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Abstract 

We build a family of Hamiltonians which include al1 two-body spin-invariant near- 

est neighbor interactions for a class of lattices. We study the phase structure for the 

pure two-body interactions in the family and label quantum phases with good quan- 

tum numben. Possible quantum phases and phase transitions are investigated in 

lattices with cubic syrnmetry. 

We are especially interested in the superconducting phase and its adjacent quan- 

tum phases in these systems. The relationship between the superconducting phase 

and the antisymmetrized geminal power hinction, which has a very close relation 

to the superconducting ground state in the rnicroscopic theory of Bardeen, Cooper 

and Schrieffer for the conventional superconductivity, is addressed. This is done to 

gain a better understanding about the physical mechanism of superconducting pair- 

ing and thus the physical mechanism of high-temperature superconductivity in the 

Cu02 based superconducting materials. 

Airning at  a viable alternative to the wave-function approach, we analyze the 

lower bound method of reduced density mat& theory, a method which obtains a 

lower bound to the ground state energy of a many-body system as weii as an ap- 

i 



proximation to the corresponding reduced density rnatrix. Two numerical algorithms 

based on a main theorem giving necessary and sufficient conditions for the optimum 

are presented. Numerical procedures for these algorithms are progammed to solve 

the central optimization progam in the lower bound method. We consider their con- 

vergence properties which are very crucial for the lower bound method to become a 

computationally feasible method in large scale. 

Direct lower bound calculations are carried out for the first time in one-dimensional 

rings. The entries of both the twebody and the three-body density matrices are used 

as variational parameters in these computations. The results obtained show that the 

three-body density matrix is the best choice for the lower bound method in these one- 

dimensional systems. The lower bound method with the three-body density m a t e  

effectively provides a solution to the n-representability problem. 

It is predicted that direct lower bound calculations in two-dimensional square 

lattices and other more complicated systems will be very successful too. 



Statement of Originality 

The original contributions presented in this thesis are summarized as follows: 

0 Quantum phases for pure two-body interactions. Pure two-body spin-invariant 

nearest neighbor interactions For a class of lattices are built and analyzed. Quan- 

tum phases for these interactions are studied. 

The antisymmetrized geminal power wave-functions and the superconducting 

ground states. Possible ground states, which can be described by the antisym- 

metrized geminal power wave-functions and thus are superconducting ground 

states in lattices with cubic symmetry, are studied. 

The lower bound method of reduced density matrix theory. The central opti- 

mization problem in the lower b o n d  method of reduced density matrix theory 

is studied. Two numerical algonthms are presented to solve the central opti- 

mization problem with a fast speed of convergence. 

0 Application of the lower bound method of reduced density mat& theory. Di- 

rect lower bound calculations with the entries of both the *body and the 

three-body density matrices as variational parameters are performed in one- 

dimensional rings. 



Acknowledgement s 

1 would like to express my sincere gratitude to my thesis supervisor Dr. Robert 

Erdahl. Without his conscientious guidance and advice, this work could never have 

been done. 1 leamed a lot of mathematics from him which will benefit me for the rest 

of my life. 

I would like to express my sincere gratitude to my CO-supervisor Dr. Vedene Smith 

for dl his advice and help. 1 feel proud to have been given the opportunity to be in 

Smith's group. 

I also wish to extend my thanks to my colleagues in the Mathematics and Statistics 

Department and in the Chemistry Department for al1 kinds of help and interesting 

discussions. 

Financial support from Queen's University and Dr. Erdahl are gratefully acknowl- 

edged. Thanks should also go to the Chemistry Department for giving me the chance 

to work as a teaching assistant. 

Throughout the course of this reseerch, the love, encouragement and understand- 

ing of my wife Hongshi Yu have meant much more to me than I c m  put in words. 

Last but not le&, 1 thank my 17 months old daughter Daphne Jin. She has been a 

source of joy in the past two years, even before she came into this world. 



Dedicat ion 

To my parents, 

Xiuju Tong 

and 

Xunmin Jin, 

with love and respect. 



Contents 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Statement of Originality iii 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Acknowledgements iv 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Contents.. vi 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  List of Figures. x 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  List of Tables xi 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  List of Important Symbols xii 

1 Introduction 

. . . . . . . .  1.1 High-Tc Superconductivity and the 2D Square Lattices 2 

1.1.1 Conventional Superconductivity versus High-Tc 

. . . . . . . . . . . . . . . . . . . . . . . . .  Superconductivity 2 

1.1.2 The Oxide Superconductors and the 2D Square Lattices . . .  3 

1.2 Two Important Models for 2-dimensional Square Lattices . . . . . . .  5 

. . . . . . . . . . . . . . . . . .  1.2.1 The Spin-& Heisenberg Mode1 5 

. . . . . . . . . . . . . . . . . . .  1.2.2 The 1-band Hubbard Mode1 7 



1.3 The Lower Bound Method of Reduced Density Matrix Theory . . . .  9 

. . . . . . . . . . . . . . . . . .  1.3.1 The Reduced Density Matrix 9 

. . . . . . . . . . . . . . . . . .  1.3.2 n-representability Conditions 12 

. . . . . . . . . . . . .  1.3.3 Yang's Off-Diagonal LongRange Order 13 

1.3.4 The Lower Bound Method of Reduced Density Matrix 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Theory 16 

2 The Phase Structure for Pure Two-body Spiminvariant Nearest 

Neighbor Interactions 19 

. . . . . . .  2.1 Pure ?-body Spin-invariant Nearest Neighbor interactions 20 

. . . . . . . . . . . . . . . . . . . . . .  2.2 Construction of Hamiltonians 24 

. . . . . . . . . . .  2.2.1 Pure 1-body Nearest Neighbor Interactions 24 

. . . . . . . . . . .  2.2.2 Pure 2-body Nearest Neighbor Interactions 27 

2.3 Labeling Quantum Phases for Pure 2-body Nearest Neighbor Interactions 28 

. . . . . . . . . . . .  2.3.1 Classification of Pure Zbody Interactions 28 

2.3.2 Pair Preservation and Good Quantum Numbers . . . . . . . .  29 

2.3.3 Labeling Quantum Phases with a Unique Set of Quantum Num- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  bers 32 

. . . . . . . . . . . . . . . . . . . . . . .  2.3.4 Basins of Attraction 35 

. . . .  2.4 The Phase Structure for SE 2 in Lattices with Cubic Symmetry 37 

. . . . . . . . . . . . . . . .  2.4.1 Possible Quantum Phases of Snr 38 

. . . . . . . . . . . . . . . . . . . . . . . . .  2.4.2 Phase Thmitions 49 

. . . . . . . . . .  2.4.3 The Phase Structure and the Dimensionaüty 53 



3 The Unique On-site AGP Pairing for the Superconducting Phase 

. . . . . . . . . . . . . . . . . . . .  3.1 AGP Functions and Their Killers 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.1.1 AGP functions 

3.1.2 An AGP Function 1s Uniquely Determined by Its Killen . . .  

3.1.3 The Unique Representation of the 2-body Density Matrix Cor- 

responding to An AGP Wave-Function . . . . . . . . . . . . .  

3.2 The Syrnmetry Properties of AGP F'unctions and Their Generating 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Geminals 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.2.1 Spin Symmetry 

. . . . . . . . . . . . . . . . . . . . . . . . .  3.2.2 Spatial Symmetry 

3.3 The Unique AGP Pairing in Lattices with Cubic Symmetry . . . . . .  

3.3.1 The Geometry Effect on the AGP Ground States . . . . . . .  

. . . . . . . . . . . . . . . .  3.3.2 The Unique On-site AGP Pairing 

4 Approaching the Ground State with the Lower Bound Method of 

Reduced Density Matrk Theory 71 

. . . . . . . . . . .  4.1 Formulation of the Central Optirnization Problern 72 

. . . . . . . . . . . . . . .  4.2 Solving the Central Optimization Problem 78 

. . . . .  4.2.1 Necessary and Sufficient Conditions for the Optimum 78 

. . . . . . . . . . . . . . . . . . . .  4.2.2 Symmetry Considerations 83 

4.2.3 Codguration Interactions in the Lower Bound Method . . . .  86 

4.2.4 Numerical Algorithms for Solving the Euler Equation x.y. = 0 . 90 

4.3 Application of the Lower Bound Method to 1-dimensional Rings . . .  95 

viii 



4.3.1 The Lower Bound Method with the 2-body Density Matrix . . 96 

4.3.2 The Lower Bound Method with the 3-body Density Matrix . . 106 

5 Conclusions 119 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 



List of Figures 

A 2-dimensional Square Lattice . . . . . . . . . . . . . . . . . . . . .  

Labeling of Quantum Phases for SH= with {nr.  nv)  . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  Vacuum and Checkerboard States 

Phase Factor Setting for Three Ionic Configurations . . . . . . . . . .  

Phase Frustration in Mixed Ground States . . . . . . . . . . . . . . .  

The Phase Diagram for SK, . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  Schematic Illustration for Algonthm 2 

The Approximately n-representable Region from the 2-body Density 

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . .  Some Configurations in the 3-body Density Matrix for A = 6 

n-representable Region fiom the bbody Density Mat& for 1111 = 6 . 
n-representable Region from the %body Density Matrix for IAl = 8 . 

n-representable Region nom the 3-body Density Matrix for IAl = 10 . 



List of Tables 

4.1 Values for Some Special Points with 1A( = 4 . . . . . . . . . . . . . .  102 

. . . . . . . . . . . . . .  4.2 Values for Some Special Points with 1A1 = 6 103 

I 4.3 Values for the Ground State of h* with a: = -1. a, = O . . . . . . .  118 



List of Important Symbols 

BCS: Bardeen-Cooper-Schrieffer. 

SC: Superconductivity. 

FM: Ferromagnetic. 

AFM: Anti-ferromagnetic. 

AGP: Antisymmetrized geminal power. 

ODLRO: Off-diagonal longrange order. 

FCI: Full configuration interaction. 

HL: A linear space of pure 1-body spin-invariant interactions. 

H2: A linear space of pure 2-body spin-invariant interactions. 

Sc: A unit sphere of pure 2-body spin-invariant interactions. 

hV: Valence Hamiltonian. 

hf: Ionie Hamiltonian. 

hM: Mixed Hamiltonian. 

N1vV: Operator that counts ionic and valence sites. 

HB(&,): Basin of attraction for ground state 4. 

A: A vector space that designates a lattice. 

In(: The total number of lattice sites in A. 



nr: The total number of ionic sites. 

nr (e): The number of empty ionic sites. 

nr(d): The number of doubly occupied ionic sites. 

nv: The total number of valence sites. 

n:: The number of valence sites with spin up. 

nb: The number of valence sites with spin dom.  

< i, j >: A pair of nearest neighbor sites in a lattice. 

n,.: The number of nearest neighbor sites in a lattice. 

3: Spin operator. 

10 >: Vacuum state. 

TPH: Particle-hole transformation. 

ê: Identity operator. 

d: The von Neumann density operator. 

dn: The density operator for an n-particle system. 

dP: pbody density matrix. 

DP: A convex set of pbody density matrices. 

g: n-representable pbody density matrix. 

Di: A convex set of n-representable pbody density matrices. 

S: Pauli subspace. 

O: Symbol indicating the end of a proof. 



Chapter 1 

Introduction 

In this chapter, we will first give a brief review on the recent development of studies 

on high-temperature superconductivity. We wiii focus on studies of two theoretical 

models, the Heisenberg model and the Hubbard model for 2D square lattices. The 

relationship between these models and high-temperature superconductivity will be 

addressed. Then, we will give a brief introduction to the lower bound method of 

reduced density matriv theory. 



High-Tc Superconduct ivity and the 2D Square 

Lat tices 

Conventional Superconductivity versus High-Tc 

Superconductivity 

With respect to superconductivity (SC), one can discern two fields of interest. The 

first one, the field of conventional SC, has its origin in 1911. In that year, Karnerlingh- 

Onnes discovered the phenornenon of SC, in mercury, which has a critical temperature, 

Tc, of 4.19 K [l]. Since then, other materials have been found to be superconductors. 

Until 1986, the highest Tc value was 23.2 K which was found in the alloy NqGe in 

1973 [2]. It was widely felt that this value could a t  best be improved by only a degree 

or two in some exotic metallic alloy. To this point, all superconducting materials 

found were metals or alloys. The theory of Bardeen, Cooper and Schrieffer in 1957, 

referred to as BCS theory, was generdly accepted as the microscopic theory which 

shows that the condensate of coherent electron pairs (known as the Cooper pairs) 

induced by the electron-phonon interaction is responsible for SC 131. 

However, in 1986 Bednorz and MüUer observed a Tc of 30 K in a class of cuprates, 

based on the parent compound La2Cu04 [4]. This is the starting point of the second 

field of SC: the field of high-Tc superconductivity. Ever since, several other super- 

conducting materials with higher TCs were found and recently, Gao et al. reported 

the highest Tc value so far of 164 K in a material which contains op t imdy doped 



& ~ B d h C u î O a + ,  [5] 

The practical importance of a Tc above the boiling point of nitrogen, 77.4 K, is 

that instead of liquid helium (with boiling point of 4.2 K), liquid nitrogen can be used 

for keeping the system at  the appropriate temperature. This is much easier not only 

because of the higher boiling point but also because of the latent heat of nitrogen, 

which is about 105 times the latent heat of helium. 

Fkom a theoretical point of view, the conventional electron-phonon interaction a p  

pears not to be the origin of SC in these new superconducting materials, thus leaving 

the fundamental physics open to investigation. Indeed, it is becoming apparent that 

many of the properties of these new materials are unusual and a proper understanding 

will require developing and extending concepts from many areas of condensed mat- 

ter physics. Nevertheless, the superconducting state appears to be associated with 

a pairing of electrons, and hence the overall superconducting behavior of the new 

systems will be similar in many respects to the conventional systems. In fact most 

of the familiar phenornena which are a manifestation of the superconducting state- 

persistent currents, Josephson tunneling, vortex lattice-have been established in the 

new systems. 

1.1.2 The Oxide Superconductors and the 2D Square Lat- 

Among the new superconductors, there is a class of oxide materials which have 

attracted the most attention. The most striking feature of these materials is that in 



their crystal structures, one always observes parallel Cu-O planes. Both experimental 

evidence and theoretical anaiysis have shown that these parallel Cu-O planes in the 

cuprates dominate the material from the electronic, superconducting and structural 

points of view and are the cause of the highly anisotropic normal-state and supercon- 

ducting properties [6]. The interaction between the adjacent Cu-O planes is rnuch 

weaker than within each Cu-O plane. Thus it is widely believed that the study of one 

such separated Cu-O plane may reveal the fundamental physics in the whole system. 

* * * a  

o . * *  VL 
2 

O . .  

Figure 1.1: A %dimensional Square Lattice 

Many models have been suggested to study the Cu-O plane. A review of theo- 

retical models for the superconducting state and the superconducting pairing can be 

found in reference [?]. Among these models are a series of 1-band models for a 2- 

dimensional square lattice schematically shown in figure 1.1. Here, the square lat tice 

refers to the positions (sites) of the Cu atoms in a Cu-O plane (x-y plane), the z axis 

is chosen as  the quantization axis, and the 1-band is a result of the fact that each Cu 

atom in the Cu-O plane contributes one spatial orbital to the system. 1-band models 

are the simplest models and are the starting point for more sophisticated models. 



1.2 Two Important Models for 2-dimensional Square 

Lat t ices 

The spin-i Heisenberg model and the Hubbard model on square lattices are the 

most basic models that are studied in high-Tc superconductivity. 

1.2.1 The spin-; Heisenberg Mode1 

The Heisenberg Hamiltonian takes its name from an early paper on ferromag- 

netism by Heisenberg [8]. In a Zelectron system with a spin-free Harniltonian, let LE 

and 3E denote the energies for the lowest singlet and triplet states, respectively, the 

coupling constant J ,  also c d e d  exchange integral, can be defined as J = (3E - lE) 

[9]. Obviously with J < 0, one has parallel spin alignment in the gound state 

(ferromagnetism); whereas with J > 0, one has antiparallel spin alignment in the 

ground state (antiferromagnetism). The Heisenberg operator, which is equivalent to 

the Hamiltonian for the 2-electron system, is given by 

Here & and g2 are spin operators for the two electrons. Later, this idea was gener- 

alized to many-particle systems with any spin in any dimension. 

The magnetic properties of the oxide materials have been of particular interest 

since the discovery in some parent (undoped) oxide materiais that the Cu ions carry 

unpaired spins (10, 111 and these Cu spins order antife~~omagneticaily (121-(151, with 



the consequent possibility that the magnetic fluctuation may be responsible for su- 

perconductivity. 

The spin- $ antiferromagnetic Heisenberg rnodel describes a system which consists 

of interacting magnetic particles-the spins-; -which are situated on the sites of a 

square lattice. The corresponding Hamiltonian is 

Here Si is the spin operator corresponding to site i and J is the coupling constant 

between spins on every pair of nearest neighbor sites < i, j >. With J > O, this 

rnodel is assumed to describe 2D antiferromagnetism in an isolated Cu-O plane of 

the undoped oxide materials. The key question to answer is: does this model have a 

ground state characterized by a ?-dimensionai antiferromagnetic (AFM) long-range 

order? In order to answer this question, a lot of effort has been made. Manousakis 

reviewed this subject in 1991 [16]. 

In the right side of the second equality in Eq. (1.2), the first term is called the 

classical term which c m  be solved exactly. Its ground state is the well-known Néel 

state which is characterized by the AF'M long-range order. The second term is called 

the quantum fluctuation t e m  which reduces or even destroys the AFM long-range 

order. Despite its simplicity, this Heisenberg model lacks an exact solution. Numericd 

calculations with various techniques, such as exact diagonalization [l?], Monte Car10 

simulation (181, series expansion [NI, spin-wave theory [20] and resonating-vdence- 

bond model [21], a,ll suggested that its ground state possesses an AFM long-range 

order. The spin fluctuation is not strong enough to destroy the long-range order, but 

6 



significantly reduces the value of the order parameter. The suggested numerical value 

of the order parameter agrees well with the experimental result (161. It seems that 

the Heisenberg model gives a good description of spin dynamics in the undoped oxide 

materials. 

