sindexl, 1)
set vall [expr int (Svall) *100]

set va12 Sf (Sindexl, 2)
set va12 [expr int (Sva12) *100]
set dif f [expr Sval2-Svall]

if {$val1 != -1} {
set input "integral($vall,$va12,$color,$diff).w

puts Sinput
puts Sfileid $input
1

1
1

set input ""
puts $fileid $input
puts "Data written to file integral.datW

close $ fileid
set color #2230f0

Unsetting the arrays
if ([array exists po]) (unset po)
if ([array exists ie]) { unset ie)
if { [array exists fl] } (unset fl
if { [array exists fr]) { unset fr }
if { [array exists £1 } (unset f)

Reinitializing the variables used in various arrays
set count -1
set countIL -I

set countFL -1
set countFR -1
set countFE -1

APPENDX B. SOURCE CODE

upda t e
focus $w.entry.event-entry
if (Snfname != " " 1 {

file copy -force eventdetails.dat Snfname
1

1

#Procedure invoked when the user clicks on the "Done" button.
proc done {w filename color} {

puts "Procedure done called "
upvar #O point-Obj po
upvar #O infinite-Obj ie

upvar #O finiter-Obj fr
upvar #O finitel-Obj fl
upvar #O finite-Obj f

global event-details.temp
global user-filename nfname

global count countIL countFL
global countFR countFE

global nmFE
set numFE ScountFE
Copy the file eventdetails.temp to $user-filename
if {[file exists event-details.temp]) {

file copy -force event-details.temp $user-filename
1

Writing the details to the file
Information related to point objects will be stored in

point.dat and rest will be in integral.dat

set color [string trimleft "$colorw " # "]
set color c$color

set fileid [open point.dat "a+"]

if { [array exists po]) {

foreach index [array names po] {
set val Spo ($index)
if ($val == -1) {

continue
) else {
set val [expr int ($val) *100]
set input "point ($val, Scolor, 1) . "
puts Sfileid Sinput
1

1
set input ""
puts Sfileid Sinput
puts "Data written to file point.datn
close $fileid

1

set fileid [open integral. dat "a+"]

if { [array exists ie] } {

APPENDIX B. SOURCE CODE

foreach index [array naines ie] {

set val $ie($index)
if {$val == -1) (
continue

) else {
set val [expr int ($val) *100]
set input "integral (O, 1200, Scolor, 1200) . "
puts Sfileid Sinput

if ([array exists
foreach

frl) (
index [array names fr] {
set val $fr($index)
if {$val == -1) {

continue
) else {

set val [expr int ($val) +100]
set input "integxa~[O,$val,$colorf$vaI) .lm

puts $fileid Sinput
1

if { [array exists fl]) {

foreach index [array names fl] (
set val $fl($index)
if {$val == -1) {

continue
1 else (

set val [expr int ($val) *100]
set diff [expr 1200 - $val]
set input "integral ($val, 1200, Scolor, S d i f f) ."
puts Sfileid Sinput
1

1
1

if { [array exists f]) {
for {set indexl O) I$indexl<=ScountFE) {incr indexl) (

set vall $f (Sindexl, 1)
set vall [expr int (Sva11) *100]

set va12 Sf (Sindexl, 2)
set va12 [expr int (Sva12) +100]

set dif f (expr Sval2-Svall]
if {Svall != -1) {
set input "integral (Svall, Sva12, Scolor, Sdiff) .
puts $input
puts S f i l e i d Sinput
1

1
1

set input ""
puts $fileid $input

APPENDX B. SOURCE CODE

p u t s "Data w r i t t e n t o file i n t e g r a l . d a t n
c l o s e S f i l e i d

set c o l o r #223Of 0

Unse t t ing t h e a r r a y s
i f ([a r r a y e x i s t s po)) (unset po)
i f { [a r r a y e x i s t s ie]) (unset i e)

i f { [a r r a y e x i s t s f l]) (unset f l)
i f { (array e x i s t s f r]) (unset f r)
i f { [a r r a y e x i s t s f]) { unset f)

R e i n i t i a l i z i n g t h e v a r i a b l e s used i n va r ious a r r a y s
s e t count -1
set countIL -1
set countFL -1
set countFR -1
set countFE -1

i f {Snfname ! = " " 1 {
f i l e copy -force event d e t a i l s . d a t Snfname -

1

d e s t r o y Sw
1

canvas Sc -width 17c -he ight 6c
pack $w.c - s i d e t o p - f i l 1 x

Create a f o n t to show t h e t e x t on t h e r u l e r .

f o n t c r e a t e t x t f t 2 -family Courier - s i z e 12 - s l a n t i t a l i c \
-weight b o l d

set newf t x t f t 2

I n f o about the box

set derno_boxInfo (a) O
set demo~boxInfo(motionProc) MoveNull
i f ([winfo dep th Sc] > 1) {

set derno-boxInfo(boxSty1e) " - f i l 1 {) - 0 u t l i n e \
b lack -width 1"
set de rno~boxInfo(ac t ive) " - f i l 1 red \
- 0 u t l i n e b lack -width I"

) e l s e (
set demobox1nf O (boxs ty le) "-f il1 {) - 0 u t l i n e \
b lack -width 1"
set de rnoboxInfo(ac t ive) " - f i l 1 black \
- 0 u t l i n e b l a c k -width ln

1

I n f o about t h e r u l e r

set demo-rulerInfo (g r i d) .2Sc
se t demo-rulerInf O (l e f t) [winf O f p i x e l s Sc T c]

APPENDX B. SOURCE CODE

set demo rulerInfo(right) [winfo fpixels Sc 13cJ
set demo'ruler~nfo (top) [winfo fpixels Sc lc]
set demo-ruler~nfo (bottom) [winfo fpixels Sc 1.75~1
set demo-ruler~nfo(size) [winfo fpixels Sc .4c]
set demo~ruler~nfo (normalstyle) "-fil1 $colorn
puts "color is $colorw
if {[winfo depth Sc] > 1) (

set demo-rulerInfo(activeSty1e) "-fil1 red -stipple { } "
set demo rulerfnfo (deletestyle) [list -fil1 red \

-stipple @ [file join St k-library demos images gray25. bmp]]
) else {

set demo~rulerInfo(activeStyle) " - f i l 1 black -stipple (1 "
set derno-rulerInfo(de1eteStyle) [list -fil1 black \

-stipple @ [file j oin S t k-library demos images gray25. bmp J j
1

Sc create line lc 0 . 5 ~ lc Ic 13c lc 13c 0 . 5 ~ -width 2
Sc create text .Sc .75c -text "AM" -font Snewf -anchor s -fil1 maroon
for {set i O) {Si < 12) {incr i) { -

set x [expr $i+l]
if ($i==O) {
Sc create line $ { x) c lc ${x)c 0.6~ -width 1
Sc create line Sx.25~ lc Sx.25~ 0 . 8 ~ -width 1
Sc create line Sx.5~ Ic Sx.5~ 0 . 7 ~ -width I
Sc create line Sx.75~ lc Sx.75~ 0 . 8 ~ -width 1
Sc create text Sx.15~ .75c -text "12" -font Snewf -anchor s \
-fil1 maroon

} else {
Sc create line SIxIc lc $(x}c 0 . 6 ~ -width 1
Sc create line Sx.25~ lc Sx.25~ 0 . 8 ~ -width 1
Sc create line Sx.5~ lc Sx.5~ 0 . 7 ~ -width 1
Sc create line Sx.7Sc lc Sx.75~ 0 . 8 ~ -width 1
Sc create text Sx.15~ .75c -text Si -font Snewf -anchor s \
-fil1 maroon

1
1
prints the last 12 on the scale
set x [expr $x+l]
Sc create text Sx.17~ .7Sc -text Si -font Snewf -anchor s -fil1 maroon
Sc create text [expr $x+l]c .75c -text "PM" -anchor s -font $newf\

-fil1 maroon

Tags below are for the circular object
Sc addtag well withtag [Sc create rect Sc 4 . 5 ~ 3c 3 . 5 ~ \

-outline black -fil1 [lindex [Sc config -bg] 4) 1
Sc addtag well withtag [xulerMkTab Sc [winfo pixels Sc 2.5~1 \

[winfo pixels Sc 4cj]
Sc create text 2.25~ 5.25~ -text "Point" -font Snewf -fil1 maroon
Sc create text 2.25~ 5.75~ -text "Event" -font Snewf -fil1 maroon

Tags below are for the Infinite Line object
Sc addtag welll withtag [Sc create rect 4 . 5 ~ 4 . 5 ~ 5 . 5 ~ 3.5~ \

-outline black -fil1 [lindex [Sc config -bg] 41 1
Sc addtag welll withtag CrulerMkTabIL Sc [winfo pixels Sc 4 . 5 ~ 1 \

[winfo pixels Sc 4.15c]]

APPEmIX B. SOURCE CODE

$ c c r e a t e t e x t 4 . 7 5 ~ 5 . 2 5 ~ - t e x t " L i m i t l e s s " -font Snewf - f i 1 1 maroon
S c c r e a t e t e x t 4 . 7 5 ~ 5 . 7 5 ~ - t e x t "Event" - fon t Snewf - f i l 1 maroon

Tags below a r e f o r t h e F ixed End o b j e c t
S c a d d t a g we112 wi th tag [Sc create rect 7c 4 . 5 ~ 8c 3 . 5 2 \

- 0 u t l i n e black - f i l 1 [l i n d e x [Sc c o n f i g -bg] 4 1 1
Sc a d d t a g we112 wi th tag [rulerMkTabFE Sc [winfo p i x e l s S c 7 . 0 2 ~ 1 \

[winfo p i x e l s Sc 4 . 1 5 c J J
Sc c r e a t e t e x t 7 . 5 ~ 5 . 2 5 ~ - t e x t "Fixed" - fon t Snewf - f i l 1 maroon
Sc c r e a t e t e x t 7 . 5 ~ 5 . 7 5 ~ - t e x t "Eventn - font Snewf - f i l 1 maroon

Tags below a r e f o r t h e Fixed l e f t o b j e c t
Sc a d d t a g we113 wi th t ag [Sc c r e a t e rect 9 . 5 ~ 4 . 5 ~ 1 0 . 5 ~ 3 . 5 ~ \

