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Abstract

We build a family of Hamiltonians which include all two-body spin-invariant near-
est neighbor interactions for a class of lattices. We study the phase structure for the
pure two-body interactions in the family and label quantum phases with good quan-
tum numbers. Possible quantum phases and phase transitions are investigated in
lattices with cubic symmetry.

We are especially interested in the superconducting phase and its adjacent quan-
tum phases in these systems. The relationship between the superconducting phase
and the antisymmetrized geminal power function, which has a very close relation
to the superconducting ground state in the microscopic theory of Bardeen, Cooper
and Schrieffer for the conventional superconductivity, is addressed. This is done to
gain a better understanding about the physical mechanism of superconducting pair-
ing and thus the physical mechanism of high-temperature superconductivity in the
CuQ, based superconducting materials.

Aiming at a viable alternative to the wave-function approach, we analyze the
lower bound method of reduced density matrix theory, a method which obtains a

lower bound to the ground state energy of a many-body system as well as an ap-



proximation to the corresponding reduced density matrix. Two numerical algorithms
based on a main theorem giving necessary and sufficient conditions for the optimum
are presented. Numerical procedures for these algorithms are programmed to solve
the central optimization program in the lower bound method. We consider their con-
vergence properties which are very crucial for the lower bound method to become a
computationally feasible method in large scale.

Direct lower bound calculations are carried out for the first time in one-dimensional
rings. The entries of both the two-body and the three-body density matrices are used
as variational parameters in these computations. The results obtained show that the
three-body density matrix is the best choice for the lower bound method in these one-
dimensional systems. The lower bound method with the three-body density matrix
effectively provides a solution to the n-representability problem.

It is predicted that direct lower bound calculations in two-dimensional square

lattices and other more complicated systems will be very successful too.
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Statement of Originality

The original contributions presented in this thesis are summarized as follows:

e Quantum phases for pure two-body interactions. Pure two-body spin-invariant
nearest neighbor interactions for a class of lattices are built and analyzed. Quan-

tum phases for these interactions are studied.

The antisymmetrized geminal power wave-functions and the superconducting
ground states. Possible ground states, which can be described by the antisym-
metrized geminal power wave-functions and thus are superconducting ground

states in lattices with cubic symmetry, are studied.

The lower bound method of reduced density matrix theory. The central opti-
mization problem in the lower bound method of reduced density matrix theory
is studied. Two numerical algorithms are presented to solve the central opti-

mization problem with a fast speed of convergence.

Application of the lower bound method of reduced density matrix theory. Di-
rect lower bound calculations with the entries of both the two-body and the
three-body density matrices as véria.tiona.l parameters are performed in one-
dimensional rings.

iii



Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor Dr. Robert
Erdahl. Without his conscientious guidance and advice, this work could never have
been done. I learned a lot of mathematics from him which will benefit me for the rest
of my life.

I would like to express my sincere gratitude to my co-supervisor Dr. Vedene Smith
for all his advice and help. I feel proud to have been given the opportunity to be in
Smith’s group.

I also wish to extend my thanks to my colleagues in the Mathematics and Statistics
Department and in the Chemistry Department for all kinds of help and interesting
discussions.

Financial support from Queen’s University and Dr. Erdahl are gratefully acknowl-
edged. Thanks should also go to the Chemistry Department for giving me the chance
to work as a teaching assistant.

Throughout the course of this research, the love, encouragement and understand-
ing of my wife Hongshi Yu have meant much more to me than I can put in words.
Last but not least, I thank my 17 months old daughter Daphne Jin. She has been a

source of joy in the past two years, even before she came into this world.

iv



Dedication

To my parents,
Xiuju Tong
and

Xunmin Jin,

with love and respect.



Contents

Abstract . . . . . . . e e e e e e e e e e e e i
Statement of Originality . . . . ... .. ... ... .. .. .. .. ..... iii
Acknowledgements . . . .. .. .. .. ... ... ... . e iv
Comtents . . . . v v i e e e e e e e e e e e e e e e e e e e vi
Listof Figures. . . . . . . . . . . . i X
Listof Tables . . . . . .. .. ... ... .. . ... xi
List of Important Symbols . . . . . .. . ... ... ... ... ... ... . xii
1 Introduction 1
1.1 High-T,. Superconductivity and the 2D Square Lattices . .. ... .. 2

1.1.1 Conventional Superconductivity versus High-T
Superconductivity . . . . . .. .. ... ... oL 2

1.1.2 The Oxide Superconductors and the 2D Square Lattices . . . 3

1.2 Two Important Models for 2-dimensional Square Lattices . . . . . . . 5
1.2.1 The Spin-; Heisenberg Model . ... .............. 5
1.2.2 The 1-band Hubbard Model . . . ... ... ... ....... 7



1.3 The Lower Bound Method of Reduced Density Matrix Theory . . . . 9

1.3.1 The Reduced Density Matrix ... ............... 9
1.3.2 n-representability Conditions . .. .. ... ... .... ... 12
1.3.3 Yang’s Off-Diagonal Long-Range Order . . . . . . ... .. .. 13

1.3.4 The Lower Bound Method of Reduced Density Matrix

2 The Phase Structure for Pure Two-body Spin-invariant Nearest

Neighbor Interactions 19
2.1 Pure 2-body Spin-invariant Nearest Neighbor Interactions. . . . . . . 20
2.2 Construction of Hamiltonians . . . . ... ... ............ 24
2.2.1 Pure 1-body Nearest Neighbor Interactions . . . . . . ... .. 24
2.2.2 Pure 2-body Nearest Neighbor Interactions . . . . . . ... .. 27
2.3 Labeling Quantum Phases for Pure 2-body Nearest Neighbor Interactions 28

24

2.3.1 Classification of Pure 2-body Interactions . . . . . . . ... .. 28
2.3.2 Pair Preservation and Good Quantum Numbers . . . .. . .. 29

2.3.3 Labeling Quantum Phases with a Unique Set of Quantum Num-

bers . . . . .. . e e e e e 32
23.4 Basinsof Attraction . . ... ... .. ... ... ... 35
The Phase Structure for Sg2 in Lattices with Cubic Symmetry . . . . 37
2.4.1 Possible Quantum Phasesof Sz . . . . .. .. oo 0oL 38
24.2 Phase Transitions . . . . ... .. ... .. ........... 49
2.4.3 The Phase Structure and the Dimensionality . . . . . ... .. 53



3 The Unique On-site AGP Pairing for the Superconducting Phase 55

3.1 AGP Functions and Their Killers . . .. ................ 56
311 AGPfunctions .. ................¢¢co..... 56
3.1.2 An AGP Function Is Uniquely Determined by Its Killers . . . 57

3.1.3 The Unique Representation of the 2-body Density Matrix Cor-
responding to An AGP Wave-Function . . ... ... ... .. 60

3.2 The Symmetry Properties of AGP Functions and Their Generating

Geminals. . . . ... ... ... ... ... 62
321 SpinSymmetry . . ... ... .. ... . 62
3.22 Spatial Symmetry . . . . .. ... ... ... o ... 64
3.3 The Unique AGP Pairing in Lattices with Cubic Symmetry. . . . . . 65
3.3.1 The Geometry Effect on the AGP Ground States .. ... .. 65
3.3.2 The Unique On-site AGP Pairing . ............... 67

4 Approaching the Ground State with the Lower Bound Method of

Reduced Density Matrix Theory 71
4.1 Formulation of the Central Optimization Problem . . . . . .. .. .. 72
4.2 Solving the Central Optimization Problem . ... ... ... .. ... 78
4.2.1 Necessary and Sufficient Conditions for the Optimum . . . . . 78
4.2.2 Symmetry Considerations . . .................. 83
4.2.3 Configuration Interactions in the Lower Bound Method . . . . 86

4.2.4 Numerical Algorithms for Solving the Euler Equation z,y, =0. 90

4.3 Application of the Lower Bound Method to 1-dimensional Rings . . . 95

ess



4.3.1 The Lower Bound Method with the 2-body Density Matrix . .

4.3.2 The Lower Bound Method with the 3-body Density Matrix . .

5 Conclusions

.......................................

96

106

119



List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

4.1

4.2

4.3

4.4

4.5

4.6

A 2-dimensional Square Lattice . . ... ................ 4
Labeling of Quantum Phases for Sgz with {n;,ny} . ... ... ... 34
Vacuum and Checkerboard States . . . ... .............. 39
Phase Factor Setting for Three Ionic Configurations . . . . . .. ... 40
Phase Frustration in Mixed Ground States . . . .. ... ....... 47
The Phase Diagramfor Sy2 . . . . .. ... .. ... ......... 48
Schematic Illustration for Algorithm2 . ... ... ... ... .... 93

The Approximately n-representable Region from the 2-body Density

Some Configurations in the 3-body Density Matrix for A=6 . . . . . 113
n-representable Region from the 3-body Density Matrix for |[A|=6 . 115
n-representable Region from the 3-body Density Matrix for |[A| =8 . 116

n-representable Region from the 3-body Density Matrix for |A| =10. 117



List of Tables

4.1 Values for Some Special Points with [A| = 4

4.2 Values for Some Special Points with |A| =6

--------------

..............

4.3 Values for the Ground State of A/ with af = -1, af=0 .. ... ..



List of Important Symbols

BCS: Bardeen-Cooper-Schrieffer.

SC: Superconductivity.

F'M: Ferromagnetic.

AFM: Anti-ferromagnetic.

AGP: Antisymmetrized geminal power.

ODLRO: Off-diagonal long-range order.

FCI: Full configuration interaction.

H!: A linear space of pure 1-body spin-invariant interactions.
H?: A linear space of pure 2-body spin-invariant interactions.
Sy2: A unit sphere of pure 2-body spin-invariant interactions.
hV: Valence Hamiltonian.

h!: Ionic Hamiltonian.

hM: Mixed Hamiltonian.

NTV: Operator that counts ionic and valence sites.

Hp(1,): Basin of attraction for ground state 1.

A: A vector space that designates a lattice.

|A{: The total number of lattice sites in A.



n;: The total number of ionic sites.

nt(e): The number of empty ionic sites.

n{d): The number of doubly occupied ionic sites.

ny: The total number of valence sites.

nl,: The number of valence sites with spin up.

ni,: The number of valence sites with spin down.
<i,j>: A pair of nearest neighbor sites in a lattice.
nne: The number of nearest neighbor sites in a lattice.
S: Spin operator.

|0 >: Vacuum state.

Tpu: Particle-hole transformation.

[+ B

: Identity operator.

d: The von Neumann density operator.

d™: The density operator for an n-particle system.

d®?: p-body density matrix.

DP: A convex set of p-body density matrices.

d®: n-representable p-body density matrix.

D?: A convex set of n-representable p-body density matrices.
S: Pauli subspace.

0: Symbol indicating the end of a proof.



Chapter 1

Introduction

In this chapter, we will first give a brief review on the recent development of studies
on high-temperature superconductivity. We will focus on studies of two theoretical
models, the Heisenberg model and the Hubbard model for 2D square lattices. The
relationship between these models and high-temperature superconductivity will be
addressed. Then, we will give a brief introduction to the lower bound method of

reduced density matrix theory.



1.1 High-T, Superconductivity and the 2D Square

Lattices

1.1.1 Conventional Superconductivity versus High-T,
Superconductivity

With respect to superconductivity (SC), one can discern two fields of interest. The
first one, the field of conventional SC, has its origin in 1911. In that year, Kamerlingh-
Onnes discovered the phenomenon of SC, in mercury, which has a critical temperature,
T., of 4.19 K [1]. Since then, other materials have been found to be superconductors.
Until 1986, the highest T, value was 23.2 K which was found in the alloy Nb;Ge in
1973 [2]. It was widely felt that this value could at best be improved by only a degree
or two in some exotic metallic alloy. To this point, all superconducting materials
found were metals or alloys. The theory of Bardeen, Cooper and Schrieffer in 1957,
referred to as BCS theory, was generally accepted as the microscopic theory which
shows that the condensate of coherent electron pairs (known as the Cooper pairs)
induced by the electron-phonon interaction is responsible for SC [3].

However, in 1986 Bednorz and Miiller observed a 7, of 30 K in a class of cuprates,
based on the parent compound La,CuO, [4]. This is the starting point of the second
field of SC: the field of high-T, superconductivity. Ever since, several other super-
conducting materials with higher T.s were found and recently, Gao et al. reported

the highest T, value so far of 164 K in a material which contains optimally doped



HgBa,CayCu30s. . [5].

The practical importance of a T, above the boiling point of nitrogen, 77.4 K, is
that instead of liquid helium (with boiling point of 4.2 K), liquid nitrogen can be used
for keeping the system at the appropriate temperature. This is much easier not only
because of the higher boiling point but also because of the latent heat of nitrogen,
which is about 10° times the latent heat of helium.

From a theoretical point of view, the conventional electron-phonon interaction ap-
pears not to be the origin of SC in these new superconducting materials, thus leaving
the fundamental physics open to investigation. Indeed, it is becoming apparent that
many of the properties of these new materials are unusual and a proper understanding
will require developing and extending concepts from many areas of condensed mat-
ter physics. Nevertheless, the superconducting state appears to be associated with
a pairing of electrons, and hence the overall superconducting behavior of the new
systems will be similar in many respects to the conventional systems. In fact most
of the familiar phenomena which are a manifestation of the superconducting state—
persistent currents, Josephson tunneling, vortex lattice—have been established in the

new systems.

1.1.2 The Oxide Superconductors and the 2D Square Lat-
tices

Among the new superconductors, there is a class of oxide materials which have

attracted the most attention. The most striking feature of these materials is that in



their crystal structures, one always observes parallel Cu-O planes. Both experimental
evidence and theoretical analysis have shown that these parallel Cu-O planes in the
cuprates dominate the material from the electronic, superconducting and structural
points of view and are the cause of the highly anisotropic normal-state and supercon-
ducting properties [6]. The interaction between the adjacent Cu-O planes is much
weaker than within each Cu-O plane. Thus it is widely believed that the study of one

such separated Cu-O plane may reveal the fundamental physics in the whole system.

y

Figure 1.1: A 2-dimensional Square Lattice

Many models have been suggested to study the Cu-O plane. A review of theo-
retical models for the superconducting state and the superconducting pairing can be
found in reference [7]. Among these models are a series of 1-band models for a 2-
dimensional square lattice schematically shown in figure 1.1. Here, the square lattice
refers to the positions (sites) of the Cu atoms in a Cu-O plane (x-y plane), the z axis
is chosen as the quantization axis, and the 1-band is a result of the fact that each Cu
atom in the Cu-O plane contributes one spatial orbital to the system. 1-band models

are the simplest models and are the starting point for more sophisticated models.



1.2 Two Important Models for 2-dimensional Square

Lattices

The spin-3 Heisenberg model and the Hubbard model on square lattices are the

most basic models that are studied in high-T, superconductivity.

1.2.1 The Spin-{ Heisenberg Model

The Heisenberg Hamiltonian takes its name from an early paper on ferromag-
netism by Heisenberg [8]. In a 2-electron system with a spin-free Hamiltonian, let 'E
and 3E denote the energies for the lowest singlet and triplet states, respectively, the
coupling constant J, also called exchange integral, can be defined as J = (°E — 'E)
[9]. Obviously with J < 0, one has parallel spin alignment in the ground state
(ferromagnetism); whereas with J > 0, one has antiparallel spin alignment in the
ground state (antiferromagnetism). The Heisenberg operator, which is equivalent to

the Hamiltonian for the 2-electron system, is given by
1 - -
Hﬂm‘senberg = Z(lE + 33E) + J51-5,. (1'1)

Here S, and S, are spin operators for the two electrons. Later, this idea was gener-
alized to many-particle systems with any spin in any dimension.

The magnetic properties of the oxide materials have been of particular interest
since the discovery in some parent (undoped) oxide materials that the Cu ions carry

unpaired spins [10, 11] and these Cu spins order antiferromagnetically [12]-[15], with



the consequent possibility that the magnetic fluctuation may be responsible for su-
perconductivity.

The spin--;- antiferromagnetic Heisenberg model describes a system which consists
of interacting magnetic particles—the spins-% —which are situated on the sites of a

square lattice. The corresponding Hamiltonian is

Hbeiserserg =J Y. 50855 =J T SiSi+J 3 (SFSF+S¥SY). (1.2

<ij> <ij> <hj>

Here §; is the spin operator corresponding to site i and J is the coupling constant
between spins on every pair of nearest neighbor sites < i,j >. With J > 0, this
model is assumed to describe 2D antiferromagnetism in an isolated Cu-O plane of
the undoped oxide materials. The key question to answer is: does this model have a
ground state characterized by a 2-dimensional antiferromagnetic (AFM) long-range
order? In order to answer this question, a lot of effort has been made. Manousakis
reviewed this subject in 1991 [16].

In the right side of the second equality in Eq. (1.2}, the first term is called the
classical term which can be solved exactly. Its ground state is the well-known Néel
state which is characterized by the AFM long-range order. The second term is called
the quantum fluctuation term which reduces or even destroys the AFM long-range
order. Despite its simplicity, this Heisenberg model lacks an exact solution. Numerical
calculations with various techniques, such as exact diagonalization [17], Monte Carlo
simulation [18], series expansion [19], spin-wave theory (20] and resonating-valence-
bond model [21], all suggested that its ground state possesses an AFM long-range
order. The spin fluctuation is not strong enough to destroy the long-range order, but

6



significantly reduces the value of the order parameter. The suggested numerical value
of the order parameter agrees well with the experimental result [16]. It seems that
the Heisenberg model gives a good description of spin dynamics in the undoped oxide
materials.

It is widely believed that an appropriate model for such 2D spin fluctuations,
when supplied with a hopping term that describes the hopping of a magnetic particle
from one site to its nearest neighbor sites, would be an appropriate model to describe

the superconducting states in the doped oxide materials.

1.2.2 The 1-band Hubbard Model

Led by the close proximity of the antiferromagnetic and superconducting phases in
the oxide materials, Anderson proposed to describe the physics of the cuprates by the
large-U, 1-band, Hubbard model on a square lattice [22]. The Hubbard Hamiltonian

is given by

Huupoara =t Y, (af gy + affay + bty + b7 b)) + U Y o asbif by, (1.3)
<> i

here a;, b; are annihilation operators for site i with spin up (z axis) and down respec-
tively. In this expression, the first term is called the hopping term since it describes
the hopping of an electron from site i to its nearest neighbor site j or vice versa with
the same spin. The second term represents the on-site Coulomb repulsion between a
pair of electrons (U > 0).

The best evidence relating superconductivity to the Hubbard model comes from
the neutron diffraction experiments [14]. These experiments not only show the an-

7



tiferromagnetism in the undoped materials but also show that magnetic fluctuations
can survive into the superconducting phase.

In the strong coupling limit, i.e., U >> |t|, the Hubbard Hamiltonian can be trans-
formed into an effective Hamiltonian, called the Hubbard-Anderson Hamiltonian, by
a unitary transformation [23]. The same result can also be obtained by second-order
perturbation theory, in which the hopping term is treated as a perturbation [24].
It can be shown that, at exact half-filling, i.e., the number of electrons equals the
number of sites in a lattice, the Hubbard-Anderson Hamiltonian is equivalent to the
Heisenberg Hamiltonian, which has a ground state with the AFM long-range order.
Since magnetic interactions may be responsible for superconductivity, Anderson has
suggested the so-called Hubbard hypothesis [22] :

The fundamental physics of the ozide superconductors is contained in the Hamiltonian
in Eq. (1.3) on a square lattice for small numbers of holes.