It is widely believed that an appropriate model for such 2D spin fluctuations, 

when supplied with a hopping term that describes the hopping of a magnetic particle 

from one site to its nearest neighbor sites, would be an appropriate model to describe 

the superconducting states in the doped oxide materials. 

1.2.2 The l-band Hubbard Mode1 

Led by the close proximity of the antiferromagnetic and superconducting phases in 

the oxide materials, Anderson proposed to describe the physics of the cuprates by the 

large-U, l-band, Hubbard mode1 on a square lattice [22]. The Hubbard Hamiltonim 

is given by 

here ai, br are annihilation operators for site i with spin up ( z  axis) and down respec- 

tively. In this expression, the first term is called the hopping term since it describes 

the hopping of an electron from site i to its nearest neighbor site j or vice versa with 

the same spin. The second term represents the on-site Coulomb repulsion between a 

pair of electrons (U > 0). 

The best evidence relating superconductivity to the Hubbard model cornes from 

the neutron difnaction experiments [14]. These experiments not only show the an- 

? 



tiferromagnetism in the undoped materials but dso show that magnetic fluctuations 

can survive into the superconducting phase. 

In the strong coupling limit, i.e., U > > It 1, the Hubbard Harniltonian can be trans- 

formed into an effective Harniltonian, called the Hubbard-Anderson Hamiltonian, by 

a unitary transformation 1231. The same result can also be obtained by second-order 

perturbation theory, in which the hopping term is treated a s  a perturbation [24]. 

It can be shown that, a t  exact haif-filling, i.e., the number of electrons equais the 

number of sites in a lattice, the Hubbard-Anderson Harniltonian is equivalent to the 

Heisenberg Hamiltonian, which has a ground state with the AFM long-range order. 

Since magnetic interactions may be responsible for superconductivity, Anderson has 

suggested the so-called Hubbard hypothesis [22] : 

The fundamental physics of the onde superconductors is contained in the Harniltonian 

in Eq. (1.3) on c square lattice for smoll numbers of holes. 

Since the properties of the Hubbard mode1 are not yet under good theoretical 

control, there is no proof or disproof, and the testing of this hypothesis is regarded as 

a key issue. There are various versions of the Hubbard model, some of which claim 

ultimately to give superconductivity via spin fluctuations. But no generaily accepted 

conclusion has been achieved yet. Anderson has recently reviewed this subject [25]. 



1.3 The Lower Bound Method of Reduced Density 

Matrix Theory 

1.3.1 The Reduced Density Matrix 

In quantum mechanics, there are two ways to describe a state. One is to use a 

wave-function and the other is to use a density operator. 

For a pure state which can be described by a wave-function 11, the corresponding 

density operator is defined as 

Let < O, > denote the trace scalar product for operators on Fock space. If 1 q!J > is 

nonndized, i.e., < $+#J >= 1, we have 

where ê is an identity operator. The mean value of a Hermitian operator Â on the 

state can be calculated with d as 

For a non-pure state which is an ensemble of r pure states described by @*, =, 

II,f), the corresponding density operator is defined as 

here the coefficients pl ,  h, - *, pr satiSfY the foiIowing conditions 



Obviously, the pure state density operator defined in Eq. (1.4) is a special ensemble 

density operator. The mean value of Â on the mixed state can be computed by 

A set C is said to be convex if for every cl, cg E C and every real number cr, 

O < a < 1, the point crcl + (1 - a)c2 E C [26]. Obviously, al1 density operaton 

defined in Eq. (1.7) form a convex set of positive semi-definite operators b . For an 

n-fermion system, such a convex set is usually denoted as D". Any (î" E D" is called 

an n-body density operator. d", a mat* representation for (î" in the linear space of 

n-fermion states, is called an n-body density matrix. The convex set of al1 positive 

semi-definite n-body density matrices is denoted as Dn. 

In atomic, molecular and solid systems, most interactions can be expressed as a 

sum of interactions between two identical particles and thus are Zbody. In such sys- 

tems, most of the physical properties can be obtained by computing the expectation 

value of a 2-body operator. The density operator contains enough information to 

evaluate the expectation value for an arbitrary operator. It seems that the density 

operator contains 'too much' information and a simplified version should be adopted. 

Thus cornes the reduced density matrix. 

For d, the pbody density matrix tP can be defined as 

where Tr is the trace on Fock space, il, i2, - - , ip represent single particle states and 

ai,, , oiP the annihilation operators for these states. All pbody density matrices 

10 



form a positive semi-definite convex set denoted by P. In Eq. (1.10), d is called a 

representation for the corresponding pbody density matrix. In an n-fermion system, 

given an pbody density matrix 8, there need not be an n-body density operator 

dn so that Eq. (1.10) holds. d with at least one representation & is called an n- 

representable or a reduced pbody density matrix. It is usually denoted as 8,. Al1 

reduced pbody density matrices form a positive semi-definite convex set denoted as 

DE [27, 281. 

Any gbody Hermitian operator ÂP can be expressed as 

The expectation value of Â p  on & is 

if we use A to represent a matrk whose entnes are by l,... Iajpl, the 

above formula can be simplified as 

< Â P > = T T [ A ~ ] ,  with G E D E .  (1.13) 

This shows that the expectation value for a pbody operator can be obtained from 

the pbody reduced density matiix. 

The most important propem of 09, is that it is n-representable. That means for 

any (in E D:, there is a t  least one n-body densi@ operator d" which can give rise to 

according to Eq. (1.10). This is a key problem in reduced density matrix theory. 

11 



1.3.2 n-representability Condit ions 

d E DP describes a pparticle state in a pparticle system, whereas 8, E Di 

describes a pparticle state in an n-particle system. So, 

In a system with up to pbody interactions, in order to obtain information directly 

from the pbody reduced density matrix, we must fint End DE or equivalently an- 

swer the following question: What conditions must DP satisfy in order to be n- 

representable? These conditions are called n-representability conditions. If the full 

set of n-representability conditions for DE is obtained, one can get rid of the wave- 

function and obtain al1 the physicai properties, which are associated with up to pbody 

operators, directly from Di. 

There have been several early attempts to calculate the properties of n-particle 

systerns using the entries of dl E D2 as variational parameters [29]-[31]. As no no 

representability condition was considered, the results obtained were far away fiom 

the true value. For example, the optimized energy for the Li atom is about 30% lower 

than the observed value [32]. These calcdations indicated that certain constraints 

must be put on Da in order to obtain physicdy meaningful results and consequently 

led to the discovery of the n-representability problem. 

The concept of n-representability was first raised in 1961 by Coleman [33]. Since 

then a lot of effort has been made to investigate the n-representability conditions, 

especidy the conditions for Dt [28], [34]-[37]. Although the full set of necessary 



and sufficient n-representability conditions is not known explicitly, progress has been 

made and several important necessary conditions have been discovered. For example, 

the famous d, q and g conditions are necessary conditions for Di, which require that 

the d rnatrix whose entries are given by Z'r[(ala2)+da3a4], the q rnatrix given by 

~r[(a:a:)+da3+a$] and the g m a t h  given by Tr[( l  + a:a2)+d(l + a3ar)] be positive 

semi-de finite. 

Generally speaking, so far, we know much more about the wave-function than 

the reduced density matrix and the n-representability problem is still very difficult 

to deal with. The cause of the difficulties mises from the non-smooth behavior of the 

boundary for the convex set D$ [37]. This may have something to do with the rigidity 

of the system or the non-srnooth behavior of the system during phase transitions. The 

physical meaning behind the n-representability problem may be much more than just 

reducing the number of variables. Lowdin and Coleman reviewed the development of 

reduced density mat& theory and the n-representability problem in 1987 [32, 381. 

1.3.3 Yang's Off-Diagonal Long-Range Order 

One of the most important properties of the Zbody reduced density matrix is the 

off-diagonal long-range order (ODLRO), which relates the 'large' eigenvalues of 62, to 

superconduc tivity. 

The essence of the BCS theory is the pairing instabüity and the formation of 

a coherent pair condensate [3]. Yang attempted to m e r  a deeper version of this 

question: What is the essence of superconductivity which has somehow been correctly 



captured by the BCS theory? His answer is that it is the ODLRO, a property of the 

2-body reduced density rnatrix in fermion systems [39]. For an n-fermion system, 

the upper bound for the eigenvalues of a ?-body reduced density matrix defined in 

Eq. (1.10) was found to be n for an even n or n - 1 for an odd n [28,39]. A eigenvalue 

of order n for 6, is called a large eigenvalue. Yang showed that it is when dZ, E DE 

has large eigenvalues that a fermion system manifests certain longrange order such 

as present in superconductivity. 

In the coordinate space, the off-diagonal entries of the 2-body reduced density 

matrix can be expressed as 

where a$, b:, when acting on the vacuum state 10 >, create a particle at position r 

with spin up and dom,  respectively. If $(r, rt) does not go to zero as 1 r-r' 1 becomes 

large, this fermion system is said to be in a state which possesses the ODLRO. This 

is a pure quantum effect involving the off-diagonal elements of the reduced density 

matrix which has no classical analogue. 

The ODLRO is an idea which has been proposed earlier by Penrose and Onsager 

[40] and was confirmed later by Bloch [41]. It follows fiom Yang's argument that the 

largest possible eigenvalue of 6 E Dn is attained when the associated wave-function 

is an antisymmetrized geminal power (AGP) function. AGP functions are very im- 

portant in superconductivity as they are the projections onto an n-particle space of 

the wave-function used by Badreen, Cooper and Schrieffer in their rnicroscopic theory 



of superconductivity [42]. The BCS superconducting ground state is of the form 

where the action of Bk+ = on the vacuum state (O > creates a singlet electron 

pair between two spatial orbitals labeled by a pair vecton k and -k in a reciprocal 

lattice space, and ak, pk are corresponding coefficients. The projection onto the 

mparticle space of such a ground state is proportional to 

where BI, is a coefficient. As an antisymmetrized %-th power of the two-electron 

wave-function (gerninal) 

$9GP is called an antisymmetrized geminal power (AGP) function and usually de- 

noted as gn. 

Yang made the following statements based on either proofs or conjectures [39]: 

a) In fermion systems, there is only one route by which 4 can exhibit the ODLRO 

and this route was chosen by the BCS superconductors. 

b) The existence of the ODLRO is a sufncient condition for quantization of magnetic 

flux* 

c)  Rom the flux quantization, the Meissner effect and superconductivity almost cer- 

tainly foilow. 



Rom these statements, it is expected that the ODLRO will be a property not only of 

the BCS superconductors, but also of any alternate type of superconductivity which 

may be found. Now the concept of the ODLRO has frequently been used as a criterion 

for superconducting states in superconductivity studies. 

1.3.4 The Lower Bound Method of Reduced Density Matrix 

Theory 

In an n-fermion system with a 2-body Hamiltonian h, the Iower bound method of 

reduced density matrix theory consists in finding a minimizer 4 that minimizes the 

following energy expression: 

here h is the matrix representation for h in the same basis set as the 2-body density 

matrix 8 and Di is a convex set of approximately n-representable 2-body density 

matrices. 

If the constraint set Di C D2 satisfies d l  the n-representability conditions, i.e., 

Di = Di, then will be the exact 2-body reduced density matrix corresponding to 

the exact ground state of the system and E(6;L) WU be the exact ground state energy. 

Unfortunately, only several known necessary conditions can be used as constraints. 

As a result, too much freedom to the variational parameters is given and therefore, 

the optimized ground state energy E ( 4 )  lies below the exact ground state energy 

obtained fkom the full configuration interaction (FCI) wave-function calculation with 



the same set of 1-particle states. Thus the lower bound method of reduced density 

matrix theory is a method which obtains a lower bound to the ground state energy 

of a many-particle system, as well as  an approximation to the corresponding reduced 

density matrix. 

In principle, this method can be used for systems with pbody interactions for any 

p 5 n. In practice, however, it has only been used for systems with up to 2-body 

interactions. As d2 E Dg contains fewer independent variables than d" E DR (unless 

n is very small), variational calculations for da will be much easier than for P. This 

is the main reason why people want to use the reduced density rnatrix to replace the 

wave-function in variational calculations. 

There have been several attempts to calculate the properties of an n-particle 

system using the entries of 8 as vbational parameters. In earlier attempts, fewer 

conditions were used, which were reasonable for simpler systems [44]- 1471. The first 

lower bound formula was derived by Bopp [44] and it was successfully applied to three- 

electron ions. Later, conditions important for many-body systems were introduced to 

further restrict the variation [48]- [50]. In recent attempts, this method was applied 

to the Be atom [51] and several nuclear systems [52] with varying degrees of success. 

In the case of the Be atom, the lower bound obtained is extremely tight. 

Generally speaking, the more the condition set imposed is close to complete, the 

tighter the lower bound. But the tightness of the lower bound is also dependent 

upnn the specific system considered. For example, with the same set of conditions as 

constraints, the computed lower bound for the Be atom agreed with the FCI ground 



state energy using ls, 29, 2p orbitals to eight figures (511, but for some nuclear systems, 

the lower bounds obtained have been off by up to 15% [52]. 

In the variational calculation of the lower bound method, constraints from these 

known necessary n-representability conditions are usually very difficult to enforce. 

As a result, only a few manageable conditions have been used. And even with these 

conditions, the speed of convergence in the constrained variation is not very fast. A 

very efficient numerical method for this kind of variation has to be discovered before 

such a method is computationally feasible in large scale. 

In 1979, Erdahl proposed a theorern giving necessary and sufficient conditions for 

the optimum of the optimization problem defined in Eq. (1.19). Preliminary numerical 

computations based on this theorem are very encouraging [53]. 

The status of al1 direct lower bound calculations is still in a pioneering stage. 



Chapter 2 

The Phase Structure for Pure 

Two-body Spinminvariant Nearest 

Neighbor Interactions 

In this chapter, first we will construct a family of Hamiltonians which includes al1 

pure 2-body spin-invanant nearest neighbor interactions (defined in section 2.1) in a 

class of lattices where ail pairs of nearest neighbor sites are equivalent. Then, we wili 

investigate the phase structure for these Hamiltonians. 



2.1 Pure 2-body Spin-invariant Nearest Neighbor 

Interactions 

For a fermion system with up to 2-body interactions, the Hamiltonian can be 

generally expressed as 

here ê is an identity operator, a:, -, ai, are creaton and annihilators for 1-particle 

states and a, fiJ, g i j ; y s  are corresponding coefficients. In this expression, {$aj) 

are called 1-body operaton. They represent interactions involving one particle only. 

{a~aJara j t )  are called 2-body operators and they represent interactions involving 

two particles. Thus the three parts in Eq. (2.1) are called scalar, 1- and 2-body 

interactions, respectively. In the Hubbard Hamiltonian in Eq. (1.3), for example, the 

hopping term is 1-body and the on-site repulsion term is 2-body. 

It is well-known that in atomic systems, 1-body interactions play a dominant role 

and the beautiful shell structure for electrons is explained by spherical symmetry, 

Pauli's principle and 1-body interactions. In this chapter, we will study how 2-body 

interactions and the Pauli's principle are the essential ingredient for phase separation 

in condensed matter. It is significant -that 1-body interactions play no role in most 

model Hamiltonians used to explain phases such as the ferromagnetic (FM) and 

antiferromagnetic (AFM) phases. The single exception is the Hubbard model where 

the hopping term appears. 

Our study of 2-body interactions in lattices is inspired by extensive studies show- 



ing that 2-body interactions are responsible for high-Tc superconductivity (71. There 

are various kinds of model Hamiltonians for 2-dimensional square lattices. But even 

for the simplest models, such aa the Heisenberg or Hubbard models, both theoretical 

and numerical studies are difficult because of the large number of particles involved. 

The Hubbard model with strong Coulomb repulsion in Eq. (1.3) has been suggested 

as the simplest Harniltonian that may contain the basic ingredients needed to ex- 

plain superconductivity in the 2D systems 1221. So far no generally accepted result 

concerning the mechanism for high-Tc superconductivity has been ob t ained. 

We want to study a family of Harniltonians which are simple, but may still reveal 

some key phenomena of the real systems. We consider a class of 1-band models where 

al1 pairs of nearest neighbor sites are equivalent and each lattice site contributes 

one spatial orbital to the system. 1-dimensional rings with equal distance between 

every pair of nearest neighbor sites, Zdimensional square lattices, fdimensional cubic 

lattices al1 belong to this class of lattices. They dl be referred to as lattices with 

cubic symmetry or 1-, 2-, and 3-dimensional cubic lattices in this thesis. Zdimensional 

hexagonal lattices also belong to this class of lattices. Let an arbitrarily chosen z avis 

be the quantization &S. Any lattice site can be empty, occupied by one electron 

with spin up ( z  axis) or down, or occupied by two electrons. 

We consider pure 2-body spin-invanant nearest neighbor interactions. Here, near- 

est neighbor means that electrons on a site interact with only electrons on sites which 

are nearest neighbors. Spin-invariant means that there is no explicit spin-spin inter- 

action between electrons. Thus the Hamiltonian will c o m t e  with the total spin 



operator of the system. In other words, the Hamiltoniaa is invariant under the action 

of the spin group for the system. Let's define the trace scalar product on Fock space 

between two operators Â, B as < Â, B >. By rernoving a proper scalar, any 1-body 

operator hl can be made orthogonal to ê with 

Such a traceless 1-body operator hl is called a pure 1-body operator. Similady, any 

2-body operator h2 which is orthogonal to both ê and any 1-body operator h1 with 

is cailed as a pure 2-body operator. Interactions associated with pure 1- and 2-body 

operators are called pure 1- and 2-body interactions, respectively. 

With h1 and h2, h in the Hamiltonian in Eq. (2.1) can be rewritten as 

The reason behind such a classification is that both pure 1-body and pure 2-body 

operators form a carrier space for the irreducible representation of real canonical 

transformations [54]. As a result, pure 2-body operators may have certain common 

special properties that are quite dif5erent fiom those of pure 1-body operaton. 