- 0 u t l i n e b lack - f i l 1 [l i n d e x [Sc c o n f i g -bgJ 4 1 1
Sc a d d t a g we113 wi th t ag [rulerMkTabFL Sc [winfo p i x e l s Sc 9 . 5 2 ~ 1 \

[winfo p i x e l s Sc 4 .15c]]
Sc c r e a t e t e x t 10c 5 . 2 5 ~ - t e x t "FixeciLeftW - f i l 1 maroon - fon t Snewf
Sc c x e a t e t e x t 10c 5 . 7 5 ~ - t e x t "Event" - f i l 1 maroon - f o n t Snewf

Tags below a r e f o r t h e Fixed r i g h t o b j e c t
Sc a d d t a g w e 1 1 4 wi th tag [Sc c r e a t e rect 12c 4 . 5 ~ 13c 3 . 5 ~ \

- 0 u t l i n e b lack - f i l 1 [l i n d e x [Sc c o n f i g -bg] 4 1 1
Sc a d d t a g w e 1 1 4 wi th tag [rulerMkTabFR Sc [winfo p i x e l s S c 1 2 . 0 2 ~ 1 \

[winfo p i x e l s Sc 4 .15cIJ
Sc c r e a t e t e x t 13c 5 . 2 5 ~ - t e x t "FixedRight" - f i l 1 maroon - fon t Snewf
Sc create t e x t 1 2 . 5 ~ 5 . 7 5 ~ - t e x t "Event" - f i l 1 maroon - f o n t Snewf

#Bindings below a r e f o r t h e I n f i n i t e Line o b j e c t
Sc b i n d w e l l l <1> "rulerNewTabIL Sc % x %y"
Sc b i n d tabl <1> " ru le rSe lec tTabIL Sc %x % y w
Sc b i n d w e l l l <BI-Motion> "rulerMoveTabIL Sc %x % y n
Sc b i n d w e l l l <My-ButtonRelease-l> "rulerReleaseTabIL $ c m

#Bindings below a r e f o r t h e P o i n t o b j e c t
Sc b i n d w e l l <1> "rulerNewTab Sc % x % y w
Sc b i n d t a b <1> " ru le rSe lec tTab Sc % x % y w
Sc b i n d w e l l <BI-Motion> "rulerMoveTab Sc %x %ym
Sc b i n d w e l l CAny-ButtonRelease-l> " ru lerReleaseTab $ c m

#Bindings below a r e f o r t h e F ixed End o b j e c t
Sc b i n d we112 CI> "rulerNewTabFE Sc % x % y v
Sc b i n d t ab2 Cl> "rulerSelectTabFE Sc % x %yu
Sc b i n d we112 <BI-Motion> "rulerMoveTabFE Sc %x %yw
Sc b i n d we112 <Any-ButtonRelease-l> "rulerReleaseTabFE $cm

#Bindings below a r e f o r t h e F ixed L e f t o b j e c t
Sc b i n d we113 <1> "rulerNewTabFL Sc %x %yn
Sc b i n d t a b 3 <I> "rulerSelectTabFL Sc %x %y"
S c b i n d we113 <BI-Motion> "rulerMoveTabFL Sc %x % y n
Sc b i n d we113 CAny-ButtonRelease-l> "rulerRe1easeTabFL Scn

#Bindings below a r e f o r t h e F ixed Right o b j e c t
Sc b i n d we114 c l > "rulexNewTabFR Sc %x %y"

APPENDX B. SOURCE CODE

Sc bind tab4 <1> "rulerSelectTabET3 Sc %x %yw
Sc bind we114 <BI-Motion> "rulerMoveTabFR Sc %x % y w
Sc bind we114 <Any-ButtonRelease-l> "rulerReleaseTabFR $cw

font delete txtft2
source Bruler.tc1
#!/usr/local/bin/wish

#Procedures controlling the behaviour of various objects

Position gives the position of the point objects on the ruler;
count helps in keeping a count of the number of point objects
test is a boolean variable, to check if a new object is
created or not, initially set to false (O)

set Position -1
set count -1
set test O

rulerNewTab --
Does al1 the work of creating a tab stop, including creating the
point object and adding tags to it to give it tab behavior.

Arguments:
c - The canvas window.
x, y - The coordinates of the tab stop.

proc rulerNewTab (c x y) {
global count
global test
incr count
set test 1

upvar #O demo-rulerInfo v
Sc addtag active withtag [rulerMkTab Sc Sx $ y]
Sc addtag tab withtag active
set v(x) Sx
set W y) S y
rulerMoveTab Sc Sx $y

xulerSelectTab --
This procedure is invoked when mouse button I is pressed over
a tab. It remembers information about the tab so that it can
be dragged interactively.

Arguments:
c - The canvas widget.
x, y - The coordinates of the mouse (identifies the point by
which the tab was picked up for dragging).

proc rulerSelectTab {c x y) {
global test

APPErnDc B. SOURCE CODE

global Position
set test O

upvar #O demo-rulerInfo v
set v(x) [Sc canvasx Sx Sv(grid)]
set v (y) [expr $v(top) +2]
Sc addtag selected closest Sv(x) $v(y)
set unit 35.457
set tmp [expr int ((($v(x) /$unit) -1) *100)]
set Position [expr Stmp/100.00]

Sc addtag active withtag current
eval "Sc itemconf active Sv (activestyle) "
Sc raise active
Sc bind tab <BI-Motion> "rulerMoveTab Sc %x % y w
$c bind tab CAny-ButtonRelease-l> "rulerReleaseTab Scn

1

rulerMoveTab --
This procedure is invoked during mouse motion events to drag a tab.
It adjusts the position of the tab, and changes its appearance if
it is about to be dragged out of the ruler.

Arguments:
c - The canvas widget.
X , y - The coordinates of the mouse.

proc rulerMoveTab ic x y) {
upvar #O demo-rulerInfo v
if ([Sc find withtag active] == " ") (
return

1
set cx [Sc canvasx Sx $v(grid))
set cy [Sc canvasy $ y]
if {Scx < Sv(1eft) 1 {
set cx $v(left)

)
if {SCX > Sv (right) 1 {
set cx $v(right)

1
if ((Scy >= Sv(top)) && (Scy <= Sv(bottom))) (
set cy [expr $v(top) +2]
eval "Sc itemconf a c t i v e Sv(activeSty1e)"

) else (

set cy [expr Scy-Sv(size) -21
eval "Sc itemconf active Sv (deletestyle) "

1
SC move active [expr Scx-Sv (x)] [expx Scy-Sv (y)]
set v (x) Scx
set v(y) Scy

rulerReleaseTab --
This procedure is invoked during button release events that end
a tab drag operation. It deselects the tab and deletes the tab if

APPEmDC B. SOURCE CODE

it was dragged out of the ruler.

Arguments:
c - The canvas widget.
& Y - The coordinates of the mouse.

proc rulerReleaseTab c (
upvar #O derno-rulerInfo v
upvar #O point-Obj p

global count
global tqst
global Position
global color

if { [Sc find withtag active] == {) } {
return

1
if {$v(y) != [expr $v(top)+2]) {
Sc delete active
if {$test != "1") {

foreach index [array names p] {
if {$p($index) == $Position) {

set val1 $index
1

1
set p(Sval1) -1

incr count -1
1

) else {
eval "Sc itemconf active -fil1 $colorn

xvalue will be shown only if the event is on
the ruler line and not otherwise.

set unit 35,457
set tmp [expr int((($v(x)/$unit)-l)*IOO)]
set xvalue [expr $tmp/100~00]
if {$test == "1") (

set p (Scount) Sxvalue

) elseif { $test == "0") {
foreach index [array names pl (
if {Sp ($index) == $Position) {

set val $index
1

1
set p($val) Sxvalue

1
Sc dtag active

1

set countIL -1

APPE1VDlX B. SOURCE CODE

rulerNewTabIL --
Does al1 the work of creating a tab stop, including creating the
Infinite line object and adding tags to it to give it a tab behavior.

Arguments:
c - The canvas window.
x f Y - The coordinates of the tab stop.

proc rulerNewTabIL {c x y} (
global countIL
incr count IL
upvar #O demo-rulerInfo v
Sc addtag activel withtag [rulerMkTablL Sc $x $y]
Sc addtag tabl withtag activel
set v (x) Sx
set v(y) S Y
rulerMoveTabIL Sc $x $ y

1

rulerSelectTabIL --
This procedure is invoked when mouse button 1 is pressed over
a tab. It remembers information about the tab so that it can
be dragged interactively.

Arguments:
c - The canvas widget .
x f y - The coordinates of the mouse (identifies the point by
which the tab was picked up for dragging).

proc rulerSelectTabIL (c x y) {
upvar #O derno-rulerInfo v
set v (x) [Sc canvasx Sx $v(grid)]
set v(y) [expr Sv(top)+2]
Sc addtag activel withtag current
eval "Sc iternconf activel Sv(activeSty1e) "
Sc raise activel
Sc bind tabl <BI-Motion> "rulerMoveTabIL Sc % x %ym
Sc bind tabl <My-ButtonRelease-l> "rulerReleaseTabIL Scw

rulerMoveTabIL --
This procedure is invoked during mouse motion events to drag the IL.
It adjusts the position of the IL, and changes its appearance if
it is about to be dragged out of the ruler.

Arguments :
c - The canvas widget.
X , Y - The coordinates of the mouse.

proc rulerMoveTabIL {c x y) (
upvar # O demo-rulerInfo v
if ([Sc find withtag activel] == {
return

APPENDX B. SOURCE CODE

1
set cx [Sc canvasx Sx $v(grid)J
set cy [Sc canvasy $y]
if {SCX < $w(left)) {
set cx Sv(1eft)

}
if {Scx > Sv (right)) {

set cx $v(right)
1
if (S c y >= Sv(top)) & & (Scy c= $v(bottom))) (
set cy [expr Sv (top) +2]
eval "Sc itemconf activel Sv(activeSty1e)"

1 else (
set cy [expr Scy-Sv(size)-21
eval "Sc itemconf activel Sv(de1eteStyle)"

1
SC move activel [expr Scx-Sv(%) 1 [expr Scy-Sv(y)]
set v(x) Scx
set v(y) Scy

1

rulerReleaseTabIL --
This procedure is invoked during button release events that end
a IL drag operation. It deselects the IL and deletes the IL if
it was dragged out of the ruler.