Since the properties of the Hubbard model are not yet under good theoretical
control, there is no proof or disproof, and the testing of this hypothesis is regarded as
a key issue. There are various versions of the Hubbard model, some of which claim
ultimately to give superconductivity via spin fluctuations. But no generally accepted

conclusion has been achieved yet. Anderson has recently reviewed this subject [25].



1.3 The Lower Bound Method of Reduced Density

Matrix Theory

1.3.1 The Reduced Density Matrix

In quantum mechanics, there are two ways to describe a state. One is to use a
wave-function and the other is to use a density operator.

For a pure state which can be described by a wave-function v, the corresponding

density operator is defined as

d=|y><vp]|. (1.4)
Let < -, - > denote the trace scalar product for operators on Fock space. If |4 > is

normalized, i.e., <¥|yY >= 1, we have
<éd>=1, (1.5)

where ¢ is an identity operator. The mean value of a Hermitian operator A on the

state can be calculated with d as
<A>=<A,d>=<y|Aly> . (1.6)

For a non-pure state which is an ensemble of r pure states described by {1, ¥, ~~-,

¥, }, the corresponding density operator is defined as
R r N r
d=Y pidi = pi |9 ><til, (1.7)
i i
here the coefficients p;, ps, --*, pr satisfy the following conditions
r
0<m<1l and Y p=1 (1.8)
i

9



Obviously, the pure state density operator defined in Eq. (1.4) is a special ensemble

density operator. The mean value of A on the mixed state can be computed by
~ -~ ~ r -~ -
<A>=<Ad>=) pi <A d;i>. (1.9)
i

A set C is said to be convex if for every ¢;, ¢ € C and every real number o,
0 < a < 1, the point ac; + (1 — a)c; € C [26]. Obviously, all density operators
defined in Eq. (1.7) form a convex set of positive semi-definite operators D . For an
n-fermion system, such a convex set is usually denoted as D*. Any d* € D™ is called
an n-body density operator. d*, a matrix representation for d® in the linear space of
n-fermion states, is called an n-body density matrix. The convex set of all positive
semi-definite n-body density matrices is denoted as D™.

In atomic, molecular and solid systems, most interactions can be expressed as a
sum of interactions between two identical particles and thus are 2-body. In such sys-
tems, most of the physical properties can be obtained by computing the expectation
value of a 2-body operator. The density operator contains enough information to
evaluate the expectation value for an arbitrary operator. It seems that the density
operator contains ‘too much’ information and a simplified version should be adopted.
Thus comes the reduced density matrix.

For d, the p-body density matrix dP can be defined as

dp(il?iZa ttty ip;jhjZ’ v 1jp) =Tr [a’l'lafz o .aipda_;!;aj-‘; - 'a;; 3 (1'10)

where T'r is the trace on Fock space, ¢, %, - - -, i, represent single particle states and
ai,, - -+, a;, the annihilation operators for these states. All p-body density matrices

10



form a positive semi-definite convex set denoted by D?. In Eq. (1.10), d is called a
representation for the corresponding p-body density matrix. In an n-fermion system,
given an p-body density matrix dP, there need not be an n-body density operator
d® so that Eq. (1.10) holds. d? with at least one representation d" is called an n-
representable or a reduced p-body density matrix. It is usually denoted as df. All
reduced p-body density matrices form a positive semi-definite convex set denoted as
Dp [27, 28].

Any p-body Hermitian operator AP can be expressed as

A= ¥ Auratag e0000 050505 0. (1.11)
i1<iz<m<ip b P
Nn<ia<g<Jp
The expectation value of A? on d" is
<AP> = <AP,d*>
= 7 +
= P A[,,?-l al ;,,J.“.,.,,,J.P]Tr [a.,-lm.:,-2 coeaj,d*afal - air] . (1.12)
11 <i2<<ip
jl<j2<"'<jp
If we use A to represent a matrix whose entries are given by A[a; oty g the
above formula can be simplified as
<A’>=Tr{Ad), with dP € DP. (1.13)

This shows that the expectation value for a p-body operator can be obtained from
the p-body reduced density matrix.

The most important property of D? is that it is n-representable. That means for
any df, € DP, there is at least one n-body density operator d® which can give rise to
d? according to Eq. (1.10). This is a key problem in reduced density matrix theory.

11



1.3.2 n-representability Conditions

d? € DP describes a p-particle state in a p-particle system, whereas d? € D?P

describes a p-particle state in an n-particle system. So,
Df c DP. (1.14)

In a system with up to p-body interactions, in order to obtain information directly
from the p-body reduced density matrix, we must first find D? or equivalently an-
swer the following question: What conditions must DP satisfy in order to be n-
representable? These conditions are called n-representability conditions. If the full
set of n-representability conditions for D? is obtained, one can get rid of the wave-
function and obtain all the physical properties, which are associated with up to p-body
operators, directly from D2.

There have been several early attempts to calculate the properties of n-particle
systems using the entries of d> € D? as variational parameters [29]-[31]. As no n-
representability condition was considered, the results obtained were far away from
the true value. For example, the optimized energy for the Li atom is about 30% lower
than the observed value [32]. These calculations indicated that certain constraints
must be put on D? in order to obtain physically meaningful results and consequently
led to the discovery of the n-representability problem.

The concept of n-representability was first raised in 1961 by Coleman [33]. Since
then a lot of effort has been made to investigate the n-representability conditions,

especially the conditions for D2 [28], [34]-[37]. Although the full set of necessary

12



and sufficient n-representability conditions is not known explicitly, progress has been
made and several important necessary conditions have been discovered. For example,
the famous d, ¢ and g conditions are necessary conditions for D2, which require that
the d matrix whose entries are given by T'r[(a;a,)*dasas), the g matrix given by
Tr|(ataf)*daia]] and the g matrix given by Tr[(1+ ata;)*d(1 + at a4)] be positive
semi-definite.

Generally speaking, so far, we know much more about the wave-function than
the reduced density matrix and the n-representability problem is still very difficult
to deal with. The cause of the difficulties arises from the non-smooth behavior of the
boundary for the convex set D? [37]. This may have something to do with the rigidity
of the system or the non-smooth behavior of the system during phase transitions . The
physical meaning behind the n-representability problem may be much more than just
reducing the number of variables. Léwdin and Coleman reviewed the development of

reduced density matrix theory and the n-representability problem in 1987 [32, 38].

1.3.3 Yang’s Off-Diagonal Long-Range Order

One of the most important properties of the 2-body reduced density matrix is the
off-diagonal long-range order (ODLRO), which relates the ‘large’ eigenvalues of 2 to
superconductivity.

The essence of the BCS theory is the pairing instability and the formation of
a coherent pair condensate [3]. Yang attempted to answer a deeper version of this

question: What is the essence of superconductivity which has somehow been correctly

13



captured by the BCS theory? His answer is that it is the ODLRO, a property of the
2-body reduced density matrix in fermion systems [39]. For an n-fermion system,
the upper bound for the eigenvalues of a 2-body reduced density matrix defined in
Eq. (1.10) was found to be n for an even n or n—1 for an odd n [28, 39]. A eigenvalue
of order n for d2 is called a large eigenvalue. Yang showed that it is when d% € D?
has large eigenvalues that a fermion system manifests certain long-range order such
as present in superconductivity.

In the coordinate space, the off-diagonal entries of the 2-body reduced density

matrix can be expressed as
d2(r,r') = Tr{d"a} b} arby], (1.15)

where a}, b}, when acting on the vacuum state [0 >, create a particle at position r
with spin up and down, respectively. If d2(r, ') does not go to zero as | r—r’ | becomes
large, this fermion system is said to be in a state which possesses the ODLRO. This
is a pure quantum effect involving the off-diagonal elements of the reduced density
matrix which has no classical analogue.

The ODLRO is an idea which has been proposed earlier by Penrose and Onsager
[40] and was confirmed later by Bloch [41]. It follows from Yang’s argument that the
largest possible eigenvalue of d € D? is attained when the associated wave-function
is an antisymmetrized geminal power (AGP) function. AGP functions are very im-
portant in superconductivity as they are the projections onto an n-particle space of

the wave-function used by Badreen, Cooper and Schrieffer in their microscopic theory
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of superconductivity [42]. The BCS superconducting ground state is of the form
[L(ex + BeBi)l0>, (1.16)
k

where the action of By = aja’,, on the vacuum state |0> creates a singlet electron
pair between two spatial orbitals labeled by a pair vectors k and —~k in a reciprocal
lattice space, and ak, Ok are corresponding coefficients. The projection onto the

n-particle space of such a ground state is proportional to

lace>= (3 BLBE)E(0>, (1.17)
k

where f is a coefficient. As an antisymmetrized 2-th power of the two-electron
wave-function (geminal)
lg>= (3 BiBié)I0>, (1.18)
k
tagp is called an antisymmetrized geminal power (AGP) function and usually de-

noted as g".

Yang made the following statements based on either proofs or conjectures [39]:

a) In fermion systems, there is only one route by which d¢2 can exhibit the ODLRO

and this route was chosen by the BCS superconductors.

b) The existence of the ODLRO is a sufficient condition for quantization of magnetic

flux.

c) From the flux quantization, the Meissner effect and superconductivity almost cer-

tainly follow.
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From these statements, it is expected that the ODLRO will be a property not only of
the BCS superconductors, but also of any alternate type of superconductivity which
may be found. Now the concept of the ODLRO has frequently been used as a criterion

for superconducting states in superconductivity studies.

1.3.4 The Lower Bound Method of Reduced Density Matrix
Theory

In an n-fermion system with a 2-body Hamiltonian h, the lower bound method of
reduced density matrix theory consists in finding a minimizer d? that minimizes the

following energy expression:
E(d?®) = Tr|d*h}, d*e€ D}, (1.19)

here A is the matrix representation for h in the same basis set as the 2-body density
matrix d? and D2 is a convex set of approximately n-representable 2-body density
matrices.

If the constraint set D3 C D? satisfies all the n-representability conditions, i.e.,
D2 = D2, then d2 will be the exact 2-body reduced density matrix corresponding to
the exact ground state of the system and E'(d?) will be the exact ground state energy.
Unfortunately, only several known necessary conditions can be used as constraints.
As a result, too much freedom to the variational parameters is given and therefore,
the optimized ground state energy E(d?) lies below the exact ground state energy

obtained from the full configuration interaction (FCI) wave-function calculation with
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the same set of 1-particle states. Thus the lower bound method of reduced density
matrix theory is a method which obtains a lower bound to the ground state energy
of a many-particle system, as well as an approximation to the corresponding reduced
density matrix.

In principle, this method can be used for systems with p-body interactions for any
p < n. In practice, however, it has only been used for systems with up to 2-body
interactions. As d> € D? contains fewer independent variables than d" € D" (unless
n is very small), variational calculations for d? will be much easier than for d". This
is the main reason why people want to use the reduced density matrix to replace the
wave-function in variational calculations.

There have been several attempts to calculate the properties of an n-particle
system using the entries of d? as variational parameters. In earlier attempts, fewer
conditions were used, which were reasonable for simpler systems [44]- [47]. The first
lower bound formula was derived by Bopp [44] and it was successfully applied to three-
electron ions. Later, conditions important for many-body systems were introduced to
further restrict the variation [48]- [50]. In recent attempts, this method was applied
to the Be atom [51] and several nuclear systems [52] with varying degrees of success.
In the case of the Be atom, the lower bound obtained is extremely tight.

Generally speaking, the more the condition set imposed is close to complete, the
tighter the lower bound. But the tightness of the lower bound is also dependent
upoua the specific system considered. For example, with the same set of conditions as

constraints, the computed lower bound for the Be atom agreed with the FCI ground

17



state energy using ls, 2s, 2p orbitals to eight figures [51], but for some nuclear systems,
the lower bounds obtained have been off by up to 15% [52].

In the variational calculation of the lower bound method, constraints from these
known necessary n-representability conditions are usually very difficult to enforce.
As a result, only a few manageable conditions have been used. And even with these
conditions, the speed of convergence in the constrained variation is not very fast. A
very efficient numerical method for this kind of variation has to be discovered before
such a method is computationally feasible in large scale.

In 1979, Erdahl proposed a theorem giving necessary and sufficient conditions for
the optimum of the optimization problem defined in Eq. (1.19). Preliminary numerical
computations based on this theorem are very encouraging [53].

The status of all direct lower bound calculations is still in a pioneering stage.
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Chapter 2

The Phase Structure for Pure
Two-body Spin-invariant Nearest

Neighbor Interactions

In this chapter, first we will construct a family of Hamiltonians which includes all
pure 2-body spin-invariant nearest neighbor interactions (defined in section 2.1) in a
class of lattices where all pairs of nearest neighbor sites are equivalent. Then, we will

investigate the phase structure for these Hamiltonians.
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2.1 Pure 2-body Spin-invariant Nearest Neighbor

Interactions

For a fermion system with up to 2-body interactions, the Hamiltonian can be

generally expressed as

h=caé+ Z fidag*aj + Z gi_;;irya.?'a}'ayaj', (2.1)
W] i<ji'<j’
here é is an identity operator, a", - - -, a;, - - - are creators and annihilators for 1-particle

states and «, fij, gijwy are corresponding coefficients. In this expression, {a; q;}
are called 1-body operators. They represent interactions involving one particle only.
{a;"aj*apaj:} are called 2-body operators and they represent interactions involving
two particles. Thus the three parts in Eq. (2.1) are called scalar, 1- and 2-body
interactions, respectively. In the Hubbard Hamiltonian in Eq. (1.3), for example, the
hopping term is 1-body and the on-site repulsion term is 2-body.

It is well-known that in atomic systems, 1-body interactions play a dominant role
and the beautiful shell structure for electrons is explained by spherical symmetry,
Pauli’s principle and 1-body interactions. In this chapter, we will study how 2-body
interactions and the Pauli’s principle are the essential ingredient for phase separation
in condensed matter. It is significant that 1-body interactions play no role in most
model Hamiltonians used to explain phases such as the ferromagnetic (FM) and
antiferromagnetic (AFM) phases. The single exception is the Hubbard model where
the hopping term appears.

Our study of 2-body interactions in lattices is inspired by extensive studies show-
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ing that 2-body interactions are responsible for high-T, superconductivity {7]. There
are various kinds of model Hamiltonians for 2-dimensional square lattices. But even
for the simplest models, such as the Heisenberg or Hubbard models, both theoretical
and numerical studies are difficult because of the large number of particles involved.
The Hubbard model with strong Coulomb repulsion in Eq. (1.3) has been suggested
as the simplest Hamiltonian that may contain the basic ingredients needed to ex-
plain superconductivity in the 2D systems [22]. So far no generally accepted result
concerning the mechanism for high-7; superconductivity has been obtained.

We want to study a family of Hamiltonians which are simple, but may still reveal
some key phenomena of the real systems. We consider a class of 1-band models where
all pairs of nearest neighbor sites are equivalent and each lattice site contributes
one spatial orbital to the system. 1-dimensional rings with equal distance between
every pair of nearest neighbor sites, 2-dimensional square lattices, 3-dimensional cubic
lattices all belong to this class of lattices. They will be referred to as lattices with
cubic symmetry or 1-, 2-, and 3-dimensional cubic lattices in this thesis. 2-dimensional
hexagonal lattices also belong to this class of lattices. Let an arbitrarily chosen z axis
be the quantization axis. Any lattice site can be empty, occupied by one electron
with spin up (z axis) or down, or occupied by two electrons.

We consider pure 2-body spin-invariant nearest neighbor interactions. Here, near-
est neighbor means that electrons on a site interact with only electrons on sites which
are nearest neighbors. Spin-invariant means that there is no explicit spin-spin inter-

action between electrons. Thus the Hamiltonian will commute with the total spin
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operator of the system. In other words, the Hamiltonian is invariant under the action
of the spin group for the system. Let’s define the trace scalar product on Fock space
between two operators A, B as </i, B>. By removing a proper scalar, any 1-body

operator A! can be made orthogonal to é with
<é,h!>=0. (22)

Such a traceless 1-body operator i is called a pure 1-body operator. Similarly, any

2-body operator h? which is orthogonal to both é and any 1-body operator h! with

<é,h?> = 0,
(2.3)
<hLh?> = 0
is called as a pure 2-body operator. Interactions associated with pure 1- and 2-body

operators are called pure 1- and 2-body interactions, respectively.

With k! and A2, k in the Hamiltonian in Eq. (2.1) can be rewritten as
h=aé+h' + k2 (2.4)

The reason behind such a classification is that both pure 1-body and pure 2-body
operators form a carrier space for the irreducible representation of real canonical
transformations [54]. As a result, pure 2-body operators may have certain common
special properties that are quite different from those of pure 1-body operators.

In this thesis, our main interest is pure 2-body interactions. The main advantage
of pure 2-body interactions over their conventional counterparts comes from their
orthogonality to both scalar and pure 1-body interactions. Such an orthogonality
removes the ambiguity by separating scalar and 1-body interactions completely from
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pure 2-body interactions and thus makes pure 2-body interactions show much more
clearly their ‘true’ characteristics. Most importantly, the introduction of pure 2-body
interactions makes the investigation of phase structure for 2-body interactions much
easier and thus can help us to obtain phase structure information that otherwise may
not be obtained. It can be shown that the Heisenberg Hamiltonian in Eq. (1.2),
which models both the FM and AFM phases on square lattices, is pure 2-body. We
believe that in strongly correlated systems with up to 2-body interactions, it is the
pure 2-body (rather than 1-body) interactions that play a key role in determining the
fundamental physics and this is especially true for systems full of collective behav-
ior. Perturbations from 1-body interactions may make the sharp picture of quantum
phases for pure 2-body interactions become fuzzy. But the fundamental physics, such
as coherent pairings and long-range orders will not be altered.

So in our investigation, the main question to answer is: To what extent can the
phase structure for pure 2-body spin-invariant nearest neighbor interactions on the

lattices be explained by a simple picture as in the atomic case?
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2.2 Construction of Hamiltonians

2.2.1 Pure 1-body Nearest Neighbor Interactions

Because of the equivalence of all the nearest neighbor site pairs in a lattice, any

element % in the family of Hamiltonians can be expressed as

il= E il(ij). (2.5)

<ij>
Here fz<m> is the interaction between the nearest neighbor sites i and j. The notation
< i,j > will be used throughout this thesis to represent a pair of nearest neighbor
sites. Obviously A j> must be Hermitian, symmetric with respect to i and j and
spin-invariant.

In order to construct pure 2-body interactions, we first need to build a complete
basis set for pure 1-body operators associated with <i,j>. Let A be a vector space
that designates a lattice with |A| sites and a;, b; annihilation operators on site i with
spin up (z axis) and down respectively. The spin operators for site i can be defined
as Sit = afbi, ST = b a; and S7 = }(aff a; — b by). The total spin operator for site i
is given by S = S7S7 + L(S}S; + 57 S;t). Let s(3), m4(4) be the quantum numbers
for the total spin and its z-component on site i, the spin eigenstates |gls()m+()] > are

given by

[ge9>=10>, |ol23 >=q}|0>,
(2.6)

6331 >=bF[0>, |009>=a}bf|0> .
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The spin operators associated with <i, j> are given by

S&y> = ST +SY,
;ivj> = Si- + Sj_, (2.7)
2> = 3(SF+5p).

