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How can we understand the mechanisms for relaxation and the constitution of the 
densi@ profile in CDM halo formation? Can the old Self-SimiIar Iafall Model (SSM) be 
made to contain ail the elements essential for this understanding? 

In this mrk, we have exploreci and improved the SSIM, showing it cau at once ex- 
p h  large N-body simulations and indirect observations of real hdoes alike. With the 
use of a carefully-crafted simple sheii code, we have foUowecl the accretion of secondary 
infalis in àBerent settings, ranghg fiom a mode1 for mergers to a distribution of angular 
momentum for the shells, through the modeling of a central biack hole. We did not as- 
sume self-similar accretion Eiom initial conditions but aiiowed for it to develop and used 
coordinates that make it evident. 

We found self-similar accretion to appear very prorninently in CDM halo formation 
as an intermediate stable (quasi-equilibrium) stage of Large Scale Structure formation. 
Dark Matter haloes density profles are shown to be primariiy inauenceci by non-radial 
motion. The merger paradigm reveals itseif through the SSIM to be a secondary but 
non-trivial factor in those density proaes: it drives the halo proîiie towards a unique 
attractor, but the main factor for universality is stiU the self-sidarity. The innermost 
density cusp flattening obdierved in sume dwarf and Low Surface Brightness galaxies finds 
a natufal and simple explanation in the SSIM embedding a central black haie. 

Relaxation in cold cullisionless coliapae is darifi.ed by the SSIM. It is a continuous 
process involving only the newly-accreted particles for just a few dynamical times. AU 
memory of initial energy is not lost 80 relaxation is only moderately violent. A sharp 
cut off, or population inversion, originates in initial conditions and is maintaineci through 
diuation. It  characterises moderately violent relaxation in the system's Distribution 
h c t i o n .  Finaiiyy the SSIM has shown this relavation to arise fiom phase mace instabiîity 
once the halU haa been stirred enough through phase rnixing. 

Extensions of these explorations are possible and expected to &e our understanding 
of the formation of dark halo density profiles. A iink should be sought, for instance, 
between the present results on relaxation and the entropy of the system. 

Keywords: dark matter, galaxy formation, s&-similar infail, density profile, density 
cusps, dis tribution function, angular momentum, mergers, black holes 
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Condensé: 
Comment pouvons-nous comprendte les mécanismes de relaxation et de constitution 

des profils de densité induits par la formation des halos CDM? Peut-un faire figurer dans 
le vieux modèie autmimjiaire d'accrétion secondaire [SSIM) tous les é lhents  nécessaire 
à cette compréhension? 

Dans œ travail, nous avons explor6 et amélioré le SSIM, et montré qu'il est capable 
d'expliquer autant les grandes shulations A N corps que les observation indirecte de halos 
véritables. En utilisant un simple programme dit 'à coquilles sphrkiques', conçut avec 
précautions, nous avons suivis l'accrétion secondaire de systèmes dans différentes condi- 
tions, allant d'un modèle d'agrégation jusqu' à une distribution de moment anguiaire, en 
passant par la modélisation d'un trou noir central. Nous n'avons pas posé l'autosimilarité 
dc l'accrétion dès les conditions initiales, mais au contraire laissé libre son développement 
et utilisé un système de coordonnées qui la met en évidence. 

Nous avons trouvés que l'accrétion autosimilaire apparat de fiqon commune dans 
la formation de halo CDM comme un état intermédiaire stable de quasi-équilibre dans 
la formation des grandes structures. Nous avons montrés que les profils de densité des 
haloa de matière sombre wnt principaiement déteminés par les vitessa transverses. Le 
paradigme de l'agdgation se révèle, à t r aws  le SSIM, tre un facteur secondaire mais 
non trivial de la formation de ces pmûh de densité: il conduit le prolii du halo vers un 
attracteur unique, mais le facteur principaide l'universaiité du profü reste I'autosimiIarité. 
L'aplatissement du profl de densité en son centre observé, dans quelques galaxies naines 
et à faible intensit-6 de surface, trouve une explication simple et naturelle avec le SSLM 
incluant un trou nou central. 

Par ailleur, la relaxation dans les eEondrements gravitationnels à basses temperatures 
et sans collisions s'explicite dans le SSIM. C'est un processus continu impliquant princi- 
palement les particules nouvellement accrétées, pendant un petit nombre de temps dy- 
namiques. Toute mémoire contenue dans les états d'énergie initiale n'est pas compléternent 
détruite, et donc la m h t i o n  est seulement modérément violente- Une coupure huche 
à basse hergie dans la fonction de distribution, aussi appelée inversion de population, 
qui prend sa source dans les conditions initiales mais est entretenue par la relaxation, 
t x a d r k  cette dernière dans la fonction de distribution de système. En 6n de compte, 
le SSIM a montré que la relaxation modérément violente résulte de l'instabilité de l'espace 
de phase après que le halo ait été assez brouillé par le mélange des phases. 

Des extensions à ces explorations sont possibles et devraient affiner notre compréhension 
de la formation des profils de densité des halos de matière sombre- Par exemple, l'on de- 
vrait explorer le Iien entre les résultats actuels sur la relaxation et l'entropie du système. 

Mots-clefs: matière sombre, formation des galaxies, accrétion autosimiIaire, profil 
de densité, densité centrale, fonction de distribution, moment anguiaire, agrégation, trous 
noir3 



Résumé: 
La compréhension des principes sous-jacent à la formation des grandes structures de 

l'univers est l'un des problèmes fondamentaux de la cosmologie moderne. Tel qu'il nous 
apparaît, en cette fin de siècle, l'univezs sembIe dessiner une mousse de galaxies dont les 
bulles contiennent de grand vides. Cette hiérarchie complexe de regroupements en gigogne 
laisse présager d'une explication moins naïve que celle, par exemple de la fragmentation 
simultanée d'un nuage de gaz primordial d o r m e .  

La mesure de la muse des galaxies et amas de galaxies par ditférentes méthodes 
indépendantes conduit à poser l'hypothése, dominante, de l'existence d'une masse non 
détectée: la matière sombre. Deux type de modèles se dégagent de ce paradigme: les 
modèles de matiére sombre chaude (EDM), dont les scénarios d'évolution privilégient 
l'importance du champ de vitesses primordial et l'émergence des structures par kagmen- 
tation sur des échelles de plus en plus petites à partir de la descence de "crêpes, ou 
caustiques, de Zel'Dovich" (dues au Bot primordial), et ceux dit de matière sombre ftoide 
(CDM), privilégiant l'importance du champ des fluctuations de densité et la construction 
des structures par coaiescence de surdensités sur des écheltes de plus en plus grandes. 

Le type de modèle qui semble le plus à même de reproduire toutes les échelies de 
structures observées reste du côté des modèies CDM, malgré les problèmes qui leur sont 
inhérents. Dans ce cadre, les germes des grandes structures se trouvent dans les rides à la 
surface du champ de densité cosmologique uniforme, et c'est la croissance et le regroupe- 
ment de ces germes évolués qui conduisent aux structures observées- La constitution de 
ces nuages de matière sombre, dits halos, permet égaiement de comprendre les prémisses 
de la formation des galaxies puisque leur matiére baryonique, minoritaire, n'a plus qu'à 
descendre au fond du puits de potentiel créé par la matière sombre, liant ainsi la cos- 
mologie à l'étude de la dynamique des gaiaxies, Le déveioppement de ces germes peut 
être considéré séparément dans l'hypothèse que les agrégations (mergers) ne jouent pas 
un rôle primordial dans la formation des halos CDM. C'est ce que nous nous sommes 
&or& de démontrer dans cette t k .  

Les travaux actuels dans le domaine tendent à insister sur l'importance du profil de 
densité (distribution de la densité de masse en fonction de la distance au barycentre du 
halo) à la virialisation dans la compréhension de la formation des halos CDM. Certains 
groupes proposent même l'existence d'un prom universel, dit NFW, ne dépendant que de 
l'échelle de masse du halo (cf. Navarro, h n k  & White, 1996, [32] ApJ 462,563)' détecté 
dans leurs simulations à N corps. Relayée par plusieurs autres études, cette proposition se 
heurte à plusieurs obstacles: d'autres groupes trouvent un profil universel dinérent (Moore 
et d.,1999, [n], appelé ici Moore99 MNRAS, 310, 1147) ou même réfutent l'universalité 
d'un tel profil (Jing & Suto, 2000, [?O] ApJL,529, L69). De récentes observations des 
gaiaxies à faible densité lumineuse de surface &SB) et des gaiaxies naines à dominante 
de matière sombre (Kravtsov et al., 1998, [31]ApJ, 502, 48, et Stil, 1999, [75] thse de 
doctorat, observatoire de Leiden, Pays bas) tendent également à jeter Ie doute sur ces 
profils issus de simulation de pure CDM et à ouvrir la porte aux modèles alternat& et aux 
ambagement de la matière CDM chique.  Par aillem, la possibilité d'existence d'un 



profil universel à entraîné certains groupes à tenter de comprendre Ies mécanismes pouvant 
être responsable d'un tel rhultat. Par exemple, Syer & White (1998, [33] MNRAS, 293, 
337) Gont appel au processus d'agrégation répétée qui entra& l'évolution dynamique du 
profil de densité par rétroaction entre l'émiettement des satellites absorbés par &et de 
marée et leur chute vers le centre du halo par la fiiction dynamique. E h ,  l'application 
de la théorie cinétique il la dynamique steilaire fournit des outils statistiques d'étude des 
@fibres  gravitationnels (la fonction de distniution, notée PDF, mesurant la densité de 
masse de l'espace des phases du système; par ex. Bertin & Stiavelli, 1984, 1581 A&A, 
137, 26, ou Merritt et al., 1989, [ûû] MNRAS, 236, 829) qui ont été repris dans te cadre 
des halos de matière sombre et qui pourraient permettre d'expliquer de manière plus 
fondamentale l'émergence d'un état d'équilibre et du protil de densité. 

Dans ce contexte les modèles d'accrétion secondaire autosimilaires (SSIM) semblent 
prometteurs, malgré leurs restrîctions. Dérivant d a  t r a m  originaux de Gunn & Gott 
(L972,[30] ApJ, 176, 1) et de Bertsehinger (1985, [361 ApJS, 58'39) qui mirent en évidence 
[a solution stationnaire du problème d'accrétion secondaire en symétrie sphérique, le 
modèle donne une origine dynamique au profil universel qui émerge de i'autosimilarité 
( F i o r e  & Goldreich, 1984, [35] ApJ, 281, 1). 11 contient également le mécanisme 
de constitution de 19&uiiibre gravitationnei, mis en évidence par Heanksen & Widrow 
(1999, [q , MNRAS, 302, 321) travers I'étude de l'espace des phases, de la PDF 
et d'une version modifiée du théorème du viriel. D'autres groupes se sont attachés à 
dtendre le champ de validité du modéle SSIM en y injectant des conditions initiales non- 
autosimilaires et plus complexes, calculant par exemple le profil initiai de densité à partir 
de modèles cosmologiques contemporains (Hoffman & Shaham,, 1985, [37] ApJ, 297, 16, 
Ryden & Gunn, 1987, [47j ApJ,318, 15 ou Avila-Reese et aI., 1999, [49] MNRAS, 310, 
527) ou de fonds de densité primordiale dinérents du traditionnel uni- d'Einstein-de 
Sitter(Subramanian et al., 1999, (451 soumis ApJ, astrmph/9909279], ou même ajoutant 
Ies effets, ignorés en symétrie sphérique, de vitesses non radiales au niveau de l'accélération 
centrifuge (White & Zaritski, 1992, [52I ApJ, 394, 1, Ryden, 1993, [53] ApJ, 418, 4 ou 
Sikivie et al., [51] PhysRevD, 56,18û3) ou encore d'une dispersion transverse des vitesses 
(Subramanian, 1999, 1461 soumis ApJ, astmph/9909280). 

Les travaux effectués au cours de cette th& font suite à ceux du modèle de Henriksen 
& W i b  qui aMient étudié la st~cture de i'espace des phases et l ' é t a b b e n t  d'une 
phase autosimilaire de quasi-équiiibre pour le SSIM en symétrie sphérique. Ces études 
EDnt l'usage du formalisme de Carter & Henriksen (1991, [43] JMPS, 32,2580) qui permet 
d'exprimer Ies équations d'un système sous une fonne qui se simplSe lorsque œ dernier 
évolue de manière autosimiiah (le système devient alors stationnaire dans ces variables). 
Plusieurs tentatives ont été fkites pour expliquer en termes plus simples les liens entre ce 
formalisme et les autosimilarités qu'il d e .  Cette thése en a tenté une nouvelle, 
Dans un premier temps, nous avons élargi le SSIM à la présence de moment angulaire 

en utilisant le cadre autosunilaire précédent. Ensuite, des modèles semi-analytiques ont 
été établis: un premier, pour tenter de mettre en pardèle les arguments de Syer & White 
sur les &ets des agrégations (mergers) avec un modèle les reproduisant par l'absorption 



d'une coquille sphérique de surdensité déposée aux limites d'un coeur de halo ayant déjà 
dvolué jusqu7en phase d'accrétion autosimilaire. Un second pour introduire des moments 
angulaires respectant l'autosimilarité pour les coquilles sphériques du modèle simple. 
E u h ,  avec le développement de mesures de la PDF, la modélisation de la présence d'un 
trou noir central au coeur du halo a été introduite (Henriksen & Le Deiliou, [86] en 
prparation pour MNRAS) pour permettre d'expliquer, avec la CDM, les faibles densités 
centrales dcemment observées. 

Cette thèse décrit les difEcuités techniques rencontrées lors de la création des différent 
codes dits à peiiicules, ou coquilles, en passant par la longueur de lissage nécessaire au 
passage du centre (singuiarité de la symétrie sphérique), l'importance de l'auteinteraction 
des pellicules qui doit respecter la répartition du volume de la pellicule (modélisée par 
une coquille infiniment mince) par rapport à sa position nominale et le jeu entre le pas 
de temps d'intégration et la longueur de lissage résolu par une exploration par simulation 
de Monte Carlo du plan de paramètres. Le choix de l'intégrateur s'est avéré crucial car 
la longueur de lissage fixe une échelle minimum pour le pas d'intégration et force donc 
d'éviter les intdgrateurs trop sophistiqués. Le choix s'est porté sur un simple Runge- 
Kutta du deuxième ordre. La manière de mesurer l'énergie potentielle gravitationnelie a 
aussi nécessité des ajustements indispensables: comme le système étudié n'est ni infini, ni 
fermé, la définition simpliste de l'énergie potentielle comme proportionnelle au potentiel 
gravitationnel ne peut être employée. Il faut revenir aux définitions fondamentales à base 
de gradients du potentiel comme celle issue du tenseur de Chan- (mir Binney 
& Thmaine, 1987, [87] Galactic Dynamics, Princeton, Princeton University Press) ce qui 
entraîne que l'énergie, contrairement au potentiel, ne dépend pas des pellicules extérieures 
au système (à cause de la symétrie sphérique). 

Ensuite, le choix s'est porté sur les conditions initiales des simulations: d'une part, 
entre conditions cosmologiques (perturbation centrale d'un modèle d'Einstein-de Sitter 
avec un flot initiai de Hubble) ou non, d'autre part, sur l'établissement des peilicdes 
avec une masse constante, un espacement constant sur l'échelle des rayons, ou bien par 
perturbation des positions de peliides modélisant initialement une densité constante afin 
de refléter le statut physique de la perturbation centrale- 

Pour l'exploration des possibilités de modélisation d'agrégations, une autre simulation 
a été nécessaire pour déterminer Ies gammes pertinentes de masses et de densités moyenne 
relative au coeur du halo. 

La symétrie sphérique entraînant la conservation du moment anguiaire, la distribution 
radiale de moment angulaire respectant l'autosimilarité doit être établie aux condition 
initiales. Ii est à noter que sa forme diffère d'une loi de puissance, et par conséquent 
l'autosimilarité ne peut être qu'inexacte en présence de moment angulaire. 

La problématique principale de la modélisation d'un trou noir centrai provient de la 
définition de la masse entrant dans le trou noir. En effet, en l'absence de moment angu- 
laire, comme modélisé ici, toutes les pellicules traversent le centre. La structure de l'espace 
des phases permet cependant une évaluation algorithmique du rayon de Schwarzschild et 
de la masse du trou noir central au cours du temps, et ce malgré le fait que la vitesse de 



la lumière dans l'espace des variables autasirniiaires n'est en général pas conservée. 
Les mesura de PDF dans l'espace des phases ont été testées, pour les PDFs avec 

distribution de vitesses isotropes, par génération puis application de Ia mesure sur une 
sphère de Plummer, et pour les PDFs avec vitesses radiales, sur le modèie de PDF de 
Henriksen & Widmw. 

Les résultats obtenus furent conformes aux attentes et même parfois surprenants: la 
moddkmtion des agrégations de satellites a montré que le coeur est capable d'assimiler de 
grasses perturbations tout en retrouvant son régime autosimilaire initial. L'observation 
de l'évohtion des particules de surdensité asaimilées dans L'espace des phases du système 
révéle que les grandes lignes de l'argument de Syer & White se retrouvent dans un contexte 
d'accrétion secondaire, accréditant la thése que l'agrégation ne serait pas essentielle a h 
formation des halos. En revanche le profil de densité réserve des surprises: L'attracteur 
semi-universel mis en évidence par FiIlmore & GoIdreich devient entièrement universel 
(valable aussi pour les perturbations eosmologiques initiales plus concentrées que lui) lors 
de l'assimilation d'une seule surdensité par le coeur. 

Les m m  de PDF sur les systèmes à espaces des phases purement radials ont 
conkné tes résultats de Henriksen & Widrow quant 3~ Ia dépendance à l'énergie, ainsi 
que ieurs conjectures, suimat celles de Memtt et al., quant à la coupure asymptotique 
aux énergies négatives. 

L'addition d'une distribution radiale de moment angulaire confirme Ies soupons selon 
lesquels l'&et du moment angulaire serait d'aplanir relativement Ie profil de densité au 
centre et de le creuser aux limites. Cet effet est tel que, d'une distribution initiale du m+ 
ment angulaire justifiée par des arguments Diiensionneis, il est possible d'obtenir avec le 
SSIM des profils de densité similnllep à ceux fournis par les simulations tridimensionneiles 
à N corps et un profil lW?W peut même être o p t h i d  pour décrire nos resultats. 

L'addition d'un trou noir renforce le comportement du modde SSIM chique, puisqu'il 
ne s'agit que de rajouter au centre du halo une pellicule massive immobile, variable ou non. 
L'essentiel &side dans Ie fait que la PD?? garde, comme pour le SSIM exploré par Henrik- 
sen & Widrow, la même dépendance par rapport à l'énergie et la même coupure asymp 
totique (cut off) aux énergies Ies plus négatives. Cela renforce la thèses de Henriksen & 
Le Delliou permettant une compatibilité des observations avec des halos CDM simple en- 
tourant un trou noir. En vérité, les simulations ont confirmés l'effet d'aplanissement de la 
densité centrale prédit par Benriksen &Le Delliou. Des indications de croissance autosim- 
ilaire du trou noir central sont même obtenues dans une version modifiée d'évaluation du 
rayon de Schwarzschild. 

La conclusion de ces travaux est la suivante: les modéies autosimiIaires d'accrétion 
secondaire se sont révélés capables de fournir le pouvoir explicatif qui manque aux 
grandes simulations à N corps tout ensortant de leurs limitations traditionnelles (symétrie 
sphérique empêchant ies agrégatioos de deux halos de centm différents, accrétion pure- 
ment radiale, d'où Ia difiidté d'exploration des conséquences de la présence d'un trou 
noir central) et en fournissant des pistes aux observations (prof3 de densité, évaluation 
d'une phase de quasi-équiiibre Wiel trés stable aux perturbations massiques et radi- 



ales). Nous avons donc confirmh les conjectures de Syer & White sur la dynamique des 
agrégations tout en les élargissant au contexte de l'accrétion. Nous avons mis à jour 
l'extrême robustesse du quasi-équilibre de la phase d'accrétion autosimilaire. Nous avons 
montré que le comportement du profl de densité des halos de matière sombre froide peut 
se comprendre entièrement par 1'Suence de la composant non-radiale des vitesses des 
particules, en ajoutant L'effet d'un trou noir central pour rendre compte de l'aplanissement 
central observé, et que les agrégations répétées ne tiennent pas cette place centrde dans 
L'effondrement sans collisions des halos de matière sombre. 

De plus, notre modèle nous a permis l'étude approfondie du phénomène de relaxation 
violente qui caracterise les doniirement gravitationnels: Il ressort de notre modèle qu'il 
subsiste des corrélations entre les énergies initiales et finales du système, conduisant à 
une relaxation violente modérée. De plus cette relaxation ne concerne que les particules 
les plus récemment accrétées, détectées par leur étalement en énergies hales,  et qui se 
regroupent en bordure du système dans l'espace des phase et dans la PDF. 

Les mesures de PDF ont valid6 les conjectures émises par Henriksen & Widrow quant 
à la d6pendance dans l'énergie et à la coupure asymptotique. 

D'autre part, ces travaux ouvrent la porte à de nombreuses précisions sur leurs 
résultats (par exemple, l'implantation d'un trou noir central au sein d'un halo avec 
moment angulaire, la mesure de PD?? dépendant aussi du moment angulaire pour les 
systèmes non-isotropes et mme suggèrent la valeur d'une étude future sur des modèles 
de halos de matière sombre aux symétries moins contraignante en utilisant les variables 
autosimilaires de Carter & H b  (modèle à symétrie axiale, réévaluation de résultats 
de simulations à N corps à l'aide de varivariables autosimilaires). 
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Chapter 1 

Yellow and Black General 
Introduction 

"C'était à Mégara, faubourg de 
Cathage, dans les jardin 
d'Hamilcar..? 

"A beginning is a tirne of extreme 
deiicacy? 

Dune 
FRANK HERBERT 

1.1 Problems in cosmology 

Understanding the principles involved in the establishment of quasi-stable large scale 
structures in the universe is one of the main goals of modern physical cosmology. 

The universe as we know it today is radically merent than that in which peopIe at the 
beginning of the century believed they were iiving: instead of being a sea of suns, more 
or less evenly spaced, or an island of sand grains - suns - floating in a vast emptiness, 
we are now embedded in a foam of galaxies, repli= of the island of sand picture, with 
huge voids between the bubble walls. This cornplex hierarchy of nested groupings testities 
for a less naive exphnation than, Say, a collective and simultaneous fragmentation of a 
uniform primordial gas. 
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Measurements of dynamical masses have shown large discrepancies with the o b s e d  
luminous mass. The theoretically consemative answer to that inconsistency is based 
on the search for this electromagnetically discrete m m ,  dubbed for that reason "dark 
matter" (DM). Considering that it may constitute, together with some form of Dark 
Energy that wouid have the effects of Einstein's cosmologicai constant, the vast majority 
(80 to 99%) of the mass-energy of the universe, understanding the formation of Large S d e  
Structures (LSS) within the frame of Hot Big Bang Cosmology leads to the exploration of 
the behaviour of DM. Setting aside the search for its nature, it is still of interest for LSS 
formation to know the kind of kinematics that dominates the DM in order to predict the 
type of scenario for LSS formation. One active paradigm of DM studied in this present 
work is coilisionless cold dark matter (CDM). 

Cosmological LSS formation theory has been approached in two distinct fashions: due 
to the progresses in computing power, large N-body simulatior.w have been performed and 
studied in the scope of inputting physics judged relevant and retneving its products in 
terms of LSS. But this leaves us with just another layer of phenomenological descriptions. 
To go beyond that and redy understand the physics of LSS, another type of approach 
involving analyticai and semi-dyticai modeis is needed. 

In contrast with what can be inferred fiom the trend in numerical cosmology to 
favour large N-body simulations with as xniuiy degees of fieedom and as much physics 
as possible, modeling means simpIifying. Too much simplification will not be able to 
reproduce the aspects of reality deemed relevant for the studied problem, That is why 
modeling is funambuiist art. It also fiel& the classicai understanding of phenomena (in 
tenns of simplest elements, if possible related to intuition). In this work we used the 
mode1 for single coüapsed objects that has been referred to as the Self-Similar Secondary 
Infail Mode1 (SSIM) and we attempted to study its predictions in terms of dynamics as 
well as extend its vaiidity beyond some of its oversimpiistic assumptions. 

1.2 The Dark Matter 

There are more things in the H e a m  
and on the Earth than in al the 
dreams of philosophy 

Eamiet 1, V 166 ( 1 6 0 2 ) W ~ ~ u ~  
SHAKESPEARE 

The paradigm of dark matter coma from the Mnous ways available to astrophysicists 
so as to measure the mass of gaIaJaes and clusters: a simple minded way would be to 
look at the average mass per unit of Iight intensity @en out by stars, then multiply that 
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by the amount of iight given out by a gaiaxy or duster. That would weigh the amount 
of luminous mas. Of course, there are other more sophisticated ways of measuring the 
luminous mass but this one is indicative enough to redise the problems involved. 

Another possible way of measuring the mass of galaxies and clusters is by its dynam- 
ical effects on its surroundhg masses: if some masse are orbiting around, Say, a galaxy, 
and they are smali enough compared to the galaxy, they wiil have a rotational velocity 
characteristic of the m a s  of the galaxy. In turn their velocities can be used to charac- 
terise the mass encompassed within tbeir orbits. Underlying these results lies the Viriai 
Theorem. It states that any self-gravitating cioud of mass wiil find its kinetic energy 
twice canceled by its gravitationai potentiai energy when at equilibrium. Therefore the 
total energy of the system WU be equal to minus the kinetic energy at its equilibrium 
state. This is stiil true for the s p d c  hrms of the energies (energies per unit mas) 
so one can get at the total potentiai en- of an equilirium system by measuring its 
velocities only, and then get the total gravitating mas. This principle can be applied in 
various more or less complex ways, using statistical averaging or not, but these methods 
are al1 based on the principle of the dynamical signature of mas. 

When confronteci, it appears that there ia discrepancy between the luminous m a s  
and the gravitating mas, more pronounced for larger and larger structures. This is at 
the origin of the postdate of the existence of some non-luminous "dark matter" present 
in a more diffuse fashion than the luminous one, but in large amounts. 

1.3 Motivations for the present study 

In science, we try to speak to people, 
so as everyone understan&, 
of things that no one knew beiore. 
In poetry, it is exactly the opposite. 

Modern Large Scale Stmcture formation theories are dealing with the question of 
how to grow ripples on a universe aimost uniformly popdateci with m a s  into the mass 
aggregations we can observe nowadays, fiom gaiaxies to superclustem of galaxies. Given 
the Dark Matter paradigm, the question becornes how to grow dark matter structures. 
Rom the structure formation's point of view, the important question about the nature of 
dark matter comes down to the difEixence in tirne-scales for clustering via gravitational 
coilapse versus fiee strearning fiom initiai velocities into caustics - that is to say between 
cold and hot DM. 

The present picture, based on observations, faveurs the CDM pole. In this picture, 
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LSS are formed by the collapse of the uniform background mass around those seed- 
ripples, which at the same time can merge with each other. These seeds can then be 
considered separately for theù growth into hdoes if mergersl are not considered to play 
a determinhg role in the properties of the h d  halo produced. The role of mergers is 
one of the questions we wili expIore in the present work. 

Since regular matter is then thought to form galaxies by h i h g  in the middle of haloes, 
once we can understand the pmperties of the finai haloes, we can understand the premises 
of galaxy formation and Cosmology can yieid inputs for Galactic Astrophysics. 

Current research is focusing on understanding the radiai mass density distribution, or 
density profiie, of DM haloes. Some groups are hding what could be a universai 
- or unique, once haloes are scaied appropriatdy - profile for every halo in numerical 

simulations, whereas ot hem are hding a different innermos t density cusp for the universal 
profile, or even disagreeing with the univetsaüty of those profiles. New observations are 
even casting doubt by disagreeing with aii the tesults on the innermost density cusp in 
the centre of haloes. 

Understanding the density prome, then, lies at the centre of current questions on LSS 
formation. In parti&, separating the various paradigms involved in the formation of 
pure CDM haloes is an important theoretical task, whether it is testing the repeated 
merger paradigm, or the importance of non-radiai motion. Proposing extensions of the 
pure CDM modei to explain the newest observations is also of great interest. But using 
a model to reproduce the profile and perhaps explain its universaüty does not provide as 
deep an insight as studying the dynamics involved with such a successfd model. Gravita- 
tional coiiapse of collisionless systems is believed to involve an inwmplete and rapid mode 
of energetic relaxation called 'violent relaxation'. Analysis of the processes involved in 
such relaxation, therefore, is crucial. This is ptecisely what this work proposes to tackle. 

In chapter 2, we wiii review the background of LSS formation in the generai terms 
of the DM paradigm and the main modeis that are spawned by it. We wiii  also give a 
generai ovcrvïew of the SSIM and its main d t s .  Chapter 3 wiU discuss the formaiism 
and results of the semi-analytical model on which the present work is based. Chapter 
4 wili document technical details that were solved in the sheU codes that have been 
written in order to perform the numerical calcuiations. Chapter 5 will explore the SSIM's 
equilibrium by measuring its Pmbabiity Distriiution h c t i o n  and energy correlation 
in detail, as weil as perturb the model to represent the e K ' s  of Merger events on a 
CDM halo. Chapter 6 will then extend the SSiM to model the introduction of angular 
momentum and its effects. It will also extend the SSIM to model the establishment of a 
central growing mass representing the possibiity of galactic supermassive black holes in 

'III the contect of LSS formation, mergers designate the proces of merging with each other already 
evolved haloes which masses are not wideIy difkent. 
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dark haloes. Finaüy, chapter 7 d l  give the general conclusions on the work as weii as 
suggest possibIe extensions. 



Chapter 2 

Large Scale Structures and 
Models 

If the facts don't fit the theory, change 
the facts. 

ALBERT EWSTEIN 

2.1 Cosmology and Large Scale Structure Formation 

2.1.1 Observational motivation of the Dark Matter Paradigm 

Since the fate of the universe is seaieci in part by its mass content, cosmology has ciriven 
observations to weigh the amaunt of m a s  existing. A simple way to do this in a universe 

populated by gaIaxies and clusters a3 main structures is to count the mass in each struc- 
ture, get an average and multiply it by the number of such structures (or number density 
if you want to get at the density of the universe). When observers tried to measuse masses 
of LSS like galaxies they looked at simple dynamjcs: Kepler's 3rd law relates the mass 
inside a certain radius to the rotational velocity of a test particle at that radius as 

Now if ail the mass is detected, i.e. by its emissions of t'ght (visible or other wave- 
bands), when we get to the edge of a galaxy we should see the m a s  becoming constant and 
therefore the outermost particles (stars, then HI gas) rotating at keplerian characteristic 
decreaïng docity: u. a r- i .  

Instead, fiat or rising rotation curves are observed (e-g. S a n d  & van Albada N for 
spiral galaxies, but s idar statistical studies have been performed on elliptical galaxies, 
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e.g. in Bertola & Capaccioli [2]), implying that M ( r )  a r, hence that p a r'2and that 
v: = cst. This latter property of what is in fact the sphericaüy-averaged tangentid veloc- 
ity distribution l e d s  to the identification of such a syfitern in literature as an isotbermal 
sphere, in reference to a Maxwell-Boltzmann statistic with constant temperature. 

Similar dynamical arguments are used on clusters of galaxies (e.g. Carlberg et al. 
[3]). Other mass estimates for clusters can be uçed: Virial-type arguments can be used 
to estimate the mass those clusters fihouid have to retain the high energy X-ray emitting 
gas they contain (e-g. Songaila et al. [4]). Densities of electrons/protons can be obtained 
by meamring the distortion those clusters induce on the Cosmic Microwave Background 
Radiation by Compton scattering of this Cosmic Microwave Background Radiation's ph* 
ton by their electrons (Siinyayev-Zel'Dovich effect, e-g- Holder & Carlstrom [5]). At last 
gravitational lensing of Light h m  far sources, like quasars, by the mass distribution in 
clustm (e-g. van Waerbeke et al. [6]) can be used to yidd m a s  estimates for LSS. 
All these estimates can be combineà to obtain a complete picture of LSS mass distri- 
bution.Those and several other routes to the mass content of the universe aUow one to 
estimate the average density of mass. There is an obvious discrepancy between these 
estimates and the m a s  of the obseived luminous matter, which leads to the postdate of 
non-Iuminous gravitating m, or Dark Matter [DM). Some attempts have been made to 
exphin away those dynamical behaviours by rno-g the laws of gravity (e.g. Moàified 
Newtonian Dynamics, caiied MoND gravity, higher order derivative terms in the geomet- 
ric tensor, modifying E i e i n ' s  gravity) but the wealth of independent means of getting 
at the presence of dark gravitating structures strongly favours the existence of DM. All 
in &,the mass of all DM exceeds that of Baryonic matter by about a factor of 10 (eg. 
Faber & G-er [7] or Peebls 80a [a]) 

The nature of dark matter may be varieci. h m  Big Bang (BB) Nucleusynthesis 
(BBN), caiculating the relative abundance of primordial elements, it appears that we are 
only seeing part of the normal matter (baryonic matter; e.g. Schramm & Turner [9]) sa 
some of it may be hidden in dark form, as MAssive Compact Halo Objects (MACHOS) 
(sub-dar mass objects 6rst detected thmugh gravitational microlensing by the EROS 
coilaboration [LOI) or as discrete mld, neutraI moledar gas clouds. Same hypotheses 
even rely on primordial black holes (masses gravitationally coIapsed at very early times 
aRer the Big Bang, e.g. IM~OV et  al. [Il]), which could avoid limitations fiom Big Bang 
Nucleosynthesis, but la& of observational indications make these hypotheses uniikely. 

C u m t  d t s  place the density of matter to be R, E [0.2,0.5] with a most iikely 
d u e  at 51, ;r 0.3 whereas Big Bang Nucleosynthesis places the lirnit for baryonic matter 
a t  QBh2 5 0.019 (with h - 0.65 witherrors, current favoured estimates place Re - 0.05). 
All in ali, the mass content of the universe is likely to be dominated by non-baryonic 
DM, Particle physics proposes a wealth of candidates for non-baryonic DM , iabded 
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WIMPs (for Weakly Interacting Massive ParticIes).Those range £rom massive neutrinos 
to axions, and to various supersyrnmetrïc particies. Mmive neutrinos are now h l y  
since the confirmation by the Super-Kamiokande detector of results h m  its ancestor 
expairnent Kamiokande's mWng angle between different types of neutrinos [12] :Am2 - a 
few times ~ O - ~ e v ,  but with expeded masses insufficient for accounting for the observed 
Ci,. Axions are Goldstone bosons (particles produced by a syrnmetry breakïng and 
ailowing for the acquisition of mass by the originally symmetric particles) prescribed by 
Peccei and Quinn to dynamically break the CP symrnetry in Quantum ChromùDynamics 
[13]. Supersyxumetric particles are particles that would be prescribed by the existence of a 
symmetry between bosons and fermions, a symrnetry much favoured by particle physicists, 
and at the root of the most advanced attempts at quantum gravity with Superstring 
Theories and their background M-theory. As far as LSS formation is concerned, it suilices 
to distinguish among DM particles on the ba is  of th& dynamical behaviour in gravity. 
The two main types of behaviour are related to the relativistic or non-relativistic nature 
of the rms velocity field for the DM particies: if the particies are light (like neutrinos) 
and Iikely to be fast, to the point of being relativistic when decoupled, then they are 
designateri Hot DM. If they are slow or very heavy so that their mass energy is much 
larger than their kinetic energy, they fali into the category of Cold DM. Any intermediate 
case wiil just behave as a mix of the HDM and CDM main f a t u m  (me W m  DM, when 
the particles are of comparable masses and rms kinetic energies, or even in the scenarii 
of mixed CHDM). 

Current results, spawning from the combination of the Supernova Cosmology Project 
f141 and of the analysis of the Cosmic Microwave Background Radiation ([15], (161 and 
[17]), are pointing towards the presence of a cosmologicai constant or "dark energy," as 
some have modeled its cause, to the amount of RA x 0.7. As far as LSS formation is 
concerned, this only plays the role of cosmologicai background. (For a good review on 
DMs see Bergstrom [181.) 

2.1.2 Hot Dark Matter 

HDM is thus constituted of very rdativistic WIMPs. This implies that at  early stages of 
the coiiapse of primordial stmctures, the fluctuations of the velocity field dominate over 
density perturbations. This is the realm of the Zel'Dovich approximation, the andytical 
attempt at understanding the period of Iinear, free streaming HDM (e.g. neutrinos)- 
These scenarii lead to the formation of density caustics cailed pancakes because of their 
flattened shape. This shape results fiom the threedimensional streaming having an un- 
stable nature which would favour the strongest streaming direction, leading to a faster 
collapse dong that Lue. This picture applied to a random velocity fieid displays, because 
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of the topology of a vector field in three dimensions, the emergence of void nodes sepa- 
rated by membranes of connected pancakoi, the intersections of which form filaments of 
overdensities, which in turn build up haloes at  their nodes. This web-like picture of very 
largest scale structures has b e n  characteriseci by Shandarin and Zel'Dovich [19] to be 
exactly analogous to the kind of patterns one can observe from geometrical optics through 
a rippled interiace between two different refraction index media (e.g. images seen under 
a bridge or at the bottom of a swimming-pool). Rom those initial LSS, the density field 
then takes over to fragment them into smaller and d e r  sa l e  structures. This is the 
famous topdown hietarchical picture characteristic of HDM scenarios. 

The major flaw for LSS formation of these types of scenarios is that they do not 
produce enough smaiier scale structures iike galaxies, and therefore are ruled out by 
observation: the power spectrum of such a model is too smaü at large radial wavevector 
k. 

The power spectrum is ddned as the Fourier transform of the autocorrelation function 
of the density field: P(k)=FT(< dp,,6p3+, - >,) where 

is the density contrast at  point x and the average is noted f =< f (x) >,. It is a wideiy 
used statistical measurement of LSS, which desaibes weii the nature of clustering that 
wiil take place in a model where it is given as the initial condition. 

For HDM models, P(k) is too smaü at large k when confionteci with the pawer spec- 
trum of observeci LSS (Sugiyama [20]). This led h t h e r  investigations to concentrate on 
the opposite kind of 5-0: CDM. 

2.1.3 Cold Dark Matter 

Contrary to HDM, CDM behaves iike non-relativistic, self gravitating dust. In the study 
of its evolution, the density field is assumeci to be primordial: the seeds of LSS are then 
the density perturbations, or density contrast bp, that will grow through gravitational 
instabiity and coiiapse into primordial haloes. These will then merge with their grav- 
itationally bound neighbours to form larger and larger s a l e  structures. This picture, 
characteristic of CDM, is referred to as a bottom-up type hierarchicai clustering scenario. 

Because of the fundamental importance in these scenarü of primordial haloes, they 
can be studied fiom dinerent perspectives: one can either try to understand the globaI 
pictwe that CDM coliapse induces, or concentrate on understanding the formation of one 
idea l id  generic CDM halo. The first approach bas yielded various phenomenoIogical ex- 
plorations through N-body simulations of idealised CDM patches of uni-, sometimes 
completed with hydrodynamical treatments of the baryonic part of their mass content. 
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In these simulations, certain features or statistics are singled out as si@cant for con- 
irontation with observations. Global phenomenologicai statistics c m  be derived fiom 
cosmological N-body simulations and compared with their observational counterparts: n- 
point correlation functions constitute a set of standard descriptive statistics which can be 
used to confiont simuiated LSS with existing ones. They also aliow for some dynamical 
modeling of the universe as a statistical realisation of a random process (see the adap  
tation of the Bogoliubov-Born-Green-Kirkwood-Ywn -BBGKY- hierarchy equations 
fiom plasma physics in Peebles 1980 [21]). 

Various other statistics can be used, like the m a s  function which gives the number 
of haloes in a given realisation at a determined mas scale and can be related to the 
statistics of halo masses. But understanding of these statistics requires the emergence 
of a vocabulary that has to be built fiom simpier, more refined models of the physics 
directly responsible for each of these aspects of LSS formation. Two main streams of semi- 
analytical approach aim at getting these statistics from initial structure of the density 
field: one is based on the density or mass excursion set, foiiowing the heuristic formula 
derived by Press and Schechter (PS, 1974 [27]), singling out successively regions whose 
average density is higher than a tirnedependent threshold. The other focuses on density 
peaks of a gaupian random field aiter the approach of Bardeen et a1.l (BBKS, 1986 
[22]), who were using a single sa le  for peak identification and assigning them the same 
mass. Bond et al. (BCEK, 1991 1251) used the randorn walk or excursion set formalism, 
smoothing the linear density peaks on various mass scaies and then identifying coiiapsed 
regions by their average density beiigabove a certain tkeshold. Unfortunately, neither of 
these approaches succeeds in oyercorning the cioud-in-cloud problem2 as identifieci e.g. in 
Bardeen et aL(BBKS, 1986 [22])or in Bond et al. (BCEK, 1991 [25]). That is why, dong 
this line, generalised a p p r d e s  were pursued, üke that of Lamy & Cole (1993 p8]), or like 
the Peak Patch picture of Bond & My- (1996 [26]). The Peak Patch picture is a mixture 
of PS's excursion set formalism and Bond, ef aL 91 (BCEK) which i b t  identify Patches 
of halo using the density average threshoid method of Bond, et aL 91 (BCEK), then solves 
the cloud-in-cloud problem by trimming the patches identifieci so that they don't overlap 
and aüows for Peak displacement through the Zel'Dovich approximation. This model stiü 
uses the spherical top hat and homogeneùus spheroid approximation, a singular and very 
untypical self-gravitating coilapse model, to determine the characteristics of the wialised 
region identifieci as bound. A ment  example of reihement of this latter homogeneous 

' F i  elaborated by DamM& (1970 [Dl) and Doroshkevich k Shandarin (1978 [24]) for HDM. 
'~dentification of smd objects a l d y  indaded in targer objects so that they wodd be multipiy 

counted, i.e. at two mass d e s ,  the identincation ofdoads does not take into acconnt that some of the 
smaller mas d e  can be already counted m the larger d e  doud, when a smaiier m a s  scale dond is a 
sab-cioud of the larger mas scale one. 
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density apprcnllmation can be found in Shapiro et d. (1999 [29]) which uses tnincated 
isatherrnal sp h m 3 .  

Other properties are attached to one halo and can therefore be uaed also in the second 
approach. The density profile gives the radial dependence of mass for a given halo that c a ~  
be reIated to observed density prefiles. But single halo properties are just a rehned way 
of assessing LSS in the C'DM paradigm. The constitution of those properties is imprinted 
by signiscant physics that is not made obvious by their mere measurement. Again for 
these characteristics, some more refined modeling is needed in order to understand the 
importance of the various aspects of the physics used in large N-body simulations. Some 
aspects are already a d d r d  by the general pictwe models previously cited , but more 
specialised and singular approaches are f i t fu l .  Among these are e.g. the repeated rnerger 
picture of Syer & White (1998 [33]), and the Secondary Infall Mode1 (SIM) started by 
Gunn & Gott (1972 1301). 

But the standard CDM mode1 (often referred as SCDM) also has its problems: it 
creates too many s m d  sa l e  stnictures compared with observation (its power spectrum 
is too high at small waveiength). Several avenues are taken to remedy that: Warm DM 
(WDM, where the initial veiocity dispersion is not neglected), mixed DM, with some 
H and CDM, and self interacting CDM, to remedy also the apparently sin- density 
profile produced by CDM simulations compared with some observed flatness of cores of 
DM haloes (Kravtsov et al. 1998 [31]). 

2.2 Self-Similar Infdl Models 

The more specific frame in which this present work is placed is that of the SSIM of 
a generic CDM halo. In this fiame, the study of CDM halo formation focuses on the 
srnooth accretion of rnass on one generic halo in the hope that it will yield some insight 
on any particular halo's characteristics. 