In this thesis, our main interest is pure 2-body interactions. The main advantage 

of pure 2-body interactions over their conventional counterparts cornes fiom their 

orthogonality to both scalar and pure 1-body interactions. Such an orthogonality 

removes the ambiguity by separating scalax and 1-body interactions completely fkom 
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pure Zbody interactions and thus makes pure 2-body interactions show much more 

clearly their %me' characteristics. Most importantly, the introduction of pure 2-body 

interactions makes the investigation of phase structure for 2-body interactions much 

easier and t hus can help us to obtain phase structure information that otherwise may 

not be obtained. It can be shown that the Heisenberg Hamiltonian in Eq. ( 1 4 ,  

which models both the FM and AFM phases on square lattices, is pure 2-body. We 

believe that in strongly correlated systems with up to 2-body interactions, it is the 

pure 2-body (rather than 1-body) interactions that play a key role in determining the 

fundamental physics and this is especially true for systems full of collective behav- 

ior. Perturbations from 1-body interactions may make the sharp picture of quantum 

phases for pure 2-body interactions become fuzzy. But the fundamental physics, such 

as coherent pairings and long-range orden will not be altered. 

So in our investigation, the main question to answer is: To what extent can the 

phase structure for pure 2-body spin-invariant neazest neighbor interactions on the 

lattices be explained by a simple picture as in the atomic case? 



2.2 Construction of Hamiltonians 

2.2.1 Pure 1-body Nearest Neighbor Interactions 

Because of the equivalence of al1 the nearest neighbor site pairs in a lattice, any 

elernent h in the family of Hamiltonians can be expressed as 

Here is the interaction between the nearest neighbor sites i and j. The notation 

c i, j > will be used throughout this thesis to represent a pair of nearest neighbor 

sites. Obviously h,ij> must be Hermitian, symrnetric with respect to i and j and 

spin-invariant . 
In order to construct pure 2-body interactions, we first need to build a complete 

basis set for pure 1-body operators associated with ci, j >. Let A be a vector space 

that designates a lattice with (AI sites and ai, bi annihilation operators on site i with 

spin up (t axis) and down respectively. The spin operators for site i can be defined 

as Sr = urbi, SF = b:ai and Sf = $(arai - b:bi). The total spin operator for site i 

is given by $ = SfSt + $(SrSr  +Sis:). Let s(i), m&) be the quantum numbers 

for the total spin and its z-component on site il the spin eigenstates ~ B [ ~ ( ~ ) t ~ a ( ~ ) l  > are 

given by 



The spin operators associated with < i, j > are given by 

It is easy to veriG that these spin operaton satisfy the following commutation rela- 

t ions hips 

LS:iJ> t s&>l = s&i>, 

[S:ij>t s;i,j,1 = -s;i,w 

s i  S i >  = 2% ,,* 

Thus, (Szij,, S.&,, S&, } are the infinitesimal generators for a SU(2) group which 

we will denote by Su(?),iJ>. Operators associated with < i, j > can be labeled by 

the irreducible representations of this group as 

where [s, m.] labels an irreducible representation of S U ( ~ ) < Q > .  Any spin-invariant 

operator belongs to [O, O], the identity irreducible representation. 

The complete basis set for pure 1-body operators associated with < i, j > can be 

labeled by [s, m,] as 



< i, j > Symmetry 

Here, the f sign indicates whether the operator is symmetric or antisymmetric with 

respect to i and j. 

Among these pure 1-body operators, only Q?!!.;~> and Q~<L, have the correct 



symmetry, i.e., they are Hermitian, syrnmetric with respect to i and j and spin- 

invariant. If we denote by H i i j ,  the 2-dimensional lineax space spanned by ~ [ f / ~ ,  

and Q$$!,, then al1 the pure 1-body spin-invariant nearest neighbor interactions 

associated with < i, j > are contained in H i i j ,  . H1 = CCij> H i i j ,  will be a 2- 

dimensional linear space of al1 pure 1-body spin-invariant nearest neighbor interac- 

tions in the lattice. 

2.2.2 Pure 2-body Nearest Neighbor Interactions 

Pure 2-body operators can be obtained by coupling pure 1-body operators. With- 

out going into details, the linear space of pure 2-body operators, associated with 

< i, j > and wit h the correct symmetry, is 6dimensional. A basis set is given by 

If t his h e a r  space is denoted by H;id>, t hen H2 = CCij, j, is also 5-dimensional. 

This is the linear space of pure Zbody spin-invariant nearest neighbor interactions 

in the lattice. It is significant that all pure Zbody spin-invariant nearest neighbor 

interactions for these models can be characterized by five real coefficients. 
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It is worth noting that the Heisenberg Hamiltonian 

belongs to H 2 ,  and the Hubbard Hamiltonian 

belongs to HL @ H Z ,  a 7-dimensional linear space of al1 up to 2-body spin-invariant 

nearest neighbor interactions in the lattice. 

The most striking feature differentiating the pure 1-body interaction from the pure 

2-body interaction is their difFerent behavior under particle-hole transformations. Let 

TpH represent the particle-hole transformation that changes creaton to annihilaton 

and annihilaton to creators. The action of TPH, for example, on operator a+bc+d 

is TpH(af bc+d) = ab+cd+. It is easy to verify that under the action of T p H ,  any 

pure 1-body interaction in H1 changes its sign whereas any pure 2-body interaction 

in H2 is invariant. The invariance of H2 under the particle-hole transformation is 

very important to the study of the phase structure for pure Zbody interactions. 

2.3 Labeling Quantum Phases for Pure 2-body Near- 

est Neighbor Interactions 

2.3.1 Classification of Pure Zbody Interactions 

Pure 2-body interactions in HZ can be classified according to their behavior in the 
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Fock space. Let 

where J, a:, ai, a~ and a ~ i , v  are arbitrary real coefficients. Then any h E H2 c m  

be expressed as 

h = AV + K I  + AM +  NI*^ (2.20) 

The physical meaning for such a classification will be given in the following section. 

2.3.2 Pair Preservation and Good Quantum Numbers 

In our models, each lattice site usudy corresponds to a valence orbital of an atom 

or a molecule. For example, each site in a 2-dimensional square lattice corresponds 

to a valence d orbital of a Cu atom in the Cu0 plane. Since the net charge on 

a lattice is zero when the orbital is occupied by one electron and nonzero in other 

cases, any lattice site occupied by one electron is called valence and an empty or a 

doubly occupied lattice site is called ionic. Two electrons occupying the same site 
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form an electron pair called an on-site pairing. Now we will discuss in detail the effect 

of various ?-body interactions on these lattice sites. It is easy to see that 

and 

Thus, the action of h&, on any configuration is zero unless both i and j are valence. 

So the Heisenberg Harniltonian hv, dso called a valence Hamiltonian, is zero in the 

ionic subspace where al1 sites are ionic and its ground state is a valence state where 

all sites are valence. Similady, it can be shown that the action of h:ij, on any 

configuration is zero unless both i and j are ionic. As a result, hi is called an ionic 

Harniltonian and it is zero in the valence subspace where all sites are valence. When 



both i and j are ionic, we have 

Thus, in h:iJ,, the action of hi, called pair transport term, on any ionic configuration 

transports a pair of electrons from a doubly occupied ionic site to one of its nearest 

neighbor empty ionic sites. The action of hi on any ionic configuration does not 

produce new configurations. Obviously, the ground state of h* is an ionic state. The 

action of Adj, on any configuration is zero if both i and j are ionic or valence, 

but is non-zero if one site is ionic and the other is valence. Thus hM, called mixed 

Hamiltonian, is zero in both the ionic and the valence subspaces, but is non-zero in 

any mixed subspace where some sites are ionic and others are valence. As 

the action of A&, switches the ionic and valence sites. As a result, the ground 

state of hM is a mixed state where some sites are ionic and others are valence. The 

expectation value of eaieb, on any configuration will be +l if i is ionic or -1 if i is 

valence. Thus NrtV = Ci e,e& counts the number of ionic and valence sites. In the 

subspace where every configuration has nr ionic sites and n~ valence sites, 



and thus hN'lV is equivalent to a constant. Later, we will see that hNrev is very 

important in the investigation of phase structure for HZ, as it is directly related to 

some good quantum numbers of a system. 

Rom the above analysis, we find the most important property of H2: Any h E H2 

preserves the total number of on-site pairings. The action of h on any configuration 

may result in the exchange of a pairing site with an empty site or a pairing site with 

a valence site or an empty site with a valence site or a valence site with another 

valence site, but it does not break the on-site pairing. As a result, the number of 

doubly occupied ionic sites nr (d), the number of empty ionic sites nr ( e ) ,  the number 

of valence sites with spin up nt, and the number of valence sites with spin down n$ are 

al1 good quantum numbers. Certainly the total number of valence sites nv = nb +nt 

and the total number of ionic sites = nr (d) +nr(e) are also good quantum numbers. 

As we ded with particle-conserving Harniltonians, the total number of electrons n = 

2nr(d) +nv is also a good quantum number. Because of the spin invariance of HZ, the 

total spin and its z-component are good quantum numbers too. The eigenfunctions 

of any b E Hz can be labeled by these quantum numben. 

2.3.3 Labeling Quantum Phases with a Unique Set of Quan- 

tum Numbers 

To facilitate our investigation, the length of any h E H2 is fked to one, Le., 

< h, b >= 1 on Fock space. Under this normalization condition, H2 becornes the 

whole surface of a unit sphere in a 5-dimensional linear space. The degree of freedom 



on the spherical surface, denoted by SH2, is four. 

Theorem 2.1 The ground state of any genen'c Hamiltonion h E SH2 can be lobeled 

by a unique set of quantum numbers {nt ,  nv ) . 

Proof: Assume that two sets of quantum numbers (nr , ny ), {ni, nb } are associated 

with degenerate ground states #éf tnV and 4$g"n'Y of h E SH2. Without loss of general- 

ity, we can assume that nr > ni. Then nv < n$ as nl +nv  = n: +nb = (A( with (Al 

being the total number of sites. Thus ni - nb < nr - nv.  If we use aNriV E H2 as 

n perturbation with the coefficient a being small but positive, the degeneracy d l  be 

ni n' broken with the energy for #$t+V being higher than that for #g ' V .  Thus the ground 

state of any generic Hamiltonian in SH2 is non-degenerate with respect to nl and nv 

and can be labeled by a unique set of {nt ,  nV). 

According to theorem 2.1, SH2 con be divided into a number of smaller areas in 

such a unique way that the ground state of any Harniltonian in the interior of each 

area is associated with a unique set of (nr,  n v )  There is no overlap among these 

areas and only Hamiltonians on the boundaries of these areas have a ground state 

associated with more than one set of {nr,nv). Thus, the unit sphere SH2 c m  be 

colored uniquely by quantum numbers {nr , nv ) . 

Quantum phases are important bulk properties of a system. A quantum phase 

for SH2 is a stable state detennined by a subset of Hamiltonians in SH2. The ground 

states for these Hamiltonians, c d e d  the Hamiltonians for the quantum phase, share 

the key characteristic of the quantum phase. Together, they describe the quantum 

phase. The boundary for the subset ki cded the phase boundary for the quantum 
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phase. As the Hamiltonian varies, the quantum phase will remain stable as long as 

the Hamiltonian does not go beyond the phase boundary. 

According to tbis definition, we define for each of those smaller areas a quantum 

phase of SH1. Any h on the area is called a Hamiltonian for the quantum phase 

and the quantum phase is described by the ground states of its Hamiltonians. The 

boundaxy of the area is called the phase boundary. Obviously, the physical meaning 

for such a defined quantum phase is that: As a Hamiltonian varies on SH2, no matter 

in which direction it goes, the associated quantum phase will remain stable as long as 

the Hamiltonian does not go beyond the boundary of the phase. As the Hamiltonian 

goes across the phase boundary, the quantum phase will experience n sudden change 

from a state characterized by {nr, nv) to another da te  characterized by a distinct set 

of {ni, nb). Such a defined quantum phase is certainly the one t hat will most likely 

exist from a physical point of view. 

Figure 2.1: Labeling of Quantum Phases for St* with {nr,nv) 

In this way, quantum phases for St* are Iabeled uniquely by {nr, nv) as is 
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schematically shown in figure 2.1. It is very significant that such a simple picture 

of quantum phases is obtained by using only the very basic properties of pure 2-body 

nearest neighbor interactions in SH2. Certainly, not al1 possible values for {nr, nv} 

need to occur on SHa and in each quantum phase, there may be fine phase structure. 

Such detailed information can only be obtained by further analyzing the Hamiltonian 

for a specific lattice. 

The labeling of a quantum phase by a unique set of {nI, nv)  is very important. 

It tells us that instead of seeking a quantum phase in Fock space, we can separate 

the Fock space into a series of subspaces according to their quantum numbers nr and 

nv and study the quantum phase in each subspace. This definitely will simplify the 

investigation of phase structure dramatically. 

2.3.4 Basins of Attraction 

For 4, a ground state of h E SH2, we define the basin of attraction HB(c$), a 

specid subset of SH2 to be given by: 

with c being a constant. 

Obviously, 4 is the ground state of a i l  interactions in HB (4) .  The bigger the basin, 

the more stable the ground state 4 to perturbations in S@. Thus the size of a basin of 

attraction represents the rigidity of the correspondhg ground state to perturbations. 

The dimensionality is the most important factor for a basin of attraction. If the 



dimension of HB(4) reaches its highest possible value 4, the sarne as the dimension of 

SH2, HB ( 4 )  is said to be a basin of attraction with hi11 dimension. A full-dimensional 

basin of attraction HB(4 indicates the existence of a Hamiltonian h E H&), such 

that under any smdl perturbation h) E SH2, h = h + h) E &(O). Thus 4 will 

remain unaltered under any perturbation from SH2. If HB(d) is not full-dimensional, 

4 can be altered under certain perturbation in S p .  If there is a generic E HB(4) 

which is not on any phase boundary, according to theorem 2.1, 4 has a unique set of 

{nI, nv}. Thus under perturbations, it can only be defonned in the subspace where 

every configuration has the sarne { lar ,  nv ). 

Each smaller area on SH2 containing al1 Hamiltonians br the corresponding quan- 

tum phase is called a basin of attraction for the quantum phase. Such a basin of at- 

traction is certainly full-dimensional and it is the union of the basins of attraction for 

al1 gound states of the Hamiltonians for the quantum phase. It should be mentioned 

that a full-dimensional basin of attraction is only a necessary condition for a quantum 

phase. The full size of a basin of attraction depends not only on the dimensionality 

of the basin of attraction but dso on the range of extension in each dimension. 

DifEerent quantum phases for SH2 certainly have different basins of attraction. 

Any two basins of attraction &&bl), HB(&) can have a certain intersection or no 

intersection at d. No intersection means the two quantum phases do not share any 

common phase boundary and thus are not an adjacent phase pair. As a result, it is 

impossible for a phase transition between these quantum phases to happen. If Hs(#l)  

and HB((b2) do have an intersection, the two quantum phases form an adjacent phase 



pair and the phase transition between them may occur. The probability for such a 

phase transition to happen certainly depends upon the size of the intersection. The 

bigger the intersection, the more likely the phase transition occurs. Again, the di- 

mensionality is the most important factor for the intersection. When the dimension 

of the intersection reaches its highest possible value 3, whicb is 1-dimension less than 

full-dimension, the two basins of attraction are said to have a common phase bound- 

ary with CO-dimension one. Shen, the phase transition between the two associated 

quantum phases is most likely to occur from a physical point of view. 

The concept of basin of attraction is very useful in the investigation of phase 

structure. 

2.4 The Phase Structure for SH2 in Lattices with 

Cubic Symmetry 

In this section, we study in detail the phase structure for SH2 in lattices with cubic 

symmetry. These Iattices can be 1-dimensional rings, ?-dimensional square lattices or 

3-dimensional cubic lattices as noted previously. In our investigation, we especially 

want to know what kind of superconducting phases may exist, what kind of pairings 

play a key role there, and what quantum phases are adjacent to the superconducting 

phases. 



2.4.1 Possible Quantum Phases of SH2 

Here, we show what kind of quantum phases may exist in lattices with cubic 

symme try. 

Valence Quantum Phases 

In the valence subspace, hl, hM and hN"' are either zero or a constant. If there is 

a valence gound state, it will be determined by hV. hV is the Heisenberg Hamiltonian 

and its ground state 4; is a valence state. As hV is generic, 4; can not be altered 

by any perturbation from (hf , LM, hN'*'). SO HB(4r) is full-dimensional. 

The quantum phase determined by hV is described by 4:. It is called the FM 

quantum phase when the coupling constant J < O or the AFM quantum phase when 

J > O. The FM ground state can be obtained exactly. It has al1 the spins of electrons 

aligned and thus is characterized by the FM long-range order. The AFM ground state 

can not be solved exactly using known techniques, except for the case of 1-dimensional 

rings. The AFM quantum phase is characterized by the AFM long-range order in 2- 

and bdimensional cubic lattices, but has no such a Iong-range order in 1-dimensional 

rings [l6], [55]- [57]. 

Ionie Quantum Phases 

Since hv, hM and hNrvV are either zero or a constant in the ionic subspace, the 

ionic ground state, if there is one, is determined by h'. As the mean value of A!.,, 

on any configuration can be negative only if both i and j are ionic sites and is zero 



for other situations, the ground state 4; of hf is an ionic state. 

Now, we will find out what these ionic gound states are. As 

the ground state of a$$ is either the vacuum state 10 > (degenerate with the fully 

occupied state because of the invariance of SHa under particle-hole transformation) 

when a[ < O or a Slater determinant called a checkerboard state when 4 > O. In 

such a Slater determinant, any on-site pairing site is surrounded by empty nearest 

neighbor sites and any empty site is surrounded by on-site pairing nearest neighbor 

sites. With circles and black disks to represent empty and on-site pairing sites in 

a square lattice, respectively, these ionic ground states are schematically shown in 

figure 2.2. 

O 0 0 0  o e o  

O 0 0 0  0 . 0 .  

O 0 0 0  O 0  

O 0 0 0  O O @  

Figure 2.2: Vacuum and Checkerboard States 

As h~, , j ,o~b~10 >= ajbJl0 >, al1 ionic configurations with the same number 

of electrons are connected together. Let q = ei6'lql be the coefficient for the i-th 

configuration in the ground state of hl, here Iql = a is a real positive number and 

Bi is real and referred to as the phase factor for the correspondhg configuration. In 
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cubic lattices, Bi - O j ,  referred to as the relative phase factor for any two configurations 

in the ground state of a${ can be determined easily. When cri < 0, the relative 

phase factor for any two configurations is zero; whereas when > 0, the relative 

phase factor for any two configurations is zero or T with the two configurations being 

connected by even or odd times transport of on-site electron pairs. With the sarne 

symbols as in figure 2.2, three ionic configurations are schematically given in figure 2.3. 