It is easy to verify that these spin operators satisfy the following commutation rela-

tionships
[Siigs» Séigs] = SIiJ»
[SZi4s>r Scigs] = —Saig>s (2.8)
[S&iysr Saigs] = 28%5-

Thus, {SZ; >, SZij>» SZiy> } are the infinitesimal generators for a SU(2) group which
we will denote by SU(2)«i;>. Operators associated with <i,j > can be labeled by

the irreducible representations of this group as

(S21>, QYR = mQEgd,
[Stig>r QU = [(s—mi)(s +m, + 1)]2QETY, (2.9)
(52> QER = [(s+ma)(s —my + 1)]V2QET:Y,
where [s,m,] labels an irreducible representation of SU(2)<;ij>. Any spin-invariant
operator belongs to [0, 0], the identity irreducible representation.

The complete basis set for pure 1-body operators associated with <i, j> can be

labeled by [s, m,] as
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<i,j> Symmetry

(+) Q[l(tﬁli\b
(+) o) 18
) PP
(-) P, 2[?£i],i>
() Pl
(-) P, Iil.léoi].b
() PioL
(+) P, 4[,l'<1i].i>
(+) Pl
(+) PigL
-) Pl
(‘) P, 5[}ng>
) Pisih
(+) Pzl
(+) Pl
(+) Pi5h

with

a;f a; + bt by + af a; + b by,

eq +€x — (€q; + €5);

(af a5 ~ af a;) + (b b5 — b by),

-\/%_(ag-bj — af by),

af aj + bf by — af a; — b7 by,
\/g(bfaj — bf ay),

/3 (atbs + af by),

aif aj — b by + af a; — b by,
Vi ey + b ar),
-V/3(afbi—afty),

é‘(ea] — €4 + €y — €y),

V5 bFas — b} ay),

—\/E (aifb; + af by),

Leq, +€q; — €5, — €3),

Vit ai +bfay),

— ot
e = af a; — aiaf.

(2.10)

(2.11)

Here, the + sign indicates whether the operator is symmetric or antisymmetric with

respect to i and j.

Among these pure 1-body operators, only QQ‘{;"{ j> and Q[g 2! >
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symmetry, i.e., they are Hermitian, symmetric with respect to i and j and spin-
invariant. If we denote by H.;;, the 2-dimensional linear space spanned by Q[Sﬂ i>
and Q[:f{ s> then all the pure 1-body spin-invariant nearest neighbor interactions
associated with < i,j > are contained in H;;, . H' = ¥ ;5 HL;;> will be a 2-

dimensional linear space of all pure 1-body spin-invariant nearest neighbor interac-

tions in the lattice.

2.2.2 Pure 2-body Nearest Neighbor Interactions

Pure 2-body operators can be obtained by coupling pure 1-body operators. With-
out going into details, the linear space of pure 2-body operators, associated with

<i,j> and with the correct symmetry, is 5-dimensional. A basis set is given by

<i,j> Symmetry

0,0
(+) Q£.<lm> = €q;€h; + €5,

(+) Qﬁ‘fﬂ» = af b bya; + a b bray,
(+) Q[so’:gl‘d> = eaienj + eblebj + eaxeb] + eajeb;) (2.12)
(+) Qéuﬂli §> = €ai€a; + En€h; + 4(a; bibf a5 + o b @),

0,0 0,0
(+) Qg’,<li.i> = (eq + ey +€q + ebj)Q£,<]i,j>’

If this linear space is denoted by HZ; ., then H? = ¥ ;. HZ;;, is also 5-dimensional.
This is the linear space of pure 2-body spin-invariant nearest neighbor interactions
in the lattice. It is significant that all pure 2-body spin-invariant nearest neighbor

interactions for these models can be characterized by five real coefficients.
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It is worth noting that the Heisenberg Hamiltonian

- = 1
Hcisenverg = J Y, SiSy=J Y {SiS} +§(S§Sj‘ + 575} (2.13)

<ij> <ij>

J
16 iZJ: {eai€a; + enen; — (€at; + €q56n,) — 8(a b bia; + af b bja;) }
<ij>

belongs to H?, and the Hubbard Hamiltonian

Hyuwbara =t Y (6 aj + af a; + b by + b by) + U Y_ aff aibi s (2.14)
<ig> i

belongs to H' ® H?, a 7-dimensional linear space of all up to 2-body spin-invariant
nearest neighbor interactions in the lattice.

The most striking feature differentiating the pure 1-body interaction from the pure
2-body interaction is their different behavior under particle-hole transformations. Let
Tpy represent the particle-hole transformation that changes creators to annihilators
and annihilators to creators. The action of Tpy, for example, on operator a*bctd
is Tpy(atbctd) = abted®. It is easy to verify that under the action of Tpgy, any
pure 1-body interaction in H' changes its sign whereas any pure 2-body interaction
in H? is invariant. The invariance of H? under the particle-hole transformation is

very important to the study of the phase structure for pure 2-body interactions.

2.3 Labeling Quantum Phases for Pure 2-body Near-

est Neighbor Interactions

2.3.1 Classification of Pure 2-body Interactions

Pure 2-body interactions in H? can be classified according to their behavior in the
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Fock space. Let

hY =T Y eqea; +enes — (ea ey, + €gey) — 8(ai b bia; + af bf byai); (2.15)

<ig>
h' = ofh! + alhi, (2.16)
with
M = Ty (o bibay + of b biay),
. 2.17
M = T4 > (€a;€q; + €b€8; + €85 + €qi€y); (2.17)
M = ay D" (eq + ey + €q; + €5)(a a5 + bt by + af a; + b by); (2.18)
<ig>
and
Y = apry N = ayrv ¥ eqen, (2.19)
i

where J, af, af, apr and ayrv are arbitrary real coefficients. Then any h € H? can
y Gy Qg N \
be expressed as

h=h" + Al + M + N7, (2.20)

The physical meaning for such a classification will be given in the following section.

2.3.2 Pair Preservation and Good Quantum Numbers

In our models, each lattice site usually corresponds to a valence orbital of an atom
or a molecule. For example, each site in a 2-dimensional square lattice corresponds
to a valence d orbital of a Cu atomA in the CuO plane. Since the net charge on
a lattice is zero when the orbital is occupied by one electron and nonzero in other
cases, any lattice site occupied by one electron is called valence and an empty or a
doubly occupied lattice site is called ionic. Two electrons occupying the same site
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form an electron pair called an on-site pairing. Now we will discuss in detail the effect

of various 2-body interactions on these lattice sites. It is easy to see that

;"gi.i>|0> = 0, ﬁzpa?b?'afbj*lb = 0,

ﬁgip“? blo0> = 0,
ﬁgu>af'|0> = 0,
hYsb110> = 0,
Y >aflo> = 0,
hYb710> = 0,
and
izg, §>ai a 10>
hY, ;b7 b7 10>
h¥, ;5 (af b + bf g )j0>

hYi 5> (aibf - bfaf)|0>

il‘éi‘i>afb;-|0> = 0,

ilgi‘j>arajkbj#|0> = 0,
) (2.21)
R >afbibil0> = 0,
;zgi‘i>afb{a;"[0> = 0,
ilz,‘,>bj"ai’“b?'[0> = O,
4Jafaf (0>,
4JBFbF 0>,
(2.22)

4J(a b + b af)|0>,

—12J(af B - bFaf)[0> .

Thus, the action of 2, j> on any configuration is zero unless both i and j are valence.

So the Heisenberg Hamiltonian AY, also called a valence Hamiltonian, is zero in the

ionic subspace where all sites are ionic and its ground state is a valence state where

all sites are valence. Similarly, it can be shown that the action of hL; j> on any

configuration is zero unless both i and j are ionic. As a result, A is called an ionic

Hamiltonian and it is zero in the valence subspace where all sites are valence. When
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both i and j are ionic, we have

h£.<i.i>|0> = 4|0 >, B£'<1J>a?b;—aj’.bj"10> = 4a+b+a b+|0>
b <ig>aibt10> = —4afb}|0>, h <ij>8 b710> = —daf b (0>,
(2.23)
hi<igsl0> = 0, hi cij>ai b g b 10> = 0,

afbj*'|0 >, ;l{'<i‘i>a;.b;'|0 > a{"b?lo >.

hl <lJ>a'i bi |0>
Thus, in AL, j>» the action of hi, called pair transport term, on any ionic configuration
transports a pair of electrons from a doubly occupied ionic site to one of its nearest
neighbor empty ionic sites. The action of A% on any ionic configuration does not
produce new configurations. Obviously, the ground state of A’ is an ionic state. The
action of fzﬁ’i j> on any configuration is zero if both i and j are ionic or valence,
but is non-zero if one site is ionic and the other is valence. Thus A™ , called mixed
Hamiltonian, is zero in both the ionic and the valence subspaces, but is non-zero in

any mixed subspace where some sites are ionic and others are valence. As

<,J>ai |0> = "a;-lo >, h<(J>ai aj b+|0> = —a;-a?b?-lo >,
(2.24)

hM i af10> = —af|0>, A¥, afalbi|0> = —qf FabT10>,
the action of A¥, j> Switches the ionic and valence sites. As a result, the ground
state of 2™ is a mixed state where some sites are ionic and others are valence. The
expectation value of e, e, on any configuration will be +1 if i is ionic or -1 if i is

valence. Thus N'¥ = ¥, e,e;, counts the number of ionic and valence sites. In the

subspace where every configuration has n; ionic sites and ny valence sites,
NI'V =Ny —ny (2.25)
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and thus AV'"” is equivalent to a constant. Later, we will see that AV is very
important in the investigation of phase structure for H?, as it is directly related to
some good quantum numbers of a system.

From the above analysis, we find the most important property of H2: Any h € H?
preserves the total number of on-site pairings. The action of & on any configuration
may result in the exchange of a pairing site with an empty site or a pairing site with
a valence site or an empty site with a valence site or a valence site with another
valence site, but it does not break the on-site pairing. As a result, the number of
doubly occupied ionic sites n;(d), the number of empty ionic sites n;(e), the number
of valence sites with spin up n!, and the number of valence sites with spin down n3, are
all good quantum numbers. Certainly the total number of valence sites ny = nl, +ni,
and the total number of ionic sites n; = n;(d)+n(e) are also good quantum numbers.
As we deal with particle-conserving Hamiltonians, the total number of electrons n =
2n;(d) +ny is also a good quantum number. Because of the spin invariance of H?, the

total spin and its 2-component are good quantum numbers too. The eigenfunctions

of any h € H? can be labeled by these quantum numbers.

2.3.3 Labeling Quantum Phases with a Unique Set of Quan-
tum Numbers

To facilitate our investigation, the length of any h € H? is fixed to one, i.e.,
< h,h >= 1 on Fock space. Under this normalization condition, H? becomes the

whole surface of a unit sphere in a 5-dimensional linear space. The degree of freedom
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on the spherical surface, denoted by Sy, is four.

Theorem 2.1 The ground state of any generic Hamiltonian h € Sy2 can be labeled

by a unique set of quantum numbers {n;,ny}.

Proof: Assume that two sets of quantum numbers {n;,ny}, {n},n},} are associated
with degenerate ground states 2" and #ar™ of h € Sy2. Without loss of general-
ity, we can assume that n; > n}. Then ny < nf, as n; +ny = n} +n}, = |A]| with |A|
being the total number of sites. Thus n} — nf, < n; — ny. If we use aN"V € H? as
a perturbation with the coefficient « being small but positive, the degeneracy will be
broken with the energy for ¢7/'"" being higher than that for qﬁ'g"”"l". Thus the ground
state of any generic Hamiltonian in Sy is non-degenerate with respect to n; and ny
and can be labeled by a unique set of {n;,ny}. O

According to theorem 2.1, Sy2 can be divided into a number of smaller areas in
such a unique way that the ground state of any Hamiltonian in the interior of each
area is associated with a unique set of {n,ny}. There is no overlap among these
areas and only Hamiltonians on the boundaries of these areas have a ground state
associated with more than one set of {n;,ny}. Thus, the unit sphere Sy2 can be
colored uniquely by quantum numbers {n,ny}.

Quantum phases are important bulk properties of a system. A quantum phase
for Sy is a stable state determined by a subset of Hamiltonians in Sg2. The ground
states for these Hamiltonians, called the Hamiltonians for the quantum phase, share
the key characteristic of the quantum phase. Together, they describe the quantum
phase. The boundary for the subset is called the phase boundary for the quantum
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phase. As the Hamiltonian varies, the quantum phase will remain stable as long as
the Hamiltonian does not go beyond the phase boundary.

According to this definition, we define for each of those smaller areas a quantum
phase of Sg2. Any h on the area is called a Hamiltonian for the quantum phase
and the quantum phase is described by the ground states of its Hamiltonians. The
boundary of the area is called the phase boundary. Obviously, the physical meaning
for such a defined quantum phase is that: As a Hamiltonian varies on Sg2, no matter
in which direction it goes, the associated quantum phase will remain stable as long as
the Hamiltonian does not go beyond the boundary of the phase. As the Hamiltonian
goes across the phase boundary, the quantum phase will experience a sudden change
from a state characterized by {n, ny} to another state characterized by a distinct set
of {n},n},}. Such a defined quantum phase is certainly the one that will most likely

exist from a physical point of view.

Figure 2.1: Labeling of Quantum Phases for Sy2 with {n;,ny}

In this way, quantum phases for Sy2 are labeled uniquely by {n;,ny} as is
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schematically shown in figure 2.1. It is very significant that such a simple picture
of quantum phases is obtained by using only the very basic properties of pure 2-body
nearest neighbor interactions in Sy2. Certainly, not all possible values for {n;,ny}
need to occur on Syz and in each quantum phase, there may be fine phase structure.
Such detailed information can only be obtained by further analyzing the Hamiltonian
for a specific lattice.

The labeling of a quantum phase by a unique set of {n;,ny} is very important.
It tells us that instead of seeking a quantum phase in Fock space, we can separate
the Fock space into a series of subspaces according to their quantum numbers n; and
ny and study the quantum phase in each subspace. This definitely will simplify the

investigation of phase structure dramatically.

2.3.4 Basins of Attraction

For ¢, a ground state of A € Sy, we define the basin of attraction Hg(¢), a

special subset of Sg2 to be given by:

(h—c)|¢> = 0, for he Hp(s),
(2.26)
(fz —-c) > 0, in Fock space,
with c being a constant.
Obviously, ¢ is the ground state of all interactions in Hg(#). The bigger the basin,
the more stable the ground state ¢ to perturbations in Sgz2. Thus the size of a basin of

attraction represents the rigidity of the corresponding ground state to perturbations.

The dimensionality is the most important factor for a basin of attraction. If the
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dimension of Hg(¢) reaches its highest possible value 4, the same as the dimension of
Sz, Hg(¢) is said to be a basin of attraction with full dimension. A full-dimensional
basin of attraction Hp(¢) indicates the existence of a Hamiltonian A € Hg(4), such
that under any small perturbation WeSmh=h+he Hg(¢). Thus ¢ will
remain unaltered under any perturbation from Sy2. If Hg(¢) is not full-dimensional,
¢ can be altered under certain perturbation in Sy2. If there is a generic A € Hg(¢)
which is not on any phase boundary, according to theorem 2.1, ¢ has a unique set of
{nr,ny}. Thus under perturbations, it can only be deformed in the subspace where
every configuration has the same {n;,ny}.

Each smaller area on Sy2 containing all Hamiltonians for the corresponding quan-
tum phase is called a basin of attraction for the quantum phase. Such a basin of at-
traction is certainly full-dimensional and it is the union of the basins of attraction for
all ground states of the Hamiltonians for the quantum phase. It should be mentioned
that a full-dimensional basin of attraction is only a necessary condition for a quantum
phase. The full size of a basin of attraction depends not only on the dimensionality
of the basin of attraction but also on the range of extension in each dimension.

Different quantum phases for Sgz certainly have different basins of attraction.
Any two basins of attraction Hg(¢,), Hp(#2) can have a certain intersection or no
intersection at all. No intersection means the two quantum phases do not share any
common phase boundary and thus are not an adjacent phase pair. As a result, it is
impossible for a phase transition between these quantum phases to happen. If Hg(¢)

and Hpg(¢;) do have an intersection, the two quantum phases form an adjacent phase
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pair and the phase transition between them may occur. The probability for such a
phase transition to happen certainly depends upon the size of the intersection. The
bigger the intersection, the more likely the phase transition occurs. Again, the di-
mensionality is the most important factor for the intersection. When the dimension
of the intersection reaches its highest possible value 3, which is 1-dimension less than
full-dimension, the two basins of attraction are said to have a common phase bound-
ary with co-dimension one. Then, the phase transition between the two associated
quantum phases is most likely to occur from a physical point of view.

The concept of basin of attraction is very useful in the investigation of phase

structure.

2.4 The Phase Structure for Sy: in Lattices with

Cubic Symmetry

In this section, we study in detail the phase structure for Sz in lattices with cubic
symmetry. These lattices can be 1-dimensional rings, 2-dimensional square lattices or
3-dimensional cubic lattices as noted previously. In our investigation, we especially
want to know what kind of superconducting phases may exist, what kind of pairings
play a key role there, and what quantum phases are adjacent to the superconducting

phases.
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2.4.1 Possible Quantum Phases of Sy

Here, we show what kind of quantum phases may exist in lattices with cubic

symimetry.

Valence Quantum Phases

In the valence subspace, i!, AM and A¥"" are either zero or a constant. If there is
a valence ground state, it will be determined by A". RV is the Heisenberg Hamiltonian
and its ground state @) is a valence state. As hY is generic, ¢! can not be altered
by any perturbation from {Af, AM AN"V}. So H s(¢Y) is full-dimensional.

The quantum phase determined by hY is described by ¢;’ . It is called the FM
quantum phase when the coupling constant J < 0 or the AFM quantum phase when
J > 0. The FM ground state can be obtained exactly. It has all the spins of electrons
aligned and thus is characterized by the FM long-range order. The AFM ground state
can not be solved exactly using known techniques, except for the case of 1-dimensional
rings. The AFM quantum phase is characterized by the AFM long-range order in 2-
and 3-dimensional cubic lattices, but has no such a long-range order in 1-dimensional

rings [16], [55]-[57].

Tonic Quantum Phases

Since AY, A™ and AN"" are either zero or a constant in the ionic subspace, the
ionic ground state, if there is one, is determined by 2. As the mean value of A%; .

on any configuration can be negative only if both i and j are ionic sites and is zero
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for other situations, the ground state ¢ of k! is an ionic state.

