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ABSTRACT 

MMPP Modeling of ATM Multimedia Traffic 

S hahram Shah-Heydari 

Traffic control in broadband networks has been a topic of interest in many research 

projects across the world recently. Due to  the variety of the offered services in broadband 

networks like multimedia and video, the traffic flowing in the broadband networks is con- 

sidered highly bursty. Therefore the traffic control will be very important in preventing 

congestion, reducing the probability of ce11 loss, and defining suitable algorithms for cal1 

ad mission. 

Traffic control cannot be done without having a well-fit model to  represent the traffic. 

Therefore traffic modeling is an essential part of any network control research project. A 

number of models have been proposed t o  represent various types of traffic in broadband 

networks. Among them, Markov-Modulated Poisson Procesç (MMPP) shows the great 

flexibility and analytical tractibility which is needed in traffic control. MMPP model is not 

only capable of capturing the interframe correlation in the traffic, but also can be easily 

analysed by using wel-known Matrix Geomet ric techniques. 

Our research in this project is focused on the study of MMPP for modeling of the traffic 

in the broadband networks. We first start with the simplest case, a two state MMPP, 

and study its performance for representing the ATM traffic. Starting with a superposition 

of voice sources, the performance of various techniques to model the superposed stream 

by a 2-state MMPP is compared. Then the techniques are generalized for an arbitrary 

aggregated ATM traffic, characterized only frorn a sequence of traffic samples. A refined 
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moment-based technique to derive the parameters of a 2-state MMPP model to represent 

such an arbitrary traffic is proposed. Our simulation results show a high degree of accuracy 

in parameter estimation. We also present an approximation for the probability of loss in 

a 2-state MMPP/D/l queue. Therefore, based on the measured data from an ATM traffic 

source, we can use the  proposed technique to  model the traffic source by a 2-state MMPP 

and then apply the approximation to  predict its probability of loss. 

There are some cases where two states are not enough for representing the change of 

the phases in the traffic. In order t o  have a more general model applicable t o  various 

types of traffic, we propose a special type of multiple-state MMPP, a superposition of N 

2-state MMPP minisources. This model, besides simplicity, enjoys al1 the advantages of 

MMPP modeis. Its parameters can be found from empirical data. We propose a pdf-based 

technique t o  derive the  parameters of the  model from the traffic samples. Using several 

examples as well as some case studies we show the accuracy of the technique in parameter 

estimation and its power to  represent ATM traffic. An approximation for the slope of the 

curve of the probability of loss versus buffer size is also derived. 

Keywords: ATM, Traffic Modeling, MMPP, Markov-Modulated Poisson process, Multi- 

media Traffic, Pdf-Based Matching. 
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CHAPTER 1 
Introduction 

1.1 Background 

The emergence of Internet as the main future communication medium around the globe 

has dramatically enhanced the role of telecommunication technology in the world. Now 

the communication networks are not supposed t o  carry voice telephony only, the role they 

performed throughout the 20th century. The s tar t  of the new millenium witnesses the great 

technical advances which promise future multimedia services including -but not limited 

t e  voice telephony, videcwn-demand, teleconferencing and videoconferencing, various da ta  

services, from low traffic, transaction-based services such as banking on the net and email, 

t o  highly bursty traffic with huge volume of data  services such as web browsing and file 

transfer, and most important, al1 of these services must be carried on a unified, broadband 

network. 

Such requirements, of course, need a lot of research and study in network design. The 

designers must take several factors into account, most important of them is the Quality of 

Service (QoS) [7] which must guarrantee a certain degree of performance for the end user. 

This requires mathematical methods for the analysis of the networks. Furthermore, such 

dynamic networks with a traffic which changes its pattern al1 the time cannot be controlled 

in a static way. The traditional public switched telephony networks had a simple, circuit- 
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switched network whose traffic could be modelled using Poisson process. The advances in 

the queueing theory in the second half of the 20th century maùe the analysis and design 

of such networks çtraightforward. Such assumptions are not valid anymore for the current 

multimedia networks. The circuit-switching, though makes it easy to  guarrantee the lowest 

possible delay and the best performance, wastes such a huge bandwidth that the broadband 

networks simply cannot afford. Therefore it has been replaced by the more efficient packet- 

switched approach. The high-level protocol is also changed to internet protocol TCP/IP. 

The emergence of Asyncronous Transfer Mode (ATM) technology has changed many issues 

in the design too. ATM technology uses a fixed-length ce11 throughout the network. Al1 

of the above points indicate the need for a comprehensive network design approach which 

first of al1 requires a reasonably aiccurate, feasible network performance evaluation. Such 

evaluation must enable u s  not only to  analyse and predict the performance of the network 

a t  the design stage, but also t o  predict it on line, in order to activate appropriate network 

control and cal1 admission procedures. 

Traffic modeling is one of the main topics in network performance evaluation. Appropri- 

ate traffic models can be used in the sirnulators as  traffic generator, or be used in deriving 

performance indicators for the purposes of network resource allocation and control in real 

time in dynamic networks [7]. Buffer and switch designs largely depend on the profile of 

the traffic, therefore, the traffic models must be capable of capturing the most important 

characteristics of the traffic which affect the network performance. 

Network traffic is a stochastic proces. It means that the intervals between the incoming 

cells or packets are random variables because of the uncertainty in the behaviour of the end 

users. Therefore the rnodels proposed for network traffic must be probabilistic too. One of 



the first proposed model was the simple Poisson Process, first introduced in 19th century 

and was found to be a good approximation for receiving calls in a telephony network. How- 

ever, the evolution in the telecommunication networks and the increase in the complexity aç 

well as introducing various type of services, make Poisson Process a poor choice for network 

traffic modeling [?]. The most important shortcoming of Poisson process is its memory- 

lessness, or independency of the interarrival times, This means that  the Poisson process is 

unable t o  capture the correlation between the  consecutive frames. In reality usually such 

correlation exists. When a user starts  downloading a file from Internet, usually i t  receives 

traffic for a specific time interval which varies depending on the network load. Even during 

phone calls, usually one talks for a few seconds and listen for another few seconds. This 

shows a certain pattern in the traffic and nullifies the independency assumption. Even 

more, in recent years severaI studies have shown traces of the self-similarity phenomenon in 

the Internet trafic [8]. The self-similarity property indicates very long-range dependency 

in the  traffic which repeats itself over various tirne intervals from miliseconds up to  hours 

and days. It further complicates the traffic modeling in ATM multimedia networks. 

Several models have so far been introduced for various types of traffic. Among them, 

the Markov-Modulated Poisson Process (MMPP) shows the maximum flexibility required 

for traffic modeling (71. Using an unlimited choice of the number of phases, MMPP in 

the simplest 2-state case or in multiple-state case has been shown to be capable of mod- 

eling various types of traffic such as aggregated voice channels and video sources. While 

MMPP is not a self-similar model, several studies suggest that it  may be used for model- 

ing of long-range dependent da ta  traffic under certain assumptions of traffic control. The 

main attractiveness of MMPP, besides its flexibility, lays in the analytical tractability of 

the MMPP model. MMPP/G/l  queues have been discussed and analysed for almost two 



decades and well known analytical algorithms such as Matrix Geometric technique are avail- 

able for analysing the systems with this type of the traffic as the input [18]. 

.1.2 Research objectives 

Our main concern in this research is how to model an ATM traffic by an MMPP model. 

The problem can be described in simple ternis: Suppose we have a given traffic stream of 

ATM cells, and we want to  find the parameters of the model in a way that it can represent 

the corresponding traffic well. In other words, the model must be able to be used for the 

prediction of the performance of the traffic under various conditions (traffic loads, buffer 

sizes, etc). 

The given traffic stream is a sequence of samples extracted from the real data. The 

samples may show the time intervals between ce11 arrivals, and in this case are called the 

T h e  process, or may show the number of arrivals over a fixed observation interval, and in 

this case i t  is called the counting process. Both processes are mathematically equivalent. 

However, in this thesis, we have limited our research to the counting process which is easier 

to simulate and to  work with. 

We also divide our modeling task to two separate areas, one for the simplest case, 2- 

state MMPP, and the other one for multiple-state MMPP. The reason is that the simplicity 

of the 2-state MMPP enables us to use some simpler and more accurate techniques which 

are inapplicable in a general multiple-state MMPP case. Nevertheless, the multiple-state 

case is studied too because there are cases where a twestate model cannot capture various 

phases which exist in the traffic. 

In order to  asses  the performance of the model, we usually form two separate systems, 



one a G/D/ 1 queue for the sample traffic stream and another an MMPP/D/l queue for our 

derived model. We assume that  if the performance of both systems (including ce11 delay 

and probability of loss under various traffic loads) are the same or close, then the model is 

acceptable. Here we use OPNETnetwork simulator [34] to  simulate these queueing systems. 

The results of the simulation have been analysed by MATLAB software tool. 

1.3 Scope of the thesis 

In Chapter 2 we introduce the  basis for traffic modeling and characterizations. Various 

traffic indicators are discussed and several rnodels for video, voice and da ta  trafic are 

reviewed. A separate section has been dedicated to  study the MMPP model. 

Chapter 3 is dedicated to  the 2-state MMPP model. We start  the study of MMPP mod- 

eling with the simplest case, the aggregated voice traffic. Several techniques for matching a 

2-state MMPP model to  an aggregated voice traffic are discussed, and their performances 

are analysed and compared by using simulation. Then the matching technique is general- 

ized for a general, arbitrary traffic rather than an aggregate voice traffic. The performance 

of the model is studied and also an approximation of the probability of loss in the Zstate 

MMPP/D/l queue is derived. 

In Chapter 4 a more general model, a special case of multiple-state MMPP is introduced 

for modeling ATM multimedia traffic. A new pdf-based technique is proposed t o  derive the 

parameters of the model. An approximation for the dope of the curve of the probability of 

loss is also presented. 

Finally, in Chapter 5, the conclusions of the work and some suggestions for future work 

are presented. 



CHAPTER 2 
Traffic Characteristics and ModeIing 

2.1 Introduction 

In this chapter we s tar t  with the main characteristics of ATM network traffic. We examine 

some parameters of the t r aEc  which are more important in the queueing behaviour. Then 

we will survey various models proposed for modeling of the  traffic sources, for different types 

of traffic (voice, video and data). We study our selected model, MMPP (Markov-Modulated 

Poisson Process) in detail. 

2.2 Traffic source characteristics 

Source characterization defines the parameters of the traffic source which are important in 

the study of the network behaviour with that  traffic. These parameters can be used for 

source modeling. They are also used by the network management system to allocate its 

resources among different users, in  order to avoid congestion and define and maintain a 

measure for Quality of Service (QOS) which is negotiated a t  the time of the connection. 

They are also used t o  determine whether t o  accept a cal1 into the network or not (Cal1 

Admission Control). According to  CCITT, the following parameters are important in source 

characterization [3]: 



Peak Amival Rate: The maximum ce11 arrival rate or the maximum amount of network 

resources requested by the source. This parameter may alternatively be defined as the 

reciprocat of the minimum interarrival time between two consecutive cells belonging 

to  the same connection. It is sometimes called Instantaneous Peak Ce11 Rate too. 

m Avemge Amàval Rate: The average ce11 arrival rate or the average amount of network 

resources requested by the source. It may be the Tme Avemge Ce11 Rate, the total 

number of cells generated during a connection divided by the elapsed time, or the 

Estimated Avemge Ce11 Rate, the estimation of the true average over a long time 

interval T. 

Burstiness: The burstiness can be viewed as a measure of the  duration of the activity 

period of a connection. One of the widely used definition for burstiness is the ratio of 

the peak ce11 rate to the average ce11 rate. 

0 Burst length: The average duration of the active state. 

There are some other measurk who help in characterizing the traffic and modeling it in an 

efficient way. In t h e  next section we will discuss them in more details. 

2.3 Performance measures for Traffic modeling 

When we try to  model the ATM traffic, our ultimate goal is to corne up with a mathe- 

matical description that can provide us with a prediction of the queueing performance of 

the network. Before getting into the details of various models for each type of traffic, we 

must know our criteria for deciding whether a specific model is performing satisfactory or 

not. Of course in the ideal case, we prefer a model that  behaves exactly in the same way 

the original traffic would behave under al1 conditions, However, one must note that  due to 
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the stochastic nature of the network traffic, it is almost impossible even to  characterize the 

real physical traffic, let alone finding an exact mathematical model for it, which is already 

difficult enough even for deterministic physical processes. Therefore, like any other case, 

we try to find a mode1 which can predict those performance measures which are the most 

important t o  us. 

I t  is generaHy accepted that  the following rneasures form a rather good criteria for 

deciding whether a model performs well or not [7]. A model which predicts these measures 

well enough for a given traffic and system, is accepted. 