There, the coefficients for the fint two configurations always have the same sign, 

whereas that for the third configuration has the same or opposite sign as the first two 

in the ground state with a: being negative or positive, respectively. Although there is 

0 . 0  o o *  0 0 .  

O *  O O *  O m o @  

O 0  O 0 0  0 . 0  

O @  o e o *  0 . 0 .  

(+) (+) (k) 

Figure 2.3: Phase Factor Setting for Three Ionic Configurations 

more than one path in which two configuration can be connected by shifting electron 

pairs, the parity (odd or even times transport of an electron pair) of al1 possible 

paths connecting two configurations is the same. Thus the phase factor setting for 

configurations in the ground state is unique. This is a very special property for 

lattices with cubic symmetry. These two kinds of phase factor settings are referred to 

as constant and alternathg phases, respectively. It is easy to see that in 2-dimensionai 

hexagonal lattices, there is no way to make a similar phase factor setting preferred 
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by al1 interactions involved. This is usually called phase frustration. 

Let m be the number of electron pairs and n., the number of nearest neighbor 

sites, the number of total configurations is n~ = (ml) and the nurnber of non-zero 

interactions arnong these configurations is nrnt = I A  ln,,, (lky). As the ratio nrnt lnr 

reaches its maximum when m = 2, the ground state of is a half-filled state 

with a constant phase when a: < O or an alternating phase when a[ > 0. 

When cri < O and a: = 8Bai with 0 = f 1, apart from a constant, h* is the 

projection onto the ionic subspace of a positive semi-definite operator 

with 

Qe,<ij> = araj + aTai - B(brbl + 6161). (2.29) 

Qe,cij> is a killer operator for the AGP function with a constant phase (CP) given 

when 0 = 1, or an alternating phase (AP) given by 

when 0 = -1. That is 



As equations in (2.32) hold for m = 0, 1, O * ,  1111, the CPAGP or APAGP functions 

for any m in Eq. (2.30) or (2.31) are degenerate ground states for ho and thus hi with 

0 being 1 or -1, respectiveiy. 

From the above discussion, a general description for the ionic ground states is 

given as  follows: 

(1) With a{ < O and (a:( < 8(aiI , the ground state is a vacuum state. 

(2) With ai < O and ja:l = 8141 , the AGP functions in Eq. (2.30) or (2.31) with 

a constant phase when ai < O or an alternating phase when al > O are degenerate 

ground states. 

(3) For other values of a: and ai, the ground states can be classified into two cate- 

gories: a constant phase when cr! < O and an alternating phase when a: > O. Both 

are half-filled states and the weight for each configuration in the ground state is de- 

termined by the ratio of a: and 4. As we Vary this ratio gradually but keep the 

sign of a: unchanged, the ground states will be deformed to each other smoothly 

within their own category and the two kinds of ground states are separated by the 

checkerboard ground state. 

As hr is generic, any perturbation from {hV, LMl hN''V) obviously leaves these 

ionic ground states unchanged. Thus, the vacuum ground state has a full-dimensionai 

basin of attraction and it describes a trivial vacuum quantum phase. Each haif- 

fiiled ionic ground state has a basin of attraction which is 1-dimension Iess than NI- 

dimension. The union of basins of attraction for the ionic ground states in each of the 

two categories is full-dimensional. Thus the two lcinds of half-fdled ionic ground states 



characterized by the half-filled AGP hioctions with constant and alternating phases, 

respectively, describe two separated ionic quantum phases. As the AGP functions 

have the so-called off-diagonal long-range order and thus are superconducting states, 

we cal1 the two corresponding quantum phases superconducting phases with constant 

and alternating phases, respectively. 

Symmetry Between h' and hV 

Under the action of a canonical transformation Tc which changes ai to a: and 

a: to ai but leaves b r  and bi unchanged, hV is transformed into a special ionic 

Hamil t onian 

Further analysis shows that: with negative J ,  the constant phase AGP function is the 

ground state of this transformed Hamiltonian, and with positive J ,  the ground state 

of hr(v) is a half-filled ionic ground state with an alternating phase. Thus, under the 

action of Tc, the FM ground state in the valence subspace is traasformed into the 

half-filled constant phase AGP function, and the AF'M ground state is transformed 

into a half-filled ionic ground state with the alternating phase. Such a symmetry 

between h' and hV gives us a new alternative way to study the valence ground states 

in ionic subspace and this may be especially useful for the study of the AFM ground 

state. 

Using this symmetry, we obtain the foUoFPing theorem. 
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Theorem 2.2 The only possible ground state of the Hamiltonian 

is either an ionic state or a valence state. 

Proof: Let #, be the lowest ionic and valence energy states , $JI, t,bV, $ B  the ionic, 

valence and ionic-valence boundary parts of the lowest energy state # l v  in a mixed 

subspace and $: the ionic image of $V under the action of Tc. As h(a),ij, is zero 

in the ionic-valence boundary, the mean value of h(a) on $'*' can be computed as 

When a = 1, h(a) is invariant under the action of Tc, thus 

As the boundary between $b and $' is not optimized to give the lowest possible 

expectation value for hr(v), the ionic state (tl>%& > is definitely not the ground state 

of h(cr). So E y  will be higher than both E,' and E r .  Thus for a = 1, d and $V are 

degenerate ground states of h(a). Further ît is easy to see that for a > 1, tpv is the 

ground state, and for O 5 a < 1, is the ground state. So mixed states can not be 

the ground states for h(a). CI 



Mixed Quantum Phases 

According to conjecture 2.1 in the next section, the ground state of any interaction 

from (hr,  hV, h N f e V )  can not be a mixed state. Thus if there is any rnixed ground 

state, it rnust be determined by LM. As hM is zero in both ionic and valence subspaces 

but non-zero in any mixed subspace, the ground state of hM is a mixed state. 

In the mixed subspace with {nr, nv), as 

h<l4,a:lo > = -ai+lO >, h:\j>a:ojbi+l~ > = -ajkrb;lo >, 

hzJ,aj'lo > = -arIO >, hE;' ,J ,a~a~b:l~ > = -a:ajbJl0 >, 

the action of hM on any mixed state changes the ionic-valence boundary. As a result, 

al1 configurations with the same nl (d) , nr (e) , n; and nt but different ionic-valence 

boundaries are connected together. As hbX treats al1 ionic sites, as well as ail valence 

sites, equally, its ground state may be degenerate. 

The total number of configurations connected together by hM is 

and the number of non-zero interactions among these configurations is 

The ratio nht/m reaches its maximum when nv = 2. If there is a coherent phase 

factor setting for all configurations in the ground state of hM favored by every pair 

interaction h&,, here favor means that the expectation value for hSJ, is negative, 

non-zero interactions dways lower the energy. Thus the ground states for LM wiU be 

with haif ionic and half valence sites. 



Further analysis shows that in the mixed ground state for 2- and tdimensionai 

cubic lattices, it is impossible to set phase factors for al1 configurations favored by 

every pair interaction h&>. In a lattice, any two distinct paths connecting two sites 

f o m  a closed path. Obviously, there is only one closed path in 1-dimensional rings 

and more than one closed path in 2- and fdimensional cubic lattices. Let circles and 

arrows represent the ionic and valence sites in a closed path of a lattice and Ii, > be 

+ + a Slater determinant for other sites. Two paths connecting a:a:IJ> > and a, a3 I$ > 

are schernatically shown in figure 2.4. When c u ~  > O, ha,,,, LE;3,,, and R$\,,, in 

path 1 favor that the coefficients for a:agl11, > and a:a3fl+ > have the same sign, 

whereas in path 2, &,, favors that the coefficients for ara: Is ,  > and ata; 1+ > have 

the opposite sign. When a~ < O, h<1,4>, hs,,, and hE;,,, in path 1 favor that the 

+ + coefficients for a:GI$ > and a, a3 I+ > have the opposite sign, whereas in path 2, 

hSt3, favors that the coefficients for a:a:l$ > and a:ar(ll, > have the same sign. 

Such contradictory phase factor set tings in paths 1 and 2 clearly show the existence 

of phase frustration in the mixed ground state. As configurations of this kind appear 

only in lattices with more than one closed path, there is no phase hst ra t ion in the 

mixed ground state for 1-dimensional rings. 

Any small perturbation from h N I e V  has no impact on the mixed ground state as 

hN'*V is a constant in any mixed subspace. Perturbations from both hr and hV may 

reduce the degree of degeneracy for the mixed ground state. In the mixed ground 

state, any perturbation from hr favors a constant or an alternating phase factor 

arrangement for the connected ionic sites, while any perturbation fkom kV prefers the 



Figure 2.4: Phase F'rustration in Mixed Ground States 

FM or AFM assignment of the connected valence sites. If the connected ionic sites 

are not al1 empty, half of them must be on-site pairing. In that case, the associated 

mixed ground state is a half-filled state. Because of the phase frustration, the rnixed 

ground state has a very complicated phase factor setting. 

Based on the above discussions, we find that there is a mixed quantum phase. 

It is quite possible that 50% sites are ionic and 50% sites are valence in this mked 

quantum phase. In such a quantum phase, the connected ionic sites try to follow 

the constant or alternating phase role and the connected valence sites try to mange  

themselves ferromagneticaily or antiferromagnetically. In the mixed quantum phase 

for 2- and 3-dimensional cubic lattices, h t r a t i o n  exists. It may destroy partially or 

completely the longrange order that otherwise may occur. 

Siimmary of Quantum Phases for Sp 

As a summary, altogether there are six possible quantum phases for SH2. They are 
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the two kinds of superconducting phases characterized by the half-filled constant and 

dternating phase AGP functions respectively, the FM and AFM phases, the mixed 

phase and the trivial vacuum phase. Hamiltonians on SH2 for these quantum phases 

are schematically shown in figure 2.5 Among these quantum phases, the first four 

Figure 2.5: The Phase Diagram for SH2 

are exactly half-filled phases and half-filling may also occur in the mixed quantum 

phase. Thus quantum phases associated with half-filling are a special feature for pure 

2-body interactions in SHa. Collective behavior with some kind of long-range order 

is another special feature for these quantum phases. 

Geoerally speaking, pure 1-body interactions in HL do not preserve on-site pairing. 

Thus the involvement of pure 1-body interactions will make the sharp picture for 

these quantum phases become fuzzy. But as long as they are much weaker than 

the pure Zbody interactions, pure 1-body interactions can not completely destroy 

the long-range order accompanying the collective behavior and thus can not change 

the fundamental physics in these quantum phases. As 1-body interactions are not 



invariant under particle-hole transformation, perturbations from HL may cause some 

quantum phases of SH2 to move away from the exact half-filling and become near 

half-filled quantum phases. 

It is worth mentioning that for the CPAGP and FM ground states, 

Here, E HL is the hopping t e m  in the Hubbard model. Thus any perturbation 

from Q P I O ]  will leave both the APAGP and the FM ground states unchanged. 

2.4.2 Phase Transitions 

As we do not know very much about the mixed phase, here we will only discuss 

possible phase transitions among the tint four quantum phases. Based on the inves- 

tigation in the last section, the two kinds of superconducting phases are obviously 

separated quantum phases. Thus no phase transition wiil occur between them. The 

same is true for the FM and AFM phases. So the only possible phase transitions are 

those between each of the superconducting phases and the FM or AFM phase. 

In order to investigate such phase transitions, we need to study the intersection 

of the two basins of attraction for each correspondhg phase pair. 

The AGP ground state denoted by q5ZGp is determined by the ionic Hamiltonian 

Here a = +1 or -1 corresponds to the constant or altemathg phase, respectively. 

Let #$ be the valence ground state o W ,  which is the AFM ground state when J > O 
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or the FM ground state when J < 0, and E$ =<q5; 1 hV 1 4.: >. Then, apart frorn a 

constant, the Hamiltonian 

with < being a positive coefficient, is pure 2-body. It is easy to see that both 4Acp 

and q$ are eigenstates of h with 

The expectation value for h on any ionic or valence state is greater than or equal 

to zero. Shus h 1 O in both the ionic and the valence subspaces. In any mixed 

state with ionic and nv valence sites, ionic-valence boundary always exists. The 

action of h on any mixed configuration does not change the ionic-valence boundary 

and the rnean value for is positive if both i and j are on the boundary. So the 

lowest energy state in the mixed subspace with Inr, nv} is a mixed state that has 

the smallest possible ionic-valence boundary. In such a state, al1 the connected ionic 

sites form a local AGP function determined by & and all the connected valence sites 

brm a local FM or AFM state determined by %. If we denote by $y,$$ and $s 

the ionic, valence and boundary parts of the mixed state respectively, the expectation 

value for h on the state can be computed as 



As ho,,lJ, is a killer for the associated AGP function, 

Thus for srnall (, < h > will be dominated by 

with TZB being the nurnber of nearest neighbor pairs on the boundary. So < h > is 

strictly positive. Thus < h> is strictly positive in any mixed subspace. 

Rom the above discussion, we find that $zGp and $6 are degenerate ground states 

of h. So, apart from a constant, h is an element in the intersection of the two basins 

of attraction for these ground states and thus is an element in the intersection of 

basins of attraction for the corresponding quantum phases. If we gradually vary a 

away from f 1 by increasing lori, $zOp is defomed smoothly within its own category 

of half-Med ionic ground states and h wiiI remain inside the intersection for these 

basins of attraction. By further analysis, we found that hNivV is the only pure 2-body 

interaction that c m  break the degeneracy for the ionic and valence ground states. 

Thus hN~.v is the only interaction that is not contained in the intersection of the two 

basins of attraction. 

phase boundary with 

As a result, the two related quantum phases have a cornmon 

CO-dimension one. 



As a summary, we have 

Theorem 2.3 The constant phase superconducting phase and the FM phase, the 

constant phase superconducting phase and the AFM phase, the alternating phase su- 

perconducting phase and the FM phase, the alternating phase superconducting phase 

and the AFM phase are adjacent phase pairs. Each of these phase pairs hos a common 

phase boundary with CO-dimension one. 

In the above discussion, restriction on is introduced mainly to avoid computing 

< $v 1 &iJ>EV hJ,<*,p 1 $y > for the AFM case as it can not be obtained exactly. hr- 

ther analysis based on results from various numerical computations [16]-[20] strongly 

supports the idea that hJ itself is strictly positive in any mixed subspace and that 

may remove the restriction on c. From this as well as theorem 2.2, we have the 

following conjecture 

conjecture 2.1 The only possible ground state for the Hurniltonian of the jonn 

is either an ionic or a valence state. 

It is interesting to see that these phase transitions are accompanied by a sudden 

change of electron distributions. During each of these phase transitions, the system 

transforms itself from an ionic phase into a valence phase or vice versa without going 

over any mixed state. This may have something to do with the fact that the supercon- 

ducting phase and the AFM are adjacent quantum phases in oxide superconducting 

materids. 



2.4.3 The Phase Structure and the Dimensionality 

Although our main focus is on the 2-dimensional square lattices as they are closely 

related to the oxide superconducting materials, the general phase structure obtained 

above is really dimension independent. The main reason behind such a dimension 

independent phenomenon may corne from the fact that only nearest neighbor inter- 

actions have been considered. 

However, the dimension independence does not mean that the corresponding quan- 

tum phases in 1-, 2- and 3-dimensional cubic lattices aiways share exactly the same 

kind of key characteristics. For example, it has been found that the ground state 

of the AFM Heisenberg Hamiltonian (with J > O) in a 1-dimensional ring does 

not have the AFM long-range order [55, 561, whereas the ground states of 2- and 3- 

dimensionai AFM Heisenberg Hamiltonians are characterized by the AFM long-range 

order [16, 571. 

Here it is worth paying more attention to hM as it rnay be the only interaction 

in SH2 that can cause some dimension dependent phenornena. Recall that LM has a 

mixed ground state with phase hstra t ion in 2- and 3-dimensional cubic lattices. The 

phase frustration cornes from the fact that different paths connecting two configura- 

tions result in different phase factor settings. There is only one closed path connecting 

two configurations in a 1-dimensional ring. Thus there is no phase frustration in the 

mixed quantum phase for 1-dimensional cubic lattices. In 2- or 3-dimensionai cubic 

lattices, different closed paths always euist. Thus phase hstra t ion always exists in 

the corresponding mixed quantum phase. Although we have not figured out a way to 



evaluate the phase frustration in mixed quantum phases for 2- and bdimensional cu- 

bic lattices, it is clear that the degree of the phase fnistration is dimension dependent. 

As phase fnistration causes instability, higher degree of phase frustration indicates 

the smdler basin of attraction for the corresponding mixed quantum phase. Thus 

the size of basin of attraction for the mixed quantum phase is dimension dependent. 

The spherical surface SH2 is covered by the basins of attraction for the six found 

quantum phases. The size of the basin of attraction for the mixed quantum phase will 

definitely affect the size of basins of attraction for other quantum phases. Thus the 

dimensional dependence of the size of the basin of attraction for the mixed quantum 

phase indicates that the size of the basin of attraction for any other quantum phase 

rnay also be dimension dependent. If the relationship between the degree of phase 

frustration in the rnixed ground state and the dimensionality for these lattices is found, 

it rnay further help us to explain some other dimension dependent phenornena, such 

as why the superconducting phase prefen 2-dimensional square lat tices. 



Chapter 3 

The Unique On-site AGP Pairing 

for the Superconducting Phase 

In this chapter, we fint investigate some special properties of the AGP functions. 

Shen, we make a conjecture that the on-site AGP pairing is the unique AGP pairing 

in lattices with cubic syrnmetry. 



3.1 AGP Functions and Their Killers 

3.1.1 AGP functions 

AGP is the abbreviation for Antisymmetrized Gemind Power, and ACP functions 

have been extensively studied since the early 1960's [43, 581. 