Now, we will find out what these ionic ground states are. As

hi<ig>l0> = 40>, hf i atbfafbt|0> = dafbfafb][0>,
(2.27)
hy<ig>ai 670> = —4afbf10>, hi i5afbf|0> = —daib}|0>,

the ground state of a}h} is either the vacuum state |0 > (degenerate with the fully
occupied state because of the invariance of Sy2 under particle-hole transformation)
when af < 0 or a Slater determinant called a checkerboard state when o} > 0. In
such a Slater determinant, any on-site pairing site is surrounded by empty nearest
neighbor sites and any empty site is surrounded by on-site pairing nearest neighbor

sites. With circles and black disks to represent empty and on-site pairing sites in

a square lattice, respectively, these ionic ground states are schematically shown in

figure 2.2.
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Figure 2.2: Vacuum and Checkerboard States

As iz{,d 3585 b7 10 >= a{" 5|0 >, all jonic configurations with the same number
of electrons are connected together. Let ¢; = e'%|c;| be the coefficient for the i-th
configuration in the ground state of k;, here |¢;| = /c7¢; is a real positive number and
0; is real and referred to as the phase factor for the corresponding configuration. In
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cubic lattices, 6;—8;, referred to as the relative phase factor for any two configurations
in the ground state of a!h! can be determined easily. When o < 0, the relative
phase factor for any two configurations is zero; whereas when o] > 0, the relative
phase factor for any two configurations is zero or 7 with the two configurations being
connected by even or odd times transport of on-site electron pairs. With the same
symbols as in figure 2.2, three ionic configurations are schematically given in figure 2.3.
There, the coefficients for the first two configurations always have the same sign,
whereas that for the third configuration has the same or opposite sign as the first two

in the ground state with af being negative or positive, respectively. Although there is
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(+) (+) (£)

Figure 2.3: Phase Factor Setting for Three Ionic Configurations

more than one path in which two configuration can be connected by shifting electron
pairs, the parity (odd or even times transport of an electron pair) of all possible
paths connecting two configurations is the same. Thus the phase factor setting for
configurations in the ground state is unique. This is a very special property for
lattices with cubic symmetry. These two kinds of phase factor settings are referred to
as constant and alternating phases, respectively. It is easy to see that in 2-dimensional
hexagonal lattices, there is no way to make a similar phase factor setting preferred
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by all interactions involved. This is usually called phase frustration.
Let m be the number of electron pairs and n,. the number of nearest neighbor

sites, the number of total configurations is ny = (',‘,“') and the number of non-zero

|A]-2

] ) As the ratio n/p,/nr

interactions among these configurations is n,; = lAln,,,(
reaches its maximum when m = 1%-[, the ground state of afA} is a half-filled state
with a constant phase when af < 0 or an alternating phase when af > 0.

When of < 0 and af = 80af with § = +£1, apart from a constant, A/ is the

projection onto the ionic subspace of a positive semi-definite operator

ilo = z QZ<£J>Q9,<|J>1 (2-28)
<ij>
with
Q0,<5J> = a.;"aj + aj”a; - a(b;'bj + b;'bi). (2.29)

Qs,<ij> is a killer operator for the AGP function with a constant phase (CP) given
by
|Ycpagp>= {2 a:“b,’f} | 0>, (2.30)

when @ = 1, or an alternating phase (AP) given by
. m
|Yapage >= {z e Tatbt } 10>, (2.31)

when @ = —1. That is

Qo <ij>|Vcpagp>=0 for 6=1,
(2.32)

Qo <ij>l¥apagp>=0 for 6=-1.
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As equations in (2.32) hold for m =0, 1, - -, |A|, the CPAGP or APAGP functions
for any m in Eq. (2.30) or (2.31) are degenerate ground states for /g and thus A’ with
6 being 1 or -1, respectively.

From the above discussion, a general description for the ionic ground states is
given as follows:

(1) With @) <0 and |of| < 8|cas|, the ground state is a vacuum state.

(2) With of < 0 and |af| = 8|ad|, the AGP functions in Eq. (2.30) or (2.31) with
a constant phase when a; < 0 or an alternating phase when a; > 0 are degenerate
ground states.

(3) For other values of af and af, the ground states can be classified into two cate-
gories: a constant phase when af < 0 and an alternating phase when af > 0. Both
are half-filled states and the weight for each configuration in the ground state is de-
termined by the ratio of af and o). As we vary this ratio gradually but keep the
sign of af unchanged, the ground states will be deformed to each other smoothly
within their own category and the two kinds of ground states are separated by the
checkerboard ground state.

As h! is generic, any perturbation from {AY, hM, A¥""} obviously leaves these
ionic ground states unchanged. Thus, the vacuum ground state has a full-dimensional
basin of attraction and it describes a trivial vacuum quantum phase. Each half-
filled ionic ground state has a basin of attraction which is 1-dimension less than full-
dimension. The union of basins of attraction for the ionic ground states in each of the

two categories is full-dimensional. Thus the two kinds of half-filled ionic ground states
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characterized by the half-filled AGP functions with constant and alternating phases,
respectively, describe two separated ionic quantum phases. As the AGP functions
have the so-called off-diagonal long-range order and thus are superconducting states,
we call the two corresponding quantum phases superconducting phases with constant

and alternating phases, respectively.

Symmetry Between A’ and hY

Under the action of a canonical transformation Tc which changes a; to aff and
a} to a; but leaves b and b; unchanged, RY is transformed into a special ionic

Hamiltonian

RL(V) = J{X [8(afbi bja; + a;f b biai + (€a €ay + €nEh; + €ay€t; + €qy€s)]}
<ig>

= J(8h! + Ad). (2.33)
Further analysis shows that: with negative J, the constant phase AGP function is the
ground state of this transformed Hamiltonian, and with positive J, the ground state
of h!(V) is a half-filled ionic ground state with an alternating phase. Thus, under the
action of T¢, the FFM ground state in the valence subspace is transformed into the
half-filled constant phase AGP function, and the AFM ground state is transformed
into a half-filled ionic ground state with the alternating phase. Such a symmetry
between A’ and AY gives us a new alternative way to study the valence ground states
in ionic subspace and this may be especially useful for the study of the AFM ground
state.

Using this symmetry, we obtain the following theorem.
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Theorem 2.2 The only possible ground state of the Hamiltonian
h(e) = ah¥ + (V) with a >0 (2.34)
is either an ionic state or a valence state.

Proof: Let ¢/, ¢ be the lowest ionic and valence energy states , ¥/, 4", 42 the ionic,
valence and ionic-valence boundary parts of the lowest energy state ¢’V in a mixed
subspace and !, the ionic image of %" under the action of Tc. As h(a)<iy> is zero

in the ionic-valence boundary, the mean value of A(a) on ¢/ can be computed as

EM =<¢"" | k() | "V >

=<¢'| ¥ hhpW)|¢'>+a<y’| X ALy vY> (2.35)

<ij>ew’ <ij>epV
=<y'| ¥ hl LM Y > +a <yh| X A L) 1wl >
<ij>ep! <ij>evf

When a = 1, A(a) is invariant under the action of T, thus

El = <¢'| k()| ¢! >=<¢" | h(a) | ¢ >= EY,
(2.36)
EYf = <¢'yi | KI(V)| o9l >=<y'¥} | h(e) | v'u)> .
As the boundary between 3{, and v’ is not optimized to give the lowest possible
expectation value for 2/(V), the ionic state |4!4{, > is definitely not the ground state
of A(c). So EM will be higher than both E! and EY. Thus for a =1, ¢/ and ¢V are
degenerate ground states of iz(a). Further it is easy to see that for @ > 1, ¢" is the

ground state, and for 0 < a < 1, ¢/ is the ground state. So mixed states can not be

the ground states for h(a). O



Mixed Quantum Phases

According to conjecture 2.1 in the next section, the ground state of any interaction
from {A’, kY, A¥""} can not be a mixed state. Thus if there is any mixed ground
state, it must be determined by A™. As A is zero in both ionic and valence subspaces
but non-zero in any mixed subspace, the ground state of 4™ is a mixed state.

In the mixed subspace with {n;,ny}, as

h¥safl0> = —af0>,  hY . afafbfl0> = —afafbt|o>,
(2.37)
h>ef0> = —af|0>, A afafbf 0> = —afafbf0>,

the action of A on any mixed state changes the ionic-valence boundary. As a result,
all configurations with the same n;(d), ns(e),n}, and n}, but different ionic-valence
boundaries are connected together. As 4™ treats all ionic sites, as well as all valence
sites, equally, its ground state may be degenerate.

The total number of configurations connected together by 2™ is

= ()

and the number of non-zero interactions among these configurations is

Nint = |Alfine (‘Tﬁ) "~ f) (Z}; ) (n:'(’d)) (2.39)

The ratio n,./nr reaches its maximum when ny = L‘;-l If there is a coherent phase
factor setting for all configurations in the ground state of ™ favored by every pair
interaction A% j>» here favor means that the expectation value for A%, j> s negative,
non-zero interactions always lower the energy. Thus the ground states for A will be
with half ionic and half valence sites.
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Further analysis shows that in the mixed ground state for 2- and 3-dimensional
cubic lattices, it is impossible to set phase factors for all configurations favored by
every pair interaction ﬁ‘z’i j>- In a lattice, any two distinct paths connecting two sites
form a closed path. Obviously, there is only one closed path in 1-dimensional rings
and more than one closed path in 2- and 3-dimensional cubic lattices. Let circles and
arrows represent the ionic and valence sites in a closed path of a lattice and |1 > be
a Slater determinant for other sites. Two paths connecting afaZ ¢ > and afad |y >
are schematically shown in figure 2.4. When ap > 0, AY, ., A%, and AY) ,, in
path 1 favor that the coefficients for afaf|y > and afaf|y > have the same sign,
whereas in path 2, kY, ., favors that the coefficients for af af |y > and af af | > have
the opposite sign. When ay < 0, A% ., A%, and h¥ ,, in path 1 favor that the
coefficients for afaf|y > and afaf|y > have the opposite sign, whereas in path 2,
h%, ;- favors that the coefficients for afaf|t > and afaf|y > have the same sign.
Such contradictory phase factor settings in paths 1 and 2 clearly show the existence
of phase frustration in the mixed ground state. As configurations of this kind appear
only in lattices with more than one closed path, there is no phase frustration in the
mixed ground state for 1-dimensional rings.

Any small perturbation from R¥"Y has no impact on the mixed ground state as
h¥"Y is a constant in any mixed subspace. Perturbations from both 2! and AV may
reduce the degree of degeneracy for the mixed ground state. In the mixed ground

state, any perturbation from k! favors a constant or an alternating phase factor

arrangement for the connected ionic sites, while any perturbation from RV prefers the
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Figure 2.4: Phase Frustration in Mixed Ground States

FM or AFM assignment of the connected valence sites. If the connected ionic sites
are not all empty, half of them must be on-site pairing. In that case, the associated
mixed ground state is a half-filled state. Because of the phase frustration, the mixed
ground state has a very complicated phase factor setting.

Based on the above discussions, we find that there is a mixed quantum phase.
It is quite possible that 50% sites are ionic and 50% sites are valence in this mixed
quantum phase. In such a quantum phase, the connected ionic sites try to follow
the constant or alternating phase role and the connected valence sites try to arrange
themselves ferromagnetically or antiferromagnetically. In the mixed quantum phase
for 2- and 3-dimensional cubic lattices, frustration exists. It may destroy partially or

completely the long-range order that otherwise may occur.

Summary of Quantum Phases for Sy

As a summary, altogether there are six possible quantum phases for Sg2. They are
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the two kinds of superconducting phases characterized by the half-filled constant and
alternating phase AGP functions respectively, the FM and AFM phases, the mixed
phase and the trivial vacuum phase. Hamiltonians on Sy for these quantum phases

are schematically shown in figure 2.5 Among these quantum phases, the first four

Figure 2.5: The Phase Diagram for Sy

are exactly half-filled phases and half-filling may also occur in the mixed quantum
phase. Thus quantum phases associated with half-filling are a special feature for pure
2-body interactions in Sgya. Collective behavior with some kind of long-range order
is another special feature for these quantum phases.

Generally speaking, pure 1-body interactions in H! do not preserve on-site pairing,.
Thus the involvement of pure 1-body interactions will make the sharp picture for
these quantum phases become fuzzy. But as long as they are much weaker than
the pure 2-body interactions, pure 1-body interactions can not completely destroy
the long-range order accompanying the collective behavior and thus can not change

the fundamental physics in these quantum phases. As 1-body interactions are not

48



invariant under particle-hole transformation, perturbations from H! may cause some
quantum phases of Sg2 to move away from the exact half-filling and become near
half-filled quantum phases.

It is worth mentioning that for the CPAGP and FM ground states,

QP |Yapace>=0 and QP |yry>=0. (2.40)

Here, Q[2°'°] € H! is the hopping term in the Hubbard model. Thus any perturbation

from Q[2°'°] will leave both the APAGP and the FM ground states unchanged.

2.4.2 Phase Transitions

As we do not know very much about the mixed phase, here we will only discuss
possible phase transitions among the first four quantum phases. Based on the inves-
tigation in the last section, the two kinds of superconducting phases are obviously
separated quantum phases. Thus no phase transition will occur between them. The
same is true for the FM and AFM phases. So the only possible phase transitions are
those between each of the superconducting phases and the FM or AFM phase.

In order to investigate such phase transitions, we need to study the intersection
of the two basins of attraction for each corresponding phase pair.

The AGP ground state denoted by ¢%.p is determined by the ionic Hamiltonian
2o sr lzp
h'AGP = —2ah1 - th. (2.41)

Here @ = +1 or —1 corresponds to the constant or alternating phase, respectively.
Let ¢ be the valence ground state of hY, which is the AFM ground state when J > 0
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or the FM ground state when J < 0, and Ej, =<@%, | AY | ¢, >. Then, apart from a

constant, the Hamiltonian

b~ 3

= ha +§i".l

By
2|A|

0 Tne .
= {hSgp+ —(|A| + N"¥)} + £{hY -

; (A= N™V)},  (242)

with £ being a positive coefficient, is pure 2-body. It is easy to see that both ¢%4p

and ¢}, are eigenstates of i with
h|¢%cp>=0 and h|¢}>=0. (2.43)

The expectation value for h on any ionic or valence state is greater than or equal
to zero. Thus A > 0 in both the ionic and the valence subspaces. In any mixed
state with n; ionic and ny valence sites, ionic-valence boundary always exists. The
action of h on any mixed configuration does not change the ionic-valence boundary
and the mean value for h; Jj> is positive if both i and j are on the boundary. So the
lowest energy state in the mixed subspace with {n;, ny} is a mixed state that has
the smallest possible ionic-valence boundary. In such a state, all the connected ionic
sites form a local AGP function determined by h, and all the connected valence sites
form a local FM or AFM state determined by A;. If we denote by %2, vy and v¥g
the ionic, valence and boundary parts of the mixed state respectively, the expectation

value for & on the state can be computed as
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<h> = <yf| ¥ haxigs | ¥E>
<ij>el

+E<Yyp | Y hucgs | ¥9>
<ijSev

+<yp| X {hax<ig> +Ehu<igs} | ¥8> . (2.44)
<ij>eB

As hL ;> is a killer for the associated AGP function,

<¥f| Y hacigs |9F>=0. (2.45)

<iJj>el
Thus for small £, < i > will be dominated by

s n
<vs | Z ha<ij> | ¥B>= —28—, (2.46)
<ij>eB

with np being the number of nearest neighbor pairs on the boundary. So <h > is
strictly positive. Thus <A > is strictly positive in any mixed subspace.

From the above discussion, we find that ¢%.,p and ¢}, are degenerate ground states
of h. So, apart from a constant, & is an element in the intersection of the two basins
of attraction for these ground states and thus is an element in the intersection of
basins of attraction for the corresponding quantum phases. If we gradually vary o
away from %1 by increasing |a|, ¢4¢p is deformed smoothly within its own category
of half-filled ionic ground states and k will remain inside the intersection for these
basins of attraction. By further analysis, we found that M"Y is the only pure 2-body
interaction that can break the degeneracy for the ionic and valence ground states.
Thus AM"v is the only interaction that is not contained in the intersection of the two
basins of attraction. As a result, the two related quantum phases have a common
phase boundary with co-dimension one.
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As a summary, we have

Theorem 2.3 The constant phase superconducting phase and the FM phase, the
constant phase superconducting phase and the AFM phase, the alternating phase su-
perconducting phase and the FM phase, the alternating phase superconducting phase
and the AFM phase are adjacent phase pairs. Each of these phase pairs has a common

phase boundary with co-dimension one.

In the above discussion, restriction on £ is introduced mainly to avoid computing
<tv| Ligsev hy<ig> |%v > for the AFM case as it can not be obtained exactly. Fur-
ther analysis based on results from various numerical computations [16]-[20] strongly
supports the idea that h; itself is strictly positive in any mixed subspace and that
may remove the restriction on £&. From this as well as theorem 2.2, we have the

following conjecture

conjecture 2.1 The only possible ground state for the Hamiltonian of the form
h=h! +hY + AV (2.47)

is either an ionic or a valence state.

It is interesting to see that these phase transitions are accompanied by a sudden
change of electron distributions. During each of these phase transitions, the system
transforms itself from an ionic phase into a valence phase or vice versa without going
over any mixed state. This may have something to do with the fact that the supercon-
ducting phase and the AFM are adjacent quantum phases in oxide superconducting
materials.
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2.4.3 The Phase Structure and the Dimensionality

Although our main focus is on the 2-dimensional square lattices as they are closely
related to the oxide superconducting materials, the general phase structure obtained
above is really dimension independent. The main reason behind such a dimension
independent phenomenon may come from the fact that only nearest neighbor inter-
actions have been considered.

However, the dimension independence does not mean that the corresponding quan-
tum phases in 1-, 2- and 3-dimensional cubic lattices always share exactly the same
kind of key characteristics. For example, it has been found that the ground state
of the AFM Heisenberg Hamiltonian (with J > 0) in a 1l-dimensional ring does
not have the AFM long-range order {55, 56], whereas the ground states of 2- and 3-
dimensional AFM Heisenberg Hamiltonians are characterized by the AFM long-range
order (16, 57].

Here it is worth paying more attention to hM as it may be the only interaction
in Sy that can cause some dimension dependent phenomena. Recall that AM has a
mixed ground state with phase frustration in 2- and 3-dimensional cubic lattices. The
phase frustration comes from the fact that different paths connecting two configura-
tions result in different phase factor settings. There is only one closed path connecting
two configurations in a 1-dimensional ring. Thus there is no phase frustration in the
mixed quantum phase for 1-dimensional cubic lattices. In 2- or 3-dimensional cubic
lattices, different closed paths always exist. Thus phase frustration always exists in

the corresponding mixed quantum phase. Although we have not figured out a way to
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evaluate the phase frustration in mixed quantum phases for 2- and 3-dimensional cu-
bic lattices, it is clear that the degree of the phase frustration is dimension dependent.
As phase frustration causes instability, higher degree of phase frustration indicates
the smaller basin of attraction for the corresponding mixed quantum phase. Thus
the size of basin of attraction for the mixed quantum phase is dimension dependent.

The spherical surface Syz is covered by the basins of attraction for the six found
quantum phases. The size of the basin of attraction for the mixed quantum phase will
definitely affect the size of basins of attraction for other quantum phases. Thus the
dimensional dependence of the size of the basin of attraction for the mixed quantum
phase indicates that the size of the basin of attraction for any other quantum phase
may also be dimension dependent. If the relationship between the degree of phase
frustration in the mixed ground state and the dimensionality for these lattices is found,
it may further help us to explain some other dimension dependent phenomena, such

as why the superconducting phase prefers 2-dimensional square lattices.
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Chapter 3

The Unique On-site AGP Pairing

for the Superconducting Phase

In this chapter, we first investigate some special properties of the AGP functions.
Then, we make a conjecture that the on-site AGP pairing is the unique AGP pairing

in lattices with cubic symmetry.
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3.1 AGP Functions and Their Killers

3.1.1 AGP functions

AGP is the abbreviation for Antisymmetrized Geminal Power, and AGP functions
have been extensively studied since the early 1960’s [43, 58].

The geminals, or 2-electron wave-functions we will consider, has the form

7
| g>= Z §aa:ag |0>. (3.1)

a>0
Where {af,a}} is a set of creation operators corresponding to a set of orthonormal
1-electron spin orbitals and r, is the rank of the geminal. & and & are called a pair of
conjugate spin orbitals which share the same expansion coefficient &, as well as the
same occupation number A, = £, # 0. By using the index @ and & and considering

one as positive, the other negative, we avoid double counting in the expansion. By

letting B = ata?, the above expression can be rewritten as

s
2
lg>=Y &B¥|0>, (3.2)
a>0

which is often referred to as the natural expansion of a geminal.