Quulity of Service (QoS) Purameters : These are some general parameters which 

show the  performance of the system. Every model must be able to  predict the QoS 

for the traffic which it is trying to  model. Therefore these parameters may be used t o  

evaluate each modeI. The main QoS parameters are as follows: 

- Avemge Delay : Zn general the end-teend delay, i.e., the average time it takes 

for a ce11 to  reach from input to the system t o  the output of the system, is a 

good m e s u r e  of performance. This includes al1 queueing delays a t  the buffers, 

transmission delays, switching delays and propagation delays. In most cases the 

first one, the queueing delay, is the most dominant. Transmission delays and 

switching delays are considered fixed (constant) in ATM networks, because the 

ce11 length is fixed. Propagartion delay, although dominant in some cases such 

as satellite networks, but still is considered constant in ATM networks and does 

not play any role in network stochastic analysis. Therefore in the analysis of 

ATM networks, these types of delay are either ignored or added to  the total 

delay as a constant. Average delay can be replaced by the queueing delay as a 



performance criteria in most of the cases. Based on Little's formula [Il], average 

queue length can also replace the queueing delay. Average delay is the most 

important parameter in real-time applications, such as voice and video traffic 

transmission. 

- Probability of Ce12 Loss : In case that the buffer has a finite capaçity, t he  extra 

cells may be discarded or lost. Also in some types of switches, such as Knock- 

out switch, some of the cells who are destined for the same output port rnay be 

discarded. Probability of Cell Loss is the most important factor for computer 

data traffic (such as internet) because losing a ce11 forces the sender to retransmit  

it  based on the communication protocol. We will explain the difference between 

real-tirne and non real-time traffic in more details later. 

In order to design a buffer, one wants to know what size of buffer must be chosen 

for a required probability of loss (or probability of bufler ouerfZow, in some texts). 

It is very timeconsuming t o  do analysis or run simulation for various buffer sizes 

and then corne up  with a curve which shows the probability of loss versus buffer 

size for the design purposes. Therefore network designers most of t h e  time use 

an approximation t o  simplify the job. Instead of assuming a finite buffer and 

changing its size and calculating the probability of loss, it is preferred to  solve 

the problem for an infinite buffer, and compute the probability density function 

of the queue length in this case. Then the survivor function of the pdf of the 

queue length, Pr(queue length > X), indicates the probability that  the  queue size 

goes beyond a specific length for an infinite buffer. Then this probability is used 

instead of the probability of ce11 loss. Of course there is an approximation here. 

The behaviour of large buffers is assumed to be identical to that  of the infinite 



one. However, this assurnption is not so off when the buffer size is large and it 

simplifies the analysis and/or the simulation noticably. Also, it is not difficult to 

show that  mathematically the value of the average queue length can be calculated 

from this survivor function. Therefore, the survivor function of queue length is a 

good measure t o  replace both the probability of loss and average queue length (or 

delay). In this work wherever we point to  the probability of ce11 loss, we mean 

this approximated form, the sumivor function of the queue length for infinite 

buffer case. 

0 Index of Dispersion for Counts (IDC): If we denote the number of arrivals over a 

tirne interval of t by random variable X(t), then the Index of Dispersion for Counts 

is defined as the ratio of the  variance of X(t) over the mean of X(t). By computing 

this parameter for different values of time interval t, we will have a curve for IDC(t) 

versus t. AIthough IDC curve is a measure of characterization of the traffic rather 

than a measure of queueing behaviour, i t  has been shown that this curve has a definite 

effect on the queueing performance [25]. Any model must have an IDC curve as close 

as possible t o  the origicaI traffic, t o  have the same queueing performance as it. We 

will show the effect of IDC curve on the queueing performance in the next chapter. 

T h e  advantage of IDC curve is that  i t  is computed from the traffic itself, not from its 

queueing behaviour. So even without any simulation or analysis of the queue, IDC is 

computable from the input traffic itself. It saves us from unnecessary extra work by 

looking at IDC curve of the model first before analysing the queue using it. 

In our work, we mainly used IDC and survivor function of the queue length as our measures 

for the  performance of the  models. 



2.4 ATM traffic rnodeling 

Several surveys have been done in the past on the subject of ATM traffic modeling. The 

reader rnay refer t o  [7], [3], [2], [4], [l], [5] or an excellent chapter in [IO]. 

ATM traffic can be categorized from the service point of view. The following services 

are available in ATM: 

Constant Bit Rate (CBR) : Here a fixed part of the bandwidth is allocated to the 

connection. MainIy for continuous, fixed rate bit strearns which cannot tolerate delay 

or jitter, such as  voice. The traffic pattern is deterministic. 

Variable Bit Rate (VBR) : Defined with two parameters: average bit rate and peak 

bit rate. For those types of traffic who need minimal ceIl delay variation and have a 

bursty traffic pattern, such as video. 

Available Bit Rate (ABR) : A minimum bandwidth is guaranteed, and over that  up to 

the current available bandwidth is allowed. Suitable for bursty, delay tolerant traffic 

such as LAN data. 

Unspecified Bit Rate (UBR) : No guaranteed quality of service. 

From another point of view, ATM multimedia traffic may be categorized into mal-time and 

non real-time (or jitter tolerant) traffic. The term jitter points to the ce11 delay variation. 

Obviously for CBR such a variation does not happen. Real time services such as voice and 

video do not tolerate jitter, so CBR or VBR services must be used for them. For data  the 

variation in delay is not important. Therefore ABR and UBR can be used for data  traffic. 

Now let us examine briefly various types of ATM mutirnedia traffic and the models 



proposed for each of them. 

2.5 Voice Models 

Voice services have been and continue to be an important part of any broadband commu- 

nication service. The properties of voice traffic depend upon the encoding scheme adopted. 

The coding scheme may be fixed rate (such as PCM, DPCM, DPCM or CELP) or variable 

rate [5]. However fixed rate coding schemes are those which are widely used. For voice 

services the main important QoS parameter is delay,. which is not tolerated. However, as 

we discussed before, a certain level of the probability of Ioss is acceptable. 

The traffic from an interactive voice source looks like a ce11 stream modulated by arrivals 

during talkspurts and no arrivals during silences. For this reason, an on-off model looks like 

natural for voice sources. 

2.5.1 On-Off Mode1 

On-off model is a two-state markov model which alternates between phases of activity and 

silence phases (Figure 2.1). During active phases, cells are generated a t  a fixed rate. During 

silence phases, no cells are generated. The sojourn time a t  each state (the time length of 

each phase) is a random variable with an exponential form probability density function. 

The assumption of exponential distribution for talkspurt phase (state ON) is in agreement 

with the measurement, but for silent period it  is not a perfect fit [30]. Nevertheless, in the 

anaIysis of On-off sources, the probability density function of the length of the silent phase 

can be chosen arbitrarily [17]. The On-Off mode1 can be approxirnated as a renewal process 

Pol - 
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Figure 2.1: On-Off model 

As Figure 2.1 indicates, the on-off model is fully described by three parameters: a 

denotes the mean transition rate from state ON to s ta te  OFF, P denotes the mean transition 

rate from s ta te  OFF t o  state ON, and T denotes the constatnt interarrival time in state ON. 

The typical values of the parameters for PCM voice source is a-' = 352ms and P-' = 650ms 

In [17] many of the characteristics of on-off rnodel, including the probability density 

function of interarrival time, the moments of the counting process and the value of index of 

dispersion for counts (IDC) for large lags have been derived. In the same reference it has 

been shown tha t  a superposition of statistically multiplexed voice sources can be modeled by 

a Markov-Modulated Poisson Process (MMPP) which we wi l  describe in the next chapter. 

One of the  advantages of on-off model, besides its simplicity, is its analytical tractibility. 

On-off/D/l queues can be solved analytically by using fluid flow approximation technique 

[101* 

2.5.2 IPP model 

IPP stands for Interrupted Poisson Process. This model is slightly different from on-off 

in the way that  in IPP model, the ce11 generation in state ON is governed by a Poisson 



process rather than a deterministic constant rate. So the parameter T here denotes the 

mean interarrival time which is an exponentially distributed random variable. Although 

on-off mode1 seems more relevant for voice traffic, but IPP can be used for variable rate 

coded voice sources. IPP is a special case of two-state MMPP with mean ce11 generation 

rate of zero in one of the states. So it is analytically tractable in the same way as MMPP 

is (Section 2.8). 

2.6 Videa Models 

It is expected that video will be a major source on future broadband ATM networks because 

of al1 of the multimedia services. Applications such as video conferencing, video phone, video 

on demand are Iikely to be used extensively on internet and broadband networks. In fact, 

the word multimedia traffic mainly points to  the presence of video traffic alongside data and 

voice traffic. 

Today the VBR video codecs are mainly used. The variable-bit rate coding provides a 

constant quality and is supported by ATM. There are a number of compression methods 

for video, with MPEG (1 and II) being the most used technique [12]. 

VBR video sources are highly bursty. The bit rate depends on the content of the scenes, 

the motions, and also the coding scheme. We may expect the trafic stream from a video 

conference to have less variation in bit rate than the movie terminutor. Usually there is 

an abrupt change in bit rate when a scene change occures. Within a scene, only a srnaIl 

portion of the picture changes from a frame to the next frame. Also the nature of video 

data is such that it recorrelates at each frame and line interval. For lines, the reason is that 

the data on one part of an image line is very similar (or somehow correlated) t o  the data 



Figure 2.2: Discrete-state, continuous time Markov chain model for video 

on the same part on the next line (which shows the same object). This property is called 

sputial correlation. For frarnes, within a scene the data in one part of the frame is highly 

correlated to  the data in the same part in the next frame. It is called tempoml correlation. 

Due to the above correlations, video traffic could not be modeleci by a memoryless process 

such as Poisson. 

There are several models for variablebit rate video traffic [IO]. Some models describe 

only the intrascene changes effectively. These models are more appropriate for videocon- 

ferencing, videophone or show talk programs where there are not many scene changes. To 

model the traffic of high motion movies one needs a model which captures scene changes 

too. 

Here we briefly examine some of the various techniques for modeling of VBR video. For 

more details the reader may refer to [IO] or 171. 

2.6.1 Continuous time Discrete state Markov Mode1 

This model was proposed by Maglaris et al in f 141. It is suitable for modeling the intrascene 

changes although it was later generalized to  consider scene changes too. 

The main idea here is to quantize the bit rate into finite discrete levels so that a contin- 

uous Markov chain as in Figure 2.2 can be formed. Then the chain can be broken down to a 

1 superposition of homogenous on-off minisources similar to the one in Figure 2.1 with T = A. 



If the nurnber of minisources is denoted by M, it is easy to show that  for a superposition of 

M on-off minisources one can write [14] ' : 

M i  k l ' [A@) = k A l =  k!(M-kT!P (1 - P) M - k  P 
p = u+p 

E(X) = MAp 

C(O) = M A ~ P ( ~  - P) 

C ( r )  = C(O) e-(a+P)T 

Where E(X) and C(T) are the average bit rate and autocovariance function of the superposed 

traffic, respectively. Therefore by measuring the average bit rate and autocovariance of the  

video traffic, the  parameters E (A), C(0) and a = cr + p can be estimated. Then it is easy 

t o  show that: 

A=%+? 

The only problem here is how t o  choose the number of rninisources, M. In [14], the value of 

20 has been proposed. However, in [IO] i t  says a value of 8 also yields acceptable results. 

Surely the higher the number of minisources, the lower the quantization error. 

A technique for queueing analysis of the above mode1 is also presented in [14]. Therefore 

the mode1 is analytically tractable. 

2.6.2 Autoregressive models 

Autoregressive models h a .  been extensively used for modeling of video traffic [14]. In this 

class of continuous-state discrete-time models, the next random variable in the sequence is 

'The notation here is slightly different from [14]. We changed the notation to keep it the same as 
Figure 2.1 and [17]. AU of the equations have been changed respectively. 



defined as an explicit function of the previous ones within a time window stretching from 

the present into the past 141. The simplest case will be the linear Autoregressive model 

which is defined as follows: 

where A(n) represents the bit rate of the source during the nth frame, and w(n) is a sequence 

of independent Gaussian noise. a and b are constants. Assuming that  w(n )  has mean value of 

7 and variance of 1, the steaidy-state average and autocovariance function can be caluclated , 

as [14]: 

b2 C ( n ) =  =$an n >  O 

Therefore al1 of the parameters of the autoregressive model can be found by matching the 

average bit rate and autocorrelation function of the empirical traffic da ta  to the  above 

expressions. 

Autoregressive models are suitable for modeling of intrascene changes in video traffic. 

The accuracy of the model will increase if the order of the rnodel is increased. Although this 

class of models is suitable for simulation, but it  is rather difficult to  use them in queueing 

analysis. So their application is limited t o  traffic simulation. 

A more complicated autoregressive model is ARMA (AutoRegresive Moving Average) 

model for video traffic, proposed in [15]. The advantage of ARMA model is in its ability to 

catch the recorrelution property, the one in which the autocorrelation curve has a nurnber 

of peaks instead of a rnonotonic exponential decreasing. In ARMA model, the number of 

arrivals during ith interval, Xi,  is given by: 



where Zi and are sequences of correlatecl Gaussian noise random variables with mean 

zero, and v; is a sequence of uncorrelated Gaussian random variable. Check [15] for more 

information on the model parameter estimation. 