It is m a t e c i  with the original work of Gunn & Gott (1972 [30]), which placecl infali in 
the eontext of kcretion of normal matter onto clusters of galaxies. They found that infail 
d d  bemme self-similar and produce a density profile p or <:in spherical symmetry, 
similar to Bertschinger (85 [36]). Their work was p m e d  further by Fillmore and Gol- 
dreich ( F ' i o r e  & Goldreich,M [35])with spherkai, cylindrical and planar symmetries. 
Fillmore & Goldreich found that there was a one-sided attractor power law p a r-2 for 
the SSIM density profile when the initial density is flatter than the attrador. 

Both they and Bertschinger modeled the phase space behaviour of their models as 
one singIe winding, etemal, steady, self-similar stream of particles. More recently, an N- 

'As previously stated, isothermd tefers here to the density profile Ieading to a flat rotation velocity 
CuNe. 
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body three-dimensional simulation by Moutarde et d. (95 [39]) showed that CDM haloes 
whatever their initial conditions develop a self-simiIar infall determined at the tumaround 
radius of each bound particle4, which is not a mean behaviour but more a generic pattern 
for collisionless collape of smooth initial density profiles. This is not so surprishg as it is 
a defining feature of self-similarity to aise as an intermediate asymptotic state, in flows 
and collapses where the system is far fiom its initial condition and boundary constraints 
that could force a preferied scale of any kind on the ewlution (for a discussion of self- 
similarity, see Henriki3en [40]), In th& SSIM, Eenriksen & Widrow (HW97 [41], HW99 
[42]) confirmai the tendency to self-similarity by monitoring a coUapse from Hubble Bow 
using revealing self-similar sets of variables following the method developed by Carter & 
Henriksen (91 1431). 

On the front of cosmology meanwhile, the formalism of the autocorrelation function 
(0 and the power spectrum was being developed. H o b  & Shaham ( H o h a n  & 
Shaham,85 [37]) made an attempt at  linking the SSIM initial conditions to the power 
spectrum by postulathg p a ( (taking the sphericaliy averaged c)(see also H o h  88 
[38]). More recently, another scheme for generation of initial density from the power 
spectrum was used (HW95 [44], HW97 [41], HW99 [42], Subramanian et al. 99a 1451, 
Subramanian 99b [46]). From the definition 

coming h m  variance of the gauaian distribution of the M i o n a l  density cantrast am- 
aged over a comaving sphere of radius x (cf. Peebles 1980 [21]), the initiai profile is taken 
to be dp a &. Othexs have taken more complex routes h m  P to p like the Bardeen et 
al, 86 correspondeme between p and ( (Ryden & Gunn 87 1471 , del Popolo et al. 2000 
[48]), the use of the PS excursion set formalism in order to get the mass spectrum of 
initial perturbations (e.g Avila-Reese et al. 99 [49]), generalisations of the Hoffman & 
Shahnm.85 method (see Lokas 2000 [SOI) or even the use of a more complex P(k) than 
just P(k)  a kn (as in Sikivie et al. 97 [51] where a full CDM power spectrum is used). 
Some authors (Subramanian et al. 99a [45], Subramanian 99b [46]) even examined other 
background cosmologicai settings than the Einsteinde Sitter, $2 = 1, which usudy em- 
beds the SSIMIWe wil i  use the HW99 conventions with an Einstein-de Sitter background 
for the course of this work. 

The evolution of the halo is then usually carried out by a semi-analytic Lagrangian 
N-body treatment (Hohan  & Shaham,85 [37], Hofiman 88 [a], White & Zaritsky 92 
[52], Ryden 93 [53], HW97 [dl], Avila-Reese e t  al.. 99 [49], HW99 [421, del Popolo et 
al. 2000 [48] and in the present work). Some works (eg- Fillmore & Goldreich,84 [35], 

' ~ h e  tuniaround radius of a - particle is the distance ta the centre of its ha1 englobing halo at 
the moment it is breakhg away fiom cosmological expansion and M i n g  to fa11 towards the halo. 
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Bertschinp 85 [36]) assume self-similarity and iterate the solutions to the equations of 
motion untii convergence. 0th- use adiabatic invariants in iterative methods (Ryden & 
Gunn 87[47], Sikivie et al. 97[51], Lokas 2000 [SOI). Alternately, some treat the SSIM as 
a statistical fluid from its phase space density and through the Collisionless Boltzmann's 
Equations (CBE), alço termed Vlasov equations (HW95 [44], HW97 [41], Teyssier et aL 
97 [SI, HW99 [42], and Subramanian et al. 99a [45] and 99b [46]). 

Early versions of the SSIM were criticised for assuming that the Uifd would be seif- 
similar, as was the case in Fillmore & Goldreich,(84) or Bertschinger , or for imposing 
a spherical symmetry, which is highly unredistic in regards of the commonly accepteri 
repeated merger formation paradigm. 

As an m e r  to these criticisrns, some authors aiiowed for the evolution to start fiom 
non-self-similar conditions (White & Zaritsky 92 [52], Ryden 93 [53], BW95 [44], HW97 
[41], Avila-Reese et al. 99 [49], HW99 [42], dei Popolo et al. 2000 [48]) andeven attempted 
to indude the dects of non-radial vdocities (rotation) which are excluded at first by the 
spherical symmetry. Some responded by just aiiowing for transverse veiocity dispersions 
(Subramanian et al. 99a[45] and 99b [46]), others by includiig anguiar momentum in the 
dynamics and/or energetics of the problem (Ryden & Gunn 87 [47], White & Zaritsky 
92 [52], Ryden 93 [53], Sikivie et al. 97 [51], Aviia-Reese et al. 99 [dg]) or hinting at its 
effects as a modification of the Phase-Space dimensionality of the system ((541 with the 
darikation of the effect of transverse velocity dispersion from Tormen e t  al. 97 [55]). 

This overview of the current status of the SSIM does not pretend to be exhaustive, 
but to touch on the most burning issues addresseà by the model. 



Chapter 3 

The Self-Similar Infall Mode1 

3.1 The SSIM theoretical background: 

You never understand the 
mathematics 
You just get used to it. 

This section wiii be devoted to the development of the formaiism engaged in the 
description of the SSIM. The value of using the Carter & Henriksen,(91) formalism is 
threefold: we expect self-similarie to arise as an intermediate asymptote. The physics of 
systems which are not strongly constrained by initial or boundazy conditions has displayed 
an asymptotic approach to self-simiIar behaviour for restricted regions of space and tirne 
far from the *duence of those boundaries and set ups. The Carter & Henriksen £rame 
allows us to describe any system in t e m  which are stationaq ( in the case of a time 
dependent system) when the evolution is self-similar without presuming in advance its 
self-similarity. Lastly, this d-ption allows for an accurate numerical treatment of the 
system over several orders of magnitude during the d-simïiar phase of evolution- 

The spherical system wiii be descrihi as a hierarchy of cocentered spherical sheüs. 
The equations of motion will be s h m  in their simplicity before sheii-crossing but a 
statistical approach is needed to foUow the system beyond that point- This more funda- 
mental approach wiii yield again the equations of motion, density and mass conservation 
equations, and a Vinal-type theorem wiU be derived in this sphericai symmetric case 
with angular momentum. Because of the d - M t y  invoIved in the model, a set of 
speciai m-ables fo110wing the Carter & Henriksen,(SI) formalism will be derived and 
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the statistical moment hierarchy of equations d l  foiiow up to a self-similar form of the 
viriai theorem. Because of the ohcmity of the meaning of some terrns in the self-similar 
viriai equation, a Cartesian, 3-dimensional version of this self-similar hierarchy will be 
displayed from some notes by Henriksen [96]. 

3.1.1 Presentation of the problem 

Classical mechanics 

The SSiM starts with the assumption of self-gravitating dust. Then spherical symmetry 
is imposed on the system. In terms of Newton's law, spherical syrnmetry allows the 
Gaup theorem to sirnplifj the dynamics as a ondimensional system of encased spherical, 
infinitely thin shells taken as dynamitai units, interacting with al1 the mass undmeath 
them 

Before shell-crming (th& is as long as the dynamics of neighbouring spherical shells do 
not lead them to cross radiai positions), the inside mass is constant and the Iinear regime 
is just free faii under t h  iduence of that ma. This simple picture gets much more 
complex after sheii-crossing, since the inside m a s  varies, sometimes drast idy,  which is 
where the relaxation takes place, as we wiii see. The origin of Eq(3.1) can be taken fiom 
the more fundamentai concept of gravitational potential, introducing Poisson's equation 
in the dynamics of the system: 

where p is the mass volume-density at the shell, being constant on one sheii. Ecp(3.2) 
can be recognised merely as the Lagrange equations for such a system with the angular 
momentum j2 set to O (see appendix B). Another approach is to consider the more 
fundamentai statistical mechanics of the system, developing the work started by Hennksen 

P51- 

Statistical treatment 

This section wiU be dedicated to the extension of the Collisionless Boltzmann's Equation 
and its moments hierarchy to spherical symmetry with angular momentum. 

In this context, the new fundamentals are the Pmbabity Distribution Function (PDF: 
phase space mass density), f (which in gmeral depends on time t and phase space posi- 
tion), and the gravitational potentid, 0, and the governing equations are the ColIisionless 



Boltzmann's Equation (CBE), &O referred to as the Vlasov EQuation, and the Poisson 
field equation: 

where H is the specific Hamihonian (i.e. per unit m a s )  of the system. 
In sphericai syrnrnetry, the s p d c  Hamiltonian becornes (se appendur B) 

( r d  that the n o m  squared j2is constant because of the symmetry). Then Eqs.(3.3) tan 
be rewritten using the dednitions of the canonid diatribution hinction f = &p5(?2 - + 
j2) (in the case of non-pure-radial-motion, one can replace F(r, u,)i( 1 2- j2 )  by F(r,  u,, j2) )  
and the linear radial density v 47r? S fdv' = Fdu, (dj2) (with these defhitions, 

1 p z -  
47rr2 ' 

is the relation between the usual volume density and the linear radiai density): 

(For the absence of j derivatives coming from the conservation of j2,  see Fujiwara 83 
[91]). These last equations are given in f he non-zero anpdar momenturn case but setting 
j2 = O and using the alternate definition of F yields the pure radia1 case. 

Continuity Integrating Eq(3.5) over the radiai velocity, that is taking its zeroth 
moment, allows one to derive the equation of continuity for that system: 

aru + a, (vg) = 0, 

using the definition of the k t  order fiom the general expression 

The s&e terms in Ek443.7) vanish since the integration of Eq43.5) nins Erom -oo 
to oo and l? vanishes at infinity. 
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Euler's equation The k t  moment of Eq.(3.5) (1 vrCBEdvr), with the help of the 
second order of EQ.(3.8) and some Integration By Parts (on the last term), is the dynam- 
ical equation of the fiuid of massive shells characteriseci by the probability given by the 
PDF: 

where again the surface terms W h .  

Mass conservation Exnmining the definition of mass inside a given radius, we can 
relate that m a s  to the PDF: 

M(r) = /o d r ~ n r ~ ~ ( r )  = 1' dru(') = lr dr dur F. (3.10) 

So the integrai of (3.7) over the radius range shodd yield the mass conservation: 

hence the flux through radius r determines the mass conservation: at the edge of 
isolated systems, the mass is conserveci. 

Via1 Theorem The Same operation performed on Eq43.9) leads to a form of the 
Viiai Theorem in these symmetry conditions. 

First, the definitions of several terms are needed: from the integration of Eq(3.6) 
and the definitions (3.10) and (3.4) the gravitafionol energy can be extracted, using the 
Chandrasekhar definition (e-g. in Binney & Thmaine [87] Eq.(2-123) and, for sphericai 
symmetry, Eq.(2-128)): 

3 % ~  = GM(r) 

-W = druri$@ = [ drr4npG~ (3.11) 

The radial Kinetic energy foliows: 

with 

and 
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Here we have to deilne the anguIar Kinetic energy: 

where 
MF= l d r p j l .  

Finally the moment of inertia of the system is defined according to 

Then one can rewrite the evolution of the moment of inertia using Eq.(3.7) and Inte- 
gration By Parts and retaining the surface terms: 

The Virïal equation follows fiom 1's second tirne derivative, as may be identifieci in the 
radial first moment of EQ.(3.9): identifications of terms fiom Eqs. (3.11), (3.15) and (3.12) 
can be made directly or after an Integration By Parts, for the kinetic energy, yielding 
some more surface terms: 

For a self-gravitating, isolated system at equilibrium, a form of the Vial Theorem 
emerges: the isolation condition cancels the surface terms, the equilibrium statement 
cancels the derivatives of tirne and a new d a t i o n  of total kinetic energy 

vields the Viial ratio: 

This shows that an equilibrium system can be detected by measuring its Vin'ai ratio. 
This remark wiU prove to be important later. 

3.1.2 The Self-Similar Scaling Variables 

Self-Similarity is a property exhibited by many systems, when no preferred sale is im- 
posed on them by initial conditions or bou~~dary conditions. It therefore arises often as 
an intermediate stage of evolution, and in intermediate regions: far from the idluence 



of initiai conditions, and rernote h the d e  imposition by the boudaries of the sys- 
tem. Hence, we q e e t  the SSIM to undergo an intermediate self-similar phas,? In order 
to simplify the treatment of the system, self-similar rescaiing variables, which make tbe 
description stationary, are useci- They are generated using the formalism of Carter & 
Henriksen,[91)[43], more simply stated in [401. In order to expose the extent of the power 
of such formaiism, and to give insight into seIf-simihr consenation equations, we wiii 
consider the full 3-dimensional description of a self-gravitating system- But fbt  we wiii 
use that fonnalism on the restriction of the problem to the spherically-synimetric-with- 
angular-momentum case and describe the procedure in detail. 

Sphericd symmetry with angular mornentum 

We start with the Collisionless Boltzmann's Quation and Poisson's equations (Eqs. (3.5) 
and (3.6)). 

The seIf-simihr variables The foliowing subsection is an attempt at stating simply 
the non-trivial mots for the self-sida variables and can be mostly ignored on a first 
reading. 

The system's phase space can be broken d o m  into four components 

The correspondhg Dimensions Lie Algebra is then 

( time, radius, r d d u d o e ü y ,  angulartnmentum, m<iss ) r ( t, r, v,, j2, m ) 
and the eiement of this rescaling Lie Aigebra, which &O can be viewed as the element of 
the generated additive (Iogarithmic) rescaüng Abelian group, can be written as 

Of course, this Dimensional' manifold is not nassarily made of independent com- 
ponents: radial veiocity and angular momenturn are îündamentaüy functions of length 
and time, so are related to t and r, and physicd constants of the problem may impose 
some additional reIationships behma components of a (eg. Newton's constant G brings 
about a relation between at least time and length). Keeping dependent guantities in the 

'We di use the notations h m  Carter Pr Henriksen,(gl) [43] to distiaguish between 
geometrical dimensions and Piry.ical measurement units, aise d e d  Dimensioas, by the 
uae of a lower case d for anytfüng related to the geometricai dimensions and an upper case 
D for the unit reIated Dimensions. 
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dimensionality ai the Dimensions Algebra can be convenient for d&g 6 t h  the extra 
dependent types of quantities. 

In this context, rescaling corresponds just to moving about in the Dimensional mani- 
fold. Imposhg self-similarity corresponds to k ing  the direction of displacement a. Each 
physical quantity F is represented in the Lie Algebra by a 'Lie Dimensionaiity covector' 
dF = ( dP1 dm dm dF4 d~~ ) ~orrespondiig to t h  traditionai Dimensional and- 
ysis of F. It is a measure of the sensitivity of F to rescaiing in each of the Lie Algebra 
components. The progression of the system dong a translata into the rescahg of F by 
incrementing additively its lo@thm by an amount giveu by the scaIar product 

which means that the Lie derivative of F satisfk 

with the multiplicative version of kL instead of the logarithmic one so that 

or in other words 
kr eu. 

From Dimensionai analysis of the gravitational potentiai and the constancy of G, one can 
indeed find severai relations between the Lie Dimensions 

so the covector dG can be e x p d  as 

but also as 
= ( -2, 3, 0, O, -1 ) 

since we can h d  h m  Eqs.(3.20) that 

Likewise, the analysis of the dehition for angnlar momentum yields the equation 



CRAPTER 3. THE SELF-SIMaAR INFALL MODEL 

Then, if G is a constant of Nature, it cannot be aEfected by any change, least of which 
would be the rescaling of rneasurement units: 

Keeping in mind these relations, we can then reduce the dimensionality of the Dimension 
Algebra to four: 

a =  ( a  6 v A ~ ~ i e ~ i , , , .  1 
Searchùig for a complete set of coordinates for the system in the Lie Algebra, one can 
always simplify things by choosing one of the coordinates to be measured almg the 
direction k of self-similar motion and the rest of them to be orthogonal to this direction. 
By normaiising the former, and taking into account that since we have a tirne dependent 
system, it is convenient to choose an oblique time to measure the self-similar displacement, 
one can then write: 

kLT = 1 (3.23) 

for the d-similar tirne, and 

(with dim(LieDh) = 4 here) for the other coordinates. It is remarkable that these 
other coordinates then are invariant under rescaling by construction and therefore a sa l e  
invariant systern describeci by them would be "tirne"-independent (using the self-similar 
time). 

Now using the definition of Eq(3.19) and our choice of measuring the self-similar 
direction with an oblique tirne (T=T(t)), we can get from Eq.(3.23) 

and kom &s.(3.24) cornes the generai form that each self-similar variable foiiows, 

which can be solved by the method of characteristics2: 

dt dr dt dj2 -=-=-=- 
d 6r UV, A? 

'This method transform the PBB. into OD.Es by postulating underlying characteristic curves dong 
which separate parameters can be held constants (or evolving according to the OBX.): 

Each of these dlow to wrïte the strings of equations 
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yieIda 3 independent equations. 
The first can be chosen to involve the time and radius terms, the second, time and 

radial velocity and the third, time and angular momentum: 

[alti f - - cst almg charaderistic curve = c 
r 

~a'tl" -- - cst along charaderistic curve = E 
Ur 

A 
la'tl o -- 
P - at along charaderistic curve = 7 

so each d u e  of the three parameters fixes the onedimensional characteristic curve along 
which each solution lives: 

xi = xi(<, t, l)) 
the fuuctions Xi being a priori arbitrary, We can then choose their dependences, and 
name the seKsimilar variables, in this case: 

which can be rewritten using Eq.(3.25) as 

to complete the set of self-similar phasespace variables. 

Self-similar form for the equations The choice we made of a self-similar t h e  
(Eq(3.23)) simplifies any further form for physical quantities: because 

any quantity g which satisfies EQ.(3.18) and therefore, from Eq.(3.27), admits solutions 
in the form 

g = e(a.&)Tg(~, 2) , (3.28) 

is said to have a self-similar behaviour (in Eq. (3.28), g ody depends on variables which 
are invariant under the rescaling a). In generd, a non-seif-similar system depends on all 
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variables @(Tl X, Y,  2))  but choosing this set will ailow demonstrating the occurrence of 
self-simiiarity in the form of stationarity. 

To obtain Eqs. (3.5) and (3.6) in self-simiiar form, aii the physical quantities must 
be re-expressed according to Eq.(3.28), for instance the distribution function and the 
gravitational potential read, fiam their Dimensions covecton 

d F ( 0 ,  -1, -1, -1, ( O ,  0, 1, - 1 ) l  -3, 0, 0 )  

d* = ( O, O, 2, O ) = ( -2, 2, 0, 0 ) t 

In addition, the derivatives of the problem must be reexpressed in the new cooràiiate 
system using the chah d e :  

with 
1 1 

e-= = (a't 1-= u T = - in la't 1 
a 

The derivatives then read 

The iast three derivatives are justifieci in the pmious equations by the Eact that at t 
maintaineci constant, Eq.(3.25) impues that T is also maintaineri constant. 

Using these new coordinates and physical quantities, the Collisionless Boltzmann's 
Equation then reads: 



the exponentials being simpMed using the correspondences of Eqs. (3.21) and (3.22).The 
constant of integration a' is then set to d = a > O so that the equations can display 
their aimost self-similar form ( this convention will hold for the rest of this work). 

And the Poisson's equation is rewritten as  

the exponentials simplify naturaiiy to yield 

Moments For this nezt section, the ouerburs on self-similar functions con be dmpped, 
keeping in  mind that we are dealing with mcaled finctions, so that we con use the overbar 
to mean the usual auemge mer velodies. 

In pardel to Eq.(3.8), the nth se&simil;ir moments of the self-similar velocity Y or 
anguiar momentum 2, weighted with the self-similar PDF define the radial self-simüar 
density and velocity moments: 

'Note that the charaEteristic cruves of the CBE withont angular momentam and dating the dF-simiiat 
infaü phase (&F = O) are dose ta the energy contom: 

and this is dose to the derivative of form 

E = -  



and 
rF = d y d z . ~ " ~  = 4Tr2pe-(nX+2u)T = 4rr2pe4nd+Ifi+21v)T 1 (3.33) 

Using these definitions, the integrations of the moments of Y weighted by the self-similar 
Collisionles Boltzmann's Equation are yielding the usual equations in self-similac form. 

The zeroth moment gives the self-similar continuity equation: 

The h t  Y moment yields the self-similar Euler equation: 

Integrating of Eq.(3.34) with X gives the self-similar mass conservation equation: 

where we have deçied the self-similar mass naturaiiy as 

and we have chosen arbitrarily the boundary of the system to be at X=l. 
With the Energy definitions paraiiel to Eqs. (3.12), (3.15) and (3-Il), 

~ Y ~ ~ Z ~ . G  
P(X, y 2) F ( X f  , Y', 2') 

dYdZ 
X , (3.39) 

the Iast step using an integrated version of self-similar Poisson's equation to write W in 
terms of the fundamental functions of the problem, and the moment of inertia definition 

one can write the self-similar V i i  equation fiom the integation dXX*Eq.(3.35) 
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When the system is in self-similar phase, ou .  set of variable translating it into having no T 
dependence for any physical quantity, the derivatives vanish and we are left with a Via1 
ratio -% which is not 1 but higher. The surface terms are not of simple interpretation, 
but they translate the fact, pointed out in the self-similar limit of EQ.(3.36), that the 
self-similar phase requires a non-zero flux of mass at the boundary of the system. In 
other words, the self-similar phase is driven by the infall of mass into the core. To reach 
a more clear picture of the nature of those s h e  terms it is necessary to get back to 
the fuii-blown 3-dimensional expression of the problem. 

General non-sphericaiiy symmetric case 

Using the same method as in section 3.1.2, we c m  derive the farms of the self-similar 
variables as weii as the self-simiiar PDF and the self-similar potential: 

where, as in 3.1.2, u = 6 - a and p = 36 - 2a, and 

Using these we can write the self-similar Collisionless Boltzmann's Equation and the 
self-similar Poisson's equation (again, we take d = a > 0): 

J 

Thw, with the definitions of seif-similar density and m a s  and of the moments of the 
velocity weighted with the PDF, 

(3-44) 

and 
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(the overbar form Y signifying here averaging over the velocity space), the integration 
over velocities of Eq.(3.42) yields the self-similar continuity equation: 

Likewise, the integration of that equation over space is the mass consexvation equation: 

dT% + (36 - 2a)z + pz - bx)  .dSx = 0. f - - (3.48) 

It is to be noted that the two k t  terms of Eq.(3.48) are equivalent to writing the real 
mass conservation without sources (&M = O). This points out the primordial role of 
the last term, a modifiecl self-similar flux of mass across the boudaries of the system, in 
maintaining the self-similarity (when dTx = 0). 

h m  now on we can dmp the overhrs as a sign of scaled quantities, since we are 
working only in that b m e -  

Now the k t  moment of the I;. component of velocity over velocity space weighted 
by the self-similar PDF yields the h t s  of Jean's equations, Euler's equations: 

Then the integration ofEqs.(3.49) tirnes Xkover space leads to the Via1 tensor equations: 
wing the definitions - - 
for the kinetîc energy tensor, 

for the gravitational potential energy tensor, and 

I j k  = Pxjxd~: 
for the moment of inertia tensor, one c m  get 

which trace is just the radius squared of the systern times the mass flux across its bowid- 
aria seen in Eq.(3.48). 



We have then seen that before sheli-crossing (in section 3.1.1), the equations of motion 
look like the fiee faIl of mass shells on aii the sheb  contained inside theu radius, After 
shen-crossing, we have foiiowed the evolution of the system £rom the Coüisionless Boltz- 
mann's Equation (CBE) which led to the equation of motion in the Eulerian form, the 
continuity equation, the mass conservation equation and the virial equation. The latter 
wiil prove important for the interpretation of the dynamics of the S S N  gravitational 
coiiapse: when the system reaches a self-similar state, the self-simiiar-time derivatives 
vanish, displaying as in [42] a state of quasi-equilibrium characteriseci by a rnodSed virial 
ratio springing out of the self-similar Wial equation. The Cartesian representation of the 
equations points out that the surface terms involved in this seif-similar-vüd ratio prob- 
ably correspond to some representation of the mass flux through the boundaries of the 
system, which then appears as an essential elernent in maintainhg the system self-similar 

€421 - 

3.2 Motivations for and Results from the mode1 

Using this fiame of self-simiiar variables and seif-sirnilar equations to study the SSIM, 
we can start, fiom the previous section's anaiytical results, to answer some questions of 
importance that a ise  kom the field of LSS formation: the density profile of Dark Matter 
haioes and the dynamics of their gravitational coilapse. After reviewing the state of the 
field on density profiles, we wii i  6rst express the self-simüar equations of motion- Then 
we wili reIate the other assumptions of the SSIM to its ha1 conditions. Particularly we 
will relate those initiai conditions to the determination of the type of self-similarity tbat 
wiii be used in the self-simiiar variables in order to approach dynamidy the self-simiiar 
state. We will k t  do sol recalling the results from [44 in radial spherid symmetry, 
then extend them to the presence of angular momentum. In a second section, we wi i l  sum 
up the current approach to the dynamics of the DM gravitationai collapse, in terms of 
PDFThen we wii l  present the way this work will handle PDFs, as w d  as the additiond 
tool given by the viriai ratio in the understanding of the SSIM's dynamics. 

3.2.1 Density profiles 

The density profles of CDM haioes have a direct link with observations of spiral galaxies: 
their velocity rotation curve (see equation (2.1) ) is a direct consequence of the mass 
density profile that charaderises them. It is possible that they contain some information 
about the dynamics that formeri them as weU as the cosmologicai background in which 
they arose. On one hand they are therefore good constructs for observationai falsifications 
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of both dynamical LSS formation paradigms and gIobaI Cosmoiogicai geometries. On the 
other hand, the predictions of any given model should be constrained into explaining the 
observed shape(s) of density profile(s). 

Observations and predidions of the  density profile: 

The first direction cornes fiom observations and fits that are produceci to express them 
into simple functional forms. One of the first of such efforts was made by de Vaucouleurs 
(1948 [56]) for the surface density of elliptical galaxies 

It is reproduced in simulations by numemus authon (van Albada 1982 [57], Bertin & 
Stiavelli 1984 [58], Stiavelli & Bertin 1985 [59], Merritt et al. 1989 [60], hereafter MTJ, 
Aguilar & Merritt 1990 [61]) but most of them are not deaiiig with collisionles DM. 

Most of the fits proposed subsequently, from astronomical observations or kom N- 
body simulations foiiowed the generic form (we will use here the parameter ap to replace 
the use of a fiom the literature for the central logarithmic dope in order to avoid confusion 
with the tirne self-similar index previously named a) 

some of the principal proponents being Jatre (1983 [62] with ap = 2 , 7  = 1 and /9 = 
4) and Hernquist (1990 [63] with a,, = 1 , ~  = 1 and /9 = 4): 

Both fit astronomical observations of galacies (including their baryonic component)reasonably 
weii. In essence Eq. (3.55) is just a smooth way of joining two power laws: an inner core 
power iaw and an outer profle, that can be bIuntly charactensed by the 'knee' shaped, 
non-smoothly varying fom: 

More recently, N-body simulations have s d  as basis for such fitting and one group 
of coiiaboraton has argued for universai profles of DM haloes: Navarro et al. (hereafter 
NFW, 1996 [32]) found that the profde 
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with ap = 1, 7 = 1 and /l = 3, fitted CDM haioes with only one bec parameter c o r n  
sponding to the mass scale of the halo. Although its universality was confirmed by many 
authors (Moore e t  al. 98a [64], 98b [65], Huss et a l  99a [66], 99b [67], K d  99 1681, using 
a pond, et d (91)l-type approach to the intermediate and far profile, Jing 2000 [69]j, 
its full vaüdity has been questioned h m  various angles until some serious discrepancies 
were unavoidable: Jing [69] found it to apply mostly for equiiibnum haloes, a scatter 
ensuing from inclusion of non-equiiibrium ones. Moore et al. 98a [64] and 98b [65] found 
that ap was rising up to 1.4 without converging when N-body resolution was increased. 
Eventuaüy, Moore et ai. (1999 ['?Il hereafter Moore99), foiiowed by Ghigna et ai. (1999 
[72]), prescribed a new form fiom the convergence they found of N-body simulations with 
resolution: 

with ap = 1.5, B = 3. Jing & Suto (2000 [70]) reconciled NFW and Moore99 by dividing 
their mras range validity, finding that clusters were better fitted by the NFW profle, 
whiie the Moore99 profile was more adapted to galaxy-mass haloes. 0 t h  N-body sim- 
ulations found strong discrepancies in the inner slope and even in the outer one: Tittley 
& Couchman (2000 [73]), using Eq. (3.57), h d  a,, = 1.8 and #3 ranging fkom 2.4 to 
2.7. Voglis (94 [74]) fin& ap = 2.7 and w 5 fiom Probability Distribution Functions 
(PDFs). Moutarde et ai. (95 [39]) h d  a,, = 1.8 and that /l steepens iiom 2 on larger 
scales. Kravtsov et ai. 98 [31] found on Low Surface Brightness (LSB) Galaxies and DM 
dominateci Dwarf galaxies that they where fitted weU by NFW proue but with a centra1 
Iogarithrnic dope much shdower (a,, ranghg fiom 0.2 to 0.4 instead of 1). Their resdts 
hold weight because they agree with a few others (e.g. Stil, 1999 [75], and the discussion 
of these results by Moore, 1994 ['XI). This central cusp behaviour opened the door for al- 
ternate models as non-collisionless CDM in such studies as Sellwood 2000 [77] and Walker 
99 [78]. Moreover some WlMP modelsy DM annihilations are found to produce too much 
gamma radiation in the case of steep central cusps compared to observations (Flores & 
Primack 94 [79]). A few others fmd a Batte- slope than 1 for the inner core, like del Popolo 
et al. [48] and theü Bardeen et ai, 86 initial conditions of the SSlM, which reproduce 
the outer and intermediate features of NFW. However, it seems that the observational 
~WcuIty of extracthg inner rotation curves or gravitational lensing information on very 
smali d e s  might exphin these discrepancies: van den Bosch et al. (2000 [go]) found 
that taking into account beam smearing, the density prowes of Low Surface Brightness 
gaiaxiea are consistent with steep central cusps, in contrast to previous daims. ClearIy 
more observation is needed to decide this issue. 

The second direction comes fiom semi-analytic models like the PS excursion set or the 
SIM. The aim is then to construct density profiles fiom 6rst principles and then confront 
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them with observations (astronornicai or N-body). In fact they al1 derive from the SSIM: 
as stated in the previous section, the pure SSIM yields power law profiles with a one-sided 
attractor at am = 2 for initiai profiles shdower than 2 and a continuum of attracton 
apa = for initiai power iaw a, (FG84 [35], Bertschinger 85 (361, HW95 [q, AW99 
[42], with Gunn & Gott [30], Hoffmnn & Shaham [37], H o b  88 [38] as peculiar cases 
with a~ = 3). With the constraints of radiai infd and spherical symmetry, the SSIM 
with its power Iaw initiai profile dispiays signs of oversimplification, when codontecl 
with observed halo formation in N-body simuiations. That fact led to the introduction, 
in order to obtain more reaiistic density profiles, of angular momentum, more complex 
initial conditions, and explorations of the SSIM for gas. 

Simple addition of angular momentum yieids 2 5 @ < 3 for the outer dope (Ryden & 
Gunn [47], White & Zaritsky [52], Sikivie [SI] with = 2 for a, < 2). 

For the inner slope, the addition of angular momentum modifies the results of the 
SSIM such that cr, = 1.5 (Ryden & Gunn [47] for purely circular orbits only, Ryden 93 
[53j) or aiiows a, = 5 E [a,; 21 for ap < 2 . 

The case cu, = ap, can be found in Sikivie [51]. In Subramanian et al. 99a [a] ,  
a, = 2 for i d c i e n t  transverse velocity dispersion $ < 9, and ap = a,, otherwise, 
with the additional condition of sufEcient transverse over radial velocity 4 > dowing 
a, = ap to hold even for a, < 1. Similarly, Subramanian et al. 99b [46] find ap = ap, - for ukur and ap = ap for ut N gr . 

The study of the SSIM for gas led Teyssier et d. 97 [54] to find the same attractor 
continuum but with a limit of spi > 5 and onesideci M t  a t  ap = 1. This new lunit was 
caused by the change in Phase-Space dimensionality introduced by the isotropisation of 
the velocity distribution by pressure. Comparing theu results with those Erom isotropie 
velocity dispersions of Tormen et al. 97 [55], they concluded that this flattening with 
respect to the CDM one-sided attractor could parallel the effect of angular momentum. 

More complex initial conditions i m l v e  initial density profiles produced by PS ex- 
cursion set formalism (Nusser & Sheth 99 [81], Avila-Reese et al. [49]), by the density 
hom the Bardeen et al, 86 version of this f o d m  (Del Popolo [48]) or density profiles 
embedded in non Einstein-de Sitter Background cosmologies (Subramanian et al. 99a 

~451) 
Nusser & Sheth (99 [al]) found a centrai slope between the two extended attracton ob- 

tained fiom the two simpler links given previously between the power spectrum and its au- ["-" . '""1 ), tocorrelation function on one hand, and the initiai density profile (ap E ,,+, , ,+4 
surrounded by the NFW profle. Avila-Reese et al. (99 [49]) left aside the inner profile but 
found that the outer profile depended on mass scale and environment: /3 E [ 2 ; 41,  
with /l shallower (x 2) for satellites and groups of haloes, the NFW B (= 3) applying 
for isolated haloes and @ steeper (= 4) for richer clusters of haloes. Del Popoio (0 [48]) 



managecl to reproduce NEW B using a [Bardeen et al, (86)l-type spectrum as initial con- 
ditions and even iinding an a slightly flatter than NFW. Finally, using a fluid approach 
to the SSIM, Subramanian et al. (99a[45]) found j3 = 4 in an open CDM model, and even 

@ -t m (p or /w with r l  the maximum turnaround radius depending on the 

cosmological constant) in a ACDM model. 

Interpretation of the formation of the density profile 

Understandimg the formation of the density profile coma after measuring or producing 
it in a simulation. This undentanding is ali the more important in the context of the 
possibility of a controversial universai profile (the clah for the NFW profile [32], or for 
the Moore 99 one [71]). 

Syer & White (1998 [33]) gave an argument for the NFW universality involving the 
balance between tidal stripping4 of absorbed satellite haloes by a larger one while they sink 
towards its centre under the infiuence of the second force in balance: dynamical friction5. 
The feedback mechanism between tidai stripping and dynamical friction drives the profile 
of the halo towards the universai one. This is done under the thnist of repeated mergers by 
either disseminating the satellite's material by tidal stripping to soften a steeper density 
than the universal profiie, or sinking the satellite's core to the centre of the halo by 
dynamical friction to steepen a shallower density than that of NFW. Subramanian et al. 
(99a[45]) independently gave a similar argument to corne up with a power law profile 
on a Dimensional analysis basis. In their version of the argument, a nested sequence of 

3 n+l 
undigesteci uuer forma l o d y  p a r-* , even for n < 1, where the form of the power 
law cornes h m  scaiing arguments. 

The Syer&White argument emphasises the importance of repeated mergers in the 
process of hierarcbical CDM halo formation. Nevertheless, aii studies that attempted to 
assess that daim found that repeated mergers were not necessary: in their modd fiom 
PDF, Aguilar & Merritt (90 [61]) already found that there was no need for clumpy initiai 
conditions. Later on several N-body simuiations showed that the NFW profiie did not 
need repeated mergem to arise, or even that the flow in full 3-dimensional conditions 
was smooth îiom more general principles: Moutarde et ai. (95 [39]) found that self- 
similar evolution arose naturaiiy kom collisionless coiiapse, implying through the SSIM 

'Ti& stripping is the phenomenoa that occas when a halo is stripped of its outer laps  under the 
influence of the diamtiai gravity, or tidd force, of another hala. 

'Dynamical kction oanus on a massive object traveling thmugh a gravitating medium. It is d e d  a 
friction because the force redting h m  the ensemble of gravitahg masses in the medium on the object 
is apptmcimately proportional to its veiocity and pointmg in the opposite direction, Iike a fluid dragging 
force 
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that the infail was smootb. After the publication of [33], several groups assesseci their 
assumption: Huss et al. 99a [66] found that the NFW profile was not affecteci by the 
change of cosmological symmetries imposed on the infail, except if the infall was not 
only forced to be spherically symmetric but disallowed non-radial forces. Huss et al. 99b 
[67] completed this picture with the examination of various cosmological backgrounds, 
confirming the Unaaected NFW profile. Moore et al. 99 [71] found that suppressing the 
smder  scale substnictures by the means of a WDM cut-off in the power spectrum left 
their results unchanged. Lastly Tittley & Couchman (2000 [73]) did the same kind of 
tampering with subclumping structures by the means of a top hat convolution to truncate 
the power spectnim. 

Meanwhile, indications could be found in several works of the importance of non- 
radial motion at the core of haloes: Huss et d. 99b [67] clearly found a correlation in 
their figure 17 between the flattening of the density fiom isothermal to NFW behaviour 
and the isotropisation of the velocity dispersion6. Moreover this flattening doesn't appear, 
in [66], for the case of pure radial force. A similar flattening was obtained by Tormen et 
al. [55] with s i d a r  anisotropy-flattening correlation. Teyssier et al. [54] have also found 
that isothermal profiles are linked with radial infall and isotropic velocity dispersions 
from gas are associated with flatter profiles. This puts into perspective the role of the 
dimensionality of the PhaseSpace representing the infall emerges as a signature necessary 
for shallower cusps. It also echoes the results of Moutarde et al. [39] where a model 
Sdimensionai infail, made out of a combination of cylindrical-symmetric and spherical- 
symmetric components, yields a cusp intermediate between the cusps produced Eiom a 
cyiindrical-symmetric model and that from a spherical-symmetric one. Moutarde et al. 
explain that intermediate cusp with the dimensionality of the available phase space for 
the intall. In addition, their central logarithmic dope is simila to that found by Ryden 
& Gunn [47] for isotropic velocities, as opposeci to radial or purely circula. Thek centrai 
velocity being also isotropic, they paraliel those correlations as an explanation scheme for 
the cusp proûie. 

The inclusion of some kind of "rotation" (angular momentum) in the SSIM by several 
authors ([47], [52], [53], [45], [46], [51]) has shown some promises of shaliow inner density 
cusp. 

Nevertheless, another effect is needed if indications of inner cusps even shallower than 
NF'W ([31], [75]) are to be taken seriously, since according to Subramanian (99b [46]) it is 
very difficult to obtain such flattening ody  h m  angular momentum without tangentid 
velocities so dominant that the core would become essentially static. Some work has been 
done by Peebles (1972 [82]), Young (1980 [83]) and Quinlan et al. (1995 [84]) showhg that 

'Oceurrenee of the NFW type of httening in the center of the haIo from the isothermai density profile 
happas in the v u y  region whete the veloaty dispersion turns From dominantly radial to isotropic 
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adiabatic growth of a black hole can form inner cusps shaiiower than isothermai depending 
on the gaiaxy model, but they only achieved cusps as shaiiow as ap = $ (to be compareci 
with Eq43.59)). Only in Nakano & Makino (1999 [85]) can a flatter core (ap = i) be 
formed through a markedly non-adiabatic, merger-triggered appearance of a black hole 
and the ensuing population inversion. However Henriksen has shown (Henriksen & Le 
Deiiiou 2001 [86]) that self-sirnilar i n fd  on a black hole with angular momentum yields a 
core as flat as cr, = $, the population inversion resulting fiom the seif-similar relaxation 
process. 

Ail these interpretations of the formation of CDM halo density profiles conveyed the 
importance of a theoretical study of mergers, angular momentum and embedding of a 
black hole in those objects. The simplicity of the SSIM makes it an attractive basis fmm 
which to expand the theory. The expansion can test the Syer & White assumptions by the 
modeling of mergers through the infaii of peripheral overdensities on an established seif- 
similar core ernbedded in a SSIM. The model can aiso straightforwardly expand to include 
the dect  of rotation by the onset of spherically symmetric, radiaiiy dependent angular 
momentum. Eventually, the radial infdl modei can be accommodated to present some 
kind of phase space mechanism for growing a central point mass modeling an embedded 
black hole. 

Due to limits on tirne, inclusion of an embedded black hole with angular momentum 
model and monitoring of less restrictive symmetries using the Carter & Henriksen,(Sl), 
f o r m a h  to emphasise the emergence of self-similarity couldnlt be included in the present 
work. 

Self-similar equations of motion 

Fkom Eq.(3.29), the equations of motion aise as equations of its characteristics, since 
particle trajectories are identified with characteristic curves (see [q): 

The tirne characteristic equation identifies almost the characteristic curvilinear vari- 
able with self-similar tirne (completely up to the definition of origin). The angular mc- 
mentum equation yieids back its part of Eq(3.26). The radiai equation yields the relation 
between self-similar radius and self-simiiar velocity 

the velocity characteristic yields the self-sïmh Newton's equation, namely the La- 
grangian (as opposed to Eulerian) equation of motion 



CRAPTER 3. THE SELF-SJMZAR INEALL MODEL 

Using the integral of Eq.(3.30) over radius, and the definition (3.37), one can rewrite 
Eq.(3.61) so that together with Eq.(3.60) they form the Lagrangian dynamics equations: 

Determinhg the self-similarity index and the final density profile from initial 
conditions 

?As it appears in the previous caidations, there are only two fiee self-shdar indices: a 
and 6. The former sets the scaling for lengths and the latter, for time. Since there is only 
one Lie self-simiIar direction of rescaling, those are 6xed once this direction is deterrnined. 
But since ody the direction of rescaling is relevant, the scales on the Dimension axes is 
just a gauge fixed by the attribution of initiai scales to the T=O Dimensionai quantities. 
Therefore, the self-similarity class is 6xed by setting a value to the ratio 9, for non-zero 
as. 

Now we add the remaining assumptions of the SSIM: cosmology and density perturba- 
tion. Cosmology dictates that for a CDM halo studied in the rest fiame of its centre, the 
velocities wili follow a Hubble flow at recombination, which corresponds to the beginning 
of the infall. The cosmological h e  is chosen to be an Einstein-de Sitter model, so the 
s d e  factor goes like 

2 
a, a t 3  

(see Misner, Thorne & Wheeler 73 [92] p735, or d'Inverno 92 [931 p333), and the uniform 
background density reads then: 

1 p=- 
6nGt2 ' 

and the Hubble parameter, which sets initial velocities can be written 

Setting for the test of the work to =1 at beginning of coUapse (which incidentaiiy sets 

at = l), G=l for the self-simiiar variables, the initiai background density then reads 

but for simplification of the Poisson's equation, for instance, we wiil redefine 

'The foiioaring introduction and two subsections are Pmtten aRer personai notes hom RN. Heurikm 
[W. 
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so that the value we will use for the initial background density in the simulations is 

2 
p 0 ' -  

3 - (3.64) 

In seif-similar variable terms, Eq.(3.63) reads 

because we consider the expansion fiom, t=l, T=O, initial conditions. Cosmology a120 
imposes an initiai density profde as a perturbation over a constant background. The 
simplest perturbation is a de - f i ee  perturbation, that is a power-law. This can be 
derived by Dimensional arguments fiom a piecewise approximation of the power spectrum 
by power Iaws. We will adopt this initiai profile in this work without linking it diiectly to 
a power spectrurn of density fluctuations, since various ways of linking P(k) to the initiai 
power-law index are possible. We wiil then adopt 

where X is a constant. 
The omet of self-similarity in the SSIM may be shown to occur for each sheii at 

the turn-amund radius, a, and tuni-amund time, to by showing to be a constant 
asympto t ically. 