An AGP function with n = 2m electrons, usually denoted by g¢”, is given by

L2
|g">={d_ &Bi}™|0>. (3.3)

a>0

Using the standard form for g, the normalized AGP function can be expressed as

| g">= S /? 3 C(ay,---,am)BY, ---BE 0>, (3.4)

I<ai<ar<-<am
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here the expansion coefficient C(a, ---, ay,) is given by

Clay -am)= [ & (3.5)

at {al Qi }

and the normalization constant S, is given by

Sm = 3 AaiAas ** Aam- (3.6)

a1 <az<:-<am

From this definition, we can see that: When n > r(g), g" is zero; when n = r(g),
g" is a single Slater determinant which is independent of the expansion coefficients
of g; and when n < r(g), g" is a linear combination of Slater determinants. When
we talk about AGP wave-functions, we mean the non-trivial case with n < r,. Since
an AGP function is a pairing function, it is also called an AGP pairing. Although
it is a rather simple function, an AGP function is highly correlated. It is of great
interest since it provides a model for superconductivity. The BCS function in the
conventional superconductivity theory, when projected to a fixed particle space, is an
AGP function.

The 2-body reduced density matrices for general AGP functions were obtained by
Coleman in 1965 [43]. Since then, the study and application of AGP functions have

gone far beyond the field of superconductivity [59]-[61].

3.1.2 An AGP Function Is Uniquely Determined by Its Killers

If k is an operator, and if

k|y>=0, (3.7
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k is said to be a killer for the wave-function . It is obvious that v is a ground state of
the Hamiltonian 4 = k*k. Thus the correlation in any ground state ¢ is determined
by its killer set.

It is well-known that a Slater determinant is completely determined by its killers
{a{", a;} where i and j run through all occupied and unoccupied spin orbitals in the
Slater determinant, respectively. As a result, the ground state of 1-body interactions
can be described by a Slater determinant.

In the linear space of particle-hole operators a}tag, we build a set of killers for the

AGP function defined in Eq. (3.4) as

ka,ﬁ = a;'aﬁ, for all o ' (3.8)

kaa = ata,—afas, foralla>0; (3.9)
1 . ; l .

kapg = g-aa ag — sign(af)—ajas, (3.10)
8 a

with aa>0,8>0,a#8; or af<0, a>-0.

These Kkillers form a complete linearly independent basis of killers for g" with n = 0,
2, 4, +»+, rg in the particle-hole operator space. This killer set is denoted by K.

It is significant that any k € K| is a second-order homogeneous polynomial in
creation and annihilation operators. As a result, g" is a ground state of a 2-body

interaction of the form h = ©57 k*k.
Theorem 3.1 An AGP function g" is uniquely determined by its killer set K.

Proof: Let ¢" be a wave-function for n = 2m electrons that shares K, with g" as its

killer set, i.e., k|¢" >=0 for k£ € K;. Then the conditions
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kag |9"> = 0 forall g (3.11)

koo |9"> = 0 foralla>0 (3.12)

force ¢™ to have a pairing identical to that of g". In other words, the two orbitals in any
conjugate spin orbital pair of g must be empty or doubly occupied simultaneously in
any configuration of ¢". Such an n-electron pairing wave-function ¢” can be expressed

with any @« > 0and 8 > 0 but a # 3 as

|¢n> = Z C(a,kl,---,km_l)B;"B,:'l~--B,':m_l |O>

kp-km-1#a.f

+ Z C(ﬂ1kh"'1km—l)B;.Bl-:| “'Bl-c:...||0>
ki km-1 #a,f

+ z C(a'rﬂ:klr"'vkm-ﬂB:B;B;;'“B:m-zlo>
kp-km-2#a,f

+ Z C(kyy- -, ls:,,.)B,'é‘l B 0> . (3.13)
klv"’skﬂl¢axﬂ

It is easy to verify that

kasBEBE By ---Bf _,|[0>=0,

(3.14)
kagBi -+ Bf[0>=0,
and
kasBiB - BE_ 10> = —kata}Bi---Bf 0>, 19
kasBiBf - Bf, 10> = Lata}Bf .- B, 10>,
Thus,
ka,ﬁ[(b") = 2 —-I—C(a,kl, . km_.l)a+a B,-:.l Bg—m-xl0>
kx.-».km-#a,ﬂ o
+ > g LB,k s km-1)aia B .- Bf,_ |0> . (3.16)
k1, km-1#a,8
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With the condition

ka'ﬁ l ¢n >= 01 (3.17)

it is obvious that

g'l—C(a7 kly Ty km-l) = El'o(ﬂ: kl) M km—l) for all kl, : ""1km—l '—ié a’aﬂ . (318)
a B

As the above relations hold for all @ and 3, they give the relationship between the
coefficients for any two Slater determinants in ¢™ that can be transformed into each

other by switching one pair of electrons. Any two configurations

Bt B} ---B} |0>
ae Tam T (3.19)
B}'lB;,‘; --'-B;m|0>
can be transformed into each other by switching electron pairs. Thus the coefficients

for the two configurations satisfy

Clay,az,: -, 0m) _ §aiaa - *Eam

C(ﬂl:ﬁ21' "1ﬁm) B Eﬁlfﬁz “'Eﬁm '

(3.20)
which is exactly what the coefficients in ¢g" fulfill (see Eq. (3.5)). Thus ¢" = g" and

an AGP function is uniquely determined by its killer set K.

3.1.3 The Unique Representation of the 2-body Density Ma-
trix Corresponding to An AGP Wave-Function

The 2-body density matrix for a wave-function ¢" can be defined by the equality

d2es =<o" | abted | 9" > . (3.21)
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Here the wave-function ¢" is called a representation for the matrix d2, ;. Given a
matrix d2,.;, there need not be a representation ¢™ so that Eq. (3.21) holds. A
density matrix d?,,; with at least one representation is called n-representable.

Using theorem 3.1, it is very easy to prove the following well-known result on AGP

functions.

Theorem 3.2 The 2-body density matriz for an AGP function has a unique repre-

sentation.

Proof: Assume that ¢" and g" share the same 2-body density matrix, that is
<¢" | atb*ed | " >=<g" | atbed | g" > . (3.22)

For any k € K,, k*k can always be expressed as a linear combination of operators
a*bted, ath and the identity operator é by using fermion commutation relationships.
Using the fact that the corresponding 1-body density matrix <¢"|a*b|¢" > and the
trace < ¢"é | ¢" > are determined by the 2-body density matrix when the particle

number is fixed, Eq. (3.22) guarantees that
<¢" | kTk | ¢" >=<g"|ktk|g">=0, (3.23)
which implies that
k|¢">=0 forkeK,. (3.24)

As an AGP function is uniquely determined by K, such a ¢" must be g". Thus the
wave-function that represents the 2-body density matrix corresponding to an AGP
function is uniquely determined. O
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Using a completely different approach, Coleman obtained this result in 1973 [62];
Rosina also obtained a proof, but only for a restricted class of AGP functions [63].

Our proof is complete and much easier than the previous proofs.

3.2 The Symmetry Properties of AGP Functions

and Their Generating Geminals

An AGP function ¢" and its generating geminal g are closely related to each
other. Here we investigate the symmetry relationship between them. Both spin and
spatial symmetries will be addressed. These symmetry properties are very important

in determining possible AGP ground states in a system.

3.2.1 Spin Symmetry

Let an arbitrarily chosen z axis be the quantization axis and 52,9, the total spin
operator and its z-component for a system. Here spin symmetry for g" means that

it is an eigenstate of 52 and S, with
$2g" =S(S+1)g", S:¢" = m.g". (3.25)

If g" has spin symmetry, from the above equation, it is obvious that g itself must be

an eigenstate of S; , with

2m,
S:9= o) g. (3.26)

As the possible eigenvalues of S, for g are 1, 0, and -1, the possible values for m, are
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Geminals can be classified by spin symmetry. Spin-symmetry-adapted geminals
can be labeled by [s, s,] as (Ilg ,[(10lg [L-llg and 09g, Any geminal can be expressed

as a linear combination of these geminals.

Theorem 3.3 If g" is a spin symmetry state, then g itself must be a geminal with

spin symmetry.

Proof. Let g" be specified by [S, M], the quantum numbers associated with 52 and
S:, respectively. For M = % or —%, it is obvious that the geminal must be either {!lg
when M =2 or (L-llg when M = —3. Thus g has spin symmetry. For M = 0, the
geminal can be expressed as a linear combination of g and (1?g. As the coupling
of ©0lg and 00 always results in singlet, whereas the coupling of g and [}%g
always results in triplet, g" can not have spin symmetry unless g = g or g = (10g
instead of being the linear combination of the two. In summary, g must be a geminal
with spin symmetry. O

It is worth pointing out that the converse statement for the above theorem is not
always correct. That is, if g is a geminal with spin symmetry, g" needs not be a spin
state.

Among these spin-symmetry-adapted AGP functions, the singlet AGP function
is the most interesting one and the best candidate for the ground state in systems
without explicit spin-spin interactions. Possible geminals associated with the singlet
AGP function are ©%g and [19g with the singlet geminal being the best candidate
as ((*%g)" is always a singlet whereas ({%lg)® may or may not be a singlet. So far,
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in the study of high-T, superconductivity, the preferred pairing scheme is the singlet

pairing although the BCS-like triplet pairing has not been ruled out.

3.2.2 Spatial Symmetry

Lattice symmetry includes both translation symmetry and point group symmetry.

In our investigation, we need to use the following lemma:
Lemma 3.1 If there are two geminals g, and g; with g7 = g3, then g, = g,.

Proof. As g} = g5, they share the same killer set K;. As K, uniquely determines the
associated AGP function, it must be that g, = g». O
Let S denote the space group for a lattice. Spatial symmetry for an AGP function

means that for any symmetry operation s € S,
sg" = e g (3.27)
with 8(s) being a real phase factor.

Theorem 3.4 If g" has spatial symmetry, then g itself must be a geminal with spatial

symmetry.

Proof: If Eq. (3.27) holds, we have
eiﬂ(s)gn = sgn = {sg}n’ (3.28)
Let g; = 2°C)/ng and g, = sg, Eq. (3.28) can be simplified as

g1 =9a- (3.29)
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From Lemma 3.1, we have g, = g, and thus

sg = ei%ﬂg. (3.30)

So g must be a geminal with spatial symmetry. O
It is obvious that the converse statement is also true which says that if g has

spatial symmetry, then ¢” must also have spatial symmetry.

3.3 The Unique AGP Pairing in Lattices with Cu-

bic Symmetry

Here we use symmetry properties to investigate what kind of AGP functions may

describe quantum phases in lattices with cubic symmetry.

3.3.1 The Geometry Effect on the AGP Ground States

In a system without explicit spin-spin interaction, if a ground state is stable enough
to describe a quantum phase, it is usually non-degenerate (excluding spin degeneracy).
Such a ground state must be invariant under the action of the space group S and
thus must be a symmetry state for a 1-dimensional irreducible representation of S.

In a lattice designated by a vector space A, every irreducible representation of the
translational subgroup T € S is 1-dimensional and can be specified by a vector k in

the reciprocal lattice space. This means that for any ¢, € T with r € A, we have

e = girky, (3.31)
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here ¥ is a basis function for the irreducible representation specified by k. Under

the action of any p € P, where P € S is the point subgroup for A, k is mapped to
k, = pk, (3.32)

where k; may or may not equal k. Thus the action of P on k creates a set of vectors
{k,Kk;,---} called the star of k. The irreducible representation of a space group S
can be specified by k and its star. If the star of k contains only one vector, that is k
itself, then the irreducible representation specified by k is 1-dimensional.

Now we will figure out what are those 1-dimensional irreducible representations in
lattices with cubic symmetry. For a 2-dimensional square lattice, the point subgroup is
Cuv and there are only two special vectors [0, 0] and [, 7] which are invariant under
the action of Cyy. Similarly, for 1- and 3-dimensional cubic lattices, these special
vectors are [0], [r] and [0,0,0], [, 7, 7] respectively. These two kinds of vectors are
called constant and alternating phase vectors, respectively, according to the behavior
of basis functions for the corresponding irreducible representations under the action
of T.

To force an AGP function g to be a symmetry state, its generating geminal must
be a basis function for a 1-dimensional irreducible representation of S. Thus g can
be labeled by either a constant or an alternating phase vector. The corresponding g"
is called a constant or an alternating phase AGP function.

It is significant that there can be only two kinds of AGP ground states in cubic
lattices and they are determined purely by lattice symmetry. Lattices with different
geometric structure may have different results. For example, on a 2-dimensional
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hexagonal lattice, there is only one vector [0, 0] that is invariant under the action
of the point subgroup Csy. Thus an alternating phase AGP function can not be a
non-degenerate ground state in 2-dimensional hexagonal lattices. It seems that an

alternating phase AGP pairing can only occur in lattices with cubic symmetry.

3.3.2 The Unique On-site AGP Pairing

How many AGP functions are there which are spatially invariant in cubic lattices?

In order to answer this question, let’s define the geminal generator as
ne(k) =Y e*atbl, ., (3.33)
r

where r, r' € A and k is a constant or an alternating phase vector. When acting on

vacuum state [0>, 7y (k) generates a spatially invariant geminal
lg>=ne (k) [ 0>, (3.34)

with |r’| being the distance between the two electrons in each conjugate spin orbital
pair. When r’' = 0, for example, (k) | 0 > is an on-site pairing geminal with a

constant or an alternating phase respectively. Let

(k) =Y e**btat, ., (3.35)

then
{o,0] k) = k)-1n. k 3.36
N (k) = ne (k) — np (k) (3.36)

and
1 (k) = e (k) + o (k) (3.37)
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are generators for spatially invariant singlet and triplet geminals respectively. As r’/
goes over A, %07, (k) will generate a linear space of all spatially invariant singlet
geminals and (197 (k) will generate a linear space of all spatially invariant triplet

geminals. The generators for these singlet and triplet geminals are given by

[0‘017,(1{) = Z Cpr [0,0177 v (k) (3.38)
r’
and
Lolp(k) = e M7 (K) (3.39)
r

with {cv} being a set of arbitrary coefficients.

Will all these symmetry-adapted AGP functions be the ground states of generic
Hamiltonians in Sg2? The geometry of cubic lattices demands that g" with n = 2m
and m =1, 2, --- must be with either a constant phase or an alternating phase. But
it can not determine |r’|, the distance between the two electrons in the pairing. In our
investigation of phase structure in Chapter 2, we found two kinds of superconducting
phases characterized by the constant and alternating phase AGP pairings, respec-
tively. Both pairings are on-site AGP pairing generated by [*%n.(k) with r' = 0.
Is on-site AGP pairing the unique AGP pairing in our system? According to the-

orem 2.1, if g" is non-degenerate, it must have a unique set of quantum numbers

{n[t ﬂV}.

Theorem 3.5 The AGP function given by {n.(k)}™ or {n.(k)}™ with v’ # 0 and
2 < m < |A|, can not have a unique set of {nr,nv}.

Proof: In {ne(k)}™ or {n.(k)}™, there are (',‘,‘ll) independent Slater determinants.
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Using the expansion expression for AGP functions in Eq. (3.4) and observing quantum
numbers for every Slater determinant, it is found that, with r’ # 0 and 2 < m < [A]},
these Slater determinants do not share a unique set of {n;,ny}. Thus the associated
AGP function do not have a unique set of {n;,ny}. O

In AGP function of the form { [*%g.(k)}™ or { Mp.(k)}™ with ¢’ # 0 and
2 < m < |A|, the coefficients for all the configurations are fixed and configurations
with different {n;, ny} always co-exist. Thus the associated AGP function also do not
have a unique set of {n;, ny}. For a more general AGP function given by {[*%n(k)}™

or { 19p(k)}™, it seems that there still can not be a unique set of {rn;,ny} unless
Popk) = POp.(k) with ' =0. (3.40)

Although a general proof has not been obtained yet, the above statement has been
checked to be correct in a number of cases using a relatively smaller number of lattice
sites.

Particle-hole killers for all AGP functions are of the same form and they are given
by K,. In K, killers represented by k. in Eq. (3.11) are the only non-trivial killers,
as others are killers for all pairing states. Thus k, g will play a key role in determining
the AGP ground state and pure 2-body interactions of the form k7 gko s are almost
certain to appear in Hg(g"). For the on-site AGP pairing ground state, such a pure

2-body interaction hs € Hp (g™) is found to be

ho=3Y Q0 (<ij>)Qo,(<1i>)s (3.41)

<ij>
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where

Qo,(<ij>) = ai"aj + a.j"a.{ - H(b?'bj + bfbi) (3.42)

is a killer for the constant phase AGP function when 8 = 1 or alternating phase AGP
function when 8 = —1. For non on-site AGP pairings, so far we have not found any
similar 2-body interaction in Sgsa.

The AGP pairing is a coherent pairing whereas the mixed ground state for 2 and
3-dimensional cubic lattices is characterized by phase frustration. This make it even
more unlikely that a non on-site AGP pairing can be a mixed ground state in these
lattices.

As a summary of the above discussions, we make the following conjecture,

conjecture 3.1 On-site AGP pairing is the unique AGP pairing in the quantum

phases of Syz for lattices with cubic symmetry.

It seems that the unique on-site AGP pairing is closely related to the nearest
neighbor interactions in our system. If other than nearest neighbor interactions are
introduced, the uniqueness of the on-site AGP pairing will probably disappear.

Thus, we suggest that there can be only two kinds of superconducting phases for
Sz in lattices with cubic symmetry. Both of them are characterized by the on-site
AGP pairing, but with constant (Cooper pairing) and alternating phases, respectively.
They are BCS-like superconducting phases coming from the condensation of singlet
electron pairs. If the basins of attraction for these quantum phases are large enough,

these superconducting phases may have high transition temperatures.
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Chapter 4

Approaching the Ground State
with the Lower Bound Method of

Reduced Density Matrix Theory

In this chapter, we investigate the lower bound method of reduced density matrix
theory. Two numerical algorithms based on a new theorem {53] are developed for
solving the central optimization problem in the lower bound method. Numerical
computations are performed on l-dimensional rings to approach the ionic ground
state described in Chapter 2. The convergence properties for these algorithms and

the tightness of lower bounds to the ground state energy are considered.



4.1 Formulation of the Central Optimization Prob-

lem

The von Neumann density operator d for the ground state of a fermion system con-
tains all of the information required to compute the ground state properties. One can
find d by solving the Schrédinger equation, or equivalently by finding the minimizer
of the convex problem:

inf <h,d>

deP (4.1)

<éd>=1

where h is the Hamiltonian, é is an identity operator, P is a convex set of positive
semi-definite operators and < -,- > denotes the trace scalar product for operators
on Fock space. < é,d >= 1 means that the von Neumann density operator d is
normalized.

Interactions in most physically interesting systems are up to 2-body. Most of
the ground state properties can be obtained from the 2-body reduced density matrix
d? defined in Eq. (1.10) for the ground state. The 2-body reduced density matrix
contains a much smaller number of independent parameters than the wave-function
(unless n is very small). If r is the total number of l-particle states, there are
ir(r—1)(3r(r—1)+1) independent entries in the unnormalized 2-body reduced density
matrix, while there are (:) independent parameters needed to define an unnormalized
wave-function. Furthermore, the symmetry properties of a system usually reduces
the number of independent parameters in the reduced density matrix more effectively

than in the wave-function. Thus computing the ground state properties by d2 is much

72



easier than by using a wave-function.
Let a, b, ¢, - -+, a, be the annihilators for 1-particle states and {/i{’ , Ag, -+-} be a
basis set for a linear space of operators which are p-th order polynomials in creation

and annihilation operators. Any up to p-body Hamiltonian A can be expressed as
h=Y h AP+ AP (4.2)
6J

with {h;;} being a set of real coefficients. The p-body density matrix d” can be
defined as

&, =TrlAAzd (4.3)

where Tr is the trace on Fock space. Such a matrix is obviously positive semi-definite.
With the same basis set {A?}, we can construct a matrix h from coefficients {h;;}.
Such a matrix representation for A has exactly the same size as the dP matrix.