The geminals, or 2-electron wave-functions we will consider, has the form 

Where (a:, a:) is a set of creation operators corresponding to a set of orthonormal 

1-electron spin orbitals and r, is the rank of the geminal. a and d are cdied a pair of 

conjugate spin orbitals which share the same expansion coefficient Ca as well as the 

same occupation number A, = czCQ # O. By using the index a and and considering 

one as  positive, the other negative, we avoid double counting in the expansion. By 

letting B,+ = a,fa$, the above expression can be rewritten as 

which is often referred to as the naturd expansion of a geminal. 

An AGP function with n = 2m electrons, usually denoted by gn, is given by 

Using the standard form for g, the normalized AGP hinction can be expressed as 



here the expansion coefficient C'(ai, , am) is given by 

and the normalization constant Sm is given by 

From this definition, we can see that: When n > r ( g ) ,  gn is zero; when n = r(g),  

gn is a single Slater determinant which is independent of the expansion coefficients 

of g; and when n < r (g) ,  gn is a linear combination of Slater detenninants. When 

we talk about AGP wave-functions, we mean the non-trivial case with n < r,. Since 

an AGP function is a pairing function, it is also called an AGP pairing. Although 

it is a rather simple function, an AGP function is highly correlated. It is of great 

interest since it provides a mode1 for superconductivity. The BCS function in the 

conventional superconductivity theory, when projected to a fixed particle space, is an 

AGP function. 

The 2-body reduced density matrices for general AGP functions were obtained by 

Coleman in 1965 (431. Since then, the study and application of AGP functions have 

gone far beyond the field of superconductivity [59]-[61]. 

3.1.2 An AGP Function 1s Uniquely Determined by Its Killers 

If k is an operator, and if 

kl$>=O, 



k is said to be a killer for the wave-function +. It is obvious that S, is a ground state of 

the Hamiltonian h = k+k. Thus the correlation in any ground state S, is determined 

by its killer set. 

It is well-known that a Slater determinant is completely determined by its killers 

{ a i ,  ai) where i and j run through d l  occupied and unoccupied spin orbitals in the 

Slater determinant, respectively. As a result, the ground state of 1-body interactions 

can be described by a Slater determinant. 

In the linear space of particle-hole operators a,+ag, we build a set of killers for the 

AGP function defined in Eq. (3.4) as 

ka,& = a h i ,  for ail cu ; 

kayo = a;o, - a:aa, for al1 a > O ; 

with (Y > 0, ,û > O, a # p; or ap < O, u > -B. 

These killen form a complete linearly independent basis of killers for gn with n = 0, 

2, 4, -, rg in the particle-hole operator space. This killer set is denoted by Kg. 

It is significant that any k E Kg is a second-order homogeneous polynomial in 

creation and annihilation operators. As a result, gn is a ground state of a 2-body 

interaction of the form h = k+k. 

Theorem 3.1 An AGP function gn is unàquely determàned b y its killer set Kg. 

Proof: Let dn be a wavehction for n = 2m electrons that shares Kg with gn as its 

killer set, Le., k lQ >= (1 for h E Kg. Then the conditions 



ka,& 1 $n > = 0 for d l  a; (3.11) 

k a ,  1 Q> = O for a l l a  > O  (3.12) 

force qP to have a pairing identicai to that of gn. In other words, the two orbitals in any 

conjugate spin orbital pair of g must be empty or doubly occupied simultaneously in 

any configuration of 9". Such an n-electron pairhg wave-function qbn can be expressed 

with any a > O and ,û > O but a # ,û as 

It is easy to verify that 

and 



With the condition 

it is obvious that 

1 1 
-C(a, kl, , km-l) = -C(P, ki, + , for al1 kl, + , km-l # cr, ,û . (3.18) 
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As the above relations hold for al1 a and ,û, they give the relationship between the 

coefficients for any two Slater determinants in Q that can be transformed into each 

other by switching one pair of electrons. Any two configurations 

+ B+ BPI =BLlO> 

can be transformed into each other by switching electron pairs. Thus the coefficients 

for the two configurations satisfy 

which is exactly what the coefficients in gn fulnll (see Eq. (3.5)). Thus 4" = gn and 

an AGP h c t i o n  is uniquely detennined by its killer set Kg. 

3.1.3 The Unique Representation of the 2-body Density Ma- 

trix Corresponding to An AGP Wave-Function 

The Zbody density m a t e  for a wavefunction Q can be defined by the equaüty 

d L = < q P  Iafb+cdI Q>.  (3.21) 



Here the wave-function 4'' is called a representation for the matrix d;fbcd. Given a 

matrix &,cd, there need not be a representation #P so that Eq. (3.21) holds. A 

density matrix gbcd with a t  least one representation is called n-representable. 

Using theorem 3.1, it is very easy to prove the following well-known result on AGP 

func t ions. 

Theorem 3.2 The Gbody  density matriz for an AGP function has a unique repre- 

sentata'on. 

Proof: Assume that Q and gn share the same 2-body density matrix, that is 

For any k E Kg, k+k can always be expressed as a linear combination of operators 

acb+cd, a+ b and the identity operator ê by using fermion commutation relationships. 

Using the fact that the correspondhg 1-body density matrix < if' 1 a+b 14" > and the 

trace < cPnê 1 #" > are determined by the 2-body density matrix when the particle 

number is fixed, Eq. (3.22) guarantees that 

which impiies t hat 

k I p > = O  f o r k ~ K , .  

As an AGP function is uniquely determined by K,, such a Q must be gn. Thus the 

wave-function that represents the 2-body density matrix correspondllig to an AGP 

function is uniquely determined. 0 
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Using a completely different approach, Coleman obtained this result in 1973 [62]; 

Rosina also obtained a proof, but only for a restricted class of AGP functions [63]. 

Our proof is complete and much easier than the previous proofs. 

3.2 The Symmetry Properties of AGP Functions 

and Their Generat ing Geminals 

An AGP function gn and its generating geminal g are closely related to each 

other. Here we investigate the symmetry relationship between them. Both spin and 

spatial symmetries will be addressed. These syrnmetry properties are very important 

in detemining possible .4GP ground states in a system. 

3.2.1 Spin Symmetry 

Let an arbitrarily chosen t axis be the quantization axis and g2, Sz the total spin 

operator and its z-component for a system. Here spin syrnmetry for gn means that 

it is an eigenstate of s2 and S, with 

If gn has spin symmetry, hom the above equation, it is obvious that g itself must be 

an eigenstate of S, , with 

As the possible eigenvalues of S, for g are 1, 0, and -1, the possible values for m. are 



" 2 '  O and -$. 

Geminals can be classified by spin symmetry. S pin-symmetry-adap t ed geminals 

can be labeled by [s, s,] as [l*'lg ,[Llo]g, [ L * - L I g  and Any geminal can be expressed 

as a linear combination of these geminals. 

Theorem 3.3 If gn is o spin symrnetrg state, then g itself rnust be a geminal with 

spin symrnetry. 

Prao/: Let gn be specified by [S, Ml,  the quantum nurnbers associated with 9 and 

S,, respectively. For M = 5 or -8, it is obvious that the geminal must be either 

when M = 1 or when M = -1 2 Thus g has spin symmetry. For M = 0, the 

geminal cm be expressed as a linear combination of [O*OIg and [L*olg. As the coupling 

of [O*O1g and [o*olg always results in singlet, whereas the coupling of [OvO]g and 

always results in triplet, gn can not have spin symmetry unless g = or g = ['@lg 

instead of being the linear combination of the two. In summary, g must be a geminal 

with spin symmetry. O 

It is worth pointing out that the converse statement for the above theorem is not 

always correct. That is, if g is a geminal with spin symmetry, gn needs not be a spin 

state. 

Among these spin-symmetry-adapted AGP hc t ions ,  the singlet AGP function 

is the most interesthg one and the best candidate for the gound state in systems 

without explicit spin-spin interactions. Possible geminals associated with the singlet 

AGP function are [OaO]g and ['ag with the singlet geminal being the best candidate 

as (p*olg)n is dways a singlet whereas may or may not be a singlet. So far, 

63 



in the study of high-Tc superconductivity, the preferred pairing scheme is the singlet 

pairing although the BCS-like triplet pairing has not been ruled out. 

3.2.2 Spatial Symmetry 

Lattice symmetry includes both translation symmetry and point g o u p  symmetry. 

In our investigation, we need to use the following lemma: 

Lemma 3.1 If there are two geminak gl and gz with gr = g t ,  t h e ~  g,  = g2. 

Pro05 As gf = g;, they share the same killer set Kg. As Kg uniquely determines the 

associated AGP function, it must be that gl = 92. O 

Let S denote the space group for a lattice. Spatial symmetry for an AGP function 

means that for any symmetry operation s E S, 

with B(s) being a real phase factor. 

Theorem 3.4 If gn has spatial symmet y, then g itself must be a gernhal with spatial 

s ymmetry. 

Proof: If Eq. (3.27) holds, we have 

Let gl = eWs)/n g and gz = sg, Eq. (3.28) can be simplified as 



F'rom Lemma 3.1, we have g, = gz and thus 

So g must be a geminal with spatial symmetry. CI 

It is obvious that the converse statement is also true which says that if g has 

spatial symmetry, then gn must also have spatial symmetry. 

3.3 The Unique AGP Pairing in Lattices with Cu- 

bic Symmetry 

Here we use symmetry properties to investigate what kind of AGP functions may 

describe quantum phases in lattices with cubic symmetry. 

3.3.1 The Geometry Effect on the AGP Ground States 

In a system without explicit spin-spin interaction, if a ground state is stable enough 

to describe a quantum phase, it is usuaily non-degenerate (excluding spin degeneracy). 

Such a ground state must be invariant under the action of the space group S and 

thus must be a symmetry state for a 1-dimensional ineducible representation of S. 

In a lattice designated by a vector space A, every irreducible representation of the 

translational subgroup T E S is 1-dimensiond and can be specified by a vector k in 

the reciprocal lattice space. This means that for any t ,  E T with r E A, we have 



here +M is a basis function for the irreducible representation specified by k. Under 

the action of any p E P, where P E S is the point subgroup for A, k is mapped to 

where kl may or may not equal k. Thus the action of P on k creates a set of vectors 

(k, ki, e )  called the star of k. The irreducible representation of a space goup S 

can be specified by k and its star. If the star of k contains only one vector, that is k 

itself, then the irreducible representation specified by k is 1-dimensional. 

Now we will figure out what are those 1-dimensional irreducible representations in 

lattices with cubic symmetry. For a 2-dimensional square lattice, the point subgroup is 

CdV and there are only two special vectors [O, O] and [T, n] which are invariant under 

the action of Cdv. Similarly, for 1- and %dimensional cubic lattices, these special 

vecton are [O], [n] and [O, O, O], [n, r, n] respectively. These two kinds of vectors are 

called constant and alternating phase vecton, respectively, according to the behavior 

of basis huictions for the corresponding irreducible representations under the action 

of T. 

To force an AGP funetion gn to be a symmetry state, its generating geminal must 

be a basis function for a 1-dimensional irreducible representation of S. Thus g cm 

be labeled by either a constant or an alternating phase vector. The corresponding gn 

is called a constant or an alternating phase AGP function. 

It is significant that there can be only two Ends of AGP gound states in cubic 

lattices and they are determined purely by lattice symmetry. Lattices with different 

geometric structure may have different resdts. For example, on a %dimensional 

66 



hexagonal lattice, there is only one vector [O, O] that is invariant under the action 

of the point subgoup Csv. Thus an alternating phase AGP function can not be a 

non-degenerate gound state in 2-dimensional hexagonal lattices. It seems that an 

alternating phase AGP pairing can only occur in lattices with cubic symmetry. 

3.3.2 The Unique On-site AGP Pairing 

How many AGP functions are there which are spatially invariant in cubic lattices? 

In order to answer this question, let's define the geminal generator as 

vr. (k) = eik*'a:bL,, 
r 

where r, r' E A and k is a constant or an alternating phase vector. When acting on 

vacuum state 10 >, qr.(k) generates a spatially invariant gerninal 

with Ir'l being the distance between the two electrons in each conjugate spin orbital 

pair. When r' = 0, for example, q,~(k) 1 O > is an on-site pairing geminal with a 

constant or an alternating phase respectively. Let 

r); (k) = e""b:ak,, 
r 

and 



are generators for spatially invariant singlet and triplet geminals respectively. As r' 

goes over A, [O%p(k) will generate a linear space of al1 spatially invariant singlet 

geminals and [l%p(k) will generate a linear space of ail spatially invariant tnplet 

geminals. The generators for these singlet and triplet geminals are given by 

and 

with {c~) being a set of arbitrary coefficients. 

Will al1 these symmetry-adapted AGP functions be the ground states of generic 

Hamiltonians in SH2? The geometry of cubic lattices demands that gn with n = 2m 

and m = 1, 2, must be with either a constant phase or an alternating phase. But 

it can not determine lr'l, the distance between the two electrons in the pairing. In our 

investigation of phase structure in Chapter 2, we found two kinds of superconducting 

phases characterized by the constant and alternating phase AGP pairings, respec- 

tively. Both pairings are on-site AGP pairing generated by [O*Ohp(k) with if = 0. 

1s on-site AGP pairhg the unique AGP pairing in our system? According to the- 

orem 2.1, if gn is non-degenerate, it must have a unique set of quantum numben 

Theorem 3.5 The AGP function given by {7p(k)Irn or {q$(k))m with rJ # O and 

2 5 m 5 lAl, can not have a unique set of {nr,nv). 

Proof: In { q , ~  (k) )" or {& (k) lm, there are (It1) independent Slater detenninants. 



Using the expansion expression for AGP functions in Eq. (3.4) and observing quantum 

numben for every Slater determinant, it is found that, with r' # O and 2 5 m 5 IAl, 

these Slater determinants do not share a unique set of {nl, nv). Thus the associated 

AGP function do not have a unique set of (nr, nv). 

In AGP function of the form { [o~ohp(k))m or { ~lf l ]v~(k)}m with r' # O and 

2 5 rn 5 lhl, the coefficients for al1 the configurations are h e d  and configurations 

with different {nl, nv) always CO-exist. Thus the associated AGP function also do not 

have a unique set of {nr , nv}. For a more general AGP function given by ([opolq(k)}m 

or ( [lpolq(k))m, it seems that there still can not be a unique set of {nr, nv} unless 

["*o$(k) = (k) with r' = 0. (3.40) 

Although a general proof has not been obtained yet, the above statement bas been 

checked to be correct in a number of cases using a relatively smaller number of lattice 

sites. 

Particle-hole killers for al1 AGP functions are of the same form and they are given 

by Kg. In Kg, killers represented by k , ~  in Eq. (3.11) are the only non-trivial killers, 

as others are kiliers for ail pairing states. Thus kad will play a key role in d e t e d n g  

the AGP ground state and pure 2-body interactions of the brm ki,Bkp,fl are aimost 

certain to appear in HB(gn).  For the on-site AGP pairing ground state, such a pure 

2-body interaction & E HB (gn) is found to be 



w here 

is a killer for the constant phase AGP function when 0 = 1 or alternating phase AGP 

hnction when 9 = -1. For non on-site AGP pairings, so far we have not found any 

similar 2-body interaction in SR,. 

The AGP pairing is a coherent pairing whereas the mixed ground state for 2 and 

3-dimensional cubic lat tices is characterized by phase frustration. This make it even 

more unlikely that a non on-site AGP pairing can be a mixed ground state in these 

lattices. 

As a summary of the above discussions, we make the following conjecture, 

conjecture 3.1 On-site AGP pairhg is the unique AGP pairing in the quantum 

phases of S H 2  /or Luttices with cubic symmetry. 

It seems that the unique on-site AGP pairing is closely related to the nearest 

neighbor interactions in our system. If other than nearest neighbor interactions are 

introduced, the uniqueness of the on-site AGP pairing will probably disappear. 

Thus, we suggest that there can be only two kinds of superconducting phases for 

SH2 in lattices with cubic symmetry. Both of them are characterized by the on-site 

AGP pairing, but with constant (Cooper pairing) and alternating phases, respectively. 

They are BCS-like superconducting phases coming fiom the condensation of singlet 

electron pairs. If the basins of attraction for these quantum phases are large enough, 

t hese superconducting phases may have hi& transition temperatures. 



Chapter 4 

Approaching the Ground State 

with the Lower Bound Method of 

Reduced Density Matrix Theory 

In this chapter, we investigate the lower bound method of reduced density matrk 

theory. Two numerical algorithms based on a new theorem (531 are developed for 

solving the central optimization problem in the lower bound method. Numerical 

computations are performed on 1-dimensional rings to approach the ionic ground 

state described in Chapter 2. The convergence properties for these algorithms and 

the tightness of lower bounds to the ground da te  energy are considered. 



4.1 Formulation of the Central Optimisation Prob- 

lem 

The von Neumann density operator d for the ground state of a fermion system con- 

tains al1 of the information required to compute the ground state properties. One can 

find d by solving the Schrodinger equation, or equivalently by finding the minimizer 

of the convex problem: 

inf < h, d> 
+P 

<é,d>= 1 

where h is the Hamiltonian, ê is an identity operator, P is a convex set of positive 

semi-definite operators and < O ,  > denotes the trace scalar product for operators 

on Fock space. < ê, d >= 1 means that the von Neumann density operator d is 

normalized. 

Interactions in most physically interesting systems are up to 2-body. Most of 

the ground state properties can be obtained from the Zbody reduced density matrix 

$ defined in Eq. (1.10) for the ground state. The 2-body reduced density matrix 

contains a much smaller number of independent parameters than the wave-function 

(unless n is very s m d ) .  If r is the total number of 1-particle states, there are 

ir(r-1) (hr(r-l)+l) independent entries in the unnormalized 2-body reduced density 

matrix, while there are (n) independent parameters needed to define an unnormalized 

wave-function. Fiirthermore, the symmetry properties of a system usually reduces 

the number of independent parameters in the reduced density mat& more effectively 

than in the wave-function. Thus computing the ground state properties by (ç, is much 



easier than by using a wave-hnction. 

Let a, b, c, O ,  4. be the annihilators for 1-particle States and (Âf, A!, 0 )  be a 

basis set for a linear space of operators which are p t h  order polynomials in creation 

and annihilation operators. Any up to pbody Hamiltonian k can be expressed as 

with {hij) being a set of real coefficients. The pbody density matrix d can be 

defined as 

q,,, = ~r[&+Â;dj (4.3) 

where Tk is the trace on Fock space. Such a matrix is obviously positive semi-definite. 