Arguments :
c - The canvas widget .
X , y - The coordinates of the mouse.

proc rulerReleaseTabIL c (
upvar #O demo-rulerInfo v
upvar #O infinite-Obj ie
global countIL
if ([SC find withtag activel] == {) } (
return

1
if {Sv (y) ! = [expr Sv (top) +2]) (
Sc delete activel
incr c o u n t I L -1

} else (
Sc delete activel
Sc addtag tabl withtag [rulerMkTabILZ Sc \
[winfo pixels Sc lc] [winfo pixels Sc lc]]

set unit 35.457
set tmp [expr int (((Sv(1eft) /$unit) -1) * 100) 3
set left [expr $tmp/100.00]

set tmp [expr int(((Sv(right)/$unit)-1)*100)]
set right [expr $tmp/100.00]

set ie(Scount1L) 1
Sc bind tabl cl> "rulerSelectTabIL2 Sc % x %yn

Sc dtag activel

APPENDX B. SOURCE CODE

proc rulerSelectTabIL2 {c x y) {
upvar #O derno-rulerInfo v
Sc addtag activel withtag current
eval "Sc itemconf activel Sv (activestyle)
Sc raise activel
Sc bind tabl <BI-Motion> "rulerMoveTabIL Sc %x %ym
Sc bind tabl CAny-ButtonRelease-l> "rulerReleaseTabIL2 Scn

1

proc rulerReleaseTabIL2 c {
upvar #O demo-rulerInfo v
upvar #O infinite-0bj ie
global count IL
if {[Sc find withtag activel] == {) } {

return
1
if {Sv(y) != [expr Sv(top)+211 I
Sc delete activel
set ie(Scount1L) -1
incr count IL -1

} else (
eval "Sc itemconf activel Sv(normalSty1e)
Sc dtag activel

1
1

Setting up a counter
set countFE -1

rulerNewTabFE --
Does al1 the work of creating a tab stop, including creating the
Finite End object and adding tags to it to give it a tab behavior.

Arguments :
c - The canvas window.
X, Y - The coordinates of the tab stop.

proc rulerNewTabFE {c x y) {
upvar #O deno-rulerInfo v
upvar #O derno-boxInf O w
global count FE
incr count FE
Sc dtag active2
Sc dtag tab2
Sc dtag box1
set w(a) O
Sc addtag active2 withtag [rulerMkTabFE Sc Sx $y]
Sc addtag tab2 withtag active2
set v(x) Sx
set v (y) S y
rulerMoveTabFE Sc Sx $ y

1

APPENDLX B. SOURCE CODE

rulerSelectTabFE --
This procedure is invoked when mouse button 1 is pressed over
a tab. It remembers information about the tab so that it can
be dragged interactively.

Arguments:
c - The canvas widget.
x, y - The coordinates of the mouse (identifies the point by
which the tab was picked up for dragging).

proc rulerSelectTabFE (c x y) {
upvar #O derno_rulerInfo v
set v (x) [Sc canvasx Sx Sv (grid)
set v(y) lexpr $v(top)+2]

Sc addtag selectedFE closest $v(x) $v(y)
set unit 35.457
set tmp [expr int (((Sv(x) /Sunit) -1) *100)]
set PositionFE [expr $tmp/100.00]
set tags [Sc gettags current]

Sc addtag active2 withtag current
Sc addtag tab2 withtag active2
eval "Sc itemconf active2 Sv(activeSty1e)"
Sc raise active2
Sc bind tab2 <BI-Motion> "rulerMoveTabFE Sc %x % y m
Sc bind tab2 CAny-ButtonRelease-l> "rulerReleaseTabFE Sc"

rulerMoveTabFE --
This procedure is invoked during mouse motion events to drag the FE.
It adjusts the position of the FE, and changes its appearance if
it is about to be dragged out of the ruler.

Arguments:
c - The canvas widget .
X , Y - The coordinates of the mouse.

proc rulerMoveTabFE {c x y) (

upvar #O derno-rulerf nfo v
if { [S C find withtag active21 == " " 1 {
return

1
set cx [Sc canvasx S x Sv (grid)]
set cy [Sc canvasy $y]
if { S C X C Sv(left)} (
set cx Sv (left)

1
if (Scx > $v(xight)) {
set cx Sv(right)

1
if { (Scy >= Sv(top) & & (Scy <= $v(bottom))) {
set cy [expr $v(top)+2]

APPEADR B. SOURCE CODE

eval "Sc itemconf active2 Sv(activeSty1e)"
) else {
set cy [expr Scy-$v(size) -21
eval "Sc itemconf active2 Sv(de1eteStyle)"

1
SC move active2 [expr Scx-Sv (x)] [expr Scy-Sv (y))
set v(x) Scx
set v(y) Scy

rulerReleaseTabFE --
This procedure is invoked during button release events that end
a FE drag operation. It deselects the FE and deletes the FE if
it was dragged out of the ruler.

Arguments:
c - The canvas widget.
X , Y - The coordinates of the mouse.

proc rulerReleaseTabFE c {
upvar #O demo-rulerfnfo v
upvar #O finite-Obj f
global count FE
if { [Sc find withtag active21 == {) {

return
1
if {Sv(y) != [expr Sv(top)+2]) {

Sc delete active2 tab2 box1
set f (ScountFE, 1) -1

set f ($countFE,2) -1
incr count FE - 1

) else (
eval "Sc iternconf active2 Sv (normalStyle) "
source box. tcl
Sc bind tab2 <1> "rulerSelectTabFE2 Sc %x % y w

1

proc rulerSelectTabFE2 {c x y) {
upvar #O demo-rulerInfo v
#Capturing the object closest to mouse cursor
set vx [Sc canvasx Sx $v(grid) J
set vy [expr $v(top) +2]
Sc addtag fend1 closest $vx Svy
set unit 35.457
set tmp [expr int (((Svx/Sunit) -l)*lOO) 1
set positionFE [expt $tmp/100.00]
set tags [Sc gettags current]

Sc addtag active2 withtag current
Sc addtag tab2 withtag active2
eval "Sc itemconf active2 Sv(activeSty1e)"
Sc raise active2
Sc bind tab2 <BI-Motion> "rulerMoveTabFE Sc %x %yn

APPENDX B. SOURCE CODE

Sc bind tab2 CAny-ButtonRelease-l> "rulerReleaseTabFE Sc"
1

source Cruler-tcl
#!/usr/local/bin/wish

CountFL is used to keep a count of the # of objects created
for Fixed Left event
set countFL, -1

rulerNewTabFL
Does al1 the work of creating a tab stop, including creating the
Fixed Left object and adding tags to it to give it a tab behavior.

Arguments :
c - The canvas window.
X , Y - The coordinates of the tab stop.

proc rulerNewTabFL Ic x y) (
upvar #O derno-rulerInfo v
global countFL
incr count FL
Sc addtag active3 withtag [rulerMkTabFL Sc Sx $y]
Sc addtag tab3 withtag active3
set v(x) $x
set v(y) Sy
rulerMoveTabFL Sc Sx $y

1

rulerSelectTabFL --
This procedure is invoked when mouse button 1 is pressed over
a tab. It remembers information about the tab so that it can
be dragged interactively.

Arguments:
c - The canvas widget.
x, y - The coordinates of the mouse (identifies the point by
which the tab was picked up for dragging).

proc rulerSelectTabFL {c x y) (
upvar #O demo-rulerInfo v
set v(x) [Sc canvasx Sx Sv (grid) 1
set v(y) [expr Sv(top)+2]
Sc addtag active3 withtag current
eval "Sc itemconf active3 Sv(a~tiveSty1e)~
Sc raise active3
Sc bind tab3 <BI-Motion> "rulerMoveTabFL Sc %x %y"
Sc bind tab3 ~Any-ButtonRelease-l> "rulerReleaseTabFL Sc"

APPENDLX B. SOURCE CODE

rulerMoveTabFL --
This procedure is invoked during mouse motion events to drag the FL.
It adjusts the position of the FL, and changes its appearance if
it is about ta be dragged out of the ruler.

Arguments:
c - The canvas widget .
& Y - The coordinates of the mouse.

pxoc rulerMoveTabFL {c x y) {

upvar #O demo-rulerInfo v
if { [S C find withtag active31 == " ") {
return

1
set cx [$c canvasx Sx Sv (grid) 1
set cy [Sc canvasy $y]
if {SCX < Sv(1eft)) {
set cx Sv(1eft)

1
if {$cx > $v(right)) {
set cx $v (right)

1
if { (Scy >= Sv (top)) & h (Scy <= Sv (bottom)) 1 (
set cy [expr Sv (top) +SI
eval "Sc itemconf active3 Sv(activeSty1e)"

} else (
set cy [expr Scy-Sv(size)-21
eval "Sc iternconf active3 Sv(deleteSty1e)"

I
Sc move active3 [expr Scx-$v(x)j [expr Scy-$v(y)]
set v(x) Scx
set v(y) Scy

rulerReleaseTabFL --
This procedure is invoked during button release events that end
a FL drag operation. It deselects the FL and deletes the FL if
it was dragged out of the ruler.