Self-similarity ciass of the radial SSIM In the SSIMs without angular momenturn 
the seif-similar classes are manifest in their relative logarithmic derivatives in the de 
Sitter cosmological h e .  They are obtained using a similar method as in Henriksen 
89 [94], hereafter H89, revolving around a generalised Friedman equation for the motion 
of individual sheh  before aheil-crossing. The equation, coming fiom the fiee f d  of a 
sheil of mass More sheii-crossing, relates a scaling factor S cornmon to ail sheils witb 
its derivatives in tenns of a self-simiiar tirne variable < and assumes same the form as 
f i e b a n ' s  equation for the cosmologicai Friedman-Lemaitre-Robertson-Walker scaling 
factor: 

the tuni-around time and radius are then defined by r = as,  
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(note that here the turn-around radius is the Lagrangian label a). Su the dative loga- 
rithmic derivatives of a and t~ foUows after sume calculations: 

with q defineci from the initial mass expression: 

the scaled radius is defutxi with a fiducial radius (rl = (A) f ) as uell as the fiducial mas: 

and the background density pb is the Dimemional version of the previous po. 
The limit at large radius (far from boundary conditions, in the self-similar r e m )  of 

the logarithmic derivatives in Eq(3.66) yields the similarity class (because it goes to a 
constant, giving a power law, or scaiefiee, behaviour): 

and from Eq(3.66): 

- &k?E 2 ( I f  €) 
= -- 

- 

so for the purely radial case, 

In that case the self-similar density proûie arises from simple Dimensional analysis: 

so using the constancy of G to reduce the dimensionality, 
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we 6nd that the density should scale as 

whiie radius d e s  as in Eq-(3.26;1), so that 

Self-similarity class in the angular momentum SSIM In the SSIM with angular 
momentum, matters are a bit more cornplex: the perturbations to the initia1 de Sitter 
energy have now an anguiar mamentum camponent which imposes another condition to 
keep the genetalised Fnednian equation self-similar (see H89 1941). This in tuni imposes a 
fom for a n m  momentum which deviates h m  the functional form that cornes directly 
fiom its seif-similar variable 2, and changes the tum-around radius h m  its Lagrangian 
label to a smaiier radius. Finally, the logarithmic derivatives of the turn-around t h e  and 
radius don't converge exactly fk fiom the boundaries of the system to a constant (unlike 
the radial case), leaving the self-similanty only exact for Mniahing angular momentum. 
This points tawards an approximate validity of self-similarity in an intermediate region 
remote enough fiom the centre and h m  the outermost turn-around radius to be scale 
fiee , Indeed, in the centre, h i t e  size effecta (smoothing of initiai power law, gtanular 
nature of subdumps involved in the W) impose d e s ,  and on the outer edge, partiales 
are dominateci by an* momentum and beyond that outermost radius they never turn- 
around so that this Iimit radius becornes a n a t d  s d e .  

The self-similar generalised Friedman equation derives h m  the expression of the total 
energy in terms of its kinetic and potential components: 

where we have d h e d  the former tuni-around radius, now self-similar Lagrangian label 
(recail that for bound shells, E<O, hence the -1 in Eq. (3.68)) 

the cutte~lt radius of a spherid sheii being the self-similar 

with the self-simiiar MnabIe 



to(a) is just the turn-around time, so at tum-around, < = O. Maintahhg the self- 
sirniIarity of Eq(3.68) requires a condition on the angular momentum which defines the 
constant 

The expression for the initial perturbed mass remains unchangecl 

with the same definitions as previously, but the initial energy is added with the angdar 
momentum perturbation to the de Sitter cosmology: since the unperturbed energy is 
marpinally unbound (Eh sitler=O for a constant density background and a Hubble tlow), 

Combining Eqs. (3.71) and (3.72) in the :lefinition (3.69), one can get 

which yields fiom Eq(3.70) the expression for the self-similar compatible angular mo- 
mentum in the SSIM 

which is different than the self-similar expression obtained by Dimensionai analysis and 
recognisuig the seif-similar density profile p a r-*%: 

but Eq43.73) can be recognised as a corrected version of the previous expression if one 
replaces the self-similar finai density profile with the initial density perturbation bp a P. 

The integration of Eq.(3.68) gives a solution up to a constant that can be determined 
by solving the original equation at turn-around time for S: 

+ 
and at turn-around (des = 0, and St, 1 from the radiai case, the other solution 

J+O 
giving the inner tuming point) 
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so the constant C is set to 

The tum-amund tirne can then be derived fiom the solution at t=O as  a function of the 
initiai radius, since S=t = t, with the second a taken in units of the fiduciai radius, 

Then, the logaritbmic derivatives are computed thus 

d h t o  dlnto LWQ -= = dlnz  
d h r k  dLn(aSh) %' 

as for the radial case, and it can be obtained that 

d h a  - -l+c 
dlnz (1 + qx~)dl - 4P(1+ q+)2 

and 
dlnto é 3qxL 

(1 + q ~ )  J1 - 4J2(1 + qze)* 1 + 

The recurrence oi  4 1  - 4SL(1+ qz~)*  imposes a maximum radius of validity since its 
argument has to be positive, so the method of taking the large radius limit used for the 
pureiy radial case cannot be extendeci exactly, so the self-similarity index can only be 
reached through apprcociniirting that J is md. Then the radiai case is re-obtained. 

and 
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so, as in the radial case, 

AU in all, it appears that self-simiInri$ is only apprUximateiy reached in the SSIM 
when angular momentum is added and we wiii use the purely radial mode1 as a bais  for 
se&simihity in the angular momentum case, when it is weak enough not to distort the 
phase space. 

3.2.2 Dynamics of gravitational collapse 

Review of the approach to the dynamics of gravitational coUapse 

The possibility that CDM haloes exhibit a univemal density profile implies that the 
dynarnica of formation throngh pure gravitational collapse crases at least same of the 
memory of the halo's initial conditions so as to move every halo fiom the range of pos- 
sible starting conditions towards one unique outcorne. This hints towards the idea first 
put f o m d  by Lynden-Beii (1967 [34) of riolent relaxat id in the statistics of mutu- 
aliy exclusive, distinguishable particles: developed in the frame of steilac orbit statistics, 
this picture of a collisionless self-gravitating gas describes how rapidy varying potentiais 
quickly wash out the traces of initial conditions by phase milong and quipartition of 
energy, leaving the system relaxed. This antinomie expression of violent relaxation em- 
phas- the rapidity of the system's memory ioss due to violentiy changing gravitationai 
fields. In violent relaxation, the memory loss of initial conditions not o d y  affects the 
phasespace by phase mixing, but also arises in the mjxing of energies: 

Such a drastic process is therefore likeIy to appear in the collapse of a CDM haIo, 
it being a system of bfa l l ing  self-gravitating many-bodies, and the density profile is 

'Relaxation r e f i  to the mnyfzgence of dynamitai procesres which crase in phase space the memory of 
a system's initial conditions. The krm violent relaxation nas proposed to ôrcaunt for the rapid t i m d e  
of relaxation encount4 in coKd~, seKgrantating systems th& obey a dinerent statistics than 
the d ones (refer to Lyndext-Beii, 1967 [Ml, for more precision). Note that the deveiopment of the 
se l f -dat  state stndied in this work is also a relaxation tonards viriktion. 
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one of the ches of memory loss if it is really universal when the system virialisesg. But 
the question of how violent is the relaxation involved in the dynamics of DM haloes en- 
courages one to go stiii further and ask if and how the system can retain some of its 
memory in its energies. In fact, it was found as earIy as 1982 by van Albada [57] that 
N-body simulations of eUiptical gaiaxy formation displayed some correlations between 
initiai and final energies. Later on, Spergel & Hernquist (92 [88]) remarked that if vi- 
olent relaxation were so efficient as to make ail finai states equiprobable, the mass and 
energy of such system in its maximum entropy state shouid be infinite and therefore the 
spread of energies for violent relaxation should be iimited. In his simulations, Voglis (94 
[74]) displayed the formation of an isothermal mre surrounded by a haio, where again 
relaxation was only moderately violent (the energy mixing being partial, especiaily in the 
halo where initial and final energies of particles are found to be correlated). In a more 
generai context, the simulations by Moutarde et al. (95 [39]) showing a self-similar infali 
hinted that the self-similar relaxation process preserved some memory. Moreover, the 
different semi-anaiytical method used by K d  (99 [68], mixing excursion set formalism 
and integrals of the motion) showed that the virialisation of CDM haloes didn7t require 
energy dissipation. The simulations from Tormen et al. (97 [55]) also characterised the 
process of haio formation as an alternation between merging and relaxation phases. This 
sheds light on the decouphg found by Nataraja et ui. (97 1891) between a fast energy 
exchange, or relaxation, characteristic time and a slow dynamic time in haloes which p r e  
duces in their simulations a quasi-equiiibrium for CDM coliapse. In their massessrnent 
of the SSlM ([44], [41], [a]) ,  Henriksen & Widrow also found that relaxation was only 
moderately vioIent: The self-similar phase of the infa can be characterised by a quasi- 
equilibrium state measure by the modied version of the Vinal Theorem (% = cst # 1) 
and the ha1 energies still correlate, though with some dispersion, to the initial ones. 

The tool that is fundamental to study the statistics of a many-body system appears 
already in the field of steliar dynamics: the Probability Distribution h c t i o n  (PDF) 
r e p m t s  the P b S p a c e  mass distribution- In his first exploration of violent relaxation, 
Lynden-Bd [34] prescribed that the PDF of the relaxed systern should be a Fermi- 
type distribution, as a result of an incomplete violent relaxation. He showmi as d 
that there is no finite self-gravitating system whose stationary10 &te extremises its 
entropy (indeed extremising the entropy of a self-gravitating system imposes to find an 
isothermai profle, which impiies an infinite mass, so the constitution of the extremum 

'A vkiaüseci qskm k one that foUm the virïai theom (3 = O + 2K + W = O where - 
Iij = J Z i ~ j ~ d t ~  i~ the moment of ïnertia t-r, K = sp(f )PZ k the h e t k  ën- of the qstern 

and W = JpnV#d3x is Clausius's Virial as weiï as the gravitationai potentiai energy of the spstem. See 
cg- B i i e y  k 'Itemaine [87] p213). The terms denote a self-gravitating system at eqnilibnnm. 

''A system is stationary in the sense that its PDF has no time --ation (g = 0)- 
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entropy profile for a finite amount of mass is always incomplete). He also showed that 
even if the fme-grained PDF, which obeys the Collisionless Boltzmann's Equation (CBE), 
a ü d  for the conservation of the total mass of PhaseSpace elements of higher density 
than a given level f ,  M(f ), to be conserved, this is not the case for the coarse-grained 
PDF ( M ( f )  is not conserved). In this work and 0th- semi-analytical or numerical 
explorations of collisionless systems, simulations are solving for fine grained PDF with 
numerid smoothing. Nevertheless the approximation that the smoothing stiil represents 
the fine grained PDF can be questionable. 

Since any naïve approach to the steady state of such system seems excluded, there 
are several types of approach which have proved to be Fruitful: one is to prescribe extra 
macroscopic constraints on the system when extremising the entropy (Stiaveiii & Bertin 
1987 [go]). Another is to assume a form of the PDF based on dynamical arguments 
limiting the available phase space: Bertin & Stiavelli 1984 [58] and Stiaveiii & Bertin 
1985 [59] used a family of Maxweiiian forms based on integrais of motion, generalised 
by MTJ [60] to 'negative temperatures" and another form of anguiar momentum cut- 
off. Spergel & Hernquist [88] limited the available phase space by appracimating violent 
relaxation dynamical processes as a sequence of 2-body scattering events. Henriksen & 
Widrow [42] arrived at a form similar to MTJ by mixing their dynamical arguments 
with self -sindar prescriptions on stationary solutions [44]. An alternative approach is 
to suggest PDF f o m  fiom the fit of numerical simulations (e.g. Voglis [74], Aguilar & 
Merritic [61]), or even simply to measure the PDF of equilibrium outcomes of numerical 
simulations @te van Albada [57], Natarajan [89], or Henriksen & Le Deiiiou [86]). In 
table 3.1 is summarised some of the PDF forms used by various authors- 

in this work, we wiil try to understand the dynamics of the coilapse of our system 
in terms of the degree of violent relaxation occurring during the inW. We wiil be using 
measurements of the PDF and of the virial ratio, and looking at energy correlations. We 
wili also confiont the measurements of PDF with the static predictions of Henriksen & 
Widrow [44]. 

The answers fiam the SSIM 

Self-similar Virial ratio Section 3.1.2 shows that when the system is self-simiIar, 
the vinal equations denote a quasi-equilibrium solution that can be characteriseci by the 
system's virial ratio: in the case of a stationary, self gravitating system, this ratio is 
-1 (see Binney & Thmaine [87]). For the self-similar stationarity the system exhiiits a 
virial ratio different than -1 but nevertheless constant. This can be seen in the sphericaliy 
symmetric system with angular momentum in Eq,(3.41) when ail T derivatives are 0: 
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~ e - ~ ~  (E - a,)' iPo < E < @(rJ 
Spergel & Hernquist [88] Ae-PE{(~ - + E > O(%) 

C (E - Q(T~))-'/~} 
VO& [74] f = A ( -E)  312 N~(E,L')+NO@~C(E/E=)P q&f(E-Ec)l+l 

Henriksen & Widrow [42] A (-E) exp [CIE] 6(j2) E < O f (El = O E > O  

Stiaveili & Bertb[90] 

MTJr [60] 

\ 

f = A  ezP {-UE - 6 

f (Et J2) = 
' A (-E)~/' e q  [a (E - 52/22) 1 E < O 

O E > O  

Spergel & Hernquist [88] 1 ra, characteristic radius 1 iPo, central potential 

d 
StiaveUi & Bertin:[58] & [59] 

Stiavelli & Bertin:[90] 
MTJi [60] 
MTJ2 [60] 

Table 3.1: Some Probability Distribution h c t i o n s  

Voglis [74] 
Henriksen & Widrow (421 

E = $ + Q and I3 = f + ut 

d and ai, parameters from 
ra , characteristic radius 

JO , cutsff anguiar momentum 

a > O , 'temperature" 
maximwn entropy method 

-a < O , "temperature" 

Nh , root of an equation 
6, the DVac distribution -a < O , "temperature" 
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The extra terrns fiom the m a s ,  the moment of inertia and the surface are difûcult to 
interpret in these forms. But the same feature can be seen in the full 3-dimensional case: 
Eq43.53) where the T derivatives vanish reads 

Taking the trace, one gets the scaiar viriai equation 

1 - ((56 - 3a)(56 - 2a)I  + (56 - 3a)A) = 2K + W, 
2 

and the virial ratio then reads: 

which is less than -1 since, every other terms being positive and W negative, the extra 
terms are negative. The interpretation of the extra terms is then strictly the same a s  in 
section 2 of [42]: the first comes fiom the thdependence of the self-simiiar system, the 
second fiom the system's boundary mass flux. In this light the extra terms of Eqs.(3.75) 
or (3.76) can be interpreted as sutk the first extra term is the analog of the comoving 
coordinate-type effect, that can be found e.g. in cosmological flows, and the two other 
terms correspond to the boundary mass flux (relateci to the self-similar maas M by setting 

= O  in b(3 .36 )  ). 
The scaied quantities like K and W being specific energies, it can be shown that their 

scaling is the same ( E = E ~ ~ ( ~ - Q ) ~ )  and therefore that the self-similar viriai ratio is the 
same a s  the real vinal ratio. The study of the behaviour of that viriai ratio wil l  then terrch 
us about the state of equilibrium or quasi-equiübrium which the system is experiencing. 

Distribution function As argued in section 4 of [42] for the radiai case, the passage 
fiom infail self-similar phase (& = O) to stationary phase ($ = O) is smooth and lead to 
a self-similar equilibrium. Those have been studied in [44] for several cases: the radial, 
spherically symrnetric case yields a seif-simiiar, and a real, distribution function of the 
forrn 

F(X, Y) = F(E) cc 1 ~ 1 4 .  (3.77) 

In the isotropic velocity case of sphericai symmetry, the PDF is still only a function of 
energy but then 

F(X, Y, 2) = F(E) I E I - ( ~ + ~ I ~ )  = 1~1-e (3 -78) 
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(the prime denotes the difierence in conventions usai in the stationasy cases compared 
to the time dependent cases for self-similar indices). 

The anisotropic velocity case is more problematic since part of the solution found 
by Henriksen & Widrow is an arbitrary function F of a composite variable of X, Y and 

anguiar momentum squared Z (( = z j-2 IEI'+~)> and the Dimensional 
variable solution reads: 

--2 E?) f (j2. E) = j-*J'(E) = j-eJ' (, 1 1 (3.79) 

The axisymmetric cases treated in [44] are not touched in this work. 

3.3 Summary of the initial state of the mode1 

Everything shodd be made as simple 
as possible, but not simpler. 

JOKANN VON NEUMANN 
(1903-1951) 

From the works of Henriksen and Widrow (44, [411 and [421, the SSZM for radial 
orbits in spherical symmetry is known to yield the foiiowing results: 

3.3.1 Density profile 

The outcome of the SSIM in terms of density profile can be condenseci to the following 
points for any power law perturbation of a axmiologid background, there exists a one- 
sided u n i d  attractor for the Snal density profile [42]. Relating it to a cosmologid, 
initial, scale-free power spectrum using Eq.(2.3), the density proûie predicted for CDM 
haIoes reads 

Moreover, in the range of acceptable initiai conditions (for which the mass of the halo 
converges) the variations an the density logarithme slope index are smaU (2 < 9 < 
a). in addition, it is remarkable that the self-similar scaling of the system during its 
evolution is holding even for n < 1. 
This attractor provides a natural exphnation for the controversial universality of the 

density profile debated in the field, since self-simüarity is a generic feature of intermediate 
asymptotes for systems such as CDM haloes. 



C W T E R  3. THE SELF-SIMILAR INFALL MODEL 

3.3.2 Self-simiiar dynamics of gravit at ional collapse 

Phase space instability 

The SSIM aiso ailows one to explain the internai dynamics prcducing the density profile 
in terrns of self-similar gravitational coliapse. In [41], it is shown that the phase mixing 
seen in Fillmore & Goldreich,84 [35] is supplemented by a phase space instability in the 
time-dependent development of the gravitationai collapse which leads to some kind of 
coarse-graining of the phase space stmctwe and breaks the infinitely winding strearn of 
PS] into a hierarchy of characteristic curves. It is remarkable that this instability, which 
could be set up by numerical noise in [41] and the present work because of the nature of 
N-body simulations, is confirmed to be arising from ûne grained phase mWng by Rasio 
et al. [99] and by Merrail [102] in their approaches to the spherical collisionless collapse 
using very accurate phase space methods respecting the Liouviiie incompressible flow of 
the PDF. 

Moderately violent relaxation 

The exhibition of the self-sirnilar virial ratio for the radial SSIM and the study of its 
evolution with time was perfomed in [42]. There it was shown that radial spherical 
infall leads to a quasi-equilibrium self-similar infail phase. This phase is characterised by 
its constant, non-unity, virial ratio that falls quietly to its usuai equüibrium value once 
the bounàary m a s  flux is interrupted, and by its stationarity in self-similar variable that 
denotes the self-sïmilar nature of the infall. The moderation in the system's reIaxation was 

shown by exhibitkg a remaining correlation between the shells' initial and final specific 
energies.This dows for the predidion of the radial spherical PDF hom the transition to 
steady state, which matches that of an a priori difkrent steady-state self-similady PDF 
studied in [44. Predictions of the PDF for the presence of angdar momentum, though 
only avaiiable for steady-state, are also proposed there. 

Finaiiy a "negative temperature" exponential cutsff in energy is d in the PDF in 
1421, by analogy with MTJ [60] and arguing, for the steep initiai conditions case (c > 2), 
that the smoothing of the initial density proûiels central cusp (80 as to aiways remah 
with finite densities) will induce a cut-off in energies. We will argue that such conditions 
are expected in the primordial universe (no infinite density is physical if it doesn't arise 
in a biack hole or at the big bang; even if a black hole sits in the centre of a halo, it will 
certainly deplete the central halo region fiom its density). As for the shaüow case, we 
will show that the cut-off cornes from the furthest shells and can be explaineci in terms 
of influence of neighbouring haloes (e.g. leading to Zel'Dovichls Voids). 



Chapter 4 

Shell code generic techniques: the 
semi-analyt ical model's 

implement at ion 

Une erreur peut devenir exacte 
selon que celui qui l'a commise 
s'est trompé ou non. 

This chapter wil i  deai with generai technicai problems encountered with the imple 
mentations of the semi-analyticd SSIM. More specifk problems related to each peculiar 
implementation wili be addresseci in their respective chapters. 

Unexpected difhities encountered w i l l  be outhed in the bt section, foliowed by 
some necessary technicai definitions in order to express the terms in which are tackied 
the smoothing length-timestep relation. This relation will be outlined in thiç chapter's 
third section, while the equations of motion and integration schemes will be detailed in 
the fourth section, and the hiilldling of initial conditions by the mode1 in section 5. 

4.1 Difficulties with sheU codes: Nobody expects the 
Spanis h Inquisition! 

In this work, several dif6culties attached to the implementation of sheii codes were 
overcome. These are related to the need for maothing the singuiar force law necessary for 
the integration of shells passing through the centre, which detailed implementation wiü 
be given in section 4.2.3; to the extrerne sensitivity to the right amount of self-interaction 



for shells throughout the halo and, to the tradeod between timestep size and smoothing 
length in order to obtain a realistic yet fast integration. 

4.1.1 Smoothing length 

A common feature of dl N-body simulations, smoothing lengths are characteristic lengths 
introduced artificially to be able to handle self-gravitating twebody encounters- Naively, 
this can be mderstood as the resuit of the inverse square law between two bodies being 
singdar when they are located at the same place. For the SSIM, the symmetry being 
spherid,  particles are then sphericai shells of mass about the centre of symmetry and 
Gaups Iaw teaches us Chat the force felt by each sheii is only the resuit from aU the 
shells it contains. But the force law is still singular in the centre, if any iinite, non-zero, 
amount of mass is located there, so there is stiU need for a smoothing of the force law in 
the centre of the halo. 

The smoothing of the force law in the centre leads of course to unreaiistic dynamics 
of sheüs and n o n - c o ~ t i o n  of energy when they fall inside the range of the smoothing 
Iength. That is why there is a delicate b h c e  to find between a smoothing length that 
is too smail and which leads to the computing of tm large numbers for the simulation to 
handle, and one that is too h g e  and alters drastically the dynamics of the system in the 
delicate regions ( e.g. relaxation region, sheii-crossüig region). 

The smoothing length will be noted E,. 

4.1.2 Sensitivity to self-interaction 

Since discrete treatment of the system by a simulation requires the representation of the 
continuous m a s  distribution over the volume of the halo by a finite number of infinitely 
thin sheh  of mass, depending on the location of the sheii compared to the corresponding 
density volume it represents, there is bound to be some self-interaction of sheh. Indeed, 
it is crucial that the fraction of the mass of a sheii pertaining, in the continuous m a s  
distniution representation, to the volume located beiiow the sheii's aiiotted radius be 
counted as interacting with the sheii. If this &éct is not taken into account, the dynamics 
of the coiiapse in the simulation can be drasticaiiy affected and the energetics of the core 
can be deeply modified. Such extreme sensitivity was experienced in this work as an 
obstacle to the cornparison with the r d t s  fiom [42], especially those concerning the 
Vvid ratio. 

4.1.3 Integrator choice 

Another aspect of the critimlity of the smoothing length cornes fiom its relation to the 
appropriate timestep of the simulation. If the timestep is too large, the h i t e  Merence 
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Figure 4.1: Integrator stability cornparison between the simple Runge-Kutta, eulsim and 
previous result fiom HW99 [42] 

approximations made in the integration scheme are no longer valid. The smailer the 
timestep, the more accurate the integration process is. But this integration scheme is 
oniy valid if the resulting radii steps are not too mu& smaller than the smoothing length, 
since then the force law, invalid when approaching the centre closer than the smoothing 
length, is treated strictly by the integrator. It is then better to use a coarse enough 
integration to ignore scaies smailer than the smoothing length. 
This brings out the dehate balance between the smoothing length and the timestep 

that has to be preserved as weii as the need for an integrator that is not too sophisticated 
in the centre. 
This work went f h t  dong the line of a sa f i  integration routine, using the adap- 

tive, semi-implicit Euler discretisntion with h-extrapolation code irom the Konrad-Zuse- 
Zentrum fuer Znformationstechnik, Berlin, available in freeware, and calleci euisim. But 
the nature of Lagrangian integration of the system, as an N-body problem, didn't ailow 
for optimum use of the routine: e&im muldn't hande the integration of the whole sys- 
tem as a unit because of the need for the creation of arrays of order P N ,  too heavy 
for our computing powers. Instead it could only be used as a stepping device for each 
individual s h d  at each timestep, which made the simulation very slow. Finally, the need 
for a coarse treatment in the centre, the alternative being m e a h t i c  integrations, led us 
to use a simple second order Runge-Kutta integrator, which tumed out to be ten times 
faster than the more sophisticated eulsim. 

Nevertheless euisim was used to check the vaiidity of integration by the Runge-Kutta 
scheme: being more accwate than the Runge-Kutta integrator, it yieIds for instance a 
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more stabIe integration even after the end of the self-similar phase. That is made obvious 
in the evolution of the virid ratio [see figure 4.1). 

4.1.4 The relation between E, and the timestep 6t 

The limit of the balance between timestep and smoothing length shodd be the optimum 
relation between the two in order to get a satisfactory integration. The SSKM can be 
approached honi four different avenues in order to obtain and tune the reIation between 
the smoothing Iength and the timestep of a given simulation. One can obtain anaiyt i d  
expressions for this Eunctional relation in three dierent ways: the first of which cornes 
£rom constrainhg the size of an individuai radial step of integration. It &O can be 
deducted ïrom imposing tbat the Kepler period of a circula. orbit at the smoothing 
radius be much d e r  than the tirnatep. Alternatively, one can verify the conformity 
of the f 'c t ional  form with a Dimensional analysis usùig Kepler's iaw and the self-similar 
expressions for the system's mass profile and radius. Eventuaiiy, the safest route to and 
real tuning of the needed relation is thmugh Monte Cado simulation and test of the 
simulation scheme. A more detailed description of these requires us to accurately define 
some of the choices of description made in the model's implementation. Therefore, we 
will proceed fùst to those definitions in the next section. 

4.2 Some Definitions 

In the difüculties encountered in the building of the codes necessary for the simula- 
tions, some preliminary debitions isurned out ta be crucial for the understanding and 
carefd handling of the model. 

4.2.1 The halo, or core of the infall 

In this semi-analytid modei, we start with a spherically symmetric mode1 of a patch 
of the primordial universe after the Remmbination epoch, centered on a puwer law per- 
turbation of the background. After some numerical evolution of the coliapse, a cote is 
fomed at the centre of the infaIl (see Fillmore & Goldreich [35] or Bertschinger [36J) 
which represents the constitution of the halo. The deflnîtion taken here for particles 
belonging to the halo makes use of the Lagrangian treatment of the shek: since we keep 
track of the original radial ordering of shells, which happas to also be the ordering dong 
the Fillmore & Goldreich stream of particles failing for the 6rst time t h u g h  the origin 
of the spherîd system, we chose to d&e the core as the set of partides which have 
passed at ieast once through the origin, as illustrateci in figure 4.2. 
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the Halo Core - 

i Fm crossing of the origin 

Figure 4.2: Definition of the core. This drawing represents the Fillmore & Goldreich 
solution in phase space and highlight in thick dash-triple-dot the phase space area selected 
as core by exclusion of the stream of b t  infalling particles (solid line). 
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The simulation handles the passing of sh& through the ongin by aiiowing for negative 
radii during the timestep evolution, and then mirroring into positive radii the particles 
that have passed through so that the veiocities are translated into the positive radius 

The core boundary can be defined through its Lagrangian index i,, (for an explanation 
of Lagrangian indices, see appendix C) by using the topologicai property of the most 
recent sheii-crossing the origin for the b t  tirne: it is the largest Lagrangian index for 
which the integration over one timestep has just brought its radiai coordinate to a negative 
value, to be mirrored according to Eq.(4.1), 

This definition repmduces the figure 4.2, since the Lagrangian indices give the order- . 
ing dong the winding stream of particles as long as it is not destroyed by phase space 
instability, which happens to sheih ody after they have ben phase mixed by passing a 
s m d  number of times through the origin. The winding stream is therefore weii definecl 
around the boundarits of the core, allowing for the debition (4.2) to hold. 

In addition, the radius of the core ( d e d  X,, in scaled variable, r,, otherwise) 
can be dehed  as the kgest  radius of a particie included in the core by its operative 
definition. 

4.2.2 Discretisation of the shells 

In order to treat numeridy the evolution of the halo, we need to represent the ccntinuous 
distribution of concentric shells by a discrete hierarchy of shells. In order to simpliS. the 
self-interaction problem and the initial boundary sh& expressions, each sheil was chosen 
to represent mass fiom the density distribution volume contained between itself and its 
immediate lower preceding sheU. That way, the initiai centre sheii contains ail the mass 
within its sphere (the Pshel l  radius being O), and aii sheiis are fully self-interacting. 

The mass volume-density then is definecl by the discrete distribution in radius x: 

where the total number of shells is n and the mass of an individual shell tagged j is mj, 
the division factor coming fkom the conversion to spherical symmetry. We can then d e h e  



CEAPTER 4. SRELL CODE GENEMC TECRNIQUESr TIZE SEMI-ANALYT7CAL 
MODEL 3 IMPLEMENTATION 

- -  

the mass contained inside the radius of one sheil i by 

where the shells are indexed by their radius. 

4.2.3 The Potential and Energies 

Kinetic energy, Potential and gravit ational energy 

The Kinetic energy of a sheU i can be defined with its radial velocity and angular m e  

The kinetic energy of the core is then simply 

The deûnition of the gravitational potential for a spherically symmetric system can 
be found in &.(2-22) from Binney & Bernaine [€VI: 

As stated previously, the potential energy is given by Chandrasekhar's definition, and 
in spherical syrnrnetry, the potential gravitationai energy of the core is following Eq.(3.11): 

where i,, is the fast shelI in the core. Similady, for one sheii i, the integral has tu span 
the radius of the region coUapsed onto the sheii, which is defined previously as between 
the shell itself and its immediate lower preceding one. 
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Smoothing the force law 

Because of the symmetry combined with the numerical treatment of the system, we have 
to introduce a smoothing of the gravitationai force law. Let us smooth it via the inverse 
radial dependence smootbing: the smoothed radius can be set to 

to avoid too sharp transition between the unaffecteci scales and the modifieci region. For 
consistency we cari start with the potential: 

Here we have introduced a modification of the geometricai factor, Le. f(r) instead of r, 
in the second integral to maintain the canceilation of the extra terms in the energy and 
force calculations: 

hence the function f is to be chosen in order to keep the second term nuil as 

The radial gravitationai acceleration will then take the modjfied form 

The potential energy for shell i turns into 

and the core potential energy reads 

The angular momentum term also contains a possible singularity, if j2 is taken constant 
over the centre. It can be iaodified similarly to the potentiai in an ad hoc fashion: the 
reçulting centrifuga1 acceleration (j being a constant of motion) can then take the form 
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and for one sheii i, the form of the kinetic energy becomes 

The core kinetic energy then r a d s  

Chandrasekhar's versus naïve definition of Potential energy 

In this work, the system considered is thus the core of the halo, a tirne dependent non- 
isolated system of finite size. A naïve definition of the potential energy would be as the 
sum of the weighteà potential 

Because of the finite size of the systern and of the stream of incoming sheiis during 
some phases of development of the halo, the transformation between the Chandrasekhar 
definition and the naive definition inv01yes surface temu which are not taken into account 
in the naïve definition. 

In fact the definition of infinitesimal potential energy coming fkom the work done on 
a sphere of mass brought h m  infini@ also involves the gradient of the potentiai (see 
Binney & Thmaine 1871, Eq.(2-18)). The divergence theorem is needed to get to Wnh, 
but it generates again surface terms. 

In fhct, the SSIM can be used to show that the naïvel or ciassicai, defmition of energy 
for one sheii can be represented by Chandrasekhar's (e.g. Eq.(3.11)) for the purpose of 
the PDF calculation (see section 4.2.4) with the bendt  of ignoring the noise and error 
associated with a finite N-body simulation. We checked this choice by reproducing the 
PDF dope fiom a Plummer's sphere phase space realisation, as well as the PDF dope 
from the radial Henriksen & Widrow model's phase space realisation generated by an 
independent program; the reproduction of the viriai ratio values fiom the Henriksen & 
Widrow simulations [42] was aiso used to validate this choice. 

These checks CO* that the Chandrasekhar defmition of the energy aiiows us to 
reproduce accurately the given sample's PDF (this wili be studied in more detail in 
section 5.1.4). They are presented in figure 4.3. They also justify the choice made for 
measurements of the PDF of a ciiffisent implementkion of the smoothing length in the 
energy compared with that presented above for the dynamics of the simulations. This 
latter point wiU be discussed in more detail in the section devoted to energy meantrement 
for PDFs (section 5.1.3). 
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Figure 4.3: PDF Eiom Plummer Sphere and HW99, [42] for the two energy eduation 
methods: the leR panels corresponds io the use of Chandrasekhar's definition of potentiai 
energy in E,, whereas the rïght panels refer to the use of the naïve definition of the 
potentid energy in E,. 



CHtLPTER 4. SHELL CODE GENERIC TECBMQUES: TEE SEMI-ANALYTTCAL 
MODEL'S IMPLENENTATION 

By contrast, the classical definîtion of energy was retained for the energy correla- 
tions measurements because of its physical meaningful foundation. In fact, section 4.2.4 
demonstrate the use of a modifieci classical dehition, which is strictly quivalent to the 
naïve one with the appropriate choiœ of reference value for the poteritial. 

4.2.4 Why using Chandrasekhar's Energy definition 

Using Chandrasekhar's definition for gravitational energy measurements displays a non- 
conservation of the energy for an individual sheii. On another hand, using the ciassicai 
definition of that energy leads to worse resolution of the PDF compared with HW99. 

The dassicai definition includes an extra term which fixes the zero of the potentiai at 
in6nity1 but this is an arbitrary convention. By changing the evaiuation rderence point 
for a constant value of the potential at a different location, this W o m  ailows one to take 
advantage of the aualytical predictions of the SSTM to scrap the numericd noise inherent 
to N-body simulations with finite Ns. By then showing that the extra term (hereder 
d e d  Ext) have a variation for individual shells inside the d y t i c a i  self-similar system 
that is exactly proportional to the Chandrasekhar's definition, one can boost the PDF 
measurement resolution by adopting Chandrasekhar's energy. 

The following section will demonstrate how a change of rderence point for the energy 
and an analytical treatment of the system can insure that Ext can dectively be absorbed 
into Chandrasekhar's energy. 

The self-similar density profile 

From HW99 and al1 studies of the SSIM, the density profile in s d e d  variables during the 
.infail phase is stationary and foilow: 

and b is the similarity index from initiai conditions leading to a certain turnaround 
radius/ t ime dependence. 

in practiœ bo is deduced fiom initiai conditions of simulations and X can be measured 
on the fully constituted density profle of i.e. the last rneasurement in the inçall phase- 

The energy definition 

Classical, or naïve, definitions We have seen that Chandrasekhar's definition of the 
gravitational energy leads for the SSIM to the form 
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The usual definition brïngs an extra term which we will generidy cal1 Ext: 

In fact, this term serves to fix the zero of gravitational energy at infinity. 

Change in perspective But this cornes from the spherically symmetric solution of 
the Poisson's equation with a peculiar choie of integration constants. 

If one makes the choice of reférence at an inner cusp radius instead of inûnity (rc .c O), 
then Poisson's equation can be solved as  follows (kom [115, Henriksen Olland other 
classical textsl 

with 
M(r)  - M(rJ = 4n [ p(r')r"dr'. 

rc 

Assuming r, + O so that the mass under r, is negligible, this definition is compatible 
with the usual one and we can allow the mass M(rc) to be O.  Then the m a s  distribution 
inside r, being negügïle, we can take JIrc = O. Any central marri wii i  then have the 
usual form of the total potential from the ünearity of Poisson's equation: 

which can be integrated into 

to be compared with Eq(4.9). 

SSIM evaluation Going to seif-simiiar d e d  variables compatible with given initial 
conditions, the self-simiiar potential reads 
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We can then use the definition of Eq.(4.8) since the SSIM predicts its vaiidity for any 
sheii inside the analytical self-similar system (under the core radius r,), which contains 
the range of integration thanks to the choice of rc. It is to be noted that since rc is hed, 
Xc = rce-m shrinks with t h e ,  reinforcing the strength of the flat potentid hypothesis (aI, = O). Thus Ext can be ni t ten ( r d  that we have taken G=l and defued 
p = 47rp) 

Forms of the potential and total energy 

Self-similar contributions Using Eq.(4.8) to recover the mass, the form of the self- 
similar potential is given by 

so that 

because the various power 1aw integrais are within quantities of the çame Dimensions. 
Thus 

which dispiays that that potentid could be taken proportionai to Chandrasekhar's defi- 
nition. The extra, time dependent-ody, terms can be considered nearly constant over the 
Iast stages of the self-similar phase, when the PDF is measuredl: 6 being very close to 1, 
the exponential of the steep case is slowly varying and we can neglect the variations of 

'It can be noted that for our typicai steep c e ,  r = i, thus LI P = 6 = 5 (1 + $) = fi, the time 
dependence is then ehT and the proportionality constant is: 

For out typicai shallow case, E = $, the index becornes 5 = d = (1 + $) = z, and the time 
dependence foUows -? 
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the shallow case's tactor, ail the more as the ranges of T usualiy span less than 2 units of 
T. Moreover, for the steep case, the power of r,, very close to 4, is hefping to limit the 
magnitude of the multiplicative constant when we take a very small r, (r, + O) which 
has then to be not too small. The reference potential cm then be used to cancel the 
average9 of the extra terms around the measurement times. For any case, if thete is a 
central non-zero mass, the Mnation of the potential is dorninated by that m a s  so taking - - 

= -q is just neglecting the m-tions to the evolution with X due to Ert. The 
magnitudes of those terms wüi be evaluated in section 4.2.4. 

Presence of a central mass In the prmnce of a central mass, the evolution of the 
potential over the halo is essentiaily dominated by the evolution h m  the potential of the 
point mass: the radial derivative of the potential, considering that a finite mass initial 
perturbation density profile requires that E < 3 and thus that b > > 5, is dominated 
by the central maas term in the limit given below. 

When the extra term is less than I, the centrai mass dominates: 

In other mrds taking 6 = -F I. ip d justifml in the presence of a central 
mass wïthin the limit radü d&ed above. Outside of the ümit radii, the cases without 
central mass apply. Thes  radü are evaluated in section 4.2.4. 

Steep case without central mass: con%eguences on the PDF measurements 
If there is no central mass and we ignore the time variations of X,, our use of the form - CM Gn7 ( ' ) hiu an e t  quimient to W. = -, ar potentiai insted of = -T ialzcb-ii 
shnnking the enetgy scale for the potentiai values, Ekpivalently it has the &ect to shrink 
that scale when measuring the potential. With the dennition of energy as E = f +-, 
induding the useofK = -9 = 2(i-l)T, the modhatioos on the PDF measuremats 
can corne h m  two aspects: the PDF is calculateci, in practice, using the phase space 
volume factor g(E) and the PDF is a function of the energy. M that 



CRA13TER 4. SEIELL CODE GENE:RIC TECHNIQUES: THE SEM-ANALYTICAL 
MODEL S WLEMENTATION 

Figure 4.4: Energy rescalings h m  the use of Chandrasekhar's definition. 

Rescaling the potential could fhst d e c t  the phase space volume factor 

in fact this term remains d é c t e d  since, in its definition, the consistent use of the 
rescaled and of E ushg the same leads to reobtah ,/& = b as it is 

evaluated without rescaling the potential energy. 
The second modihtionis more direct: not only the range of E is diminished indirectty 

through the shrinking of the range of q, but also the most unbound particles prePiously 
counted in the PDF measurement are cut O& Indeed, since the PDF measurement cuts 

GM off particies when th& energis are measured pasitive, using = -r = 2 ( i  - l)m 
suppresses fiom the measurements particles which were very rnarginaiiy hound when using 
the fidl potentiai definition. This reinforces the clarity of the results obtained with such 
approximation. The total operation on the energy ranges and the PDF is schematised on 
figure (4.4). We are just3eà in this apprmimation again by the SSIM: the teai energy is 

The "rescaiedn energy used is 
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where c = 2(1/8 - 1) < 1- We can then write 

which can be considerd nearly constant from the SSIM's construction: indeed, in the 
self similar phase, we can consider the radial energy distribution the same way that we 
have derived the density. Recall that the density cornes ikom the following Dimensionai 
anahsis: 

In the same way, we can analyse the energy to get its radial dependence 

Together with the definition of the potential hom the w, which is integrated h m  the 
density 

- M 2 w4 = - o: ~ 3 - r - L =  ~ 2 - f ~  
X 

the ratio of energies is then 

so that apart hom logarithmic corrections, it is constant. In the rest of tbis work, when 
deaihg with PDFs, Ex wil i  be noted E for convenience. For any other context, E will 
retain its classicd definiti~n.~ 
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Table 4.1: Power law proportionality constants measured from simulations using 
Eq.(4.10). In each case are given the initial power index E, the self-similar class index 6 
and the final stable power law index p, predicted by the SSIM. 

Shallow case without central mass In this case, the radial drift or deviation ikom 
the Chandrasekhar's potential is neglected compared to its average value and then ab- 
sorbed in the reference potential. The foiluwing section etimates the order~ of magnitude 
of the neglected terms. 

Orders of magnitude 

The negiected terms can be partly included in the value of the reference potential. It is 
then of importance to e d u a t e  the magnitude of their drifts with tirne and with radius. 
Using measured values of the density proHe and their theoreticai power laws, one cm 
retneve the values for the proportionality constants. Then from other given values of the 
simulations, the relative variations of the t h e  drifts as weU as the shallow case's radiai 
driit can be obtained. 

Power law density proportionaiity constants Measuring densities at X = 10'~ 
and X = 10" and assuming theoretical power laws, the proportionality constant X, can 

P r - P l  
k = x p x y  

For the four studied cases (shallow or steep, with or without central mas) we compute 
the values given in table 4.1. 

Radial domain of influence of central masses In the evaluation of the SSIM with 
centrai mas, we distinguished two kinds of behaviours: when the centrai mass is given 
a real Schwarzschild radius, it is t w  tiny to allow the mode1 to accrete mass onto that 
seed. The seed behaves then as a correction to the implementation reproducing the SSIM 
p r d e ' s  central cusp otherwise diiücult to mode1 numericdy. When the SchWaTZSChild 
radius is enhanced artificially, some self-similnr evohtion is perceiveci and the central 
mass acquires more shells. The mrresponding radü of inûuence described in section 
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Table 4.2: Central mass radii of dominance for the potential. 

central mass m. 

d u e s  for Xi, jl 

p p  

Table 4.3: T i e  relative drifts over the signifiant f DF measurement periods D r i f t .  
For reference purpose the initiai power index E, the self-sirnilarity daçs d and the numerical 
form of the time dependent term Dn'f t(T) are &en. 

0.1 
7.6 x 10e6 

e 

d 
form of  drift(^) 

D n ' f  t 

+ 

4.2.4 are preseated in table 4.2 with Xinfl(r = 1.9) = and XinP(t = 2.1) = 
6 

( ( 3 - ~ ) ~ c e n t N )  .They aii mare or Iess repment tiny fractions of the system (the 

rnatimum radius of the system king of order 0.03). 

