RAY TRACING TECHNIQUES FOR INDIRECT
REFRACTED ILLUMINATION

by

Henry Albert Bailey
B.C.S., Acadia University, 1997

Thesis
submitted in partial fulfillment of the requirements for
the Degree of Master of Science (Computer Science)

Acadia University
Spring Convocation 1999

© Henry Albert Bailey, 1999

i~l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottaws ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

ags, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your filo Votre rékérence

Qur fl@ Noire rétdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent tre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-37789-X

TABLE OF CONTENTS

TABLE OF CONTENTS I
LIST OF TABLES v
LIST OF FIGURES VI
LIST OF EQUATIONS vin
ABSTRACT IX
ACKNOWLEDGMENTS X
INTRODUCTION 1
1.1 PREFACE 1
1.2 BACKWARD RAY TRACING 2
1.2.1 BACKWARD RAY TRACING PSEUDO-CODE 4

1.3 THE RENDERING EQUATION 5
1.4 OBJECTIVES OF THIS THESIS 6

MATHEMATICS OF RAY TRACING

2.1 VECTORS

2.2 REFLECTION

2.3 TRANSPARENCY AND REFRACTION
2.4 INVERSE MAPPING

2.5 QUADRIC

PROBLEMS WITH RAY TRACING

11
12
14
16

17

3.1 SUPER SAMPLING AND PATH TRACING
3.2 SHADING METHODS

17
18

3.2.1 IGNORING TRANSMISSION OF LIGHT

18

3.2.2 IGNORING REFRACTION OF TRANSMITTED LIGHT 19

3.2.3 OTHER SHADING TECHNIQUES 20

3.3 AMBIENT MAP 21
FORWARD RAY TRACING 23
4.1 PRE-PROCESSING 23
4.2 PRE-PROCESSING USING RANDOM RAYS 24
4.3 INDIRECT LIGHT DENSITY AND RESOLUTION 24
4.4 INDIVIDUAL AMBIENT MAPS 25
4.5 PHOTON MAP 26
4.6 FORWARD RAY TRACING THROUGH GRID-LIKE INTERPOLATION 28
4.7 SPHERICAL INTERPOLATION AROUND LIGHT SOURCES 30
4.7.1 ADAPTIVE INTERPOLATION 31

4.8 PHOTON MAP PROBLEMS 31
TESTS AND COMPARISONS 34
5.1 TEST ENVIRONMENT 34
5.2 EXPLANATION OF METRICS 35
5.3 CONTROL SCENE 35
5.4 REFRACTION SCENE 41
5.5 COMPLEX SCENE 46
CONCLUSIONS 52
6.1 EFFICIENCY 52
6.2 ROBUSTNESS 53
6.3 ACCURACY / REALISM 53
6.4 CONCLUSION 54
6.5 FURTHER WORK 55
BIBLIOGRAPHY 56
APPENDIX A - GENERATED IMAGES 58

-1V -

LIST OF TABLES

TABLE 1 INDIRECT ILLUMINATION TECHNIQUES ASSUMPTIONS, COMPARISONS, AND

IMPLEMENTATIONS .coveveteecrerernrneeersesmeneessrssnnssasssssssssesssssssnesssssransssasassanssesssssassrsrasassesssnsens 7
TABLE 2 TEST ENVIRONMENTuvvetrverreeeerersrmmeressssssssassessnssssssssssssssssssasssrasssssssssnsssoessssssasassssasns 34
TABLE 3 CONTROL SCENE SHADING COSTS.......ccvvtrermereereresssserarensoressssresssasasassesssssesssssvasnrssmsces 36
TABLE4 PRE-PROCESSING THE CONTROL SCENE USING INDIVIDUAL AMBIENT MAPS................. 37
TABLE 5 PRE-PROCESSING THE CONTROL SCENE USING A GLOBAL PHOTON MAP.........ccccerreennen. 39
TABLE6 VIEW DEPENDENT GLOBAL PHOTON MAP RETRIEVAL COSTS FOR THE CONTROL SCENE

..... tresseseereessbennesesssbstssnanees ot abes s rnsbaeasesbasasanesaeraraseesesberasessssararassassrsrrasesessrrrrnrreseerssrance G0
TABLE 7 REFRACTION SCENE SHADING MODEL COSTS....ccceerreeteererrnrsesererarasesesssssnnnnreessaseessssens 42
TABLE 8 PRE-PROCESSING THE REFRACTION SCENE USING INDIVIDUAL AMBIENT MAPS 43
TABLE 9 PRE-PROCESSING THE REFRACTION SCENE USING A GLOBAL PHOTON MAP.................. 44
TABLE 10 VIEW DEPENDENT GLOBAL PHOTON MAP RETRIEVAL COSTS FOR THE REFRACTION

SCENE...ccttiiiiiiitieeissitieraseeresesesrsssssesssssssssresissssssssesssssissssessssssssessensstessesssssssnenesessssnnanennssss 45
TABLE 11 COMPLEX SCENE SHADING MODEL COSTScovtiererereerersrrneseersesssnssesssassssssnssresssssonnoes 47
TABLE 12 PRE-PROCESSING THE COMPLEX SCENE USING INDIVIDUAL AMBIENT MAPS............... 48
TABLE 13 PRE-PROCESSING THE COMPLEX SCENE USING A GLOBAL PHOTON MAP.........ccovveueeee. 49
TABLE 14 VIEW DEPENDENT GLOBAL PHOTON MAP RETRIEVAL COSTS FOR THE COMPLEX SCENE

... 50

LIST OF FIGURES

FIGURE | BACKWARD RAY TRACINGcceereruvrererrreersrersrrnrsrraressessresssssmsnsssassonraseerersnrssssossassrnnsasss 3
FIGURE 2 REFLECTION ..ouuvuvieeseosereessosereseossrassrosssssesseressssasessarassssesasssssnasssss ssnnnessesssssnssssssrsnssnssne 11
FIGURE 3 REFRACTION ..ocveuveevveeserrereseessressesrsrosessrssssssasasassessasassesesssasesssssssssssssnsisssssasssasssssarsnssns 13
FIGURE 4 PRE-PROCESSING COST FOR THE CONTROL SCENEcceceriereremseserssssrssssssresssessssasonassensse 41
FIGURE 5 PRE-PROCESSING COST FOR THE REFRACTION SCENE......coeeeeesrermmerenenerersrerrsrerersresassasans 46
FIGURE 6 PRE-PROCESSING COST FOR THE COMPLEX SCENEccotvereraresrnnenseessressesssssserressrensees 51
FIGURE 7 THE CONTROL. SCENE RENDERED USING A NON-TRANSPARENT SHADING MODEL........... 58
FIGURE 8 THE CONTROL SCENE RENDERED USING A NON-REFRACTIVE SHADING MODEL. 58
FIGURE 9 THE CONTROL SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY A
COMPLETELY RANDOM FORWARD LIGHT TRACER. ...ceettrevuecrreerererensieisiunetsssasrsnsesessssernnns 59
FIGURE 10 THE CONTROL SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY A
COMPLETELY RANDOM FORWARD LIGHT TRACEReetviecinrerererarerernersesesnnssssssssnsneresssesssnnes 59
FIGURE 11 THE CONTROL SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY A
MONTE-CARLO FORWARD LIGHT TRACER ..cc.evevtreteresrereasrsecrsreerarsssmsssssorsrsssensssesssssesssarsssres 59
FIGURE 12 THE CONTROL SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY A
MONTE-CARLO FORWARD LIGHT TRACER ...c.ectvteerereecrrrnrseesseresensessesssssessssnsesesssseesessssssssnns 59
FIGURE 13 THE CONTROL SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY A
PLANAR INTERPOLATION FORWARD LIGHT TRACER ..cceecveeeireninsrennneecesernmssssossassrsssmsasessrnnes 60
FIGURE 14 THE CONTROL SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY A
PLANAR INTERPOLATION FORWARD LIGHT TRACERoveeeeecreeerereeensisssssesssmeerssssmsenriessenenses 60
FIGURE 15 THE CONTROL SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY A
NAIVE/BRUTE FORCE SPHERICAL INTERPOLATION FORWARD LIGHT TRACERccccevvtrrerruinnnns 60
FIGURE 16 THE CONTROL SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY A
NAIVE/BRUTE FORCE SPHERICAL INTERPOLATION FORWARD LIGHT TRACERccccoennirernnnns 60
FIGURE 17 THE CONTROL SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY AN
ADAPTIVE SPHERICAL INTERPOLATION FORWARD LIGHT TRACERcovvvesrmmmummmmnnmrennnrersennnn 61
FIGURE 18 THE CONTROL SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY AN
ADAPTIVE SPHERICAL INTERPOLATION FORWARD LIGHT TRACER .. .61

FIGURE 19 THE REFRACTION SCENE RENDERED USING A NON-TRANSPARENT SHADING MODEL .61
FIGURE 20 THE REFRACTION SCENE RENDERED USING A NON-REFRACTIVE SHADING MODEL 61
FIGURE 21 THE REFRACTION SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY

A MONTE-CARLO FORWARD LIGHT TRACER. ...eceeeriumrinrrieeescaressrsasssssesasessesessssnesesssnsorssvas 62
FIGURE 22 THE REFRACTION SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY A
MONTE-CARLO FORWARD LIGHT TRACER. ...cevvvtermirreericesseresasserssssnesssessesassssssnsrsssnsssnsssnsess 62
FIGURE 23 THE REFRACTION SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY
A PLANAR INTERPOLATION FORWARD LIGHT TRACERcceveueereneeermenneeescsscsesesssssssssssnssssass 62
FIGURE 24 THE REFRACTION SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY A
PLANAR INTERPOLATION FORWARD LIGHT TRACER ...cuuvmiirierecrnneeeeescconsssssssaseeesossssnsssenees 62
FIGURE 25 THE REFRACTION SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY
AN ADAPTIVE SPHERICAL INTERPOLATION FORWARD LIGHT TRACER. ...ccevreeruneemecrissisissannan 63
FIGURE 26 THE REFRACTION SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY AN
ADAPTIVE SPHERICAL INTERPOLATION FORWARD LIGHT TRACER .eevcueeemtermeresssiisasscssssnssasane 63
FIGURE 27 THE COMPLEX SCENE RENDERED USING A NON-REFRACTIVE SHADING MODEL.............. 64
FIGURE 28 THE COMPLEX SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY A
MONTE-CARLO FORWARD LIGHT TRACERoverierreieeerrssieiereresesssssesesesssssassesarsennasssssassssnses 65