Arguments:
c - The canvas widget.
& Y - The coordinates of the mouse.

proc rulerReleaseTabFL c (
upvar #O demo_rulerInfo v
upvar #O finitel-Obj fl
global count FL
if {[Sc find withtag active31 == (1) (
return

1
if {$v(y) != [expr $v(top)+2]) (
Sc delete active3
incr count FL - 1

) else {
set unit 35.457

APPENDlX B. SOUUCE CODE

set tmp [expr int (((Sv(x) /$unit) -1) *lOO) 1
set xvalue [expr Stmp/100.00]

set f 1 (Scount EX) Sxvalue

Sc delete active3
Sc addtag tab3 withtag [rulerMkTabFLS Sc \
$v(x) [winfo pixels Sc lc] 1
Sc bind tab3 <1> "rulerSelectTabE'L2 Sc % x %yn

Sc dtag active3
1

1

proc rulerSelectTabFL2 (c x y) {
upvar #O demo-rulerInfo v
puts "Invoked f rom proc rulerSele~tTabFL2~
global posicion
set v(x) [Sc canvasx Sx Sv (grid)]
set v (y) [expr Sv(top)+2]

Sc addtag selected closest Sv(x) Sv(y)

set unit 35.457
set tmp [expr int ((($v(x) /$unit) -1) *100)]
set position [expr $tmp/100.00]

Sc addtag active3 withtag current
eval "Sc itemconf active3 Sv(activeSty1e)"
Sc raise active3
Sc bind tab3 <BI-Motion> "rulerMoveTabFL Sc %x %yn
Sc bind tab3 <Any-ButtonRelease-l> "rulerReleaseTabFL2 Scn
set unit 35,457
set tmp [expr int (((Sv(x) /$unit) -1) *100)]
set xvalue [expr Stmp/100.00]

proc rulerReleaseTabFL2 c (
upvar #O demo_rulerInfo v
upvar #O finitel-Obj fl
global countFL
global position
if ([SC find withtag active31 == {)) (

return
1
if {$v(y) != [expr $v(top)+S]) {

Sc delete active3
foreach index [array names fl] {

if { $fl($index) == $position) (
set val1 $index

1
1
set fl(Sval1) -1
incr countFL -1

} else {
set unit 35.457

APPENDlX B. SOURCE CODE

set tmp [expr int (((Sv(x1 /Sunit) -1) *100) 1
set xvalue [expr $tmp/100.00]

foreach index farray names fl] {
if { Sfl ($index) = $position) (

set val $index
1

1
set fl($val) Sxvalue

Sc delete active3
Sc addtag tab3 withtag [rulerMkTabFL2 Sc \
$v(x) [winfo pixels Sc lc] j
Sc bind tab3 <1> "rulerSelectTabFL2 Sc %x %yw
Sc dtag active3

1

countFR is used to keep a count of the # of objects created
for Fixed Right event
set countFR -1

rulerNewTabFR --
Does al1 the work of creating a tab stop, including creating the
Fixed Right object and adding tags to it to give it a tab behavior.

Arguments:
c - The canvas window.
X , Y - The coordinates of the tab stop.

proc rulerNewTabFR {c x y } {
upvar #O demo-rulerInfo v
global count FR
incr count FR
Sc addtag active4 withtag [rulerMkTabFR Sc Sx $y]
Sc addtag tab4 withtag active4
set v(x) Sx
set v(y) Sy
rulerMoveTabFR Sc Sx $y

1

rulerSelectTabFR
This procedure is invoked when mouse button 1 is pressed over
a tab. Tt remembers information about the tab so that it can
be dragged interactively.

Arguments :
c - The canvas widget .
x, y - The coordinates of the mouse (identifies the point by

which the tab was picked up for dragging).

proc rulerSelectTabFR (c x y) {

APPENDE B. SOURCE CODE

upvar #O demo-rulerInfo v
set v (x) [Sc canvasx Sx Sv (grid)]
set v(y) [expr $v(top) +2]
Sc addtag active4 withtag current
eval "Sc itemconf active4 Sv(a~tiveSty1e)~
Sc raise active4
Sc bind tab4 <BI-Motion> llrulerMoveTabFR Sc %x %y1'
Sc bind tab4 CAny-ButtonRelease-l> "rulerReleaseTabFR Scn

rulerMoveTabFR
This procedure is invoked during mouse motion events to drag the FL.
Tt adjusts the position of the FR, and changes its appearance if
it is about to be dragged out of the xuler.

Arguments:
c - The canvas widget.
X , Y - The coordinates of the mouse.

proc rulerMoveTabFR (c x y) (
upvar #O demo-rulerInfo v
if {[Sc find withtag active41 == " " 1 {

return
1
set cx [Sc canvasx $x Sv(grid)]
set cy [Sc canvasy $y]
if {SCX < Sv(1eft)) (
set cx Sv(1eft)

1
if {Scx > $v(right)) {
set cx Sv (right)

)
if { (Scy >= $v(top)) & & (Scy <= $v(bottom))) {
set cy [expr Sv(top) +2]
eval "Sc itemconf active4 Sv(activeSty1e)"

) else {

set cy [expr Scy-Sv (size) -21
eval "Sc itemconf active4 Sv (deletestyle) "

1
Sc move active4 [expr Scx-Sv (x) 1 [expr Scy-Sv (y)]
set v(x) Scx
set v(y) Scy

rulerReleaseTabFR
This procedure is invoked during button release events that end
a FR drag operation. It deselects the FR and deletes the FR if
it was dxagged out of the ruler.

Arguments :
c - The canvas widget,
X , Y - The coordinates of the mouse.

proc rulerReleaseTabFR c {

APPENDLX B. SOURCE CODE

upva r # O demo-rulerInfo v

#Value nv adds [winfo f p i x e l s Sc l c] t o v (x)

set nv [e x p r Sv(x)+35 .457]
u p v a r #O f i n i t e r - 0 b j fr
g l o b a l c o u n t FR
i f { [SC f i n d w i t h t a g a c t i v e 4 1 == ()) {

r e t u r n
1
if {Sv (y) ! = [expr Sv (t o p) +2] 1 {

S c d e l e t e a c t i v e 4
i n c r c o u n t FR -1

) else {
set u n i t 35.457

set tmp [expr i n t ((Sv (x) / S u n i t) * l 0 0) 1
set x v a l u e [exp r Stmp/100.00]
set f r (ScountFR) Sxva lue

S c d e l e t e a c t i v e 4
S c a d d t a g tab4 w i t h t a g [rulerMkTabFRS Sc \

Snv [winfo p i x e l s S c I c] J
S c b i n d t a b 4 <1> " ru l e rSe l ec tTabFR2 S c % x %ym

Sc d t a g a c t i v e 4
1

proc ru l e rSe l ec tTabFR2 (c x y } (
upvar # O demo-rulerInfo v
g l o b a l pos i t i onFR
set v (x) [Sc canvasx Sx Sv (g r i d)]
set v (y) [exp r S v (t o p) +2]

S c a d d t a g s e l e c t e d c l o s e s t $ v (x) $ v (y)

set u n i t 35.457
set tmp f e x p x i n t (($ v (x) / $ u n i t) '100)]
set p o s i t i o n F R [expr $tmp/100.00]
set p o s i t i o n F R [exp r S p o s i t i o n F R - 11

S c a d d t a g a c t i v e 4 withtag c u r r e n t
e v a l "Sc i temconf a c t i v e 4 S v (a ~ t i v e S t y 1 e) ~
S c r a i s e a c t i v e 4
S c b i n d t a b 4 <BI-Motion> "rulerMoveTabFR S c % x % y m
S c b i n d t a b 4 <My-But tonRelease- l> "rulerReleaseTabFR2 Sc"

}

p r o c rulerReleaseTabFR2 c {
upva r # O derno-rulerInfo v
upva r #O f i n i t e r -Ob j f r
g l o b a l coun t FR
g l o b a l pos i t i onFR
i f ([S c f i n d w i t h t a g a c t i v e 4 1 == {)) {

r e t u r n
1
i f (S v (y) != [expr S v (t o p) + 2]) (

APPENDLX B. SOURCE CODE

Sc delete active4
foreach index [array names fr] {

if { Sfr ($index) == SpositionFR) (
set val1 $index

1
1
set fr(Sva1l) -1
incr count FR -1

) else I
set unit 35.457
set tmp Eexpr int ((Sv (x) /$unit) '100) 3
set xvalue [expr $tmp/100.00]
set xvalue [expr Sxvalue - 11
foreach index [array names f r] (

if ($fr($index) == SpositionFR) [
set val $index

1
1

set fr ($ v a l) Sxvalue

Sc delete active4
Sc addtag tab4 withtag lrulerMkTabFR2 Sc \

SV (XI [winfo pixels Sc lc]]
Sc bind tab4 cl> "rulerSelectTabFR2 Sc %x %y"
Sc dtag active4

1
1

proc positionwindow to sets the position of the Window on the screen.

proc positionwindow w {
wm geometry Sw +300+300

1

#Font variable
set font {Helvetica 14)

#Default color for t h e widget items

set color #2230f0

#begin
rulerMkTab --
This procedure creates a new circular polygon in a canvas to
represent a point event.

APPENDlX B. SOURCE CODE

bguments :
c - T h e canvas window.
x, y - Coord ina te s a t which t o c r e a t e t h e tab s t o p -

Arguments:
w - The name of the window t o p o s i t i o n .

p r o c rulerMkTab { c x y) {

g loba l c o l o r
pu t s "Color f o r p o i n t o b j e c t is Sco lo rw
s e t v l [winfo f p i x e l s Sc .3c]
Sc c r e a t e ova l [expr Sx-Sv1/21 [expr $y-Sv1/21 [expr Sx+Sv1/21 \

[expr $y+$v1/2] - f i l 1 black

rulerMkTabIL --
This procedure creates a new I n f i n i t e l i n e i t e m i n a canvas.

Arguments:
c - The canvas window,
X , Y - Coord ina te s a t which t o c r e a t e t h e I L i t e m .

Arguments:
w - The narne of t h e window t o p o s i t i o n .

p r o c rulerMkTabIL {c x y) {
s e t v l [winfo f p i x e l s Sc I c]
SC c r e a t e l i n e Sx $y [expr $x+$vl] $y \

-arrow bo th - f i l 1 b l ack -width 8

rulerMkTabIL2 --
This procedure c r e a t e s a new I n f i n i t e l i n e i t e m i n a canvas.
Behaves s i m i l a r t o t h e above but covers the e n t i r e Length.

p r o c rulerMkTabIL2 {c x y) {

g loba l c o l o r
set vl [winfo f p i x e l s Sc 12cJ
SC c r e a t e l i n e Sx $y [expr Sx+Sv13 $y -arrow b o t h - f i l 1 $co lo r \
-width 8

rulerMkTabFE --
This procedure c r e a t e s a new Fixed End l i n e i t e m i n a canvas.