The lower bound method of reduced density matrix theory consists in finding a

minimizer d? that minimizes the following energy expression:
E(d?) =<h,d?> with df € Dy, (4.4)

here < -,- > denotes trace scalar product for matrices, i.e., <h,d? >= Tr[h*dP|, and
Dy is a convex set of ‘approximately n-representable’ p-body density matrices. Since
we only have a partial understanding of the n-representability problem, we are forced
to carry out the variation in Eq. (4.4) over a set, Dy, somewhat larger than the set of
n-representable density matrices. Thus the optimized energy is a lower bound to the
ground state energy and the minimizer d¥ is an approximate p-body reduced density
matrix for the corresponding ground state.
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The general structure for the central optimization problem in Eq. (4.4) obviously
does not depend on p. For convenience, from now on we will use z to replace d?. Thus
the = matrix can be the p-body density matrix for any p. The central optimization

problem in Eq. (4.4) can be rewritten with z as
E(z) =<h,z> with =z € Dy, (4.5)

From the normalization condition < é,d >= 1, we have < e,z >=1, where e is
positive and it is a matrix representation for é in the same basis set as the £ matrix.
If a proper basis set for z is chosen, e is a scalar multiple of an identity matrix.
The ‘approximately n-representable’ will mean in the thesis that Dy is a convex set
characterized by (1) <e,z >= 1 for any = € Dy, (2) any £ € Dy is positive semi-
definite. These conditions are important necessary conditions that z must satisfy in
order to be n-representable but are not sufficient.

If the density operator d is for a particle conserving system, then all entries of the z
matrix describing processes which are not particle conserving, e.g., entries of the form
Trla*b*ctdd] vanish. As a result, the z matrix can be decomposed into a series of
smaller blocks. Because of the linear equalities arising from the fermion commutation
relations, the entries of the z matrix are not independent but interrelated by a system

of linear equalities. For example, when a, b, ¢, d are distinct,
Tars,cra = Tri(a*b)*ctdd] = Tr{(@*d*) 67 e d] = cararprer  (46)

It is the intertwining of these linear relationship with the positive semi-definiteness
of the z matrix that gives Dy and therefore the central optimization problem a very
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complicated structure. Let H be the linear space of real symmetric matrices which
have exactly the same block form as the z matrix and P be the set of all positive
semi-definite matrices in H. We express all such linear relationships by requiring that
z € PN St where S, which we call Pauli subspace, is a suitably chosen subspace of
H. Thus in our matrix formulation, the information content of the fermion commu-
tation relations is carried by Pauli subspace S. The elements of S can be interrupted
as matrix representations of the zero operator. Let h = mg.h, where 7g. is the or-
thogonal projector onto S, and for convenience we still use h to represent such a
projection. Without loss of generality we assume h L e and thus h € HN St Net,
as this can always be achieved by translating h by an appropriate scalar multiple
of msre. Such a translation merely shifts the spectrum of h and does not alter the
basic problem in any significant way. Then we can rewrite the central optimization

problem in Eq. (4.4) in a completely equivalent but more explicit form as

inf <h,z>
rePNS- (4»7)
<e,z>=l1

As an example, let’s consider the case when the z matrix is a 2-body density
matrix for particle conserving systems. Let fia,g = %(aﬂ — Ba), a # B where a, 3 are
either creators or annihilators drawn from the set {a*, b*, c¢*, ---, @, b, ¢, ---}. With
operators {&, Aag, AagA,s} as basis set, the z matrix can be expressed by a direct

sum of the famous d, ¢ and g matrices:
r=d®qdg (4.8)

where d and q are real, symmetric and (;) x (’2') . Their entries are given by Tr[A% A qd]
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and Tr[fi;*}.b.,. Acrat (Z] respectively. The g matrix is given by

Joo0 go1
9= (4.9)

g gu

and ggo = Tr[éd] = 1, go; is an 2 component row vector given by Tr[A.+d], g10 = g1
and g, is given by Tr[fi:+b“ic+dc2]. Thus g is real, symmetric and (1+72) x (1+72). As
<é,d>=1, it is easy to compute that Tr[z] = 1+ ir+ (;) This can be expressed as
<e,z>=1, here e is an [1 + ir + (;)]—l multiple of an identity matrix. The convex
structure of the z matrix is determined by the positive semi-definiteness of the d, q
and g matrices which are the well-known d, q and g n-representability conditions for
the 2-body reduced density matrix.

The positive semi-definiteness of the = matrix requires that all the eigenvalues of
the £ matrix be non-negative. Since the eigenvalues of a matrix are usually non-linear
functions of the matrix elements for which no explicit formula exists, the central op-
timization problem is a distinctly challenging computational problem of minimizing
a linear function within a convex domain defined by a finite set of non-linear con-
straints. The complexity of the problem is enhanced by the fact that any computation
of practical value has to deal with a large number of variational parameters.

One very favorable aspect is the convex structure for all z matrices. A point c in
a convex C is said to be an extreme point of C if there are no two distinct points
¢, and ¢; in C such that ¢ = ac; + (1 — a)c; for some @, 0 < @ < 1. For example,
a square is a convex set and the extreme points of the square are its four corners.

The solutions for Eq. (4.7) are associated with the extreme points of the convex set
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of all £ matrices. A non-degenerate solution z, corresponds to an extreme point of
the convex set. A degenerate solution z, can be expressed as a convex combination

of certain extreme points for the convex set

r 0 S Di S ly
T. =) piZi, with (4.10)
: ZI =1,
here z,, z,, - - -, T, are extreme points and p;, po, - - -, pr are corresponding coefficients.

Thus convexity ensures that any local minimum is a global solution for the central
optimization problem [64].

In principle, the lower bound method applies to any p-body density matrix and can
even be used to study the excited states if additional conditions are used to distinguish
the excited state investigated from the ground state and other excited states. But so
far the focus has been on approaching a ground state by the 2-body density matrix.
There are two key criteria for a better lower bound method: tightness of the lower
bound and the quickness of convergence. If the lower bound obtained is too far away
from the real ground state energy obtained from the FCI wave-function method,
the computed result is worthless and new n-representability conditions are needed
to further restrict the optimization. Without effective numerical procedures which
can solve the central optimization problem with fast convergence, the lower bound
method will not be computationally feasible on a large scale. Numerical procedures
based on linear programming have been developed and implemented to solve the
central optimization problem [51, 52, 65]. These numerical procedures are first-order

procedures and numerical experimentation with these procedures in even some small
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systems showed rather slow speed of convergence. More effective numerical procedures
are still needed before the lower bound method can be put into practical use in large
systems. d, g and g conditions have been tested in some small atomic and nuclear
systems with varying degree of success [51, 52]. A similar test has never been done
in any solid system.

It should be pointed out that the central optimization problem in the lower bound
method is only a special case of more general convex problems. Thus effective numer-
ical procedures for solving the convex problem in Eq. (4.7) will not only lead to the
solutions in the lower bound method of reduced density matrix theory but also have

much more applications in other areas such as linear and nonlinear programming.

4.2 Solving the Central Optimization Problem

4.2.1 Necessary and Sufficient Conditions for the Optimum

The Main Theorem

Here we state a theorem giving necessary and sufficient conditions for the solution

of the convex problem defined in Eq. (4.7). Let K = HNStNhtNet, then we have

Theorem 4.1 The symmelric matriz z, is @ minimizer of the convez problem if and
only if the following conditions are satisfied.

(1) z, e PNSL, <e,z.>=1,
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(2) there is an element y, € PN K with <h,y, > > 0 which satisfies the matriz

equation

z,4.=0. O (4.11)

Note that the condition < h,y. > > 0 guarantees that z, minimizes the objective
function <h,z>, not — <h,z>. The proof of this theorem is quite straightforward
and can be found in [53, 66].

The virtue of this theorem is that it reduces the original convex problem into
the problem of solving the matrix equation defined in Eq. (4.11), which is the Euler
equation. It should be pointed out that the convex problem defined in Eq. (4.7)
does not always have solutions. Whether it has solutions depends upon the specific
structure of S. It is found that the convex problem has a solution if and only if
SNP = 0 or equivalently S*NintP is not empty. Detailed discussions on the existence
of the solutions for the convex problem can be found in [66]. But in physically
meaningful systems, there are always solutions. So we only need to find effective
methods to get the solutions rather than worry about if there is a solution.

At the optimum, the z, and its partner y, can be generally expressed as

T,= —-ah + k + Prs.e,
(4.12)
.= odh + s + Be,
where k € K, s € S, and a, B, o/ and (' are real positive coefficients. It is easy to

see that under the normalization condition

<e,r,>=fi <e,mgre>=1, (4.13)
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the coefficient 3 is fixed. The minimizer z, for < h,z, >= —a < h, h > should have

the largest possible value for a. If the expression for z, is multiplied by 1,

z,=-h+k+ 3"mgre, with " = g. (4.14)

The minimizer z, will have the smallest possible value for 3” > 0. As S+ N intP # 0,
we always can find a f € PN S*, and z, and its partner y, can be generally re-

expressed in a symmetrical form as

z,= —h + k - /\(k)f1 k€K,
(4.15)
Ya= h + 3 — w(9e, SES.
Thus the original problem of minimizing the energy expression <h,z > with

<e,z >= 1 is equivalent to seeking k£ € K that maximizes A(k) < 0, the bottom

eigenvalue of —h + & given by the matrix eigenvalue equation
[-h+k = A(k)flv =0, (4.16)

and s € S that maximizes the bottom eigenvalue w(s) < 0 of the dual problem h + s
given by

[h+ s —w(s)elv=0. (4.17)

It should be pointed out that y, and A are closely related to each other. Actually
the difference between y. and h comes from (1) the translation of a multiple of e and
(2) s € S which is the matrix representation of the zero operator. Thus y, can be

treated as a very special matrix representation for the original Hamiltonian with

LTy, Yo >=<LZTy, h> —w(s) <z,,e>=<1z,,h> +c, (4.18)
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where c is a constant. What is special here is that y, is positive semi-definite and
orthogonal to the optimized z,.

In Theorem 4.1, it is the Euler equation that is of importance. Our main interest
here is to develop effective numerical algorithms to solve the Euler equation. Let dim,,
be the dimension of the linear space of all matrices (not necessarily symmetric) having
the same shape (block structure) as H, then there are dim;, quadratic equations with
dimH < dimg, unknowns in the Euler equation. Thus, we are guaranteed by the

theorem at least one solution.

Extraneous Solutions for the Euler Equation

As in all quadratic systems, in general there may be more than one solution to
the Euler equation. Certainly in most cases there are solutions to the Euler equation
where at least one partner of the solution pair z, and y. is not positive semi-definite.
These solutions do not satisfy the conditions of the central optimization problem
defined in Eq. (4.7). So they are referred to as extraneous solutions.

If the Euler equation has a unique solution pair z, > 0, y. > 0, both theoretical
analysis and numerical experimentation have shown that the positivity condition
plays little role in searching for these solutions [66]. With carefully chosen seeds, the
iterative method will converge rapidly to the desired solutions where both partners
are positive semi-definite. Since the positivity condition is very difficulty to impose,
this is of considerable importance.

However, in some systems, solutions to the Euler equation are not unique so that
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there are either two distinct z,’s or two distinct y,’s. Then there are extraneous
solutions. If there are two distinct set of solutions z,y} = 0, z,y? = 0 with z,, y?,
y? € P, for example, then there is a solution pair z,, y, where y, is of the form
Y« = tyl + (1 — t)y? with ¢ being a real coefficient. It is obvious that such a y, is a
line with respect to ¢t and for some values of ¢, the matrix y, = ty! + (1 — t)y2 has
negative eigenvalues. Thus the degeneracy of solutions to the Euler equation may

easily mislead the numerical procedure to extraneous solutions.

Theorem 4.2 Let z,, y. € P be a desired solution pair to the Euler equation. If
there ezists an extraneous solution pair z, and y,. where y.. has negative eigenvalues,

then y.. can be ezpressed as
yyt = y‘ + 8‘, with 3; e S" (4.19)

and S, C S is the linear space containing all nontrivial solutions to the following

matriz equation

z.5, =0, with s, €8S. (4.20)

Proof: y.. can be generally expressed as

Yes = Ys + 5. + &€, with s, € S. (4.21)
Since
Tolus = Talfs + ToSe + -‘17‘58 =Zz,8,+ Itfe =0, (4~22)
and thus
LTy Yuu D=L Ty, 82 > +§ <ZTy,>=§ <z,,e>=0, (4.23)

we have £ =0 and thus z,s, =0. O
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According to theorem 4.2, we always can get to the desired solution pair z., y,
from z, and y., by maximizing the bottom eigenvalue of the matrix v,, + s, with
s, € S,. This procedure referred to as push-up procedure is very useful in searching
for desired solutions of the Euler equation.

The situation in which both partners in solutions to the Euler equation are de-
generate is very rare and can only be dealt with case by case.

It should be pointed out that extraneous solutions are the direct result of the
degeneracy of solutions for the Euler equation. Thus simplifications of any kind on
the central optimization problem that reduce the degree of the degeneracy will reduce

the risk of getting extraneous solutions.

4.2.2 Symmetry Considerations

Symmetry considerations are very important in the lower bound method. Not only
can it simplify the central optimization problem by reducing both the dimensionality
of the matrix equation and the risk of getting extraneous solutions dramatically, it

may also improve the lower bounds to the ground state.

The Symmetry of z,

In an n-fermion system, there is usually some kind of symmetry. In the central op-
timization problem, if the z, matrix satisfies all the n-representability conditions, the
optimization without considerations of symmetry properties will give automatically

the ground state with the correct symmetry. Then the consideration of symmetry
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is just a matter of convenience, as it reduces the number of independent variational
parameters. If, however, the z, matrix satisfies only a subset of n-representability
conditions, the optimized ground state sometimes may not have the correct symme-
try. Thus imposing symmetry into the central optimization problem can improve the
optimized ground state. Now we consider constraints on n-fermion systems which
arise from symmetry considerations. We will consider two types of constraints. The
first arises from the requirement that z be invariant under the action of some group
(for example z, is translationally symmetric). The second type of constraint arises
when z, describes an n-fermion system which is an eigenstate of some 1-body oper-
ator. For example, we may want to carry out the variation subject to fixed particle
number or fixed z-component of the total angular momentum.

In treating the first type of constrained variation, we follow the conventional
group theoretical approach, introducing additional block structure in the z, matrix
by choosing a symmetry adapted basis. As a result, H should be redefined as a direct
sum of a number of smaller blocks, one corresponding to each of the blocks obtained
in the symmetry reduction of the invariant z, matrix. The effect of this redefinition
of H has enormous practical significance since the dimensionality of the problem
is reduced considerably. Such a symmetry reduction usually brings additional linear
relations among the entries of z,. The requirement that z, describe a system which is
an eigenstate of some 1-body operator also produces some additional linear relations
among the entries of z,. For example, if such a 1-body operator is the number

operator N = ¥, a*a whose eigenvalue n is the number of particles in a system, then
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we have
3" Tr{(ca)*dad) = = 3. Trlct (8aa — dat)ad] = (n — 1)Tr[ctdd], (4.24)

which relates the entries of the d matrix to those of the g matrix. All these additional
linear relations among the entries of z, can be taken into account by expanding
the Pauli subspace S. We express both the linear equalities arising from fermion
commutation relations and those additional equalities arising from the consideration
of the two types of symmetries in terms of the expanded subspace S ¢ H. Thus
z, € H has the correct symmetry and satisfies all of the equalities arising from
fermion commutation relations if and only if z, L S.

It should be pointed out that by redefining the Pauli subspace S, the symmetry
of the system is taken into account, but the general structure of the convex problem

remains unaltered.

The Symmetry of y,

The symmetry properties of a system put symmetry constraints only on z,. Thus
Ys, the partner of z, does not necessarily need to have exactly the same kind of
symmetry as z,. However, the following theorem shows that: symmetry constraints
can be put on y, to further simplify the problem. Here, the symmetry considered is

type one only.

Theorem 4.3 Let G be the symmetry group of a system and gz, = z, forany g € G.

Then there always ezists a symmetry-adapted y3¥™ € PN Kt which is positive semi-
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definite and satisfies
gydm = ySv™ forge G
(4.25)
T,y = 0.
Proof: Let z, and y. be the desired solution pair to the Euler equation. As gz, = z,
for any g € G, if y. is not degenerate, it is obvious that gy, = v,. If y, is degenerate,
the action of G on y, may produce a set of {gy.} with gy, € PN K+ and z,g9y, = 0.

Let’s define

s S gy, (4.26)

where |G| is the total number of elements in G. Then, obviously y5*™ € PN K+ and
it fulfills the equations in (4.25). O

In practice, by considering only symmetry-adapted y,, we may further reduce the
number of variables in the Euler equation by considering only the symmetry-adapted
s € S. As the degree of degeneracy for degenerate y, will also be reduced, symmetry

considerations on y, will also reduce the risk of getting extraneous solutions.

4.2.3 Configuration Interactions in the Lower Bound Method

In the wave-function method, not all configurations contribute equally to the
ground state. If only certain important configurations are used in the calculation, the
ground state obtained may still be reasonably accurate, but the number of variables
involved may be much smaller than that in a full configuration interaction (FCI)
calculation. Here, we introduce a similar procedure which will be referred to as the

configuration interaction in the lower bound method of reduced density matrix theory.
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Recall that the z, matrix can be expressed as

r, = -h+k-Mk)f, k€K, (4.27)

and the original central optimization problem of minimizing the energy expression
< h,z > is equivalent to seeking k¥ € K C H that maximizes A(k), the bottom

eigenvalue of —h + & given by

[=h + k = A(k) flo = 0. (4.28)

As H is a direct sum of smaller blocks, i.e., H = }_; ®H;, any m € H can be expressed
as m = ¥ ; ®m; with m; corresponding to block H;. At the optimum, the optimized
A(k) appears only in certain blocks where z,; = —h;+k; — A(k) fi has at least one zero
eigenvalue. In other words, A(k) appears only in blocks where z,; is positive semi-
definite or equivalently A(k) does not appear in blocks where z,; is positive definite.
So it is quite possible that the optimization can be carried out within only blocks
where z,; > 0 at the optimum and the optimized A(k), as well as the optimized z,,
will remain unchanged as long as the number of variables in z, is not reduced. This
procedure can be achieved simply by reformulating H and the basic structure of the
convex problem defined in Eq. (4.7) remains unaltered.

Why are blocks with zero eigenvalues at the optimum the most important? The
physical meaning can be given as follows: For any z.;, there is a corresponding y.;
with z,;v.; = 0. If z,; is positive definite, y,; is a trivial zero matrix; Whereas if z,;
has zero eigenvalues, then y,; is a matrix representation for an operator of the form

kfk; where k; is a linear combination of the basis operators for z,.;. As Z,y.; =0
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means Tr(k; k,-cf] = 0, k; must be a killer operator for the corresponding ground state
wave-function. Thus the correlation in the ground state is determined by the killer
operators for the ground state. So, important configurations are really determined
by killers for the ground state.