-vi-

FIGURE 29 THE COMPLEX SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY A

MONTE-CARLO FORWARD LIGHT TRACER ..c.uuvurverrerrrerereeserrssssereesossoressrnsresesssssasssssassasssnses 65
FIGURE 30 THE COMPLEX SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY A
PLANAR INTERPOLATION FORWARD LIGHT TRACER ..cevevererrrerrerneeneressccsereacsonersecssnsmnsnecssssne 65
FIGURE 31 THE COMPLEX SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED B A
PLANAR INTERPOLATION FORWARD LIGHT TRACER ..ccceetrrmrrerrrenrererensensessrsrenrsrssnnnnresseeessens 65
FIGURE 32 THE COMPLEX SCENE RENDERED USING INDIVIDUAL AMBIENT MAPS POPULATED BY AN
ADAPTIVE SPHERICAL INTERPOLATION FORWARD LIGHT TRACERcccoeevrnrrrierrererereesseresssse 66
FIGURE 33 THE COMPLEX SCENE RENDERED USING A GLOBAL PHOTON MAP POPULATED BY AN
ADAPTIVE SPHERICAL INTERPOLATION FORWARD LIGHT TRACER ...ccoovseirieneriesiassnesensecsscres 66

- Vil -

LIST OF EQUATIONS

EQUATION | CALCULATING THE REFLECTION VECTORcvrcvuereacaiinctstssnnieestsssssssssessssnessessesssnnes 11
EQUATION 2 SNELL'S LAW.....coitiiiireerreeeenieseeressmessersesteossrassessesssssonsacssssonsessssssnssensossssensessossnnnns 13
EQUATION 3 REFRACTED RAY CALCULATION ..cctiiiiicenieieirnrisininesaertesssantessssssssensssssenmessssrrenne 14
EQUATION 4 SPHERICAL INVERSE MAPPINGcccriimeureceirnsersonsssseesseressessassssssassessessssassossossnnes 15

- viil -

ABSTRACT

Conventional backward ray tracing can generate beautiful images. However, in
scenes where a light indirectly illuminates an object, such as by bouncing off or passing
through another object, this method fails. Lack of indirect illumination contributions make
an image look unrealistic, such as dark shadows beneath a transparent object rather than

lighting patterns or caustics.

There has been much research in improving ray tracing to render indirect light
contributions, although much has dealt with reflected light rather than refracted light, or
developing methods that restrict the types of objects that can be traced. Some of the
techniques that work with refraction produce more realistic images than other methods, and

many require enormous amounts of time and resources to render.

Methods for rendering indirect refracted light contributions are examined and
implemented for this thesis. Realism, rendering time, complexity, and restrictions are
compared to propose a fast, robust method for rendering realistic scenes containing

refractive objects.

ACKNOWLEDGMENTS

I would like to thank Dr Rick Giles for his guidance and advice. I would also like

to thank Dr Ivan Tomek and Karine Blouin for their encouragement.

Chapter 1

INTRODUCTION

“There is nothing ugly; I never saw an ugly thing in my life: for let the
form of an object be what it may, - light, shade, and perspective will

always make it beautiful." John Constable, 1776-1837.

Ray Tracing has been used to create some of the most realistic and beautiful images
ever generated by a computer. Scenes in movies such as “Toy Story”, “A Bug’s Life”, and
“Antz” are produced using ray tracing, as are images in other movies, commercials, and
advertisements. Ray tracing is not only a powerful method for rendering realistic images,
but can also be applied to any type of geometrical object. Ray tracing is relatively simple to
understand and implement. It is also simply modularized, making it relatively simple to

expand and to use for multi-threaded processing.

1.1 Preface

Modeling light interactions in a scene is a means of creating realistic computer
images. Tracking light as it propagates throughout a scene, however is simply too
computationally intensive and inefficient to be used to any extent. The idea of tracing the
light backward from the eye, also called ray casting, was developed by Appel [1] and was
the first step toward modern day ray tracing. Ray casting was refined later to recursively
include reflection and refraction by Whitted [17]. Other improvements such as specular
highlights through the Phong model, Lambertian model diffuse lighting, focusing and

distribution ray tracing [6], texture mapping, light mapping and bump mapping have been

added to ray tracing techniques. Although the recursive ray-tracing algorithm incorporated
these improvements easily, it still could not account for illumination that arrived from other

objects in the scene.

In 1985, Kajiya [14] introduced his rendering equation that summarizes indirect
illumination into an ambient term and, in 1986, Arvo [2] introduced a bi-directional
technique to incorporate indirect illumination into backward ray tracing. More recently,
Jensen [13] expanded on Arvo’s ideas to propose a photon map that stores not only

intensity values for the photons, but also the incoming direction (incidence).

Jensen uses a single global photon map that is traversed during the rendering step to
find the closest illumination values. Other techniques that have been applied to indirect
illumination are cone/beam/pencil tracing, the accumulation buffer, and radiosity. These
other techniques impose restrictions on the types of objects that can be rendered as well as
their surface characteristics. The infinitesimally thin rays used in ray tracing are less
complicated to implement and understand; therefore, only techniques that utilize rays are

examined and implemented.

1.2 Backward Ray Tracing
Backward ray tracing is based on how a camera or eye works. In the case of a
camera, light travels through the camera lens and aperture, and its color and intensity are
stored on the film. Light travels through the lens and pupil of the eye where the
contributions are received by the rods and cones of the eye’s retina. The ray-tracing

algorithm follows the light backward, from where it entered the lens, to determine how it

made its coniributions to the image. Camera tricks such as zooming or focusing can all be

performed by manipulating these backward “camera” or “eye” rays.

Each pixel on the screen represents a different ray or combination of rays that can
be traced in reverse throughout the scene. The closest object hit by the eye ray is the last
object seen before that light strikes the eye. Since only the objects facing toward the ray
can be struck, this demonstrates how ray tracing incorporates hidden surface removal and
automatic depth sorting as part of its algorithm. Additional light rays are fired from each
light source to each intersection point to determine direct light (specular and/or diffuse)

contributions at those points, which incorporates shading into the algorithm.

screen

&

,Zi/

tye Ray 1 is an eye ray fired through the bottomn lett pixel of the screen
Ray 2 is a reflected ray which does not strike anything
Ray 3 is a direct illumination fight ray fired from the light to the intersection point
Ray 4 Is a refracted ray traveliing through a transparent object
Ray 5 is a refracted ray that has travelled through the object
Ray 6 s a direct ilumination light ray which is obstructed from lluminating where the
refracted ray lett the transparent object.

Figure | Backward Ray Tracing

Recursive ray tracing tracks the eye rays as they reflect off objects or pass (refract)

through them. This permits transparent and reflective objects to be rendered realistically.

Figure 1 shows recursive backward ray tracing. In the figure, a single eye ray has been cast
through the lower left pixel of the image. The eye ray intersects a sphere that is reflective
and refractive. The figure illustrates the large number of rays that are traced for a single eye

ray.

[llumination that reflects or refracts off other objects before striking the intersection
point (indirect illumination) is not a direct part of backward ray tracing. Ray 6 in Figure |
illustrates the problems of indirect illumination encountered by conventional backward ray
tracing. Indirect illumination is not calculated but is usually summarized into an ambient
value, which is included into the rendering equation. This lack of calculation prevents
occurrences such as caustics from refractive objects, and the blending of colors from
reflective objects onto one another. Backward ray tracing is view dependent, which greatly
reduces the amount of computation, while tracing light as it travels forward from the light
sources as it naturally propagates, is view independent and allows for these optical

phenomena.

1.2.1 Backward Ray Tracing Pseudo-code
The basic algorithm (in pseudo code) for backward ray tracing is listed below. It
consists of a ray casting part where pixels are cast out into the scene and a tracing part
where the values for the pixels are calculated.
/fray casting section
For each screen pixel {
-Generate one or more rays from the camera to that pixel using the camera information

-Trace the ray(s) and store the returned color (a weighted average) into the final image

/

// ray tracing section
Color trace(Ray) {

-Get the first intersection point for the ray. If none, return a background value, otherwise
continue

-With the intersection point get the ambient color for the intersection point

-For each light in the scene, determine if an obstructed ray can be fired from that light to
the intersection point and if so add the diffuse and specular contribution

-If the intersection point is reflective trace a new reflected ray and add its (scaled)
contribution

-If the intersection point is transparent trace a new refracted ray and add its (scaled)
contribution

-Return the color (the result of the rendering equation)

/

Many enhancements and improvements can easily be incorporated into backward
ray tracing. The casting section can be modified to counter aliasing problems or direct
where rays should be fired. The tracing algorithm can be modified to support different
types of rendering equations. Ray tracing is also very object oriented in structure so it is

very scalable in terms of what objects or techniques can be rendered.

1.3 The Rendering Equation
The value for each pixel is calculated based on the rendering equation used. The

rendering equation implemented is modeled after Kajiya’s [14] equation:

I(p,v,n) =A(p)+Z(D(p,n)+S(p,v,n))+R(v')+T(v")

where:

p is the intersection point

v is the ray direction vector

n is the normal at the intersection point.

I(p,v,n) is total illumination

A(p) is the ambient light contribution at a particular point.