Estimations of the time drifts For each case, the time drift cornes kom only one 
term: 

0.1 
8.9 x 1 0 - ~  

$ 
10 - 
dl' 
0.2 

Because the PDF measurernents take place near the end of the self-similar phase we can 
e d u a t e  the relative drift by normahing the dXerence of the Drift at two time bracketing 
the measurement period: for the steep case we take 

- 
D r i f t  = 

~nj(i5) - Drift(13) 
Drift (15) 9 

- 2  - 1.5 x 

1.9 
58 - 
bT 
0.2 

and for the shallow case, we restrict ourseives to 

- 

- 2  - 2.0 x 1 0 - ~  

Since we have used r, = X,(T = 0) = 1.5 x  IO-^, we can the compute the various cases 
(see table 4.3). 

- 5 
2 
14 - 
15 

7.45 x 
1 - e-& = 0.23 

2.1 
- 62 
63 

2.93 x lo5e&* 
1 - e -k  i 0.062 
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Table 4.4: Radiai maximai relative drifts obtained over the system using Eq(4.12) for a 
given combination of self-similarity index b and relevant measurement time T. 

Estimation of the radial drift (shallow case) The shallow case requires to neglect 
a term in in(X). In order to treat that term, considering the time drift associated with the 
hill term to neglect (in (&) ), a relative radial drift can be estimated using the maxim-am 
and minimum X that are primordial to the density and PDF measurements. 

Considering that the self-simiiar cores are usualiy displaying a stable boundary X, = 
0.03 and that we are interested in a radial range of two to three decades inwards, we c m  

take X E [Xmin = X-lO'*;X-] with X,, = 0.03 and n=2 to 3. Thus the spatial 
drift being defined by - on f t(X) = i. (E) , 
with X, = ~ , e - ~  the relative drift c m  then be estimated as 

Hence the dat ive drifts for the various cases studied at the edges of the measurement 
time spans are summarised in table 4.4. 

Aii the drifts obtained being no larger than 20% or so, the terms they represent can 
therefore be neglected 

Conclusion 

Given the fact that out simulation reproduces the SSIM approxïmately, we have thus 
used the modei's predictions to show that the presence of the extra terms in the physical 
potentiai with respect to that given by Chandrasekhar's definition can be neglected or 
absorbed in that dehition if the system follows exactly the SSIM. Neglecting those 
term for the PDF measurements is then an artihct that also neglects large arnounts of 
numerical noise introduced by the finiteness of the number of particles in our simulations, 
dowing for better resolution than would be dowed by our choice of N. This will be used 
oniy for PDF calculations. 
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4.3 The relation between E, and the timestep bt 

We now have the tools for detailing the approaches to the smoothing length-timestep 
optimal tuning. This can be explored in the foUowllig ways, using the results Erom the 
SSIM. 

4.3.1 Radial step constraint 

Using the force hw of E9.(4.5), one c m  construct the function relating E, and 6 t  = f (r,) 
Erom the condition that the re.lative radial step of aii integration timesteps must be smaii, 

The smaii timestep approximation (dr = v.& z: a (dt12), together with the mass pronle 
or mass inside of a g i m  radius, Ml allows one to rexpress the radial step in terms of 
the acceleration law of Eq(4.5) and dt: 

Fkom Eqs.(3.80), the mass profile during the self-simiiar phase can be written as 

where j i  is the logarithrnic slope given by Eqs.(3.80). The desjred relation is obtained if 
the radial step condition is caiculated at the smoothing scde (r = É,): hence 

so choosing a constant K » 1 one can rewrite the previous inequality as an equation: 

or more importantly: 
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Timestep versus Kepler's law 

hothm way of looking at integration constraints is to ask for the integration timestep to 
be s m d  compared to a Keplerian circular orbit period down to the level of the smoothing 
scale. Using again EQ.(4.5) to balance a circular acceleration and the period for a circular 

one can then write, using Eq(4.14) and taking the smoothing scale as the radius, 

again, chowing a constant Kr > 1 one can rewrite the previous inequality as an equation: 

or more importantly: 
( ~ t ) ~  a ~ f .  

Self-sidar Dimensional analysis and Kepler's law 

These results tum out to be similar, in te= of the interdependence of c, and the 
timestep. They could have been derived independently through Dimensionai andpis, 
using the scaüngs of the S S I M  fiom the same techniques as in Eq.(3.28), which already 

yieided Epr.(3.26): h m  dw = ( O O O O 1 ) i ( -2 3 O O ), Eq.(3.28) reads 
for the mass inside the radius of the core halo 

(a is taken to be 1). From Eqs.(3.26), r a tb = esr,thus E,  a eST Kepler's law, on another 
hand yieids, at the smoothing s d e  

from Eqs.(3.80). So again, requinng the integration timestep to be smaii, lads to 
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Monte Carlo determination 

Eventuaiiy, since the previous calculations only give us indications without certainty on 
the proportionality constant, we tested the balance between timestep and smoothing 
length in a Monte Carlo survey of their parameter space. The accepted parameter sets 
correspond to those satisfying the condition of Eq.(4.l3), which validity is here set within 

< 2.10-*, for the whole duration of the system's evolution. Because of lack of time, 
2 

only two survey were performed without checking for variations with angular momentum 
strength. Those presented here correspond to a moderate amount of angular momentum 
(see figure 4.5). Those results are assumed to be relatively robust to changes of seif- 
similacity index (since the expected dependence on final density profile index should not 
vary very much) and angular momentum (it doesn't enter in the expected expression). 
One run was made at very smaii smoothing length to check for the influence of it on 
the dynamics of the relaxed system (see section 6.2.3). We otherwise used the smallest 
possible smoothing length correspondhg to a manageable timestep. 

4.4 Equations of motion and integration schemes 

4.4.1 Smoothed equations of motion 

Rom Eqs.(3.62), (4.6) and (4.5), the smoothed, self-similar, Lagrangian equations of 
motion of the system can be rewritten. Despite the fact that we are writing the f d y  
self-simiIat version of the equations, we are expressing the interior m a s  and the an& 
momentum in their non-sded versions and then scaling them to be used in the M y  scaled 
equations. These are more useful representations of the mass and angular momentum 
for the following reasons: the former is conserveci locally before sheii-crossing - and 
even globaily after sheii-crossing, when considering the whole halo - and the latter is an 
integrd of the motion. Further notational simplification is then used for the convenience 
of the programming by using the form 

for the mass scaling &or which translates real mass into self-similar according to 

Wt~l/ sàmiiar = gmN, and 
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monte wlo simulatipn 
~ X / X Q I ( I ~  E=U.&=IO 

Monte Carlo simulatipn 
ddxd10 '~  E=IJ. joa.10 

Figure 4.5: Monte C d o  explorations of acceptable timesteps for given smoothing lengths: 
le&, for a steep initial density profile, right, foc a shallow one 
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as a complementary factor that yields the angular monrentum scaliag (Z = gj.g,.j2). 
The equations of motion then read: 

where we usuaiiy take a to be 1. Then the self-sirnilarity index is represented by b (  b/a) 
and can be related to initial conditions as stated in Eq.(3.67). 

4.4.2 The second order Rung*Kutta integration scheme 

Thanks to the self-si& expression of the equations of motion and to the Lagrangian 
treatment of the system, we are leR with Ordinary Differential Equations(0DE) (Eqs.(4.15)), 

Because of the need to avoid finer integration steps than the smoothing scale, the 
second order Runge-Kutta method is perfedly adapted for the simulations of our model. 
It can be e x p d  as a two step method where the derivatives are duectly given by 
Eqs.(4.15). It shodd make use of the initial angular momentum distribution and of the 
caldation scheme of the mass interior to a sheil, including seIf-interaction, fiom Eq.(4.4). 

The Runge-Kutta integration scheme we used can be described as foilows. First, we 
advance the whole N-body system of concentric mass shells to midstep, fiom T to T + 
4, for each &el1 using a simple Euler integration scheme (Le. caiculating the derivatives 
at starting point) on its phase space coordinates: for sheil of Lagrangian index i, 

R e d  that the derivatives are evaiuated using Eqs.(4.15) at the starting point of the 
timeatep. Then the finaistep is made for each sheii from the initial starting point using the 
derivatives calculateci h m  the midstep state of the whole halo, which requires evaluating 
again the radial ordering of the sheiis at midstep, 

Since the simulations are Lagrangian, it is useful to make it expliut and we did so by 
iabeling the shells with th& initiai ordering in radius, mlving the physical quantities 
for each sheii by this integration scheme. Because the Y derivative calcdation in the 
integration scheme requires ordering the shells in radial hierarchy (to determine which 
shells are interior to a given one so that a mass profile c m  be established), this is done by 
ordering the shell's indices with their radius value (a detded exposition of the Lagrangian 
treatment of the modei is given in appendix C). 
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4.5 Initial conditions 

The cosmological Einstein-de Sitter background imposes a choice of initiai background 
density given by Eq.(3.64) and a Hubble initiai flow given by Eq.(3.65). The constitution 
of an initiai density profile, which determines the self-similarity index, was treated so as  
to leave some choice in the amplitude of the cosmological density perturbation. 

The initial power law profile central singular cusp3 of the cosmological density pertur- 
bation can be treated in two ways: either by smoothing the density to a constant value 
in the centre while keeping the same mass interior to the radius at which the deusity 
switches from a power law to a polynomial as if it stiil were constituted fiom the power 
law, or by collapsing that mass to a centrd point m a s  The latter can be used to initiate 
a model of centrai black hole embedded in a CDM halo. The former can be designated by 
its treatment of the central cusp's siqdarity: namely the smoothed centrai cusp density 
profile implementation. 

The value of the angular momentam can be set to O or speciiied ES a non-zero free 
parameter in the case of the implementation of the angular momentum model, since it is 
conserved in purely spherical symmetry. 

The initial conditions can involve a requirement on the evolution to stop at a certain 
stage. This aliowa one to prepare the system for the laying of an overdensity perturbation 
on the edges of the halo to imphment the merger model. 

These three last points will be dealt with in the respective chapters devoted to each 
modei implementation. Here we wili concentrate on the smoothed centrai cusp density 
profile implementation. This has been done in three different alternate ways for the 
cosmological initial conditions, plus with an additional non-cosmological condition with- 
out background. We have in general taken, in the implementation of the program, the 
cosmological perturbation strength parameter to be 

This choice of primordial density perturbation ampiitude was driven by the constraints 
imposed on A by methods used in establishing the initial density profile. These methods 
and their constraints will be detailed in section 4.5.1. The choice of A made is then more 
a matter of convenienœ than a significant one. Indeed A governs the density profile's 
amplitude and therefore regdates the system's vkîahtion time scale- 

'centrd part of a power-law profile th& leads to an W t e  central density Cusp is one of the seven 
types of eIementary mathematid catastrophe (Thom R;] 
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4.5.1 Cosmological perturbation 

Initial density profile 

We have adopted the foiiowing notation for the density profile in our simulations at initiai 
t imes: 

P = m(l +Ad (r, ti)), 
with the density contrast, for a centrai cusp smoothed by a second order polynomial, 
reading 

( 1  - i n 2  r < rmin (4.16) 
A(1- B) (r/rmin)-' r 2 rmin 

The scale of smoothing r,i, is arbitrary but has to rem& s m d  compared to the total 
size of the halo, since the halo in thia mode1 is in theory idhite. However, in a cosmo- 
logical wntext, it is limited by the extent of neighbouring halos. Therefore a maximum 
initial radius r,, was also imposed arbitrariiy to handle the h i t e  size of simulations. 
This arbitrarine85 allm for a de-independent mode1 which can then be matched to 
observations in order to determine the r d  d u e s  of the arbitrary units used. 

We used the d u e s  r,i, = 0.5 and r,, = 15. The value of B is set by requiring 
that the total mass inside r- is the same as that which would obtain fiom keeping the 
power law cusp- 

Initial mass profile 

h m  the density profile given above the cumuiative spherical m a s  inside a given radius 

These are both of the form: 
? 

IM = f i  3(1 + 3.A(r)). 

The matching of boundary conditioas at r h  yields the condition on B 

To determine the radii of the sh& h m  this, we start h m  a grid which sets iM as a 
hinction of s h d  label. So to get non-reguiac SM spacings, we have to invert N ( r )  into 
r(iM). For the p m - l a w  mass mntrast (A(r) a r-p), this is done by Taylor expansion 
and back substitution. This can be genedsed for more general mass contrasts to: 
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which is valid if 3.A(r) < 1, 1 being the convergence radius of the series (1 + z ) ~  = 

' .' Keeping this notation for the power law cosmological perturbation and the central 
smoothed part dows us to maintain without effort the continuity of radius distribution 
around rmin. 
This condition on A appears in the foiiowing way: for the two domains, 

with the continuity condition at r=rmin 1 - B > O e 1 - 3c+6 = 6-- 3c+6 = 9 x 9  3(~+2) > O, which 
is always true for O < E < 3. That condition on c is also implied in the finiteness of the 
integration of the density, i.e. the iiniteness of the total mas. 

Hence the inequality governing the convergence of the series yields 

For the first domain it is always true if A < 1 (i.e. in our choice of A). Otherwise it hol& 

(01- r > rmim Js"a<i-f) . For the second domain, this inequaiity lads to a validity aii 

the way d o A  to r= rmin (the limit of the second domain) for A < V(E [l; g] vhen 
O c E < 3). Remark that if Ai1 the expansion is always valid. The tirst sheii of the halo 
at, Say a radius ri, must therefore give the limit on A from the first domain condition: 

and furthmore, this form of lirnit can be S ~ O W ~  to satisfy Arimit > 1. 
In conclusion, the value of the cosmologicai perturbation strength parameter in the 

case of a non-constant initial sheil spacing (Le. requiring the inversion of iM(r)) is limiteci 
by A < f+2 , which is satisfied for our choice of A(=$). 

z+a-  ($1 7 

Shells initial masses and phase space position 

The %g of the phase space by our mode1 of discrete shells foliowing Eq44.3) repre- 
senting the continuous halo can be made in three different alternate ways. The ûrst is to 
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displace the shells' positions after establishing a constant density background halo. The 
second is to set a constant shell spacing and Ni the sheii masses according to the modeied 
density proûle. The third is to set the shell positions after distributhg the mass of the 
halo evenly between shells. 

In aii cases, cosmological shells wiii foiiow an initial Hubble flow: 

Then the distinction between methods comes from the use or not of the inversion of 
the mass profile described in Eq.(4.18), and from the constitution of the intended mass 
profile. 

Constant sheii initial density Historically, since the SSIM describes the halo com- 
ing from a perturbation of a cosmological constant background, a combination of the 
implementation of those two main physical ideas was used. First a constant density pro- 
file with regularly spaced sheiis was formed, representing the cosmological background. 
Then the shelis' positions were displaced thmugh Eq.(4.18) to simulate the cosmologicd 
perturbation. 

Using the initial constant sheU spacing the initiai background shell positions are dis- 
tributed ewdy on the radial axis so that the number of sh& f a h g  inside r- is 
proportional to its relative size compared with r- (Le. the number of sheh inside r,n, 
is int *n and thus the number left for the power law region is n - int e n  ). ) 
The radiai distribution of initiai background shells is thedore given by: 

( 1 

Because of the change in the nature of the density profile at Tm,, the shell spacing may 
be slightly different between the two portions of profile, but this scheme ensures that this 

ImiPn -in: un 
dinerence is negligible when n is large (i.e- < 1). Ebr the constitution 

in: e n  

of a Dirac-type density representation of the constant background density profile, that is 
to Say modeIed by the form of Eq.(4.3), the mass for Lagrangian sheii iabeled i is found 
as: 
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with the convention xi-1 = O for i=l (0th shell reduces to the central point), so the mass 
pro6le is 

Using then this mass prohle in Eq.(4.18), the density perturbation imposed by the 
expressions for the mass contrat (Eqs.(4.19)) shifts the spacings according to: 

The interest of this method lies in its l i ï  with the physical picture of primordial density 
perturbation. Indeed, the cosmological perturbation is represented by the density of shells 
dong the radiai axis, an even spacing meaning no perturbation. Its interest also Lies in the 
increased mass resolution at the beginning of the self-simiiar accretion ph= due to the 
decrease in mass for shells when going closer to the centre. This Latter feature, because 
of the exponentiai growth of the accretion during the self-similar phase, wiil provide a 
more constant seif-similar m a s  resolution (the growing real masses being more and more 
d e d  down when considering their self-simiiar measure) than if the real mass resolution 
was kept constant. 

The drawbacks of this method become obvious when the phase space population is 
m d ,  since each particle &ghs dinerently. This is combined with the inaccuracy 
impiied by the need for an approxhate inversion to get the sheii's radii. 

Constant sheii initial spacing With a constant initial sheii spacing, there is no need 
for the approullmate mass-radius inversion, and the benefits of increased m a s  resolution 
in the early stages of the evolution remain. 

As for the previous case the shell positions are evenly spaced and distributed between 
the hm domains divided by r-. For shells inside r-, 

z(i) = xi = i n  < int (xn) 
int ( u n )  rmpt rmax 

The masses of shells reproducing the Eq(4.3)-type density directly corne from the ciiffer- 
ence between subsequent d u e s  of the appropriate initial mass equation hom Eqs.(4.17): 
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with the convention xi-1 = O for i=l (0th sheii reduces to the central point). For sheüs 

Again, the masses of the sheiis are direct retranscriptions of the appropriate equation 
fiom Eqs.14.17): 

If phase space densities are to be measured (e.g. to masure the PDF of the sys- 
t a )  the extra variation coming fiom the ciiffereut weighting of each shell rnakes it more 
diEcult, so a constant mass for aii shells is recommended. 

Constant sheU mass In that case, the mws distribution among shells is trivial, 

and so is the sheii's inside mass distribution, 

but at  the cost of having to use the mass-radius inversion approximation (Eq(4.18)): 
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4.5.2 Non-cosmological test of the dynamics 

Since we know iiom Henriksen &Widrow [41] the behaviour of a pure power law initial 
condition without initial velocities, a good test of the validity of the simuiation was 
performed by reproducing those redts. 

Initial density profile 

Using the same definition as in Eip.(4.16), the initial density distribution is set to 

The same conditions on the mass profile mund r,, used for the cosmological cases are 
applied here. 

Initial mass profile 

The cumulative spherid mas inside a given radius foiiows fiom the previous density 
proiile 

i ~  = p+dr = porJ(+ - '*'('/%in)' 5 ) r < rmin 
-= 

) 
A 1-8 r rmin)  i M  = g p2dr = ( r 2 rmin 

Since we will only be using a constant s h d  initial spacing method, there is no need to 
invert the m a s  profile. 

Sheiis initial masses and phase space position 

As in Henriksen &Wi&m [41j, we assume no flow: 

Constant shell spacing The choice of constant sheU initial spacing is made because 
it is the simplest to implement. Shells are evedy placed dong the radial axis according 
to the same scheme as in section 4.5.1. For shells within ïminr 

The corresponding mas, calcuIated similarly to the constant shell spacing implementation 
of section 4.5.1, reads 
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- (xi-115) 
-B ) r 5 rmin 

'.<in 

with the convention xi-1 = O for i=l (0th shell reduces to the centrai point). For sheh 
over r,,,i,, 

and the masses are even simpler 

Results and cornparison m*th Henriksen & Widrow 

The resuits of a test run using those non-cosmological initial halo conditions are shown 
in figure 4.6. the upper panel displays the virial ratio evolution with self-similar t h e ,  
showing clearly the self-similar phase foiiowed by the virialised phase. The middle panel 
&es the phase space distribution of equal mass sheiis near the end of the self-sidar 
phase (recall that Y is the self-similar velocity and X, the self-similar radius). In contrat 
with simple cosmological SSIM, the stream of particles emerging out of the core for the 
first t h e  seems to be submitted to stronger phase space instability. The lower panel 
shows the density profile to be reproducing well the r-' law irom Henriksen & Widrow 
[41], given that the initial density proûle starts shaiiower than r-*. 

4.5.3 Density definition by sheiis and their positions 

Once the system is modeled En the code, the density can be measured back fiom the Mo. 
But one bas to keep in mind the original definition of the shek. each infinitely thin sheU 
represents the distribution of its mass over the volume contained between it and its radiai 
predecessor. Then , depending on the presence of a background or not, can be measured 
the density mntrast or the density relative to that of a reference de Sitter universe. 

In addition we aiiowed for a certain non-iinear averaging to smooth the measurements 
of density which s h d  up very noisy. Ka number s m d h  of sheiis over which the density 
is smoothed is specified at the beginning of the simdation, ail density measurements 
around sheii "in wiU use the mass of sheii(s) specified as (E(n) being the integer part of 

4 
&,=min(i+E(smth/Z),n) 

mi, 
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Figure 4.6: Non Cosmalagical SSIM halo simulation. The upper panel shows the edution 
of the virial ratio, the middie one displays the system's phase space (self-siniiiar radial 
vdocity, Y, versus radius, X) at the end of infaii and the lower panel gives the density 
proiile. In the phase space representation, each dot stands for one simulated particle. 
The density proue is fit with power laws above and below the smoothing length 6,. Since 
a Iogarithmic dope of about -2 is obtained in both cases, a fit is given for the whok haio 
which yields aiso -2. For cornparison, an NFW profile fit is also disphyeti. 
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( which is the sum of the masses of a number smodh of shells centered on the measurbg 
location sheil "in) and the corresponding 'volume' of those shells is given by 

Density contrast with cosmological background 

We measure the density contrast over a number of sheh  given by smooth according to 
the foliowing definition: 

For a value of smodh equai to I (no smoothing), we fmd the elementary definition of the 
original density of the sheü: 

and 

then 

Relative density without cosmological background 

For the case of relative density, the de Sitter universe is just one with the constant density 
po. Using the same definitions, one can express the density relative to the smooth de Sitter 
mode1 as: 

which again yields the usuai iorms in the case without smoothing. 



Chapter 5 

SSIM Probability Distribution 
Function (PDF) and sensitivity to 

mergers 

You never go as far as when you don% 
know where you are going- 

This chapter deah with the fi- explorations of the SSIM's power to bring light on 
the understanding of gravitational relaxation in Large Scale Structure Formation. In a 
first section, the spdcations a d  problems encountered when measuring PDFs on our 
implementations of the SSZM and its Bctensions are laid out. Theu, results on the SSIM's 
PDF irom Henriksen & W i h  are mnfirmed, consolidated and extendeci in a second 
section, The third section explains the technicd details of implemmting our mode1 for 
mergersl into the SSIM. F i i y ,  the last section will describe the results fiom our study 
of the SSIM's sensitivity to merger perturbations. 

5.1 Measurement of Pmbabiity Distribution Functions: 
Preliminary definitions, predictions and calibrations 

The measmement of PDFs for mld systems does not necessariiy requîre the m a s  of 
individual shells to be constant, but a constant mass remlution is preferable for ensuring 
that the phase space distniution of particles reflects that of the phase space distribution 

'recall that mergers points tonar& the m g  of comparable sized halog 
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in mass and for avoiding distortions fiom effects corning hom the finite size of the mass 
of sh&. This section wiii show how to extract the PDF fiom a discrete distribution 
of mass particles in phase space in the case of a purely radiai sphericai system, and of 
isotropic angular momentum. It will explain the importance of the phase space correction 
factor and its sensitivity to the effective gravitational potentiai energy. It will show the 
successful testing of the code respectively on a Plummer spherical model for isotropic 
velocity distribution, and on the purely radial Henriksen & Widrow spherical model. 

5.1.1 Extraction of the PDF 

The standard output that is available fiom simulations to measure a system's PDF is 
its collection of mass and phase space positions. The aim of this section is to link the 
general distribution iunction to its de6nition in terms of particles' masses and phase space 
positions. The terminology of probabiity introduces itself naturaily in this phase space 
density context through the assumption of the ergodic hypothesis (the equivaience be- 
tween presence probability at one point and number of occurrence of elementary systems 
in the large total number of systems approximation). 

Definition of PDF 

We are here o d y  interesteci in PDFs that exclusiveiy depend on the specific energy 
E integral of motion. The PDF is deûned as the phase space mass density. Using 
the radial/tangential decomposition of the veiocity differentiai and the spherical vol- 
ume eiement, one can write the phase space elementary volume as àVPhsp = dV.dV3 = 
dr.r2 sin8dûdrpdurduluLdQvL (r,B and cp are the usual sphericai coordinat es,^,, u l  and 
cp,,are the radiai veiocity and the polar coordinates of the part of the total velocity 
orthogonal to the radiai veiocity), but because of spherical symmetry aii angles are inte- 
grated over and the definition of angular momentum j2 = ?ut simplifies the phase space 
volume element into dVphspsp,, = 4$drdurdj2. Because of the normalisation of the PDF, 
constants can be ignorecl until the end and we will use the system's self-similar variables 
phase space eiement dXdYdj2 (where we don't use 2, the scaled version of j2 for the 
conservation reasons discussed in section 4.4.1). The definition of the PDF then reads 

ahere ure have deihed the h c t i o n  I' = @, and where the rescaied PDF ~ ( ~ ) = 4 7 ?  f 

with the usual ditniution function in spherical symmetry de6ned as f = dVpkspsph, the 

elementary phase space volume in sphericai symrnetry being noted dVphspsph. Since F 



CKAPTER 5. SSIM PROBAJ3iLiTY DISTRlBUTION FUNCTION (PDF) AND 
SENSITNITY TO MERGERS 

oniy depends on E, it is more convenient to select a measurement grid on the phase space 
in terms of E and thus estimate the following alternate PDF: 

RmaU that the specific energy is (the potential energy being here written as W4 ( X ) )  

where the specific energy self-similar versions of Eqs(4.7) and (3.11), the latter in its 
smoo thed form derived from Eq.(4.5), have been used (respectively for the kinetic energy 
and Chandrasekhar's potentiai energy). The importance of Fi lies in the fact that it can 
be directly estimated by choosing the mass contained in a restricted phase space volume 
around a given E and thus it singles out the dependence on E. To switch !iom one phase 
space representation to the other, we can use the differential of I' defined above: with the 
velocity diaerentiai dY = IF + gd.X + g d j 2 ,  one can rewrite the dinerentiai from 

as the energy, instead of velocity, dependent 

yielding the definition of FI as 

This wili e n t d  the development of a phase space transformation factor (based on the 
expression noted and used above), which will reveal itself to be crucial 

later on. RecaU of W+ is deriveci fiom the specific energy self-similar 
version of Eq.(3.11), in the smoothed form deduced h m  Eq(4.5). Again, the need for 
such a transformation cornes fiom the fact that even if F(E) only depends on E, this 
will not be apparent since E is a compound of F7s variables, while E is an independent 
variable of F i  and will therefore make clear the energy dependence in F. 

h m  the measurement side, we also have access to a collection of masses with their 
Esliced phase space discrete distribution: 
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where i is the particle's label and 6 is the usual Dirac distribution. Ali the expressions 
obtained above can be transformeci into purely radiai ones (their equivalent in the strict 
absence of angular momentum) by setting j2 to O and replacing any derivation by j2 with 
the identity operation. 

Phase space factor and PDF 

Rom Eq.(5.2), the integration over a patch of phase space yields a measurement of FI 
that can be reiated to F using Eq.(5.1): 

The factor 2 cornes fiom the integration over E as one value of energy corresponds to two 
values of velocity (positive and negative) . But for F depending ody  on El the integration 
can be extended over the full ranges of radius and angular momentum belonging to the 
same energy range. Then F can be reached through a sum of masses, containeci in the 
corresponding phase space patch, foiiowing 

so amund E = &, assuming that 2F(E) J -varies siowiy with E, and noting the 

phase spaœ fkht g(E) = 2 1  9, one c m  integate over E by the use of Roiie's 
theorem, also known as the mean value theorem 

mi = AE.F(Eo).g(Eo). 

The phase factor then contains the only discrimination between various geometries of 
infaii in this otherwise general expression. 

Phase space factor in radial orbits The simple& measurement corne fiom radial 
orbits, praieat in the original SSIM Henriksen & Widrow mode1 and the present work's 
extensions with an overdensity and in the radial halo surrou11ding a black h o k  In this 
case, the phase space factor ody  comprises an integration over di abwed radii 
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Comsponding integrand for gm 

Figure 5.1: Typical behaviour of the integrand for the radiai phase space density of states 
factor. 

the lower limit being dinerent bom O. This lower b i t  springs out of the modeling of 
the mass distribution by finite size masses. At small radius, the quality of the modeling 
degrades when the number of particles within a given radius becornes negligible compared 
with the number of particles in the halo. Because of the degradation of the quality of 
the modeiïng , thk dehition induces a cut off in the potentiai energy which tends to O 
at the origin, even in cases where the theoretical potentid energy should diverge. Those 
boundaries are set by the need for the square root argument in the integral of Eq45.3) 
to be strictIy positive at 6xed E: 

the integration corresponds to finding the area between the two boundaries and the X-axis 
and the curve (or integrand) 

which typically has an asymptote at each boundary (see figure 5.1). 

Phase space factor in isotropic orbits If the orbits depart fiom radial idd l  but 
the velocity distribution is isotropic with respect to the centre of the halo, Henriksen & 



Figure 5.2: Typical behaviour of the integrand for the isotropie phase space density of 
states hctor. 

Widrow [44] have shown that an equilibrium state would admit a PDF depending ody 
on the energy. The phase space factor then reads 

but the integration over the anguiar momentum can be performed analytidy. The 
maximum value for anguiar momentum is i m p d  by the condition that the square root 
in the integrand keeps a positive argument. Thus the anguiar momentum can onIy reach 
up to j L  = 2 ( E  - W+(X))X2 at fixed E and X. The phase factor then yields 

which integrand is better behaved than in the radiai case since no ixjymptotes are present 
here (see figure 5.2). 

Phase space factor in anisotropic orbits Even though the anisotropic case was not 
developed in the present work, thought w a  given to its requirements for PDF measure- 
ments. This may aUow for fast devdopments of anisotropic, spher idy  symmetrïc PDF 
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measurements in the near future. In this case, F=F(E j2) so the approximations made 
have to be resiricted by weaker assumptions: the mas distribution can be rewritten 

Thus, around E = & and j = ja, assuming that ~ F ( E ,  j2 )  1 y varies slowly with E and 
j, and writing again the phase space factor g(E) = 2 F, one can integrate over E and 
j2 by Rolle's (or mean value) theorem 

The phase space factor then becornes 

and again the integrand diverges on the boundaries in a fashion simiiar to the radial case, 
at fixeci E and j2 (refer to figure 5.1). 

Because of the double variabIe dependence of the measurements, each measurement 
implies that a smder  number of partides has been used than for the single variable cases, 
leading to mass resolution problems. 

indeed, simulations mode1 a continuous mass distribution in phase space with a dis- 
crete set of point particles by having each of them represent a s m d  density patch. Liou- 
ville's Theorem tells us that the evolution of the system should conserve the phase space 
volume of those patches but certainiy not their shape. Evolution should then deform 
those patches so trying to hold on to the original t h g  is not a practicd method. The 
measurements done then s u p h p o s e  on the phase space another tiling of patches con+ 
sponding to the double variable mean field approximation region A.EAj2 (see figure 5.3). 
If those new patches are iarge enough compared to the discretisation ones, the measum 
ment behaves as if the modei distribution was continuous. If its size starts to compare 
with the discretisation patches, the measurement becornes poor and unreliable. 

5.1.2 Models' predictions 

For each of the three symmetries discussed above, some models of static equilibriurn can 
yield predictions for th& meammnents. Henriksen & Widrow [q made predictions 
on self-simiiar static models that can be appIied here: static states can be seen as end 
products of the self-sirnilar evolution for which the transition to virialisation seems to 
conserve their main features. 
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ïïüiigs of mnss disuibution modtiing and PDF mrasurcmcnt 

Figure 5.3: The regular outer boundaries of the diagram represent the PDF measurement 
tiling, the inner boundaries represent the tiiing fiom the mass distniution resolution de- 
formed by the Liouville flow. Because of the low number of mass particles in this particular 
example, a similar configuration should yield a poor and unreliable PDF measurement. 
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In the pure radiai case, they found a density profile and distribution function that are 
oniy functions respectively of radius and specific energy in the form: 

which is also obtained in their dynamical exploration of the radial coilapse in [42], al- 
though their meaaurement of the PDF only spam a d&e in energy. 

Another radial equilibrium system appears in Binney & Tremaine [87] p281, which is 
improperly qualifieci as the only one in this symmetry (the HW self-similar system being 
another one), is the Fridman-Polyachenko system. It foilows 

where Eo is the minimum s p d c  energy a particle can have. Because this system's 
dependence on E is different than the power law form expected in measurements on the 
SSIM, it was eventually not used for calibratioos of the measuring code. AU in ail, it seems 
that the Ridman-Polyachenko system 6.h the &/a = 1 gap left in the static Henriksen 
k Wiàrow continuum of solutions by th& choice of 6 (Jmg5 = -&aith 6 and a 6om 
our present choice of vaIues: it appears then that 6/a = 1 cannot be treated by HW95's 
choice since it corresponds to bWss = oo). 

In the isotropic case, polytropa yield a simple example of PDF, in particular, the 
Plummer's spherical modei. Rasio et al. 1991 use that polytrope in terms of the density 
and distribution function to te& th& pure phase space approach to spherical collapse 
PDF evolution, Binney & Tremaine [87] descriie Plummer's model as a polytrope with 
index n=5: 

This model was used to calibrate the measurement code for isotropic systems. Hennk- 
sen & Widrow's self-sîmiiar static solutions aIso wnstitute an isotropic solution of the 
following fonn 

za 
p a r-a  

36-0 , 
P(E) a (-E)-  

but an isotropic velocity distn'bution was not set up (only an isotropic angular momentum 
distribution was implernented) . 
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The anisotropic case leads Henriksen & W i d m  [44] to predict a distribution iunction 
of the form 

36-0 - 
F(E, j2) = j-=F(<) 

26-a 
= j -2  12Et6-11 

where P i s  an arbitrary iunction. As stated in the previous section, mmurements of this 
distribution function are subxuitted to the impoverishment of the statistics compared to 
the univariate measurements and were not implemented. 

5.1.3 The potential energy 

We have used the Chanàrasekhar defmition of potential energy throughout this work. 
The nature of our systerns and the stability of this definition justifies this choice: the 
systems we deal with are finite in size- They don't extend to infinity. They are also not 
isotated in general: there exists an essential mass flux through their boundary during 
the self-similar phase. These h o  properties generate non-vanishing surface terms in 
any calculations, morllfving the equivalences between classical definitions of the potential 
energy (W oc 1 I V ~ I * ,  f p @  or SprVO). Moreover, Binney & Tremaine [87], p68, 
already give an account of the potentiai energy of a spherically symmetric system in 
terms coming Erom the Chandrasekhar definition (Eq.(XIl)). That is why this work has 
used that definition, which with its gradient of the potential, makes the contributions to 
the potentiai fiam the outside sheiis Mnish in the potential energy. Therefore the s p d c  
potentiai energy of one s h d  in the systems is given by 

This form is also confirmeci a posteriori by the successfui reproductions of the Plumrner 
and Henriksen & Widrow modeIs as a calibration of the code (see figure 4.3). 

In addition we must take into account the fact that the systems studied involve a 
smoothuig length which sohns the potentid energy. Now the PDF neaurement is an 
independent snapshot of the state of the system, sa we can introduce the smoothing length 
at the level of the potentiai energy independently kom the dmcs of the simulation. 
This contrasts with the introduction of É, in the ddyamical integration, for which the 
force law has to derive from the same source as the potential energy in a consistent way. 
Introducing the smoothing length at the levet of the potential energy, the simplest way 
is to replace the square of the radius by a smwtbed radius as foilow: 
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PDF for the 
Plummer sphere 

Figure 5.4: Reproduction of Plummer's model PDF fiom its phase space (data kom 
Merrail, T., personal communication [100]). 

the m a s  tending to O at  the origin, the energy wiil do so at the same rate instead of with 
a power of X. 

5.1.4 Testing the methods 

In order to check the vaiidity of the measmements of subsquent systemls PDF, The 
method was confronteci with data generateà from well known and weii behaved models. 

The fht model to be reproduced was the PDF for a Plummer's sphere, since its phase 
factor, given in EQ.(5.4), is easier to compute because of its weii behaved integrand. We 
used also the simulation's f o m  for the smoothing of the potential (see figure 4.3), but the 
best results were obtained with the definition of the previous section (5.1.3). The phase 
space realisation of the Plummer model ww granted by my feiiow student, Tom Merraii 
[100]. Its resdts can be seen on figure 5.4. 

The second test concerneà the M y  radial infall PDF measurements. Its singular phase 
factor Eq.(5.3) is the o d y  difference in its caiculation i?om the isotropie measurement 
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PDF for the 
Henriksen 8 Widrow radial mode1 

IO-' 1 

I I  Illilll1l 

Figure 5.5: Reproduction of HWWs PDF h m  its Phase space (error bars are Poisson- 
Iike estimates) 
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ascertaineci with the Plummer's sphere results. As stated in section 5.1.2, we used the 
Henriksen & Widrow solution for testing the measurement code. A realisation of the phase 
space was generated fkom the model9s PDF to be reproduced by the code. It consisted 
of a random reaiisation of the discrete modeling of the phase space mass distribution 
using the Henriksen & Wiàrow solution PDF as a generating probabiity function, The 
PDF measurement program was then appiied on this distribution of particles in the 
same way as it can be appiied to snapshots of the integration of a modeled halo. Some 
difficulties, from mass resolution limitations (see figure 5.3 and corresponding discussion), 
were encountered in reproducing the PDF. At that point, a constant mass was adopted for 
any PDF measurement as a prefkrable contiguration, and a Poisson error was generated 
fiom the number of particles involwd in each energy bin (F(Ebi,) = F(Ebin)mcasured(l * 
$-)) where Nkn ïs the number of partides induded in the energy bin centered on Ehn. 
These difûculties with the mass resolution indicated that the anisotropic measurement 
would require simulations much heavier than the ones aleady available. The result of the 
radial Henriksen & Widrow motid's PDF reconstruction fiom its generated phase space 
can be seen on figure 5.5. 

The PDF mea9urement code was then considemi reliable enough to be used on the 
required phase space outputs kom simulations. 

5.2 Measurement of Probab'iity Distribution Functions: 
Refined results for the SSIM 

In their exploration of the SSIM h m  cosmological, non-self-similac initial conditions, 
Henriksen & Widrow [42] predicted that self-similarity would induce a PDF with power 
law dependence on the speciûc energy for the relaxed system. This wss verified by th& 
N-body simulations of the SSIM, but only crudely and over l e s  than a decade in energy. 

They argued that the transition betwen the quasi-stationary self-similar accretion 
phase that establishes itself shortly after the formation of an accretion core and the relaxed 
virialised phase of the system should be smooth enough to maintain the equilibrium 
configuration of the self simiiar modei in the end product of the evolution. 

They e v e n t d y  foUowed MTJ [60] in conjecturing a negative temperature exponential 
cut-off accompanying the power law in energy, to represent the eff't of incomplete - or 
violent -relaxation. To support this v h ,  they display a remnant correlation in energies 
between initial and final states of the system- 

This calls for more investigations on the PDF produced by SSIMs and on the energy 
correlation that can mark a relic of moderatdy (or not) violent relaxation. This section 
wiil explore the results of measurements made with the code described in the previous 
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section on an extension of the Henriksen & Widrow [421 model. Even though severai d u e s  
of the selfsimilarity index were exploreci, only two representative cases WU be presented, 
standing for their generic qualitative behaviour: as shown in Henriksen & Widrow, the 
initial density profile sets the value of the selt-similarity index and profiles shallower than 
r-2 Iead to the hai state attractor characterised with p a r-2, while steeper profiles 
lead to a continuum of attractors depending on initial primordial fluctuation power law 
index. in a first section, generai remarks surrounding the measurements of PDFs will be 
presented that are usehd for the interpretation of the red ts .  In a second section, the 
shaiiow and the steep case results will be presented, discussed and explaineci. Then the 
low energy cut off in the PDF wiu be interpreted and cohonted to some other authors' 
resdts. Eventually, a summary of this section's results WU be given. 

5.2.1 Preliminary remarks on the SSIM's PDF measurements, initial 
and potential energy and self-similar virial ratio 

remarks related the PDF measurements 

Measurements of the PDF over the self-sirnikir phase were performed on the SSIM. Since 
those include a binning of mass shek within ranges of specific energies, a Poisson type 
error m ascribed to each bin h m  the number of mass shella involved in the PDF evalu- 
ation. This Poisson type e m r  becornes large with more negative energies (se figure5.5). 
On another hand, the seIf-similaE phaae is a stationary state when expresseri with the use 
of self-similar variables. In order to reduce the enor and because of the stationary nature 
of self-similat physical quantities, which indudes the d e d  PDF, that PDF was averaged 
mer semal measurements at different epochs obtained from the part of the self-similiir 
phase for which it looked stationary. 

In addition, the evaluation of the p h  k t o r  has been seen as limited by the finite 
mass resolution (see section 5.1.1). Indeed, the potential energy measurement used in its 
evaluation may becurne questionable near the centre of the Mo,  a t  what may becorne 
the more negative merpies evaluation of g(E). Monitoring of the phase factor was then 
mûroreci to the PDF sa as to judge when the more negative energies PDF evaluation 
should not be trusted anymore. 

Accordii to the cosmological set up and measurement of energies used here (see 
sections 4.5.1 and 4.2.3) the Einstein-de Sitter background with a Hubble flow translates 
into a net energy coming ody h m  the primordial density perturbation- The initial 
self-simiiar specinc energy as a function of self similar radius can then be expressed as 
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Figure 5.6: The evolution of the Wial ratio with the concentration of initial halo 

with the cosmological Einstein-de Sitter set up equating the factors of kinetic and poten- 
tial terms in x:. Therefose, the initiai energy can be written 

In addition the real energy before sheli-crossing is conserved for each particle, This is 
because of spherical symmetry and Gaups theorem: before shell-cmsing, each spherical 
shell is in free faii under the influence of the mas inside its own radius, which is constant 
untii shells start crossing each other. 

Also, accordhg to the SSIM model's exploration by Henriksen & Widrow, an initial 
density contrast bp /pWgrand a X-€ sets the self similarity class for each shell at their 
turn-amund radius and tirne to the d u e  f = $ (1 + t) . This leads to a selEsimüar 
density profile 

which in turn yields a self-similar potential energy profüe (up to logarithmic corrections) 
of the form: 

W* a x2-'. (5.8) 

A trend in the self-similar virial ratio 

ExpIorations were performed for initiai density profile indices spanning over a full range 
(E E {1.01,1.25,1.5,1.9,2.1,2.5,2.9)), recaliing that this index is defineci by bp /pmFmnd a 
X-€. Typical representative for the shallow and the steep case were chosen respectively 
as E = 1.5 and E = 2.5. 
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An interesting result was obtained by monitoring the level of the viriai ratio during the 
quasi-equiiibrium self-simiiar phase: there seems to exist a trend wherein the initial halo 
with a more concentrated density distribution displays smailer kinetic to potential ratios 
(see figure 5.6). This rernains consistent with the fact that shallowd self-similar cores 
tend to be more stirred up by theirself-similar m a s  flux than their steepe$ counterparts, 
since they start with Iess mass in the centre and more accretion is to be made in order 
to absorb aii the sunounding halo. Thus we can expect that they will display a larger 
amount of kinetic energy, therefore a larger viriai ratio. The other remarkable r d t  of this 
observation is that the virialself-simiIar ratio does not seem to clearly tend to the isolated 
gravitationai equilibrium value of 1, distinguishing the isolated system equilibrium irom 
the infall-driven self-similar quasi-equilibrium. 

5.2.2 Typical Measurements of PDF, energy correlations and other dy- 
namical informations on the SSIM 

This section is divided accordhg to the separation by the density proue behaviour of 
Eq.(S.?):The first part is devoted to the dynamical informations characterishg the shallow 
initial density profile (E 5 2), and the second part to that of the steep initial profile (É > 2). 

The shallow initial density profile case 

Measurements of the PDF for the SSIM with any initial density profiles shaiiower than 
r'* yield qualitativeiy the same kind of resdts, detded hereafter for an initial density 
fluctuation on an Einstein-de Sitter background 6p/po a r-f with E = $. 