With the same basis set {Âf), we can construct a matrix h from coefficients (hij). 

Such a rnatrix representation for h has exactly the same size as the d rnatrix. 

The lower bound method of reduced density mat* theory consists in finding a 

minimizer @ t hat minimizes the following energy expression: 

E ( b )  = c h ,  dP> with dP E Do, (4.4) 

here < ., > denotes trace scalar product for matrices, Le., < h, clP >= Tr[h+dP], and 

Do is a convex set of 'approximately n-representable' pbody density matrices. Since 

we only have a partial understanding of the n-representability problem, we are forced 

to carry out the variation in Eq. (4.4) over a set, Do, somewhat larger than the set of 

n-representable density matrices. Thus the optimized energy is a lower bound to the 

ground state energy and the minimizer 4 is an approxhate pbody  reduced density 

mat& for the correspondhg ground state. 
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The general structure for the central optimization problem in Eq. (4.4) obviously 

does not depend on p. For convenience, from now on we will use x to replace b. Thus 

the x matrix can he the pbody density matrix for any p. The central optirnization 

problem in Eq. (4.4) can be rewritten with x as 

E(x)  =< h, x >  with x E Do, (4.5) 

From the normalization condition < ê, d >= 1, we have < e,  2 >=1, where e is 

positive and it is a matrix representation for ê in the same basis set as the x matrix. 

If a proper basis set for x is chosen, e is a scalar multiple of an identity matrix. 

The 'approximately n-representable' will mean in the thesis that 4 is a convex set 

characterized by (1) < e , x  >= 1 for any x E 4, (2) any x E Do is positive semi- 

definite. These conditions are important necessary conditions that x must satis& in 

order to be n-representable but are not sufficient. 

If the density operator d is for a particle conserving system, then al1 entries of the z 

matriv describing processes which are not particle conserving, e.g., entries of the form 

~r[a+b+c+dd]  vanish. As a result, the x matrix can be decomposed into a series of 

smaller blocks. Because of the linear equalities arising from the fermion commutation 

relations, the entries of the x matrix are not independent but interrelated by a system 

of linear equalities. For example, when a, b, c, d axe distinct, 

It is the intertwining of these linear relationship with the positive semi-definiteness 

of the x matrix that gives Do and therefore the central optimization problem a very 
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complicated structure. Let H be the linear space of real symmetric matrices which 

have exactly the same block form as the x matrix and P be the set of al1 positive 

semi-definite matrices in H. We express al1 such linear relationships by requiring that 

x E P n SL where S, which we cal1 Pauli subspace, is a suitably chosen subspace of 

H. Thus in our matrix formulation, the information content of the fermion commu- 

tation relations is carried by Pauli subspace S. The elements of S can be interrupted 

as matrbc representations of the zero operator. Let h = n s h ,  where lrsl  is the or- 

thogonal projector ont0 SL, and for convenience we still use h to represent such a 

projection. Without loss of generality we assume h I e and thus h E H n SL n e l ,  

as this can always be achieved by translating h by an appropriate scalar multiple 

of nsle.  Such a translation merely shifts the spectnun of h and does not alter the 

basic problem in any significant way. Then we can rewrite the central optimization 

problem in Eq. (4.4) in a completely equivalent but more explicit form as 

inf < h , x >  
~ ~ P n s l  
<e,x> = 1 

As an example, let's consider the case when the x matrix is a 2-body density 

matrix for particle conserving systems. Let Â,B = f (a,û -Da), a # where CE, @ are 

either creators or annihilators d r a m  fÎom the set (a+, bC, c+, O, a, 6, c, *). With 

operators {ê, ÂaB, ÂmP&) as basis set, the I matrix can be expressed by a direct 

sum of the famous d, q and g matrices: 

where d and q are real, symmetric and (;) x (i) . Their entries are given by T ~ [ Â $ Â ~ ~ ~  
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and ~r[Â;+~+&+~+d]  respectively. The g rnatrix is given by 

and gm = ~ r [ ê d ]  = 1 ,  go1 is an r2 component row vector given by ~ r [ & + ~ d j ,  glo = g& 

and gll is given by T T [ Â L ~ Â ~ + ~ c &  Thus g is real, symmetric and (1 +r2) x (1 +r2).  As 

<&, d>= 1, it is easy to cornpute that Tr[z] = 1 + fr + (2). This can be expressed as 

< e , x > =  1, here e is an [1+ ar + (;)]-1 multiple of an identity rnatrix. The convex 

structure of the x matrix is determined by the positive semi-definiteness of the d, q 

and g matrices which are the well-known d, q and g n-representability conditions for 

the 2-body reduced density matrix. 

The positive semi-definiteness of the x matriw requires that al1 the eigenvalues of 

the x rnatrix be non-negative. Since the eigenvalues of a matrix are usually non-linear 

functions of the mat& elements for which no explicit formula eltists, the central o p  

timization problem is a distinctly challenging computational problem of minimizing 

a linear function within a convex domain dehed  by a finite set of non-linear con- 

straints. The complexity of the problem is enhanced by the fact that any computation 

of practical value bas to deal with a large number of variational parameters. 

One very favorable aspect is the convex structure for al1 x matrices. A point c in 

a convex C is said to be an extreme point of C if there are no two distinct points 

cl and q in C such that c = c r q  + (1 - a)c2 for some a, O < a < 1. For example, 

a squaxe is a convex set and the extreme points of the square axe its four corners. 

The solutions for Eq. (4.7) are associated with the extreme points of the conva  set 



of al1 x matrices. A non-degenerate solution x, corresponds to an extreme point of 

the convex set. A degenerate solution x, can be expressed as a convex combination 

of certain extreme points for the convex set 

here x1,x2, O, xr are extreme points and p l ,  pz, O ,  p, are corresponding coefficients. 

Thus convexity ensures that any locai minimum is a global solution for the central 

optimization problem [64]. 

In principle, the lower bound method applies to any pbody density matrix and can 

even be used to study the excited states if additional conditions are used to distinguish 

the excited state investigated fiom the ground state and other excited states. But so 

far the focus has been on approaching a ground state by the 2-body density matrix. 

There are two key criteria for a better lower bound rnethod: tightness of the lower 

bound and the quickness of convergence. If the lower bound obtained is too far away 

fiorn the red ground state energy obtained fiom the FCI wave-function method, 

the computed result is worthless and new n-representability conditions are needed 

to further restrict the optimization. Without effective numerical procedures which 

can solve the central optirnization problem with fast convergence, the lower bound 

method will not be computationally feasible on a large scale. Numerical procedures 

based on iinear programming have been developed and implemented to solve the 

central optimization problem [51, 52, 651. These numericd procedures are kt-order 

procedures and numerical experirnentation wîth these procedures in even some small 



systems showed rather slow speed of convergence. More effective numerical procedures 

are still needed before the lower bound method can be put into practical use in large 

systems. d, q and g conditions have been tested in some small atomic and nuclear 

systems with varying degree of success (51, 521. A similar test has never been done 

in any solid system. 

It should be pointed out that the central optimization problem in the lower bound 

method is only a special case of more general convex problems. Thus effective numer- 

ical procedures for solving the convex problem in Eq. (4.7) will not only lead to the 

solutions in the lower bound method of reduced density matrix theory but also have 

much more applications in other areas such as linear and nonlinear programming. 

4.2 Solving the Central Optimization Problem 

4.2.1 Necessary and Sufflcient Conditions for the Optimum 

The Main Theorem 

Here we state a theorem giving necessary and sufncient conditions for the solution 

of the convex problem defined in Eq. (4.7). Let K = H n SL n hL n el, then we have 

Theorem 4.1 The syrnmetric matriz x. is a minàmizer of the convex problem if and 

only if the follouwig conditions are satlsfed. 

(1)  X, E PnSL, <e,x,>= 1, 



(2) there is an element y. E P f! KL with < h, y, > > O which satisfies the rnatrix 

equation 

Note that the condition < h, y. > > O guarantees that x. minimizes the objective 

function < h, x >, not - < h, x >. The proof of this theorem is quite straightforward 

and can be found in [53, 661. 

The virtue of this theorem is that it reduces the original convex problem into 

the problem of solving the matrix equation defined in Eq. (4.11), which is the Euler 

equation. It should be pointed out that the convex problem defined in Eq. (4.7) 

does not always have solutions. Whether it has solutions depends upon the specific 

structure of S. It is found that the convex problem has a solution if and only if 

SnP = O or equivalently SLn intP is not empty. Detailed discussions on the existence 

of the solutions for the convex problem c m  be found in [66]. But in physically 

meaningful systems, there are always solutions. So we only need to find effective 

methods to get the solutions rather than worry about if there is a solution. 

At the optimum, the x. and its partner y. can be generally expressed as 

x. = -ah + k + ,û?rs~e, 

y.= a'h + s + P'e, 

where k E K, s E S, and a, p, a' and f l  are real positive coefficients. It is easy to 

see that under the normalization condition 



the coefficient p is fixed. The minimizer x. for < h, x. >= -a < h, h > should have 

the largest possible value for a. If the expression for z. is multiplied by $, 

P x, = -h + k + @"'Le, with Pt' = -. 
a! 

The minimizer x. will have the smallest possible value for @" > O. As SL n intP # O, 

we always can find a / E P n SL, and x* and its partner y. can be generally re 

expressed in a symmetrical form as 

s*= -h + k - X(k)f, k E K ,  

y,= h + s - w(s)e,  S E S .  

Thus the original problem of minirnizing the energy expression < h, x > with 

< e, x >= 1 is equivalent to seeking k E K that maximizes h(k )  < 0 ,  the bottom 

eigenvalue of -h + k &en by the matrix eigenvalue equation 

and s E S that maximizes the bottom eigenvalue w(s)  < O of the dual problem h + s 

given by 

It should be pointed out that y, and h are closely related to each other. Actually 

the difference between y. and h cornes fiom (1) the translation of a multiple of e and 

(2) s E S which is the matrix representation of the zero operator. Thus y* can be 

treated as a very special matrix representation for the original Hamiltonian with 



where c is a constant. What is special here is that y. is positive semi-definite and 

orthogonal to the optimized x.. 

In Theorem 4.1, it is the Euler equation that is of importance. Our main interest 

here is to develop effective numerical algorithrns to solve the Euler equation. Let dimz, 

be the dimension of the linear space of al1 matrices (not necessarily symmetric) having 

the same shape (block structure) as H, then there are dim,, quadratic equations with 

dimH < dim, unknowns in the Euler equation. Thus, we are guaranteed by the 

theorem at least one solution. 

Extraneous Solutions for the Euler Equation 

As in al1 quadratic systems, in general there may be more than one solution to 

the Euler equation. Certainly in most cases there are solutions to the Euler equation 

where at least one partner of the solution pair x. and y. is not positive semi-definite. 

These solutions do not satisfy the conditions of the central optimization problem 

defined in Eq. (4.7). So they are referred to as extraneous solutions. 

If the Euler equation has a unique solution pair x. 2 O,  y. 2 O, both theoretical 

andysis and numerical experimentation have shown that the positivity condition 

plays little role in searching for these solutions [66]. With carefully chosen seeds, the 

iterative method will converge rapidly to the desired solutions where both partners 

are positive semi-definite. Since the positivity condition is very difficulty to impose, 

this is of considerable importance. 

However, in some systems, solutions to the Euler equation are not unique so that 



there are either two distinct x,'s or two distinct y.'s. Then there are extraneous 

solutions. If there are two distinct set of solutions x.y! = O, x.y,? = O with x., y!, 

E P, for example, then there is a solution pair x., y. where y, is of the form 

y. = tyf + (1 - t )y ;  with t being a real coefficient. It is obvious that such a y. is a 

line with respect to t and for some values of t, the matriv y, = tyf  + (1 - t )y :  has 

negative eigenvalues. Thus the degeneracy of solutions to the Euler equation may 

easily mislead the numerical procedure to extraneous solutions. 

Theorem 4.2 Let x,, y. E P be a desired solution pair to the Euler equation. If 

there exàsts an extraneous solution pair x. and y.. where G. has negative eigenvalues, 

then y.. can be ezpressed as 

and S. C S is the lànear space containing d l  nontrivial solutions to the following 

mot* equation 

X*S* = 0, with S. f S. (4.20) 

Proof: y.. can be generally expressed as 

and thus 

ex*, y**>=<x*, se> +< <x*,e>=< <x,,e>= 0, 

we have = O and thus x.s, = 0. 0. 



According to theorem 4.2, we always can get to the desired solution pair x,, y, 

from x. and y.. by maximizing the bottom eigenvalue of the matrix y.. + S. with 

S. E S.. This procedure referred to as push-up procedure is very useful in searching 

for desired solutions of the Euler equation. 

The situation in which both partners in solutions to the Euler equation are d e  

generate is very rare and c m  only be dealt with case by case. 

It should be pointed out that extraneous solutions are the direct result of the 

degeneracy of solutions for the Euler equation. Thus simplifications of any kind on 

the central optimization problem that reduce the degree of the degeneracy will reduce 

the risk of get ting extraneous solutions. 

4.2.2 Symmetry Considerations 

Symmetry considerations are very important in the lower bound method. Not only 

can it simplify the central optimization problem by reducing both the dimensionality 

of the matrix equation and the risk of getting extraneous solutions dramatically, it 

may also improve the lower bounds to the ground state. 

The Symmetry of x. 

In an n-fermion system, there is usually some kind of symmetry. In the central o p  

timization problem, if the s. matrix satisfies all the n-representability conditions, the 

optimization without considerations of symmetry properties will give automaticdy 

the ground state with the correct symmetry. Then the consideration of symmetry 



is just a matter of convenience, as it reduces the number of independent variational 

parameters. If, however, the x. matrix satisfies only a subset of n-representability 

conditions, the optimized ground state sometimes may not have the correct symme- 

try. Thus imposing symmetry into the central optimization problem can improve the 

optimized ground state. Now we consider constraints on n-fermion systems which 

anse from symmetry considerations. We will consider two types of constraints. The 

first arises from the requirement that x be invariant under the action of some group 

(for exarnple x. is translationally syrnmetric). The second type of constraint arises 

when x, describes an n-fermion system which is an eigenstate of some 1-body oper- 

ator. For example, we may want to carry out the variation subject to fived particle 

number or fked z-component of the total angular momentum. 

In treating the first type of constrained variation, we follow the conventional 

group theoretical approach, introducing additional block structure in the x. matrix 

by choosing a syrnrnetry adapted basis. As a result, H should be redefined as a direct 

sum of a number of smaller blocks, one corresponding to each of the blocks obtained 

in the symmetry reduction of the invariant x. matrix. The effect of this redefinition 

of H has enormous practical significance since the dimensionality of the problem 

is reduced considerably. Such a symmetry reduction usually brings additional hear 

relations among the entries ofx,. The requirement that x, describe a system which is 

an eigenst ate of some 1-body operat or also produces some additional linear relations 

among the entries of 2.. For example, if such a 1-body operator is the number 

operator N = I=, d a  whose eigenvalue n is the number of particles in a system, then 



we have 

~ r [ ( c a ) + d a d ]  = - T ~ [ C + ( & ~  - da+)adl = (n - l ) ~ r [ c +  dd], (4.24) 
a a 

which relates the entries of the d matrix to those of the g matrix. Al1 these additional 

linear relations among the entries of x. can be taken into account by expanding 

the Pauli subspace S. We express both the linear equalities arising from fermion 

commutation relations and those additional equalities arising from the consideration 

of the two types of symmetries in terrns of the expanded subspace S c H. Thus 

x. E H has the correct symmetry and satisfies al1 of the equalities arising from 

fermion commutation relations if and only if x. L S. 

It should be pointed out that by redefining the Pauli subspoce S, the symmetry 

of the system is taken into account, but the general structure of the convex problem 

remains undtered. 

The Symrnetry of y. 

The symmetry properties of a system put symmetry constraints only on x.. Thus 

y., the partner of x. does not necessarily need to have exactly the sarne kind of 

symmetry as x.. However, the fol1owing theorem shows that: symmetry constraints 

can be put on y. to further simpliSr the problem. Here, the symmetry considered is 

type one only. 

Theorem 4.3 Let G be the symmetry group of a system and gx. = x, for any g E G. 

Then there always &ts a symmetry-adapted y : ~  E P n KL whàch is positive semi- 



defirazte and satisfes 

x*ypm = O. 

Proof: Let x. and y. be the desired solution pair to the Euler equation. As gx. = x. 

for any g E G, if y. is not degenerate, it is obvious that gy. = y.. If y. is degenerate, 

the action of G on y. may produce a set of {gy.) with gy. E P n Ki and x.gy, = 0. 

Let's define 

where JGI is the total number of elements in G. Then, obviously y s p  E P n KL and 

it fulfills the equations in (4.25). O 

In practice, by considering only symmetry-adapted y*, we may further reduce the 

number of variables in the Euler equation by considering only the symmetry-adapted 

s E S. As the degree of degeneracy for degenerate y. will also be reduced, symmetry 

considerations on y, will also reduce the risk of getting extraneous solutions. 

4.2.3 Configuration Interactions in the Lower Bound Method 

In the wave-function method, not all coniigurations contribute equally to the 

ground state. If only certain important configurations are used in the calculation, the 

ground state obtained may still be reasonably accurate, but the number of Msiables 

involved may be much smaller than that in a N1 configuration interaction (FCI) 

calculation. Here, we introduce a simila procedure which will be referred to as the 

configuration interaction in the lower bound method ofreduced density mat& theory. 



Recdl that the x,  matrix can be expressed as 

and the original central optimization problem of minimizing the energy expression 

< h, x > is equivalent to seeking k E K c H that maximizes X(k), the bottom 

eigenvalue of -h + k given by 

As H is a direct sum of smaller blocks, i.e., H = Ci $Hi, any m E H can be expressed 

as m = Ci @m, with mi corresponding to block Hi. At the optimum, the optimized 

X(k) appears only in certain blocks where x,i = -hi +k - h(k) fi hhas at least one zero 

eigenvalue. In other words, X(k) appears only in blocks where x.i is positive semi- 

definite or equivalently X(k) does not appear in blocks where x,i is positive definite. 