D(p,n) is the diffuse contribution for a light source

S(p,v,n) is the specular contribution for a light source

R(¥’} is the value from tracing a reflected ray, scaled by the reflection co-efficient
T(v”’) is the value from tracing a refracted ray, scaled by the transparency co-efficient

The diffuse and specular terms provide the direct illumination contributions to the
equation. The reflected and refracted illumination contributions allow for specular
contributions from other intersection objects in the scene. The ambient term is used to
approximate the amount of diffuse reflection and transmission, meaning light that is
reflected or passed through other objects in the scene, or indirect illumination. Techniques

for accounting for indirect illumination are examined and implemented.

1.4 Objectives of this Thesis
Indirect illumination is difficult to accurately calculate in backward ray tracing.
Illumination is generally calculated as part of shading and shadow ray calculations in ray
tracing. Techniques that integrate into the backward ray-tracing algorithm are
implemented and are compared for realism, computational cost, complexity, scalability,
and restrictions. The main objective of this thesis is to determine which methods are best
suited for indirect refracted light, so that a new and more efficient indirect illumination

technique can be developed.

Three main regions of interest are examined and implemented, as shown in Table 1

shading models, pre-processors, and indirect illumination (ambient) maps.

Table | Indirect Hluminaticn Techniques Assumptions, Comparisons, and Implementations

Method

Assumptions

Comparisons

Implementation

Non-transparent
shading model

This method will not
render any indirect
illumination. The
ambient values retrieved
by this technique will
provide indirect
illumination.

View-dependent
costs.

This method terminates
shadow ray intersection
testing when the shadow
ray strikes any position
other than the point of
interest.

Non-refractive
shading model

This method will render
indirect illumination
accurately from
transparent objects that
do not refract light. It
will not render caustics.
Variations of this
technique can render
attenuation of light
through transparent
objects.

View-dependent
costs.

Difference in cost
(intersection
tests) between
this method and
the non-
transparent
shading method.

This method terminates
shadow ray intersection
testing when the shadow
ray strikes any opaque
point other than the point
of interest.

Any transparent
intersection points are
used to create a filter
between the light and the
point of interest.

Individual ambient
maps

When correctly
populated these maps will
allow indirect
illumination to be
rendered correctly.

Resolution problems
may occur.

Population costs.
Retrieval costs
are the same as
inverse mapping
so it is not
analyzed.

This method stores an
individual ambient map
with each object. The
value in the ambient map
indicates the amount of
indirect illumination at a
particular position.
Populating the map
requires that over-
sampling be restricted, by
means of an “initial hit”
map.

Global photon map

When correctly
populated these maps will
allow indirect
illumination to be
rendered correctly.

Population costs.
Retrieval costs.

The value in the global
map indicates the amount
of indirect illumination at
a particular three-
dimensional position.
Values must be retrieved
based on a volume of
interest and averaged
based on the expected
number of photons.

Method Assumptions Comparisons Implementation
Completely Random This method should Pre-processing A pseudo random number
Pre-processor populate the maps costs. Number of generator is used to fire
uniformly. rays cast versus random rays outward
number that from each light source.
intersect and the
number stored.
Monte-Carlo Random This method should Pre-processing This is an extension to
Pre-processor popuiate the maps but costs. Number of the completely random
may have over-sampling rays cast versus pre-processor. When a
problems. number that value is stored, additional

It should be more
efficient than the

intersect and the
number stored.

rays are fired at random
around the area where the

completely random ray was initially cast.
method.
Brute Force Spherical This method should Pre-processing Rays are fired evenly
Interpolation Pre- populate the maps costs. Number of across the surrounding
processor uniformly. rays cast versus sphere (cube) of each
number that light source.
intersect and the
number stored.
Adaptive Spherical This method should Pre-processing Rays are fired evenly
Interpolation Pre- populate the maps costs. Number of across the surrounding
processor uniformly and at higher rays cast versus sphere (cube) of each

resolution than the brute-
force method.

number that
intersect and the
number stored.

light source. When a ray
is stored, the region
between the ray and its
neighbors is sub-divided
and additional rays are
cast. The sub-division is
recursive.

Planar Interpolation

This method is a
specialized variation of
the interpolation methods
that interpolates only
across one plane the
bounding box for the
scene.

Pre-processing
costs. Number of
rays cast versus
number that
intersect and the
number stored.

Rays are fired evenly
across the plane from
each light source. The
number of hits is related
to the efficiency of the
bounding box (structure)
for the scene.

Chapter 2

MATHEMATICS OF RAY TRACING

Before discussing the problems of correct rendering of indirect refracted
illumination, it is important to understand some of the fundamentals of ray tracing. Ray
tracing is very computationally intensive, with many floating point operations needed for
the most simple of images. This chapter tries to explain some of the necessary
mathematics behind ray tracing. Vector mathematics, the geometry of reflection and

refraction, inverse mapping, and quadrics intersections are all discussed.

2.1 Vectors
Three-dimensional vectors and points are the core components of any ray tracer. A

ray consists of a starting point and a direction vector. A vector can sometimes be

represented as four components, the fourth being the length of the vector, |V| . Forcing the

length of a vector to be equal to one is called normalizing the vector. This can be done by
dividing each component in the vector by the vector’s length. Normalized vectors reduce
the amount of computation in some ray tracing equations and are therefore more efficient
than arbitrary length vectors. For example, the intersection distance when using a
normalized direction vector is equal to the absolute distance from the intersection point and

therefore the closest intersection point when ray tracing.

Another benefit of normalized vectors is in calculating the dot product. The dot

product of two normalized vectors equals the cosine of the angle between them. The dot

product is used by many ray-tracing equations for reflection, refraction and illumination

calculations such as Phong specular and Lambertian diffuse.

The dot product of reflected light ray and the view direction is used to calculate the
Phong illumination value. The Phong specular equation is equivalent to the dot product
raised to a specular-reflection exponent. This causes a steeper exponential curve for higher
powers and produces the specular highlights seen on a shiny surface. In most ray-tracers,
the exponent is a surface property for an object. The implementation uses a different
method by instead storing the exponent with the light source. The reason for this design
change is that the specular exponent attempts to give finite size to an infinitely small light
source, particularly in the case of a point light source. The light source should be constant
between all objects in the scene, so the exponent simulates a finite size for the light source.
Furthermore, the uses of bump maps and distributed reflection or refraction as surface
parameters can be used to control the relative size of the highlights. The amount of
specular contribution is based on the reflectivity of the surface. A non-reflective surface

will have no specular contribution.

There are many different diffuse surface models. In this thesis, the Lambertian
surface model has been implemented. Lambertian diffuse illumination is a model that
evenly distributes light scattering as it strikes a surface. The amount of Lambertian diffuse
illumination is the dot product of the incoming light ray and the surface normal, which

makes it independent of the viewing angle.

10

2.2 Reflection
A ray striking a reflective object creates a specularly reflected ray. The angle of
incidence from the incoming ray equals the angle of reflection of the outgoing ray. Figure
2 demonstrates reflection and Equation | explains how the reflected vector is calculated
using normalized direction and surface normal vectors. Glassner {8] demonstrates how the

specularly reflected vector computed in Equation 1 will be of unit length (normalized).

I is the incident vector

N is the surface normal

R is the reflected vector

i iz the angle of incidence
r iz the angle of reflectance

Figure 2 Reflection

R=I-2(NeI)N

Equation 1 Calculating the reflection vector

Perfect specular reflection makes some objects look unnatural and therefore
unrealistic. Cook’s [6] distributed ray produces gloss (blurry reflection) which better
simulates how light actually reflects off certain real world surfaces. Although distributed
reflected rays are not implemented, distributed camera rays, which produce depth of field

(focusing) effects, have been implemented.

11

The amount of light contributed by a reflected ray is a function of the reflectivity of
the surface. Some surfaces, such as a mirror may have a large amount of reflectivity, while
others may absorb most of the light, giving a lower reflectivity value. In the programs for
this thesis, reflectivity is implemented using a single value with a range of zero to one. The
type of reflection for a particular surface is more realistically modeled with a separate value
for each light wavelength sample. This is because a surface may reflect or absorb red light

in a different way than blue light or any of the other colors in the spectrum.

2.3 Transparency and Refraction
Ray tracing transparent objects is much more complicated than tracing reflective
surfaces. Rays may travel through objects, leading to algorithmic changes such as negating
the surface normal, or attenuating the intensity based on the distance traveled through a
medium. The calculations needed to calculate transparency rays, however, are

straightforward.

For a transparent object that has the same level of refraction as its surrounding
medium, the transparent ray simply continues through the object until it intersects the other
side or a nested object. Each transparent object has a transparency (or opacity) coefficient
for each surface intersection point. This co-efficient is similar to the reflection coefficient,
except it determines the scaling amount for the transparency ray. An object may have a
different transparency coefficient for each wavelength sample, to account for how certain
wavelengths of light may be blocked, while others are transmitted. Realistically, the sum

of the reflection and transparency coefficients for a particular wavelength would never

12

exceed one, since that would cause the objects to gain too much illumination from

subsequent recursive tracing.

In real life, transparent objects have refractive properties, so simply extending the
incoming ray through the object is incorrect. Each (semi) transparent object has an index
of refraction, which describes the speed of light for that medium compared to a vacuum.
The change in the speed of light as it crosses from one medium causes the light to bend,
giving what is known as refraction. Equation 2, Snell’s Law, and Figure 3 demonstrate

how the transmitted ray is bent based on the indexes of refraction of the two objects.

Lis the incident vector

T is the transmitted vector

N is the surface normal

nl is the index of refraction for
the incident medium

n2 is the index of refraction for
the transmitted medium

A is the incident angle

B iz the transmitied angle

Figure 3 Refraction

sin(A)_nZ
sin(8) nl

Equation 2 Snell's Law

13

The formula for the calculation of a transmitted ray is shown in Equation 3.

r=lLg -(cos(B)+ n—lcos(A)JN
n2 n2

Equation 3 Refracted Ray Calculation

It is possible for the transmitted ray to be reflected rather than refracted, when the
ray is transmitted from a dense medium to a less dense one. This phenomenon is called
total internal reflection and results because the transmitted angle exceeds ninety degrees.
The incident angle that results in a transmitted angle of exactly ninety degrees is called the

critical angle.