PDF and Phase Space factor The PDF was measured and fitted by a power 1aw 
with negative temperature cut off, as conjectured in Hennksen & Widrow [42] (F(E) a 

IEP e* to fit and check the value of the power of E in Henriksen & Widrods P(E) or 
L 

(El2 eaE). The cut off energy was then used to select a region where the power law w s  

fitted more precisely. This is shown in figure 5.7's upper and lower left panels respectively. 
The right panels display a higher resolution view in energies n i  the PDF and phase space 
factor g(E), respectively on the upper and Iower panel. The phae space density of state 
factor g(E) corresponds to the phase space volume associated with a given energy. At 
a given energy binning, it is inversely proportional to the PDF. Rom the scatter on 
the g(E) measurement at the more negative energies, a last statistical confidence level is 
determined, whichreftects the limitation induceà by finite mass resoIution on the accuracy 
of the measurement. This directly refiects on the PDF measurement but ailows for enough 

',than the isathermd initiai profile (see F i o r e  L Goldreich), 
',than the isothermd initiai profile (see Fiiimore k Goldreich), 
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Figure 5.7: PDF measurement averaged over the self-similar phase and evaluation of the 
lztst confidence level in energies fiom the phase space factor 

energy range of confidence to confirm the evidence for a cut off in the PDF at the more 
negative energies. The nature of this cut off, though, is not clearly exponential, as  can 
be seen in figure 5.7's upper left panel. On another hand, its lower left panel displays a 
clear power law dependence beyond the cut off region and within the reiaxed region, over 
the range of a full decade. It is to be noted that the power law fit on the relaxed region 
is doser to the predicted value of 0.5 fiom Henriksen & Widrow than the fit including 
the non-reiaxed region. 

Energy correlations and potential energy The relaxed region corresponds to the 
energy range where the phase mixing streams from the infaii have been washed out by 
the gravitational instability. Some violent relâication is caused here in the system and 
the instability in this region particular is the mechanisrn by which it is expresseci. This 
region is apparent in phase space (figure 5.9's lower left panel) by exclusion of the margin 
of recently incorporated sheiis which retain their Lagrange-Liouville4 stream coherence. 
This margin of sheiis dehes the relaxation region, where the phase space instabiiity 
is brewing the seself-similarity of the systemSome violent relaxation is caused here in 
the system and the instability in this region is the particvlar mechanisni by which it is 

'Lagrang~~iouoille stream: Lagrangian particies gathered in a Liouville phase space flow- 
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Figure 5.8: Energy correlation between initiai and b a l  times at the beginning (upper left 
panel) and at the end (upper right panel) of the stable PDF portion of the self-similar 
phase; the potentiai energy profile is Uustrative of the phase factor calculation 

expresseci. It can be also identifid in the k t  hump at high energy in the PDF because 
of the similarity between characteristics, reproduced by the Lagrange-Liouville streams, 
and energy contours (see the characteristics of EqJ3.29) in section 3.1.2). Those streams 
thereiore represent an accumulation region in energy space before they get spread in the 
relaxed core. In the energy correlation diagrams (figure 5.8's upper panels) the relaxed 
region is characterised as the range of initial energies for which a correlated scatter of 
Enai energies appears avaiiable but where the correlation is not too strong (contiguous 
initial energy sheiis do not find their final energy contiguous as weii). In contrat: the 
relaxation region can be characteriseci in these diagrams by its strong local (sheil to shell) 
contiguous correlation coupled with the instability markd by the strong wiggling of the 
correlation line thus drawn 

In the left panei (which corresponds to the epoch of beginning of stable PDF in the 
self-simdar phase) the stream of incoming particles is stiii evident as the vertical tail 
of correlated energies on the upper part of the diagram. i3ecause initiai energies are 
rnonotonic in radius (see Eq.(5.6)), and consented until shell-crossing, it is possible to 
ident* the shells dong the Lagrangian-LiouviUe stream by their initiai energies. Then, 
ioUowUig the stream down in the upper part of the diagrams both right and left, the 
relaxation of the shells that have just M e n  into the core takes the form of the strong 
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wiggling of the correlation h e  in a horizontal smear in the upper parts of the upper 
panels of figure 5.8. 

Despite the scattering of energies, there is an obvious correlation qua1 to that the 
spread of final energies seem to concentrate not arbitrarily far &om the initial ones. 
Compared with the correlation obtained by Henriksen and Widrow [42], marking that 
violent relaxation is moderate. In addition, the sharp cut off in energy is apparent in the 
correlation diagrams as an accumulation boundary at lower 6nai energy (highest negative 
energy) in the Ieft, bottom part of the top panels of figure 5.8. This is most visible in the 
right panel. 

According to Eq.(5.8), in the shallow case characterised by a final p = 2, the potential 
energy profile shouid be constant up to logarithmic corrections. Apart for the central 
innermost radius region which is discussed in section 5.1.1, the lower panel of figure 
5.8 seems to agree well. This panel is presented as an illustration of the process of 
calculation, detailed in section 5.1.1 and exemplified in figure 5.1, for a valid g(E) : the 
last statistical confidence level derived fiom the scattering in figure 5.7's lower right panel 
seem to coincide with the approach of the energy level E, involved through Eq45.3) in 
the caiculation of g(E), towards the almost constant value of the potentiai energy, The 
scatter can then be attributed to the departure of W4 from its constant value because of 
the finite mass resolution involved in its determination: foiiowing figure 5.1, the &e 
be- Ws and E = cst is getting so smaü compared to l a s  negative energies evaluations 
that the resuiting integration d a c e  for g(E) is blowïng up, getting more sensitive to 
inaccuracies in the potential energy ( d e r  to figure 5.1). 

Virial ratio, phase space and density profile The wial ratio is given in the upper 
left panel of figure 5.9 and confirms the reproduction of Henriksen & Widrow's SSIM 
cesuits. Note that the use of constant mass shells in order to improve the PDF measure- 
ments Ieads to a coarser mass resolution than with unequal mass sh& in the centrai part 
of the haIo, which also corresponds to the set of shelis that foms the core or ûrst enters it. 
In Hentiksen & Widrow, the SSIM was modeled with shells of unequai masses, regularly 
carved out of the cosrnologicai background and which baundaries were then displ& 
to mode1 the initiai mass profle of a primordial power law mass fluctuation (see section 
4.5.1's fkst paragraph). Using the same method, or an even better one not requiring an 
approximate mass inversion (section 4.5.1's second paragraph), the quasi-equiliirium self 
similac state can be achieved almost as soon as the core forms ( s e  figure 4.1). However, 
with q u a i  m a s  shells, this mnnot be achieved as gracefdy- Comparatively with unequal 
shell set ups, the constant mas innermost particles wiii have a much larger seIf-similar 
mas than their unequai mass counterparts. This results in a poor modeling of the the+ 
retical constant self-similar mass flux needed to maintain self-similarity for the accretion 
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Figure 5.9: Via1 ratio, Phase Space diagram and Density profile Diagrams at the end 
of the self similar phase for the e = $ case 

of innermost sh& into the core, each shell acting almost as an overdensity perturbation 
to the previously established core and throwing it out of self-similar equilibrium until it 
is digested or the next perturbation enters the core (for a more detailed discussion of 
the dect  of overdensity perturbations, refer to section 5.4.2 bellow). This conjecture 
was successfully tested by measuring the t h e  at which a s h d  of the same mass as for 
the quai mass setting, but evolving in an unequal mass construction of the same initial 
density profile, was entering the core of the halo. This tirne, referred to as TEqudmaJs, 
corresponds indeed to an epoch when the virial ratio, which marks the dynamical sta- 
bility of the system, is weii established at its self-similar value (here TEqd mars = 7.33). 
In fact that ratio seerns stable a little before TEwd That can be accounted for by 
the fact that at these earlier stages, the self-similar masses start to be small enough to 
mode1 the continuous flux, thanks to the exponentiaily decreasing scaie factor for masses 
(recall Mss = ~ , ~ e ' = ,  where p = 36 - 2a is the mass cofactor in the rescaling algebra 
for which G is kept constant). 

The phase space diagram (figure 5.9's lower left panel) reflects Henriksen & Widrow's 
combination of phase mixing and instability which displays this almost continuous phase 
space distribution of mass particles. 

The density profile of the SSIM is also successfuliy reproduced on figure 5.9's right 
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panels for this shallow case where the theoretid logarithmic slope is -2: the upper right 
panel displays power law fits which hint that our simulations are accurately reproducing 
the SSIM not only above but also inside the smoothing length Indeed, a simulation 
involving a smaiier smoothing length, following the guidelines for integration reliability 
from Monte Car10 simulations presented in figure 4.5, was performed in the context of 
angular momentum implementation. Tts results show that the smoothing length is not 
a limit to the validity of the simulation's density profile, but rather that it is limited by 
the mass resolution. This wiii be discussed in more detail in section 6.2.3, devoted to 
this specific, smaller smoothing length, angular momentum simulation. The lower right 
panel of figure 5.9 presents as a cornparison a power iaw fit over both ranges (beiiow and 
above the smoothing length) together with the best possible fit using the NFW profile. 
Of course it is not possible to obtain a satisfactory NFW fit. Al power law fits are made 
inside the self-similar core. This is ensured by limiting the fitting range to the density 
profile within regions inside the radius of the core as displayed in the phase space diagram. 

The steep initial density prome case 

Any member of the continuum of attractors for the SSIM, for which the initial density 
profile is steeper than r-2, even though each initial profile generates a different attractor, 
yields qualitatively the same kind of resdts. Therefore measurements of the PDF for an 
initial density fluctuation on an Einstein-de Sitter background 6p/po a r-C with E = 5 
are used here as a generic exponent of the SSIM's behaviour. 

PDF and Phase Space factor In the steep initial density profiie case, evidence for 
the iow energy cut off in the PDF is not decisive. h m  a superficial examination of figure 
5.10's left panels, there is an indication of a cut off in the PDF at lowest energies. But 
the reliability of the measurements in that range is subject to the phase space volume 
factor behaviour over that range. Indeed, figure 5.10's lower left panel shows that the 
possible cut off is deep inside a zone of dubious mwurementa fcom the phase factor g(E).  
A higher energy resolution investigation of the end region is provided for the PDF and 
phase factor respectively in the upper and bwer right panels of figure 5.10. The lower 
panel is used to deiine the 1st statisticai confidence energy levei, which in turn is used 
in upper leR panel to define the fitting region for the thud powet law- The first two ones 
are fitting in r d ,  dashed line and green, long dashed line, respedively the whole range 
of energies and the inner range which excludes the non relaxed region. The fit made over 
the whole well behaved range of the phase factor (above the last statistical coddence 
level, over two decades) is the closest to the predicted power law of 0.5, although it is 
clear that the relaxed, g(E)-well behaved region admits a steeper power law. Here the 
relaxing region seems to gather a larger population as can be traced in the phase space 
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Figure 5.10: PDF measurement averaged over the self-siniilar phase in the steep initial 
density profile conûguration and eduation of the Iast confidence level in energies hom 
the phase space factor 

diagram (lower left panel, figure 5.12) and its importance depletes as  much the relaxed 
halo. The steep initiai profle is more concentrateci, so the already formed core is able to 
stk up the freshly incoming particles more eficiently, but these sheiis eventuaiiy would 
settle down in the cote once the system virialises. The PDF and phase! factor have been 
presented with their Poisson error bars reduced kom the averaging process. Their almost 
invisible size lead us to discard them form other PDF plots (e.g. figure 5.7). 

Energy correlations and patentid energy The relaxed region is also detected in 
the energy correlation diagrama for the steep case. There is no hndamental difierence in 
their aspect,apart from a tighter correlation visible in the steep case The initiai energies 
trace again the Lagrangian-Liouville stream of shells. Indeed, the stream of incoming 
particles is maaifest in figure 5.11's upper panels, as the vertical tail on the upper part 
of the diagram. 

The relaxation pmcess can again be seen in the shells just fden  into the cote in the 
strong wiggiing of the correlation line in a horizontal smear. Nevertheless, both at the 
beginning and at the end of the stable self-simiIar phase (upper left and right panels of 
figure 5-11), the spread of finai energies of the relaxed core seems to concentrate around 
initial real energies, indicating energy correlation, thus that the qstem experiences mod- 



Figure 5.11: Energy correlation between initial and final times at the beginning (upper 
leR panel) and at the end (upper right panel) of the stable PDF portion of the self- 
s i d a r  phase; the potential energy profle is given in logarithmic scale for cornparison 
with Eq.(5.8) and is iiiustrative of the phase factor calculation 
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Figure 5.12: Vinal ratio, Phase Space diagram and Density profile Diagrams at the end 
of the self similar phrise for the E = $ case (TE& = 10.69) 

eration in its violent relaxation, as in Henriksen & Widrow [42]. Furthermore, the same 
display of a more negative energy cut off at a h e d  d u e  of the final energy is visible in 
the correlation diagrams as for the shalIow initial profile case. 

Figure 5.11's lower panel presents the core's potential energy in logarithrnic presen- 
tation, with a fit using the theoretical dope of Eq.(5.8) in the studied case. The fit is 
good in the relaxed region, exduding the central, innermost radius region as discussed in 
section 5.1.1. The last statistical confidence level h m  figure 5.7's g(E)  is indicated here 
to show that it again corresponds to levels yielding integration surfixes coming from the 
inverse of a very s m d  region which boundaries may s d e r  fiom numerical noise: when 
the energy level E gets too close to the minimum vatue of potentiai energy possible, vari- 
ations of the surface between E = cst and the W* cuve caused by the curve's departure 
fiom its theoretical value, when that surface becomes tiny, are inducing noise in g(E)  
(refer again to figure 5.1). 

V i a 1  ratio, phase space and density prosle The state of gravitationai equiiibrium 
reflected by the vina1 ratio on figure 5.12's upper Ieft panel is again confirming Henriksen 
& Widrow's resdts on the quasi-static self-similar phase experienced by the SSIM. As 
discussed in paragraph 5.2.2, the initiai deiay in estabIishing the self-similar viriai ratio 
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can be undentood in terms of the iil-appropriate equal mass setting with respect to early 
central mass resolution. The time for the equal mass characteristic shell to enter the core 
matches again that at  which the system has reached dynamical stability as measured 
by the virial ratio, In paraüel to the shdow case of paragraph 5.2.2, stability can be 
considered to be achieved apprwimately a little earlier than TEMmass, and this earlier 
stability allows for the same explanations as in paragraph 5.2.2 to apply. 

In this case, the phase space diagram (figure 5.12's lower left panel) appears more 
relaxed (its phase space winding stream structure being more washed out by the insta- 
bility) than in the shailow case (figure 5.9's lower left panel) in its innermost regions. 
Though, its jnstability region, where the shells more tecently incorporated in the core 
are undertaking violent relaxation instabilities, seems more pronounceci, as rdected in 
the PDF (8gure 5.10's left panels). This is probably caused by the fact that the steep 
ness of the density profile leads most of the mass to start very close to the centre and 
therefore to get included quickly into the core, leaving a more tenuous stream for late 
incoming particles. These particles thus feel less swung back inwards to the centre by 
the weight of the very latest incorporated particles from the incoming stream, spending 
more time in the relaxation region. The importance of this relaxation region is related to 
the establishment of the density profile and its validity inside the smoothing length and 
wiU be discussed in more detail in section 6.2.3. The aspect of the phase space is again 
conforming to its study by Henriksen & Widrow. 

The theoretical dope of the density profile in this steep case is given for the self- 
similar relaxed density according to section 5.2.1 by p = y = 2.14. Figure 5.12's right 
panels presents the cunent work's evaiuation, which seems to follow only approximately 
the prediction. Nevertheless, the tiny dilference of dope (about +0.07) and the noise in 
the relaxing region can account for that discrepancy above the smoothing length, while 
the cüfEculty to decide on the fiattening radius caused mainly by the mass resolution 
can explain the discrepancy of the region inside of the smoothing length. Indeed, if one 
should level off the noise peaks in the relaxhg region, the dects  would seem to be a 
slight decrease of the negative dope of the power law fit. The Iower right panel in figure 
5.12 displays the pawer law fit over both ranges around the smoothing length, and shows 
again the difüdty associated with an NEW fit to the SSIM. Again ali power law fits 
were Iimited to the core region with he help of the phase space diagram. 

5.2.3 Interpretation of the cut off at low energy in the PDF 

To this point, we have reobtained the phase space, density profile, vinai evolution and 
energy cotrelation diagrams fiom Henrlksen & Widrow [42] and have enhanced their 
r d t s  on the PDF with numerical confirmation of the form of the distriïution. 
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The PDF rneasurements have shown, at least for the sh%w initiai densiiq perturba- 
tion case, the existence of a cut off at low energy. The attraction of the PDF formalism 
to the understanding of Large Scde Structure formation studies in the form of a generic 
dark matter halo is the insight it brings in the dynamia of the path such a system takes 
to a static or quasi static state in the simplest temu possible, sifting d m  the details 
of the system into its essential elements. For an isolated systern, the PDF will depend 
only on the integrais of motion, which contain the essent ial dynamical informat ion on the 
state of the system. For a forming dark matter halo, the picture is more complex since 
it is accreting or merging with neighbouring haloes. Studies iike Henriksen & Widraw's 
[42] have shown that, if the secondary accretion mechanism is the main tool for dark halo 
formation, it wili settle into a self-similar quasi-static accretion mode, which betrays a 
very pecuiiar yet generic mode of relaxation for such a halo. These studies indicate that 
relaxation of such a system is viohnt enough to wasb out the h e r  phase space structures 
but moderate enough to retain some memory of initial conditions of the system. They 
also conjectured the existence of an exponential cut off in the system's PDF, characteris- 
ing this moderately violent relaxation. In addition, the self-similar quasi-static mode of 
relaxation is characterised in the system's PDF by its energy power law dependence. 
This work bas confhed those studies in their results in every point. The energy 

correlations Mply a moderateiy violent rehxation, as found in Henriksen & Widrow. 
The energy power law dependence of the PDF is confirmeci over a decade or more. And 
the existence of a cut off at  low energy has b e n  shown, at least for the shallow initiai 
density profle case. 

The cut off in the shaiiow case 

To understand the establishment of the cut off for the shdow case, one may use the initial 
energy radial distriiu tion. Indeed, Eq. (5.6) indimtes that initiai energy is monotonicaiiy 
decreasing with radius(when considering the delbition used for the PDF caicuiations). 
Since the cobpse occm fint with innermost shells, the tumaround radius progressing 
inside out, the iast particles to fhii in the system at the end of the self similar phase have 
the m& negative initial energies. Even if the finite size of the simulated halo is primarily a 
consequeme of 6nite computing power, it also represents the finite cosmologicai accretion 
basin avaiiable for each primordial fluctuation, and so is a r d  &&- The interruption of 
the flow of partides of lower and Iower energyl imposed by the existence of neighbourïng 
accretion basm for other primordial density fluctuations, appears then as the ruah factor 
in the establishment of the PDF low energy cut off. However, this picture is ody  providing 
a limit to the pool of initial energies a d b l e  and the energy 'processing' observed in 
the energy correiation diagrams (top panels, figure 5.8) is clearly taking a strong role in 
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maintaining the sharpness of the cut off. 

The  cut off in the  steep case 

Since the evidence presented here are not conclusive about the low energy cut off in 
the PDF for the steep initial density profle cases, the discussion on its establishment 
can only be conditional (linked with the reality of the cut off). Supposing that the cut 
off indeed does exist, its establishment cannot proceed from the same &écts as for the 
shallow case: in the steep case, initial lowest energies are incorporated in the system at 
the beginning of its evolution because they correspond to the innermost radial part of the 
collapsing halo. The limitation in the lower energies achieved in the simulation are coming 
from, on one hand, the finite mass remlution at tbe center, and on the other hand, fiom 
the regularisation around the centre, which prevents infinite theoretical central density 
to be achieved. Even though on a practical level the fmt limitation does indeed have 
an effect, increasing the rnass resolution would change the cut off energy level. On the 
contrary, the m n d  limitation is independent of mass resolution. Its physical justification 
can be seen as coming fiom the inescapable d e  limitation on the central primordial 
density peak resolution, an o@ring of Heisenberg's uncertxinty principle which, in the 
infiationary mode1 of the primordial density fluctuation formation, is zoomed together 
with quantum fluctuatious during the inflationary phase. However, its irnplementation 
here wmes îiom an arbitrarily ch- central scale. in addition, the maintenance of a 
sharp cut off would also be subject to the 'processhg' of energies in the relaxation region. 
The energy correlation diagrams (top panels, figure 5.11) are hinting at traces of such a 
cut off after relaxation. 

Other cut offs and PDFs 

This work is not alone in dealing with a cut off at lower energy in the PDF of self- 
gravitating systems. In early works on self-gravitating star systems using the Collision- 
less Boltzmann's Equation coupled with Poisson fieId equation, Hofian et al. 79 El041 
duectly evolved distribution function's collapses to equiliïbrium without N-body simula- 
tion and found the exponential cut off of a Maxweliian b a l  PDFs- More recently the 
same methods were extended by Rasio et al. 89 [99] with initial conditions of pertwbed 
Pl~~~l l~ ler 's  sphere. The non -y density profile of the Plummer polytrope induces an 
&edive energy cut off in the PDF, co& in the Liouville 0ow. But the N-body 
results of Hanyu & Habe 00 [101] display very good indications of a cosmological halo ex- 
bibiting a low energy cut-aff in its PDF, Nevertheiess, cornparison of al1 these modeis with 
the SSIM are subject to the dïfberence in anguiar momentum treatment: in this chapter, 
the SSIM does not include any angular momentum, whereas these other approaches aii 
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include isotropie velocity dispersions. Other works discussing the cut off are using the 
presence of a black hole as a trigger for its population inversion, but this will be discussed 
in the section on the implementation of a central black hole in the SSIM (section 6.4). 

5.2.4 Siimmary of the resuits 

In conclusion to this section, it appears that this work was successful in reproducing 
Henriksen & Widrow's results with dehi te  improvements. The power iaw in the PDF 
was succashily confirmeci aver one or more decades, with the small reservations that, in 
the steep initiai density profile case, the relaxation region should be taken into account. 
Eventuaily, a new result codhing the existence of a Iow energy cut off in the PDF 
was obtained in the shaüow initiai density profile case, and indication of its e t e n c e  
in the steep case. A prelimïnary r d t  was also discovered in the dependence in the 
seif-sirnilarity cIass of the value of the virial ratio during the self-similar infidi phase, 

5.3 The establishment and integration of an overdensity 
perturbation: Preliminary definitions, cdibrations 

and set up 

",..And now for something completely 
different ." 

The modeling of the eflect of repeated rnergers on a CDM halo in the fiame of the 
SSIM can be performed by adding on the edges of the core or halo a region of sheils 
that is made overdense with respect to the original halo (cosmological background with a 
centrai perturbation). This is perfomed by mIving the halo first to obtain a self-similar 
quasi-equilibrium. 

5.3.1 Initial situations of the core and overdensity 

The first aim of the merger modeling within the SSIM is to set the conditions for which 
the halo is sufEciently ewlved to have developed into its seIf-similar infall phase. Then 
a prescription has to circumscribe the nature of the overdensity that d mage with the 
self-similar system (or m e )  using significant parameters. EventuaUy, the system wii l  be 
prepared and receive the chosen implementation of that overdensity before resuming its 
evolution. 
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The halo in which the overdensity is deposited 

In order to decide when to intemtpt the preliminary evolution of the halo, the definition 
of what is in the self-simiiar core is needed- Rom that knowledge, the mass fraction of the 
core compared to the totai halo simuiated, Mfcore, can be measured. The value of that 
fraction for which the halo can be considered sufficiently evolved into its self-similar W 
phase will be retained. It was determineci in an initial run for which initial conditions 
involved equal s h d  spacing. That way, the mass resolution dowed for the self-similar 
phase to establish itself very rapidly. Hence, the choice of the size of the core at the 
laying of the overdensity was made so as to Ieave a large enough halo to yield sufIicient 
accretion t h e .  

Since the self-similar quasi-equilibrium was re-obtained after some tirne, but not for 
aii overdensities for lack of halo infall tirne, some tuning of the extent of the halo waç 

performed and 10 000 sheiis m e  settled on. 
To d e h e  the system we used the Lagrangian index of the last particle to cross the 

centre of the core (se Eq.(4.2)). Nevertheless, this does not reflect entirely the grav- 
itational scope of the system: inward going sheiis which are not yet in the core from 
the previous definition cm stiii act on core sh& if they are located under the radially 
outermost core shd .  Thus a fully &&ive description of the system requires the addi- 
tion of that outermost sheii's Lagrangian index. That task entails the establishment of 
the bijection between Lagrangian indices and radiaiiy ordered indices of the sheiis, noted 
in& : or&ed ++ in&(irdly = iligrongion- Henceforth, the Lagrangian 
index of the outermost core s h d  can be calculated aocording to 

Figure 5.13 iiiustrates how the are and outermost core particies are defined, as weli 
as how the evolution of the initial halo leads to a pause: the core is defined by the 
Lagrangian index of the latest partide that nossed the center of the halo for the 6rst 
time (see also figure 4.2). The outennost mre particie is shown on figure 5.13 as that which 
gets the largest radius m d  within core particies. This figure also shows at a given 
tirne the radius unda which the cumulateci mass sums up to M f core.iM(in&(n)) = 
Mfcore.Mw, where MWis the totai mass of he halo sirnulated. The pause in the 
evolution of the initiai halo is declami when these two radii (that of the core and the one 
just d&ed with M f m e )  cross for the k t  tirne. They do so when the fraction Mfcore 
of the simulateci initial halo is included in the self-similar core. 



Figure 5.13: Definition of the gravitationai core boundary hom its Lagrangian d& 

initial conditions of the overdensity 

Once the halo presents a self-similar core, the overdensity can be estabiished. F h t ,  its 
location is set in the same terms as the test for pausing the evolution of the primordial 
system: the fraction of mass of the initial halo inside of all overdensity shells. This is the 
part of the halo which gravity is felt throughout the overdensity. That gives the position 
of the inner sheli of the satellite modei. 

Then the shape of the density profile over the range of the overdensity is dehed  by 
two parameters and the choie of adding the central part of a gaupian density distribution 
on top of the halo mass distn'bution at the location of the overdensity: the ratios of the 
masi and average density of the overdensity wer its parent core, noted and Dr,&. 
These input parameters share the same dehitions as those measured below. Placing the 
m d e n s i t y  far from the core dowed for evolution to take place, but it proved profitable 
to keep more control on the finai input parameters of the overdensity enteAng the core 
to create it close to the aire. 

The ratio of the two parameten, Mrdo/Dratio, dehes  the volume ratios between the 
core and the overdensity. Thus the radial range that will be included in the overdensity is 
fully determined. With Ad,&, the target mass of the satellite can be compared to that of 
the preexisting halo. Sinœ we are interestecl only in adding mass on top of the halo in the 
range of the overdensity, this target mass must be larger than that of the preexisting halo 
over the same region. Otherwise the parameters have to be changed. AU the gaupian 
density distribution constants can be derived fiom those primary parameters, with some 
general considerations such as how negligible is a given integer or how centered is the 
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Figure 5.14: Subdivision of sheiis in the overdensity 

We are also interested in foiiowing the shells belonging to the overdensity. To r e h e  
the resolution of the sirnuiations over the range of the initial overdensity, the preexisting 
halo is fitted so as to subdivide evenly each of its original sheU (see figure 5.14). Then the 
desired density proHe is obtained by adding to the fits the chosen @ian distribution. 

Al1 the procedures on the core and the initiai overdensity debitions mentioned above 
are detailed with more precision in appendix F to aüow for reproducibility of the numericd 
experiments. 

5.3.2 Coherence of overdensity 

We want to measure the cohesiveness of the overdensity 's structure. We k t  need to d&e 
the overdensity with tirne. Then we wiii measure the coherence through two opposing 
tendencies: the tidal dimption exerted by the halo on the overdensity and the biiding 
acceleration of the overdensity on itself. 

Definition of overdensity region 

We d e h e  the overdensity tegion as being the set of aU sheUs originaliy in the overdensity 
added with the ones that have been accreted until it reached the edge of the core (or a 
definite very small distance to the tore)- 
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Figure 5.15: Phase space view of evolved overdensity 

The accretion of shelis by the overdensity can be observed as a characteristic winding 
of the phase space sheet, simiiar to the one of the core (e.g. in sketch 5.15, also seen 
in figure 3 of S iv ie  et d. 97 [51], ot in the example phase space evolved overdensity 
presented in figure 5.16). This winding accretion of the phase space sheet foilows the 
influence of the m a s  distribution shift induced by the overdensity: because of the extra 
mass at the locus of the overdensity, the mass inside each shed of that overdensity grows 
faster with inming  radius than if the halo was unperturbed. Under the gravity of this 
growing mass excess, each sheii is falling faster than it would have without overdensity- 
Thus outer sheUs muid tend to fd taster than inner shells on the overdensity range, 
catching up with them until they cross around the centre of the overdensiw and leading 
to the winding o b s m d ,  iike a wave breaking o r  a beach. As for the rest of the halo 
which envehpes the whole of the overdensity, it behaves accordhg to the inside halo 
being heavier. To summarise the mnsequences of the overdensity on the rest of the infail, 
its d i t  on the haIo outside of the overdensity is to shift the phase space sheet towards 
lower velocities. That translates into the shells near the inner edge of the overdensity 
falling slower towards the mre than those inside of the overdensity region, and the shells 
near the outer edge of the overdensity h i h g  faster towards the core than the strearn 
below the overdensity, inducing this winding e E i t  on the overàensity and the shifting on 
the p h  space sheet (see figure 5.16). 

The accretion of new shek into the overdensity as illustrateci in the sketch 5.15 is 
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Phase Space with OD 

Figure 5.16: Example of simulation's evolved overdensiQ. The acmted sheiis appear as 
more spced on the Lagrangian-Liouville Stream ( a h  referred tu as phase space sheet) 
than the original overdensity ones. Ail the indicated parameters point to one of the cases 
which results wiil be given in section 5.4. 

accounted for through a redeanition of the edges of the accreting region. This redefinition 
procedure makes use of the LagrangeLiouville stream to calculate new Lagrangian indices 
for the e d p  & and ibcsin. Density caustics frame the l h i t s  of the accreted region and 
point towards the new edges without ambiguity. Figure 5.15 is showing the construction 
of such new edges and figure 5.16 illustrates hcnv it worked on a real overdensity. 

We stop the evolution of the overdensity when it cornes too close to the core. That 
is ensurd by a U d g  oniy one more timestep ewlution of the overdensity once its lower 
edge has fallen towards the core at a distance less than its width from the outer edge of 
the core as illustrateci in figure 5.17. 

It c m  be noted that, at t h  stage, the core and overdensity strongly resemble one 
anotherr the ody topological diff~mce between the two cornes from the need for the 
winding of the core to be *lit and mirrored in the middle in order to accommodate 
for the non existence of negative radii- Figure 1 of Sikivie & Ipser 92 [IO31 illustrates 
this point by showing an artScid representation of the phase space core collapse which 
includes a mirror image in negative radü of the halo. Their picture is remarkably similar 
to otx figure 5.15, the satellite growth in figure 3 of Sikivie et al. 97 [51], or ourrs in figure 
5.16. 
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Figure 5.17: End of overdensity evolution test 

Figure 5.17 iilustrates the definition of the overdensity at core entry. 

Density and Mass ratios 

The onginai motivation for this modeling of repeated merger through overdensity shells 
aimed at comparing the Syer & White [33] model with the e f f i  of a perturbation of a 
kind similar to a merger on the smooth SSIM- Indeed, the Syer & White model advocates 
the dynarnical ongin of a universai density profde through non smooth repeated mergers, 
while the SSIM featutes a continuous stream of smoothly infalling mass. 

Their argument can be summarised as foiiow: primordial cold dark matter Iiaioes 
have a characteristic density and a chamteristic radius respectively decsreasing and in- 
creasing with halo mas. When merging, a sateiiite halo can either have a higher or 
lower characteristic density at its characteristic radius than its parent halo at the same 
radius. Dynamitai tkiction wiii make the satellite sink towards the centre of its parent 
halo. Tidal stripping will disrupt the satellite's outer envelopes until its average density 
is higher than the parent halo at the satellite's remaining radius or it is cornpletdy dis- 
rupted. The distribution of the stripped material follows the parent-satellite's resouant 
radu: the characteristic orbit frequency of material is proportionai to the square root of 
the average density contained in its radius. Thus if material in a sateiiite, with a given 
satellite average density, sinks down under dynamitai fiction to a parent's radius for 
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which the parent's average density equals that of the satellite, resonance will strip that 
layer of material fiom the satellite and spread it in the parent at that radius. The in- 
terplay between tidal stripping and dynamitai iiiction lads denser satellites to enhance 
the core's logarithrnic slope and shaiiower ones to flatten it by spreading over the whole 
parent. Repeated mergers will then dynamicaiiy lead to a universai profile, the attractor 
of this negative feedback mechanism. 

Nevertheless the Syer & White argument's feedback mechanism might stiii have its 
relevance in the irame of their interpretation, even if the main reason for the emergence 
of a profile in the SSIM remains the self-simiiarity. The relevance of tidai stripping and 
dynamical friction as mechanisms present in the onedimensionai model of the SSIM will 
be discussed in section 5.3.3. 

The Syer & White argument bases itself on the comparison of some characteristic 
d e ~ i t y  between the two merging haloes. In this context we chose to monitor the over- 
density by its relative mass and average density with respect to the cote and to explore 
those two parameters in order to detect any behaviour indicative of the Syer & White 
argument. 

The m a s  and density ratios were measureà once the accretion of new shelis on the 
overdensity has been computed for the last t h e ,  according to the criteria described in 
the previous section. 

The mass ratio represents how much of a perturbation the overdensity will produce 
when absorbed inside the core. This is equivaient to gauging if the merger was betwen 
two alrnost equivaient haloes or if it was a matter of a centrai halo absorbing one of its 
satellites. The density ratio rdects a mea~urement of the same nature as the Syer & 
White charaderistic density, in the sense that a more concentrated overdensity would 
tend to resist more to tidal stripping and sink to the inner regions of the core through 
dynamical friction, if their model stiii appiies to a secondary infall. 

CalcuIation of the mass ratio was performed by recognising the shells corresponding 
to the radiai edges of the m e ,  the inner overdensity sheU and the outer overdensity shell. 
Then it is just a matter of using the mass profile: 

We measured the density ratio sirnply by determinhg the radii of the core z,, the in- 
nermost over density sheii sagin and the outermost one zd, then using them to compute 
the volume ratio as described below: 
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Figure 5.18: Monte Carlo exploration; shailow initial densi@ profile 

Experimentation with the distance h m  the core to the overdensity led us to prefer 
control over the ratios by placing the mdensi ty close to the edge of the core. Evolved 
overdensities did not seem to affect significantly the dynamics of the encounter with the 
core. 

Monitoring the ratios, it appeared that a region of this parameter plane should be 
excludeci since we were only interesteci in positive mass additions on the overdensity (see 
discussion in section 5.3.1, or, for a more detailed description, in section F.2.3): indeed, 
simulation of merger meant the encounter betwen a parent halo and its satellite. Thus a 
Monte-Carlo simulation was performed to select the initiai values of the ratios that would 
produce interesting merging scenarii. A steep case and a shallow case were chosen from 
the original, unperturbed SSIM. The results h m  the shailow case yielded the fo11owing 
plot (figure 5.18): the colour coding bi ts  the ranges for which the overdensity remains 
a perturbation over the unperturbed halo background, the rejections were motivated by 
the need to add a positive mass to the halo and the finite size of the simulation's initial 
halo r-. The parameter points of figure 5.18 which are cobured in blue have the mass 
ratio of the added overdensity upon its location's undisturbed halo background, noted 

= Mk*?d Mo 
( a h  noted MoD/Msc on the figures of section 5.4) as 

in perturbation, less than or quai to W2. Thme in green have their ratio Pert 5 10-1 
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Figure 5.19: Monte Carlo exploration; steep initial density profle 

and those in red yield a ratio of comparable masses of Pert 5 1. All other accepted 
parameter points designate overdensities which are strong additions to the original halo 
and thus strongly departing fiom a secondary id& merger. This pointed us to the 
exploration of two series of simulations at high and low density ratio for various mass 
ratio. There appears to be an echo of the coloured regions. That can be seen as a 
result of the non-linear delkitions of the ratios: if one assumes the background haio at 
overdensity laying to bave a power law density in radius p = poox-" defining for instance 
the density (Dratio) and the Pert ratio to be constant, the keedom in mass ratio leads 
to a polynomial equation if the power hw is rational (which is always the case when 
treated by a computer) which leads to several roots and thus several possible bands in 
the Monte Carlo graph (see appendix D). The steep case exploration yields a sirnilar 
plot (figure 5.19): The notations referring to the core and the overdensity placements are 
expresseci in terms of "per-thouaand-agen (noted O/,) ratio out of the total initial mass 
of the simdated halo. 

5.3.3 Tidal stripping and dynamical friction in the one-dimensional 
SSIM 

In this section, the soundness of using the terms dynamical friction and tidai stripping 
in the & m e  of the SSIM wiiI be argueci despite the onedimensional nature of the mode1 
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that can be opposed a priori to the multidimensional (d 2 2) definitions proposeci in the 
field. 

Tidal stripping 

In order to simpli@ the argument, the influence of the smoothing Iength in the modeled 
gravitational force will be neglected. 

Tidal acceIeration on a test particle The tidal acceleration on a test sheil can be 
dehed  as the differentiai acceleration between its boundaries; it can be understood as 
the acceleration felt on one edge in the rest hame of the other. 

The accelerations under and above a given shell wi be written (with an inwards 
orientation) 

GM Fi = 7 
~2=$$$> 

where m is the mass of the sheii and r+Ar is the upper radius of the sheil. M is the totai 
mass under the l m  radius r of the sheii. Using the linear apprahat ion for the sheii's 
thickness ((r  + Ar)2 zz ?(1+ 2+)), the tidai acceleration can be obtained: 

which can be decomposed into a cohesive (attractive) term involving the mass of the sheii 
and a disruptive (repulsive) term involving the spread of the shell in the radiai direction. 

Because the mass distribution of shells has a radiai dependence, a continuous mode1 
argument is more adapted to bring out the characteristic behaviours of the SSIM under 
tidal stripping. 

Tidal acceleration un an infinitesimal sheii From the unifotmity of spherical sheils 
of the SSIM, the m a s  of an infinitesimal sheli of thickness dr is given with the density 
distribution p as: 

m = 47r$dr. 

Thus the elementary tidai acceleration reads 

Defining the cumulative average density profile by the expression 
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yidil stripping region 

'. 

Figure 5.20: Tidal disniption of an overdensity on a power law background 

the ticid acceleration can be interpreted using the cumulative density profile with the 

It is ci= t b t  peak regiom of density springhg over the cwnulative average (p < 5 @),) 
wiil experience a net disruptive acceleration with the e f k t  of spreading apart shelis in 
those regions (see figure 5.20). 

Dymamicai W i o n  in one dimension 

Classical definitions Dynamid friction is dehed as a r d t  of a transverse velocity 
of a gravitating body diminished in the process of two bodies scattering, cumuiated over 
the coiiective of a dense medium of gravitating bodies. 

It can be dtefuately seen as the dragging on a body crossing a dense gravitating 
medium created by the wake of pulled-in bodies behind that test partide. [se, e.g. 
Sinney & semaine [87])- 

These definitions appear to intrinsically require at le& two dimensions: one for the 
direction of propagation of the test partide, and one for the oscillations of the wake 
particles (or aiternately for the scattering away h m  the initial trajectory). 
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One-dimensional interpretation By analogy, it is stiU possible to describe quali- 
t a t i d y  as a dynarnicai friction the phenornena that lead for shells to spirai deeper and 
deeper around the Fillmore & Goldreich trajectory. 

Analogy to the wake phenornenon When a massive particle is falhg into and 
traveluig through the medium f o d  by the particles in the core of the SSIM, each of 
those shells crossed by the massive particle is feeling more gravitationai attraction. This 
sudden increase of each sheii's inwards acceleration pulls the medium tighter inwards, 
similady to the d e  that creates dynamicai fnction in multiple dimensions. 

in the same fashiun, f ier the massive sheli has crossed the center (this is happening 
because of spherical symmetry and the iack of coilision in dark matter's definition) and 
when it is moving outwards, each medium particle it crosses ceases to feel the -ive 
shell's gravity and thus moves comparatively less inwards under the influence of the rest 
of the m e .  This brisk decrease of the inwards acceleration and the subsequent motions 
reproduces the impression of a wake behiad the outwards moving massive shell. 

Thus a massive sheii creates behind it in the one-dimensionai SSIM the analog of a 
wake of shelfs. 

Analogy to the wake9s dragging &ect The effects of those relative wakes, 
whereaa the test particle is moving inwards or outwards can &O lead to relative dragging 
interpretatiom: their gravitational pull exceses relative to the average core puii can be 
interpreted as having a dynamicai effect. 

For the case of the massive partide moving inwards, the gravity of the wake cannot be 
felt directly because of spherical symmetry: the d e  being outside of the massive shell 
cannot &ed it. Nevertheles, in its journey, les and less particles are featured inside the 
massive sheli so there is a relative diminjshing of the inwaràs pull felt by it. This cm be 
interpreted as an outwards net (averaged) p d  which can be labeled as dragging. 

In addition, the wake created by the inwards moving massive sheU when it almost 
d e s  the center can serve as an already constituted lump of additional inwaràs-pulhg 
material for the outwards crossing when that maasive shell wilI have crossed the origin. 

The massive paxticle, when mwing outwards, does feel the &ect of gravity h m  the 
wake: more and more particies faIl inside the massive sheli so there is a reIative increase 
of inwards puil Mt by it. This again can be translateci as dragging. 
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5.4 The establishment and integration of an overdensity 
perturbation: Results 

Modeling mergers with a secondary infd model could appear as an oxymoron. in 
fact the very implementation of the SSIM into its numerical realisation, due to the need 
to discretise the mass distribution, is already a sort of repeated mergers model with the 
hope that the size of the satellites will be s m d  enough to be negligible compared with 
the core (see the counter srample of this hope for the wual mass implementation of the 
innermost sheb  in paragraph 5.25). 

It is generdy accepted in the field of Large Scale Structure formation that repeated 
mergen should play an important d e  in the relaxation of dark haloes and the constitution 
of their density pro6le. This is ail the more important in the view of the possibility of 
a universal density profde (NFW 1321, Moore et al. ['ll]) to determine how important 
mergers are to dark haloes density profile construction and to challenge the Syer & White 
[33] picture which relies ody  on mergers. 

Phenomenologicaily, one would expect both secondary infd and mergers to occur 
during the formation of a dark halo. The SSIM teach us that depending on the primor- 
dial density fluctuation profile, a semi-universal profde arises for dark haloes. Syer & 
White [33] explain a universal profile solely with a repeated merger feedback mechanism. 
Chalienging the consensuai paradigm as weil as articulating the two main growth factors 
for dark haloes was the purpose of this investigation. 

In a first section, preluninary remarb wiil set the scene of this introduction of mergers 
in the SSIM. In a second section wil i  be presented the &ect the model merger has on the 
equilibrium of the system and converseiy h m  is the overdensity affected by the system 
once settled in. Then the impact of merger on the density profile will be exploreci through 
the mass profile, which is a more stable indimtor. Eventually a summary of the r d t s  
will close the chapter- 

This exploration has used an implementation of the semi-analytical model which assign 
uneven masses to sheils, but initiaily space them evenly dong the radial direction. This 
implementation aüows for a stable self-similat quasi-equilibtium to settle down as soon 
as the centrai system forms, which then can be easily halted to introduce the various 
overdensities needed for this exploration. 