Another class of models which fits into the group of autoregressive models is îhns fonn-  

Expand-Sample (TES) model. The details of this model is beyond the scope of this thesis. 

For more information look a t  [4]. 

2.6.3 Markov-Modulated Poisson Process 

The MMPP model is the main topic of research in this thesis and so we have dedicated an 

independent section to this model and two chapters to model parameter estimation. For 

more information on the MMPP model refer to Section 2.8. MMPP has been found to be 

a good model for representing a superposition of on-off sources ([17]) and therefore can be 

used as  an akernative to discretetime continuous-state Markov model which we discussed 

in Section 2.6.1. However, it has been shown that the MMPP is unable to catch some long 

range dependency effects in video traffic [IO]. the MMPP model is short-range dependent, 

which means the effect of correlation is within short ranges. In other terms, the IDC curve 

of the MMPP model does not increase for long lags. In spite of this shortcoming, the 

analytical tractability of the MMPP queues makes them an attractive choice for modeling 

of various types of the traffic. We will describe the MMPP model in more detail in this 

thesis. 



2.7 Data modela 

2.7.1 Properties of data traffic 

Data traffic is the main type of jitter-tolemnt traffic type. It means that unlike real time 

video and voice traffic, data traffic can tolerate a certain degree of delay variation, but 

it is very sensitive to ce11 loss, as it forces the sender to retransmit. Therefore the most 

important QoS parameter for data  traffic is the 

delay variance. 

Another feature of data traffic is that unlike 

probability of loss, not average delay and 

video and voice, the statistical behaviour 

of data traffic is application-dependent. It means that it is impossible to corne up with one 

universal data  model and apply it to  every case. Various types of data traffic such as WWW 

browsing, client-server transactions and LAN protocols each has different behaviour. It de- 

pends on the communication protocol, too. The performance of IP is expected to  be different 

frorn X.25 or IPX. Due to the complexity and the large number of various situations and case 

studies for data  traffic, the rnodeling of data traffic is still in its early ages. Nevertheless, 

there are certain characteristics which distinguish a data traffic stream. First of all, the data 

traffic is highly bursty, rnuch burstier than video or voice. It is also long-range dependent. 

For more information on the definition of long-range and short-range dependencies refer to 

[7]. In our research we consider every traffic type with a forever-rnonotonically-increasing 

IDC curve (an infinite value for I D C ( w ) )  to be long-range dependent. As it was explained 

before, the MMPP model is short-range dependent. In Figure 2.3 a cornparison between 

IDC curves of short-range dependent and long-range dependent traffic is shown. 

The new studies also reveal another property in data traffic, self-sirnilarity, in LAN 

data traffic [8]. Self-similar processes display structural similarities across a wide range of 
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time 

Figure 2.3: IDC curves of short range and long range dependent traffics 

time scales. This property indicates the  absence of a natural length of burst. At every 

time scale, ranging from a few miliseconds t o  minutes and hours, bursts consists of bursty 

subperiods separated by l e s  bursty periods [73. There are a number of models who show 

this property. Here we just very briefly describe one of them, Pareto-Modulated Poisson 

Process, or PMPP. For more information refer t o  [7]. 

2.7.2 PMPP Mode1 

PMPP is an example of the models that  show long-range dependency and so is believed to 

be able t o  represent ATM data  traffic [6], [7]. The simplest version, 2-state PMPP, consists 

of a Poisson process switching between two average rates XI and X2.  The sojourn time in 



each state has a Pareto distribution, defined by the following probability density function: 

I t  has been shown that  the IDC curve of this model will have a form of 1 + k t P ,  hence 

monotonically increasing with t [Tl. 

PMPP is one of the models which are capable of catching the effect of long-range de- 

pendency. However, i t  is not analytically tractable yet. Therefore the use of the model is 

so far limited to  simulations only. 

2.8 Markov-Modulated Poisson Process (MMPP) 

As we explained before, the main topic of this research is the applicability of the MMPP 

model in representing ATM traffic. Therefore here we study the mode1 in more detail t o  

provide the reader with some important characteristics of the MMPP model which we use 

in the rest of this thesis. The best source of information about the MMPP is [la]. 

The MMPP is a doubly-stochastic Poisson process whose arrival rate is given by an 

underlying m-state irreducible Markov chain which is independent of the arrival process. 

When Markov chain is in state i, arrivals occure according to a Poisson process of rate A;. 

The sojourn time at each state has an exponential distribution. In Figure 2.4 the states of 

the MMPP is shown for a simple Zstate MMPP. 

The MMPP is parameterized by the Markov chain infinitesimal generator matrix Q and 



Figure 2.4: MMPP state diagram 

Poisson arriva1 rate diagonal matrix A as follows: 

The steady-state vector of the Markov chain, n, can be computed from the following 



equation: 

7rQ = O n e  = O 

In the 2-state case, T is given by 

MMPP is not a renewal process, but it can be considered a Markov renewal proces 1181. 

The superposition of MMPPs is again an MMPP. The generator Q and rate matrix A 

of the composite MMPP are calculated as folIows: 

Where @ represents the Kronecker-sum as defined in [18]. 

The IDC curve of the Zstate MMPP can be caluclated as follows [Il']: 

2.8.1 MMPP/G/l queue 

The Matrix Geornetric techniques have been used for analysis of the MMPP/G/l queue in 

[17] and [18]. Here we just summerize the  algorithm very briefly. For more details please 

refer to [18]. 

Inputs: 

0 The transition rate matrix Q 



0 The ce11 generation rate matrix A 

0 Mean arriva1 rate Xtot = T A  

r The service time distribution H ( z )  with finite mean h, second and third moments h(2) 

and h(3) and Laplace-Stieltjes transform H ( s )  

Algon'thm for solving MMPP/G/I queue: 

1. Compute matrix G as follows: 

nœ 

where n* is chosen such that r k  > 1 - €1, €1  < 1. 
k=l  

0 For k = O, f , 2 ,  compute 

rn Continue the above recursion until J(Gk-l - Gkll < €2 < 1 

* Set G =  Gk+i 

2. Compute the steady state vector g which satisfies 

3. Compute 



4. Compute the system size distribution a t  departures 

0 Compute Av matrices as follows: 

The summation for Av must be truncated t o  the number N which is  chosen as a 

maximum of Ni or Nz where the following conditions are set  for Ni and IVz: 

y, is defined in item 1. 

It is a backward recursion. Therefore one must s tart  a t  a sufficiently large index 
00 00 

i in order tha t  Ake and Bke are negligible and so Ai and Bi could be 
k=i+l  k=i+2 

set t o  zero. 

O Compute system size distribution at departues as follows: 



5. Compute 

6. Compute the queue Iength distribution at an arbitrary time using the  following equa, 

tion: 

7. The transform of waiting time distribution can be computed from the following equa- 

tion: 

In the  next chapters we will present some simple formulas t o  approximate some part of the 

analysis of MMPP/D/l queue as a special case. 

Now we have enough information about MMPP mode1 to start our discussion on MMPP 

parameter estimation, first for the simple two-state case and then for a more general 

multiple-state case in the next chapters. 



CHAPTER 3 
Modeling of Aggregate ATM Traffic using 2-state Markov Modulated 

Poisson Processes 

3.1 Introduction 

In this chapter we introduce some techniques for modeling various types of traffic by a 

2-state Markov-Modulated Poisson Process (MMPP), introduced in Section 2.8. These 

techniques are widely used for deriving the corresponding model parameters for each type 

of ATM traffic, which we cal1 model parameter matching. 

We first s tar t  with one of the main parameters of MMPP model, the IDC (Index of 

dispersion for counts) curve. This parameter was introduced in the previous chapter. Here 

we Iook at i t  for special case of MMPP model in more detail. IDC curve plays a major role 

in queueing performance and therefore is extensively used for parameter matching purposes. 

Then we s tar t  the MMPP parameter matching process for a special type of ATM traffic, the 

simple case of aggregated voice traffic. We study and compare several different techniques 

proposed for parameter matching in this case. Then we extend it to a general case of 

ATM traffic, known only by its samples. We present a new, refined matching technique for 

modeling of an arbitrary ATM traffic by a 2-state MMPP model. 



3.2 The IDC curve for 2-state MMPP model 

In the previous chapter we defined the index of dispersion for counts as the variance of 

the number of arrivals over an observation interval, divided by the mean of the number of 

arrivals over the same fixed observation interval. I t  has been analytically shown that  for a 

2-state MMPP mode1 with parameters [ Al , A2 , rl , r2 1, The IDC curve is derived as 

follows [17]: 

Equation (3.1) can be re-written in the following simpler form: 

IDC(t) = IDC(m) - I D c ( 4  - 1 (, - e - d t )  
d t  

where: 

2 A i - A 2  I r 1 r 2  d = ri + r2 IDC(m) = + 
)2 (Xir2+X2 Y I )  

Equation (3.2) shows that  the IDC curve of the 2-state MMPP source has only two 

parameters, IDC(oo) and d = rl + r2. Figures 3.1 and 3.2 show the effect of each of the 

parameters on the resulted IDC curve. 

The parameters of IDC curve have very important effects on the queueing performance. 

In order to examine this effect, we generate some MMPP model with particular IDC curves 

and compare their performance in an MMPP/D/l  queue. The measure of performance is 

the probability of loss, which we approximate here with the survivor function of the queue 

length for an infinite buffer. In al1 of the following exam ples, the mean arriva1 rate X is kept 

the same. The traffic load is 90% for al1 of the MMPP/D/l queues. 



Figure 3.1: IDC curves with different values of IDC(oo) 

Figure 3.2: IDC curves with different values of d = rl + r2 
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3.2.1 The effect of IDC(m) 

Let us suppose that we have two models with exactly the same mean arrival rate and d but 

with different IDC(m). Assume that  the new model has a value of IDC(oo) of K times of 

that  of the reference model. The parameters of the new model [At , , F1 , i2] con be 

calculated from the original parameter set by using the following equations: 

Fl = rl i2 = r2 

- ( J K I . I + ~  h + r * ( l - J K ) x ,  j2 = il - @(& - &) Al = 
r1+r2 

The following table shows a sample case: 

Table 3.1: Three MMPP models with different IDC(oo) 

In Figure 3.3 the performance of the models in an MMPP/D/l queue are cornpared. 

A huge difference is noticed. It shows that  the larger the value of IDC(oo), the higher the 

probability of ce11 loss. 

3.2.2 The  effect of d = rl + rz 

Here we have two models the same rnean arrival rate X and IDC(oo) but with different d. 

Assume that  the new rnodel has a value of IDCfoo) as K times of the origical model. I t  



........... ............................................................................. 1 

Figure 3.3: The effect of IDC(oo) on the queueing performance 

is easy to  show tha t  in this case the values of il and i2 can be derived from Equation set 

(3.3). For transition rates we can write: 

The  test case model parameters are shown in Table 3.2.2. The queueing performance of the 

models is shown in Figure 3.4. Again here, the increase in d results in an increase in the 

probability of ce11 loss. 

3.2.3 Models with the same IDC curve 

I t  is also possible t o  generate two MMPP model with the same IDC curve but with different 

queueing performance. The trick is to  keep X, IDC(co) and d thesame for both of the models 

but t o  change the value of ri/r2. Here suppose that  we increase the value of ri/r2 by a 
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Table 3.2: Four MMPP models with different values of d = rl + r2 but the same 
and mean arriva1 rate 

Figure 3.4: The effect of d = rl + r z  on the queueing performance 



factor of K. Then the new model parameters can be calculated from the original parameter 

- . X l = ~ + ~ ~  ; \ ~ = X - D  

In Table 3.2.3 a test case is shown with some 2-state MMPP models with exactly the same 

IDC curve and mean. The result of MMPP/D/l simulation is shown in Figure 3.5 which 

indicates a big difference in the performance. 

Table 3.3: Three MMPP models with exactly the same IDC curves 

Process 

Pl 

P2 

The bottom line of the above results is that ,  while IDC curve plays a very important 

role in the queueing performance, i t  is not enough for the unique identification of the model 

parameters. As we are going to show in the next sections, some other parameters of the 

traffic must be used too. 

Now let us start our model parameter matching. First we study the sirnplest case, the 

modeling of aggregated voice sources. We cal1 it the simplest case because a very well 

studied mathematical model for PCM voice source is available: On-Off source. 

Al (cps) 

6651.7 

7841.9 

A2 (cps) 

5359.6 

5656.5 

rl (s-l) 

1.7333 

2.556 

r z  (s-') 

1.0783 

0.2556 
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Figure 3.5: Models with the same mean and IDC curves but different queueing performance 

3.3 Modeling of aggregated voice t rd ic  by a 2-state MMPP 

In Section 2.5.1 the on-off model for voice source and its various pararneters were described. 

Figure 2.1 shows the model. In this section we examine the case of aggregated voice sources 

which can be modeled by a superposition of on-off sources. 