A refractive object causes light to bend as light travels through it, making
illumination contributions from lights that are obscured by transparent objects difficult to
calculate. Several shading models and algorithms are examined and implemented to

compare how they deal with this problem.

2.4 Inverse Mapping
Inverse mapping allows the storage of texture, light, bumps, reflection,
transparency and other surface characteristics in a two-dimensional table (map). The
intersection point and normal are used to calculate their corresponding u and v co-ordinates
in the map. The inverse mapping structure can be a plane, cylinder, sphere, or any other
object appropriate object. The plane works well for a polygon, and the sphere works well
for most other structures. Spherical and planar inverse mappings are used throughout the

implementation. Haines [9] explains spherical mapping in Equation 4 and planar mapping.

14

& = arccos(—Sn e Sp)

v=q/x

arccos((Se Sn)/ sin(®))
2*r

if((Sp® Se)e Sn)>0

then...u=80

else...u=1-6

9=

Equation 4 Spherical Inverse Mapping

Sn is the surface normal
Se is the equator vector (right)
Sp is the polar vector (up)
u is the map x co-ordinate range of 0..1

v is the map y co-ordinate range of 0..1

Spherical inverse mapping is relatively simple to compute. However, objects that
overlap, such as tori, may not uniquely inverse map using this method. Spherical inverse
mapping also wastes storage when applied to certain objects such as single sided polygons,
since many index values will never be used. Planar (convex quadrilateral) inverse mapping

is a better method for polygons than spherical inverse mapping.

Infinite or unrestrained objects such as planes do not map efficiently with either
method, as there are no maximum dimensions for these objects. Inverse mapping
techniques are also subject to aliasing problems when the resolution is low. The use of
inverse ambient mapping does however allow for preprocessing of the indirect illumination
values, which provides an efficient and potentially accurate ambient term during the

rendering of the image.

15

2.5 Quadric
A quadric is a second-degree equation whose ray intersection point can be solved
using the quadratic function. Special emphasis is placed on the quadrics, since certain
optimizations can be performed. Quadrics are commonly used in ray tracing and can be

written in the following form:

ax® +2bxy+2cxz+2dx+ey* +2fyz +2gy +hz’ +2iz+ j=0

Haines [9] mentions a number of ways quadrics can be optimized to reduce floating
point calculations. Among his ideas are storage of scaled values (for example variable a
and 2*a), and common factoring. Commonly used quadrics, such as ellipsoids, can be
optimized by using separate, specialized intersection and normal calculations. One
additional optimization that can be applied to these specialized quadrics is based on the
knowledge that certain variables must never be equal to zero. This allows the entire
equation to be reduced by that variable and have the variable replaced with the value of
one. Any multiplication that involves that variable can be removed, saving a floating-point
calculation. For example the ellipsoid must always have a value for the X, y and z radius,
otherwise it is an ellipse rather than an ellipsoid. After substituting the ellipsoid function
into the quadric formula, the variables [a, e, h] are never equal to zero, or they will violate
the constraints on the object. This means that the quadric function can be reduced by any

one of these variables, when the object is being created, making calculations more efficient.

16

Chapter 3

PROBLEMS WITH RAY TRACING

Developers and users of ray tracers face many problems such as demand on
computation and memory, aliasing, and lack of indirect lighting. More efficient
intersection algorithms have been developed to counter some of the computation costs, as
well as bounding volumes, and other object space improvements. Procedural texture maps
require less memory than conventional inverse maps. Aliasing can be countered by super
sampling each pixel and averaging the result, at the expense of many more computations.
Radiosity hybrid techniques have allowed indirect illumination to be more accurately

incorporated into ray tracing.

Unfortunately, radiosity is even more computationally intensive than ray tracing,
and requires the scene to be partitioned into patches. Much research has been done in the
field of radiosity, but its techniques have not been implemented. It enforces restrictions that
backward ray tracing is not subject to such as partitioning objects into patches. The
forward tracing technique examined does however, use a technique similar to that required

by radiosity.

3.1 Super Sampling and Path Tracing
Ray tracing often produces visual artifacts when the value for a pixel represents
only a part of its area. Super sampling is performed to find an average value over the area

of a pixel, using infinitely thin rays.

17

At any particular intersection point, both a reflective and refractive ray may be
traced. This results in many recursive calls for the tracing of each initial eye ray. Kajiya
[14] introduced path tracing, which probabilistically chooses to follow either a reflective or
a refractive branch at each intersection point. This technique concentrates more on the
differences between first level intersections rather than higher levels of recursion.
Conventional ray tracing methods spend a large amount of computation on those higher
levels whose values contribute much less to the equation. Path tracing, though efficient, is

not implemented because it reduces the contributions from reflected and refracted sources.

The principle behind path tracing could, however be applied to refracted objects
when forward tracing. This would eliminate computation associated with reflection, for the

purposes of studying only indirect refracted light.

3.2 Shading Methods
Once an intersection point for an eye ray has been determined, a new ray is cast
from each light source toward the intersection point. If a light intersects the object at the
same location, the direct illumination values for the light are contributed for that point. If
the light strikes an opaque object before reaching the intersection point, the light is blocked
and therefore not contributed to the intersection point. Transparent and refractive surfaces

create difficulties with this algorithm.

3.2.1 Ignoring Transmission Of Light
A common shading method is to ignore all transmitted light during direct lighting
calculations. When direct illumination is calculated for a light ray, if the light strikes any

object that is closer than the distance from the light source to the point of interest, it is

18

considered to be blocked. This method treats opaque, transparent objects the same, and
allows the shading algorithm to immediately stop performing intcrsection tests between the
light and objects if the light ray is blocked by anything. The order of object intersection
tests can be modified so objects that are more likely to block are tested first, thus making
the algorithm even more efficient. A relatively straightforward and efficient speedup for
this algorithm comes from the observation that when light is blocked for a particular
intersection point, points nearby will probably also be blocked by that object. The blocking
object can therefore be stored within the shading algorithm to be immediately tested or
updated during all shading calculations. This speedup applies best to the intersection points

for the initial eye rays.

Ignoring all transmission of light, by itself, is the most efficient and least realistic
shading method examined and implemented. It correctly calculates direct lighting
contributions, but relies solely on the ambient value for indirect illumination. Many ray
tracers implement this shading method because it is so efficient and because transparent

objects and indirect illumination may not be required for the rendered image.

3.2.2 Ignoring Refraction of Transmitted Light
Another way in which indirect illumination can be calculated during backward ray
tracing is to allow transmission of light, but ignore how it refracts (bends) as it travels from
the light source to the point of interest. Completely opaque objects will still block the light
source, but transparent objects will filter the light before it reaches the point of interest. A

problem with this method is that light generally diminishes as it travels through a partially

19

transparent object. The further the distance through the object, the less it contributes,

because light is absorbed or dispersed by the object.

A simple extension to this technique is to allow for attenuation of the light based on
the type of medium and distance light travels through it. Many light sources are
implemented using attenuation and the additional transparency based attenuation can easily

be incorporated.

Ignoring refraction of light allows objects that are partially blocked by transparent
objects to still be illuminated. Although this method is more realistic than ignoring all
transparency, it is only accurate for scenes that contain objects that do not refract light. It
does not allow for effects such as caustics. It is less efficient than ignoring all
transparency, whose optimizations cannot be uniformly applied to this method. Object
intersection implementations must also be modified so that all intersection points, their
transparency values, and/or attenuation coefficients are returned for each light ray. Another
implementation problem is that objects that partially block a light for a point of interest
should be calculated based on the order in which the light travels through them. This
further reduces the efficiency of this technique. This technique and its variations, such as
ignoring attenuation or ordering of intersected objects, can be applied to still produce a
realistic and relatively efficient shading model for allowing indirect transmitted light. The

non-refractive shading model does not, however model indirect refracted illumination.

3.2.3 Other Shading techniques
Other techniques can be used to render caustics, but have not been examined and

implemented. Firing multiple shadow rays from the light source around the intersection

20

point in a Monte-Carlo fashion is called bi-directional ray tracing. The rays that reach the
intersection point contribute indirect illumination. This technique is very expensive but can
however produce realistic images, and is similar to a forward light tracing pre-processor

method(s) implemented, except that it does not use ambient maps.

The cost associated with bi-directional techniques is incurred at render time and is
view dependent. In addition to the high rendering cost, implementation of a bi-directional
ray-tracer is complicated and restricts indirect illumination sources to the region

surrounding the intersection point.

Another technique, implemented in other ray tracers such as POV Ray is based on
the angle between the light ray and the surface normal. When the angle between these
vectors is small, the light is not bent very much and the surface blocked by the transparent
object receives the light. As the angle increases, the contribution decreases. This technique

restricts the caustics to the area shadowed by the transparent object.

Caustics may occur outside a shadow area, so this technique is not always accurate.
Furthermore, caustics are created by light rays grouping together, rather than light rays

which are close to the surface normal, so this technique is not realistic.

3.3 Ambient Map
The shading model that treats all objects as opaque is very efficient and can be used
in association with the ambient term for an object to produce realistic images that include

indirect refracted illumination. A constant ambient value may be fine for objects that do

not receive any refracted illumination, but generally, the indirect illumination for an object

varies across its surface. An ambient map allows this deviation to be represented.

The values for an ambient map can sometimes be specified without requiring the
scene to be pre-processed. Objects with luminous areas, such as algae on a wall, can have
their ambient maps specified accurately when the scene is being created. Indirect
illumination from light striking other bodies in a scene, however, is dependant on where the
other lights and objects in the scene are located. An estimated ambient map is only as
accurate as its specification by the scene creator. A scene dependant calculation of the

ambient map is the only way to ensure it is accurate.