Three d u e s  for the initial power law index of the primordial density profde were used 
to inquire about the diversity of impacts merger bas on the SSIM. One ( E  = = 1.5) 
was taken to stand for the initiai density profiles shaliower than F2, which admits a 
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universal density profile attractor at p a r-2, This class of system is also expected to 
be not very concentrated, leaàing to less tidal stripping according to the Syer & White 
argument. In order to confiont the continuum of attracton displayed by the SSIM's 
density profiles starting with steeper initiai density profiles, two d u e s  were d. one 
was taken to represent typical behaviours of that class of initiai conditions ( E  = a = 2.5), 
the other was used to test the extreme region of the continuum of attracton ( E  = 2.9, 
recall that the class of steep initial profiles relates initial bp cc Y ,  where 2 < E < 3, to 
h a l  p a r - ~ ( ~ ) ) .  Those systems are expected to be more concentrated, the latter in an 
extreme way, so that the Syer & White argument would forecast more disruption for the 
overdensity. 

Using the Monte Carlo simulations of figures 5.18 and 5.19 as a guide to the silallow 
case for the first and to both steep cases for the second respectively, a range of mass and 
density parameters were exploreci within each intermediate overdensity initial condition 
(each evolved primordial halo proposeci as initial game field for overdensity explorations). 
Represented here for each primordial density profile case are three instances of combi- 
nations of higher and lower mdensi ty  relative masses and average densities that are 
aiiowed by our criteria of adàing a pclsitive mass on top of the preexisting overdensity 
region's halo mass, but which shouldn't be h o  strong a perturbation of the already con- 
stituted core and a reasonable perturbation of the preexisting halo. In addition, it was 
found that even with a minima! amount of time left for evolution of the overdensity, the 
halo would strongly act upon overdensities with too extreme parameters, resulting in a 
difficuity to control exactly the Core Entry values of the mass and density ratios. 

The density profile is directly related to the mass profile. Because of its integral 
nature, and for historical reasons, we chose in this section to use the mass profile to 
characterise the mass distribution in the system exrrmined. For a density profile of the 
form p a r-p, the m a  profile is integrated into iM K ?-P. SO the shallow SSIM class of 
initial density profde leads to maas profiles f o i l d g  iM a r, whereas stee initial profiles 3 
(6p a r-', where 2 < E < 3) yieId mawi profiles of the form ükf a ri+.. In the cases 
explored here, respectively c = q, a, 2.9, the m m  profles 1oga.rithmic dopes predicted 
by the SSIM are 3 - p = 1, f(= 0.857), #(= 0.769). 

5.4.2 Mutual relaxation of the system and the overdensity 

The 6rst striking feature of the dec t  of merger on the SSIM is hcnv the measure of its 
self-simiIar quasi-stable evolution gets dected by the accretion of a bigger lump than its 
usual self-similar mass flow. Then it is the monitoring in phase space of the overdensity 
at  the end of the self-similar phase and/or the beginning of the virialised phase which 
reveals how the overdensity retains some coherence aRer being ingested by the core. 



CEAPl'ER 5. SSIM PROBABILITY DISTRIBUTION FUNCTION (PDF) ANIj 
SENSITIVTY TO MERGERS 

Table 5.1: Defining parameters for the examples of merger with the SSIM 

c and order 
3 upper panel 
g, middle panel 
il lower panei 
5 upper panel 
g, middle panel 

5, lower panel 
2.9, upper panel 
2.9, middle panel 
2.9, lower panel 

Merger from the SSIM coreys perspective 

It is first important to precise that the mass and density ratios given here are measured 
at the time d e h e d  as Tc,, in section 5.3.2 and with figure 5.17 whereas those same 
ratios are used as initiai input parameters to constitute the overdensity at the moment 
of its laying. The three examples for each of the three primordial density profles used 
here d e s  nine sets of dehing parameters, presented in tabk 5.2. The reference to the 
order of each simulation points to their positions in the corresponclllig figures. They are 
grouped by primordial density contrat power law index and then presented on top of 
each other. Each figure displays on each iine, corresponding to one simulation, the viriai 
ratio of the system and its phase space near the end of the self-similar phase for which the 
particles in the overdensity as d&ed at TC,, Entry in section 5.3.2 with figure 5.17 are 
singled out so as to access to their phase space configuration once the system has rehed. 
Figure 5.21 contains the results of mergers starting with a s&-similar core evolved h m  
a shdow initial densiw profile at c = $ = 1.5. These sunulations are taken to be genetic 
for the shallow case. The steep initial density profde case is represented in figure 5.22 
by the resuits of mergers starting hom a self-similar core at c = 5 = 2.5. Because of the 
results these simulations show for the mass profle (see section 5.4.2), confirmation nuis 

m e  performed at an extreme value of the initiai density contrast's power Iaw index to see 
the dects of changing self-similarity class within the same steep self-similarity category. 
Those nui's Mrial evolution and phase space are presentecl in figure 5.23. 

The h t  remarkable feature springing out £rom the virial emlutions is the presence 
of a sometimes cirastic trough in the self-similar phase, which eventually returns to the 
original self-simiiar value of the initiai core, as it can be undeniably checked on figure 
5.21's upper left panel, ali of figure 5.22's leR panels or figure 5.23's lower left panel (the 

Mratio 

0.751 
4.25 x10 -~  
6 . 9 2 ~ 1 0 - ~  

0.889 
0.439 
0.178 
0.753 
0.407 
0.301 

&atio 

0.282 
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0.70 
0.73 
0.71 
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1.12 
0.98 
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3.57 
0.178 
0.183 
3.48 
2.14 
2.15 

1.17 
1.10 

4.13 
4.49 

1-11 1 2.77 
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Figure 5.21: Shdow case: Viial  ratio and phase space diagrams at the end of the self- 
simiIar phase, including an emphasis on digested overdensity sheils for various overdensity 
parameter values in the semi-universal attractor SSIM case (E  = 1 = 1.5). The middle 
and lower left panels also contain each a zoomed encapsulation of the s m d  spike provoked 
by the absorption of the overdensity for those weaker perturbations. 

iatter's upper panel being less ciear on that point, probably for lack of tirne left to the 
system in the self-simiiar phase, and the k t ' s  lower panels not displaying a trough). 
A close examination of the various simulations presented here reveals that the presence 
(figure 5.21's middle and lower left panels do not display a trough and figure 5.22's lower 
left panel just shows a very mild one because of their lower mass ratios than that which 
seems needed for the perturbation on the core to give rise to a clea. trough) and deepness 
of the trough primarily depend on the mass ratio between the Erozen overdensity (figure 
5.17) and the corresponding self-simiiar core, and in a lesser measure, a deeper trough 
can be obtained from a combination of a high mass ratio and a high average density ratio 
(figure 5.23'9 middle Ieft panel). Self-similar class seems to be afEecting the threshoid 
mass ratio at which a trough is visible in the sense that it seems the shdow case is 
more resistant to the establishment of high mass overdensity with a high density ratio, 
the tendency being to spread denser overdensities, hence the more successful simulations 
for the steep case in obtaining a trough in the viriai ratio. This can be understood in 
terms of the more empty halo surrounding steeper initial profiles which acts less on any 
additional mass. 
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Figure 5.22: Steep case: Virial ratio and phase space diagrams at the end of the self- 
similar phase, including an emphasis on digested overdensity sheh for various overdensity 
parameter values in the SSIM continuum of attractors case (e = = 2.5) 

Then the trough can be quantifid by defining the digestion time for the core to 
r e t u .  to its self-similar virial phase irom Core Entry. A close examination of the viriai 
behaviour in this range shows another distinction between shallow and steep cases: the 
troughs in the steep case aii display at diverse degrees a fint decrease in the virial ratio 
right after Tc,, E n h t  foilowed by a steep increase of the virial ratio which Iater dips into 
the trough until recovery of the initial self-similar value whereas the shallow case displays 
little of the initiai decrease but shows two fipikes before the trough itself. The evolution of 
the viriai ratio under the influence of the owrdensity can be undentood according to the 
foilowing s-O: because of the definition of the core (figure 5.13), and that of the tirne 
Tcore Entry' aiter that tirne exists t h  status for the overdensity. The corresponds 
to the very bief time before its l m  boundary dectively crosses the radius of the core, 
for which there is no effet on the core. The second occurs after that and before the 
overdensity's lower boundary reaches the centre of the halo. For this stage, the only 
&kt the overdensity can have on the core is through its contribution to gravitationai 
energy, since it is not yet being counted in the core, but gravitational energy counts aii 
the mass inside a given radius. The e f T '  of that stage on the viriai ratio is expected to be 
that first dip observed on steep profile cases? because only the magnitude of the potentiai 
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energy is hcreased in those circumstances. Rom phase space diagrams (figures 5.21, 5.22 
and 5.23's right hand side panels) it can be conjectured that this absence of dip could 
come fiom the smaller sizc of shaiiower cores compared to steeper ones, leaving no time 
for the shallow cote to rdect  this stage- The third status corresponds to the entrance 
of the overdensity intU the system. A first order phenomenological caldation on the 
impact of an overdensiQ on the viriai ratio shows that an overdensity more dominated 
by kinetic energy (more hot) than the core could explain the spike(s) at the beginning of 
its digestion. Tt can be seen as follows: noting the cote and overdensity's total, kinetic 
and potential energy respectively E, KI -W, EOD, Kan, -WOD, and the haifviriai ratios 
for the core, the overdensity and the total system respectively A, A ~ D  and AT, and 
assuming the d e  rnodel of instantanaus absorption of the overdensity 'as is' by the 
core, as w d  aî that and are 6rst order quantities, the totd systern's energy 
ratio then reads: 

thus AT > A when AoD > A. 
Then, keeping this simple model, before the overdensity relaxes with the system, it 

can be seen crudely that keeping the kinetic energy roughly constant, the potential energy 
should increase each time the overdensity runs through the centre, allowing for additional 
spikes in the shaiiow case, where the phase space shows the system to be les  relaxeci in 
general, and needing perhaps more dynamid mixing turns in the edge of the system for 
the overdensity to get relaxeri in the system. Eventually, relaxation of the overdensity in 
the medium of the core seems to combine this increase of the total potentiai energy with 
a decrease in kinetic energy probably manifesting an over-reaction of the system under 
the addition of the overheated clump of extra- m a s ,  contracthg temporady until the 
overdensity gets digested by the system. 

In order to assess the time it takes for the halo to digest an overdensity, the dynamical 
time was evaluated for the farthest overdensity sheli at Tc, Enrq- Because the definition 
of a dynamical time typically involves an isolated system (1871, p37), which the SSIM is 
not, a seIf -similar version of the argument is used to extract a dynamical time adapted 
to the system. The argument goes as foilows: consider a test particle placeci at the same 
radius in a sphericai model as the sheil considered ( h m  the last overdmity shell at 
Core Entry) falling under the p d  of the mass containeci in that shell, but spread as a 
constant density distrhtion (here in self-simiiar variable) that is assumed to be stable, 
The dynamitai time is then d&ed as the îÏee fd t h e  for that test particle in this 
test system to teach its centre (see appendix E)- Applying t h  definition to the studîed 
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Figure 5.23: Extreme steep case: V i  ratio and phase space diagrams at the end of 
the self-similar phase, including an emphasis on digested overdensity sheh for various 
overdensity parameter values in the SSIM continuum of attracton case (E = 2.9) 
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systems it was found that the digestion times of the overdensities by the haloes, apart 
£rom the two cases where the definition of the digestion time was probIematic (middle 
and lower left panels of figure 5.21), is on average 3.33 times the dynamitai time with 
a standard deviation of the ratio *. of 0.767 (fiom the data in table 5.2). This 

d#nnmuai 
indicates that the system needs of the order of 2 to 4 passages of the averdensity in the 
relaxation region to be completely assimilated, which seems comparable to the number of 
Lagrangian-Liouville streams present in the relaxation region of the phase space. There 
are stili questions on the correlation between the digestion t h e  and the mass and density 
ratios, but the s m d  number of good, exploitable data prevent fiom a more thorough 
study. 

The virial ratio also presents an interesting pecuiiarity on its viriaIised phase for 
the steep initial profile cases: fiom figure 5.22's upper and lower lefk panels as w d  as 
figure 5.23's two upper left panels, it seems that heavier masses, but also a combination 
of moderately heavy mass and higher density, tend to stabilise the integration on the 
virialised system while the use of self-sirnilar variables translate into a s h r i i n g  of the 
system and a less and less trustworthy integration (the smoothing length doesn't shrînk!). 
A close examination of the simulations' s corresponding phase space diagram r e d  that 
each of these cases display the presence of overdensity particles right dowu to the centre 
of the system, whereas the non s t a b i i  ones have a depleted centre of their phase space. 
This points to the fact that most of the instability in the SSIM coma from the scattering 
of incoming particles by the strongest gravitational field region at the centre of the halo 
and the jittering that may be induœd on those scattering particles (recall that the SSfM 
with its PDF cut off is depleted of its most stable, centrai particles), which would then 
be damped by the presence of some stable additional mass. 

Findy, the overall behaviour of the viriai evolution under the influence of an overden- 
sity inspires one to reflect upon the representation of the SSIM by a discrete computer 
model: instead of a continuous strearn of m m ,  the model presents a repeated bombard- 
ment of finite mass sheiis which can be seen as s m d  overdensitim. Indeed, in the light 
of the behaviour of the vitid ratio under the influence of lighter overdensities (figure 
5.21's lower panels) the spikes appear as little more than overgrm noise features that 
are displayed throughout the rest of the simulations. It then appears that this very noise 
in the virai evolution is merely the ripples fiom repeated micromergers fiom each and 
everyone of the model's sheiis. 

Mergers from the overdensity's perspective 

The effect of the merger on the overdensity is reflected on its spread in the h a 1  phase 
space displayed for each simulation on the right corresponding panel of each figure. T m  
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featura are crucial in the phenomenological description of the overdensity's fate: its 
spread dong the halo, or conversely its compactness within the halo, and the presence of 
some or aU of its particles at the ongin of the system's phase space. This rdects on the 
reading grid used by Syer & White to develop a discourse on merger, divided between 
tidal stripping, which would tend to spread the overdensity throughout the halo, and 
dynamical friction, which would tend to puii the overdensity towards the centre of the 
halo. 

Thus, a high density ratio seems the prirnary factor for compactness of the overdensity 
in the steep initial density profile case (figures 5.22's lower right panel and 5.23's midàie 
right panel), which could be interpreted as good resistance to tidal stripping. Conversely 
a high mass ratio is the main factor to ensure presence of overdensity shells in the centre 
of phase space (figures 5.21's upper right panei, 5.22's lower and upper right panels and 
5.23's two upper right paneis), indicating that at least some of the overdensities with a 
high mass which sinks under the influence of dynamical friction to the centre has surviveci 
tidal striping. 

Now al1 possible behaviours are available: a weak mass and density leads to a scat- 
teruig of the overdensity shells throughout the halo without reaching the centre (figure 
5.21's middle right panel). A weak mass but high density can prevent any part of the 
overdensity to sink to the centre but keep the tidaily stripped sheiis in the same compact 
neighbourhood (figure 5.21's lower right panel). A weak density but high mass, if the 
density is high is high enough, can p r e n t  a very scattered overdensity but stiii contribute 
to the central parts of the overdensity (figures 5.21's upper right panel, 5.22's upper right 
panei and 5.23's upper right panel), whereas if the density is too weak or the mass not 
high enough, the scattering may be too strong for a centrai contribution to survive (6g- 
ures 5.21's middie right panel, 5.22's middie right panel and 5.23's lower right panel) But 
if both mass and density are strong enough, the overdensity cran survive a h m t  intact 
in the centre of the halo (figures 5.22's lower right panel and 5.23's middle right panel). 
Here we start to see the limits of the 'weak', 'strong', 'high' and 'low' denominations to 
qunlifv the density and mass ratios. At the same tirne, a picture imlving some kind of 
threshold taking into account both the mass and density ratio emerges to account for the 
survival of some or ali of the overdensity to the halo's tidal stripping in its journey to the 
centre under the infiuence of dynarnicai friction. The simplest conjecture compares the 
product of the two ratios to find whether a consistent threshold picture emerges kom the 
da ta  Table 5.2 presents each mode1 with its mass/density product. Indeed, if we divide 
the ranges between the steep initiai density profile and the shallow one, a coherent picture 
emerges where the steep profiles require probably a higher parameter than a threshoid 
containeci between 6.920~10-~ and 8.081~10-~ to reach the centre intact of tidai s t r ip  
ping and another one between 2.923~10-~ and 4.898~10-~ to have some of overdensity 
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[ 4, middie panel 1 $, lower panel 1 2.9, upper panel 1 2.9, middie panel 1 2.9, lower panel 1 

Table 5.2: Conjectureci Surv id  parameter of the overdensity (Mrario. Drario) for the 
examples of merger with the SSIM 

r and order 

Mratio Jratio 

reach the centre, and below which tidd stripping completely tears it apart, whereas the 
available data only allows for the second tbreshold to be bracketed in the shailow case, 
between 1.163~10-~ and 0.212. It is rerriarkable that the shallow case requires a higher 
threshold than the steep one. It can be understood, though, as a manifestation of the 
less concentrated nature of the shaliaw case's density distribution, which leaves a higher 
level material for the overdensity to crosa for a longer radial range in its joumey under 
the infiuence of dynamical friction, which would exert a stronger tidal stripping. 

J3om here on the product Mralio.Dralio will be referred as the strength of the over- 
density and cases with a higher product value d l  be referred as stronger overdensities, 
and conversely, a lower product d u e  will be referred as a d e r  overdensity. 

To summarise, the understanding of mergers in terms of dynamical fiiction and tidd 
stripping presented in Syer & White [33] appears to be relevant to the fate of an overden- 
sity in the frame of the SSIM, the Werence between the secondary infidl and repeated 
mergers accretion formation residing essentially in a quantitative size of the merging 
satellites. 

$, lower panel 

1.163~ 10-~ 

5.4.3 Effect of merger on the SSIM's h a 1  density profile 

i, upper panel 
0.212 

g, upper panel 
4.898~10-~ 

The a h  of the Syer & White argument [33] is to provide an explanatory fiame for the 
observation that a universai density profle should arïse for CDM haloes from repeated 
mergers, as 6rst found by NFW [321; but this argument would retain its validity even for 
other forms of universal profiles (Moore et al. 1711) provideci that repeated mergers are 
indeed essentiai to the formation of CDM haloes density profles. The goal of this section 
is to assess how and if metgers are modifvmg the density profle of the SSIM in its nature 
and shape. 

The first step in this endemur was to check for each of the actualisations of the SSIM 
presented here that they were indeed following the SSKM's predictions. This was dected 
in figures 5.24, 5.25 and 5.26's Mt pan& by displayhg for every realisation of the SSIM 
the mass profile it presents once it has reached the tirne d&ed above as Tc,, ~,,tty,  at 
which the overdensity has evoIved and fallen down to the brink of entering the system's 

/, middle panel 

3.01'1~ 10" 
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Figure 5.24: Shallow case: Maas profiles comparison between the time of h t  absorption 
of the overdensity by the system and the end of the self-simiiar phase, including an 
emphasis on digested overdensity shells for various overdensity parameter values in the 
semi-universal attractor SSTM case ( E  = $ = 1.5) 
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radius. Each profile is fitted by power laws, k t  over the region of the core above the 
smoothing length (green fits) then over the whcle core (blue fits). The core region was 
de6ned with the help of the phase space diagram. As invoked above in section 5.2.2, 
the Iimitation of validity of the density profile is not coming from the smoothing length 
for reasons which will be discussed in more details in section 6.2.3. In the top centre 
of each figure is indicated the initiai density contrast power law index and the SSIM 
predicted slope of the mass profile 3 - p where p is the power law index of the self-similar 
density profile. The shallow initiai density profile set reproduces the prediction above 
the smoothing length, but displays a departure fiom them when taking the whole halo 
into account, rdecting a flattening of the density profile in the centre (which translate 
in the mass profile as a steepening, fiom the 3 - p correspondence; we wili use the mass 
profiles hem but discuss the density profles, assuming the slope translation is exact). The 
same problem arises in the extreme steep initial profile set which reproduces the SSIM's 
predictions better with the fit above the smoothing length, flattening occurring which 
spoils the whole core fit. On another hand the regularly steep initial protile displays 
the opposite behaviour, the masa profXe fit above the smoothing length being probably 
flattened by the inclusion of some out-of-theare shells in the fit, pickeà up in the manual 
method of selecting fitted regions. Aii in dl, these departures from the predictions of the 
SSIM are very minor, as can be observed on figures 5.24, 5-25 and 5.26's fits and the 
check was considered s u c c d .  

Then the outputs fiom the digestions of the overdensity by each core can be examined. 
It can be h t  read in terms of the powet law fits. The shaliow case doesn't seem to be 
much affecteci even though the slopes are aii slightly idenenor to theù counterparts before 
the ingestion of the overdensity (compare figure 5.24's right panels slope with theh let't 
panel wunteqwh; though, the middle panel shows an increase in the outer slope). 
Considering the changes and the weaker overdensity's discrepancy (middle panel), the 
conclusion that nothing much is changed is therefore natural. One detail springs out aç a 
minor trend fiom the overdensity: the d e r  overdensities produce a stronger flattening 
in the centre of the density profile and the stronger one marks a Battening of the mass 
profile. But the innermost profde is subject to the unreliability of the discrete sheil 
modeling of a mntinuous density in the centre when the number of sheh  contributing 
becames smali and has to be taken with caution. 

The c = $ = 2.5 initial densiS. profîie set tells a différent story: there is a definite 
steepening t m d  of the mas profiles towards the shdow-type semi-universal profle of 
the SSIM, which is markedly more pronounced for the stronger overdensity. At the same 
tirne, the stronger the overdensity gets, the more pronounced the morphology of the 
density profile gets fiom an almost pure power law to a varying power index profde with 
a flatter core and a steeper envelope, as observed in fiill N-body simulations and in the 
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Figure 5.25: Steep case: Mass profiles cornparison between the time of k t  absorption 
of the overdensity by the system and the end of the seif-similar phase, including an 
emphasis on digested overdensity sheiis for various overdensity parameter values in the 
SSIM continuum of attracton case ( E  = = 2.5) 
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universal profles fit (NFW, Moore et al., Hernquist). Nevertheless this bending doesn't 
concem the bulk of the profles and NEW profles were not even close to fit the stronger 
overdensity. Instead, the bent edges of the stronger overdensity case were fitted with 
power laws as indications of their asymptotic sIopes (see figure 5.25's lower right panel). 

These results would tend to suggest a picture where one merger event seems to contract 
the aiready narrow continuum of attractor density profiles outputted from the SSIM 
(recall that for initiai density contrast indices É E [2; 31, the corresponding self-similar 
classes range 6 = $ (1 + $) E [i; 11 and the h a l  attractor density profile indices build 
as p = % E [2; !]), leading to a picture where repeated mergen wouid eventuaily bring 
the SSIM's semi-universal density profile to a unique attractor isothermal profile, that 
is p = 2, reminding the picture of Syer & White 1331. This picture has to be modifiecl, 
because the central density nor the total mass c m  be infinite contrary to the isothermal 
sphere, with the peculiar deviations at the edges of the profiie. This leads the attractor 
slope to eventually lose its meaning since the asymptotic slopes of the edges wouid be the 
most prominent features of the finai profle. 

The extreme steeper initial density proue set (E = 2.9) was then used to conhm 
tbis effect £rom a merger simulation on the SSIM. The steepenhg of the mass profile is 
codmed, but in this set, the d e r  overdensities are getting the stronger steepening. 
The deviations at the edges of the density profile, though seem to foUow the previous 
pattern, and the stronger overdensity's inner dope was measured to be about the same 

as for the less steep initial profile case. The outer bending was less conspicuous and 
therefore was not measured (see figure 5.26). 

The trend contradiction displayed here with the more moderate steep initial proûle 
set can mean two things: either the SSIM range of h a l  slopes is already so narrow that 
logarithmic dope measurements are d i n i g  by iittle more than the measurement noise, 
or the extremely concentrated initiai density profile contains an instability that would 
tend to f la t ta  it under the slightest of the circumstances, and stronger overdensities are 
just tending to contribute more to the central density distribution, slowing the flattening 
process. The latter is the most likely explanation. It is also remarkable that the deviations 
at  the edges would be qualitatively simila to the changes of logarithmic slope observed 
in N-body simulations haloes. 

5.4.4 Mergers and the SSIM 

Exploration of the SSIM with a model of merger has brought us a great deaI of insight into 
the formation of CDM haloes: h m  a dynamical point of view, it has allowed us to probe 
into the intricate details of the impact of a merging satellite on the SSTM of a halo. It 
seems that, even though the density profile resulting fÎom the merging event would tend 
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Figure 5.26: Extreme steep case: Mass profiies cornparison between the time of hst 
absorption of the overdensity by the system and the end of the self-similar phase, including 
an emphasis on digested overdensity sheh for various overdensity parameter d u e s  in 
the SSIM continuum of attractors case (c = 2.9) 
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to point to a destruction of the scale-free unique power law of the SSIM, the continuation 
of the secondary mass infall seems to bring the system back into the energetic quasi-stable 
state of the SSIM. In other respects, this 'merger probe' into the intimate modeling of Aiternate 
the SSIM shows the lack of distinction between the SSIM and repeated mergers where take: Be- 
satellites are smaii enough compared to the parent, and the number of mergers h u e n t  sides, this 
enough to maintain a strong mass flux through the system's boundary, probe of 

Ekom the constitution of the density profile, the SSIM has taught us that indeed, a merger 
repeated strong mergers could be the driving force that build the kind of two components into the 
profiles seen in large N-body simulations, but this study shouid be extended if it were to intimate 
yield more precise prediction on the inner and outer profile logarithmic slopes. Neverthe- modehg 
less, departure fiom the unique power law profile is not a monopoly of the merger events of the 
and literature has shown that the central flat slope observed is concomitant with a certain SSIM 
amount of non-radial motion, suggesting that rotation couid also be a dtiving force to get shows 
the two components density profile. Eventuaiiy, the observations of real density profles that there 
suggesting that inner slopes even flatter than the ones obtained in pure CDM N-body is no dis- 
calcuiations is suggesting that something more is needed than just cold dark matter to tinction 
explain haloes profiles. between 

the kind 
of merg- 
ing where 
satellites 
are smaii 
enough 
compared 
to the 

parent, 
and the 
number of 
mergers 
fiequent 
enough, 
and the 
SSIM. 



Chapter 6 

Implementat ion of angular 
momentum and a central black 

hole in the SSIM 

Celui qui proclame l'existence de 
l'infini, et personne ne peut y 
échapper, accumule dans cette 
affirmation plus de surnaturel qu'il n'y 
en a dans les miracles de toutes les 
reiigions, c;- la notion de l'infini a le 
double charactère de s'imposer et 
d'être incompréhensible. 

The previous chapter aiiowed us to redise that the SSIM had much more explanatory 
potentiai than was expected. Despite its symmetry restrictions and the well accepted 
paradigm of repeated mergers for CDM halo formation, it waa able with secondary ac- 

cretion to give insight into the workings of (moderateiy) violent relaxation of haloes, as 
well as to bridge the gap between the merger paradigm and the opposite one of secondary 
accretion. 

Nevertheless, unconstrained N-body simuiations strongly question the radiai infd 
limitation of the SSTM, as well as, to a les= degree, its spheticd symmetry. The latter 
point can be ignored with atguments such as the fact that we can consider models of 
simplified geometry to understand the principles of (=DM halo formatio~ Exploring more 
restricted geometrîes helps to circwnscribe those prïnciples. Spherïcai symmetry can be 
seen more simply, as put forward by Sikivie et al. [SI], as a mode1 of an average halo 
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representing the mean over aU halo orientation. The former objection, though, is more 
problematic (e-g. the qualitative differencea between radial and less restricted N-body 
simulations in Huss et al. [66]) and cab indeed for some urgent investigations. 

In pardel, observations seem to be pointing towards a much flatter density profiie 
central cusp for dark matter haioes (Kravtsov et al. [31], Stil[75]) and pureiy wllisionless 
CDM seems unable to expiaii that in itself. One way, of producingsuch a cusp is through 
the presence of a central black hole in the middle of the halo as was done k t  by Peebles 
72 [82], Young 80 [83], Quinlan et al. [84], and, more successfully as far as flattening the 
centrai cusp is concerned, by Nakano & Makino 99 [85] and Henriksen & Le Deiiiou [86]. 

This chapter will tackIe those issues by modifving the SSIM. The kt section will 
give the tools by which the SSIM can be made to model angular momenturnls effects. 
The second section d l  detail the changes angular momentum implies for the results of 
the SSIM. The third section d l  ptesent the implementation of a growing black hole in 
the non-relativistic context and the last section wi i i  be devoted to the results fiom such 
a simplified model. 

6.1 Angular momentum implementation: the initial radial 
dependence 

The introduction of non-radiai motion in da& matter halo models has foUowed sev- 
eral f o m ,  from full 3D N-body simulations to a radiai model with transverse velocity 
dispersion ([45], [46] and [55]). These inclnde sphericaiiy symmetric angular momentum 
sheil distribution, with just a constant angular momentnm magnitude per s h d ,  a single 
s h d  anguiar momentum magnitude àishiiution ([51]), and ad hoc source terms that 
switches off at tumaround ([52]). 

The importance of non radiai motion in the formation of dark matter haioes in other 
works has been discussed in section 3.2.1. This section will first surtunarise the issue of 
vorticity in dark haioes, as w d  as its presence in spherical symmetry, and then detaii the 
implementation of anguiar momentum in the numerical modeling of the SSIM. 

6.1.1 Dark haloes and angular momentum 

Dark haloes and galaxies are beiïeveà to acquire their angular mornentum fiom neigh- 
bouring anisotropies of the density distributioa Neighbouring haloes, when forming, 
6rst compete for accretion of at the edges of their accretion basins. Because of 
the irreguiar shapes of these basïns corning fiom anisotropies in the primordial density 
distribution, each halo would in general not be spherïcal. That means that th& tidai 
torques on their neighbourhood are in general not symmetric, thus irnprinting vorticity 



(see Peebles 80 [8] pp 107-110, or Langair 98 [IO51 pp 477-479). 
in the spherid symmetry of the SSIM, introduction of angular momentum has to 

be ad hoc: indeed, the symmetry imposes that anguiar momentum is c o n s e r d  for each 
sheii at all times. Tbis can be doue by introducing a heuristic source term aa in White & 
Zaritsky [52] until the turnaround for each particIe, or by assigning an angular momentum 
distribution at turn around t h e  (Sivie et al. [51], whereas the distribution respects 
self-simiiarity or bUow =me statistics). The radial SSM teaches us that seIf-siniilarity 
c m  be expected as an intermediate stage of evrilution of dark haloes. In this work, a 
form of anguIar momentum was assigned at the beginning of the coiiapse such that the 
establishment of self-similarity is ensured at turnaround. Fiecd that the self-siniilarity 
is established analytically by the asymptotic iogarithmic dope of the turnatound radius 
as a function of tirne (He& & Widrow [44). This fom of angular momentum 
distnbution wiU be rekmd below as seKsimiiar anguIar momentum or S A M .  

6.1.2 Implementatbn in the SSIMts shell mode1 

The introduction of angular momentum in the simulations takes place at the setting of 
initial conditions, but it obeys, for haif of the explorations, a constraint which aüows 
for the Fillmore & Goldreich [35] self-similarity to establiçh itself at turnaround. Tbis 
constraint is similar to the condition at tuniaround used by Sikivie et al. [51] on angdar 
momentum to enmm d-similari@ but it is used to establish an initiai form of an& 
momentum (Eq.3.73). The other haif of the explorations an asymptoticaiiy scaieEree 
power law form inspirai by the previous f o m  The slight departute h m  the so-caIled 
self-simk fom of the angular momentum, or SSAM, rn found to be naturai and usefüi. 

Together with the establishment of the sheU's masses, initial positions and veloci ties, 
the initial angular momeatum is set tu a non-zen, vaiue and account is to be taken af 
this in the caldations of acceleratioas for each shell according to Eqs.(4.15). It alsu 
modifies the calculations of kinetic energy for eacb sheii according to the full expression 
of Eq.(4.7). 

Angular momentum implementation in the SSIM req- us to follow the form given 
by F43.73) .  lhsiaed into the variables used in the pmblem, it means that for each 
shell, there is a vaiue attributed of the angdar momentum according to the expression 
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and that the subsequent angular momentum profiles wili foiiow Eiom the shells' radial 
phase mixing during W, sphericai symrnetry exclucihg any evolution of the individual 
sheii's angular momentum (recall that a spherically symmetric system obeys equations of 
motions without angular momentum evolution). In fact we WU use an expression from 
which the previous equation is der id  since the mass profile is aiready computed at that 
stage of the simulation: 

keeping the same definitions for q and A- This expression is just a calculation step before 
the previous one, the simple substitution of in Eq.(3.70). It wiU be referred to in the 
rest of this work as the self-simiiar form of anguiar momentum, or SSAM form. It is also 
based on the same constraint used by Sikivie et  d. [51] d e r  the turnaround time of each 
of their shells. 

It is important to note that this expression has been computed for an initial angular 
momentum distribution that would not disturb the self-similarity so much that the Fill- 
more & Goldreich self-similar radial density profle wouid not be vdid anymore. This is 
translated into the presence of a squareroot tactor whose argument must remain positive 
if the solution is to be vaiid. A negative argument just manifests that the strength of 
the angular momentum represented by the constant Eactor 52 is too large to respect that 
constraint. This sets a limit on the sttength of ja which may prevent fniitful explorations. 
hdeed it p r d  dif6dt  to obtain resdts interestingly Merent enough h m  the ciassic 
SSIM ones. 

Using EQ.(6.1) as a starting point, this work aiso explored a form of the initial angular 
momentum that is not preserving self-similarity to compare its effect on the core of the 
SSIM. In Eq.(6.1), the factor iM(xi).xi is dictated by DimensionaI considerations whereas 
the rest of the expression just refiects the constraints to keep the SSIM results together 
with the presence of j2. To abtain a new profile that c m  compare with Eq(6.1) but is 
not limited in amplitude, one can tale the Iimit of the extra factor when the amplitude 

is very smaii and then extrapolate it for any value of 3. Such a profile would be 
dose to scalefree (the initiai mam is just a power law perturbation on top of a constant 
background) and stili motivated by Dimensional arguments, but the modulation factor 
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would mite: 

and thus d o w  for arbitrary amplitude of angular momentum (of course the third step 
is not rigorous but we are just looking for a heuristic justification of the factor here). 
Since J is a constant that we can redefine freely in our expression as 32, the resulting 
initial anguiar momentum proûie takes the form 

This profile will be r e f d  to as the 'power law' angular momentwn profiIe, or PLAM- 
We wiü see (section 6.2.3) that the PLAM is able to reproduce an NEW profile. In order 
to place it into perspective, a section (section H.6) of appendix H is devoted to computing 
characteristics of the rotation of the model. 

6.2 Angular moment um implement at ion: Results 

The picture of a purely radial infail of matter is evidently contrived, especidy when 
compared to obsenred galaxies or group of galaxies, which are most probably ttacing 
motion in th& dark matter halo. Observation of N-body codes output h m  various 
groups also points towards the need to include non-radial motion in any dark halo model. 

This section wii l  present the SSM's picture of the iduence of angular momentum, 
but first a discussion of non-radial motion from other works d l  be presented, followed 
by the present exploration. 

6.2.1 Recaii of motivations for modeling non-radiai motion 

N-body simulations offer a picture of coUisionIess coliapse unbiased by the geometric 
constraints involved in the present work. The cores they obtain for dark matter haioes 
are a principal indication of the presence of non-radial motion. The importance of that 
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Figure 6.1: Picture of the velocity dispersions in Tomen et  al. [55] as a Eunction of halo 
depth. 

kind of motion in the formation of the density proNe has been shown for instance in Huss 
et al. 99a [66] and 99b (671. Already Tormen et al. [55] had found N-body haloes to have 
elongated velocity dispersions in th& outer parts but isotmpic ones in their innermoet 
patts (see figure 6.1) . 

Other mrk3 have reiated central flattening of the density profile with dimensionaiity 
of the infall, or available phase space: Teyssier et al. [54] relate the ciifference in behaviour 
of dark matter with gas by the dimensionaiity of available phase space, pressure making 
the gas velocity distribution isotmpic. Moutarde et cl. [39] use a semi-anaiyticai model 
formed with three orthogonal sinusoids initial density perturbation mlved in an N-body 
code to show haw a m m  in wbich symmetry appears intermediate between spherical 
and cylindrical can give rise to a central cusp (of logarithmic slops 1.8) intermediate 
between the SSTM's prediction for those symrnetries (e.g. Bertschinger [36], between 
2 for spherical, and 1 for cylindrid symmetry)- Their model implies a link between 
primordial causticl i n t e d o n s 2 ,  dimensionality of availabIe phase spaœ and &ective 
b n s i o n a l i t y  of the coliapse. 

ModeIs starting h m  the SSIM have alsa been explored for some sort of angular 
momentum accounting- Moutarde et d. [39]'s central dope is reminiscent of resuits h m  
Ryden & Gunn's extension of the SSLM [4713, where they inciuded eccentricities and 
oblateness in the distribution of trajectoriea to h d  that, if a slope of 1.5 was found for 

'canstio1 are singuiarities formai by the Io- on themseives of non-aingular continuous fi&. 
'In the theory of the iargest s& stmctares oKeted by the Zel'Dovich approximation, the primordiai 

veloàty field leads to the formation of âensity caastics, or pancahes. Even in the CDM frame, veluci- 

ties detived h m  the Iureat density ptrtnrbaLion form those caustics when considering very large scale 
structures. These pancakes d&e pluie3 at WM intersections form stmnger cautks, d e d  Haments, 
themseives intorsccting into nodm that represent dominant halws. 

'Ryden & Gnnn nsed adiabatic invarht with pmbabüistic methads in th& qlorations of the SSM. 
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purely circular orbits, 1.8 was reached for randorn (isotropic) velocities. Indeed Ryden 
[53] haa found with a perturbation modei of a SSIM halo using Legendre polynomials 
that self-similar solutions to the inhite accretion stream modei in axial symmetry yield 
central siopes shaliower than the Fillmore & Goldreich [35] or Bertschinger [36] solutions, 
d o m  to a slope of 1.5. 

An earlier look at unconstrained spherically symrnetric infall by White & Zaritsky [52] 
in an open background universe had an artificial angular momentum source building up 
rotation until tumaround. Theu results show flatter halo maas profles than isothermai 
without detailed central slope explorations. 

Various semi-analytical methods seeking self-similar solutions to the Collisionless 
Boltzmann's Equation and its moments, coupled with Poisson's Equation (Subramanian 
et al. [45] and Subramanian [46]), or to the Lagrangian Newtonian Equations (Sikivie 
[SI]), show inner cusps. These lie between an extension of the continuity of self similar 
attradors to shaliow initial density profiles, expresseci using this work's conventions by 
p = +,ewn for r c 2, (notice the. that foiiowing the results nom [471, a slope of 1.5 

implies e = 1, and 1.8 coma fiom c = $) and the usual SSIM semi-universal dope of 2 
for these shailow cases. If, for the Subramanian et d. model ,which includes isotmpic 
tangentid plus radial veiocity dispersion, intermediate dopes were found, Sikivie et al. 
find the inner cusp to follow exactly the extension of the SSIM's continuum of attmctors 
in the version of their model when the angular momentum is of constant magnitude over 
one sheii. But those models are solving for pure self-similar solutions, that only iavolve 
phase mixing4 (like Fillmore & Goldreich and Bertschinger), thus not takuig phase space 
instabilit$ into account. 

6.2.2 Narrowing the exploration 

In our exploration of our SSIM1s version with an angular momentum radial distribution, 
it appeared difiicuit to h d  magnitudes of the angular momentum (parameter noted in 
as.(6.1) and (6.2) governirig more or less directly the amplitude of each sheii's an& 
momentum) which would not have a negligible dect on the SSIM (in both cases of the 
SSAM form of &.(G.l)and 'powet law' angula. momentum of Eq(6.2)) but which muld 
be smaU enough to maintain self-similarity or even the formation of a central core (for 
R.(6.2)), hdeed the exploration of the non-self-similar5 form of j2 was triggered by 

'phase mixing is the action involved in non-linear dynamiynamicai system that Iead to the dosening of initial 
phase space points th& were arbitrady remote and vice- 

"e deçcribe as phase space instabüity the arisai of turbuient-iike behaviom in the phase mnoing 
process. 

%ere the seif-similanty, when qnalifying the form of the angnlar momentnm profile, refers to the fonn 
that a l l m  to conserve the Filimore & Goldreich soIutions in a O order approximation. 
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this difüculty. When the parameter m too smaii, the SSIM behaviour were recovered 
unchanged, whereas when it aras too iarge, either in the self-simiiar j2 distribution the 
squareroot in Eq(6.1) was negative, indicating that an angular momentum with such 
a magnitude couldn't be self-similar, or the innermost shells' anguiar momentum was 
so large that they wouid never cross the origin and form a self-similar core but instead 
display tiny cores of phase mixed Liouville sheet- Moreover these tiny cores would never 
develop instabilities for lads of material and most of the halo's initial mass would maintain 
itself outside of the core (recall that cosmological initial conditions give Hubble Bow 
halo particles). The systems presented here were then those with angular momentum 
magnitude tuned in the range which yielded a ciear departure fiom the classical SSIM 
behaviour. With the SSAM, this was more ~ c u l t  to obtain and the systems presented 
are stiü very close to the SSIM behaviour. 

This chapter also comprises the test simulation studying whether the density profile 
is strongly influenceci by changes of the wioothing length, and thus if its validity lies 
strictly outside the smoothing length or if it can be extended until ultimately the mass 
resolution sets an inner vaiidity limit. 

The representation of the full threedimensional phase space (3 for radius, radial 
velocity and angular momentum) aiso sheds iight on the dynarnical behaviour and the r+ 
laxation process endured by the system under the infiuence of the two anguiar momentum 
distributions adopted hem. 

6.2.3 The idluence of an& momentum on the cosmological SSIM 

This section WU present the angular rnomentum influence on the SSIM. In a k t  part, 
the persistence of a quasi-equilibrium seif-similar phase and the effects of angular m e  
mentum on the SSIM's relaxation wiu be exploreci, The focus will turn, in the following 
section, to the formation of the density proûie under the infiuence of angular momentum. 
A test simulation of reduced smoothhg length (hereafter RSL) will then be discussed. 
Eventually the threedimensional phase space of each explored case will be analysed as 
weii as a correlation in the final angdar momentum profile. 

Relaxation and initial angular momentum distribution 

Presented here are the resulta h m  four series of simulations involving two values of the 
initiai density contrast power law index combined with the two initiai angular momentum 
distributions used in this mrk. The values of the initial power law indices are taken as 
E = 5 and e = $ which rep-t the SSIM's initial shallow and steep density profiie 
respectively. The anguiar momentum stcength is adjusted in Eq.(6.1) so as to minhise 

2 
the sguamwt tenn for the furthest shell (for t hat sheli, the expression 451 (1 + &) ip 
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Self-Similar form of j2 
V-kid ratio for E = L ~  Vinal ratio for E=25 

Figure 6.2: SSAM: virid ratios and phase space projections in the radius/radial velocity 
plane near the end of the d-similar quasi-eqdibrium phase for critical values of the 
anguiar momentum in the shallow (É = $ = 1.5) and steep (c = q = 2.5) initiai density 
profiies cases 

the largest). Thus, the squareroot factor is always dehed but reaches O for the outermat 
shell. This corresponds to the strongest SSAM distribution allowed. in the shaiiow case 
the value is adjusteci close to J2 z 2.82 x 10'~ up to machine precision, and dose to 
JZ = 4.60 x 10'~ for the steep case (the magnitude being smaller in the steep case since 
the maximkd expression grows faster in the steep case), corresponding to the approach to 

l+p+ 
the iimit < (,before the argument of the squareroot of Eq(6.l) becornes 
negative. For the 'power law' angular momentum of Eq.(6.2), the d u e s  adopted are 
respectively 52 = 9 x 10-~ and J? = 10'~' and are chosen in the range discussed in 
section 6.2.2. 