Arguments :
c - The canvas window.
X, Y - Coord ina te s a t which t o c r e a t e t h e FE i t e m -

Arguments:
w - The name of t h e window t o p o s i t i o n .
Here vl p lays a r o l e i n pos i t i on ing t h e i t e m e s p e c i a l l y w . r . t y axis.

p r o c rulerMkTabFE {c x y) {
s e t v l [winfo f p i x e l s Sc l c]

APPENPDC B. SOURCE CODE

Sc create l i n e Sx $ y [expr Sx+$vl] $y - f i l 1 black -width 8

rulerMkTabFL
This procedure c r e a t e s a new Fixed L e f t i t e m i n a canvas.

Arguments :
c - The canvas window.
X, Y - Coordinates at which t o c r e a t e the FE i tem,

Arguments :
w - The name of t h e window t o pos i t ion .
v l p l a y s a r o l e i n pos i t ion ing t h e i t e m w . r . t y a x i s .

proc rulerMkTabFL { c x y) {
set v l [winfo f p i x e l s Sc lc]
Sc c r e a t e l i n e Sx $y [expr $x+$vl] \

$y - f i l 1 b lack -width 8 -arrow l a s t
1

rulerMkTabFL2
This procedure c r e a t e s a new Fixed l e f t i tem i n a canvas.
Behaves s i m i l a r t o the above but cover s t h e r i g h t l e n g t h .

proc rulerMkTabFL2 { c x y} {
upvar # O demo-rulerInfo v
g l o b a l co lox
set v l [winfo f p i x e l s Sc l c]
Sc c r e a t e l i n e $x $ y $ v (r i g h t) \

$y -fil1 Scolor -width 8 -arrow l a s t
1

rulerMkTabFR
This procedure c r e a t e s a new Fixed Right i t e m i n a canvas.

Arguments:
c - The canvas window.
& Y - Coordinates a t which t o c r e a t e the FE i tem.

Arguments :
w - The name of t h e window t o pos i t ion .
v l p l a y s a n important r o l e i n p o s i t i o n l n g t h e item.

proc rulerMkTabFR {c x y} {

set v l [winfo f p i x e l s Sc lc]
Sc c r e a t e l i n e Sx Sy [expr $x+$vl] $y \

- f i l 1 b lack -width 8 -arrow f i r s t
1

rulerMkTabFR2
This procedure c r e a t e s a new Fixed Right i tem i n a canvas.
Behaves s i r n i l a r t o t h e above bu t c o v e r s t h e l e f t l eng th .

Sets up the window manager options.
set w .query-ruler
global w
global tk-library
catch fàestroy S w)
toplsvel S w
wrn title Sw "Querying the Systemn
wm iconname Sw "QueryRulern
positionwindow $w
set c Sw.c

Create a droplist for the events. ..
drop test var is the global variable holding the value of
the Gurrent selected event

global drop-test-var

proc DropListCreate (
basename text width height variable initial-value 1 {

upvar #O $variable var
set var "$initial value" -

Name of top-level widget to create.
set top $basenarne.top

Widgets to enter data.

frame Sbasename -bd O
label Sbasename.lb1 - text S t e x t -anchor e
entry $basename.ent -width Swidth
$basename.ent insert O "$initial-valuet'
DropButton $basename.drop $basename.top $basenarne.ent

bind $basename-ent <Return> \
"DropListSetVal Sbasename.ent $variablew

APPEmlX B. SOURCE CODE

bind $basename.ent <Key-Escape> "wm withdraw $topR

pack Sbasenarne.lb1 -side left -ipady 3 -pady 7
pack $basename.ent -side left -expand 1 -ipady 3 -pady 7
pack $basename.drop -side left -ipady 3 -pady 7

Drop-list is a top-level temporary window.

toplevel Stop -cursor top-left-arrow
wm overrideredirect Stop 1
wrn withdraw Stop

Create list
set frm $top.frame
frame Sfrm -bd 4 -relief sunken

listbox $fm-list -height Sheight -width Swidth \
-selectmode single \
-yscrollcommand "$frm.scrollbar setn

bind $frm.list <Key-Escape> "m withdraw $topn

Create scrollbar
scrollbar Sfrm.scrollbar \

-cornand "$frm.list yview"

pack $frm.scrollbar -side right -fil1 y
pack $frm.list -side left
pack Sfrm -side top

bind Sfrm.list ~ButtonRelease-l> \
"DropListClick Stop $basename.ent $variablew

pack Sbasename

Return list widget so you can fil1 it.

return Sfrm. list

1

Returns selected item for a single-select list.
proc list-selected { listname) {

set indx [Slistname curselection)

if ($indx != 1 {
set item [Slistname get Sindx]

return $item
1 else {

return "";
1

1

APPENVLXB. SOURCE CODE

Places value in global variable.
proc DropListSetVal { entry variable) {

upvar #O $variable var

set value [Sentry get)

if { $value != "" 1 {
set var $value

1

Handles click on drop list widget.
proc DropListClick { basename entry variable) (

catch (
set selected [list-selected Sbasename.frame.list)

if { Sselected != "" 1 (

Put item into entry widget.

Sentry delete O end
Sentry insert O "Sselected"

DropListSetVal Sentry $variable
1

1

wm withdraw Sbasename
1

Makes drop list visible. Create with DropListCreate.
proc ShowDropList (basename associated-widget) (

set x [winfo rootx Sassociated-widget]
set y [winfo rooty $associated-widgetj
set y [expr $y + [winfo height Sassociated-widget J

wm geometry Sbasename " + $ x + $ y W

wm deiconify Sbasename
raise Sbasename

Creates a button with a drop-dom bitmap.
proc DropButton (name toplevel entry) {

button Sname -image dnarrow \
-cornand "ShowDropList Stoplevel $entryn

APPErnLX B. SOURCE CODE

return Sname
1

Bitmap data for d o m arrow bitmap.

set dnarxow-data "
#define dnarrow2-width 18
#def ine dnarrow2-height 18
static unsigned char dnarrow2bits [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxfc, Oxff, 0x00, Oxf8, 0x7€,
0x00,

Oxf8, 0x7£, 0x00, OxfO, Ox3f, 0x00, OxfO, 0x3£, 0x00, OxeO, Oxlf,
0x00,

OXCO, OxOf, 0x00, OXCO, OxOf, 0x00, 0x80, 0x07, 0x00, 0x80, 0x07,
0x00,

0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxfc, Oxff,
0x00,

Oxfc, Oxff, 0x00, 0x00, 0x00, 0x00);
n

image create bitmap dnarrow -data Sdnarrow-data

set dxop-test-var "Unset"
global drop-test-var

proc test-value () {

global drop-test-var
global list-of-colors
global list-of-events
global color

set index [lsearch Slist-of-events Sdrop-test-var]
set color-val [lindex Slist of colors Sindex]
puts "Color selected is ~coTorIvailg
set color Scolor-val
puts Value of variable=$drop - test-varw

Test procedure creating a drop-down list
proc test-drop-list { wl } {

global drop-test-var
global list-of-events
global list-of-colors
global list-of-descrip
set filename event-details.dat

set data
set list-of-events ""
set list-of-colors
set list-of-descrip

if { [file readable Sfilenarne] 1 {
set fileid [open Sfilename "ru]

APPENDX B. SOURCE CODE

while { [eof $fileid] != 1) (
gets Sfileid data
set list-of-events [linsert Slist-of-events end $data]
gets $fileid data
set list-of-colors [linsert Slist-of-colors end $data]
gets $fileid data
set list-of-descrip [linsert Slist-of-descrip end $data]

j
close $fil eid
1

Determine initial value.
Enclose in quotes because it may
have spaces in the value.

set initial - value [lindex Slist of events O] - -

Create drop list.
set list [DropListCreate $wl "Select Event: " \

40 8 drop-test-var "$initial - value"]

Fil1 in drop list with events.
foreach event $ List-of-events {

Slist insert end Sevent
1
button $wl.ok -text "OK" -command test-value
pack $wl.ok -side left -expand 1

Comment out next line to remove test code.

set newframe $w.frameList
test-drop-list Snewframe

Frame-2.
The following commands create the frame buttons.
frame $w.buttons
pack $w.buttons -side bottorn -fil1 x -pady 2m
button Sw.buttons.query -text " Query " -cornand { query 1
button $w.buttons.new-query -text "New Querym\

-command { new-query $w)
button $w,buttons.exit -text " Exit " -cornand (query-close $w)
button $w,buttons.help -text " Help " -cornand { source
queryHelp.tc1)
pack $w.buttons.query $w,buttons.new-query $w.buttons.exit \

$w.buttons.help -side left -expand 1

Procedure querygroc, which queries the eclipse depending

APPENDZ B. SOURCE CODE

on the event selected by the user. It requires information
about the event name, value on the time scale (obtained through
upvar).

proc query { 1 I
upvar #O pointObj po
upvar #O infinite-Obj ie
upvar #O finiter Obj fr
upvar 80 finitel-0bj fl

upvar #O finiteobj f

global color count FE
global list-of-events
global list-of-colors
global drop-test-var
global tk-library
set numFE ScountFE
puts "No. of Fixed objects are ScountFE"

Delete knowledge-base (older version) and create again
by joining integral-dat and point.dat

file delete knowledge-base
set commandl "cat integra1.dat point-dat > knowledge-basen
eval exec Scommandl

Get the index of the event from list-of-events and pick
the corresponding color Lrom list-ofcolors

set index [lsearch $list_of-events Sdrop-test-var]
set color-val [lindex Slist~of~colors $index]
set cofor $color-val
puts "Color selected is Scolor-val"
set color-val [string trimleft "Scolor-val" " # "]

set color-val cScolor-val

The following lines of code open a channel and the
eclipse commands are executed from the tcl script

set pipe [open "leclipse" w+]
fconfigure $pipe -bufiering line
puts Spipe compile(inference-engine).
puts Spipe compile(know1edge-base).

flush $pipe
if { [array exists po] 1 {

foreach index [array names po] (
set val $po($index)
if {$val == -1) {

continue
) else {
set val [expr int ($val) *100]

APPENDLX B. SOURCE CODE

s e t command "pt ($val , Scolor-val , 1) .
p u t s $p ipe Scommand
1

1
1

if { [a r r a y e x i s t s i e]) {
fo reach index [a r r a y names ie] {

set v a l $ i e ($ i n d e x)
i f {$val == -1) {

cont inue
) else (

set v a l [expr i n t ($ v a l) * 1001
set cornmand " i n t (0 , 1200, $co1ordval t 1200) . ''
p u t s $pipe Scommand
1

i f ([array e x i s t s f r]) (
f o r e a c h index [a r r a y names f r] (

set v a l S f r ($ index)
i f {$val == -1) {

cont inue
) e l s e (

set val [expr i n t ($ v a l) * 1001
set command " i n t (O , $ v a l , $color-val-1) . "
p u t s $pipe Scommand
1

1
1

i f { [a r r a y e x i s t s f l l) {

foreach index [a r r a y names f l] {
set v a l S f l ($ index)
i f {$va l == -1) (

cont inue
) e l s e {

set val [expr i n t ($ v a l) +100]
set d i f f [expr 1200 - $ v a l]
set command " i n t ($ v a l , 1200, Scolor-val, S d i f f) . "
puts $pipe Scommand

i f ([a r r a y e x i s t s fj) (

f o r {set index l O) {$indexl<=$numFE) (i n c r i n d e x l) {

se t v a l l $f (Sindexl , 1)
s e t v a l l [expr i n t (Sva11) +100]

set va12 $ f (S i n d e x l , 2)
set va12 [expr i n t ($va12) * 1001

set d i f f [expr Sval2-$val11
i f { S v a l l != -1) {

set command "int (S v a l l , Sval2, Sco lo r - v a l , S d i f f) . "

APPENDLXB. SOURCE CODE

puts Spipe Scommand
1

puts $pipe "halt.