22

Chapter 4

FORWARD RAY TRACING

Backward ray tracing calculates direct lighting contributions accurately and
efficiently. Forward light tracing calculates all light contributions, direct and indirect,
accurately but inefficiently. Bi-directional ray tracing attempts to confine forward light
tracing to the regions of interest calculated during the backward tracing phase. The pre-
processors implemented are part of a two pass rendering scheme. The light sources are
forward traced in a pre-processing phase, and their indirect illumination is stored as
ambient light with each object. The pre-processing phase is view independent, while the
rendering phase uses backward ray tracing to calculate direct lighting and retrieves the

indirect illumination based on the ambient value.

4.1 Pre-Processing

The forward tracing pre-processor phase consists of tracing a large number of rays
from each light source and storing their values with objects that they intersect. Since only
indirect illumination is being stored, the primary intersection for each ray does not need to
be stored, only its reflected or refracted rays. Distribution ray tracing can easily be
incorporated into the forward ray-tracing phase. The diffuse value for the intersection is
stored in the ambient map. As mentioned in a previous chapter, path tracing rather than ray
tracing could be used to calculate only reflected or refracted indirect illumination
contributions, or to make the forward tracing phase more efficient. Another useful side-

effect of the forward ray-tracing pre-processing phase, is that information about direct

23

lighting can be obtained and used to reduce the number of direct (shadow) rays for

backward ray-tracing.

4.2 Pre-processing Using Random Rays

The light rays may be selected at random or through a selective process. One
technique implemented uses a large number of random rays fired from each light source.
This completely random technique is inefficient and results in many light rays not striking
any objects. A slightly more efficient extension to the completely random technique is to
fire additional random (Monte Carlo) rays around the area where the initial light rays are
stored, to further saturate areas where the rays will most likely be stored. Although the rays
are generated by a uniformly distributed random number generator, there is still the

problem of resolution.

4.3 Indirect Light Density and Resolution

Backward ray tracing eliminates light resolution problems since each intersection
point receives the equivalent of one light ray per light source. Distributed (area) light
sources use multiple rays, but their overall intensity is the equivalent of a single light
source. Forward light tracing for use in ambient maps creates the problem of correct
density and resolution of the contributions. Refraction and reflection from other objects
adds complexity that a given location may have more than one contribution from the same
light source. Radiosity corrects for this resolution problem by tessellating objects into
patches and retrieving indirect illumination based on intersection with a patch. Tessellation
causes much additional overhead and computation, in addition to storage concerns. The

resolution problem now becomes related to the patch sizes.

24

Another attempt at indirect illumination is Mitchell [15], who developed a system
for indirect reflection contributions from curved reflectors but not refractive objects. The
accumulation buffer [16] tessellates surfaces, projects their corners onto other surfaces, and
calculates the illumination based on the change in surface area. As with all tessellation
techniques, the objects must be simplified, the polygons only approximate the original
object, the amount of computation increases and surface characteristics such as bump
mapping become restrictive or difficult. Resolution problems plague the pre-processor
implementations, while the shading models discussed earlier are free of resolution

problems.

4.4 Individual Ambient Maps
Heckbert [12] developed a method in which objects are pre-processed through
forward ray tracing and individual ambient maps are stored with each object. The inverse
mapping method used restricts which maps can be applied to which objects. A planar or
spherical map works with almost any (convex) object. The difficulty with this technique is
in choosing the correct map resolution. Each object must also provide an ambient map as
part of its implementation, which must move and rotate as the object changes. This

technique quickly overruns memory resources for large numbers of objects.

Individual ambient maps also have the problem of resolution. Infinite objects such
as a plane cannot be represented through this system. The same principle applies to the
shape of the object or its location relative to the camera. The forward (pre-processing)
phase is view independent, so object resolution and determining which objects need maps

may require an additional view-dependant pre-pre-processing stage.

25

The implementation of individual ambicnt maps uses a number of techniques that
sabotage the one-to-n relationship seen in direct light contributions. The implementation
for this thesis gives all objects equal resolution. It attempts to restrict bunching of nca-
refracted light rays by only allowing one reflected and/or refracted secondary ray for each
intersection area. This is done by flagging a second map with each object when it is struck
by a primary light ray, so that two almost equal primary rays cannot both contribute to the
ambient maps. This technique can easily be extended to allow “n” rays per area and
averaging their contribution. This implementation also averages or blurs the maps so that
under-sampling errors are reduced and there are not large differences between adjoining

regions of the map.

This implementation can produce realistic images of scenes containing refractive
objects. As it is currently implemented, it has many problems, namely resolution,
accuracy, under-sampling, memory constraints, inappropriate inverse map types, and
aliasing. When adequately sampled and blurred, this implementation does render indirect
illumination such as caustics to produce realistic images. The images produced are more
realistic than those rendered using previously implemented backward ray tracing shading

methods.

4.5 Photon Map
Procedural texture maps require less memory and produce fewer aliasing problems
than conventional texture maps. Similarly, photon maps provide the same advantages over
conventional ambient maps. The photon map, as developed by Jensen [13], maps indirect

illumination into a structure, which is traversed at render time to calculate the ambient

26

contribution for an intersection point. The structure used is a k-d tree, or k-dimensional
iree. In this case, k is equal to three, corresponding to the x, y and z co-ordinates of the
intersection point. Jensen uses the photon map as a tool for radiosity and as a replacement
for direct lighting calculations. In his implementation, the incident light value is stored
along with the light contribution. The implemented photon map does not use that
approach. Only the contribution is stored, as direct light and recursive tracing are
performed to calculate all direct illumination, specular reflection, and specular refraction

contributions.

The implemented photon map suffers from resolution problems relating to improper
sampling (too much or too little). The problems relating to sampling can be controlled
through varying the region (volume) of interest and the expected number of photons per
region. The volume and the expected number of photons are currently hard coded values
separate from the number of photons in the map and their density, although greater

accuracy should result in relating them.

The k-d tree results in an efficient retrieval of the indirect light contributions with
little loss of accuracy during view dependant rendering. The cost of retrieval is based on
the number of photons in the map, and the size of the volume of interest. This cost occurs
for each intersection point where the rendering equation is calculated. Trimming of the k-d
tree based on the volume boundary greatly reduces the number of nodes that must be
evaluated. Smaller boundary volumes result in more efficient trimming. The photon map

tests in Chapter 5 compare the efficiency of the photon map.

27

A further improvement can be obtained from balancing the tree. This optimization
is not implemented, as the tree is randomly populated and therefore relatively balanced. A
balanced tree does, however reduce the number of node comparisons. Another potential
optimization is to direct the creation of the photon map based on view dependence, to cause

trimming higher in the tree and reduce the number of comparisons.

As mentioned above, the photon map is constructed from randomly created light
rays. The pre-processing phase implemented is relatively inefficient in that many rays do
not strike any objects. Adding control to the number and density of the pre-processing rays
allows a more even distribution and reduces the problems that are apparent in the photon

map and individual ambient maps.

4.6 Forward Ray Tracing Through Grid-like Inter polation
A second forward ray-tracing pre-processor has been implemented which
interpolates the light rays evenly across a bounded plane, which is constructed based on the
bounding box for the virtual scene. The size of the steps used to interpolate across the
plane determines the size of the volume of interest used by the photon map. The volume
used is slightly larger than the interpolation steps, so a value for the expected number of
rays is hard coded into the photon map so that ambient values blend or blur more smoothly

between adjoining regions.

The problem of samples bunching together (over-sampling) is controlled through
the interpolation pre-processor, but the number of samples to use remains unclear. More
samples mean a larger and less efficient map, but more accurately depict the indirect

illumination. The number of steps is dependent on a parameter passed to the pre-processor,

28

but the size of the steps is calculated from the number of steps and the size of the bounding
box. A larger box implies that the steps are further apart. The number and size of steps
should be constant between all light sources, so this implementation may become less

accurate when used by multiple light sources, or sources located within the bounding box.

Another problem with this method is that the bounding box spans all objects, but
the pre-processor is only concerned with reflective or refractive objects. Clearly, a second
bounding box based only on reflective and refractive objects is needed to reduce the
number of unused rays. The implemented bounding box structure is oriented along the X, y
and z-axis. A more efficient implementation would allow for an arbitrarily aligned box, or

a collection of bounding slabs.

A further improvement in efficiency relates to the interpolation plane used to
determine which forward light rays to fire. The structure currently implemented uses
minimum and maximum u and v co-ordinates, but is semi-efficient in that it only
interpolates along two dimensions rather than three. The inefficiency is a result of the
interpolation plane boundary being a square rather than a convex polygon or a non-

intersecting polygon.

The use of a boundary square means that the rays that are fired based on the
boundary plane may not even strike the bounding box, let alone any reflective or refractive
objects in the scene. This results in wasted light ray instantiations and more importantly,
unnecessary intersection tests. Luckily, this design problem is confined to the pre-
processing stage, and excess computations are incurred only during that phase, rather than

repeatedly occurring during the backward rendering phase.

The bounding plane implementation is an effort to control the problem of firing an
infinite number of rays outward from each light source. The rays are evenly distributed and
fired at a finite resolution. The implementation using a single bounding plane has many
restrictions that need to be eliminated to provide a robust, efficient and accurate pre-

processing phase.

4.7 Spherical Interpolation Around Light Sources

The pre-processor that uses planar interpolation needs to be expanded in order to
interpolate around a unit sphere surrounding the light source. One way in which this can be
done is through interpolating around the sphere using trigonometric functions. The use of a
unit sphere eliminates the need to normalize the light rays, as they will already be of unit
length. The unit sphere may, however cause bunching together of rays and involves costly
trigonometric calculations. The trigonometric functions can be stored in lookup tables at a
large memory expense, depending on the number of interpolations. A different type of

interpolation volume is implemented as part of this thesis to provide a robust pre-processor.

The interpolation structure implemented is a cube whose eight corners are located
on the surface of the sphere. The six sides of the cube are interpolated along using a pre-
determined sampling rate. The sampling rate can also be used to specify the resolution of
the ambient maps or photon map retrieval parameters. Interpolation methods eliminate
bunching (over-sampling) of light rays, but are susceptible to under-sampling. This
interpolation method also results in a large number of rays whose values are not stored, and

is therefore inefficient in its naive (brute force) implementation.