The shallow and steep case d t s  are presented side by side, showing that their 
reactions to angular momentum are similar, aRer taking their original SSiM behaviour 
ciifferences into account. The virid ratios on figures 6.2 and 6.3% upper panels display the 
characteristic 'equal maas modehg initiai s t a b h t i o n  t h e '  discussed in paragraph 5.2.2. 
The main ditrerence with the SSZM resides in the transition fiom self-similar acctetion to 
isolateci virial ratios. Despite the limitation ofangular momentum strength in figure 6.2, 
there stdi is a visible smoothing cornpated with the SSIM's sharp transition: instead of 
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Power Law @rop to iM) form of j2 
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Figure 6.3: 'Power law' angular momentum (PLAM): viriaI ratios and phase space projec- 
tions in the radius/radial velocity plane near the end of the self-similar quasi-equilibrium 
phase for critical d u e s  of the angular momentum in the shaiiow (c = = 1.5) and steep 

5 
( E  = = 2.5) initiai density profiles cases 

L 1 
Phase Space at T=12 Phase Spacc at T=I5 

fidihg almost instantly hom the self-similar value to the virialised unity when that last 
sheii fails in the centre, the presence of angular momentum seems to yield a slow decrease 
fiom the self-similat d u e  to the isoiated one, beginning earlier than the SSIM's end of 
self-simiiar phase correspondhg epoch and finishg later than that epoch. Moreover, 
the phase space projections (figures 6.2 and 6.3's loww panels dispiay the phase space 
distribution of sheiis in the radius-radial docity plane, projection dong the angular mo- 
mentum direction) r e d  that there remains a stream of outer particles for which the 
angular momentum is so large that they wii i  never fa11 into the core (their rotational ki- 
netic energy makes them unbound). In a similar way as  for the initiai 'stabilisation the ' ,  
this can be interpreted in terms of the mass flux at the boundary of the system. Indeed, 
the initial anguiar momentum distribution is monotonicaiiy increasing with radius, the 
angular momentum is conserved exactly thughout the simulations and the initiai radiai 
ordering is c o d  untii shells reach the core, so near the end of the self-simiiar phase, 
the shek with inaeasingly large angular momentum are just contributing to the mass 
flux. Considering that, given higher and higher angular momentum, there is a point at 
which it induces an inner tum around radius at the size of the self-similar core, shells 
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with a smder angular momentum d l  be able to enter the core but with a reduced radiai 
velocity compared with the radial SSIM. Since the inmese of angular momentum with 
shell is graduai and concomitant with the sheîis coming at later and later epochs in the 
core, the mass flux can be pictured as diminishing gradualIy. And this gradual extinction 
of the mass flux through anguiar momentum is gradualiy shifting the system from its 
intermediate quasi-static phase to its finai virialised (dynamicaily isolateci gravitational 
stationary state) phase without the hiccup of a sudden interruption. 

Eventuallyl the presence of angular momentum seems to stabilise the virialised stage of 
the system even when e x p r d  in growing self-similar variables with a smoothing length 
that is 6xed in those variables. Indeed, compared with the virid ratios of the radiai 
SSMs (figures 5.21's upper left panel and 5.22's middle kft panel), those of the angular 
momentum SSIM appear much better behaved at iate epocbs (figures 6.2 and 6.3's upper 
panels), and that was obtained in almost every exploratory simulation involving angular 
momentum. This stabilisation &ect can be understoad by considering the centrifuga1 
e f k t  of angular momentum. Particles which are Likely to escape the core after having 
their energies artificially b o d  in the n o n - c o ~ t i v e  dynamics zone7 near the centre 
tend to deplete that region when ascriied angular momentnm, leading to more stability 
of the system at later times. 

Apart fiom the difEcuity, in the SSAM simuiatioas, to reach high enough values of . 

non-radial motion to exhibit as clear an evidence of graduai self-similar to virialised 
state shifting as in the "power lawn ones, th& phase space aspect strikes one as less 
homogeneous in the relaxed regions in figure 6.2's 10- panels, compared with figure 
6.3's. In fact the self-similar j2 figures exhibit much less meating h m  the p h  spam 
instability in th& inner parts than the radial SSIM or even the %ower lawn jZ model: 
it is peculiarly noticeable for the shallm case that the winding of the phase space sheet, 
although not as exact as in the seIf"simi1ar solutions, say h m  Sikivie et al. [51], is stiii 
visible in a srneareci form, denoting a less complete relaxation than for the non-self-similar 
case. 

Angular momentum and the density profile 

This more moderately violent relaxation picture for the SSAM form ofangular momentum 
is consistent with the cornparison of the density profiles. These are presented, respectively 
for the SSAM and Tor the " p m  law" angular momentum form in figures 6.4 and 6.5's lelt 
and right panels for the shallow and steep initial density profile cases respectively- Each 
panel presents, together with the density profle, the size of the smoothing length used 

"I'he smaathing tength Oduces the porrsia'ity of energy conservation ta be bmken for particles inside 
of it, for there, the calcniation of pvitational forces departs h m  Neaiton's law artificïally. 
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Dcnsity profile (at T42) Dewity profile (ai T=LS) 

radius X tadius X 

Figure 6.4: SSAM: density profiles for critical values of the angular momentum near the 
end of the self-similar quasi-equiiibrium phase in the shdow ( E  = % = 1.5) and steep 
( E  = $ = 2.5) initial density profiles cases 
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Figure 6.5: 'Power law' angular momentum (PLAM): density proaes for critical values 
of the angular momentum near the end of the self-similar quasi-equilibrium phase in the 
shatlow (E = % = 1.5) and steep (e = $ = 2.5) initial density profiles cases 

and power law fits to the core above and below the smoothing length. The core region 
is limited again with the help of the phase space projection. In addition the innermost 
parts of the density profile are fitted in blue (dot-dashed line), and an NFW profile is 
fit (in orange, small dashed line) to the overall behaviour of our modifieci SSIM. Each 
power law fit Iogarithmic dope is indicated and an estimate of the NFW concentration 
parameter is given for the fit. 

The fint compatison should be made with the radial SSIM (figures 5.9 and 5.12's 
right panels). The presence of angular momentum set up to respect self-similarity seems 
to yield a very minor change in the density profile: very questionable in the steep case, 
the shdow case displays a moderate amount of flattening in the centre of the halo as 
weii as steepening in the outerrnost parts of the systern. Similarly to the radiai SSIM, 
the central fiattening could be interpreted as showing the limitations from our mass 
remlution so the innermost fit cannot hold more than an indicative d u e .  Nevertheless, 
the increased convexity of the logarithmic density profiie reveals itself though the slope 
diffaences around the smoothing length: even though division of the density profie at 
the smoothing Iength is artificial, E, having no major impact on the density profile (see 
section 6.2.3), its midpoint position reveais that the dopes above it are noticeably steeper 
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that those below it, by contrast with the radial SSIM, confirming that anguiar momaturn 
indeed tends to deplete the centre of the halo and to smooth out the transition between 
the outer M o  and the inter-halo medium, 

The second cornparison then ought to be between the convexity of the density profile 
with the sc~caüed SSAM (figure 6.4) and that of the 'power law' version of the model 
(figure 6.5). h paraiiei with the more relaxed aspect of their phase space projections, 
the "power law" modeis display even more convex density profles than the self-similar 
ones. This is so to the point that ia the ' P m  lawn cases, the NFW fit looks a much 
better modd for the density profile at the end of the self similar phase, which exhibits 
more of a smoothiy varying logarithmic slope than of a piecewise power law profile. The 
i n n e m t  power law fit is again subject to the limited mass remlution and therefure at 
most indicative, but muid suggest a flatter innercore than that given by the NFW pro6ie- 
The centrai power law fit is dose to isothermal in both self-similanty classes (steep and 
shallow cases) and the outer fit tends towarâs the Keplerian profile. The NFW fits show 
the steeper d-simiiariw c h e a  to have d e r  concentration parameters, but that is 
o h t  by the excms of maas over the NFW fit disphyed by the steeper classes in their 
centre. Li the 'power law' simulations with a shaiiow initial density, the smoothing length 
has been adjusted from the 2 . 5 ~ 1 0 ~ ~  value to t = 1.5 x  IO-^, aii other parameters kept 
constant, without a change. By continuity, the inner profile's dope for the "power lawn 
models would be more compeliing than that of the SSAM. On that assumption, it is to be 
noted that the slopa obtained are steeper than -0.5 but s h d m  than the ones obtained 
with the merger model of the SSIM, the Moore99 profile (slope of -1.5) and the NFW 
profle (dope of -1). 

These d t s  show that using the SSlM as a basis from which to relax slightly, such as 
aüowing for some form of spherically symmetric angular momentum, offers the promise to 
circumscrii t h  exact nature of the physical elements involveci in the formation of dark 
matter halo pni6les. At the same t h e ,  self-similari& needs to be r h e d  if a 'reaüstic' 
profle is to obtain (realistic in the sense that it can be fitted by a profile which represents 
the shapc of full b h  Sdimensional N-body coILisionless simulations}. On the one hand, 
the irrelewce of the smoothing length for the vaiidity of the density profle caiis for a 
thorough evaiuation of the d e c h  of the mass remlution on that profile, which has yet to 

be done, and probabIy an &cement of it in order to produce trustworthy innermost 
logarithmic s l o w  tbat c m  be comparai with otwervations (numerical or physical). On 
the other hand, more dort shouid be put at understanding theoretically this n e c e s q  
depsrture h m  the sel£-* behaviour and , maybe, predid those sIopes. 
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The effect of reduction of the smoothing length 

Studies have been previously made (Knebe et  al. [110]) on the effect of resolution on N- 
body dissipationless cosmological numerical simulations that emphasise the importance of 
a good coordination between the dynamical resolution of the force's smoothing length and 
the mass resolution, once the timestep has been adjusted to the integration of the force. 
The mass resolution represents the size of the phase space volume element associated with 
particIes. ïndeed, Knebe e t  al. [110] point out that if the smoothing length is smalIer 
than the cbaracteristic size of the phase space volume associated with a particle, such 
partide will not model a continuous m a s  distribution as it is expected to do but will 
behave like a point mass in two body encounters. 

The numerical implementation of the SSIM's semi-analytical model implies the use of 
a smoothing length to avoid inducing through the central force singuiarity a scattering 
which would not respect the comoving size induced by finite mass sheli modehg (section 
4.1.1). Throughout this work, the range of values used for the smoothing length has been 
kept ahos t  constant, due to computational time limitations (see the dect of varying 
the size of c, on the timestep, thus on the computation tirne, in sections 41.4 and4.3) 
and it is the aim of this section to explore the variation of such a smoothing length and 
show that its effects on the SSIM are minimd as used in this work. Because of the 
order of magnitude diffaence in computation t h e ,  one case of high interest inmlving the 
implementation of angulat momentum with an initial radial distribution proportional to 
the mass profle times radius, referred to as power lawn implementation, was m. 

First, the suspicion that the smoothing length should not &ect much the SSIM is 
backed up by the theoretical exploration of a sort of CO-graining of the SSIM's equa- 
tions: Henriksen ([106]), in a development of the self-similar Collisionless Boltzmanri's 
EQuations (CBE) in powen of l /a  has showa that the 0th order perturbation, while 
devoid of any dynamical term, neverthelm yîelds the same predictions as the SSIM (in 
its radiai form) in terms of density profile (refer also to Henriksen & Le Delliou 01 [112]). 
In other woràs, once the self-similarity class is established kom initial conditions and the 
mechanics of the turnamund radius and time given for each sheli before shell-mssing by 
the gravity of the rest of its inner sheiis, the dynamics has no role in the establishment of 
the density profile other than maintainhg the self-similar evolution. The densîty profile 
being then only supdciaiiy attected by the dynamics, its vaiidïty is not subject to the 
Iimitations of vaiid dpamics above the smoothing length. 

Testing for these conjectuzes and predidions was effected and compared with the high 
smoothing length version of the mode1 . Figures 6.6 and 6.7 present on their left panels 
the large smaothùig length model (G = 1.5 x  IO-^, E = $, 52 = 9 x  IO-^) on which the 
corresponding graphs for the smaller smoothing length (E, = 3 x 104) are supetimposed 
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Figure 6.6: Smaller smoothing Iength E, test run: virial ratios and phase space projections 
in the radius/radial velocity plane near the end of the self-similar quasi-equilibrium phase 
for critical d u e s  of the angular momentum in the shailow (E = $ = 1.5) initiai density 
profiles cases using the 'power iaw' fom of anguiar momentum 
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in red. These correspondhg graphs are also repeated on the adjacent right panels of 
figures 6.6 and 6.7 for clarity (figure 6.6) and to d o w  for similar analysis (figure 6.7) - 

The main dinérence in behaviour of the virial ratio of the reduced smoothing length 
(RSL) simulation (figure 6.6's upper panels) resides in its longer period of stabilisation 
which encompass aLnost al1 of the self-similar phase. The right panel indicates t hat there 
stdi is a period where the ratio is slowly decreasing £iom a higher value than 1. Inter- 
pretation of this lengthened initial relaxation phase is problematic: its understanding 
in terms of reaching the 'mass flux resolution' in order to establish a stable self-similar 
quasi-equilibrium doesn't imply that a reduction of the smoothing length shouid slow 
down the process. In k t  a reduced smoothing length (RSL) means that the region of 
reversing acceleration due to the mean potential inside the original smoothing length 
gets the maximum acceleration felt by particles in the centre boosted when that region 
is reduced; that increase in centrai acceleration shouid shorten the time spent by shells 
in the centre, tending to slightly shorten the 'equal mass time', not lengthen it. But the 
same increase of acceleration in the central parts also means that scattering of sheiis will 
be much stronger, making it more difficult for the system to settle dowa. This indicates 
that the mass flux resolution, though not suffiCient to account for the stabilisation delay, 
stiil provides a good bais of understanding . The previous evidence of the correspon- 
dence between the stabilisation deiay and Tw-, is not supported here. One might 
think that this is an indication that the mass resoiution (see figure 5.3) shouid foiiow the 
smoothhg length reduction in order to minimise inertial noise induced by high d e r -  
ation excitations of individual sheiis. The larger smoothing length has been thoroughly 
explored in an empirical tashion to yield the best account of dynamics and was monitored 
on the Wial ratio in doing so. It c m  then be viewed as an optimum balance between the 
mas,  force and t h e  resolutions. Nevertheless, figure 6.6's upper right panel shows that 
there is stili a decrease in the virial ratio of the RSL simulation, paraiieling that of the 
generic one. 

It is also semarkable that the noise in the virial ratio (the amplitude of its fluctuations, 
evident in figure 6.6's upper left panel) is diminished with the smoothing length, which 
shows that if on one hand the equilibrium is achieved slower, it is on another hand of a 
more stable nature. 

~ d d i n g t o  this picture of a more efficient relaxation accompanying the smder smooth- 
ing length, the phase space of the smaiier cS simulation appears more relaxed than its 
larger r, counterpart, the r e h t i o n  region at the edges of the system being restricted to 
the fint outer stream of the system and aU traces of the intricate SSIM phase space mYc- 
ing being washed out (figure 6.6% lower right and leit panels). That relaxation explains 
why the smaiier E, simulation's phase space is slightly wider in radial velocity and has its 
first outcoming particle stream inside of its counterpart's. This can alsa been observeci 
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Figure 6.7: Srnaller smoothing length E, test nin: density profiles for critical values of 
the angular momentum near the end of the self-similar quasi-equilibrium phase in the 
stiallow (E = $ = 1.5) initial density profiles case using the 'power law' form of anguIar 
momentun 
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in the NFW fit which is slightly more concentrated with a smaller E,. 
The cornparison between the two density profiles resulting from the two c, on figure 

6.7's left panel shows that little has changed in the operation- The outermost caustics, 
marking the relaxation region, are not present anymore, and the profile is slightly depleted 
on the edge while denser in the centre. AU this denotes the higher degree of relaxation 
achieved by having a more detailed interaction for shelis f h t  crossing the origin. The 
fact that the power laws measured above and below c, are shailower than for the larger 
% case are merely due to the change in position of the divide. It  is notable that the 
innermost power law is steeper (and fully compatible with the NFW inner slope) in the 
RSL case. Thus the NFW profile could be explained entirely by the SSIM when angular 
momentum &S. 

In brief, reducing the smoothing length doesn't affect drastically the behaviour of 
the system, even though the corresponding more detailed time integration ailows for a 
stronger relaxation, a more stable evolution and an increase in the centrai sbpe. Ex- 
ploring the fully 3dimensional phase spam (of the onedimensionai system plus angular 
mornentum) then appeared of interest to check how the relaxation of the system was 
populating the angular momentum degree of fieedom. 

Interpreting these results in the light of N-body studies like Knebe et al. [LlO], it 
appears that our simulations have been using a smoothing length much larger than the 
mas3 remlution would prescribe, in order to stay on the safe side as far as the possible 
inaccuracy in the dynamics, induced whenever two body scattering becornes t m  impor- 
tant. The Limitation on accuracy of the description by the mass resolution as w d  as 
the smoothing length-timestep relation sheds light on the low smoothing length cut o p  
particularly clear on figure 4.5's right panel, and with which this work has struggled to 
get an acmptable low E ,  simuiation. Nevertheless, the nature of relaxation in the SSTM 
leads to the density profile being accurate even below its smoothing length, but only a 

ezample of Qlcuiation for an estimate of the mas resolution length d e  coming from this 
sîmulation cao be writterr as foiim: the constant mass of one sheii is given in the simulation's unit as 
rnl.r.11 = 2.10-'. The maximum densi* contra& on figure 6.7 can be taira as = 4.10'~. Becanse of 
its high d u e ,  the density conttast, wbich can be noted in short & in this note, c m  be identifid with the 

Thus, the volume of innennast sheils on be evaiuated as 

so the cbaraetenstic length sale of a sheii in the centre is given by 
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few times above its mass remlution characteristic length. This is caused by the k t  that 
relaxation in the SSIM essentiaiiy o c c m  in the few dynamical times that partides are 
freshly inmrporated iato the self-similar core, maialy around the secondary tumaround 
radii, Le. near the radial boundary of the core, 

The structure of thre+dimensional phase space 

This section explores the nature of the mass distribution in the radius-radial veIocity- 
angular momentum phase space for systems with a shdiow (c = $) initial density proHe, 
starting with the W L  simulation. Then it is compareci with the larger e, version of the 
simulation, to finish with that of the SSAM form of anguiar momentum. AU of the phase 
space maps presented are m e a d  a t  T=12 which corresponds to a ckar end of the 
se l f - s ida  ir phase and beginning of the isolated system virialised phase. 

In the low smoothing iength and shaüow case, projections along the axes were iùst 
attempted but it was not enough to get a ciear view of the topology of the phase space 
diatribution. Figure 6.8 (a)'$ three diEerent projections can show that shells are spread 
for ail velocities at a given anguiar momentum d range (le& panel), that higher radii 
are only a d a b l e  to the highest angdat momenta (upper right panel) and that the j2 
projection has the structure of the 2-dimensional radial phase space (lower right panel). 

To get a complete sense of the topology of the winding and relaxation of the original 
Liouville stream of Hubble flow shelis, tilted projections of the (X,Yj2) space are required. 
Aogular momentum conservation explains the population of ali radiai velocity d u e s  
with the picture of this weaving distaff of mass 0ow being pulled along circuits stretched 
further and further in radius with increasing j2 (i.e. initial kinetic energy). Figures 
6.8 (b), (c) and (d) aliow for a liner andysis: (b) shows a clear relaxation among the 
smailest radii and angular momentum sheh which accumulate dong the velocity axis 
at the srnailest possiile radii. Figure 6.8 (c) shows more clearly that the relaxation 
region is still present but unresoIved in the j2 projection since it is then projected on the 
boundary of the system. The most striking revelation that is made clear in figure 6.8 (d) 
is that gathering of sheiis takes phce on a thin surface of phase space: the system seems 
constrained in a 2-dimensional sheet of the 3-dimensional phase space in the shape of a 
soaring bird, the ne& and beak pointing towards high radius and anguIar momentum, 
the wings spreading mer ail d u e s  of j2 towards the high ends of radid vdocity and 
the body covering di values of Y into low X and j2. m a t  generai shape as weli as the 
2-dimensionai nature of the constrained phase space sheet is a h  present in the larger 
smoothiug Iength simdation presented on figure 6.9 except that the high velocity wings 
are more progressiveiy spread, oniy the highest anguIar momentum reaching the Iargest 
radiai velocities. The accumuiation of shells at law radius is also more shapeà into the 
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Figure 6.8: E'uii Phase space exploration for d e r  smoothing length E, test run near 
the end of the self-simhr quasi-equilibrium phase (shallow initial density contrasts E = 
$ = 1.5 using the 'power km' form of angular momentun). Upper figure: projections 
dong negative X (front view) and j2 axa and positive Y (side view) axis; 3d views from 
top to bottom rïght: side view h m  wderneath;fiont new from underneath;front view 
£rom above 
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Figure 6.9: Phase space exploration using the potver law' fom of angular momentum 
near the end of the self-sidar quasi-equilibrium phase (shallow initial density contrats 
e = $ = 1.5 ). 3D views hom top lefk to bottom: fiont view from undenieath; side view 
&om underneath; hont view hom above 
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Figure 6.10: Phase space exploration using the self-si& form of angular momentum 
near the end of the self-simiiar quasi-equiiibrium phase (shaiiow initial density contrats 
c = $ = 1.5 ). 3d views h m  top Ieft to bottom: fiont view fiom underneath; side view 
h m  underneath; fiont view fiom above. 

form of a flat basin than of a moderately steep incline. Finaiiy the relaxation region 
streams are more prominent and spread in radius and velocity. In both of the 'power 
iaw' phase space distributions, the shells inside the relaxation, or instability, region and 
beionging to thee r e m  region appear very relaxeci and homogeneous, no phase space 
Stream structure survïving the relaxation process. On the contrary, phase space from 
the SSAM initiai angular momentum distribution displays much more Liouville stream 
structure in its projection dong the j2axis. Figure 6.10 reveals that the distribution 
of shells, though it gathers around the same surface as that of the 'power law' initial 
angular momentum distribution of figure 6.9, spreads itself over a substantial d u m e  of 
phase space. Echoing the importance of available phase space volume pointed out by 
Tormen et  al. [55], Teyssim e t  ai. [a] and Moutarde e t  d. [39] in the finaI state of 
dark matter haloes, the SSAM angular momentum distribution seems to open the third 
dimension to the spread of the system, at the same time reducing the influence of each 
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individual sheii on the phase space volume so that violent relaxation becomes less efficient, 
leaving the structure of the Liouville stream winding almost immune from phase space 
instability. This d f i i o n  away fiom the surface present in figure 6.9 couid be interpreted 
as a consequeme of the artificiai nature of the overconstrained form of the self-similar 
j2, setting the system in an unstable state which is transformeci into this access to extra 
layers of the phase space- 

Angular momentum and mass correlation? 

The existence of this phase space sheet suggests the possibility for a correlation in the 
angular momentum profile. Indeed phase space can be projected dong the radial velociw 
axis to r e d  the angular mornentum profiie. This has been done for the three systerns 
studied in the previous section. One p u p  have even claimeci to ûnd a universal angular 
momentum profile in N-body simulations in tenus of a halo's cumulative m m  (Buliock 
et al. 2000 [113]) according to 

where p and jo are correlated characteristic d e s  and Mv is the halo's virialised mass. 
They also find a power law deScLiKing the correspondence between angular momentum 
and radiaiiy cumulative mass ( j ( M )  a MS where M = M(< r )  and s = 1.3 f 0.3). 

Dimensional analysis (for instance of Eq.(3.70)) and defining the final density profile 
as p a r -p  Ieads one to approrximate the self-similar model's results with power laws for 
the angular momentum (j2 a r4-p) and for the mass profiles (M a t3-p) .  Thus, s can 
be predicted to be s = &, with the SSIM giving the final profile index as a function 
of the initial one as: 

Of course, in the presenœ of enough anguiar momentum, the radiai SSIM r d t s  are 
altered as seen above, but it is remarkable that the shailow initial density profile yields 
s = 1. The largest denation from that is given for c = 3, since then s = 9 = % = 1.17, 
wbich is also within error h m  the Bull& et al. [Il31 d u e .  

Even though the cumulative m a s  M(< j) is not the same as M(< r), approximat- 
ing the former by the latter allm to constnict M(< j) with the help of the anguiar 
momentum and density pmfiies and the appmrhate relation M a pr3. Nevertheless, 
the previous section warns us that a correlation in the j2 profile shouidn't corne fiam 
a simple regression, but shouid try to fit the constrained surkce from which the phase 
space configuration unfolds. In W, the caustic formed in the projection of phase space 
in the j2 - X plane appears a reasonable candidate for the correct angular momentum 
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Figure 6.11: Three angular momentum profiles and their correlations 

proiile. Figure 6.11 illustrates the anguIar momentum profile correlations: the thin red 
iines are mere power law fits to the whole core of the system, and their values do not 
reffect the self-similar calculations. On the contrary, a j% X2 fit of the phase space 
caustic iiiustrates the predictions for the shdow case. Moreover, the density pro6iw 
showing some steepening on the outer edges of the halo, that translates into indications 
for a Batteniog of the mass profile, as in Eq.(6.3). 

The most remarkabIe result of this section is the correlation of the phase space surface 
caustic in the radial velocity projection, displayhg j a X for both the SSAM and PLAM 
initial anguiar momentum and for the reguiar and RSL simulations. 

6.2.4 Angular momentum in the SSIM 

It is now clear that angular momentum has a profound impact on the state of dark matter 
haloes. Fueled by independent studies pointhg out that impact kom various theoretical, 
numericd and observational points of view, the extension of the SSIM to include anguiar 
rnomentum proves full of surprises. 

The k t  surprise cornes h m  the smoothed transition induced by anguiar mornentum 
betipeen the system's self-sixniiar quasi -equilibrium and viriaIised states, whde the former 
seems to persist even without a fuily wnstrained initid system. That latter remark adds 
to the power of attraction of self-shiiarity as an intermediate dynamitai stage. 
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The second surprise Springs from how weii the density profle of the mocüfied SSIM 
with 'power law ' initial angular momentum profile fits the general shape of N-body 
simulations haloes. This , together with the results of the merger mode1 in the SSIM, 
tends to favour non-radiai motion against repeated mergers as the main driving force 
towards pureIy collisionless dark matter haloes density profiles. 

The third surprise cornes from the comparative topology of the phase space between 
the self-sim;iar and a l a s  constrained forrn of initiai angular momentum distribution. It 
gives rise to an interesting correlation in the angular momenturn profile. This cab  for 
more investigation. 

6.3 Black Hole in radial infall: preliminaries 

Scientist confounded Erom the 
apparition (outbreak) of a black hole 

Le trou noir 
JEAN-VINCENT SÉNAC 

The previous chapter dowed us to redise that the SSIM had much more explanatory 
potential than was expected. Despite its symmetry restrictions and the weil accepted 
paradigm of repeated mergers for CDM halo formation, it was able with secondary ac- 
cretion to give insight into the workings of (moderately) violent telavation of haloes, as 
mil as to bridge the gap between the merger paradigm and the opposite one of secondary 
accretion. 

The SSIM has thus shown its capacity by explaining the NJ?W profile with a Dirnen- 
sionally justifid initiai angular momentum distribution. The power of attraction of the 
enhanced SSIM promises more resuits when we turn to the problem of the density profile's 
central cusp. As mentioned earlier, some observations point towards a much flatter den- 
sity profile central cusp for dark matter haloes (Kravtsov et al. [31], Stil [?SI) than purely 
collisionless CDM can explain. The introduction of a central b!ack hole coupled with a 



population inversion in the PDF has proved abie to produce such a 0at cusp (Nakano 
& Makino 99 [85] and Henriksen Sz Le Delliou [86]) but the question of the population 
inversion, manifest in a low energ cut off, remains problematic. The purpose of this 
section and the next is to verify if the observed cut off in the origbd SSTM persiçts when 
such a central black hoIe is introduced and if it induces the predicted cusp. 

The implementation ofa  biaùs hole in the centre of the radial (1-dimensional, with 2d 
phase space) iddi requires two changes: the first is to replace the region of the smoothed 
central cusp density profle by a collapsxi centrai, tunable -.Note that this mass 
does not necessariiy qua1 the mass that would be contained in that central region if 
the pawer iaw proNe were continued to the centre. The second change is to define the 
size of the black hole's mass and Schwarzschild radius at any given timestep. This latter 
task requires to derive the growth of the mass considered to be inside the bIack hole 
at any time. The difliculty cornes fiom spherical symmetry, in which al1 the shek wiU 
eventually cross the origin, whereas a r d  bIa& hoIe would swailow auything crodlsing its 
S c h d d  radius. Sice ail sh& entering the core of the halo for the b t  time by 
umsing the origin muid define the core to be equai to the black hale, a way to limit 
and account for the sheih M y  considered to have failen into the biack hole must be 
provided. It is important to mention that we are not concerned with the initial formation 
of the central black hole, and are desling only with the growth of an initidy already 
formed black hole seed. 

6.3.1 Initial conditions for coilapsed central mass 

Lutid conditions for the set up of a central mass differ fiom the simple SSIM initial 
halo by their handling of the central part. Listead of a smoothing of the centrai cusp, 
the density profile's central singularily is replaceci by a point mas, with the power Iaw 
extendhg outside the radial parameter r,i,. 

Ccwm~logical halo 

Initial density prome The mode1 is again reproducing, above r,i,, a densiky profile 
constituted with a constant background and a power iaw primordial overdensity- The 
centrd space is initially empty, except fur the central mass Sitting still at  the ongin (with 
X=Y=O) : 

p = po(l + &.r'C) r 2 r-. 

The constants are defmed in more detail in appendix O. 



CKAPTER 6. IMPLEMENTATION OF MGULtLR MOMENTUM AND A 
CENTItAL BJACK HOLE LN THE SSM 

Initial mass profile The resulting cumulative mass inside a given radius, if one 
remRins outside the central region, iç thus 

where SM. is the extra mass in the black hole compared with the mass the power law 
density would yield in the central region, For rad3 inside that central region, the m a s  is 
constant and given by 

AU the constants are again defined in appendiu G. 

Shells initial masses and phase space position The set up of individual shells in 
phase space is implemented in a similar way as in section 4.5.1, with the density distri- 
bution modeled by EQ44.3) and the initial haIo obeying the E i e i n d e  Sitter Hubble 
flow: 

2 
y( i )  = 32(i). 

The same variety of methods can then apply: constant sheil initial density, constant s h d  
initial spacing or constant sheii mas. The detail of the implementations can be read in 
appendix G. 

Density definition by shells and their paaitions 

The measurements of density are similar to the regular SSIM definitions. The main 
distinction is the presence, for the initiai time only, of an innermost shell boundary 
different than the origin. The formulations of density profles and relative density are 
detailed in appendix G. 

6.3.2 Time dependent definition of the central black hole 

The key issue in this model is the definition of the possibly evolving central mas. 

Definition of the black hole 

Because of the pureiy radial idk& aü partides hypothetically cross the horizon of the 
centrai black hole, Of course this is just a model with restricted radial sphericai symmetry 
and classical gravity and should be compared with a full representation of the properties 
of an embedded black hole with caution. 
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The simple SSIM points us towards a straightforward interpretation: since the stnic- 
t u e  of phase space aiiows to d e b e  particks which are a p p r h a t e l y  on streams, we can 
exploit the preciictability of those streams. There appear to be streams that would turn 
around before the Schwanschild radius, once it is given. AU partides on those streams 
can therefore be assumeci inside the Schwarzschild radius, and thus in the black hole. 
Particles which belong to streams which wouid lead them to escape the Schwarzschild ra- 
dius are considered as if they were outside of it, whereas particles whose streams remain 
inside the Schwarzschild radius are eonsidered to have entered the b l d  hole and their 
masses are therefore collapsed onto the btack hole at the origin. 

Even though the particles from escaping streams can be found at radii less than the 
S&-d radius, the reasoning is such that without the presence of the horizon's trap 
they wodd tum around, at a later t h e ,  Earther fiom the centre than the horizon and are 
therefore considered to be excluded from the black hole until their projected tunaround 
radius fails under the horizon. 

Practically, this means that we have to keep track in the simulations of shelis which 
are crossing the origin, and thus jumping streams to th& radial mirror image as shown 
on figure 6.12, and which are subsequent to the Iast sheli incorporatecl in the black hoIe 
in the original Stream order. Winding up dong this stream we c m  track the k t  sheii to 
cross the S c h d d  radius at the new timestep. This WU d e h e  the f i  stream not 
yet swaüowed by the black hoIe. The stream shifting sheii just preceding that escaping 
one then defines the new outer boundary of the bIack hole in the LagrangeLiouville 
stream, as iilustrated in figure 6.12. Then the new biack hoIe shells are coiiapsed onto 
the central mas3 and the integration can advance one more thestep. 

Definition of the Schwarsschild radius 

The Schwarzschild radius can be defined h m  its expression out of the General Relativistic 
static black hoIe description, but it also can be defined using Newtonian theory, iike 
Laplace (in 1798, see Misner, Thorne & Wheeler 73 [92] p872, or d'hverno 92 [93j ~224)' 
and MicheIl (in 1783, see Caroll & Ostlie 96 [107I; they mre the h t  to calculate the 
radius for a body with Solar density to have its escape velocity e q d  to that of light) 
did fîrst: if an object admits such a density that the escape veIocity at its surface is the 
speed of iight, then it resembles a biack hole. This can be e x p d  as the condition for 
marginal biiding in terms of specific energy with a kinetic energy using a velocity quais 

which is the same expression as the real S & d d  radius coming from a Generd 
ReIativistic treatment. 
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Figure 6.12: Algorithmic definition of the black hole sheh 

But this expression has to be fitted into the self-simiiar treatment of the halo. In 
real units, c is a constant, but in the time véuying seif-similar variables, it cannot be 
maintained constant except for the special case when the time and length rescalings are 
quai (self-sMukrty index $ = 1, i.e. e = 2). On top of that, the initial units, which are 
not rescaied, are arbitrary and must be mapped onto real values. The treatment of units 
and subsequent determination of the sded Schwarzschild radius are given in appendix 
H. 

6.4 Black Hole in radial infall: Results 

Vous nain, vous avez tàit L'infini 
pnso~iet. 

Lu idgende des s 9 c l a  La comète 
Vrcro~  HUGO 

In the wealth of collisionless N-body simulations, the consensus of the density profile 
caldation for dark matter haloes tends to indicate the presence of a pronouncd centrai 
cusp (a steep as r-' for NEW and up to r-t for the Moore99 type profiles) for the 
innermost density that seems unavoidable. On another hand, as pointed out 'by Kravtsov 
et al. [31] and Stil[75], some observations do not favour such a steep cusp. 
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This section wiil devote itself to the exploration of one possibility for generating 
a shallower inner cusp in coiiisioniess self-gravitating dark matter haloes, withiu the 
fiamework of the SSIM: the presence in the halo of a central black hole. It wilI h t  
briefly describe the analytical expectations fiom Henriksen's calculations in Henriksen 
& Le Delliou (861 on the SSIM together with a brief mgurnent for the inclusion of a 
black hob in the centre of dark matter haloes. Its second part will set the stage for this 
work's results with preliminary remarks. Then the SSIM's alteration by a central bIack 
hole will show its resulting relaxation through the PDF and energy correlations. The 
consequences on the density profile wiU be explored in the fourth part of this section, 
foliowed by an examination of the evolution of its relaxation and centrai black hole with 
tirne. Eventually thii will tngger a model exploration of a reduced speed of light so that 
the Schwarzschild radius is larger. 

6.4.1 Anaiyticai predictions and short review 

The recent enhanceà interest in the behaviour of a coiiisioniess self-gravitating halo em- 
bedding a centrai black hole has been driven by the need to bridge the divide between 
pure dark matter simulations and observation of shaliow cusps in halo density profiles. 

Henriksen & Le Delliou [86] show that a self-similar secondary accretion with a central 
black hole is capable of exglaining the kind of shaliow cusps observeci by Stil[75]. In the 
anaiytical exploration of [86], the radial infaü of the SSIM already gives the promise 
of a shaliower cusp: fiom the undisturbed (by the black hole) semi-universal density 
profile of the SSIM p a F2, or steeper, the presence of the self-simiiarly gro- black 
hob combined with a population inversion of the halo (expressed in a cut-off of the 
PDF at large negative energies) induces a u n i d  central nrsp aith p or r-i. This 

r+O 
prediction is tested in the p-t work. Nevertheless, Henriksen shows that if the cut-off 
is absent or too soR in the PDF, a simple negative temperature expanentid model for 
the PDF (F(E) a eaE a > O) yields a logarithmic slope of -! and the Henriksen & 
Widrow [42] prescription of a negative temperature cut-off on the self-similat equilibrium 
power law PDF (F(E) or l~li tFE a > O) yields a alope of-3. 

But the most interesthg predictions in Henriksen & Le Deiüou [86] concern the cusps 
of the SSIM with a centrai black hole and the presence of anguiar momentum: in the 

3 absence of energy mt-off or if it is too soft, the central cusp yields again a slope of -2, 
1 whereas a sharp enough cut-off brings the cusp within observations to a slope of -F 

The only other work known to show inner cusps compatible with the observations 
is that of Nakano & Makino 99 [85], who find a King-typeg PDF and also observe a 

'ie Ieading to the King density profile. 
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population inversion in energies after evolving an initial non-adiabaticaily disturbed halo, 
by an off-centre black hole. Other even more recent studies have not displayed such 
success, such as Leeuwin & Athanassoula 2000 [Ill], whose axial model doesn't allow for 
a population inversion to develop, starting from a modified Plummer model (faturing 
an infinite possible range of energies) whose softened potentiai provides too soft a cutsff 
to escape the formation of the -$ cusp. 

The decision rnethod used to grow the centrai black hole with tirne, iiiustrated in figure 
6.12, turned out to exhibit no growth when using the Schwarzschild radius induced by 
our model. Indeed, the initial self-simiiar Schwanschild radius reveals itseif to be too 
tiny compareci to the size of the core: it is d e r  than ail radial steps in simulation, 
and that is aggravateci by the exponential decay of XSch when the mass m. is constant 
(refer to the discussion in section 6.4.5 and the lower left panels of figure 6.19 in the 
shallow case and figure 6.20 in the steep case). This is so even when the growth method 
is simplifieci to include any sheii-crossing the Schwarzschild radius, without possibility of 
escape- hdeed, the scaled initial S c h d d  radius is so srnail, when using the re&ar 
d u e  for c, that it fi& way inside the dynamical radial jumps dected by sheiis in one 
timestep, so none ever mach such tiny radii. 

This work fmt presents d t s  using that cruder method of growth, because they 
don't mer from the method exposed in section 6.3.2 and that method imitates better 
the relativistic behaviour of a black hole. The lack of black hole growth, though, left 
unanswered the question of its self-simiiarity. Conditions on the Schwarzschild radius 
dow for a signifiant mass growth of the central black hole, if the value of the spwd 
of light c, an externa1 parameter for this non-relativistic model, is relaxed- A reduced c 
induces, ali other parameters kept unchangeci, the desireà increase in initiai Schwarzschild 
radius, leading to the growth of the blrtck hole mass in a si@cant way, as recorded h m  
the last series of simulations. 

6.4.3 Black hole and the system's relaxation 

The SSIM presents itself with a clear behaviour demarcation between initial density profile 
shailower than isothermal, leading to a self-similarity cl= whose index is larger than 1 
and converging to the isothermal profile; and steeper than isothermal, with index smaller 
than 1 and that admits a continuum of density profile attractors. This demarcation is 
used as a guideline for explorations throughout this work. 

The error evaluation and rernarks on energy and potential energy fiom section 5.2.1 
are still valid here. Of course, the PDF and energy measurements were made for the 
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PDF with Black hole PDF and density of s w  

in r ~ o w  case E=u c = ~ . I o * ~ s  of ait on 

Figure 6.13: Black hole PDF measurement (shaüow case: E = 1.9, regular speed of light) 
averaged over the self-similar phase and eduat ion of the power law dependence in energy. 
The phase Ypace factor is weii behaved for ail energies. 

surroundhg halo, excluding 5om them the sh& inside the black hole. 

PDF and energy correlation of a black hole embedded in a diffuse initial halo 

Choosing the embedding halo in the shaiiow range, one can compare its results with those 
given in section 5.2.2 for a simple SSTM halo. 

PDF and Phase Space factor The exponentiaiiy cut off power law suggested by 
Henriksen & Widrow [42] was fitted to the time averaged PDF in the same fashion 

E 

as L r  the non-singular marm hab (F(E) a IEIP el"..nlwas fitted on the higher left 
panel of figure 6.13 to the halo as a general family that inciudes Henriksen & Widrow's 
F(E) a 1 EI 4 eaE). Compared with the non-singular mass halo of figure 5.7, the power 
law appears steeper, but the cut off is clearer, preceded by a slow decline after the rise 
of the power law (higher 1eR panel of figure 6.13). But this fit is merely an indicator 
for the value of the cut o E  the lower leR panel of figure 6.13 displays more accurate 
power law fits to the less negative energies. This c o h  a slight steepening which can 
be attributed to the approach of the criticd self-similarity index value correspondhg to 
the initial haIo at E = 2 by the present initial M o  set at E = 1.9. Because of the presence 
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of the slow decline, but foremost because of several spikes around the maximum PDF, 
before the sharp cut off, giving more leveling weight to the high negative energy end of 
the fit, the iimit of the exponential energy cut off yields a steeper power law than the 
predicted i, in the lower leil panel of figure 6.13. That is why another boundary was 
proposed, corresponding to the real power law behaviour region for the exponentialiy 
cut off power law fit of the higher panel. This cut off also corresponds to a horizontal 
tangent to the initial power law-exponential fit. That new fit yields a good confirmation 
of the power law value away h m  the cut off, and seems to be valid over more than one 
and a haLi decades. The characteristic hump of the relaxation region &O appears less 
pronounced, but the most striking feature lies in the enhanced energy resolution figures 
of the right panels of figure 6.13, which display no sign of statistical noise comparable 
to those in figure 5.7. Indeed the energy cut on seems genuinely confirmed, al1 the more 
as the behaviour of the density of state g(E) would tend to oppose the decline of the 
PDF (F(E) ci Few the dedining g ( E )  rmild induce a rïsing F ( E )  at constant m a s  
population of the energy bii, thus indicating a genuine and sharp decline in population). 

This stabilisation of the results h m  the SSIM can be attributed to the presence of 
the central mass. As for the non-singular mass halo SSIM, evidence for an exponential 
cut off is quite weak, but the presence of a sharp cut off seems weli estabüshed. Even if 
an explanation of this cut off involves initial conditions, more constraints act during the 
relaxation period, involving energy 'processing' of sheh in the relaxation region. These 
are also apparent in the energy correlation diagrams of figure 6.14. 

Energy correlations and potential energy The correlation between initial versus 
final energy for ali shells is plotted in figure 6.14's top panels for two final epochs to 
indicate the evolution in tirne of the energy spread. Those two epochs correspond again 
to the first and last sampling for the PDF time averaging. The relaxation region can be 
seen on the top of those diagrams, and conesponds to sheh  just fallen in and not fully 
relaxed: th& violent relaxation translates into the wiggling in the range of h a l  energy 
of the strongly correiated line of partides. The Lagrange-Liouviile stream of incoming 
particles not yet entered in the system is present at the initial less negative energies (top 
of figure 6.14's upper left panel). The correlation of energy with radius until sheil-crrosaing 
dows for shells outside of the system to be traced in their energy. 

The bulkof the particles inside the system are in the relaxeci region, characterimi by a 
comlated scatter of !inal energies, less contiguous compared to the relaxing sheh. Some 
dehi te  correlation in the r h e d  shells' energy is then present, showing thus moderation 
in violent relaxation, as in Henriksen & Widrow's simdations with comparable smoothing 
Iength. In addition, the sharp cut off can be detected in the energy diagram as the 
accumulation limit at  the bottom left of the energy diagrams. 
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Shailow case: E =L 9 
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Figure 6.14: Black hole Energy correlation (shallow case: E = 1.9, reguiar speed of iight) 
between initial and final times at the beginning (upper left panel) and at the end (upper 
right panel) of the stable PDF portion of the self-simiIar ph=; the potentid energy 
profile is given for cornparison with Eq.(5.8) with an added contribution fiom the central 
mass and is iiiustrative of the phase tactor caldation 
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PûF with Blxk hok PDF and dcnsity o f  statrr 
inarrpcrr&U c=3,idm/s 

Figure 6.15: Black hole PDF measurement (steep case: E = 2.1, regular speed of light) 
averaged over the self-similar phase and evaluation of the power Iaw dependence in energy. 
The phase space factor is weii behaved for aii energies. 