In most of the cases, a (large) number of voice sources are multiplexed on the same line 

before reaching the ATM switch. So the problem is how t o  solve a queue or switch with a 

superposition of on-off sources as input. One proposed alternative is to match a two-state 

MMPP model as appears in Figure 2.4 to the superposition of on-off sources. 

Several techniques have been proposed for deriving the pararneters of the MMPP model 

to be matched to  the aggregated on-off sources. A range of the charcateristics of MMPP 

and on-ofFsources are used in the matching, such as moments of arriva1 rates or interarrival 



times. Here we go over sorne of the more famous techniques briefly. We use the fotlowing 

assumptions: 

a The voice sources are packetized. 

m Al1 of the voice sources have identical pararneters, or  in other words, are homogeneous. 

Although a few techniques work in hetrogeneous case too. 

* Only active sources are considered, in other words, those sources who currently are 

holding a call. Usually the  process of making a cal1 is modeled by a Poisson process. 

Cal1 admission process is not a topic of interest in this research. 

The following notation for the pararneters for the superposed on-off traffic and MMPP 

mode1 is used: 

m Parameters of the  superposition of on-off sources: 

- N : Number of active on-off sources 

- CY : Mean transition rate from state ON to  state OFF 

- B : Mean transition rate from state O F F  t o  state ON 

- T : Fixed interarrival time in state ON 

- A : Fixed ce11 generation rate in state ON, equals t o  1/T 

a Parameters of 2-state MMPP model: 

- Xi : Mean ceIl generation rate in state 1 

- AS : Mean ce11 generation rate in state 2 

- rl : Mean transition rate from state 1 to state 2 

- rz : mean transition rate from state 2 to state 1 
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The models have been shown in Figures 2.1 and 2.4. 

3.3.1 Moment-based matching 

The moment-based matching was first introduced by Heffes and Lucantoni in [17]. The 

technique has been widely used thereafter and has been extended t o  more general cases as 

well. In this technique, the four parameters of the 2-state MMPP are chosen so that  the 

following characteristics of the superposition of on-off sources are matched with those of 

2-state MMPP model: 

1. The mean arriva1 rate 

2. The IDC (variance-to-mean ratio of the number of arrivals in the interval (O, ti) ) 

3. The asymptotic value of IDC (IDC(oo)) 

4. The third central moment of the number of arrivals in the interval.(O, ta) 

Now let us calculate the  value of each of the above characteristics for superposition of on- 

off sources and 2-state MMPP in term of the model parameters. We just briefly offer the 

results of the matching technique. For detailed mathematical derivation check [17]. 

For a single on-off source, the moments of number of arrivals over an interval which we 

denote by random variable N ( 0  : t), can be defined as: 

M, ( t )  = E [ N f  (O : t ) ]  



The Laplace transform of the moments, M,(s) can be calculated for the first three moments 

a s  follows: 

Ml ( s )  = X/s2 

where X = l / ( T + a T / P )  is the mean arriva1 rate and j (s )  = [ I - n ~ + a ~ ~ / ( s + @ ) ]  eVsT 

is the LaplaceStjelties Transform of the interarrival distribution. Obviously, Mi(t)  = X t .  

The JDC curve is defined as var[N(O : t)]/E[N(O : t ) ]  and can be derived using Mi and 

M2. In [17] it  was shown that  the value of IDC at large lags for the superposition of on-off 

sources could be calculated as: 

1 - ( 1  -cYT)" 
lim IDC(t) = IDC(w) = 

~ + O O  (aT + 

Also the third central moment for the superposition process can be calculated from Mis 

defined in (3.7) as  folows: 

For the 2-state MMPP, If we denote Nt as the nurnber of arrivals of the- stationary 

2-state MMPP over the interval (O, t), The moments of Nt can be calculated as follow: 



where 

In the following the algorithm for finding the parameters of the Zstate MMPP model 

from the parameters of the superposition of On-Off sources is explained: 

1. Parameters of Aggregate on-off sources: a, P ,  T, N .  

Parameters of the 2-state MMPP model: A l ,  A2, r i ,  r2. 

2. Considering Equations (3.7), we define: 

3. Calculate bt at an arbitrary chosen point t l  and find d = rl + rz from the following 

nonlinear equation numerically: 



4. Using (3.9), calculate third central moment p z ( ~  : t )  at  an arbitrary t i m e  lag t2.  

Define K = (Al - X2)(rl - r2) ,  and find K from the following equation: 

5. Then based on the value of K, we will have: 

0 If K=O, 
d rl = r2 = 3 

Al = a + f d 2 a d ( b ,  - 1 )  

A2 = a - f J2ad(bm - 1 )  

If K # O then we define e = i- and write: 

The time lags ti and tz  may be chosen arbitrarily. However, it is better to  choose them in 

a way that  we get a good fit of IDC curve. 

In [17] a technique for solving MMPP/G/l queue has been proposed too which we 

reviewed in Section 2.8.1. The performance of the moment-based technique against other 

techniques will be studied in Section 3.3.4. 

The  moment-based rnatching, as we are going to show later, offers a very good matching 

between 2-state MMPP model and the superposition of on-off sources. It  matches IDC 



Figure 3.6: Birth-death process representing the superposition of on-off sources 

curve very well. The main problem with the moment-based matching technique lays in the 

difficult, lengthy calcuiations of inverse Laplace transform. 

3.3.2 Overload-Underload Approach 

The idea of underload-overload approach has been used in the matching techniques in [23], 

[29] and [22] among others. 

The approach is simple. Let us consider a superposition of N independant and homoge- 

nous on-off sources as we described before. Such superposition results in a birth-death 

process whose states show how many of the sources are in ON state. If we denote the state 

by J ( t ) ,  the Markov chain of the process has N + 1 states, from J ( t )  = O up to  J ( t )  = N. 

The probability of being at state j in steady state, is equal to probably of having j out of N 

sources in ON state, clearly a binomial distribution. For single On-off source, the steady- 

state probability of being in ON state is equal to & where a is the mean transition rate 

from ON state t o  O F F  state (a-l is the mean sojourn tirne in ON state) and /3 denotes the 

mean transition rate from OFF state t o  ON state (B-' is the mean sojourn time in OFF 

state). Then for the Markov chain representing the superposition of on-off sources, If we 

denote the steady-state probability of staying a t  state j by rj, we can write: 

Figure 3.6 shows the corresponding Markov chain, 



Now if we want t o  mode1 the above chah  with a two-state MMPP, simple physical 

consideration suggests that  we can divide the states of the phase process into two subsets: 

an overload region, and an underload region so that each of the states of the approximating 

two-state MMPP corresponds to one of the regions. The border of the  regions (or the 

threshold of the overload state) can be decided in various ways. One suggestion is t o  use 

the mean number of sources in ON state as the threshold. In this case, assuming that  the 

overload region starts from state M+1, we can write: 

where N denotes the  number of active sources. Therefore, the underioad region comprises 

the states (O, 1, ..., M) and the  overlwd region comprises the  states {M+l, ..., N). 

Now in order to  find the parameters of the twesta te  MMPP mode1 from t he  parameters 

of the superposition of on-off sources, we require the mean arrival rate a t  state 1 of the 

MMPP, Al, to  be equal to  the mean arrival rate in the overload region of the  phase process. 

Similarly, X2 is equal to  the mean arriva1 rate in the underload region of the  phase process. 

Considering that  the arrival rate at each state of the process is fixed (as Figure 3.6 shows 

it), we can write: 

where: 

where ni is defined by Equation (3.18). 

The above equations determine the mean arrival rates a t  each of the two states of the 



MMPP modet. In order to calcutate the mean transition rates, several different approaches 

have been taken by different researchers. Here we present three techniques. In al1 of them, 

the  values of mean arrival rate are calculated by Equation (3.20). 

O Asymptotic matching 

This technique was proposed in 1231. If we denote by random variable r a n  overload 

period duration in the phase process, the  survivor function of T will have an exponen- 

tial form like G,(x) = po exp(Q x)e for x 2 O, in which Q is the (N - M) x (N - M) 

transition rate matrix for overload region, and pO = I l ,  0 ,  . . . , O] denotes the  initial 

probability distribution of the transient states. It could be shown tha t  there exists 

one dominant eigenvalue of Q which is real and negative. Therefore if we denote it 

by q, we will have: 

Using this approximation, we choose ror, = rl = 7. Therefore ri can be calculated 

from the maximal real-part eigenvalue of Q. Now by equating the  mean arrival rate 

for MMPP and aggregated voice sources, rz can be easily calculated as: 

where Al and Az are calculated from Equation (3.20) and X = N A P / ( a  + P )  is the 

mean arrival rate for the aggregated voice sources. 

O x-matching 

Introduced in [29], this technique is very similar to  asymptotic matching and is pri- 

marily used for heterogeneous case where the  parameters of the on-off sources are 

not identical but fit into several classes. However the technique can be simplified for 



hornogeneous case. Like asymptotic matching, here also the mean sojourn tirne of 

the phase process in overload region is equated t o  mean sojourn time in s tate I of 

the MMPP, and that of the underload region t o  the mean sojourn tirne in state 2. A 

recursive formula is employed for determining the transition rates as follows l: 

where TOL and  nu^ can be calculated from Equation (3.21). the mean arrival rates 

may be determined from (3.20). In Section 3.3.4 the  performance of x -match ing  

technique is compared t o  some other techniques. 

x -match ing  technique h a s  the advantage of the applicability in the heterogeneous 

case. F'urthermore, it  uses very simple calculations for mean arrival rates based on 

overload-underload assumption and a relatively simple, iterative formula for mean 

transition rates. However, this technique, as we will show later, does not match IDC 

curve. The MMPP mode1 based on this technique will fail t o  predict the queueing 

performance under heavy traffic load, consequently. 

IDC matching 

In this technique [22], instead of the tirne process, the counting process is considered, 

so the random variable to be used here is the nurnber of arrivals over a fixed observation 

'In order to keep consistency in this thesis, the definition of the parameters of on-off source a and ,O have 
been changed from the original text ([29]), so are aii of the equations. 



interval. The mean arriva1 rates are calculated from (3.20). Then for mean transition 

rates we will need two more equations. We equate the mean arrival rates for both 

MMPP and agrregated on-off models, and the value of IDC(m) for both models. 

Therefore we have the following set of equations: 

After solving the above set of equations for ri and rz, the mean transition rates are 

calculated as foliow: 

where A,, denotes the mean arrival rate for aggregated on-off sources and &IL = A i  

and XUL = X2 are calculated from (3.20). 

The IDC matching technique enjoys the advantage of simplicity even more than x- 
matching, because the procedure to calculated the mean transition rates is simpler. 

Furtherrnore, the mode1 capture. the effect of the correlation in the traffic too, so in 

some sense it combines the advantages of each of the previos techniques and avoids 

t.heir drawbacks. In Section 3.3.4 we will compare its performance against other 

techniques and show its capabilities. 

3.3.3 Other matching techniques 

In this section we are going to review some other techniques for rnatching of a 2-state 

MMPP mode1 to a superposition of on-off sources very briefly. 
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Most of the techniques simply replace one of the matched quatities. It was mathernat- 

ically proved that it is impossible to characterize a 2-state MMPP model only by the first 

two moments of its counting o r  time process. Moment-based matching ([17]) uses three 

moments. However, it  has been also proved that  with a combination of the first and second 

moments of the counting and the time process, the 2-state MMPP model is characterizable 

[25]. This fact has led many researchers to  look into various combinations for rnatching 

purposes. 

In [24] a purely interarrival time-based matching technique has been proposed. The 

technique matches the autocovariance function and the  cornplementary probability distri- 

bution function of the interarrival times for both 2-state MMPP and superposition of voice 

sources. The  technique is neasurement based, means that  some parameters must be  mea- 

sured for the  aggregated voice traffic so that  a 2-state MMPP could be matched to  if. The 

following assumptions are made: 

The complementary probability distribution function of the interarrival tirne (Pr(X; > 

2)) for Zs ta te  MMPP model has a 2nd-order hyperexponential format like F=(X) = 

ge-"lz + (1 - q) e-u2x. 

The autocovariance function of the interarrival time C[k] h a .  an exponential format 

like C [ k ]  = A ak. 

So therefore by measuring the parameters u i ,  uz, q and a for the aggregated traffic, one 



can calculate the parameters of 2-state MMPP mode1 as Follows [24]: 

The fact that this technique uses measurement for matching, may indicate that one 

can use it for a general arbitrary case too (refer to  the next section), however, as far as 

the issue of modeling the aggregate voice traffic is concerned, this fact will be a major 

drawback because the matching process cannot be done without sarnples from the traffic. 

Furthermore, the asçumptions which it makes is in general not valid for a superposition of 

on-off sources. On-off sources do not have exponential autocovariance function. In (241, the 

IPP source has been used in place of on-off source which as we showed is in fact a special 

case of 2-state MMPP and is not used for modeling of fixed-rate PCM voice source. 