30

4.7.1 Adaptive Interpolation

The efficiency of this method can be improved by adaptively (recursively) sampling
at an increased resolution around the light rays that are stored. This adaptive modification
allows a lower resolution to be used along the sides of the cube, and have the resolution
recursively increased for regions where the rays are stored. An implementation that uses
adaptive cube interpolation improves the efficiency of the brute-force cube implementation,
prevents over-sampling and controls the amount of under-sampling. The implementation
has a number of small problems relating to how it adaptively sub-divides the sampling
regions, but these problems are due to implementation-specific decisions, rather than the

adaptive sub-division technique.

4.8 Photon Map Problems
The Monte-Carlo pre-processor randomly populates the k-d-tree so balancing the
tree is not crucial. The structured way that an interpolation pre-processor populates the k-
d-tree means that the tree may be much less balanced than through random population and

is therefore less efficient in its unbalanced form.

There are several other problems with the implementation of the photon map. The
values stored in the photon map are single precision floating-point numbers for both
intensity and position, yielding six single precision floating-point numbers per photon.

This provides reasonable precision but double precision may be required for sampling areas
that are extremely close together. The position values are compared based on the
intersection position and a range value. Generally, this range value is only a few decimal

places in size, therefore the extra precision gained by using a double is not needed.

31

Double precision numbers are used throughout the ray tracer code for the color
(red, green, blue) values as well. Thcse numbers are constrained to the range of zero to one,
and are eventually converted to the integer range of 0-255, therefore single precision

photon map colors do not create any problems.

The main problem with the current implementation of the photon map deals with
the retrieval of photons using a volume of interest. All photons in a particular volume are
retrieved and are averaged together based on the expected number of photons in that
volume. The problem occurs when a photon that has been deposited in the map upon
striking one surface is retrieved as part of the ambient value for another surface. This is
noticeable in the scene where photons have been deposited from one side of a two-sided,

non-transparent polygon, and retrieved at render time from the other side of the polygon.

The volume of interest encapsulates the area on both sides of the infinitely thin
polygon, and allows the wrong photons to be retrieved. Jensen [13] stores the incident
angle of the incoming photon. In the implementation for this thesis, that extra storage will
not fix the problem. The intersection normal must be stored with the photon, and its dot
product with the rendering ray calculated at render time. This adds extra computation and
storage for a relatively minor problem and adds complications when the surface is
transparent. A more convenient fix for this problem is to not allow opaque polygons to be

two sided.

The complexity of populating a photon map (k-dimensional tree) is the same as for

any binary tree. A binary tree with N nodes has height of at least log, N and therefore

insertion of a new node requires at least log, N comparisons and has an upper bound

32

O(N). The complexity associated with retrieving the ambient value from a photon map is
more complicated. Multiple nodes are retrieved from the k-dimensional tree based on the
volume of interest. In a situation where the volume of interest encapsulates the entire map,
N values are retrieved requiring N node comparisons. The upper bound is therefore
O(N). The volume of interest implementation for photon retrieval makes the photon map
very inefficient. The tests performed in Chapter 5 illustrate the costs of photon map

retrieval. Implementing a more efficient retrieval method is an area for future work.

33

Chapter 5

TESTS AND COMPARISONS

5.1 Test Environment
Each image is rendered at 200 x 200 pixels, with one eye ray per pixel, for a total of

40000 eye rays per image. The tests have been performed under the conditions shown in

Table 2.

Table 2 Test Environment
Operating System Windows 95 (4.00.950)
CPU Pentium II 350
RAM 64 MB
Java Virtual Machine JDK 1.1.7 (with JIT)
Java Compiler Visual Age for Java V2.0

(JDK 1.1 compatible)

The test environment will only affect timing results and these have not been
presented since times will vary between different machines. The metrics presented in the

following tables will be consistent under any capable test environment.

34

5.2 Explanation of Metrics
Each test scene has four tables of metrics associated with it. The first table displays
the costs of rendering using two different shading models. The second tabl: demonstrates
the pre-processor costs of using individual ambient maps with each scene object. The third
table demonstrates the pre-processor costs of using a global photon map for the ambient
values of each scene object. The fourth table outlines the cost of using the global photon

map at render time,

The first and fourth tables are view dependent, meaning that their values depend on
the camera (eye) configuration and image resolution. The second and third tables are
independent of the rendering phase. The values in the fourth table do, however depend on
the size and organization of the photon map constructed in the pre-processing stage of the

third table.

The number of each type of ray is the same for both shading models since those
number are based on tracing eye rays rather than shadow rays. The difference in (object)
intersection tests is of more importance since it highlights the view dependent costs of the
different shading models. The pre-processor techniques use the “Non-Transparent”
shading model at render time, so its values are the view dependent costs for direct lighting,

and the lookup costs of the ambient map type is the indirect illumination cost.

5.3 Control Scene
The control scene for the renderings contains a transparent, but non-refractive
object that lies between the light source and the other objects in the scene, demonstrating

the need for indirect illumination. The scene has one light and three objects. The scene

35

contains a transparent plane with a number of waves stored through a bump map. A point
light source is located far above the transparent plane. Beneath the transparent plane is a

large green plane with a red sphere on it.

The “Non-Transparent” shading model creates a large dark area where the
transparent object blocks the light (cross-reference). The “Non-Refractive” shading model
allows light to be filtered and transmitted in a non-refracted path and therefore renders this
scene accurately (cross-reference). The “Non-Refractive” shading model provides a
benchmark to compare the accuracy of the pre-processors. The control scene demonstrates
the usefulness of the “Non-Refractive” shading model in specialized cases and exposes the

problems encountered by the (in this case unnecessary) bi-directional techniques.

Table 3 Control Scene Shading Costs

Method Number of Number Number Number of
Intersection of of Refraction
Tests Shadow Reflection Rays
Rays Rays
Non- 201,996 21,696 592 5,180
Transparent
Shading Model
(Figure 7)
Non-Refractive 201,996 21,696 592 5,180
Shading Model
(Figure 8)

Table 3 has identical values for both tests. This is due partly to the simplicity of the
scene (very few objects) and the order in which the shadow ray intersections are evaluated.

Additional shadow optimizations that are not implemented, such as evaluating the last

36

shadow intersection object first would better illustrate the additional costs of the “Non-

Refractive” shading model.

The five pre-processors tested in Table 4 and Table 5 render the control scene as
close as possible to the “Non-Refractive™ shading model rendering. Not all pre-processors
were capable of rendering a realistic image using finite resources. An upper limit of

approximately 1,000,000 light rays was used for these pre-processors.

Table 4 Pre-Processing the Control Scene Using Individual Ambient Maps

Method Number of Object Light Number of Percentage Percentage
Intersection Intersections Values Recursively (%) of (%0} of
Tests Stored Traced Rays That Rays That

Rays Intersect Are Stored
An Object

Completely 3,000,741 1,120 247 1,000,247 0.11 0.02

Random

(Figure 9)

Monte-Carlo 727,836 42,022 11,612 242,612 17.32 4.79

Random

(Figure 11)

Brute Force 583,593 95.896 17,290 194,531 49.30 8.89

Planar

Interpolation

(Figure 13)

Naive / Brute 3,597,354 1,276 264 1,199,118 0.11 0.02

Force

Spherical

Interpolation

(Figure 15)

Adaptive 1,765,410 107,625 19,551 588,470 18.29 332

Spherical

Interpolation

(Figure 17)

37

The completely random and naive, brute force spherical interpolation pre-
processors were unable to produce an accurate image. In order to be more accurate with
these techniques more rays must be cast. The intersection and storage percentages indicate

that neither method is a reasonable pre-processor.

The Monte-Carlo, planar interpolation, and adaptive spherical interpolation
techniques all produce an accurate control scene image. The planar interpolation technique
appears to be the most efficient pre-processor for the control scene. Table 5 illustrates the

costs of pre-processing the control scene using a global photon map.

38

Table 5 Pre-Processing the Control Scene Using a Global Photon Map

Method Number Object Photons Number of Percentage Percentage
of Intersection Stored Recursively of Rays of Rays
Intersectic s Traced That That Are
n Tests Rays Intersect An Stored

Object

Completely 3,000,744 1,121 248 1,000,248 0.11 0.02

Random

(Figure 10)

Monte-Carlo 853,152 83,387 31,384 284,384 29.32 11.04

Random

(Figure 12)

Brute Force 598,503 100,866 22,260 199,501 50.56 11.16

Planar

Interpolation

(Figure 14)

Naive / Brute 3,597,354 1,276 264 1,199,118 0.11 0.02

Force

Spherical

Interpolation

(Figure 16)

Adaptive 2,012,238 189,901 93,311 670,746 28.31 13.91

Spherical

Interpolation

(Figure 18)

The planar interpolation and adaptive spherical interpolation techniques produce an

accurate control scene image. The Monte-Carlo implementation produces an erroneous

image and demonstrates the problem of over sampling. Table 6 illustrates the view-

dependent cost of using a global photon map based on the photons stored in

39

Table 1. The number of photons used is an indicator of the density of the photons, while
the number of nodes examined relates to the size of the map and the efficiency of its

structure.

Table 6 View Dependent Global Photon Map Retrieval Costs for the Control Scene

Method Number of Number of
Photon Nodes Photons Used
Examined

Completely 177,838 136

Random

Monte-Carlo 1,244,251 86,977

Random

Brute Force Planar 7,710,996 64,197

Interpolation

Naive / Brute 421,840 764
Force Spherical
Interpolation

Adaptive Spherical 17,333,273 264,604
Interpolation

The number of node comparisons is an indication of the efficiency (balancing) of
the map and the size of the volume of interest. The volume of interest is kept the same for
all pre-processors tested to promote consistency. Balancing the map has not been
implemented, so even though the map populated using Monte-Carlo techniques is roughly
the same size as the planar interpolation map, it is more efficient in node comparisons. The
differences in node comparisons for similar sized maps would be much less for a balanced

tree.