If each block z,; is called a configuration, then there will be a FCI calculation by
including all blocks of z, or a non FCI calculation by selecting only certain important
blocks in the lower bound method of reduced density matrix theory. This procedure
is in exactly the same pattern as that in the wave-function method. As in the wave-
function method, the dimensionality of the central optimization problem in Eq. (4.7)
in the lower bound method will also be reduced dramatically by removing unimportant
configurations.

Now we will discuss in detail about what kind of configurations are not important
and thus can be removed from optimizations.

1. If z,; > 0 as long as certain other blocks in z, are positive semi-definite, z; can
be removed from the optimization. As an example, if there are several blocks that
are exactly the same, then only one such block should remain in the optimization.
The requirement that z, > 0 comes from n-representability conditions. As z,; > 0 is
no longer an independent condition for z, > 0, obviously the removal of this kind of
blocks will keep the convex structure of z, unaltered in the parameter space. Thus
the optimization in the reduced space will give exactly the same results as that from
FCI optimization. This kind of blocks called type I blocks can be determined by

analyzing the convex structure of the z, matrix.
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2. If z,; is strictly positive definite at the optimum, then obviously the correspond-
ing block can also be removed from the optimization without altering the optimized
z,. In other words, the optimization can be performed using only blocks where ev-
ery corresponding z,; has at least one zero eigenvalue at the optimum. This kind of
blocks is referred to as type II block. Generally speaking, removal of type II blocks
alters the convex structure of z,. But it will leave the extreme point associated
with the optimum studied unchanged as the extreme point is determined by positive
semi-definite blocks. Thus type II blocks are optimum dependent and Hamiltonian
dependent. As an optimum is what we seek, in most cases it is almost impossible to
figure out exactly how the zero eigenvalues of z, are distributed among the blocks of
z,. Such a distribution certainly has something to do with the Hamiltonian. So far
no general rule on how to locate these zero eigenvalues has been obtained. However
in practice, a reasonable guess based on the analysis of the convex structure of z,
and the Hamiltonian can always be made and the optimization can be performed by
removing all guessed type II blocks. Then we can check numerically the correctness
of the initial guess. If the initial guess is correct, the optimized z, should be positive
semi-definite in the full space H; whereas if the initial guess is not correct, some
blocks of z, will have negative eigenvalues. In the latter case, a new guess can be
made by adding blocks where z, has xiegative eigenvalues back into the optimization.
By repeating this procedure, the desired global optimum can be obtained in a well-
controlled reduced linear space and the result obtained are exactly the same as that

with the FCI calculation in the lower bound method.
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3. If we further remove some blocks where the corresponding z,; has zero eigen-
values at the optimum, the lower bound obtained may be lower than that from the
FCI lower bound calculation. This kind of blocks are called type III blocks and will
not be investigated numerically in this thesis.

By removing unimportant configurations, the wave-function method will give a
different ground state although it may be very close to the ground state from a FCI
calculation; On the other side, the lower bound method will give exactly the same
ground state as that from a FCI optimization if only type I and type II configurations

are to be removed.

4.2.4 Numerical Algorithms for Solving the Euler Equation
z,y. = 0.

Developing efficient numerical procedures for solving the Euler equation defined
in Eq. (4.11) is the key problem in the lower bound method. Here we present two

numerical algorithms for solving the Euler equation
z.9.=0, with =z,€8% y. €K' (4.29)

which is defined in section 4.21. Both z, and y. are required to have some fixed but
convenient normalization, e.g. <e,z. >=<e,y. >= 1, where e is as before. This
eliminates the trivial solution pair z, = 0, y, = 0 to the Euler equation.

Algorithm 1:

In this algorithm, an iteration procedure based on Newton’s method is imple-
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mented to solve the Euler equation. In this numerical procedure, z;;, and y;;, in the

(i 4+ 1)-th iteration is determined by

Tipy = IT; +tAz;,
(4.30)

Yier = Ui +EAY;,

where parameter ¢ is determined by the linear search along the searching direction

{Az;, Ay;} to minimize the norm of the matrix
Tir1Yirt = Tilfi + tTAY; + ATy + Az Ay, (4.31)
where the norm of a matrix m is defined as ||m||? = Tr[m'm], and {Az; € S*,Ay; €
K*} is determined by solving the linearized matrix equation
zi¥i + T;Ay; + Ayiz; = 0. (4.32)

This is a second order procedure which involves solving dim,, simultaneous linear
equations with dim(H) < dim., unknowns in each iteration. Finally z, y converge to
the desired solution pair z,, v..

Algorithm 2.

From a starting pair zo and yp, we are to reduce ||zy||?> with

T = zp+st with steSt,
(4.33)
v = yw+kt with kte KL
Let ms., mx1 be the orthogonal projectors onto S+ and K+, respectively. As
TY = Toyo + Tokt + sty + skt (4.34)

the best s* € S+ to reduce ||zy||? is given by s{ = ms. (zoy2) with siyo being the
orthogonal projection of zyye onto the linear space Sy, and the best k- € KL to

91



reduce ||zy||? is given by k; = mg. (z3yo) with zokit being the orthogonal projection
of Tgyo onto the linear space zoK+. This procedure is schematically shown in the
first two pictures in figure 4.1.

If we define the linear space spanned by si as Si, which is a subspace of S+, and
the linear space spanned by ki as K, which is a subspace of K+, we can carry out

the reduction of ||zy||? in these 1-dimensional linear spaces Si*, Ki- with

T = zo+st with steSt,
(4.35)

y = yw+kt with kte KL
As st and k* vary only within S{+ C S* and Ki* ¢ K%, ||zy||? may not be reduced
to zero but to a local minimum with respect to Si and Ki'. At the local minimum,

zy should be orthogonal to both Sity and K, thus the optimized s* and &' can

be obtained by solving the following equations

<zy|zkt> = 0,
(4.36)

<zy|sty> = 0.
These nonlinear equations can be solved iteratively with Newton’s method in ex-
actly the same way as described in algorithm 1. The procedure described above is

schematically shown in the third picture of figure 4.1.

Further, we can define S = span{s{,s3,--,s}, K = span{k{, k3, == ki}
where si, k; are determined by projecting zy* and z?y from the previous local
minimum (with respect to S, K- ) onto S* and K*, respectively. At the previous

local minimum, zy is orthogonal to both S,y and zKj-,, which is equivalent to

zy® L S, and z%y L K- |. So the new bases s and k7 are orthogonal to S, and
i—1 L i 4] i-1
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Figure 4.1: Schematic Illustration for Algorithm 2

Kj- |, respectively. Thus both {s{,s7,---, s} and {k{", k3, -, k;} are orthogonal
basis sets which are very convenient in computations. In this way, we generate a

series of expanded subspaces of S* and K+ with

Stc Syc---Cc St
(4.37)
Kitc Kfc---c K%
In the computation, the reduction of ||zy||? begins at the left side and is carried out
step by step from the left to the right of the subspace chains in (4.37) consecutively.
In the step with st € S} and k*+ € K}, searching for the local minimum involves
solving ¢ + j simultaneous linear equations with ¢ + j unknowns in each iteration.

In each step of the expansion for the subspaces in (4.37), the new bases are created
by projections in exactly the same way as creating si- and ki". Thus they are the
best bases to further reduce ||zy||?>. Finally the global minimum with z,y, = 0 is
reached. As Newton’s method is used to solve the nonlinear equations, this algorithm
is also a second-order numerical procedure and therefore has fast convergence near

the minimum.

By comparison, the first algorithm is simpler and more straightforward. In nu-
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merical procedure, it needs relatively less number of iterations to get to the global
minimum. The main disadvantage of this algorithm is that the number of linear equa-
tions in each iteration grows faster as the system becomes larger and larger. That may
cause this algorithm to slow down in large systems. The second algorithm seems a
little more complicated. In the numerical procedure, it involves finding the best bases
by projection, reducing ||zy|[? in well-controlled smaller subspaces and expanding the
subspaces step by step. It needs relatively more iterations to converge to the global
minimum. But as the new bases in each step of the expansion are always the best, the
reduction of ||zy||? in each step is very effective. Actually we do not need to go very
far along the subspace chains before the global minimum is reached. In other words,
the global minimum can be reached within much smaller carefully chosen subspaces
of S+ and K*. Thus the total number of linear equations involved is much less than
those in algorithm 1.

It is expected that algorithm 2 will work much faster than algorithm 1 in large
systems. Not only will it offer a very effective numerical procedure to make the
lower bound method of reduced density matrix theory a real computationally feasible
method in large scale, but it will also have much more applications in other linear
and non-linear optimization problems.

In a series of numerical experiments, z and y were symmetric matrices with di-
mensions up to 30 and there were up to 465 independent variational parameters. Both
algorithms showed fast convergence. In the case where z and y were 30 x 30 symmetric

matrices with 465 variational parameters, both algorithms needed about 20 iterations
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to converge to the desired solutions. In the numerical procedure from algorithm 2,
the global minimum was reached in the reduced subspaces whose combined dimension
was about 20. Such a dimension is much lower than the full dimension 465. As a
result, the number of equations involved there was much less than that in algorithm 1
and algorithm 2 worked much faster than algorithm 1. These results agree very well

with our expectation.

4.3 Application of the Lower Bound Method to
1-dimensional Rings

Here, the lower bound method will be applied to 1-dimensional rings to com-
pute the ground state determined by the ionic Hamiltonian A’ in Eq. (2.16). The
Hamiltonian reads

h! = afhf + alhi, (4.38)
where of and of are real coefficients, and 4! and A given by

h{ = 2<i.j>(a? bf bja; + afb}'biai): (4.39)
h-% = Ycij>(€a;€a; + €n,65 + €q.€; + € €p;).

From the investigation in chapter 2, we know that the ground state of A/ is an ionic
state consisting of empty and on-site pairing ionic lattice sites. Requiring that d is
a density operator for an ionic state in 1-dimensional rings will put an additional
constraint on the corresponding z matrix defined in Eq. (4.3). All elements of the z

matrix that do not preserve the number of on-site pairings will vanish. For example,
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Tr[(a,b,)*‘b,.a,.:dh] = 0 if a,, b, are annihilators on site r with spin up and down
respectively and ap is an annihilator on another site r'. Our main interest is the
half-filled ionic ground state which is the main characteristic of the superconducting
quantum phases for Sy2 in lattices with cubic symmetry. So only rings with an even
number of lattice sites will be considered.

The main purpose of our investigation is:

(1) to further test the numerical procedures we presented above.

(2) to seek and test proper n-representability conditions which are manageable but
still give reasonably tight lower bounds to the ground state energy, as well as good
approximations to the corresponding reduced density matrix in the system.

The success of such an investigation will make a big step forward towards applying
the lower bound method of reduced density matrix theory to 2-dimensional square
lattices and other more complicated physical systems. Efficient numerical procedures
based on the main theorem will have applications beyond the lower bound method of

reduced density matrix theory.

4.3.1 The Lower Bound Method with the 2-body Density
Matrix

As h! is pure 2-body, the natural choice for the lower bound method is the 2-
body density matrix defined in Eq. (4.8). Such a 2-body density matrix z should be
invariant under the particle-hole transformation Tpy. Thus all entries of z of the form

Tr[Alci}, where A! is a pure 1-body operator, will vanish. As a result, the z matrix
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is completely determined by pure 2-body operators and further the corresponding d-

and g-matrices are equivalent with
Tr{(ab)*cdd] = Tr[(a*b*)*c*d*d]. (4.40)

Because of the translational symmetry in the system and because of the fact that
the ground state investigated is an ionic ground state, there are |A| independent
variables in z which are associated with |A| pure 2-body operators in a ring with |A|

sites. These variables can be defined as

a; = Trles e. .“i:
e €aru] withi =1, 2, l_12\_| (4.41)
Bi = Tr(4(aib)* a14ib14id]

It is the constraint on these variables that completely determines the convex structure
of the z matrix.

Let r = 2|A| denote the rank of 1-particle states, the dimension of the z matrix is
2(;) +1+72. By removing all type I blocks, the dimension of the z matrix is reduced
to Z|A|. In the reduced z matrix, there are two |A| x |A| blocks whose basis set can
be chosen as {v2a;b;, i=1, 2, ---, |A|} and {eas =1, 2, ---, [A|}, respectively;
|A] 2 x 2 blocks whose bases are given by {afai4i, b ;b1} withi =1, 2, - |A|/2;
and [A| 1 x 1 blocks whose bases are given by {aja;4;} with i = 1, 2, ---, |A].
Because of its special symmetric form, the z matrix can be diagonalized by an unitary
transformation independent of the variables {a;, G;, i = 1, 2, --~, |A]|/2}. So the
constraint condition z > 0, which is equivalent to requiring that all eigenvalues of

the z matrix be greater than or equal to zero, becomes a set of linear constraints on
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these variables. Thus, the approximately n-representable region in which z > 0 is a
polyhedron. This makes the investigation of the convex structure of x much easier.
|A| =2 Case

For |A| = 2, the simplest case in 1-dimensional rings with an even number of sites,

the reduced z matrix is determined by «; and ;. It can be expressed as

4
=) Bz (4.42)
i=l
with
r 1 ﬂ1/2 1 (431
I = ) T2 = )
f/2 1 a 1
(4.43)
-
-y B
I3 = y T = [1+al]
i B l1-a

This z matrix can be diagonalized by an unitary transformation

4

U=>) ol (4.44)
i=l
with

-l 1 1 1

U, = 2 2 U= V2 2 ’
1 1 1 1
vz 2| : VR
] ) (4.45)
% &

U = 2 2], U= 1]
& 7
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The convex structure of the z matrix is determined by the non-negativity of all

eigenvalues of z, that is

1+6/220, l+a, >0,
(4.46)
l-ay 6,20, 14+a>0.
Such a convex set is schematically shown by the triangle V°V2V2 in figure 4.2 where
at any point inside the triangle, z > 0 and at any point on the triangle boundary,
z > 0. V9 V2, and V2 are three extreme points of the convex set and thus correspond
to possible desired solutions in the lower bound method.

It is easy to check that this convex set is n-representable. Any point outside the
convex is not n-representable and thus is forbidden. The lower bound method gives
exactly the same ground state as that from the FCI wave-function method. Among
those extreme points, V° with {4, o} = {0, 1} corresponds to the vacuum ground
state, V2 with {61, a1} = {+2, —1} and V2 with {8, a1} = {—2, —1} correspond to
the half-filled AGP ground states with constant and alternating phases, respectively.
Here, it is worth mentioning a very special point C with {8, o, } = {0, —1} . This
point corresponds to the checkerboard ground state and happens to be degenerate

with the AGP ground states in this case.

|A| = 4 Case

For |A| = 4, the z matrix is determined by {a, @, 51, f2} and the blocks in the

reduced z matrix are given by
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Figure 4.2: The Approximately n-representable Region from the 2-body Density Ma-

trix
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In exactly the same procedure as in |A| = 2 case, the convex structure of the £ matrix

is determined by the non-negativity of all its eigenvalues, that is found to be
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126 +6/220, 1-05/220,

1+ 20 +az >0, 1—a; >0, (4.48)

l-ao; x5 20, l+a; 20 with i=1,2.
The convex set determined by these linear constraints is a polyhedron with five ex-
treme points. The projection of this polyhedron onto the plane spanned by {a;, 4}
is a polygon with the projections of the five extreme points as its five vertexes. As the
ground state energy depends only on a; and £, the ground state in the lower bound
method is best described by such a polygon. In figure 4.2, this polygon is schemati-
cally given by VOV, VE, VA4, VA, where VO, V}, V4, V4, and V4| are the projections
of the five extreme points. The associated values of {a;, a2, 1,52} at these extreme
points corresponding to V9, V{, Vi, V4, and V2, are given in table 4.1.

In order to compare the results from the lower bound method and the wave-
function method, the projections onto the 5;a; plane of the n-representable half-filled
ionic ground states from the FCI wave-function computation are also schematically
shown with small disks in figure 4.2. There A%, A* correspond to the half-filled AGP
ground states with constant and alternating phases, respectively, and C corresponds

to the checkerboard ground state. The associated values of {1, as, £, 5,} for these

special points are also given in table 4.1.

|A} = 6 Case

Despite the increase in dimensionality, both the block structure and the convex

structure of = are found to be similar to that in |A| = 2, 4 cases. In this case, the
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VO C| AL | AL | VA VA | Ve | V4,
a | 1|-1|—3|—3|-2|-5| -1| -1
ap| 1| 1|-3|—-3| O O] 1| 1
B 010 % "45 % _% 1l -1
B| OO 4| 4| 1] 1| of o

Table 4.1: Values for Some Special Points with |A| = 4

polygon from the lower bound method is schematically given by V°VS VE,VE, V8
in figure 4.2 where V°, V§ , V§, V&, and V5 correspond to five extreme points
of the convex set. The n-representable half-filled ionic ground states are also given
schematically with small circles in figure 4.2 where A%, A% and C correspond to the
half-filled AGP ground states with constant and alternating phases and the checker-
board ground state respectively. The associated values of {a,, a2, a3, B, B2, B3} at

these special points are given in table 4.2.

Fixing Particle Number

In the above investigations, the number of electrons is not fixed in order to facil-
itate the study for the convex structure of z. If the number of electrons is fixed to

|A| (half-filling), an additional linear condition will arise from

, 1A}
Tr[Nd]=|A| with N =) (afa;+bFb;). (4.49)
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VOIC | AL AL | VR | VE IV | VS,
o | |-l -3|-3| -3 -3 1| 2
a| L] 1|-3|-5| Of 0 1} 1
ag | L{-1|-g|-5| 5| 35| 1| -1
AKLHEIEEIEE
B| OO &/ &1 1| 1| 0 0O
Bs| o|o| &|-8| 23| -2f-2] 2

Table 4.2: Values for Some Special Points with [A| =6

This condition will put an additional linear constraint on the variables with

Al 24 )
Tr(d_es Y €q;d] = Tr[(2N = 2|A[)(2N - 2|A|)d] =0, (4.50)
i J
which means that
Al
1+2 ) @ +apm =0. (4.51)

1

It has been checked that the values of variables on all the extreme points mentioned
above except V°, which corresponds to the vacuum ground state, satisfy the condition
in Eq. (4.51). This indicates that the ground states obtained from the lower bound
method are half-filled automatically. Thus adding condition in Eq. (4.51) to further
constrain the z matrix will not improve the lower bounds to the ground state energy

as well as the approximations to the corresponding reduced density matrix.
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Numerical Computations

Numerical procedures based on the two algorithms presented in the previous sec-
tion are implemented to compute the ground state in the 1-dimensional rings dis-
cussed above. In most situations, the numerical procedures are not very sensitive to
the starting points. An arbitrarily chosen starting pair {zo,yo} with 20 > 0, yo > 0
will lead to the desired solutions with fast convergence. The optimized z, corresponds
to one of the extreme points for the corresponding convex set. But for certain special
h!, degeneracy exists for the ground state. The desired z, no longer simply corre-
sponds to one of the extreme points but corresponds to a line segment connecting two
extreme points. In [A| = 6 case, for example, all points on the line segment V5,V§,
correspond to the degenerate ground states of ! with af = 0, af > 0. Thus, there
are extraneous z,, on the extension of the line segment. In this kind of situation,
carefully chosen starting points, in which both partners are positive semi-definite and
very close to the desired solutions, and the push-up procedure based on Theorem 4.2
are needed to get to the desired solutions.