Another technique was proposed in [25] which we will describe in Section 3.4.2.1. 

3.3.4 Comparison of the performance of the rnatching techniques 

In this section we compare the performance of some of the techniques for the rnatching of 

a 2-state MMPP to a superposition of on-off sources. We picked three of the techniques, 

moment-based technique, IDC matching technique and z-matching technique. We use 

simulations for our study. In order to compare the matching performance, we build two 

cases as follow: 



1. In the first case, we form a G/D/1 queue in which the input consists of a superposition 

of on-off sources with known parameters, namely, a, p, A and N number of the sources. 

2. In our second case, we appIy each of the above-mentioned matching techniques to  de- 

rive the parameters of a Zsta te  MMPP model, and then we simulate the performance 

of the 2-state MMPP/D/l queue in the same way a s  Case 1. 

For Case 1, the parameters of the  aggregated on-off sources are listed in the following table: 

Table 3.4: The parameters of the aggregated voice sources 

No. of Sources 1 Q! 

I 

The values of the mean transition rates have been picked from [l?] and [30] and indicate 

the mean sojourn tirne of 0.352 rns in ON state and 0.650 rns in OFF state. The value 

of A (the fixed ce11 generation rate in O N  state) corresponds t o  a 64kbps PCM voice line, 

assuming 48-byte long cells. 

By applying each of the matching techniques, we get a different set of parameters for 

B 

our 2-state MMPP model. The corresponding model parameters for each of the  matching 

techniques are listed in Table 3.3.4. h r  the moment-based matching technique, both of the 

IDC curve and the  third central moment have been matched to those of the traffic from the 

superposed on-off sources a t  t=0.5 S. 

A 

As Table 3.3.4 shows, both x -match ing  and IDC matching techniques estimate the 

same values of mean arriva1 rates because they both use overload-underload approach. For 



Table 3.5: The equivalent MMPP parameters by using different matching techniques 

' Matching Technique 

Moment matching 

moment matching and IDC matching, who both match IDC, the values of mean transition 

rates are close. 

Now let us examine each of the proposed MMPP models and compare them t o  the 

reference aggregated on-off sources. In Figure 3.7 the IDC curves for al1 three MMPP 

models and also the reference aggregated on-off sources have been shown. The moment- 

based matching gives the most accurate estimation of IDC curve, expectedly, as it matches 

the IDC curve at two points. However, it is impossible to  fully match the IDC curve for 

on-off source and MMPP, because for MMPP the value of IDC at  very small lags (t -+ 0) 

approaches I while for on-off source it approaches zero. IDC matching technique gives a 

matching at IDC(oo). As we showed in the previous sections, having the same IDC(oo) 

gurrantees the same slope for IDC curve in the rising region too. x-matching does not 

macth the IDC curve. As a matter of fact, the value of IDC for the mode1 deriving by this 

technique is closer to  that of Poisson (IDC = 1) than on-off source. 

Xi (cps) 

6670.2 

We then simulated a G/D/1 queue with each of the above traffic models as the source, in 

order to compare the queueing performance and t o  see how well each of the techniques can 

Xz (cps) 

5155.4 

ri (s-') 

2.1858 

r z  ( K I )  

1.8767 
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Figure 3.7: IDC curves for different on-off/MMPP matching techniques 

predict the average delay and the probability of los .  We used OPNET network simulator 

for this study. In Figures 3.8 and 3.9 the average delay vs. traffic load and probability 

of loss vs. buffer size have been shown. One point here is noteworthy. As we explained in 

Chapter 2, the curve of the probability of loss vs. buffer size has been approximated by the 

curve of the survivor function of the queue length vs. buffer size for an infinite buffer case. 

This is the approximation which we use throughout this thesis wherever we talk about the 

probability of l o s .  The corresponding curves for an M/D/1 queue with the same load have 

been presented for cornparison. 

In the Figure 3.8, the value of delay has been normalized by the service tirne. The 

results indicate that the three matching techniques provide the same performance in low 

traffic loads. At loads higher than 0.75, the C-matching technique gives a n  optirnistic result 
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Figure 3.8: Delay vs. load curves for different on-off/MMPP matching techniques 
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Figure 3.9: Survivor functions for different on-off/MMPP matching techniques 



closer t o  the Poisson model than to the aggregated on-off voice sources. The results of the 

moment-based and IDC matching techniques are very close and in  a good agreement with 

those of aggregtaed on-off voice sources. 

Figure 3.9 shows the loss rate versus buffer size for a traffic load of 0.9. The results 

indicate a good agreement between the the performance of the aggregated on-off voice 

sources and its equivalent derived by the moment-based and IDC matching techniques, 

while the x-matching technique gives a rather optimistic loss rate. 

The above results indicate the important role of the IDC in parameter matching. Fur- 

thermore, while a moment-based matching gives the closest results, a much simpler overload- 

underload IDC rnatching could be used to match a 2-state MMPP to a superposition of 

on-off sources effectively, in order t o  avoid the complexity and lengthy calculations of inverse 

transforms in the  moment-based matching technique. 

3.4 Modeling of an arbitrary t r a c  and parameter estimation 

In this section we are going to generalize the modeling technique for an arbitrary traffic, not 

a special case of the aggregated voice sources. First we s tar t  with a generalized moment- 

based matching technique and then we will review the other proposed techniques. 

3.4.1 Generalized moment-based matching 

Both the r -matching and IDC rnatching techniques are based on the overload-underload 

approach and hence on the assumption that  the traffic is a superposition of on-off sources. 

For this reason, they are not suitable to model an arbitrary traffic. In this section we will 

focus on the moment-based technique. 



With only the first and second moments (or IDC}, the four parameters of the equivalent 

2-state MMPP mode1 cannot be uniquely determined. Therefore, for a n  arbitrary traffic we 

need to use the third moment. In [17] the parameter estimation is based on the meaçurement 

of one or two points of input parameters (IDC and the third moment). However, the 

selection of these points has a large impact on the performance results because of the error 

resulting from the limited number of samples. Consider a simple estimation using the 
n 

ensemble mean from n samples si, sa, . . . , Sn, i.e., ' si. An accurate estimation requires n 
i=l 

a sufficiently large values of n and hence a large observation tirne interval. Otherwise, 

some measured samples with a large variation can greatly influence the  captured mean. In 

the following procedure, we suggest a filtering approach suitable to a n  accurate estimation 

wit hout requiring a large observation interval. 

0 Establish the histogram of samples using an arbitrary number of bins based on the 

maximum and minimum value of the samples 

0 If the  peak of the histogram is les than 0.5, decrease number of bins by a factor of 2 

and modify the histogram 

0 The process is repeated over until: 

- The peak of the histogram is more than 0.5, or 

- The number of bins is 2 (i.e. the peak will be at least 0.5). 

O Select only the samples in the peak bin to  compute the sample mean 

Figure 3.10 shows how the technique works. It starts with 40 equally-spaced bins and 

cornputes the  histogram, then reduces the number of bins and continues. At bin number=5, 



Figure 3.10: The li keli hood-based parameter estimation 



the peak of the histogram has passed 0.5, so then the samples will be filtered and only those 

who reside in the area specified by the peak bin in Figure 3.10 will be picked. 

This estimation technique is used in Our matching t o  compute the values of IDC(oo),  

d = ri +rz ,  and = " r1 which is a temporary parameter introdueed in the technique 

to simplify the matching process. ;\ can be calculated from the third moment of the samples 

using the following equation [27]: 

61a2 3aI 3a21t 
= {p3 (0 : t )  - (- - d) (1 - e- t ,  + - (1 + e- dt) - 3atI - at)  / (3.28) dz d 

where: 

a = mean arriva1 rate = , d = rl + rz 

Using ;\ and the parameters defined in(3.29), we compute [27]: 



Table 3.6 shows the estimated values of the parameters of the mode1 for 2-state MMPP 

traffic with known parameters and generated by simulation. The  test cases were chosen 

carefully to  cover a range of different r l / r2 ,  rl + rz and IDC(oo).  The accuracy of the 

technique is noticable. For mean arriva1 rates a t  each state, the error is less than 1% in al1 

of the cases. For transition rates it is less than 7%. 

Cases 

Original 

Estirnated 

1 Estimated 1 4224.4 1 2235 1 3.0747 / 1.9616 / 
Original 

t I 

A l  (cps) 

6651.7 

6644.5 

4233.4 

Original 

Table 3.6: Test cases for refined matching technique 

A2 (CPS) 

5359.6 

5360 

Estimated 

Original 

Estimated 

2239.9 

4574.6 

ri (l/4 

1.7333 

1.6298 

4541.7 

3271.6 

3279.1 

r2 (l/s) 

1.0783 

1 .O321 

3.1522 

I 

I 
2785.8 1 2.4041 

1 .SI425 

0.3211 

2782 

2728.4 

2727.1 

2.2024 

0.6514 

0.6724 

0.3467 

0.6514 

0.6908 



3.4.2 Other techniques 

There are a number of other techniques which could be used for fitting a 2-state MMPP 

mode1 to an arrival process. Here we briefly review a couple of these techniques. 

3.4.2.1 Gusella's method 

Gusella in [25] proposed a moment-based technique for fitting a 2-state MMPP mode1 to 

an arrival process. The difference between his technique and ours lays in the point that he 

uses the squared coeeficient of variation of the interarrival times instead of the third central 

moment of the counting process. The following steps have to be taken in his technique for 

- deriving the parameters: 

1. From the data samples, estimate a the mean arrival time, b the limiting value of IDC 

minus 1 (IDC(oo) - l ) ,  and d the squared coefficient of variation of the interarrival 

times. 

2. Compute the value of IDC a t  an arbitrary lag, to. Using b and It, (the value of IDC 

a t  to), find the mean rate c = ri + rz in the following equation: 

b - I t ,  l - e -c to  -- - 
b - l  cto 

3. Obtain a value for Xz from the following equation: 

2aXi + (2ac + abc - 2)Xz - 2c(b + 1 )  
d = 

2aXi + (2ac + abc - 2)X2 - 2c 



Then find the other parameters as follow: 

4. Based on the current values of the parameters of the MMPP model, compute the 

goodness of the approximation by comparing the estimated IDC with the theoretical 

one which is calculated from Equation (3.1). A minimum squraed error test could be 

us&. Adjust the value of c and repeat steps 3 and 4 until a satisfactory approximation 

is reached. 

Gusella's method is in nature moment-based, so not much different from our generalized 

moment-based rnatching technique. However, the technique needs measurements from bsth 

time and counting processes which may be difficult particularly in the simulations. 

3.4.2.2 Likelihood-based technique 

For a detailed account of this class of techniques refer to  [20]. Here we just briefly discuss 

a technique introduced by Meier-Hellstem for fitting a 2-state MMPP mode1 to  the arriva1 

process. 

Meier-Hellstern's likelihood-based technique [19] cornputes the matrices of the model, 

defined in Equations (2.7) and (2.8) from the samples of interarrival time. One interesting 

point in Meier-Hellstern work is her note that  if the data  is close to  having a Poisson 

model, then any MMPP fitting technique may fail because the Poisson model is normally 

a superposition of infinite number of independent processes. Therefore she recommends a 

Poissonness test a t  the beginning. The folIowing steps are taken in the algorithm [19]. 



Input parameters: 

{ x ; ) ? = ~ :  Observed interarrival tirne sequence from the arrival process 

r Q: Mean transition rate matrix for the MMPP model 

r A : Mean arrival rate matrix for the MMPP model 

r L: Likelihood function for Q and A given the observed interval sequesnce The 

function L for Zs ta te  MMPP is derived as: 

Jk: The phase of the Markov process a t  kth interval 

The set of the  parameters of the 2-state MMPP model, [ X i  , X z  , rl , rz]  is replace by the 

following alternative set: 

a = r2(r1 +r2)-',  the  stationary probability of being in state 1 of the time-stationary 

MMPP. Therefore the steady s ta te  probability matrix will be n = [rl , I - nl] 

r A* = A i r l  + X2(1  - r l ) ,  the mean arrival rate for 2-state MMPP. 

a Pll = &(A2 + r2)  (AIX2 + XlrZ + X2r1)-Il the probabiIity of a transition from state 1 

to state 2. 

m pl = X * - ' X l r l ,  the steady-state proportion of arrivals from state 1. 

If A2 # 0, these formulas establish a one-to-one correspondence between the new parameters 

and A l ,  X 2 ,  r l ,  and r2 .  The model parameters can be calculated from the alternative 



parameters by using the following formulas: 

The Algorithm: 

1. Estimate the  mean of the interarrival time from the samples of the arrival process. 
n 

The rnean arrival rate will be calculated as i* = n(x z;) -' . 
i=l 

2. Test for Poissonness of the data. If the observed stream is statistically indistinguish- 

t able from a Poisson process of rate A*, then stop the algorithm and use the Poisson 

model. 