40

The completely random and naive/brute force spherical interpolation techniques
were inefficient in pre-processing even a simple scene. They are not included in further
tests. They are, however the basis for the other pre-processors which have proven that they
can render indirect illumination as accurately as the non-refractive shading model. Figure 4

illustrates the costs of the different pre-processors and ambient map types for the control

scene.
Figure 4 Pre-processing cost for the control scene
Control scene cost
1200000 l
1000000177 OJRandom
Number of Rays 233383 ll : - EMonteCarlo
Fired 400000 H = = ® Planar
, B Spherical
200000 ll i u ‘ P ' .
0 —= = [0 Adaptive Spherical
Individual Global
Scene

5.4 Refraction Scene
The control scene did not have any refractive objects, and so the “Non-Refractive”
shading model rendered it accurately. Many scenes do contain refraction and so a simple
shading model cannot properly render them. The refraction scene is identical to the control
scene except that the transparent plane with the wavy bump map has an index of refraction

of water (1.33) [8] rather than an index of refraction of a vacuum (1.0).

41

Table 7 Refraction Scene Shading Model Costs

Method Number of Number of Number of Number of
Intersection Shadow Reflection Refraction
Tests Rays Rays Rays

Non-Transparent 185,114 19,018 1,042 1,786

Shading Model

(Figure 19)

Non-Refractive 185,114 19,018 1,042 1,786

Shading Model

(Figure 20)

Table 7 has identical values for both tests, since it is essentially the same as the
control scene. The differences between it and Table 3 are due to the refractive plane.
Neither of the images rendered using the shading models accurately depicts how the final
image should appear. The three pre-processors tested with the refraction scene produce a
more realistic image. The costs of using the pre-processors are recorded in the following

three tables.

42

Table 8 Pre-Processing the Refraction Scene Using Individual Ambient Maps

Method Number of Object Light Number of Percentage Percentage
Intersection Intersections Values Recursively of Rays of Rays
Tests Stored Traced That That Are

Rays Intersect Stored
An Object

Monte-Carlo 708,801 35,720 10,267 236,267 15.12 4.34

Random

(Figure 21)

Brute Force 583,593 95,896 17,290 194,531 49.30 8.89

Planar

Interpolation

(Figure 23)

Adaptive 1,765,410 107,625 19,551 588,470 18.29 3.32

Spherical

Interpolation

(Figure 25)

The values in Table 8 indicate that the most efficient technique uses planar

interpolation while the adaptive technique is least efficient. The images rendered from the

individual ambient maps appear to be accurate as well. These images are an indication of

why caustics and indirect illumination are important to consider when rendering.

43

Table 9 Pre-Processing the Refraction Scene Using a Global Photon Map

Method Number of Object Photons Number of Percentage Percenlage
Intersection Intersections Stored Recursively of Rays of Rays
Tests Traced Rays That That Are
Intersect Stored
An Object
Monte-Carlo 853,707 83,477 31,569 284,569 29.33 11.09
Random
(Figure 22)
Brute Force 598,503 100,866 22,260 199,501 50.56 11.16
Planar
Interpolation
(Figure 24)
Adaptive 2,012,238 189,901 93,311 670,746 28.31 13.91
Spherical
Interpolation
(Figure 26)

The values in Table 9 indicate that the adaptive technique is the most efficient. This

is a reversal of what Table 8 indicates. The difference is the result of how the photon map

is populated compared to the individual ambient maps. The individual maps are

implemented to prevent over sampling, while the photon map is not. The adaptive

technique restricts over sampling when the rays are cast, rather than when they strike an
object. The images rendered from using a global map appear similar to those rendered

using individual maps.

Table 10 displays the costs of using the global photon map produced in Table 9.

The number of photons used indicates the density of the photons in the map and the amount

of blurring (averaging) used at each volume of interest to calculate the indirect illumination

contribution.

Table 10 View Dependent Global Photon Map Retrieval Costs for the Refraction Scene

Interpolation

Method Number of Number of
Photon Photons
Nodes Used
Examined

Monte-Carlo 1,017,676 100,102

Random

Brute Force 2,061,132 72,075

Planar

Interpolation

Adaptive 4,808,309 300,105

Spherical

The lack of balancing results in the inefficiency of the planar interpolation

technique. The sheer size of the photon map populated by adaptive spherical interpolation

is the reason why its node comparisons and number of photons used are higher than the

other methods.

The control scene and refraction scene are trivial compared to the complex scenes

that can be rendered. Figure 5 illustrates the costs of the different pre-processors and

ambient map types for the control scene. A larger, non-trivial scene is used for the final

test.

45

Figure 5 Pre-processing cost for the refraction scene

700000

600000

500000 ;
Number of 400000 - Monte Carlo
Rays Fired 300000 B Planar

200000 - - O Adaptive Spherical

100000 :

0

Individual Global

5.5 Complex Scene

A complex scene is used to administer the final test of which technique is best for
indirect illumination. The scene consists of two point lights, and nine objects. Both lights
are located close to one another, but using two lights doubles the amount of pre-processing
work and number of shadow rays. The camera is located within a box (6 polygon objects)
with the top (surface) being a transparent, two-sided polygon with a wavy surface. A
transparent ellipsoid and a semi transparent sphere are also located in the box along with a
fractal object. The fractal object uses a hierarchical bounding volume structure to improve

its efficiency.

46

Table |1 Complex Scene Shading Model Costs

Method Number of Number Number Number of
Intersection of of Refraction
Tests Shadow Reflection Rays

Rays Rays

Non- 2,226,208 85,492 266 2,492

Transparent

Shading Model

(Not shown)

Non-Refractive 2,257,544 85,492 266 2,492

Shading Model

(Figure 27)

The “Non-Transparent Shading Model” produces a completely black image. The
increase in rays and intersection tests over previous scenes is due to the increase in
complexity of this scene. The difference between the intersection tests of the non-
transparent shading model and the non-refractive shading model illustrates how the non-

transparent shading model is more efficient.

Table 12 Pre-Processing the Complex Scene Using Individual Ambient Maps

Method Number of Object Light Number of Percentage Percentage
Intersection Intersections Values Recursively of Rays of Rays
Tests Stored Traced Rays That That Are
Intersect Stored
An Object
Monte-Carlo 12,875,302 330,654 119,392 793,399 41.68 15.05
Random
(Figure 28)
Brute Force 9,762,016 368,402 155,648 599,701 61.43 25.95
Planar
Interpolation
(Figure 30)
Adaptive 30,734,182 927,937 174,470 1,893,058 49.02 9.22
Spherical
Interpolation
(Figure 32)

As with previous tests, the planar interpolation technique is the most efficient at
hitting objects and storing its values. The adaptive technique stores a relatively small

amount more than the planar interpolation technique, but requires roughly three times as

many rays.

The images produced using the individual maps appear blocky, because the

resolution of the maps is low compared to the resolution of the camera. The view-

independent pre-processing phase is therefore dependent on the view-dependent rendering

phase to determine the correct resolution of the individual maps. The problem with

resolution imposes an unwanted restriction on the use of individual ambient maps.

48

Table 13 Pre-Processing the Complex Scene Using a Global Photon Map

Method Number of Object Photons Number of Percentage Percentage
Intersection Intersections Stored Recursively of Rays of Rays
Tests Traced Rays That That Are
Intersect Stored
An Object
Monte-Carlo 20,028,562 724,937 357,511 1,225,078 59.17 29.18
Random
(Figure 29)
Brute Force 10,521,966 410,622 197,868 645,921 63.57 30.63
Planar
Interpolation
(Figure 31)
Adaptive 43,054,080 1,666,268 835,427 2,640,756 63.10 31.64
Spherical
Interpolation
(Figure 33)

Table 13 indicates that the three methods are roughly equivalent in efficiency with

regard to light ray hit and photon storage. The numbers also indicate that the adaptive
spherical interpolation technique creates a much larger map, resulting in smoother ambient
values between adjacent regions. Although time is not shown, the amount of time needed
to pre-process using the adaptive spherical technique was many times longer than the other
techniques. The Monte-Carlo technique took approximately twice as long as the planar
interpolation technique. The adaptive spherical technique took approximately six times

longer than the planar interpolation technique.

49

Table 14 View Dependent Global Photon Map Retrieval Costs for the Complex Scene

Method Number of Number of
Photon Photons
Nodes Used
Examined

Monte-Carlo 7,596,240 1,511,262

Random

Brute Force 26,128,615 742,213

Planar

Interpolation

Adaptive 69,499,037 3,188,513
Spherical
Interpolation

Monte-Carlo is more efficient than planar interpolation due to how the photon map
is populated (balancing). Adaptive spherical interpolation is inefficient with regards to

node comparisons due to its large size and lack of balancing.

The test scenes have shown which methods calculate indirect illumination faster,
more accurately and more robustly than others do. They have also exposed which methods
have potential, but need to be improved in either their design or implementation. Figure 6
illustrates the costs of the different pre-processors and ambient map types for the control

scene.

50

Figure 6 Pre-processing cost for the complex scene

3000000
2500000

Number of 2

1500000
Fired
Rays Fired | 100000

500000
0

Individual Global

Monte Carlo
@ Planar
0 Adaptive Spherical

51

Chapter 6

CONCLUSIONS

Indirect illumination from refractive objects plays an important role in ray tracing.
Techniques that calculate indirect refractive illumination may work more efficiently,
accurately, or robustly than others. Another concern is whether a technique requires

significant design and implementation changes to be incorporated to use it.

6.1 Efficiency
The Non-Transparent shading model is the fastest but does not render indirect
illumination. The Non-Refractive shading model is the fastest technique for indirect
transparent illumination, as opposed to indirect refractive illumination. The cost is incurred
at render time, but is much less than the other pre-processor alternatives for a 200 x 200
image. Increasing the number of camera rays reduces the relative savings of the non-

refractive shading model over the forward light tracing pre-processors.

If indirect refractive illumination is needed (for realism) but the camera (eye) is not
located very close to the objects, individual ambient maps can be used. The planar
interpolation technique is the most efficient method for populating individual ambient

maps.