So it is quite possible that the optimization can be carried out within only blocks 

where 2 O at the optimum and the optimized X(k), as well as the optimized x., 

will remain unchanged as long as the number of variables in x, is not reduced. This 

procedure can be achieved simply by reformulating H and the basic structure of the 

convex problem defined in Eq. (4.7) remains unaltered. 

Why are blocks with zero eigenvalues at  the optimum the most important? The 

physical meaning can be given as follows: For any x ~ ,  there is a corresponding y*i 

with x*iy*i = O. If is positive definite, yn is a trivial zero matrix; Whereas if X, 

has zero eigenvalues, then y8i is a matrix representation for an operator of the form 

ki+l& where kj is a linear combination of the basis operators for x*i. As x * * Y ~  = O 
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means ~r[k, 'k ,dj  = O, .k must be a killer operator for the corresponding ground state 

wave-function. Thus the correlation in the ground state is determined by the killer 

operaton for the ground state. So, important configurations are really determinecl 

by killers for the ground state. 

If each block x.i is called a configuration, then there will be a FCI calculation by 

including al1 blocks of x. or a non FCI calculation by selecting only certain important 

blocks in the lower bound method of reduced density matrix theory. This procedure 

is in exactly the same pattern as that in the wave-function method. As in the wave- 

function method, the dimensionality of the central optimization problem in Eq. (4.7) 

in the lower bound method will also be reduced dramatically by removing unimportant 

configurations. 

Now we will discuss in detail about what kind of configurations are not important 

and thus can be removed from optimizations. 

1. If x,, 2 O as long as certain other blocks in x. are positive semi-definite, x, can 

be removed from the optimization. As an example, if there are several blocks that 

are exactly the same, then only one such block should rernain in the optimization. 

The requirement that x. 2 O cornes fiom n-representability conditions. As x*j 2 0 is 

no longer an independent condition for x. 2 0, obviously the removal of this kind of 

blocks will keep the convex structure of x. unaltered in the parameter space. Thus 

the optimization in the reduced space will give exactly the same results as that fkom 

FCI optimization. This kind of blocks called type 1 blocks can be determined by 

analyzing the convex structure of the x* matrix. 



2. If x.i is strictly positive definite a t  the optimum, then obviously the correspond- 

ing block c m  also be removed from the optimization without altering the optimized 

x,. In other words, the optimization can be performed using only blocks where ev- 

ery corresponding xlj has at  least one zero eigenvdue a t  the optimum. This kind of 

blocks is referred to as type II block. Generally speaking, removal of type II blocks 

alters the convex structure of x.. But it wilt leave the extreme point associated 

wit h the optimum studied unchanged as the extreme point is determineci by positive 

semi-definite blocks. Thus type II blocks are optimum dependent and Hamiltonian 

dependent. As an optimum is what we seek, in most cases it is almost impossible to 

figure out exactly how the zero eigenvdues of x, are distributed among the blocks of 

x,. Such a distribution certainly has something to do with the Hamiltonian. So Far 

no general rule on how to locate these zero eigenvalues h a .  been obtained. However 

in practice, a reasonable guess based on the analysis of the convex structure of x. 

and the Hamiltonian can always be made snd the optimization can be perfomed by 

removing ail guessed type II blocks. Then we can check numerically the correctness 

of the initial guess. If the initial guess is correct, the optimized x. should be positive 

semi-definite in the fidl space H; whereas if the initial guess is not correct, some 

blocks of x, will have negative eigenvalues. In the latter case, a new guess can be 

made by adding blocks where x. has negative eigenvalues back into the optimization. 

By repeating this procedure, the desired global optimum can be obtained in a well- 

controlled reduced linear space and the result obtained are exactly the same as t hat 

with the FCI calculation in the lower bound method. 



3. If we further remove some blocks where the corresponding x.i has zero eigen- 

values a t  the optimum, the lower bound obtained may be lower than that from the 

FCI lower bound calculation. This kind of blocks are called type III blocks and will 

not be investigated numerically in this thesis. 

By removing unimportant configurations, the wave-function method will give a 

different ground state although it may be very close to the ground state from a FCI 

calculation; On the other side, the lower bound method will give exactly the same 

ground state as that from a FCI optimization if only type 1 and type II configurations 

are to be removed. 

4.2.4 Numerical Algorithms for Solving the Euler Equation 

Developing efficient numerical procedures for solving the Euler equation defined 

in Eq. (4.11) is the key problem in the lower bound method. Here we present two 

numerical algorithms for solving the Euler equation 

x.y. = O, with x* E SI, y. E KL, (4.29) 

which is defined in section 4.21. Both x. and y. are required to have some fixed but 

convenient normaüzation, e.g. < e, x. >=< e, y, >= 1, where e is as before. This 

eliminates the trivial solution pair x* = O, y. = O to the Euler equation. 

Algorithm 1: 

In this algorithm, an iteration procedure based on Newton's method is imple- 



mented to solve the Euler equation. In this numerical procedure, Xi+l and yi+i in the 

(z  + 1)-th iteration is determined by 

where parameter t is determined by the linear search dong the searching direction 

{Axi, Ayi) to minimize the norm of the matrix 

where the norm of a matrix m is defined as l(rn1I2 = Tr[mtm], and { A q  E SI, Ayi E 

K I )  is determined by solving the linearizecl matrix equation 

This is a second order procedure which involves solving dim, simultaneous linear 

equations with dim(H) < dim, unknowns in each iteration. Finally x, y converge to 

the desired solution pair x*, p~,. 

Algorithm 2. 

Rom a starting pair xo and yo, we are to reduce 1 lxy 1 l 2  with 

x = xo + f s L  with sL E SI, 

y = y0 +kL with kL E KL. 

Let w, TKL be the orthogonal projectors onto SL and KL, respectively. As 

the best sL E SL to reduce llq112 is given by s: = QL (xoyi) with sfyo being the 

orthogonal projection of xo y0 onto the linear space SLyo, md the best kL E KL to 
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reduce l l x ~ 1 1 ~  is @en by kt = ?TKL (xiyO) with xokf being the orthogonal projection 

of xoy0 ont0 the linear space xoKL. This procedure is schematically shown in the 

first two pictures in figure 4.1. 

If we define the linear space spanned by s: as S:, which is a subspace of SI, and 

the linear space spanned by k: as K:, which is a subspace of K L ,  we can carry out 

the reduction of 1 lxy1 l2 in these 1-dimensional linear spaces Sf , K: with 

x = xo+sL with sL E S f ,  

y = y0 + kL with kL E Kf. 

As sL and kL vary only within S: C SL and Kf c KL, llx~11~ may not be reduced 

to zero but to a local minimum with respect to Sf and Kf. At the local minimum, 

xy should be orthogonal to both Sfy and xK:, thus the optimized sL and kL c m  

be obtained by solving the following equations 

These nonlinear equations can be solved iteratively with Newton's method in ex- 

actly the same way as described in algorithm 1. The procedure described above is 

schematically shown in the t hird picture of figure 4.1. 

I I Fiirther, we can define Sk = span{s, , s, , - -, s f ) ,  K i  = span{k:, k:, , ki) 

where sf, kf are determined by projecting xy2 and x2y fiom the previous local 

minimum (with respect to ski, Kki) onto SL and KL, respectively. At the previous 

local minimum, xy is orthogonal to both S,'_,y and x K ~ , ,  which is equivalent to 

xy2 I S . ,  and 1 Kk,.  SO the new bases and are orthogonal to Sk, and 
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(1) (2) (3) 

Figure 4.1: Schematic Illustration for Algonthm 2 

Kt--, , respectively. Thus both (s:, s;, - , sf } and (k:, ki, , kt} are orthogonal 

basis sets which are very convenient in computations. In this way, we generate a 

series of expanded subspaces of SI and KL with 

sfc s;c***c SI, 

K ~ c  K ~ c - - - c  KL. 

In the computation, the reduction of 1 lxyl l 2  begins a t  the left side and is carried out 

step by step €rom the left to the right of the subspace chahs in (4.37) consecutively. 

In the step with sL E Sf and kL E Kf , searching for the local minimum involves 

solving i + j simultaneous linear equations with i + j unknowns in each iteration. 

In each step of the expansion b r  the subspaces in (4.37), the new bases are created 

by projections in exactly the same way as creating s t  and k:. Thus they are the 

best bases to further reduce l l~y11~. FinaUy the global minimum with x.y, = O is 

reached. As Newton's method is used to solve the noniinear equations, this algorithm 

is also a second-order numerical procedure and therefore has fast convergence near 

the minimum. 

By cornparison, the first algorithm is simplet and more straightforward. In nu- 



merical procedure, it needs relatively less number of iterations to get to the global 

minimum. The main disadvantage of this algorithm is that the number of linear equa- 

tions in each iteration grows faster as the system becomes larger and larger. That may 

cause this algorithm to slow down in large systems. The second algorithm seems a 

little more complicated. In the numerical procedure, it involves finding the best bases 

by projection, reducing 1 lxyl l2 in well-controlled smaller subspaces and expanding the 

subspaces step by step. It needs relatively more iterations to converge to the global 

minimum. But as the new bases in each step of the expansion are dways the best, the 

reduction of 1 lxyl l2 in each step is very effective. Actually we do not need to go very 

far dong the subspace chains before the global minimum is reached. In other words, 

the global minimum can be reached within much smaller carefully chosen subspaces 

of SL and KI. Thus the total number of linear equations involved is much less than 

those in algorithm 1. 

It is expected that algorithm 2 will work much faster than algorithm 1 in large 

systems. Not only will it offer a very effective numerical procedure to make the 

lower bound method of reduced density matrix theory a real computationally feasible 

method in large scale, but it will also have much more applications in other linear 

m d  non-linear optimization pro blems. 

In a series of numerical experiments, x and y were symmetnc matrices with di- 

mensions up to 30 and there were up to 465 independent variational parameters. Both 

algorithms showed fast convergence. In the case where x and y were 30 x 30 syrnrnetric 

matrices with 465 variational parameten, both algorithms needed about 20 iterations 



to converge to the desired solutions. In the numerical procedure from algorithm 2, 

the global minimum was reached in the reduced subspaces whose combined dimension 

was about 20* Such a dimension is much lower than the full dimension 465. As a 

result, the number of equations involved there was much less than that in algorithm 1 

and algorithm 2 worked much faster than algorithm 1. These results agree very well 

with Our expectation. 

4.3 Application of the Lower Bound Method to 

1-dimensional Rings 

Here, the lower bound method will be applied to 1-dimensional rings to corn- 

pute the ground state determined by the ionic Hamiltonian h' in Eq. (2.16). The 

Hamil t onian reads 

hr = a$[ + a$;, (4.38) 

where a: and ai are real coefficients, and hf and @ given by 

From the investigation in chapter 2, we know that the ground state of h' is an ionic 

state consisting of empty and on-site pairing ionic lattice sites. Requiring that d is 

a density operator for an ionic state in 1-dimensional rings will put an additional 

constraint on the corresponding x matrix defined in Eq. (4.3). AU elements of the x 

matrix that do not preserve the number of on-site pairings will vanish. For example, 
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~ r [ ( a , b ~ ) + b ~ a , - d ]  = O if a,, br are annihilators on site r with spin up and down 

respectively and a$ is an annihilator on another site r'. Our main interest is the 

half-filled ionic ground state which is the main characteristic of the superconducting 

quantum phases for SH2 in lattices with cubic symmetry. So only rings with an even 

number of lattice sites will be considered. 

The main purpose of our investigation is: 

(1) to further test the numerical procedures we presented above. 

(2) to seek and test proper n-representability conditions which are manageable but 

still give reasonably tight lower bounds to the ground state energy, as well as good 

approximations to the corresponding reduced density matrix in the system. 

The success of such an investigation will make a big step fomard towards applying 

the lower bound method of reduced density matrix theory to 2-dimensional square 

lattices and other more complicated physical systems. Efficient numerical procedures 

based on the main theorem will have applications beyond the lower bound method of 

reduced density matrix t heory. 

4.3.1 The Lower Bound Method with the 2-body Density 

Matrix 

As h' is pure 2-body, the naturd choice for the lower bound method is the 2- 

body density matrix defined in Eq. (4.8). Such a 2-body density m a t h  x should be 

invariant under the particle-hole transformation TpH. Thus idl entries of x of the form 

T'r[Â1d], where Â1 is a pure 1-body operator, will vanish. As a result, the z matrix 



is completely determined by pure 2-body operators and further the corresponding d- 

and q-matrices are equivalent with 

Because of the translational symmetry in the system and because of the fact that 

the ground state investigated is an ionic ground state, there are 1A1 independent 

variables in x which are associated with IAl pure 2-body operators in a ring with IAl 

sites. These variables can be defined as 

4 = ~r[e.,e.,+,d], 14 
with i = 1, 2, O ,  i;-. 

It is the constraint on these variables that completely determines the convex structure 

of the x matrix. 

Let r = 2lAl denote the rank of 1-particle states, the dimension of the x matrix is 

2 (;) + 1 + r2. By rernoving al1 type I blocks, the dimension of the I rnatrix is reduced 

to f 1 ~ 1 .  In the reduced x matrix, there are two 1A1 x [Al blocks whose basis set can 

be chosen as {fiaibi, i = 1, 2, -, 1A1) and {e,, i = 1, 2, - *  * ,  IAI), respectively; 

1 Al 2 x 2 blocks whose bases are given by {a:ai+i, b:+ibi) with i = 1, 2, 1A1/2; 

and [Al 1 x 1 blocks whose bases are given by with i = 1, 2, -, IAI. 

Because of its special symmetric form, the x matrix can be diagonalized by an unitary 

transformation independent of the vaxiables {ai, Bi, i = 1, 2, + , lA1/2). So the 

constraint condition x 2 O, which is equivalent to requiring that all eigenvalues of 

the x matrix be greater than or equal to zero, becomes a set of linear constraints on 



these variables. Thus, the approximately n-representable region in which x 2 O is a 

polyhedron. This makes the investigation of the convex structure of x much easier. 

IAl= 2 Case 

For 1 Al = 2, the simplest case in 1-dimensional rings with an even number of sites, 

the reduced x rnatrbc is determined by al and a. It can be expressed as 

with 

This x matrix can be diagonalizec i by an unitaq transformation 

with 



The convex structure of the x matrix is determined by the non-negativity of d l  

eigenvalues of x, that is 

Such a convex set is schematicdly shown by the triangle VoV!V: in figure 4.2 where 

at  any point inside the triangle, x > O and at  any point on the triangle boundary, 

x 1 O. Vo, V:, and V! are three extreme points of the convex set and thus correspond 

to possible desired solutions in the lower bound method. 

It is easy to check that this convex set is n-representable. Any point outside the 

convex is not n-representable and thus is forbidden. The lower bound method gives 

exactly the same ground state as that from the FCI wave-function method. Arnong 

those extreme points, V o  with {A, ai} = {O, 1) corresponds to the vacuum ground 

state, V .  with {Pi, ai) = (+2, -1) and VI with {pi, ai) = {-2, -1) correspond to 

the half-filled AGP ground states with constant and alternating phases, respectively. 

Here, it is worth mentioning a very special point C with {A, al) = {O, -1) . This 

point corresponds to the checkerboard ground state and happens to be degenerate 

with the AGP ground states in this case. 

1A1 = 4 Case 

For 1A1 = 4, the x matrix is determined by {al, a2, ,Oi, &) and the blocks in the 

reduced x matrix are given by 



Figure 4.2: The Approximately n-representable Region from the Zbody Density Ma- 

In exactly the same procedure as in 1A1 = 2 case, the convex structure of the x mat& 

is determined by the non-negativity of ail its eigenvalues, that is found to be 

- 
1 al Q2 QI 

Ql 1 a1 a 2  

a 2  a1 1 al 

a1 a 2  Q1 1 - - 

9 

[l+ai], with i = 1 and 2. 



The convex set determined by these linear constraints is a polyhedron with five ex- 

trerne points. The projection of this polyhedron ont0 the plane spanned by (al, Pl) 

is a polygon with the projections of the five extreme points as its five vertexes. As the 

ground state energy depends only on al and a, the ground state in the lower bound 

method is best described by such a polygon. In figure 4.2, this polygon is schemati- 

cally given by VoV:,V'..2V!zV!l where Vo, V:, VA, V$ and 1141 are the projections 

of the five extreme points. The associated values of {al ,  az, Pl, p2) a t  these extreme 

points corresponding to Vo, V:, V&, V '  and V!, are given in table 4.1. 

In order to compare the results from the lower bound rnethod and the wave- 

function method, the projections onto the Plai plane of the n-representable half filled 

ionic ground states from the FCI wave-function computation are also schematically 

shown with small disks in figure 4.2. There A t ,  A? correspond to the half-filled AGP 

ground states with constant and alt ernating phases, respect ively, and C corresponds 

to the checkerboard ground state. The associated values of {al, s, a, h ) for these 

special points are also given in table 4.1. 

Despite the increase in dirnensionaüty, both the block structure and the convex 

structure of x are found to be similar to that in IAl = 2, 4 cases. In this case, the 



Table 4.1: Values for Some Special Points with )A) = 4 

polygon from the lower bound method is schematically @en by VoV$V.2V>V!, 

in figure 4.2 where Vo, V:,, VA,  V '  and Vfl correspond to five extreme points 

of the convex set. The n-representable half-filled ionic ground states are also given 

schematically with small circles in figure 4.2 where AC, A! and C correspond to the 

half-filled AGP ground states with constant and alternating phases and the checker- 

board ground state respectively. The associated values of {al, q, Pl , &, P3) at 

these special points are given in table 4.2. 

Fixing Particle Number 

In the above investigations, the number of electrons is not fixed in order to facil- 

itate the study for the convex structure of x. If the number of electrons is fked to 

1 Al (half-filling) , an additional linear condition will arise from 



Table 4.2: Values for Some Special Points with IAl = 6 

This condition will put an additional Iinear constraint on the variables with 

which means that 

It has been checked that the values of variables on ail the extreme points mentioned 

above except Vo, which corresponds to the vacuum ground state, satisfy the condition 

in Eq. (4.51). This indicates that the ground states obtained fiom the lower bound 

method are haKfilled automaticaily. Thus adding condition in Eq. (4.51) to Further 

constrain the x matrix wiLl not improve the lower bounds to the ground state energy 

as well as the approximations to the corresponding reduced density matrix. 