3. Construct an  initial estimate ( J ~ ) ) E = ~  of the secpence ( J k ) L o .  First smooth the data. 

using a moving average scheme based on the arithrnetic mean. Classify the elements 

of (Jk)k=O as 1 or 2 depending on whether the smoothed interarrival times are greater 

5. Let: 

n 

whara I denotes the indicator function and n~ = I [ ~ f )  = j 1  fi^ = il. 
k=2 



and {xk)k,,. Then for O < ni < 1, the matrices A and Q may be considered as 

functions of 7r1, based on Equations (3.34). We use the notations ~ ( ' ) ( a ~ )  and A ( ' ) ( T ~ )  

for t hese functions. 

The likelihood function is defined as: 

where 

~ ' ( r )  = [ e j ( x ) ]  = exp [(Q - A)%] A 

7. Let n(,) be the value of 7r1 which maximizes log L ( ~ ) ( T ~ )  using a numerical maximiza- 

tion technique. Let Q = Q ( ~ )  (TF)), A = h( ' ) (ar ) ) .  

8 .  Let: 

where 

and 

F' (Y X) = Ft ( X I  1 q=qcr) ,b=n<r) 

and [ J ~ + ' ) ] I = ~  is defined to be the sequence which maxirnizes (3.38). 

9. If 1 v - v 1 5 b for sufficiently small values of 6, set r = r + 1 and go to step 
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For more details and remarks on the technique as well as study of behaviour and performance 

of the likelihood-based technique, refer to [19]. 

Now back t o  our generalized moment-based technique, it enables u s  to derive a model 

from traffic samples. Let us introduce a technique to predict the queueing performance of 

the model in order t o  make it easy t o  use in traffic control algorithms. 

3.5 Performance approximation of MMPP/D/l queue 

The MMPP/D/l queue could be solved by using the rnatrix geometric technique introduced 

in Section 2.8.1. However, this complex, iterative technique needs a lot of computation 

power and time. For real-time traffic control we are going to  need an approximation which 

can be calculated quickly and provides us with enough accuracy. Here we present such an 

approximation [27]. 

The closed form expression for the Laplace-Stieltjes transform of delay for MMPP/G/l  

queue is [18]: 

Where Q and A are the infinitesimal generator and arriva1 rate matrices for MMPP model, 

respectively, H(s) is the Laplace-Stieltjes transform of the service tirne and p denotes t he  

utilization. g= hl 1 - gr] is deterrnined by solving nurnerically the following equation for 



For MMPP/D/l  queues, H (s) = ed8 where h denotes the ce11 service tirne. If we assume 

that  h is srnall enough as compared to  average delay, we can safely ignore the incomplete 

service time upon ce11 arrival. In this case, the delay is the product of the nurnber of cells 

in queue and the  ce11 service time. Consequently, the probability of buffer overflow can be 

calculated from delay survivor function as P r ( X  > t/h)=Pr(T > t). in other words, the 

same equation as (3.39) can also be used for Laplace-Stieltjes function of the queue length, 

at least for burst region. 

Following the  same approach taken by [31] t o  estimate delay's survivor function, we 

approximate the  probability of buffer overfiow by a single exponential function a eS1 hxl  in 

which si is the largest negative root of the  denominator of (3.39) (the closest negative root 

t o  zero. Here we simplify the approach in [31] further by approximating the exponential 

form of H(s) with the first three components of its Maclaurin series, 1 - h s  + 4 (hs)'. 

Substituting it into (3.39), si is the largest negative root (the closest negative root t o  zero) 

of the  following cubic equation: 

- 
in which p = X h. 

so cu = p and the 

We approximate the queue length by system size (for the burst region), 

probability of buffer overflow is computed as: 

Figure 3.1 1 shows a good agreement in the results using simulations and the approximation 

given by Equation (3.42) for an MMPP/D/l queue. Equation (3.42) can be a simple tool 

for buffer design. 



Buffer size 

Figure 3.11: The accuracy of the approximation of the loss 

Our simulations shows that  the approximation for the exponential dope of survivor 

function is accurate enough in almost every case. However, there are some cases where the 

approximation for the coeficient ( p )  is not precise enough. We assumed that  the system h a .  

a very short ceIl level. In the cases where the cell-level region is too long o r  the probability 

of loss in this region drops rapidly, the  value of probability of Ioss given by Equation ( 3.42) 

may be a bit higher than what we get by using simulation. 

3.6 Shortcomings of the 2-state MMPP mode1 

The Zstate MMPP model has been widely used for its simplicity and analytical tractability. 

However, there exist some cases where the mode1 is unable to represent t h e  effects of the 

high burstiness of the aggregate multimedia traffic. In these applications, the model usually 

underestimates the probability of loss for a given buffer size, so cannot keep up with the 



long tail of the loss curve. This problem mainly is due to the fact that a too-simple 2-state 

MMPP does not have the flexibility to model al1 various phases in the multimedia traffic. 

One solution is to  increase the number of states and to upgrade our mode1 from a 2- 

state to a multiple-state MMPP. Many problems arises in this modification, including a 

sharp increase in the nurnber of parameters which must be determined in the matching 

process, the complexity of the model as well as the time and computation power needed 

for solving the system analytically. In the next chapter we will discuss the multiple-state 

MMPP models, and introduce a simple multiple-state MMPP that  enjoys the advantages 

of the  2-state MMPP (sirnplicity and analytical tractibility) while is capable of representing 

a higher number of phases in the traffic in order to  get a more precise prediction of the 

queueing performance. 



CHAPTER 4 
Modeling of Aggregate ATM T r d c  using multiple-state Makov 

Modulated Poisson Processes 

4.1 Introduction 

In the previous chapters we showed that  the 2-state MMPP is a good mode1 for aggregate 

voice sources [17] and analytically tractable for its simplicity. However, i t  may not be able 

t o  represent the  effects of the high burstiness of aggregate multimedia traffic. For example, 

an aggregate multimedia traffic stream at  the input port of an ATM switch switch can be 

considered as a superposition of three components: voice, video and data. If each traffic 

component is modeled by a 2-state MMPP, then the  superposition will be a multi-state 

MMPP [l8]. 

The increase in the number of states causes an increase in burstiness of the traffic and 

therefore the queue length or probability of loss in the multipIexers will also increase. In 

the next section we will offer a n  example to show that. Due to the above fact, there are 

numerous studies on the possibility of using multiple-state MMPP models to represent the 

long range dependent traffic [33] [35]. 2-state MMPP models usually underestimate the 

probability of loss in ATM multiplexers with the long-range dependent traffic at the inputs. 

Therefore the multiple-state MMPP are used to represent those traffics. 

In the coming sections, we first study the general problem of representing an ATM 
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traffic by a multiple-state MMPP model, and we present our model which is a special case 

of mutipiestate MMPP. We discuss various techniques to derive the parameters of such 

model, and then we study its performance by applying it  in a number of case studies. 

4.2 Multiple-state MMPP for ATM multimedia T r a c  

In general, a multiple-state MMPP model is identified by two matrices, a ce11 generation 

rate matrix A and a transition rate (or infinitesimal) matrix Q. For an N-state MMPP these 

matrices are N x N. For the transition rate matrix, one of the elements on each row can 

be calculated from the values of others. Therefore a general N-state MMPP has 2 N2 - N 

different parameters. There have been some efforts to derive the complete matrices from the 

sarnples of the traffic. However the techniques are often complicated and give inconsistent 

resu1ts as we explain it in the next section. 

To overcome this problem, we decided to  use a simpler case. We use a special case 

of multiple-state MMPP, a superposition of 2-state homogenous MMPP minisources. The 

advantages of this model are as follows: 

0 The model has only five parameters: Number of minisources, N, and four parameters 

of a minisource, Xi and r l ,  A2 and rz, which are the respective ce11 generation rate 

and transition rate in each of the states. In fact this model has only one parameter 

more than a simple 2-state MMPP, which is the number of minisources, N. 

In general, the superposition of N 2-state MMPP results in a 2N-state MMPP model. 

But for this special case, the number of states reduces to N + l  [18]. 

Both the ce11 generation rate and transition rate matrices can be computed directly 

wit.hout using Kronecker summation (181. The computations are simpler for t his 
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special case. 

The infinitesimal matrix Q and ce11 generation rate matrix A can be calculated for our 

model as follows [lt?]: 

Q ( j , j )  = -h - (N - j )  r~ 
Q ( j , j +  1) = ( N - j )  r2 j = O : N  
Q(Ai - 1) = j r 1  (4.2) 

Q( j ,  j + i) = O lil > i 

Now let us see how we can determine the parameters of this model for a given sequence 

of traffic samples. 

4.3 Estimation of the parameters of Multiple-state MMPP model from tr&c 

samples 

We developed a Pdf-based technique for deriving the parameters of multiple-state MMPP 

rnodel from empirical data. But before describing the technique in detail in next section, 

here let us review the shortcomings of moment-based technique in mutiple-state cases along 

with a few other techniques. 

4.3.1 Shortcornings of Moment-based technique in  multiple-state case 

In previous chapter we presented a moment-based technique for estimating the parameters 

of a Zs ta te  MMPP rnodel. Here let us explain why this technique cannot be applied in 

multiple-state MMPP case. 

in our moment matching technique, we used moments of the counting process of the 



Table 4.1: MMPP models with the  same moments 

Parameter 
N 
A1 

A2 

f l  

r2 

traffic samples to  estimate the unknown parameters. However, i t  is not difficult t o  show 

that  a 2-state MMPP can have the  same moments as a multiple-state MMPP but with 

different queueing performance. In particular, for our mode1 of the superposition of N 2- 

state homogenous MMf P minisources, it is easy t o  show tha t  the following relations exist: 

IDCN (t) = IDC(t) (4-3) 

Source 1 
1 

3652.1 Cells/s 
2447.9 Cells/s 
2.1661 (s-l) 
1.8339 ( K I )  

where IDCN(t) and &(t) denote the IDC curve and third central moment of the  ag- 

gregated model, and IDC(t) and p3(t) the respective parameters of a minisource. I t  is 

even possible t o  build two models with exactly the same mean arriva1 rate, IDC curve and 

the third central moment, but with very different queueing performance. As an example, 

consider two sources: one represented by a single 2-state MMPP and the other by a su- 

perposition of N 2-state MMPP's (equivalent to a n  N+l-state MMPP) with the following 

paramet ers: 

Source 2 
6 

800 Cells/s 
300 Cells/s 
2.4 (s- ' )  
1.6 (K1) 

It can be verified by using the above parameters and Equations (3.2) and (3.9) along with 

Equations (4.3) and (4.4), that  both of the sources have exactly the same first three moments 

for a counting process: average, IDC curve and third central moment. The Equations 

Figure 4.1 shows the probability of loss (or buffer overflow) versus buffer length of an 
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Figure 4.1: Effect of number of states on queueing performance 

MMPP/D/l queue for both cases a t  a traffic load of 0.75 . The curves indicate a huge 

difference in queueing performance between two sources, though they have the same first 

t hree moments. 

The above results show that  the moments of the counting process do not contain enough 

information about the  burstiness or number of states. Therefore the moment-based tech- 

nique we applied in previous chapter for modeling of an arbitrary traffic by a 2-state MMPP 

is not applicable for a general case with multiple states. In fact, i t  is possible to find an 

equivalent-in-moments 2-state MMPP model for a superposition of N 2-state MMPP min- 

isources. The procedure is simple. Suppose that we have a superposition of N homogenous 

2-state MMPP minisources, each with parameters X i  and ri, X2 and r2,  the ce11 generation 

rate and state transition rate in each state, respectively. Then we want to build another 

a s t a t e  MMPP rnodel, with parameters Xi,  fi,  & and 6 so that both processes have exactly 



the same mean, IDC curve and third central moment. We follow theses steps: 

The mean arrival rate of the aggregated traffic is calculated by using the following 

general formula: 

The IDC curve and the third central moment for aggregated traffic are calculated 

using Equations (3.2) and (3.9) and considering Equations (4.3) and (4.4). 

0 Now t o  builci the 2-state model with parameters &, fi, i2 and 6 with the  above 

mean, IDC and third central moment, we follow the same moment-based technique 

we used in section 3.4.1 for estimating the paramjters of a 2-state MMPP model 

from its moments. 

The above reçults show that  a purely moment-based technique cannot be used t o  derive the 

parameters of a multiple-state M M P P  model. 

4.3.2 Histogram- based technique 

A histogram-based technique for estimation of the parameters of a multiple-state MMPP 

from empirical d a t a  was proposed by SkelIy et  al in [21]. The authors used this technique 

for modeling of video traffic behaviour in ATM multiplexers. 

The technique is purely histogram-based. First of al], the user chooses an arbitrary 

number of states. A number of bins of eight has been recommended in the paper. Then 

the traffic sequence is quantized to correspond to the allowable arrival rates. Each of these 

allowable rates is corresponding to  a s ta te  of MMPP model. 

In the next step, the transition probabilities are measured from the empirical data. 

When the frame period is deterministic, the transition rate matrix may be computed from 
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the transition probabilities rnatrix by applying the following equation: 

in which Q denotes the transition rate matrix, P is the transition probability matrix, I is 

identity matrix and f denotes frame rate. 