If resolution problems occur, the planar interpolation and Monte-Carlo methods are

the most efficient at populating a global photon map.

52

6.2 Robustness
The planar interpolation is a specialized case and is not robust. It can, however be
expanded to make it robust and even more efficient when using individual ambient maps.
It can be modified to interpolate along the individual ambient maps of the transparent (and
reflective) objects based on their resolution. This would also eliminate the implementation

restriction of min/max values for objects and a bounding box for the entire scene.

The adaptive spherical interpolation technique is the most robust method
implemented. It works with both individual and global maps. It does not impose
restrictions on the objects or scene, and can work with other light sources such as
directional or spotlights with little (if any) implementation change. The adaptive technique
ensures a consistent sampling density, as opposed to Monte-Carlo, which can create areas

of super-sampling in a global map.

The global photon map is the most robust map type implemented. It works with
any type of object, without the problems associated with inverse mapping of individual
ambient maps. There are still some problems with using a global photon map such as

memory, speed, and obstructed photons in the volume of interest.

6.3 Accuracy / Realism
The shading methods alone cannot produce realistic images in scenes where
refractive objects are rendered. The pre-processors can render indirect refractive

illumination as well as illumination from indirect reflective sources.

53

The individual ambient maps can produce realistic images, but may have resolution
problems or an incorrect inverse mapping structurc. The inverse maps are blurred, which
can create blocks of color depending on the blur size. The contributions between adjacent
areas may vary greatly because ambient contributions are blurred based on objects rather

than by area.

The photon map produces the most accurate and realistic images, when correctly
populated. Ambient contributions blend between adjacent regions of interest and any type

of object can be accurately mapped.

6.4 Conclusion
The adaptive spherical interpolation technique using a global photon map is the best
technique for rendering indirect refractive illumination. It is robust, imposes very few (if
any) implementation restrictions and renders realistic images. It is relatively efficient and

its light ray concentration controllable through sampling and adaptive depth parameters.

As a compromise, the non-refractive shading model can be used for evaluating
object / camera / light placement in a scene. The Monte-Carlo technique using individual
ambient maps can be used to provide a preliminary view of the final image, and the
adaptive spherical interpolation using a global photon map can be used to render the final

image.

54

6.5 Further Work
Object instantiation is a major performance bottleneck in Java. The current
implementation of the photon map requires the creation of thousands of individual photon
objects when it is populated. The release of the Java HotSpot™ virtual machine, which
will increase performance of this ray tracer, reduces the cost of instantiating objects.
Another implementation change is balancing the photon map to make retrieval of nodes

more efficient.

Implementing a more efficient photon map retrieval method is needed to make the
photon map a more useful indirect illumination map. The use of procedural texture maps
reduces the resolution problems of inverse mapping. Construction of a procedural (fractal
compression) photon map based on populated values or individual ambient map values
would eliminate resolution problems from ambient maps. A procedural photon map would

be expensive to construct but more efficient at retrieving values than the current photon

map.

Much of the future work associated with the implementation will be in improving
the efficiency of algorithms and implementing additional features such as displacement

mapping, constructive solid geometry, and free-form deformation.

55

BIBLIOGRAPHY

[1] Appel, A., “Some Techniques for Shading Machine Renderings of Solids”, AFIPS
Conference Proceedings, 32, 37-45, 1968.

[2] Arvo, James, “Backward Ray Tracing,” SIGGRAPH '86 Developments in Ray
Tracing seminar notes, Vol. 12, August 1986.

[3] Biggs, N., Discrete Mathematics (Revised Edition), New York: Oxford University
Press, 1990

[4] Burger, P. and Gillies, D., Interactive Computer Graphics, England: Addison Wesley,
1990.

[5] Cheah, S.C., “An Implementation of a Recursive Ray Tracer That renders Caustic
Lighting Effects,” Independent Study: University of Maryland, 1996.

[6] Cook, R.L., “Stochastic Sampling and Distributed Ray Tracing,” Introduction to Ray
Tracing, USA: Academic Press, 1991.

[7] Foley, J., van Dam, A., Feiner, S., Hughes, J., Phillips, R., Introduction to Computer
Graphics, USA: Addison Wesley, 1994.

[8] Glassner, A., An Introduction To Ray Tracing, USA: Academic Press, [991.

[9] Haines, E., “Essential Ray Tracing Algorithms,”Introduction to Ray Tracing, USA:
Academic Press, 1991.

[10] Hall, R., [llumination and Color in Computer Generated Imagery, New York:
Springer-Verlag, 1989.

[11] Hearn, D., and Baker, M. P., Computer Graphics C Version, 2™ Ed., New Jersey:
Prentice Hall, 1997.

[12] Heckbert, P., “Adaptive Radiosity Textures for Bi-Directional Ray Tracing,”
Computer Graphics, Vol. 18, No. 4, pp. 145-154, 1990.

[13] Jensen, H.W., “Global Illumination Using Photon Maps,” Rendering Techniques
'96, Eds. Pueyo, X. and Schroder, P.: Springer-Verlag, pp. 21-30, 1996.

[14] Kajiya, J., “The Rendering Equation”, Computer Graphics, Vol. 20 No. 4, pp. 143-
149, 1986.

[15] Mitchell, D., Hanrahan, P., “Illumination from Curved Reflectors,” Computer
Graphics, Vol. 26, No. 2, pp. 283-291, 1992.

56

[16] Nishita, T. and Nakamae, E. “method of Displaying Optical Effects within Water
using Accumulation Buffer,” Computer Graphics Proceedings, Siggraph ‘94, pp.
373-379, 1994.

[17) The Oxford Dictionary of Quotations, 3d ed. New York: Oxford University Press,
1980.

[18] Ward, G.J., Rubenstein, F.M. and Clear, R.D., “A Ray Tracing Solution for Diffuse
Interreflection,” Computer Graphics, Vol. 22, No. 4, pp. 85-92, 1988.

[19] Watkins,C., Coy, S., and Finlay, M., Photorealism and Ray Tracing in C, USA:
M&T Publishing Inc., 1992.

[20] Watt, A., Watt, M., Advanced Animation and Rendering Techniques Theory and
Practice, England: Addison Wesley, 1992.

[21] Watt, A., Policarpo, F., The Computer Image, New York: Addison Wesley, 1998.

[22] Whitted, T., “An Improved Illumination Model for Shaded Display”,
Communications of the ACM, 26(6), 342-349, 1980.

57

APPENDIX A - GENERATED IMAGES

The images generated by the ray tracer are saved in true color TGA format. They

have been converted to DIB format in order to be stored with this document, however there

is no change in size or quality from this conversion.

Control Scene Images

The control scene images rendered using different shading models:

Figure 7 The control scene rendered using a non-
transparent shading model

Figure 8 The control scene rendered using a non-
refractive shading model.

58

The control scene images rendered using five different forward-tracing pre-

Processors.

Figure 9 The control scene rendered using
individual ambient maps populated by a
completely random forward light tracer.

Figure 10 The control scene rendered using a
global photon map populated by a completely
random forward light tracer

Figure 11 The control scene rendered using
individual ambient maps populated by a Monte-
Carlo forward light tracer

Figure 12 The control scene rendered using a
global photon map populated by a Monte-Carlo
forward light tracer

59

Figure 13 The control scene rendered using
individual ambient maps populated by a planar
interpolation forward light tracer

Figure 14 The control scene rendered using a
global photon map populated by a planar
interpolation forward light tracer

Figure 15 The control scene rendered using
individual ambient maps populated by a
naive/brute force spherical interpolation forward
light tracer

Figure 16 The control scene rendered using a
global photon map populated by a naive/brute
force spherical interpolation forward light tracer

60

Figure 17 The control scene rendered using
individual ambient maps populated by an
adaptive spherical interpolation forward light
tracer

Figure 18 The control scene rendered using a
global photon map populated by an adaptive
spherical interpolation forward light tracer

Refraction Scene Images

The refraction scene images rendered using different shading models:

Figure 19 The refraction scene rendered using a
non-transparent shading model.

Figure 20 The refraction scene rendered using a
non-refractive shading model

The refraction scene images rendered using three different forward-tracing pre-

Processors.

Figure 21 The refraction scene rendered using
individual ambient maps populated by a Monte-
Carlo forward light tracer.

Figure 22 The refraction scene rendered using a
global photon map populated by a Monte-Carlo
forward light tracer.

Figure 23 The refraction scene rendered using
individual ambient maps populated by a planar
interpolation forward light tracer

Figure 24 The refraction scene rendered using a
global photon map populated by a planar
interpolation forward light tracer

62

Figure 25 The refraction scene rendered using
individual ambient maps populated by an
adaptive spherical interpolation forward light
tracer.

Figure 26 The refraction scene rendered using a
global photon map populated by an adaptive
spherical interpolation forward light tracer

63

Complex Scene Images

The complex scene images rendered using different shading models. The non-
transparent shading model rendering creates a completely black image, and so it is not

included.

Figure 27 The complex scene rendered using a non-refractive shading model

The complex scene images rendered using three different forward-tracing pre-

Processors:

Figure 28 The complex scene rendered using
individual ambient maps populated by a Monte-
Carlo forward light tracer

Figure 29 The complex scene rendered using a
global photon map populated by a Monte-Carlo
forward light tracer

Figure 30 The complex scene rendered using
individual ambient maps populated by a planar
interpolation forward light tracer

Figure 31 The complex scene rendered using a
global photon map populated by a planar
interpolation forward light tracer

65

Figure 32 The complex scene rendered using
individual ambient maps populated by an
adaptive spherical interpolation forward light
tracer

Figure 33 The complex scene rendered using a
global photon map populated by an adaptive
spherical interpolation forward light tracer

66

16

14

150mm

.25

n Street
ochester, NY 14609 USA

ne: 716/482-0300
716/288-5989

o

2 IMAGE . Inc
653 East Main S

© 1993, Applied image. Inc.. All Rights Resarved