The output of the execution is written to the file
outfile.dat

set fileid [open outfile-dat "w+"]

fileevent $pipe readable [list Reader $pipe]
while { [eof $pipe] ! = 1) {

gets $pipe response
puts Sresponse
puts Sfileid Sresponse

1

close $fileid

The following lines of code close a channel once
it becomes readable

proc Reader { pipe) {
if [eof $pipe] {

catch (close $pipe)
re t urn

1
gets $pipe response
puts Sresponse

1

The following lines of code read the data which is
written ont0 the file outfile.dat and show a Message/
dialog box giving the results.

proc showResult I d) {

if I Eregexp {Yyes\.lbye)S) $dl) {
return 1

) elseif { [regexp {"\[eclipse.*S) $dl) {

return 1
1 elseif { [regexp " ^ \ [\t] *$" $dl) {

return 1
) else {

return O
1

1

if {[file readable outfile.dat]) (

APPENDLX B. SOCLUCE CODE

set counter 1
set f l a g 1

set f i l e i d [open o u t f i l e . d a t " r"]

#Are w e a t t h e end o f t h e file?

while { [gets S f i l e i d d a t a] >=O) {
i n c r coun te r

i f {Scountex >= 19) {
set v a l [showResult $da ta]
i f ($ v a l == 0) {
set flag O

con t inue
1

1
c l o s e Sf i l e i d

show Message/Dialog box

i f { S f l a g == 1) (
s e t r e s u l t [t k - messageBox -parent .query-ruler \
- t i t l e Result -type ok - icon i n f o \
-message "Query r e s u l t s : True ! " j

} else [
set r e s u l t [tk-messageBox -parent .query-ruler \
- t i t l e Result -type ok - icon i n f o \
-message "Query r e s u l t s : N o ! "]

Procedure invoked when N e w Query b u t t o n is pressed.
p roc new-query (w) {

upvar # O point-Obj po
upvar # O i n f i n i t e Obj i e
upvar # O f i n i t e l c b j fl
upvar # O f i n i t e r b j fr
upvar #O f i n i t e &j f -
g l o b a l count c o u n t I l countFL
g l o b a l ccuntFR countFE
s e t c o l o r #2230f0
$ w . c d e l e t e box1 t a b t a b l t a b 2 t ab3 tab4 a c t i v e a c t i v e 1 \
a c t i v e 2 a c t i v e 3 ac t ive4 box fend1 f i x e d

Unset t ing t h e var ious arrays
i f { [a r r a y e x i s t s p o]) (unse t po 1
i f { [a r r a y e x i s t s ie]) (unse t ie)
i f I [a r r a y e x i s t s f l]) { u n s e t f l)
i f { [axray e x i s t s f r]) (u n s e t f r)
i f { [axray e x i s t s f]) { unse t f)

APPENDLX B. SOURCE CODE

Reinitializing various variables used in arrays
set count -1
set countIL -1
set countFL -1
set countFR -1
set countFE -1

Giving Visual cues to the user.
$w.c delete well5
$w.c addtag we115 withtag [Sw.c create rect 11.5~ 4 . 5 ~ 12.5~ 3 . 5 ~

-0utline black -fil1 [lindex [Sw .c config -bg] 41 j
$w.c create bitmap 12.00~ 4.00~ -bitmap questhead \

-background gray -tags we115

update
focus $w.frameList

1
#Procedure invoked when Exit button is pressed
proc query-close (w) (

destroy Sw
1

#Creating the Query Screen.

canvas Sc -width 17c -height 7c
pack $w,c -side top -fil1 x

Create a font to show the text in the query window.

font create txtft2 -family Courier -size 12 - s l a n t italic \
-weight bold

set newf txtft2

#Info about the box

set demo-boxInf O (a) O
set demo~boxInfo(motionProc) MoveNull
if ([winfo depth Sc] > 1) (

set demo-boxInfo(boxSty1e) "-fil1 {) -0utline \
black -width 1"
set demo-boxInfo (active) "-f il1 red \
-0utline black -width 1"
I
set demo-boxInfo(boxSty1e) "-fil1 {) -outline \
black -width 1"
set demodboxInfo(active) "-fil1 black \
-0utline black -width 1"

set demo-rulerInf O (grid) -2%
set demo rulerInfo(1eft) iwinfo fpixels Sc lc]
set demo-ruler~nf O (right) [winfo fpixels Sc 13cl
set demoIruler1nfo (top) [winfo fpixels Sc lc]

APPENDlX B. SOURCE CODE

Tags be low are f o r t h e F ixed End o b j e c t
Sc a d d t a g we112 w i t h t a g [Sc create rect 5 . 5 ~ 4 . 5 ~ 6 . 5 ~ 3 . 5 ~ \

- o u t l i n e b l a c k - f i l 1 [l i n d e x [Sc c o n f i g -bg] 4 1]
S c a d d t a g w e l l 2 w i t h t a g [rulerMkTabFE Sc [winfo p i x e l s S c 5 . 5 2 ~ 1 \

[w in fo p i x e l s Sc 4 . 1 5 ~ 1 J
S c create t e x t 6c 5 . 2 5 ~ - t e x t "Fixed" - f i l 1 maroon - f o n t Snewf
Sc c r e a t e t e x t 6c 5 . 7 5 ~ - t e x t "EventV1 -fil1 maroon - f o n t Snewf

Tags below are f o r t h e F ixed l e f t o b j e c t
Sc a d d t a g we113 w i t h t a g [Sc create rect 7.52 4 . 5 ~ 8 . 5 ~ 3 . 5 ~ \

- 0 u t l i n e b l a c k - f i l 1 [l i n d e x [Sc c o n f i g -bg] 4 1]
Sc a d d t a g we113 w i t h t a g [rulerMkTabFL Sc [winfo p i x e l s S c 7 . 5 2 ~ 1 \

[w in fo p i x e l s Sc 4 .1Sc) l
Sc create t e x t 8c 5 . 2 5 ~ - t e x t "Fixed" - f i l 1 maroon - f o n t Snewf
Sc create t e x t 8c 5 . 7 5 ~ - t e x t "Le f t " - f i l 1 maroon - f o n t Snewf

Tags below a r e f o r t h e F ixed r i g h t o b j e c t
Sc a d d t a g we114 w i t h t a g [Sc create rect 9 . 5 ~ 4 . 5 ~ 1 0 . 5 ~ 3 . 5 ~ \

- 0 u t l i n e b l a c k - f i l 1 [l i n d e x [Sc c o n f i g -bg] 4)]
Sc a d d t a g we114 w i t h t a g [rulerMkTabFR Sc [winfo p i x e l s S c 9 . 5 2 ~ 1 \

[w in fo p i x e l s Sc 4 . 1 5 ~ 1 1
Sc c r e a t e t e x t 10c 5 . 2 5 ~ - t e x t "Fixed" - f i l 1 maroon - f o n t Snewf
Sc c r e a t e t e x t 10c 5 . 7 5 ~ - t e x t "Rightn - f i l 1 maroon - f o n t Snewf

Tags below a r e f o r t h e q u e s t i o n mark
Sc a d d t a g we115 w i t h t a g [Sc create rect 1 1 . 5 ~ 4 - S c 1 2 . 5 ~ 3 - 5 2 \

- 0 u t 1 i n e b l a c k - f i l 1 [l i n d e x (Sc c o n f i g -bg] 4 1 1
Sc a d d t a g we115 w i t h t a g [rulerMkTabQues S c [winfo p i x e l s Sc 1 1 . 5 2 ~ 1 \

[w in fo p i x e l s Sc 4 . 1 5 c]]
Sc c r e a t e t e x t 1 2 c 5 . 2 5 ~ - t e x t "What ts" - f i l 1 maroon - f o n t Snewf
Sc c r e a t e t e x t 1 2 c 5 . 7 5 ~ - t e x t "True" - f i l 1 maroon - f o n t Snewf

#Bindings below a r e f o r t h e I n f i n i t e L ine o b j e c t
Sc b i n d w e l l l Cl> "rulerNewTabIL Sc %x %y"
Sc b i n d tabl <1> " ru l e rSe l ec tTab IL S c %x % y n
S c b i n d w e l l l CB1-Motion> "rulerMoveTabIL Sc %x % y u
Sc b i n d w e l l l CAny-ButtonRelease-l> " ru le rReleaseTabIL Sc"

#Bindings below are f o r t h e c i r c u l a r o b j e c t
Sc b i n d w e l l <1> "uulerNewTab Sc % x %y"
S c b i n d t a b c l > " r u l e r S e l e c t T a b S c % x % y w
S c b i n d w e l l <BI-Motion> "rulerMoveTab Sc %x %ym
Sc b i n d w e l l CAny-ButtonRelease-l> " ru le rReleaseTab Sc"