The highly symmetric AGP ground states are found to be the most difficult ones
to compute numerically. As the AGP ground states have much higher degree of
symmetry and thus have many more zero eigenvalues in z2CP than other ground
states, not only every zACF itself is highly degenerate, its partner yA6P, which is
the positive semi-definite killer of zAGP with yASPzAGP = (0 at the optimum, is
also highly degenerate. Thus there is much more chance to get to the extraneous

solutions. As there is much higher degree of symmetry in the solid state, the lower

104



bound calculation may be more difficult in solid systems than in atomic and nuclear
systems.

Although the systems computed are not very large, numerical tests have already
shown that algorithm 2 had an equally fast speed of convergence as algorithm 1.
This again indicates that algorithm 2 will be a much faster numerical procedure than

algorithm 1 when systems become larger and larger.

Discussions and Conclusions

As a summary of the above investigation, we have the following conclusions:

1. As is shown in figure 4.2, the projection onto the a;3, plane of the n-
representable region in a 1-dimensional rings is bounded by two line segments meeting
at V° and a smooth curve connecting the other ends of the segments ([A| = 2 is an
exception). Every point in such a smooth curve represents a half-filled ionic ground
state. The middle point C corresponds to the checkerboard ground state and the
two end points correspond to the half-filled AGP ground states with constant and
alternating phases, respectively. As the number of sites in the ring increases, the
corresponding n-representable region will shrink. As a result, the middle point C
remains unchanged and all other points on the curve move inwards. The two end
points go approaching to A%} and A" which correspond to the half-filled AGP ground
states with constant and alternating phases respectively for |A| — oo.

2. On the other side, the projection onto the a3, of the approximately n-

representable region obtained from the lower bound method is a polygon. The half-
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filled ionic ground states are represented by several line segments which connect the
extreme points of the corresponding convex set non-smoothly. Point C, and the
points corresponding to the AGP ground states are the only points corresponding
to the n-representable half-filled ionic ground states. As the number of sites in a
ring increases, the approximately n-representable region will expand. The extreme
points with §, > 0 and B; < 0 approach to V2 and V2, respectively. As a result,
for [A| — oo, the polygon for the approximately n-representable region will be
represented by the triangle VOV2V2.

3. From the above discussion, it is obvious that: as the number of sites in a ring
increases, the approximately n-representable region from the lower bound method will
go in the opposite direction to the n-representable region. This strongly indicates that
the d-, ¢- and g-conditions for the 2-body density matrix in the lower bound method
are not good enough to give reasonably tight lower bounds to the ground state energy
as well as good approximations to the corresponding 2-body reduced density matrix
in 1-dimensional rings. So more n-representability conditions are needed in order to

give a better description of the ground states using the lower bound method.

4.3.2 The Lower Bound Method with the 3-body Density

Matrix

Now it is clear that more n-representability conditions have to be introduced
into the lower bound method in order to get better results. But what are the n-

representability conditions which are important to the ground state and still manage-
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able in the system. There are two alternatives: one is to introduce more necessary
n-representability conditions for the 2-body reduced density matrix , the other is to
use the p-body density matrix with p > 2 in the lower bound method. The follow-
ing analysis on the ionic ground state for A = 4 strongly indicates that the second

alternative is a better choice in our system.

The 3-body Reduced Density Matrix for [A| =4

Let the pair creation and annihilation operators be

| Sl

B,' = a.,-b,-, (452)

then the wave-function for the n-representable half-filled ionic ground state in the

ring with |A| = 4 can be generally expressed as
\69(€) >= [(Bf Bf + Bf Bf) + &(BY B + Bf Bf + Bf Bf + B} Bf)] 10>, (4.53)

with 0 < |§] £ 1. When € = 0, ¢,(€) is the checkerboard ground state; and when
§ = +1 or -1, ¢,(€) is the AGP ground state with a constant or an alternating phase.

We build a set of killer operators for ¢,(§) as:

kl’& = (Eb;bl - ai“ag)&, kgﬁ = (b.{bl bt Ea.faz)c“x"',

k3 = (fa; a; — bf by)éd, kia = (a3 ay — EbTbo)at,

4.54
ks.a = (€3 by + af bo)é, kea = (a3by + Eafby)at, o
k1s = (€b3a1 + by ag), ks.a = (b3 a1 + £bf az)a™,
with
& € {af, bf, a3, b3}. (4.55)
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Keep in mind that the operator

ke = i(eai + ep;) (4.56)

is a killer for all half-filled states. From these killer operators, we can build a Hamil-

tonian
he = (1 — E)kg k9+2§: (4.57)
Obviously 7:5 is positive semi-definite and it is also a killer operator for ¢,(£¢). Thus

¢,(€) is the ground state of A(£). itg can be further expressed as

262

A
E) = 162 €3 (-5 Bus = BLB) + 150 3 + ooy + )

= 16 [2 - ¢hl + 1'8252135 . (4.58)
Apart from a constant, h(€) is exactly the ionic Hamiltonian A’ in Eq. (4.38). The
most striking feature of fz({) is that: in its expression (4.57), any k; is a polynomial
in creation and annihilation operators of degree less than or equal to 3 and thus is a
basis operator for the 3-body density matrix.

Let z4,(c) be the n-representable 3-body density matrix corresponding to @y (£)

and h(€) be the positive semi-definite matrix representation of %(€) in the same basis

set as Ty, c)- As h(€) is a killer of ¢,(¢), we have

Toye)h(§) = 0. (4.59)

This means that if we use the 3-body density matrix to replace the 2-body density
matrix in the convex problem defined in Eq. (4.7), then x4 (), h(£) will be the desired
solution pair for the Euler Equation. Thus the ground states obtained in the lower
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bound method with entries of the 3-body density matrix as variational parameters
will be exactly the same as that from the FCI wave-function method.
This important result strongly indicates that the 3-body density matrix is a good

candidate to replace the 2-body density matrix in the lower bound method.

The 3-body Density Matrix in the Lower Bound Method

In the cases of |A| > 4, no 3-body killer operator with similar form as that in
Eq. (4.57) has been found. This means that the 3-body density matrix corresponding
to the ground state obtained from the lower bound method will probably not be
exactly the same as that from the wave-function method. However, the significant
improvement of the lower bound in the |A| = 4 case strongly suggests that the lower
bound method with entries of the 3-body density matrix as variational parameters
may give much tighter lower bounds to the ground state energy as well as much better
approximations to the corresponding ground state in the system.

The 3-body density matrix z is determined by up to 3-body operators. It can be

generally decomposed as
z = Tr[A%d] + Tr[A'd] + Tr[A%d] + Tr[A%], (4.60)

where A%, Al, A% and A3 are scalar, pure 1-, 2- and 3-body operators, respectively. As
the Hamiltonian studied is invariant under particle-hole transformation, both Tr[A!d]
and Tr[A3J] vanish. Thus the number of independent variables in the 3-body density
matrix is exactly the same as that in the 2-body density matrix. From the definition
in Eq. (4.3), it is obvious that all the blocks from the 2-body density matrix will be
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included in the 3-body density matrix . Thus the dimensionality of the problem is

increased. The general structure of the convex problem defined in Eq. (4.7) remains

unaltered.

For |A| = 4, after removing all type I blocks, new blocks in the reduced z matrix

B2  B/V2Z —Bi/V2 0

are given by
l-a; (/2
B/2  l1-ar /2 [/2
B/2 B2 l1-a B/VZ
B/V2Z  B/VZ B/VZ 1
-4/V2Z 0 0 a
0 -62/V2 0 2
0 0 -A/V2 =

0 —B2/V2
0 0

oy a
1 o)

oy 1

o o

with {2b,(a;b;)*, —V2a{, vV2ate,,, i = 2, 3, 4} as bases;

l1+0g
B1/2
P2/2

B1/2

1l+ag

B1/2

with {2af(a;b;)*, i = 2, 3, 4} as bases; and
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B2/2
,31/2 *

1+ a

~-B/V?2
Q) , (4.61)
Q2

(4 3]

(4.62)



l-ay B B2 0
B 1-2a; +ay 6 0
(4.63)
B2 o) l~-a; 0
0 0 0 14+ 20 +a; ]

with {2v/2a}af as, 2v2a} b3 b, 2v2b%af by, 2v/2a,a2a3} as bases.

It has been checked that at extreme points V},, V3, V1, and V4,, these blocks all
have negative eigenvalues and bigger negative eigenvalues are always found in the first
and third blocks. By further analysis of the exact solution, we found that these two
blocks alone will be enough to give the desired solutions in the lower bound method.

As the number of sites increases, the block structure in the reduced z matrix is
found to be similar to that for |A| = 4. There are two big blocks whose dimensions in-
crease linearly with |A| and whose bases are given by {2b; (a:b:)*, —v2a{, V2afe,,,
i=23,---,|A] } and {2a;(a:b;)*, i =2, 3, ---, A} respectively. There are a series
of 4 x 4 blocks, whose basis set is given by {2v2a] e}a;,, 2v2a]b}bi,, 2v2b%atbs,,
2v/2a;,ai20;,} with 4, # i, # i3. The three indices can be associated with a special
configuration. For example, in the case with |A| = 6, there are three 4 x 4 blocks

given by
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-
l1-ap o) B2 0
B 1-20+a 61 0
, (4.64)
B2 o l—a 0
0 0 0 1+ 2a) + ay
i ]
l+a——a; B2 B3 0
B2 l—o—ag+ a3 6 0
. (4.65)
Bs B l-a+a2—aj 0
0 0 0 l4+oap+ay+03
l-aa f Ba 0
B l-an B 0
(4.66)
ﬁ? ,32 1- (4] 0
0 0 0 1+ 3a,

The basis sets for these three blocks are
[2v2afatas, 2v2a}biby, 2v2bTatb,, 2v2aia:a3},
{2v2afatas, 2V2afbfby, 2V2bfalhy, 2v2aiaza4}, (4.67)

{2v2afatas, 2v2afbibs, 2v2bFaFh,, 2v2aiazas},

that are associated with three configurations schematically shown in (1), (2) and (3)
of figure 4.3, respectively.

By further analysis , we found that: at extreme points V¢, V&, V§, and V5,,
these blocks have negative eigenvalues and bigger negative eigenvalues are always in
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(1) (2) (3)

Figure 4.3: Some Configurations in the 3-body Density Matrix for A = 6

the first big block and the 4 x 4 block associated with configuration (1) in figure 4.3 .
It seems that the positive semi-definite condition for the second big block is contained
in the first big block and the 4 x 4 block associated with configuration (1) with three
connected nearest neighbor sites is much more important than other 4 x 4 blocks in
determining the lower bound to the ground state in the system. So it is quite possible
that the bottom eigenvalues of the 3-body density matrix for a 1-dimensional ring
can always be determined in the two blocks mentioned above. This means that: killer
operators for the approximately n-representable ground state, which determine the
correlation in the ground state, are linear combinations of the basis operators for the
two blocks. Thus these blocks are the most important configurations in the 3-body
density matrix z. This statement will be checked numerically in our computation.
If it is true, the lower bound computation with the 3-body density matrix will be

simplified dramatically in our system.

Numerical Computations with the 3-body Density Matrix

Direct lower bound computations with entries of the 3-body density matrix as
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variational parameters are done for 1-dimensional rings with [A| = 6, 8 and 10. With
circles and disks to represent the computed results for the half-filled ionic ground
states from the wave-function method and the lower bound method respectively, the
projections onto the By, plane of the computed correlation holes for |A| =6, 8, 10
are schematically given in figures 4.4, 4.5 and 4.6, respectively. From these figures,
it is quite clear that the approximately n-representable region are very close to their
n-representable counterparts. In order to give a complete comparison, the ground
state energies and the values of variables corresponding to the ground state of A’ in
Eq. (4.38) with af = —1 and o = 0 for |A| = 6, 8, 10 are given in table 4.3. These
results show that the lower bounds obtained are very tight and the approximately
n-representable 3-body density matrices corresponding to the half-filled ionic ground
states are very close to their n-representable counterparts.

In numerical computations, numerical procedures from both algorithms showed
a fast speed of convergence. Actually as the dimensionality of the 3-body density
matrix is reduced efficiently by removing type I blocks, the speed of convergence here
is almost as fast as that in the lower bound method with the 2-body density matrix.

Numerical lower bound computations with only the two most important config-
urations discussed above are also carried out. The results obtained are exactly the
same as those from the FCI lower bound computations. This proved numerically our
prediction that the bottom eigenvalues of the 3-body density matrices correspond-
ing to the half-filled ionic ground states are determined by these most important

configurations.
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Figure 4.4: n-representable Region from the 3-body Density Matrix for |A| = 6

From these computed results, we find that: the lower bound method with entries
of the 3-body density matrix as variational parameters works very well in our sys-
tem. Not only does the computed approximately n-representable region have correct
behavior, i.e., the approximately n-representable region will shrink as the number of
sites increases, but also the lower bounds obtained are extremely tight and the op-
timized 3-body density matrices are very close to their n-representable counterparts.
The significant improvement of the results from the 2-body density matrix to the 3-
body density matrix shows that the 3-body density matrix in the lower bound method
is a much better choice. The tightness of the lower bounds and the closeness of the

computed values of all variables to those from the wave-function method strongly
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233

Figure 4.5: n-representable Region from the 3-body Density Matrix for |A| =8

indicate that the lower bound method with the p-body density matrix for larger p
can not further improve the results very much. Thus the lower bound method with
the 3-body density matrix is the best choice for the 1-dimensional system.

As pure 2-body nearest neighbor interactions in 1-, 2- and 3-dimensional cubic
lattices share a lot of common characteristics, almost all the strategies used in the
lower bound computation for 1-dimensional rings can be transferred into computa-
tions for 2- and 3-dimensional cubic lattices. Among these strategies, the idea of lower
bound computations using only a small number of most important configurations is
especially important. It has enormous practical significance since the dimensionality
of the problem can be reduced considerably. The second numerical algorithm is a
second-order numerical procedure and it is proved both theoretically and numerically

to have a very fast speed of convergence even in large systems. So it is quite reason-
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Figure 4.6: n-representable Region from the 3-body Density Matrix for |A| = 10

able to predict that direct lower bound computations in 2-dimensional square lattices

will be achieved soon.
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|A| =6 |A| =8 |A] =10

W-Function | L-Bound | W-Function | L-Bound | W-Function | L-Bound
) -0.4444 | -0.4474 -0.4268 | -0.4304 -0.4189 | -0.4229
ar 0.0000 0.0218 0.0000 | -0.0208 0.0000 0.0200
as -0.1111 | -0.1489 -0.0732 | -0.1065 -0.0609 | -0.0901
y 0.0000 0.0322 0.0000 0.0269
as -0.0401 | -0.0678
b1 1.3333 1.3354 1.3066 1.3107 1.2944 1.2997
B2 0.8889 0.8826 0.8535 0.8469 0.8380 0.8309
Bs 0.8889 0.9102 0.7886 0.7897 0.7401 0.7433
Ba 0.7372 0.6823 0.6601 0.6182
Bs 0.6142 0.6472
E, -4.0000 | -4.0061 -5.2263 | -5.2428 -6.4722 | -6.4987

Table 4.3: Values for the Ground State of k! with af = —1, af =0
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Chapter 5

Conclusions

By considering Pauli’s principle and the nearest neighbor interactions, we found a
seven-dimensional linear space H of all spin-invariant up to two-body nearest neighbor
interactions in a class of lattices where all nearest neighbor pairs are equivalent. We
classified these interactions into pure one-body which belong to H!, a two-dimensional
subspace of H, and pure two-body which belong to H?, a five-dimensional subspace
of H.

We studied the phase structure for pure two-body interactions in Sg2. We found
a very simple way to label quantum phases for Sz by a unique set of quantum
numbers.

By simply using good quantum numbers and the idea of basin of attraction, we
found six quantum phases of Sg2 in lattices with cubic symmetry. These quantum
phases are a FM phase, an AFM phase, two superconducting phases characterized

by the constant and alternating phase AGP functions, respectively, the mixed phase
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where half of the sites are ionic and the other half are valence and the trivial vacuum
quantum phase. Half-filling and collective behavior with some kind of long-range
order are the main features for these quantum phases.

By analyzing the relationship between the basins of attraction for each of the
adjacent phase pairs, we found that phase transitions are very likely to occur between
each of the superconducting phases and the FM or AFM phase.

Both superconducting phases found are BCS-like superconducting states which
are characterized by the condensate of coherent electron pairs. The on-site AGP
pairing seems to be the unique AGP pairing in the system. Thus the on-site AGP
pairing plays a key role in the superconducting phases. The uniqueness of the on-site
AGP pairing is a very important conjecture. The proof or disproof of this conjec-
ture will help us to gain a deeper understanding about the relationship between the
AGP pairing and the quantum phases in cubic lattices. This will further help us to
understand better about superconductivity in these lattices.

We formulated the central optimization problem in the lower bound method of re-
duced density matrix theory into a convex problem. Two numerical algorithms based
on the main theorem are presented and programmed to solve the central optimization
problem. Numerical procedures from both algorithms are second-order procedures.
They exhibit a fast speed of convergence in our numerical computations. Both theo-
retical analysis and numerical experimentation show that numerical procedure from
algorithm 2 will work even faster in large systems.

Numerical computations with the lower bound method are carried out to approach
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both the two-body and the three-body reduced density matrices corresponding to the
ionic ground states in one-dimensional rings. With the two-body density matrix, the
results obtained show that: the lower bounds are not very close to the ground state
energy from the full configuration wave-function method. The situation will become
even worse as the number of sites increases. Thus, the most commonly used d, g and
g n-representability conditions are not good enough to give reasonably tight lower
bounds to the ground state as well as good approximations to the corresponding
n-representable two-body density matrix in the system.

Both theoretical analysis and numerical computation show that the lower bound
method with the three-hody density matrix is the best choice for our system. Al-
though the number of variables in the three-body density matrix is exactly the same
as that in two-body density matrix, the lower bound obtained is very tight and the
optimized three-body density matrix is very close to its n-representable counterpart.

Numerical computations with only the most important configurations are also
carried out. The results obtained are exactly the same as those from the full con-
figuration lower bound computations and the dimensionality of the computation is
reduced dramatically.

As pure two-body nearest neighbor interactions in one-, two- and three-dimensional
cubic lattices share a lot of common characteristics, almost all the strategies used in
the lower bound computation for one-dimensional rings can be transferred into com-
putations for higher-dimensional cubic lattices. From the computed results and con-

clusions for one-dimensional rings, it is reasonable to predict that direct lower bound
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computation in two-dimensional square lattices is around the corner. The application
of the lower bound method to other more complicated systems is not very far away.

It is found that the size of the basin of attraction for the mixed quantum phase is
dimension dependent because of the fact that the degree of phase frustration in the
mixed quantum phase depends on the dimensionality of the lattice. This will further
affect the size of the basins of attraction for other quantum phases and thus will be the
cause for some dimension dependent phenomena of the system. The exact relationship
between the size of basin of attractions and the dimensionality can be determined
by numerical computations. It may further explain why the superconducting phase
prefers two-dimensional square lattices and if it is possible for the superconducting
phase to occur in three-dimensional lattices.

The numerical procedure from algorithm 2 is proved to be a very efficient numerical
procedure, especially for large systems. It will not only help to make the lower
bound method of reduced density matrix theory to become a computationally feasible
method in large scale but should also have more applications in other linear and
nonlinear optimization problems.

After all, our work makes it one step closer to achieving the dream of replacing
the wave-function method with the lower bound method of reduced density matrix

theory.
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