The authors have reported agreement between the results of this technique with mea- 

sured video traffic. However we found that  the technique fails to estimate the transition 

rates for an  MMPP source, even in 2-state case which is the simplest. We used the sample 

results of the simulation of MMPP sources with known parameters. We believe that  the 

reason behind the  failure of the histogram-based technique for estimation of the parameters 

of an MMPP model lays in the f z t  that  the quantization of the arriva1 rates in the case of 

MMPP traffic results in a poor accuracy. In each state of a multiple-state MMPP model, 

the number of arrivals over an interval follows Poisson process and so may accept any pos- 

itive value from zero upto infinity. Therefore, having a specific number of arrivals during a 

frame period does not specify in which state the process sojourns. In other words, the idea 

of quantization in the  case of MMPP is meaningless. Consequently, there is no accurate 

way to  measure the transition probabilities directly from the empirical data. 

4.3.3 Li kelihood-based techniques 

A good review of these techniques can be found in [20]. The idea is to employ a maximum 

li kelihood estimation to find transition rate and celi generation rate matrices from empirical 

data. An example of these techniques is the one by Meier-Hellstem [19] which we briefly 

described in Section 3.4.2. This technique, which uses samples of interarrival tirnes for 

estimation of model parameters, is applicable to multiple-state case too, but as we mentioned 



before, it may give inconsistent results and needs a good initial point [20]. We do  not go 

into the details for this technique as our concentration is on the techniques which use the 

counting process, not time process. 

In [36] a recursive, Iikelihood-based technique has been proposed. The technique is 

appIicable for base cases of samples of the counting proces or time process. Although, for 

counting process to give good results, the sampIing rate must be much higher than state 

transition rates. In other words, the  observation interval must be short enough. We explain 

more about this limitation when we introduce our pdf-based technique in the  next section. 

This recursive technique uses the conditional state transition probabilities given the number 

of arrivals in a frame or given the  interarrival time. However, in this technique the resuks 

depend heavily on the initial point as  in Meier-Hellstern technique. 

After studying various measures which characterize the traffic, we came to this conclu- 

sion that  two traffic measures contain sufficient information to uniquely identify the process: 

the  probability density function (pdf) of arriva1 rate, and the  index of dispersion for counts 

(IDC) curve that  captures the correlation effect. Now here we will introduce a new pdf- 

based technique which uses these two parameters of the traffic to  estimate the  parameters 

of a multiple-state MMPP mode1 for the traffic. The technique is quite easy t o  implement, 

does not need any initial guess about the parameters, very consistent and estimates the 

mode1 parameters pretty good. 



4.4 Pdf-based matching technique 

4.4.1 Mode1 Parameters 

We explained that  we want t o  model ATM multimedia traffic by a model represented by a 

superposition of N independent and homogenous 2-state MMPP minisources. This proposed 

model is fully describecl by five parameters [Xi, X2, r l ,  r*, NI. They are estimated from 

the probability density function (or histogram) of number of arrivais over an observation 

interval, and the  curve of index of dispersion for counts (IDC) of the  samples. 

The IDC curve for a single 2-state MMPP minisource can be calculated using Equation 

(3.2). The IDC curve of the  superposition of identical and statistically independent pro- 

cesses is the  same as the IDC curve of each individual process as Equation (4.3) shows. So 

tha t  we can estimate two parameters, d and IDC(oo) from the IDC curve based on the 

traffic sampIes. To make Our matching technique easier, we derive the following alternative 

set of parameters for our model: 

where P = rZ/(rI + r2) is the steady-state probability of staying at state 1, and = 

mean arriva1 rate. The original parameters could be calculated from the above alternative 

set as follows: 



Here XI, X2, rl and r z  are the parameters of the minisource model. 

The next section outlines the procedure to derive the five parameters of alternative set 

from samples of the traffic. 

4.4.2 Derivation of the probability density function 

Consider a single 2-state minisource. The probability density function for counting yrocess 

can be analytically derived using a complex iterative procedure [18]. In the following, we 

propose a much sirnpler approximation. 

In general, we can use any observation interval for counting the number of arrivals. 

However, if the selected interval is small enough cornpared t o  the sojourn tirne at  each 

state, then there will be no state change during an  observation inetrval T. In other words, 

we assume that we can effectively measure the mte of arrivals a t  each epoch (a short 

observation interval). This assumption of amival rate instead of nurnber of arrivals over an 

observation interval is reasonable in practice and confirmed by our simulation results, to be 

shown later. 

If no state change happens during an observation interval, the pdf of arriva1 rate can be 

calculated using the conditionai pdf's as  follows: 

P(X=k) = P(X=k 1 state l)*P(state 1) + P(X=k 1 state 2)*P(state 2) 

P(X=k 1 state j) is determined by a simple Poisson process with average rate Xj ,  j = 1,2.  

We denoted P(state 1) by cw in the previous section, so we can write: 



The above equation expresses the pdf of the counting process over a fixed observation 

interval T for a single 2-state MMPP minisource. 

The pdf of the traffic from a superposition of N rninisources.can be calculated by using 

either the  convolution of N pdf's of minisources, or the Z-transform. The Z-transfrom of 

(4.9) can be written as: 

Hence, the  Z-transform of the pdf of the aggregated traffic from N independent minisources 

is : 

Denote the  total number of arrivals of the  aggregate traffic in an observation interval 

by a random variable XN. By taking the inverse transform of Equation (4.1 l ) ,  we obtain: 

By substituting Ar and A2 given by Equations (4.7) and (4.8) into Equation (4.12), we 

will have a formula for the pdf of the arriva1 rate in terms of our alternative set of parameters 

[ d IDC(ca) a NI. 

In Figures 4.2 and 4.3, the results of the Equation (4.12) are compared t o  the measured 

pdf from simulation results, for two cases: a single minisource (N=l) ,  and a superposition 
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Figure 4.2: Accuracy of pdf estimation for N=l 

of 6 minisources (equivalent t o  a 7-state MMPP). The analytical and simulation results are 

in a remarkably good agreement. 

If the observation intervai is not sufficiently srnall to neglect the  effect of state change, 

Equation (4.12) becomes invalid. On the other hand, the observation interval cannot be 

arbitrarily reduced because of the effect of quantization error in the  pdf measurement of the  

samples. Our simulations indicated that  an observation interval equivalent t o  one tenth of 

the average sojourn time at each state provides adequate results. As an example of the cases 

where this approximation fail, consider a case of a traffic from a superposition of two Zstate  

MMPP minisources with XI = 2000 cps, X2 = 1000 cps, rl = 40 s-', rz = 30 s" and 

Frame tirne of 25 miliseconds. Figure 4.4 shows the pdf calculated from Equation (4.12) 

(continuous line) and the one determined from the simulation (dotted line). The curves 

show a noticable difference, due to the fact that here the observation interval is comparable 
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Arriva1 rate 

Figure 4.3: Accuracy of pdf estimation for N=6 

t o  mean sojourn times. 

It is also worth noting tha t  in the above there is no restriction on the hidden regime of 

state changes. In other words, the  mode1 is just assumed t o  be a general switched Poisson 

process. Hence, the Equation (4.12) is also applicable t o  other switched Poisson processes 

such as DMPP (Deterministic Modulated Poisson Process) , PMPP (Pareto Modulated Pois- 

son Process), etc. . 

4.4.3 Parameter Estimation 

We select a fixed observation interval of T called frurne time, over which the number of 

arrivals is counted. Denote the number of arrivals in a frame time by a random variable 

XN. From the sequence of rneasured numbers of arrivals in a frame time (Le. measured 

traffic samples), we compute: 



Continuous line: Formula 

Dotted line: Simulation 
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Figure 4.4: A test case where the pdf approximation fails 

Based on the constructed IDC(t) curve, the values of d and IDC(ou) can be estimated 

using Equation (3.2). The estimation can be done by the same maximum likelihood a p  

proach that we explained in previous chapter. 

Using three derived parameters (1, d, IDC(oo)  ), the remaining two parameters (N 

and a) can be estimated from the pdf of arriva1 rate, based on the minimization of t h e  

mean square error for al1 of the samples. To solve for N and a, in the cornplex, non-linear 

Equation (4.12), we used a n  iterative optimization algorit hm. The problem can have several 

sets of solutions for (N, a) which give close results for the pdf. By increasing N from 1 

and optimizing for a for the best match, this procedure guarantees a n  optimum solution 



1 Case 1 N 1 A, (cps) 1 X a  (CPS) 1 rl ( l /s)  I r2 ( l / s ) ]  

Table 4.2: Test cases for pdf-based matching technique 

Reference 2 2000 
Estimated 2 2024.3 

Reference 
Estirnated 

set with the lowest possible value of N and hence, the simplest model. 

Case 2 
Reference 
Estimated 

4.4.4 lllustrative Results 

1.5 
1.535 

1.5 
1.42 

1000 
998.3 

500 
500.9 

8 
5 

We have performed several simulation cases to examine the effectiveness of the introduced 

modeling technique. We generated cells from a superposition of MMPP mini-sources with 

known parameters and used the introduced modeling technique to estimate the parameters. 

We found the technique rernarkably accurate as shown in the following table: 

1 2 
2.12 

2 
1.96 

4 
4 

In Case 3, the nurnber of minisources in the derived model is different from that  of 

reference process. The reason is that  Our model captures the minimum possible number 

of states t o  mode1 the input traffic. In multi-dimentional space formed by parameters of 

multi-state MMPP, the solution for matched parameters is not unique. Sometimes there 

are severaI set of parameters with the same pdf and IDC, and our technique selects the 

one with the lowest number of states. However, both models show the same queueing 

performance. Hence, from queuing point of view they are equivalent. Figures 4.5 and 

4.6 show the probability of buffer overffow a t  a load of 0.84 and the average queue length 

versus traffic load, respectively, for both reference and derived models. The results are in a 
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Figure 4.5: Buffer occupancy for both models 

remarkably good agreement. 

In Section 4.6 we will examine some case studies to  show the accuracy of our pdf-based 

technique. 

4.5 Approximation of the Slope of the Probability of Ce11 Loss for a multiple- 

state MMPP 

In Section 3.5 we estirnated the probability of loss for a 2-state MMPP/D/l queue. Now 

here we extend it to calculate the dope of the probability of ce11 loss for our multiple- 

state MMPP model in a /D/1 queue. The same as Section 3.5, Equation (3.39) rnay be 

used for Laplace-Stieltjes funstion of the queue length in the burst region. For our model 

of a superposition of N homogenous 2-state MMPP with parameters [ A l ,  A z ,  r i ,  r z ,  NI, 
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Figure 4.6: Average queue length vs. Ioad for both models 

matrices Q (transition rates) and A (arriva1 rates) can be easily computed as follow [18]: 

Now assume that the queue length survivor function consists of summation of exponen- 

tial terms. Obviously, the term having the largest negative exponential factor determines 

the dope of the survivor function in burst region. Therefore, the slope is the largest negative 

root of the denominator of D(s) (or the closest one to zero) in (3.39). The poles of DIS) can 

be computed by equating the determinant of the matrix [SI + & - A, (1 - H ( s ) ) ]  to zero. 



Therefore if sr denotes the slope of probability of los ,  we have: 

For MMPP/D/l queues, H(s) = e-s where h denotes the ce11 service time. Using McLau- 

rin series to represent H ( s )  = e-'h , we can approximately use the first three terms, i.e., 

,-s h = 1 - h s + (hs)l. Equation (4.15) can be rewritten in an approximated form: 

The value of sr can be numerically calculated from Equation (4.16). 

To assess the accuracy of the approximation, we compared the analytical and simulation 

results. We considered MMPP/D/l queues. We first obtained the simulation results for 

the reference cases. Next, we rnodeled the traffic sources by the proposed multiple-state 

MMPP, and derived the corresponding parameters based on the traffic sarnples generated 

by the reference sources. Using t h e  derived parameters, we subsequently approximated the 

slope of the probability of ce11 loss using Equation (4.16). 

In Figures 4.7 and 4.8 two examples are shown. The traffic samples are generated by 

OPNET simulator from an MMPP source. The probability of loss for G/D/1 queue is 

obtained using simulation. The solid and dotted lines show the simulation and analytical 

results derived by Equation (4.16), respectively. For Case 1, the reference source is a 

superposition of 8 homogenous 2-state MMPP minisources with parameters {A1 = 1200 

cells/s, X2 = 800 cells/s, rl = 1.8 s-', rz = 1.2 s - l ) .  The traffic Ioad is 0.9. The slope of 

survivor function calculated by our technique is s = -0.01 1. For Case 2, the reference source 

is a superposition of 4 homogenous 2-state MMPP minisource with parameters { A l  = 3000 

cells/s, X2 = 500 cells/s, rl = 2 s-', r2 = 1.5 s-'1. The traffic load is 0.8. The slope of 
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Figure 4.7: Probability of Ce11 Loss: Comparison of the analytical and simulation results 
(Test Case 1) 

survivor function calculated by our technique is s = -9 x Figures 4.7 and 4.8 indicate 

a good agreement between the analytical and simulation results. 