#Bindings below a r e f o r t h e F ixed End o b j e c t
Sc b i n d we112 Cl> "rulerNewTabFE S c % x %y"
Sc b i n d t a b 2 <1> " ru le rSe lec tTabFE S c %x %yn
Sc b i n d we112 <BI-Motion> "rulerMoveTabFE Sc %x % y N
Sc bind ne112 <Any-ButtonRelease-l> "rulerReleaseTabFE Sc"

#Bindings below a r e f o r t h e F ixed L e f t o b j e c t
S c b i n d we113 CI> "rulerNewTabFL S c % x %y"

APPENDLX B. SOURCE CODE

Sc bind tab3 <D "rulerSelectTabFL Sc %x % y w
Sc bind we113 <BI-Motion> "rulerMoveTabFL Sc % x %yw
Sc bind we113 CAny-ButtonRelease-l> "rulerReleaseTabFL $cm

#Bindings below are for the Fixed Right object
Sc bind we114 Cl> "rulerNewTabFR Sc %x %yn
Sc bind tab4 <1> "rulerSelectTabE'R Sc %x %yw
Sc bind we114 <BI-Motion> "rulerMoveTabE'R Sc %x %yw
Sc bind we114 CAny-ButtonRelease-l> lwrulerReleaseTabFR Scw

#Bindings below are for the QuestionHead object
Sc bind well5 Cl> "rulerInfoAl1 $cm
Contrais na ~ ~ ï k i n g of the Whatls true icon
proc rulerInfoAl1 {w) {

global drop-test-var
puts "Sdrop-test varn
Sw delete wellS
Sw addtag wellS withtag [Sw create rect 11.5~ 4 . 5 ~ 12.5~ 3 . 5 ~ \
-0utline black -fil1 [lindex [Sw config -bg] 411

Sw create bitmap 12.00~ 4.00~ -bitmap questhead \
-background blue -tags we115

1

font delete txtft2
source Bruler.tc1
#!/usr/local/bin/wish

Procedure boxSetup help in manipulating the small box
attached to the Fixed Event icon.

proc boxSetup c {
upvar #O derno-rulerfnfo v
upvar #O derno-boxInfo w

upvar #O finite Obj f
global color c o u n t ~ ~
set vl [winfo fpixels Sc .25c]
set tags [Sc gettags current]
if { Stags != "" 1 {

set cur [lindex Stags [lsearch -glob Stags box?]]
) else {

set cur lV"
1
Sc delete active2 boxl tab2
eval "Sc create line Sv(%) $v(y) [expr $v(x) +$vl+$w(a)] $v(y) \

-fil1 Scolor -width 8 -tags (tab2 fixed)"

Sc addtag active2 withtag tab2

Creating box for reshaping the item
eval "Sc create rect [expr Sv (x) +Sw (al +Svl-61 [expr Sv (y) -61 \

[expr Sv(x) +Sw (a) +Sv11 [expr Sv(y) J Sw (boxstyle) \
-tags (boxl box)"

APPENDX B. SOURCE CODE

if (Scur != " " 1 {
eval Sc itemconfigure boxl $w(active)

1
set unit 35 .457
set temp [expr int (((Sv(x) /$unit) -1) *100)]
set xvalue [expr Stemp/100.00]
set temp2 lexpr int ((((Sw(a) +Sv(x)) /$unit) -1) *100)]

Value of 0.25 is added to the length because the starting
offset
of the length is like that and also to come to the right figure
it is important for us to add 0.25 to length.

set ends [expr $temp2/100.00 + 0,25]
set f (ScountFE, 1) Sxvalue
set f (ScountFE, 2) Sends

1

upvar #O demo-boxInf O w

#Bindings for the box.
boxSetup Sc
Sc bind box <Enter> "Sc itemconf current $w(active)"
Sc bind box <Leave> "Sc itemconf current $w(bo~Style)~
Sc bind box <BI-Enter> ""
Sc bind box <BI-Leave> ""
Sc bind boxl <1> (set demo~boxInfo(motionProc) boxMovel)
Sc bind boxl <BI-Motion> "boxMovel Sc %x % y w
Sc bind boxl <Any-ButtonRelease-l> "boxsetup $cm

procedure boxMovel helps in moving the box on the time scale.

proc boxMovel { c x y) {

upvar #O derno-rulerInfo v
upvar #O demo-boxInfo w
set tmp [expr ([Sc canvasx $x $v(grid)])]

if {Stmp <= $v(x) 1 f
set tmp Sv (x)

1
if {$tmp >= $v(right) } {

set tmp $v(right)
1
set newA [expr (Stmp-Sv (x)) j
if {SnewA != $ w (a) } (

SC move boxl [expr (SnewA-$w(a))] O
set w (a) $newA

1
1

#!/usr/local/bin/wish
#Tk color dialog window.
#The script below creates a window for the user to
#pick a color for an event.

proc color-get { parent initialcolor) (
upvar #O demo-rulerInfo v

APPENDlX B. SOURCE CODE

set filename event-details-dat

global list-of-events
global list-ofdescrip
global list-of-colors

set data ""
set list-of-events w w

set list-of-descrip ""
set list-of-colors ""
if { [file readable Sf ilename]) (

set fileid [open Sfilename "rn]
while { [eof Sfileid] != I} {

gets Sfileid data
set list-of-events [linsert Slist of events end $data] - -
gets Sfileid data
set list-of-colors [linsert Slistof-colors end $data]
gets Sfileid data
set list-ofdescrip [linsert Slist - of - descrip end

$data]
1
close Sfileid

1

set color [t k-chooseColor \
-parent $parent \
-initialcolor Sinitialcolor \
-title "Color"]

set v (normalstyle) "-fil1 $color"

To search if the color currently selected is already in
the database

set ans (lsearch Slist-of-colors Scolor]
if { Sans != -1) {

set result (tk-messageBox -parent . \
-title Error - t ype ok -icon error \
-message \

"Color already exists! Pick anothern]
} else {
return Scolor

1
1

set color [color-get . rnaroon]

Use of the html-library for online help.

For this example, you must have

APPENDX B. SOURCE CODE

html-1ibrary.tcl in the c u r e n t directory.

puts "Loading html_library.tcln
source html-iibrary-tcl

Control look of links.
The default is raised bevel.

global HMevents
array set HMevents {

Enter {-underline 1)
Leave (-underline O}
1 { -underline O }
ButtonRelease-1 {-underline O)

1

Global variables
set help initialized O
global hëlp-initialized

Creates a help window and calls up HTML helpfile.
proc help (helpfile) f

global help-initialized
global html

set text [help-create Shelpfile]

Load help file
set html [help-load-html Shelpfile]

Initialize HTML
if (Shelp initialized == O) (-

set help-initialized 1

HMinit-win Stext

HMset-state Stext -size 2
HMset-indent Stext 1.2

) else {
HMreset-win Stext

1

HMparse-html Shtml "HMrender Stext"

Handle the copy action for a text widget.
proc edit-copy (textwidget) {

Check if any text is selected in textwidget.
set owner [selection own]

if (Sowner == Stextwidget) {

Clear clipboard.

APPENDIX B. SOURCE CODE

clipboard clear

catch (
clipboard append l selection get]

1
1

1

Creates help window, called by help.
proc help-create I filename) {

set top .helpwindow
set f n n Stop-frm

if { [winfo exists Stop] } {
wm deiconify Stop
return Sfrm. text

1

toplevel Stop
Set up wm options for .help

Menubar
frame Stop-menubar -bd 1 -relief raised

menubutton $top.menubar.file -text "File" -underline O \
-menu Stop.menubar.file.menu

menubutton $top.menubar.edit -text "Edit" -underline O \
-menu $top.menubar.edit.menu

menu $top.rnenubar.file.menu

Reset to original message.
$top.menubar.file.menu add command -label "Original Topic" \

-command "help disp file $frm.text $filename" - -

$top.menubar.file.menu add command -label "Close" \
-conunand "destroy $topw

menu $top.menubar-edit.menu
$top.menubar.edit.menu add command -label "Copyw \

-cornand "edit-copy $frm.textw

pack Stop-menubar-file St0p.menubar.edi.t -side left
pack $top.menubar -side top -fil1 x

Main help area.
frame Sfrm -bd O
text $frm.text -width 60 -height 20 \

-yscrollcommand "Sfrm. v-scroll s e t w \
-xscrollcornrnand "$frm.h-scroll setw

scrollbar $frm.v-scroll \
-cornand "Sfrm. text yview"

APPENZ)DiC B. SOURCE CODE

scrollbar Sfm-h-scroll -orient horizontal \
-command "Sfrm-text xviewn

pack $frm.v-scroll -side right -fil1 y
pack Sfrm.h-scroll -side bottom -fil1 x
pack Sfrm. text -expand 1 -fil1 both

pack Sfrm -side top -expand 1 -fil1 both

Return name of text widget.
return $ frm. text

Private procedure to handle a link.
proc HMlink-callback {win href) {

global html

If this is not a file link,
or if it has file://, you may
need to parse out the type
of URL.

Load up HTML file.
set html [help - load-html Shref]

Display in text widget.
help disp html Swin Shtml - -

Private procedure to display HTML.
proc help - disp-html (win html) {

Display in text widget.
HMreset-win Swin
HMparse-htmf Shtml "HMrender Swin"

Pxivate procedure to load HTML file and display.
proc help-disp-file {win filename) {

set html [help-load-html Sfilename]

help-disp-html Swin Shtrnl
1

Private procedure to foad HTML file.
proc help-load-html { filename) (

APPENaIX B. SOURCE CODE

Default data in case of errors.
set data "<title>Bad file $filename</title>

Chl>Error reading $filename</hl><p>"

catch {
set fileid [open Sfilename]

set data [read S f i l e i d]
close $ f ileid

1

return $data

help mainhelp.htm

% Note: only works for info t h a t is T/F

% user types in pt(t,f,x) to find out if f (t)=x, and
% int (a, b, f, x) to find out if the i n t e g r a l of f between a and b is x .

% solve d i r e c t l y

% F is true throughout some interval containing T .
pt(T,F,l) :-

A #< T,
B #> T,
C #= 6-A,
i n t e g r a l (A, B, F, C) .