Numericd Cornputations 

Numerical procedures based on the two algonthms presented in the previous sec- 

tion are implemented to compute the ground state in the 1-dimensionai rings dis- 

cussed above. In most situations, the numerical procedures are not very sensitive to 

the starting points. An arbitrarily chosen starting pair {xO, go) with x0 2 0, y0 2 O 

will lead to the desired solutions with fast convergence. The optimized x. corresponds 

to one of the extreme points for the corresponding convex set. But for certain special 

h f ,  degeneracy exists for the ground state. The desired x. no longer simply corre- 

sponds to one of the extreme points but corresponds to a line segment connecting two 

extreme points. In 1A1 = 6 case, for example, al1 points on the line segment V%V& 

correspond to the degenerate ground states of /? with a: = O, 4 2 0. Thus, there 

are extraneous 2.. on the extension of the line segment. In this kind of situation, 

carefully chosen starting points, in which both partners are positive semi-definite and 

very close to the desired solutions, and the push-up procedure based on Theorem 4.2 

are needed to get to the desired solutions. 

The highly symmetric AGP ground states are found to be the most difficult ones 

to compute numerically. As the AGP ground states have much higher degree of 

symrnetry and thus have many more zero eigenvalues in xtGP than other ground 

states, not only every eGP itself is highly degenerate, its partner ytGP, which is 

the positive semi-definite küler of eGP with yfGPeGP = O a t  the optimum, is 

also highly degenerate. Thus there is much more chance to get to the extraneous 

solutions. As there is much higher degree of symmetry in the solid state, the lower 



bound calculation may be more difficult in solid systems than in atomic and nuclear 

systems. 

Although the systems computed are not very large, numerical tests have already 

shown that algorithm 2 had an equally fast speed of convergence as algorithm 1. 

This again indicates that algorithm 2 will be a much faster numerical procedure than 

algorithm 1 when systems become larger and larger. 

Discussions and Conclusions 

As a summary of the above investigation, we have the bllowing conclusions: 

1. As is shown in figure 4.2, the projection onto the al& plane of the n- 

representable region in a 1-dimensional rings is bounded by two line segments meeting 

at  V o  and a smooth curve connecting the other ends of the segments (IAl = 2 is an 

exception). Every point in such a srnooth curve represents a half-filled ionic ground 

state. The middle point C corresponds to the checkerboard ground state and the 

two end points correspond to the half-filled AGP ground states with constant and 

altemating phases, respectively. As the number of sites in the ring increases, the 

corresponding n-representable region wiU shrink. As a result, the middle point C 

remains unchanged and al1 other points on the cuve move inwards. The two end 

points go approaching to A",d A h h i c h  correspond to the half-filled AGP ground 

states with constant and alternating phases respectively for 1A1 + m. 

2. On the other side, the projection onto the alh of the approximately n- 

representable region obtained fiom the lower bound method is a polygon. The half- 



filled ionic ground states are represented by several line segments which connect the 

extreme points of the corresponding convex set non-smoothly. Point C, and the 

points conesponding to the AGP ground states are the only points corresponding 

to the n-representable half-filled ionic ground states. As the number of sites in a 

ring increases, the approximately n-representable region will expand. The extreme 

points with pi > O and pl < O approach to V: aad VI,  respectively. As a result, 

for lAl + oo, the polygon for the approximately n-representable region will be 

represented by the triangle V O  VfV2. 

3. From the above discussion, it is obvious that: as the number of sites in a ring 

increases, the approximately n-representable region from the lower bound method will 

go in the opposite direction to the n-representable region. This strongly indicates that 

the d-, q- and g-conditions for the 2-body density matrix in the lower bound method 

are not good enough to give reasonably tight lower bounds to the grouiid state energy 

as well as good approximations to the corresponding 2-body reduced density matrix 

in 1-dimensional rings. So more n-representability conditions are needed in order to 

give a better description of the ground states using the lower bound method. 

4.3.2 The Lower Bound Method with the bbody Density 

Now it is cleaz that more n-representabiliw conditions have to be introduced 

into the lower bound method in order to get better results. But what are the n- 

representability conditions which are important to the ground state and still manage- 



able in the system. There are two alternatives: one is to introduce more necessary 

n-representability conditions for the 2-body reduced density matrix , the other is to 

use the pbody density matrk with p > 2 in the lower bound method. The follow- 

ing analysis on the ionic pound state for A = 4 strongly indicates that the second 

alternative is a better choice in our system. 

The 3-body Reduced Density Matriv for 1A( = 4 

Let the pair creation and annihilation operators be 

then the wave-function for the n-representable half-filled ionic ground state in the 

ring with 1A1 = 4 c m  be generally expressed as 

with O 5 151 5 1. When C = 0, &(5) is the checkerboard ground state; and when 

( = +1 or -1, q5JC) is the AGP ground state with a constant or an alternating phase. 

We build a set of killer operators for $,([) as: 



Keep in mind that the operator 

A 

is a killer for al1 half-filled states. Rom these killer operators, we can build a Hamil- 

tonian 

Obviously ht is positive semi-definite and it is also a killer operator for 4&). Thus 

$Je) is the ground state of h(c). hE can be further expressed as 

Apart from a constant, &) is exactly the ionic Hamihonian h* in Eq. (4.38). The 

most striking feature of h(c) is that: in its expression (4.57), any ki is a polynornial 

in creation and annihilation operators of degree less than or equal to 3 and thus is a 

basis operator for the 3-body density matrix. 

Let X ~ ~ K )  be the n-representable 3-body density matrix corresponding to +Je) 
and h(c) be the positive semi-defmite matrix representation of h(c) in the same basis 

set as X @ ~ ( O .  As &) is a killer of $&), we have 

This means that if we use the %body density matrix to replace the 2-body density 

matrix in the convex problem defined in Eq. (4.7), then x+~(c), h(c) will be the desired 

solution pair for the Euler Equation. Thus the ground states obtained in the Iower 



bound method with entries of the 3-body density matrix as variational parameters 

will be exactly the same as that from the FCI wave-hinction method. 

This important result strongly indicates that the 3-body density matrix is a good 

candidate to replace the 2-body density matrix in the lower bound method. 

The 3-body Density Matrlv in the Lower Bound Method 

In the cases of IAl > 4, no 3-body killer operator with similar form as that in 

Eq. (4.57) has been found. This means that the 3-body density matrix corresponding 

to the ground state obtained from the lower bound method will probably not be 

exactly the same as that from the wave-function method. However, the significant 

improvement of the lower bound in the ]A1 = 4 case strongly suggests that the lower 

bound method with entries of the 3-body density matrix as variational parameters 

may give much tighter lower bounds to the ground state energy as well as much better 

approximations to the corresponding ground state in the system. 

The 3-body density matrix x is determined by up to 3-body operators. It can be 

generally decomposed as 

where Âo, ÂL, Â2 and Â3 are scalar, pure 1-, 2- and %body operators, respectively. As 

the Hamilt onian studied is invariant under particle-hole transfomat ion, bot h TT [ÂLdj 

and T'r[Â3dj vanish. Thus the number of independent variables in the 3-body density 

matrix is exactly the same as that in the 2-body densiw mat&. From the definition 

in Eq. (4.3), it is obvious that aU the blocks fkom the 2-body density matrix will be 
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included in the fbody  density matrix . Thus the dimensionality of the problem is 

increased. The general structure of the convex problem defined in Eq. (4.7) remains 

unaitered. 

For 1A1 = 4, after rernoving ail type 1 blocks, new blocks in the reduced x rnatrix 

are given by 

with {2b1 (aibi)+, - f ia: ,  &:eai, i = 2, 3, 4) as bases; 



with {2fia:a:a3, 24a:b&, 2&b,fa;bl, 2fiala2a3) as bases. 

It has been checked that at extreme points V$, V!,, V A  and Vj2, these blocks al1 

have negative eigenvalues and bigger negative eigenvalues are always found in the first 

and third blocks. By further analysis of the exact solution, we found that these two 

blocks alone will be enough to giw the desired solutions in the lower bound method. 

As the number of sites increases, the block structure in the reduced x matrix is 

found to be similar to that for IAl = 4. There are two big blocks whose dimensions in- 

crease linearly with (AI and whose bases are given by {2bl(~bi)+? -fia:, fia:eai, 

i = 2, 3, -, 1A1 ) and {2al(&bi)+, i = 2, 3, -, A) respectively. There are a series 

of 4 x 4 blocks, whose basis set is given by {2fia$ a&, 2 a b  b , 2 a b ;  a$ bi, , 

with il # i2 # i3. The three indices can be associated with a special 

configuration. For example, in the case with IAI = 6, there are three 4 x 4 blocks 

given by 



The basis sets for these three blocks are 

{2fia:aga3, 2\/2a:6$b2, 2fi6ga$bl, 2fiala2a3},  

(2fia:azfa4, 2fia:6:h1 2&646bl, 2 & z l a 2 a 4 ) ,  

{2\/S0:a5a5, 2fia:btb3, 2fib;a3+bl, 2&a3a5}? 

that are associated with three configurations schematicdy shown in (l), (2) and (3) 

of figure 4.3, respectively. 

By hrther analysis , we found that: at extreme points V& V!,, V& and V ' ,  

these blocks have negative eigenvalues and bigger negative eigenvalues axe always in 
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Figure 4.3: Some Configurations in the 3-body Density Matrix for A = 6 

the first big block and the 4 x 4 block associated with configuration (1) in figure 4.3 . 

It seems that the positive semi-definite condition for the second big block is contained 

in the first big block and the 4 x 4 block associated with configuration (1) with three 

connected nearest neighbor sites is much more important than other 4 x 4 blocks in 

determining the Iower bound to the ground state in the system. So it is quite possible 

that the bottorn eigenvalues of the tbody  density rnatriv for a 1-dimensional ring 

can always be determined in the two blocks mentioned above. This means that: killer 

operators for the approximately n-representable ground state, which determine the 

correlation in the ground state, are iinear combinations of the basis operators for the 

two blocks. Thus these blocks are the most important configurations in the 3-body 

density rnatriv x. This statement wi l l  be checked numerically in our computation. 

If it is true, the lower bound computation with the t b o d y  density matrix will be 

simplified dramatically in our system. 

Numerical Computations with the 3-body Density Matrix 

Direct lower bound computatîons with entries of the 3-body density mat& as 



variational parameters are done for 1-dimensional rings with IAl = 6, 8 and 10. With 

circles and disks to represent the computed results for the half-filled ionic ground 

states from the wave-function method and the lower bound method respectively, the 

projections onto the ,&al plane of the computed correlation holes for IAl =6, 8, 10 

are schematicdy given in figures 4.4, 4.5 and 4.6, respectively. Rom these figures, 

it is quite clear that the approximately n-representable region are very close to their 

n-representable counterparts. In order to give a complete comparison, the ground 

state energies and the values of variables corresponding to the ground state of hL in 

Eq. (4.38) with cri = -1 and a{ = O for IAl = 6, 8, 10 are given in table 4.3. These 

results show that the lower bounds obtained are very tight and the approximately 

n-representable 3-body density matrices corresponding to the half-filled ionic ground 

states are very close to their n-representable counterparts. 

In numerical computations, numerical procedures fiom both algorithms showed 

a fast speed of convergence. Actually as the dimensionality of the 3-body density 

mat& is reduced efficiently by removing type 1 blocks, the speed of convergence here 

is almost as fast as that in the lower bound method with the 2-body density matrk. 

Numerical lower bound computations with only the two most important config- 

urations discussed above are also carried out. The results obtained are exactly the 

same as those from the FCI lower bound computations. This proved nurnericaily o u  

prediction that the bottom eigenvalues of the ébody density matrices correspond- 

ing to the half-meci ionic ground states are determined by these most important 

configurations. 



Figure 4.4: n-representable Region frorn the 3-body Density Matrix for (A( = 6 

Conclusions 

From these computed results, we find that: the lower bound rnethod with entries 

of the t b o d y  density matrix as variational parameters works very well in our sys- 

tem. Not only does the computed approximately n-representable region have correct 

behavior, Le., the approximately n-representable region will shrink as the number of 

sites increases, but also the lower bounds obtained are extremely tight and the o p  

timized 3-body density matrices are very close to their n-representable counterparts. 

The signincant improvement of the results fiom the Zbody density matrix to the 3- 

body density matrix shows that the %body density matrix in the lower bound method 

is a much better choice. The tightness of the lower bounds and the closeness of the 

computed values of all  variables to those from the wave-hction method strongly 



Figure 4.5: ndrepresentable Region fiom the Sbody Density Matrix for IAI = 8 

indicate that the lower bound method with the pbody density matrix for larger p 

c m  not further improve the results very much. Thus the lower bound method with 

the 3-body density matrix is the best choice for the 1-dimensional system. 

As pure 2-body nearest neighbor interactions in 1-, 2- and 3-dimensional cubic 

lattices share a lot of common characteristics, almost al1 the strategies used in the 

lower bound computation for 1-dimensional rings can be transferred into computa- 

tions for 2- and 3-dimensional cubic lattices. Among these strategies, the idea of lower 

bound computations using only a small number of most important configurations is 

especially important. It has enormous practical signiscance since the dimensionality 

of the problem can be reduced considerably. The second numerical algorithm is a 

second-order numerical procedure and it is proved both theoreticay and numericdy 

to have a very fast speed of convergence even in large systems. So it is quite reason- 



Figure 4.6: n-representable Region from the 3-body Density Matrix for 1A1 = 10 

able to predict that direct lower bound cornputations in 2-dimensional square lattices 

will be achieved soon. 



Table 4.3: Values for the Ground State of hi with a[ = -1, ai = O 



Chapter 5 

Conclusions 

By considering Pauli's principle and the nearest neighbor interactions, we found a 

seven-dimensional linear space H of dl spin-invariant up to two-body nearest neighbor 

interactions in a class of lattices where al1 nearest neighbor pairs are equivalent. We 

classified these interactions into pure one-body which belong to Hl, a two-dimensional 

subspace of H, and pure two-body which belong to HZ, a five-dimensional subspace 

of H. 

We studied the phase structure for pure two-body interactions in SH2. We found 

a very simple way to label quantum phases for S p  by a unique set of quantum 

numbers . 
By simply using good quantum numbers and the idea of basin of attraction, we 

found six quantum phases of Snr in lattices with cubic symmetry. These quantum 

phases are a FM phase, an AFM phase, two superconducting phases characterized 

by the constant and alternathg phase AGP functions, respectively, the mixed phase 



where half of the sites are ionic and the other half are valence and the trivial vacuum 

quantum phase. Half-filling and collective behavior with some kind of long-range 

order are the main features for these quantum phases. 

By analyzing the relationship between the basins of attraction for each of the 

adjacent phase pairs, we found that phase transitions are very likely to occur between 

each of the superconducting phases and the FM or AFM phase. 

Both superconducting phases found are BCS-like superconducting states which 

are characterized by the condensate of coherent electron pairs. The on-site AGP 

pairing seems to be the unique AGP pairing in the system. Thus the on-site AGP 

pairing plays a key role in the superconducting phases. The uniqueness of the on-site 

AGP pairing is a very important conjecture. The proof or disproof of this conjec- 

ture will help us to gain a deeper understanding about the relationship between the 

AGP pairing and the quantum phases in cubic lattices. This will further help us to 

understand better about superconductivity in these lattices. 

We formulated the central optimization problem in the lower bound method of re- 

duced density matrix theory into a convex problem. Two numerical algorithms based 

on the main theorem are presented and prograrnmed to solve the central optimization 

problem. Numerical procedures from both algonthms are second-order procedures. 

They exhibit a fast speed of convergence in our numerical computations. Both theo- 

retical analysis and numerical experimentation show that numerical procedure fiom 

algorithm 2 will work even faster in large systems. 

Numerical computations with the lower bound method are carried out to approach 



both the two-body and the three-body reduced density matrices corresponding to the 

ionic ground states in one-dimensional rings. With the two-body density matrix, the 

results obtained show that: the lower bounds are not very close to the ground state 

energy from the full configuration wave-function method. The situation will become 

even worse as the number of sites increases. Thus, the most commonly used d, q and 

g n-representability conditions are not good enough to give reasonably tight lower 

bounds to the ground state as wel1 as good approximations to the corresponding 

n-representable two-body density matrix in the system. 

Both theoretical andysis and numerical computation show that the lower bound 

method with the three-body density matrix is the best choice for our system. Al- 

though the number of variables in the three-body density matrix is exactly the same 

as that in two-body density matrix, the lower bound obtained is very tight and the 

optimized three-body density matrix is very close to its n-representable counterpart. 

Numerical computations with only the most important configurations are also 

canied out. The results obtained are exactly the same as those from the full con- 

figuration lower bound computations and the dirnensionality of the computation is 

reduced drarnaticaily. 

As pure two-body nearest neighbor interactions in one-, two- and three-dimensional 

cubic lattices share a lot of common characteristics, almost all the strategies used in 

the lower bound computation for one-dimensional rings can be transferred into com- 

putations for higher-dimensional cubic lattices. Rom the computed results and con- 

clusions for one-dimensional rings, i t  is reasonable to predict that direct lower bound 



computation in two-dimensional square lattices is around the corner. The application 

of the lower bound method to other more complicated systems is not very far away. 

It is found that the size of the basin of attraction for the mixed quantum phase is 

dimension dependent because of the fact that the degree of phase frustration in the 

mixed quantum phase depends on the dimensionality of the lattice. This will further 

affect the size of the basins of attraction for other quantum phases and thus will be the 

cause for some dimension dependent phenomena of the system. The exact relationship 

between the size of basin of attractions and the dimensionality can be determined 

by numerical computations. It may further explain why the superconducting phase 

prefers two-dimensional square lattices and if it is possible for the superconducting 

phase to occur in t hree-dimensional lat tices. 

The numerical procedure from algorithm 2 is proved to be a very efficient numerical 

procedure, especially for large systems. It will not only help to make the lower 

bound method of reduced density matriv theory to become a computationdy feasible 

method in large scale but should also have more applications in other linear and 

nonlinear optimization problems. 

After dl, our work makes it one step closer to achieving the dream of replacing 

the wave-function method with the lower bound method of reduced density matrix 

theory. 
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