We noticed that the approximation works fine for a mode1 with fewer states and under 

heavy load. In particular, as  the traffic load decreases, the accuracy of the results reduces. 

This effect can be explained by this fact that  our approximation was valid for burst region 

of survivor function. When the load decreases, the queue mainly stays in ce11 region instead. 

Also when the number of states increases, due t o  the increased number of corresponding 

poles of the transfer function and the effect of nearby poles, the accuracy is âbo reduced. 

Now Iet us have some examples which show the power of our technique in modeling 

ATM multimedia traffic. 



Figure 4.8: Probability of Ce11 Loss: Comparison of the  analytical and simulation results 
(Test Case 2) 

4.6 Case Studies 

Here we will study two different cases and show how Our technique can effectively model 

the traffic in ATM networks. The first case is a simple ATM multiplexer where voice, video 

and data traffic are mixed [28]. We try t o  model the aggregate traffic by a multiple-state 

MMPP. In the second case, t he  traffic inside ATM switching networks is studied [26].  For 

this case we build a network consists of multiplexers and switch and use simulations t o  show 

how well our model predicts the queueing performance. In the last case we get a sample of 

video traffic and represent it by our multiple-state MMPP model. 



( Mode1 II Reference Model 1) N+1-state 1 
I Parameters I I ~ i d e o l  Voice MMPP mode1 

Table 4.3: Model parameters for case study 1: ATM Mukiplexer 

4.6.1 Case study 1: ATM multiplexer 

Here we evaluated the performance of a G/D/l queue representing a multiplexer by simu- 

lation. The input to the multiplexer is an aggregate multimedia ATM source considered to  

be a superposition of three components: voice, video and data. We investigated the queue- 

ing performance for two cases. In the first case (considered as the reference case), each of 

the traffic cornponents is represented by a Zstate MMPP with different sets of parameters 

corresponding to their specific characteristics (voice, data or video). In the second case, we 

modeled the aggregate multimedia ATM source as a multiple-state MMPP. The parameters 

of this multiple-state MMPP are derived using the above mentioned procedure based on 

the measured traffic samples generated from the mode1 in the first case. The parameters of 

the models in two cases are shown below: As Table 4.6.1 indicates, the aggregate traffic of 

voice, video and data has been represented by a superposition of 3 identical 2-state MMPP 

minisources, hence a four state MMPP model. 

Figure 4.9 shows the simulation results for the two cases. A good agreement for the 



probability of loss in both ce11 and burst region is noticed. 

- Reference 

-.- Multistate MMPP model 

Buffer size 

Figure 4.9: Comparing the buffer occupancy for the mode1 and the ATM multiplexer 

4.6.2 Case study 2: ATM switching network 

Let us consider an example of multimedia ATM traffic modeling shown in Figure 4.10. 

Two types of real-time ATM traffic, voice and video, are muItiplexed and routed through 

a 16x16 switch [32]. Each of the aggregate voice and video components are represented 

by a two-state MMPP with different parameters. Al1 of the links are independently and 

identically distributed. At each multiplexer, the cells that  cannot be served during a frarne 

tirne will be discarded, so at the start of the next frame time the buffer is always empty. The 

traffic load at each multiplexer is kept around 0.63. The switch is assumed to be internally 

non-blocking. 

The parameters of the MMPP minisource models for inputs to  each switch input link 
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Figure 4.10: The block diagram of the system for case study #1 

are listed in the table 4.6.2. One set of parameters has been used for voice and the other 

one for video. 

We applied our technique to  model the traffic a t  the output of each of the multiplexers, 

and each of the output links of the switch. From the collected simulation results on traffic 

samples at each point, we applied the proposed technique to  obtain a mode1 of N hornoge- 

nous Zstate MMPP rninisources. In the Table 4.6.2 the parameters of the dervied models 

for multiplexer output and switch output are shown: 

Note that  after the switching, due to the large number of inputs and outputs, the 

generated model is close to  Poisson: a single Zstate MMPP with close values of mean 

arriva1 rates a t  each state. I t  is quite expected that when a large number of independent 

traffic streams are switched and mixed, the correlation decreases significantly and so the 
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Type 

Voice 

Video 

Table 4.4: Input parameters for case study 2 : ATM switching network 

Mode1 N (Number of minisources) 

Multiplexer output 

Switch Output 

Table 4.5: Mode1 parameters for case study 2 : ATM switching network 



Poisson model is more applicable. In Figure 4.11 the IDC curves for the traffic a t  the 

multiplexer output and at the switch output have been compared. As the figure indicates, 

the value of IDC, which is a good indicator of interfrarne correlation, decreases after the 

switching. 
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Figure 4.11: The IDC curve for the traffic a t  the input and the output of the switch in the 
case #2 

Now, by using the obtained models in a separate G/D/1 queue, we performed the perfor- 

mance evaluation and cornpared the results t o  those of the reference model in Figure 4.10. 

The performance cornparison is shown in Figures 4.12 and 4-13 for the outputs of the in- 

put multiplexer and the switch, respectively. As the figures indicate, a good agreement 

noticed. 

However, one must note that in some cases, especially when the correlation is still too 
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Buffer Size 

Figure 4.12: Comparing the buffer occupancy for the model and the output of the multi- 
plexer 

high after the switching, our simple model cannot represent the traffic in an efficient way 

and a more complicated multiple-state MMPP which does not comply t o  our simplifying 

assumption of the superposition of 2-state MMPP minisources, might be used. 

4.6.3 Case study 3: Video VBR traffic 

s a final case, here we are going to  study the performance of the mode1 t o  represent Video 

VBR traffic. 

We have two streams of video VBR traffic which we cal1 STRM#1 and STRM#2. The 

first trace, STRM#l,  is a soccer game and STRM#2 is a movie. The files are available 

for public use on ftp://www-info3.informatik.uni-wuerzburg.de/pub/MPEG/. In Table 4.6.3 

you can find the technical specifications of the streams [37]. 



Figure 4.13: Comparing the  buffer occupancy for the model and the output of the switch 

Each trace contains a total nurnber of 40000 frarne which is equivalent of a time length 

of a bit more than half an  hour. 

We took the whole stream inciuding 1, B and P frarnes and applied our technique to  

model it with a multiple-state MMPP. In Table 4.6.3 the parameters of the model derived 

by Pdf-based matching for each of the streams are shown. 

In the above table, N denotes the number of minisources and XI, Xz, rl and rz denote 

the parameters of the 2-state MMPP minisource. The model will be a superposition of IV 

homogeneous Zstate MMPP minisources with the above parameters, thus an N + 1-state 

MMPP. 

Now first let study the main characteristics ofeach of the streams and the  corresponding 

models. In Figures 4.14 and 4.15 the IDC curves of the mode1 and the video stream for 



Coding Scheme 
Capture rate: 
Encoder Input: 
Color format: 
Quantization values: 
Pattern: 
GOP size: 
Motion vector search: 
Reference frame: 
Slices: 
Vector/Range: 
Total number of frames in trace: 

MPEG-1: (Berkeley MPEG-encoder version 1.3) 
25 frame per seconds 
384 x 288 pel 
YUV (4:1:1, resolution of 8 bits) 
I=10, P=14, 8=18 
IBBPBBPBBPBB 
12 
'Logarithmic' / 'Simple' 
'Original' 
1 
ha1f pel / 10 
40000 

Table 4.6: The technical specifications of the video traces 

1 1 Mode1 parameters 

Table 4.7: Model parameters for video traces 



Figure 4.14: IDC curves for the video stream STRM#l and its MMPP model 

each trace have been shown. A very good agreement is noticed, expectedly. Although, the 

value of variance at small lags are different. Apparantly, the video traces have specific IDC 

characteristics a t  srnall time lags, like a small fa11 until a minimum value before a rnonotonic 

rise until saturation, which is uncapturable by the MMPP model. The minimum value of 

IDC for MMPP is located a t  t = O and is equal to  1. 

In Figures 4.16 and 4.17 the probability density function of the arriva1 rate for the 

mode1 and the video stream for each trace have been shown. AIthough t h e  detailed shape 

of the curves look a bit different but it successfully catches the regions in which a high 

probability exists. I t  looks possible to  have a general muItiple-state MMPP which can have 

exactly the same pdf as the video traces have, however, our simplified model was unable to 

approach closer to the reference pdf. 
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Figure 4.15: iDC curves for the video stream STRM#2 and its MMPP model 

Now we used each trace and its computed model in a separate G/D/l queue to  compare 

their queueing performance. In Figure 4.18 you observe the curves of the mean queue length 

versus tirne for video strearn STRM#l under various traffic loads. The results have been 

obtained by using simulation. In the figure, the dotted line indicates the performance of our 

model, and the continuous line indicates the performance of the real video trace SRTM#l 

in sepva te  G/D/1 systems. T h e  values of rnean queue lengths for both systems gradualIy 

converge to the same value. In high traffic load, the system is not  still in steady-state 

situation because the length of the video trace was limited. 

The same curves can be observed for STRM#2 in Figure 4.19. Here also the effect of 

transient behaviour can be noticed. The results for the first video stream is closer which 

shows our model was more applicable in that  case. 
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Figure 4.16: Pdf of the video stream STR.M#l and its MMPP model 
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Figure 4.17: Pdf of the video stream STRM#2 and its MMPP model 
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Figure 4.18: Queueing performance of the video stream STRM#l and its corresponding 
mode1 
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Figure 4.19: Queueing performance of the video stream STRM#2 and its corresponding 
mode1 



Due to the fact that in bath cases the simuIation could not be continued to the steady- 

state situation, comparing the curves of probability 9f loss is not possible. Therefore we 

just used the value of mean queue length as our performance indicator here. 



CHAPTER 5 
Conclusion and Fùture Works 

In this thesis we studied the performance of Markov-Modulated Poisson Process (MMPP) 

t o  represent the multimedia ATM traffic. First we applied the 2-state MMPP mode1 for ag- 

gregated voice traffic and compared various matching techniques for deriving the parameters 

of the MMPP model in order for the model to  be able to predict the queueing performance 

of the aggregated traffic. We observed that  a simple overload-underload IDC matching 

technqiue provides us with a satsifactory accurate prediction of the performance without 

need t o  go for Iengthy, complicated, time and computing power consuming techniques that 

use inverse laplace transforms. 

In the next step, we generalized a moment-based technique to make i t  capable of match- 

ing a 2-state MMPP mode1 t o  a general, arbitrary ATM traffic. By this, we were able to 

take a sequence of traffic samples and model it by a 2-state MMPP. Furthermore, an  a p  

proximation for the probability of loss in Zsta te  MMPP/D/l queue was also derived to 

avoid the lengthy and complicated Matrix Geometric techniques. At this point, we are able 

to  predict t h e  queueing performance of a given traffic stream, provided that  we have enough 

number of samples and the 2-state MMPP model is applicable. 

We found that  there are certain cases were two states are not enough to represent the 

changes in the arriva1 rate. Therefore we studied t he  multiple-state MMPP case. In order 



to  overcome the complicated probIem of parameter-fitting for a general multiple-state case, 

we introduced a special case, a superposition of N Zstate MMPP minisources, which is an 

equivalent of a special N+2-state MMPP. We presented a pdf-based technique to derive 

the parameters of this model from the traffic samples. We showed that IDC curve and pdf 

of arrival rate are enough to  derive the parameters. We completed out job by suggesting 

a technique to estimate the dope of the curve of the probability of loss for this special 

muItiple-state MMPP/D/l queue. Several case studies were also presented to  show the 

power of the technique. 

There are a number of areas in which this work can be continued. While an optimization 

algorithm for pdf-based matching was offered, still the parameters of the Nfl-state MMPP 

model cannot be explicitly expressed in terms of the values of pdf and IDC. One may try 

to  corne up  with a modification in the lengthy fitting procedure in order to  simplify the 

process of finding the model parameters. Particularly in finding the nurnber of states and 

steady-state probability of staying in state 1 from probability density function of arrival 

rate, some approximations may help. 

We found that while the model performs satisfactorily in most cases, it seems that some 

more complicated models like a general multiple-state MMPP may be needed in certain 

cases. Therefore one way to continue this work, is to generalized the mode1 and to try to 

find a fitting technqiue for generat multiple-state case. Especially in the case of video, some 

modifications may help us to  have a more accurate model to represent VBR video traffic. 

Finally, the approximation for pdf which is used in this technique is applicable to any 

other switched Poisson process like DMPP and PMPP too. If the IDC curves of these 

models are known, one rnay want to  try to find a fitting technqiue for these models. In  



particular, PMPP which is capable of capturing long range dependency looks an attractive 

model to study. Due to the expansion of Internet and the need t o  corne up with a mode1 

capable of capturing self similarity and long range dependency, a PMPP matching technique 

for deriving the parameters of the model from the traffic samples will be an interesting area 

for research. 
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