% solve directly
int (A, 0 , F , X) : - integral (A, B, F , X) , ! .
3 F is t r u e o v e r a s u p e r - i n t e r v a l of (A, B)
int (A, B, F, C) : -

X #<= A,
Y #>= B,
z #= Y-x,
i n t e g r a l (X, Y, F, Z) ,
C #= B-A.

% Sub-divide the interval
int (A, B, F, C) : -

X #<= A,
Y #> A,
Y #< B,

APPENDR B. SOURCE CODE

z #= Y-x,
integxal (X, Y, F, 2) ,
int (Y, B, F, Temp) ,
C #= Y - A + Temp.

: - use-module (library (fd)) .
% % % % % % % % % % % % Knowledge base % % % % % % % % % % % % % % % %

% al1 interval based information is represented using the integral.
% integral(a,b,f,x) is true if£ the integral of f from a to b is x.
% e.g. : integral (0, IO, running, 10) -- running is true throughout (0, 10) .
%information true at an isolated point is represented with point.
% point(t,f,x) is true iff f(t)-x.
% e.g.: point(2Ofrunning,l) -- runing is true at time 20
% 1 == true; O == false.

% % % % % % Example % % % % % % % %

% running is true over (0,10), false over (10,15), true over (15,20)
% and (20,30)
integral (0, 10, running, 10) .
integral (iO,lS, running, O) .
integral (15,2O, running, 5) .
integral (20,30, running, IO)

% ran for an hour between 30 and 40.
integral i 3O,4 0, runningd .

%point based info
point (10, running, 0) .
point (15, running, 1) .

APPENDDC B. SOURCE CODE

point (20, running, 1) .
point (25, running, 1) .

point (1000, cfc3060,l) .
point (900, c5c7e60,l) .
point (1000, cSc7e60,l) .
point (1000, cb0742c, 1) .
point (1000, c223Of 0,l) .
point (700, cd84c60,1) .

This prograrn creates a window to accept the new file
name from the user which will be used as to Save
event details.

set nf .newf
toplevel Snf -class Dialog
wm title Snf ''New Filew
wm transient Snf .
wm geometry $nf +300+300

set filename event details-dat -

proc proc-ok {main) {
global nfname
if (Snfname == " " } (

set pmess [tk-messageBox -parent $main\
- t i t l e {Error) -type ok -icon error\
-message\

"Missing file name. " 1
) else (
destroy $main
1

1

#Create the heading

global nf~ame
frame $nf.fr
label $nf.fr.filename -text "Enter new file name:"
entry Snf.fr.fileentry -width 25 -textvariable nfname

grid config Snf.fr.filename -column O -row 1 -sticky w
grid config Snf.fr.fi1eentry -column 1 -row 1 -sticky snew

APPENDDC B. SOURCE CODE

pack Snf-fr

frame Snf. frl
button Sn£-fr1.b -text " OK -command {proc-ok Snf)
button $nf.frl.bl -text "Cancelw -cornmand {destroy Snf)
pack Snf.fr1.b Snf .frl.bl -side left -padx 2 -pady 2
pack Sn£ .frl

<center><hl>How to Use Temporal Expert System Shell

<u>Finding the contents of the Database</u></hl>
<h3><i>
<DT><A HREF="overviewhelp.htmfl~Overview of the System
<DT>Entering the infomation
<DT>Querying the system
<DT>Symbols and Icons
< D T X A HREF="rnainhelp.htm">Return to Main Menu

</h3></center>
<h2><u>Finding the contents of the Database</u></h2>

User can find the contents of the Database by clicking on the
View Database choice available under the "Options" menu.

It displays the "Event Namew, "Associated Color" and the
"Event Description" in a tabular fashion.

It is a dialog window and clicking on the "OK" button closes
the window,

<center><hl>How to Use Temporal Expert System Shell

<u>Entering the Information</u></hl>
<h3><i>
<DT>Overview of the System
<DT>Querying the System
<DT>Symbols and Icons
<DT>Finding the contents of

Database
<DT>Return to Main Menu

</h3></centex>
<h2><u>Entering the Information</u></hS>

User can enter an event details through the window called Enter
Information. This window is invoked by clicking on the Enter
information option under the Edit menu,

Every event has a name, description and a temporal component.

For example:Cbr>

John had a meeting at 4 p.m,

The event name for this event is "Meetingn, the event description
is "John had a meeting at 4 p . m . The text entry box labeled
"Event NameR is used for entering the name of the event. The
"Event description" text box provides a location for adding
event details. The user can move from one data field to another
either by tabbing to, or by clicking in the desired field. The
system prompts the user with an error message, if any of the
boxes are left empty.

The next step is to pick a color. The "Pick Color" button in
the Enter Information window invokes the color window. The
user can select a color for an event by filling in the numerical
values for red, green and blue. ft is also possible to select
a color by sliding the triangular tab on the color scale for
each color. The user confinns his/her selection by clicking on
the "OK" button.

There are different categories of events that can be represented.
Depending upon the category of an event, the user chooses an icon
from one of the boxes labeled "Point Event", "Limitless Event"
etc. The user can modify or change the position of the icon/icons
on the time scale.

In order to select an icon, the user points and clicks on the
desired icon and it can be dragged along with the mouse pointer
to any position on the time scale. The icon may be positioned at
any of the grid intervals. The user may modify the position of
the icon on the time scale by painting and clicking on the icon
and dragging it along with the mouse pointer to a new position.

After entering the current event, the user clicks on the "Contiue"
button to add another event. Finally, clicking on the "Done"
button closes the current window, saving the details to a file.
Cancel button aborts the current operation, clears the screen
and takes the control back to the "Event Name" text box.

<html>
<head><TITLE>Temporal Expert System Help</TITLE></head>
<BODY BGCOLOR=#FFFFFF TEXT=#000>
<tenter>
<hl>How to Use Temporal Expert System Shellcbr>

<u>Main Menu</u></hl>
<h3><i>
<DT>
<DT>Entering the Infomation
CDTXA HREF="queryhelp.html'>Querying the System
<DT>Symbols and Icons
<DT>Finding the contents of

Database
</i></h3><center>
</body></html>

APPENDIX B. SOURCE CODE

<center>€hl>How to Use Temporal Expert System Shell

<u>Overview of the Systemc/u></hl>
<h3><i>
<DT>
<DT>Querying the Systemc/A>
<DT>Symb~is and Icons
<DT>Finding the contents of

Database
<DT>CA HREF="mainhelp.htmW>Return to Main Menu

</h3></center>
<h2><u>Overview of the Systern</u></h2>

The Temporal Expert System Shell has two windows for Entering
the information and querying the information.
Clicking on the Edit menu and then on Enter Information will
invoke the window for Entering Information.
Similarly, Clicking on the Edit menu and then on the Query
Information will invoke the window for Querying Information.

Every event is associated with a unique color and the colors
currently in use can be found by clicking on the Colors Used
under the Options menu.
We can find out a list of events and their associated description
by clicking on the View Database under the Options menu.

A list of al1 the symbols used is available under the Show symbols
category of the Options menu.

A l 1 the windows used are self explanatory and and easy to use.
The help options under the Enter Information and Query Information
provide help for those screens.

</body></ html>

<html>
<head><TITLE>Querying the System</TITLE></head>
<BODY BGCOLOR=#FFFFFF TEXT=#000>

<center><hl>How to Use Temporal Expert System Shell

<u>Quering the Systern</u></hl>
<h3><i>
<DT>Overview of the System
<DT>Entering the information
<DTXA HREF="symb~lhelp.htrn~~~Symbols and Icons
<DT>Finding the contents of

Database
<DT>Return to Main Menu

</h3></center>
<h2><u>Querying the System</u>c/h2>

User can query an event through the window called Query Information.
This window is invoked by clicking on the Query information option
under the Edit menu.

APPENDDCB. SOURCE CODE

The user can perform the following queries:

1. 1s an event true at the given time ?

2. What is true about an event ?

The layout of the query window is similar to the enter information
window. Select Event is the label for the dropdown event list box
shown by a button with a downward arrow sign. The user can view list
fo the events by clicking on this button. An event is selected from
the list by pointing and clicking on it. The user confirms his/her
selection by clicking on the "OKw button.

To query the system about an event, the user selects and positions
the appropriate icon on the time scale and clicks on the "Queryn

button. The system displays the result of the query in a separate
dialog window.

As the name suggests the "New Queryn button allows
the user to perform a new query by clearing the screen and returning
control to the "Select Event" dropdown list box. The "Exitw button
closes the current window and transfers control back to the main
application window.

<html>
<head><TITLE>Symbols and Icons</TITLE>c/head>
<BODY BGCOLOR=#FFFFFF TEXT=#000>

<center><hl>How to Use Temporal Expert Systern Shell

<u>Symbols and Icons</u></hl>
<h3><i>
<DT>Overview of the System
<DT>Entering the information
<DTXA HREF="queryhelp.htm">querying the system
<DT>Finding the contents of

Database
<DT>Return to Main Menu

</h3></center>
<h2><u>Symbols and Icons </u></h2>

There are various Symbols and Icons which are used in Entering and
Querying information. These Symbols are explained below:

POINT EVENT: Used for events which occur at precise points
over the given time scale. E.g., Phone rang at 2:00 pm.

LIMITLESS EVENT: Event that occured at some unknown time in past
and continues in future.E.g., It has been raining today.

FIXED EVENT: Event that occured between two points on the given
time scale. Activity has precise start and end points.
E.g., We had lunch between 2 & 3 pm.

FIXEDLEFT EVENT: Event that starts at a known fixed point and
continues in future. E. g., Basketball game started at 6 pm
and went on till late evening.
<brxbr>
FIXEDRIGHT EVENT: Event which started at some unknown point in
past and has fixed end point. Complement of FixedLeft Event.

APPEADDC B. SOURCE CODE

E . g . , After a long s leep, 1 woke up at 12:OO pm.

WHAT'S TRUE: This symbol is used for querying the system.
It tells, al1 what is t r u e for a selected event.

IMAGE EVALUATION
TEST TARGET (QA-3)

APPLIED & IMAGE. lnc - = 1653 East Main Street -
--A Rochester. NY 14609 USA -- -- - - Phone: 71 61482-0300 -- -- - - Fax: 71 6/28&5989

O 1993. AppUed Image. lx. Ail Rlgnts Reserwd