The potential energy displayed in the bottom panel of figure 6.14 d8er from its non- 
singular mass halo SSIM counterpart which is constant, up to Iogarithmic corrections 
because it here is added to the potentiai energy resulting kom the centrai point mass. It 
then, zs expected, follows an inverse radiai law adjusted by a constant from the halo's 
potentiai energy. The levels of the energy cut off and validity limit for the power Iaw 
fit are indicated as references. The centrai part behaviour stiii foilows section 5.1.1's 
expectat ions. 

PDF and energy correlation of a black hole embedded in a more concentrated 
halo 

Compatison of the steep initial density profde case with the simple SSIM hdo of section 
5.2.2 c m  again be made with the embedded black hole halo. 

PDF and Phase Space factor The fundamental difference between the steep non- 
singuiar mass halo SSIM PDF and that of the embedded black hole M o  lies in the dear 
presence of an energy cut off at  the lowest end of the energy distribution- Even though 
it is weaker than in the shallow case (it doesntt plunge far below the IeveI of the cest of 
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the halo's PDF), it stiil exhibits the same dear slow decline before the sharp cut off at 
highest negative energy. 

Nevertheless, the exponentially cut off p o w  law 6nds it bard to reproduce a shape 
which roughly looks more like a log-normal distribution (see figure 6.15's upper IeR panel) 
and the fit is more nseful as an indication of the cut off to use for a pure power law fit. 
Indeed the exponential cut off hom the fit is even located off h m  the energy range of 
the PDF and we useâ again the limit of the real power law behaviour of the fit (lower 
lefi panel of figure 6.15). Using that range restriction, which aIso make sense since it 
eliminates the deciine fiom the fitted region, the Kenriksen & Widrow [42] prediction of 
a power lm F ( E )  oc 1 - E I  is here conhmed owr almast tvo decades! 

In mntrast with the non-singular mass halo SSIM PDF but in concordance with 
the shallow embedded black hale PDF, the characteristic hump of the relaxation region 
almost vanishes, reinforcing the strength of the power law fit. This is quite spectacular 
when compad to the very strong hump of the simple SSIM. 

In paralle1 with the shallow embedded black hole, the emergence of the cut off is 
fiee Eiom statistical noise experienced in the non-singular mass halo SSIM (right panels 
of figure 6.15). This, though, is a radical quaiitative change with the simple SSlM and 
sheds new light on its originai conclusions. Instead the slight evidence for a cut off in the 
non-singuiar mass halo SSIM PDF, is supported by these r d t s .  

The exponential nature of the cut off has very weak support in the embedded black 
hole halo mode1 presented here, but the presence of a cut off in the steep mse &O seems 
weU estabiished. 

Energy correlations and potential mergy The relaxation process involved in the 
formation of the system equilibrium as measured in the PDF can be studied with the 
energy correlation diagrams, presented for two epochs in figure 6.16's top panels. These 
indicate the ewilution in time of the energy spread. In this txse again, the relaxation 
region corresponds to shells just fidien in and not M y  relax&: their violent relaxation 
translates into the same wiggle of the correiation line in the narrow range of final energy. 
Again, the initial energy correiation with radius before shell-crossig accounts for the 
tail of the La.rang+Liouville stream of incoming particles not yet entered in the system, 
which is found this time a t  the top of the 6rst comelation diagram presented here (bottom 
of figure 6.16's top Ieft panel. 

Most of the partides inside the system are again in the relax4 region, where the 
correlated scatter of h a I  energies is less contiguous than that of the relaxhg sheiis, A 
moderately violent relaxation diagnostic can be extracted from the obvious correlation 
in the relaxed sheiis' energy, as in Hennksen & Widrow's simulations with compara- 
ble smoothing Iength. The cut off can also be detected in the energy diagram in the 
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Figure 6.16: Black hole Energy correlation (steep mie: E = 2.1, regular speed of light) 
between initial and 6nai times at the beginning (upper left panel) and at the end (upper 
right panel) of the stable PDF portion of the seif-similar phase; the potential energy 
profile is given for cornparison with Eq.(5.8) added with the central mass contribution 
and is iilustrative of the phase factor calculation 
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accumulation of shells dong the bottom left of the energy diagrams. 
The potential energy of the bottom panel of figure 6.16 difTers again from its non- 

singular mass halo SSIM counterpart because the added r-' potential energy resulting 
fiom the centrai point mass dominates over the halo potential (W*,,,, a ?-fi with 
p E ] 2; f ]  , so 2 - p < 1). The levels of the energy cut off and validity limit for the power 
iaw fit are indicated as references. The central behaviour stiii follows section 5.1.1's 
expectations. 

Stabilisation, black hole evolution and SSIM 

Because of the absence of black hole growth, the absence of evolution of the black hole 
mass translates into the scaling exponential decrease of the self-similar Schwarzschild 
radius (see the discussion in section 6.4.5 and the lower left panels of figure 6.19 for the 
shallow case and figure 6.20 for the steep case), the only difference between the non- 
singular mass halo SSIMs and this work's resides in the presence of one extra particie of 
mass sitting stiii in the centre of the halo. Since this mass is comparable to individual 
shells (it is not orders of magnitude heavier) and negligible compared with the final halo's, 
it can be regarded as just a ciuster of particles without motion at the centre. 

The stabilisation of the halo under these circumstances can be well understood as the 
ef€ect of this centrai mass: it suppresses the continual tugging of shells each time they 
cross the centre by the previous jitteringof the innermost sheil (in fact, they u s d y  jump 
in one integration step over the centrai radius and are folded back into positive radii). 
There is no more possible slingshot dect on new incoming shells because the innetmost 
s h d  is now the black hole itself, which has no motion. In other words, the previous 
tirne-varying innermost gravitational potential is dominated now by the stable black hole 
central potential. 

Again, the PDF cut off can be explaineci in the same way (see section 5.2.3): h m  
initial energy radial distribution and conservation of energy outside the cote of the shallow 
initial profite, the last infalling particles also carry the most negative eneqg. When the 
last particle fah in, the fixàhg of more and more negative energy to the core is abruptly 
cut off* 

For the steep initial profle, the initial energy radial distribution shows the reverse 
trend, and the more negative energy shells are located in the centre and fa11 first into the 
core. The presence of a cut off in the PDF can then be attributed, as in section 5.2.3, to 
the tegulaitisation of the central density in the implementation of the model. 

These indicate already mechanisms for the PDF cut off to arise, the pool of initial 
energies being h i t e  and limited. But there is more than this constraint acting during 
the relaxation because of the energy 'processing' of sheh  in the relaxation region, which 
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is apparent also in the energy correlation diagrams of figures 6.14 and 6.16. 
Eventually, comparing the outcome of the SSIM with and without this single central 

mass we can change our point of view of the system: instead of seeing the point mass as 
a black hole, we acknowledge that it simply imitates the singularity expected fiom the 
self-similar density profile. This helps the numerical modeling to achieve a cusp in the 
centre of the halo. Hence, despite the la& of evidence in the simple SSIM simulations, 
the central mass SSIM's steep case exhibits the presence of a low energy cut off in its 
PDF- 

6.4.4 Resulting density profles 

By the seE-sMar quasi-equilibrium iddi phase, the system is establishing a stable mode 
through this 'processing' of energy. In the simple picture of the radiai SSIM, the self- 
similar density profile depends on the initial density contrast and is divided between a 
semi-universai attractor p oc r'2 for contrasts shallower than itself, and a continuum of 
attractors p a r-fi with p depending on the value of steeper contrasts than the semi- 
universai one. 

Explorations of the asymptotic behaviour of the density using the characteristics of the 
CoIlisionless Boltzmann's Equations (CBE) and the presence of a centrd self-similarly 
growing mass at the centre of the halo (black hole), Henriksen [86] predicts that the 
density profile will develop a central cusp of a dXerent dope than the bulk of the Mo.  
In the case of a radiai infall, considering that the PDF exhibits a sharp low energy cut 

3 
off, the predicted cusp follows p N r-5. 

r+O 

Rom di- initial embedding halo 

The density profile of the system near the end of the self-similar infall phase and the 
Wialised phase (T=8.5) refiects the state of the system and provides a iink to its obser- 
vational consequences. In figure 6.17, the scaied radius of the embedded black hole a t  
that time is so s m d  that it is indicated as lying outside of the plot. 
h m  the point of view of the radial SSIM, the self-similarity wiil drive the density 

profile h m  a shallow logarithmic slope with E = 1.9 towards the semi-universal attractor 
p = 2. A power law fit to the whole of the core indeed yields (blue, long dashed line in 
figure 6.17) almost that dope (p = 2.03). It can be d e d  on that figure (6.17) that if 
the NFW profile fit (dotted purple line) fails to reproduce the density distribution of the 
SSIM embedded black hole, the single power Iaw fit only gives an approximation for the 
whole profile- 

There is cIearIy a two power law profile coming out of the examination of the core: 
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Figure 6.17: Black hoIe Density prome Diagram (shallow case: E = 1.9, regular speed of 
light) at the end of the self similar phase. 

fitting the density outside of the smoothing length shows that the outer profile admits 
a steeper slope than the semi-univerd one (p z 2.24, for the r d  dashed line of figure 
6.17) whereas a fit of the second slope, between es and the mass resolution inner break 
of the slope appears to confirm the Henriksen & Le Delliou [86] prediction of for the 
radiai black hole embeciding SSiM with a sharp PDF cut off at large negative energies. 

The measured inner dope of the cusp d~esn't mach 1.5 (it remains around 1.592 f 
0.006), when fitted over a range including the smoothhg length. Though the E ,  delimita- 
tion is not physicdy relevant (see discussion in section 6.2.3), the change of dope seems 
to occur not so far inside that limit. In hct the break seems to occur at a somewhat 
srnaller radius, hinting towaràs a slightly flatter inner slope. The difücuity in defining a 
proper measusement range malces the error on the regession not as relevant as the range 
of slopes obtainable. In addition, selecting the range of the power iaw fit in a careful way 
(between the main slope b d  and a siight upward infletion, as measured by eye), one 
can obtain the value of 1.5 within regression error. All in dl, the siope can be estimateci 
at 1.6 f 0.1, con6rming the prediction of a. 
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Figure 6.18: Black hole Density profile Diagram (steep case: E = 2.1, regular speed of 
light) at the end of the self similac phase. 

h m  a more concentrated initiai embedding halo 

The density profile of the system, evolved fiom an initial density contrast steeper than 
the isothermal profile, is represented in figure 6.18 at the end of the self-similar infd 
phase and near the virialised phase (T=10.1). The scaled radius of the embedded black 
hole at that time is again so smaii that it lies outside of the plot. 

In the radial SSIM, the self-similarity would drive the density profile Çom a steep 
36 logarithmic dope with r = 2.1 towards the corresponding self-similar attractor y = rr;. 

This tirne, a power law fit to the whole of the core yields (blue, long dashed üne in figure 
6.18) exactly that slope (p  cz 2.03). The NFW profile fit here too fails to reproduce 
the density distribution of the SSIM embedded black hole (figure 6.18, dotted brown 
line). Close examination reveals also that the single power law fit is again only here an 
approximation for the whole profile. 

The core here can aiso be fitted by a two power law proûie, and this time there is 
a clear break coinciding with the smoothing length. Fitting the density outside of the 
smoothing Iength shows that the outer profile admits a steeper dope than that of the 
self-sïmiiar attractor (p  z 2.25, for the r d  dashed line of figure 6.18), when a fit of the 
dope between E, and the mass molution inner break of the curve yields an even steeper 
dope than the Henriksen & Le Deiüou [86] prediction. That prediction of y = 3 for the 
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radial biack hole embedding SSIM with a sharp PDF cut off at large negative energies 
is supposed to be independent of the self-sïmiiarity class, but here we find p = 1.40. A 
close look at the density profiie compared to the inner dope measwement shows that 
the uncertainty on the slope here is much geater than inOicated fiom the X2 regression 
and that the inner part's curve is not as sharply modeled by a unique power law as 
the preceding shailow case. Again, a careful selection of the fitting range can yieId the 
predicted slope. Here there seems to be a sharp change of slope located at the smoothing 
length, though the es delimitation is not physically relevant (see the same discussion in 
section 6.2.3). Because of the uncertainty on the inner slope it is difficult to pinpoint 
exactly the decisive change of slope and an examination of figure 6-17's density at the 
smoothing hngth reveals the trace of a similar variation in the profile. The break a t  E, 
can then be understood as a natural manifestation of the change of dynamical regime. 
It is due to the presence of the centrai mass. The measured inner slope, compared with 
that of the shallow case (1.60) seems to point towards an error of the order of 0.1, and 
the limit of cS even if irrelevant for the SSIM density profile, by altering the dynamics 
inside of it, affects the eaiciency of the centrai mam potential in driving the halo profile's 
inner cusp to the predicted slope. 

6.4.5 Relaxation of the halo and growth of the black hole 

The object of the previous section on the embedded black hole in the SSIM is to check 
the &ect of the central mass on the SSIM's seif-similar relaxation history through the 
vitid ratio, and examine the topology of its phase space under this new inftuence. A 
monitoring of the scaled Schwarzschiid radius shows that the central mass is not able to 
accrete. 

For a dinuse initial halo 

The virial ratio of the system has been shown to reveal in the SSIM a quasi-eqdibrium 
ph- during the self-similar mass infd marked by a W i d  ratio siightly Iarger than the 
stationary value for gravitational equilibrium. A wmparison between the behanour of 
that ratio for the simple SSIM and that for the black hole embedding SSIM (figures 5.9 
and 6.19's upper left panels) aliows one to detect comparatively the aects of the central 
mass on the SSIM. Because of the Mirent  values of the self-similar ciass of the two initial 
shallow density profile systems presented in the regular SSIM and here respectivdy, the 
comparison remainn qualitative but the results of the comparison are not different h m  
that of the present system with an equivaient simple SSIM simulation. 

The k t  striking feature resides in the similitude of the two Wiai evolutions: they 
both start with a period of unsettled variations due to the equal mass modeling resolution 



Figure 6.19: Black hole Via1 ratio (shailow case: é = 1.9, reguIar speed of light) and 
Schwarzschild radius ewlution, and Phase Space diagram at the end of the self similar 

ph= 

in the self-similar mass flux, the centrai mass acting merely as an already established 
core, then disturbed by the successive incoming extra sheh in the same fashion as by 
repeated mergers of overdemities, as discussed in the paragraph of section 5.2.2. Even 
their stabilisation characteristic times are comparabIe: 

On the other hand, they differ in the virialised phase in the respect that the presence 
of the centra1 mass is again stabilising the evolution of the system, inducing a dearer 
virialisation for which the growth of noise in the self-simi. variable treatment is more 
controlled. 

This stabilisation is a h  visible in the cornparison of the phase space structure in 
figures 5.9's lower leR and 6.19's npper right pan&: the presence of the black hole, at 
the same force resolution seems to reinforce the destruction of streams by phase space 
instabiiity and wash out more structure than obtained in the absence of central mass. in 
Eact it resembles more the kind of p h  space structure obtained in the expIoration of the 
effect of an increased force resdution (see figure 6.6). We have seen that the reduction 
of the smoothing length E= allows for more relaxation because it entails a more detailed 
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integration. Sirnilarly, the innermost time w g  gravitationai potential is dominated 
by the stable centrai mass potential which allows for the resulting smoother dynamics to 
be integrated more accurately. 

The evolution of the scaIed Schwarzschild radius of the present model of a central 
black hole embedded in the radial SSIM halo shows a blatant lack of black hoIe edut ion  
(figure 6.19's lower left panel): the exponential decrease shown here of the scaled radius 
corresponds to a constant real radius, according to the scaling of length in the s e K s i m k  
variables (refer to section 3.1.2, especiaily Eqs.(3.26) for the scalings of radius, radial 
velocity and angular momentum in spherical symmetry). Thus, from the relationship 
between the Schwarzschild radius and the black hole mass (Eqs.(H.l) and (H.2), for the 
scaled and real versions respectively), it is clear that no accretion bas taken place here. 
Although understandable in terms of the size of the radiai integration steps followed by 
the system compared to the Schwarzschild radius, this lack of evolution prevents this 
work, under these circumstances, to test the prescription of a seK-similar mass growth of 
the centrai black hole made in Henriksen & Le DeKou [86]. Conversely, it shows that the 
mere presence of a stationary central mass is enough to yield the expected flattening of 
the density cusp, in the presence of a sharp cut off at  large negative energy in the PDF of 
the system for the SSIM. Eventualiy, this d e d  for the exploration of an altered version 
of this model for which the initiai scaled Schwarzschild radius would be large enough to 
ailow for some accretion of the halo's sheli onto the central mass. 

For a more concentrated initial halo 

The vinal ratio of the system has been shown to reveal in the SSM a quasi-equilibrium 
phase during the self-similar mzw iddl marked by a vinai ratio siightly larger than the 
stationary value for gravitationai eqdibrium. 

The viriai ratio comparison between its behaviour for the simple SSIM and that for the 
black hole embedding SSIM (figures 5.12 and 6.20's upper left panels), in the steep initial 
density profile cases, reveals approximately the same structures, and in comparison to 
the shailow case, exactly the same eûects of the central m a s  on the SSIM. Because of the 
difkrent values of the self-simiiar class of the two systems, the comparison remains again 
qualitative (the vuid phase is longer for E = 2.5, T cz 14, than for i = 2.1, T - 10.1 - 10.2 
) but its resuits are not different than the comparison with the quivalent simple SSIM 
simulation. 

Therefore, as in the shallow case, the two virial evolutions are strikingly similar: 
they both start with a period of unsettled variations due to the eqnal mass modehg 
resolution in the self-similar mas flux (see again the discussion in the paragraph of 
section 5.2.2). These peiiods of settIing into the seIf-simiiar phase rnirror each other 
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Figure 6.20: Black hole Viiai ratio (steep case: e = 2.1, regular speed of light) and 
Schwarzschild radius evolution, and Phase Space diagram at the end of the self similar 
phase 

to the point that they both feature the same last sharp decrease before reaching the 
self-sirnilar quasi-equilibrium (the black hole SSIM is also displaying it more clearly, 
due to the srnoothing of dynarnical noise by the central rnass). The central rnass SSIM 
stabilisation characteristic times is again agreeing with the tirne for the establishment of 
the self-sïmiiar phase (compare the settling in the top left panel of figure 6.20 with the 
tirne TEdma(rssrM+. = 1.9) = 8.2). The dinerence in the stability of the virialised 
phase between the simple and black hole SSIMs can also be found here, reinforcing the 
indications on the stabilising effects to the evolution of the system in the presence of the 
centrai m m .  
This stabilisation is again visible in the phase space structure differences between 

figures 5.12's lower left and 6.20's upper right panels: the phase space structure seems 
again to be more washed out and the phase space instability reinforced in the presence 
of the black hole, at the same force resolution. As for the shallow case, the phase space 
resembles more, keeping in mind the qualitative ciifference of self-similarity behaviour, 
the structure obtained in the exploration of the effect of an increased force resolution (see 
figure 6.6). 

The scaied Schwarzschild radius of the centrai black hole embedded in the radial 
SSIM halo evolves in the same way as its shaiiow counterpart (see figure 6.20's l m  



CKAPTER 6. IMPLEiUElVTATION OF ANGULAR MOMENTUM AND A 
CENTRAL BLACK HOLE iN Tm SSIM 

left panel): its exponential deccease translates again the lack of evolution of a constant 
real radius, according to the same self-similar length scaling (section 3.1.2, especidy 
Eqs.(3.26) for the scalings). The relationship between the Schwa~zschiid radius and the 
black hole mass (Eqs.(H.l) and (H.2), for the scaled and r d  versions respective1y)proves 
that no aceretion has taken place again here. The same interpretations as in the s M o w  
case can equally been drawn hem, as well as the need to explore an aitered version of this 
model for which the initial scaied Schwarzschild radius would be large enough to test the 
prescription made in Henriksen & Le Deliiou [86]. 

Thus the effect of this embedded black hole, though it is not growing and feeding on the 
halo, is to stabilise the SSIM The SSIM's self-similar evolution is still present in the new 
system which displays every aspects of the SSIM in a ciearer way (see Eenriksen & Le 
DeUiou 01 [112]) because of this stabilisation. But there are &O important dZ6érences: 
the potentiai energy profile is dominated by the central point mass (figures 6-14 and 6.16's 
lower panels) which then induces, through a PDF population invasion (PDF low energy 
cut off in figures 6.13 and 6.15) the flattening of the innermost density profile (Henriksen 
& Le Deiiiou [86], and figures 6.17 and 6.18). The evolution of the systern is l e s  no&, 
leadhg to a clearer virialisation, and a more relaxecl phase space(figures 6.19 and 6.20). 
Nevertheless, the self-simk evolution of the Schwarzschild radius is not tested in this 
version of the model. 

6.4.7 A self-similar black hole growth? 

The need for testing the kind of evolution undergone by a black hole whose linear sue 
would compare with the size of the halo requires us to increase the Schwarzschild radius 
without decting too much the w t e m  by mass. The solution came brom the value of the 
velocity of iight, which is an outside parameter in this non-relativistic modei of gravity. 
This avoids having to improve drastically the m a s  remlution, which wodd make the 
integration t h e  unmanageable, al1 other parameters remaining the same. In this way, 
only the evaiuation of the S c h M d  radius is afkcted by the tuning of c and ailows 
therefore the tuning to involve a (marginaiiy) sufiicient number of orbits to get captured 
by the initiai central mas: if the initial radius is too srnail, no evolution occur, but if it is 
too large, each and every single sheil gets absorbed at its fùst aossing of the centre, which 
defeats the purpose of our moderate black hole accretion model ( s e  section 6.3.2 and 
figure 6.12). This tuning was achieved in both qualitative cases with c - 1-64 x l@rn/s, 

This section presents the e t T i  of mocJifving the magnitude of the velocity of ligbt 
(Le. the initial Schwarzschild radius) while keeping any other parameter constant in the 
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Figure 6.21: Black hole Vuial ratio (shallow case: E = 1.9, reduced speed of light) and 
Schwarzschild radius evolution, and Phase Space diagram at the end of the self similar 
phase 

shailow and steep initial density profile models of the embedded black hole SSIM. 

V i a 1  ratio, Phase space and evolution of t h e  Schwamschild radius 

The virial and phase space diagrams of both shailow and steep cases seem atm& un- 
&&ed by the accretion taking place with this larger biack hole. The virial ratios just 
confirm an even more stable virialised phase. One difference though in the Wial ratio 
for the steep case is the smoothing of its last trough before the stable self-simiIar viriai 
phase visible as a noisy but regular rise in figure 6.22's top left panel, compared with 
its corresponding range in the top left panel of figure 6.20. This can be seen a s  a remit 
of the reinforcement of the stabilisation dect of the central mass by its growth and the 
cap t u e  of some shells in the centre. As for the phase space diagram, there are no major 
clifferences between the steep case accreting and non accreting bIack hole simulations (top 
right panels of figures 6.22 and 6.20). On another hand, the phase space representation 
of the shallow case shows a stronger smearïng of its structures, noticeable in the vanish- 
îng of most of its secondary Lagrange-Liouville Stream: the inner second layer of shelIs 
wrapping around the system visible in the top right panel of figure 6.19 is aimost absent 
in that of figure 6.21. 
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Figure 6.22: Black hole V i  ratio (steep case: c = 2.1, reduced speed of light) uid 
Schwarzschild radius evolution, and Phase Space diagram at the end of the self similar 
phase 

The remarkable feature of this mode1 is the evidence for some self-simikir accretion 
on the black hole at  the beginning of the corn formation for the diffuse initial halo, which 
then disappeam at approximately the same time as the system stabilises in its self-similar 
phase (compare top and bottom left pan& of figure 6.21). In fact a correspondence 
can be dram between the centrai mass accretion and a last decline in the virial ratio 
before stabilisation. The steep case also displays some centrai m m  accretion around 
the beginning of the mre formation, until appmximately the same tirne as the system 
stabilises in its self-similar phase (see top right and bottom panels in figure 6.22), albeit 
not as strongly as the shallow case- The indication for self-simiiar accretion (i.e- accretion 
in a quasi-equiiibrium self-similar infall, as detected in the virial ratio) is also quite dim 
in the steep case, some hint being more noticeable around the sarne tirne as the last noisy 
regular rise before the stabIe self-simüar phase, in the Wial ratio. 

A possible interpretation of the iack of accretion displayed is that the efEciency of the 
phase space instability rapidiy washes away any trace of even remnants of the Lagrange- 
Liouville strearn, on which the acmtion algorithmic decision test is built (see section 
6.3.2 and figure 6.12). Before the syatem settles, these streams are not too disturbed 
so as to break down the accretion, in the same mnnner as the disturbed Poincaré tori 
around equilibrium orbits (K.A.M. theorem). But when those streams are destroyed, like 



CKAPTER 6. IMPLEMENTATION OF ANGULAR MOMENTUM AMI A 
CENTRAL BLACK HOLE IN THE SSIM 

PDF wïth Black hole c-l.n PDF and dcnsity of s t a t s  

insîuüoweucE=19 dcncolfrrpm 

Figure 6.23: Black hole PDF measurement (shallow case: E = 1.9, reduced speed of light) 
averaged over the self-similar phase and evaiuation of the power law dependence in energy. 
The phase space factor is well behaved for al1 energies. 

the Poincaré tori, a sea of chaos is left, inddat ing  the decision test to accrete a shell on 
the central m m ,  thus f a i h g  to grow the black hote anymore. As for the dïerence of the 
steep case behaviour with the shaüow case, namely the less clear self-similar accretion, the 
self-simila evolution of the scaled Schwarzschild radius with the steep case self-similarity 
class has been shown to foliow an exponentid decrease. This decrease, though, has a very 
smaii log-linear slope (see Eqs.(H.3)'s second line). It tends to suppress sheh' accretion 
since it diminishes the scaled radius which in turn is capturing less orbits. Nevertheless, 
some hints of self sirnilar accretion can be seen in the suggestion of a noisy almost constant 
evolution before the length scaling exponentiai decay wins wer. 

PDF and phase space density of dates 

The behaviours of the PDF and phase space density factor of the growing black hole sys- 
tems exhibit very simiiar features as the system with a regular speed of light. Comparing 
the growing and non-growing black hole cases carefully, some minor ciXerences emerge. 

The shaüow case's high energy PDF displays a slightly shaüower slope than its higher 
speed of light counterpart, a c t d y  narrowing siightly tighter around the predicted power 
law dope of % (10- left panel in figure 6.23). This narrowing is a h  perceptible in the 
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Figure 6.24: Black hole PDF measurement (steep case: c = 2.1, r e d u d  speed of iight) 
averaged over the self-similar phase and evaluation of the power law dependence in energy. 
The phase space factor is weli behaved for ali energies. 

steep case's apparent measured power law, but the deviation with the actuai high energy 
PDF is stronger than without accretion: the relaxation hump and subsequent trough are 
more pronounced here than in the non-accreting case. 

The reinforcement of the relaxation hump reflects the shift in the phase space (figure 
6.22's top right panel) of the instability outer layer towards larges radii. Also the cut off 
seems slightly sharper than for the model's regular c counterpart. That se- to reflect 
the enhancement of the Iowest energy range of the phase factor, leading to a last spike 
in the PDF (see the two right panels of figure 6.24 compared with those of figure 6.15, 
which one can explain in turn with the softening of the potential energy turn around at 
low energy, compared with the correspondhg potentiai energy of the non-accreting mode1 
(lower panels in figures 6.26 and 6.16). 

Otherwise, the exponentially cut off power law is easier to fit in the shaiiow case (top 
left pane1 in figure 6-23), allowing the exponential cut off to fidi before any turnarouud of 
the slope and yielding a good limit for the power law estimate. This is due to the slight 
softening of the stiii sharp cut off, as observed on the higher energy m i u t i o n  plots (top 
nght panel in figure 6.23). This softening could be interpreted a s  a slight enforcement of 
the evidence for an exponentiai form of the cut off. 

in other respects, this reduced speed of light mode1 dispiays the same effects and 
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Figure 6.25: Black hole Energy mrrehtion (shallow case: E = 1.9, reduced speed of light) 
between initiai and final times at the beginning (upper left panel) and at the end (upper 
right panel) of the stable PDF portion of the seself-simihr phase; the potentid energy 
profile is given for cornparison with Eq.15.8) added with the central mass contribution 
and is illustrative of the phase factor cdculation 

entails the same conclusims, compared to the simple SSIM, as the reguIar c black hole 
model. 

Energy correlations and potential energy 

Similar observations can be drawn fiom the eenergy correiation diagranis presented above 
than for the reduced velocity of light black hole ernbedding halo models (top paneh in 
figures 6.25 and 6-26}, but the cut off limEt, seen in the bottom, leftmost part of each 
diagram, t h t  was detected in the previous s W o w  case exploration to be correlateci with 
initiai energy of sheh is no longer manifest as if the most bound energies were depleted 
by the presence of a strong back hole. This reinforces the previous result of a cut off, aU 
the more as it was clearly detected for the simple SSIM's shallm case. 

The aspect of the s M o w  case's energy diagram also shows a tighter energy correlation 
than for the reg& c bIack hole model. This couid be understood in terms of the 
stabilisation of the system by the higher centrai mass available. Similarly, the steep 
case's resulting energy correlation is tighter than that of its reguiar c counterpart . 
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Figure 6.26: Black hole Energy correlation (steep case: E = 2.1, reduced speed of light) 
between initial and final times at the beginning (upper left panel) and at the end (upper 
ri& panel) of the stable PDF portion of the self-similar phase; the potential energ). 
profle is given for cornparison with Eq.(5.8) added with the central m m  contribution 
and is iiiustrative of the phase factor caiculation 
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Figure 6.27: BIack hole Demis, profile Diagram (shallow case: E = 1.9, reduced speed of 
iight) at the end of the self similar phase. 

The incoming particles energ outer streams are otherwise remarkably clear near the 
end of the infail phase, in the top right part of the diâgrams (top parts of the energy 
corretations) compared to their reguiar c counterparts. Finally, the relaxation tegion is 
more delineated h m  the cote (relaxeci particles) correlation compared to the regular c 
case. This could indicate that the energy procming is more efficient since it wiggles sheiis 
more in the relaxation stage. 

The potential energy diagrarns illustrate (lower panels in figures 6.25 and 6.26), as for 
the regular central mass models, that the potentiaI is dominateci by the central mas. A 
slightly softer break of the potentid energy power law behaviour at s d  radius can also 
be detected, compared with the reguIar central mass models. 

Density profiles 

Eventually, the density profies display a much smoother change of slope between their 
inner and outer slopes. Nevertheles the NFW profile codd still not be properly fitted 
(brown, dotted lines in figures 6.27 and 6.28). The steep case's reguiar c central mass 
model's cusp detecteà at the smoothïng length is no longer apparent here, reinforcing its 
accidental nature. On another hand, the smmthess of the slope h g e  makes it even 
more diEdt to set its limits. 
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Figure 6.28: Black hole Density profile Diagram (steep case: E = 2.1, reduced speed of 
Light ) at the end of the self similar phase. 

The global power law fit finds it ali the more diflicult to reproduce the theoretical 
SSIM slope ( p  cz 1.81 instead of 2 for the shallow case long dashed, blue line in figure 
6.27 and p z 1.93 instead of appraximately 2.03 for the steep case, long dashed, blue 
line in figure 6.28). However, in the steep case, the outermost fit reveals more promise 
on that level (p = 2.06, dashed, red line in figure 6.28). On another hand, this is quite a 
departure h m  the regular central m a s  model (for which p = 2.25 for the same range of 
fit). Conversely, the outer slope fiom the smoothing length for the shallow case is close 
to the reguiar speed of Iight model (F = 2.21 compared to 2.24, for the dashed, red Iine 
in figure 6.27), albeit being unable to fit the outermost density slope (there the NFW 
prome fit hints at an outer dope of p = 3). 

The inner dopes encounter the same kinds of difEculties on their innermost parts. 
The estimated value of 1.64 (green, dotted dashed iine in figure 6.27) can be questioned 
fiom the point of view of the accuracy of the fit (since the dope is changing continuously). 
The steep case's measures at an intriguingly simîlar value (green, dotted dashed line in 
figure 6.28, p : 1.65 compared to 1.64 in the shallow case). There is aiso a question 
regardhg its range of validity, the fit being calculated over particles which are inside the 
new Schwarzschild radius. 



6.4.8 Black hole and density cusps 

In the varie@ of ways to possibly nuderstand the Bat centrai density cusps observed 
in dwarf and low surface brightneas galaxies, models embedding a central supermassive 
black hole hold serious promises. While other approaches encounter problems, like the 
lack of central d a t i o n  levels that muid result h m  seif-anddation of self-interacting 
dark matter, shallow cusps are predicted for CDM black hole embedding hdoes (Nakano 
& Makino [85] and Hemihm & Le Delliou [86]). The aim of this work was to explore the 
SSIM's inclusion of a central growing bla& hole calculated by Henriksen & Le Delliou, 
2001 [86]. 
This introduction was made in a radial infall only, leaving non-radial modeüng around 

the black hole for later works. Evaluations of the Schwarzschild radius required the use 
of some gdaxy-size dark halo mapping of the modei, The resulting radius represents 
a very srnail black hole accretion region compared to the cosmological halo scales and 
numerid treatment lead to no abserved accretion. An enhaaced Schwarzschild radius 
model aras studied to evaiuate the rate of accretion if the sizes of the halo and black hole 
were comparable. 
This study has shown four major points: the cusp in haloes c m  be explaineci with 

the very elementary SSIM and do not require more than the presence of a central black 
hole and a regular accretion basin (conhary to Nakano & M a h o  [85])- The population 
inversion, or sharp cut 06 just cornes h m  the initial conditions of the system and the 
'energy processing' of self-similar accretion, which occurs naturdy in the SSIM. This cut 
off is therefore not necessarily a result of the central black hole: even though the bI& 
hole is respoosible for the initial cut off in the steep initial density profle in the SSIM, 
that cut off originates in the limits of the dark halo accretion basin for the shailm initial 
conditions. 

Self-sunilar accretion still appem very prominently in CDM halo formation as an in- 
termediate stable quaskquiiibriumstage, even in the presence of a central black hole, and 
confirms itseif as a primary principle of explmation for Large Scale Structure formation. 
The analytical d t a  in Hendssen & Le Delliou [86] are con6r1~ed to hold in the 

radial uifaü d e k  the density cusp is d e d ,  within the fimits of accuracy of the 
simulations, to iollow predictions and the method ailowed for some weak evidence of the 
self-simüar mas accretion by the black hole. The shallower cusps requin? a sharp cut off 
and resuits h m  LeeuWin & Athamssoula [Ill], with an arguably softer cut off, r d  
even more decisively that importance. 

Rom a reversed point of view, this work has aiso shed some new light on the SSIM 
its& the presence of a simpIe centrai mas, by imitating the naturai power iaw cusp of 
the SSIM, has s h m  a s t a b i i  behaviour of the model. It has reveaied that the cut off 
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in the PDF is present in both qualitative cases of the SSIM. The mass accretion of the 
central black hole just accentuates those results. 



Chapter 7 

Conclusions 

This is the way the world ends 
This is the way the world ends 
This is the way the world ends 
Not with a bang but a whimper 

In modern, physical cosmology, the understanding of the formation of Large Scale 
Structures involves the exploration of Cold Dark Matter haloes. hom the weaith of 
questions raised in the study of those objects, thïi work bas focused on answering two 
main problems: what are the fundamental elements imlved in the formation of CDM 
haloes density profiles, and what can characterise the relaxation state of equilibrium 
haloea. 

This chapter will survey the implications of the present work: in a ûrst section, 
the motivations that sparked it wiii be reviewed. The second section will darify its 
achievements and the last section will point to questions left unresolved and directions 
for further research. 
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7.1 Why explore the SSIM? 

Nous ne savons encore presque rien et 
nous voudrions deviner ce dernier mot 
qui ne nous sera jamais révélé. La 
frénésie d'arriver à une conclusion est 
la plus funeste et la plus stérile des 
manies. 

lettre à Louis Bouilhet GUSTAVE 
FLAUBEW~ 

Indeed, can such an old and simple mode1 as the SIM still be of use in the under- 
standing of CDM haloes aiready expbred by large and complex N-body simulations? 
This work has shown how sophisticated second-generation versions of the SSIM answe.red 
questions corning from tkee  main impulses. the theoretical drive for understanding fun- 
damental concepts involveci in the study of cobionless CDM halo's; the numericd drive 
of questions produced by regults of N-body simulations; and the obsemtional drive by 
new objects defying the predictions of N-body, self-gravitating purely collisionless matter 

7.1.1 Theoretical drive 

Exploration of the properties of self-gravitating coilisionless matter is of utmost theoret- 
ical interest. The dominance of the bottom-up paradigrn of CDM clustering and results 
fiom N-body simulations tend to emphasize the existence of hierarchicai merger clustering 
and triaxiai (as opposed to this work's radid or spherically symmetric) m a s  accretion of 
CDM haloes. To evaiuate the importance of these processes in the formation of Moes 
is the goal of the study of Large S d e  structure formation. In other words, are mergers 
necessary processes for the formation of CDM haloes (as advocated by Syer & White [33]) 
and ii otherwise, what are the fundamental eIements of CDM gravitationai coilapse? 

Intimately linked with the modes of m a s  accretion is the problem of relaxation. The 
impossbility for a fmite collisiodess and seif-gravitating system to reach a thermody- 
namical equilibrium, as d i s c d  by Lyndee-Bd[34], opens the question of the mded 
'violent relaxation' and the problem of its medition in such systems. 

Such questions have been successfully deait with by the careful modelisation of the 
SSIM. 

7.1.2 Numerical drive 

The study of the results yieided by cutting edge N-body simulations d o m  one to probe 
the nominal behaviour of cosmology 's hypot hetical CDM, otherwise directly undetectable 
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by definition. This reveah that those haloes typicaiiy form by clumping surroundhg 
matter and swallowing neighbouring lesser clumpe in a highiy non-radiai way. These 
features pose profound questions as to whether these observecl modes of formation are 
fundamentai to CDM haloes properties or if they are just accidents of those detailed 
simulations of no great impact. 

Present research focuses on the radiai mass density distribution, or density profile, of 
CDM haloes. Some groups (lecl by Navarro, henk & White [32]) are finding what could 
be a universai - sin&, when applied to appropriately scaied haloes - profiie in N-body 
simulations for any halo, commonly called WW. Others are hding  a different universal 
profile, like the one this work refen to as Moore99 [71] or the Hernquist profile [631, used 
eariier in theoretical description of stellar systems and elliptical galaxies. Some groups 
even disagree with the universality of those profiles (Jing 1691, Jing &Sut0 [70]). 

This interest in the density profiie is heled, on one hand, by the information it 
could contain about the initial conditions of the primordial density fluctuations and the 
accretion and relaxation processes it has undergone. Indeed, universaiity entails a Ioss 
of memory of initial conditions, but also implies sufiiciently violent relaxation. Several 
groups have already worked on using some variant of the SSIM to expiain the density 
profiie of CDM haloes. The study of the equiiibrium of CDM haloes has also led some 
groups to borrow the PDF, or Probabiiity Distribution Function, formalism from s t e k  
group dynamics and kinetic theory (for a more complete review see sections 2.2 and 3.2)- 

On the other tiand, the poeisibility for observation to be Linked hdirectly to this CT)M 

halo density profde a h  contributes to its interest. In kt,  if it can be argueri that full 
threedimenaional N-body simulations play a role eimiiar to observations for theoretical 
understanding of the intimate relaxation and coiiapse mechanisrns, then they reflect the 
lirnits of the pureiy collisionless CDM paradigm when confronted with reai observations. 

7-1.3 Observational drive 

Such confrontations between N-body resuits, or broad paradigrnatic models, and obser- 
vations have already permitteci the exclusion of the Hot Dark Matter scenarios as  good 
models of Large Scale Structure formation in the universe. 

More recent observations of density profle centrai cusps on haloes of dwarf and 
Low Surface Brightness galaxies, which can be derived with such tracers of m a s  as 
the Smyayev-Zel'Dovich &ect , disagree with aii the density profles obtained in N-body 
simulations. Some respo~lses extending the simple CDM mode1 in terms of self-interacting 
dark matter nui into problems like the lack of centrai radiation levels that would r e d t  
h m  the self-annihilationofsuch seif-interacting dark matter (Flores & Primack 94 [79]). 
Other directions, like adding the effect of baryonic gas proposed by N-body numerïcists, 
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introduce a lack of simplicity and dissolve subth understandhg into maxirnalist N-body 
simulations. Besides, studies like Teyssier et al. [54] forecast that such efforts are uniikely 
to yield results much diflerent than those obtained with rotating collisionless matter. A 
more promising departure fiom simple CDM models - the exploration of the efïects of 
a central supermassive black hole - is the option followed in this work. 

7.2 Advances 

Confionted with these unresolved problems in the field of primordial halo formation, 
we adopted the strategy of reducing the complexities of the problems and distilling them 
into an elementary model: the SSLM. Mending its shortcornings led us to new territories 
of understanding both of the nature of the SSIM and of the nature of hierarchical coilapse 
and CDM halo formation- 

7.2.1 SS1M:PDF and virial states 

In a first part of this project, we estabiished our capacity to successfully reproduce Hen- 
&en & Widrow's ([42]) unconstrained SSIM resuits, apart fiom a weaker energy corre- 
lation. This weaker energy correlation indicates a less moderate violent relaxation than 
previously found. That success, together with thorough explorations of some important 
parameter variations, served to confirm the MLidity of our numerical explorations. The 
SSIM thus displays its usual semi-unid density profile with initiai profiles shal lmr 
than the isotherxh density profle converging to p a r-2 and steepa initial profiles 
each admitting a separate attractor not very far h m  isothermal (&pinitiol a r-' with 
E > 2 leads to p a: r-fi with p related to the self-similarity c h  and thus to the 
initial profle by p = 2% = 6). In eosmological terms, in the SSIM Eie in -de  Sit- 

ter background, if the initiai power spectrum is scale lree (P(k) = ( ( ~ 1 ~ )  or kn) and 
assurning the density profile to be proportional to the correlation funkion (through the 
spherically averaged ma mass fluctuation), the initial profile can be reformulated as 

a (bn($)2) lf2 a and the d t h g  similanty dass and h a l  density 
profile can be d&ed as 

and 

But this exploration of the SSIM was also an opportunity to refine our understanding of 
the SSiM. 
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The importance to the relaxation of the system of the most recently faiien partides 
confined in the outer limits of the phase space and PDF of the SSIM is made clear in 
the energy correlation diagram. Our understanding of violent relaxation in the SSIM is 
therefore improved: it occurs very rapidly and is more mediated by phase space insta- 
bilities (see Henriksen & Widrow [QI) than by the central part of the halo's potential. 
This has also been confirmecl by a higher force resolution simulation in the presence of 
anguiar momentum. 

Even if the exponential nature of the cut off at high negative energy in the PDF 
prescribed by Henriksen & Widrow, d e r  Merritt et al. [60] was not estabüshed h d y 1  a 
new result was however obtained: the existence of such a sharp eut off was proven in the 
shaiiow initial density proûie case, with sirnilar indications in the steep case. The proof 
for an F(E) oc ( - E ) ' / ~  behaviour at high energy in the PDF was also reinforced over 
one or more decades. 

Eventually, a prelimiaary result was also produced: the value of the virial ratio during 
the self-similar infaii phase demasea with increasing primordial density profile power law 
index. Since that index, related to the self-sirnilarity class, reflects the initial concentra- 
tion of the haio, this trend just represents the reduction of the outer halo in faveur of 
the centre, which in turn increasingly resembIes a virialised system when reaching the 
quasi-equilibrium of the accretion phase. However, the trend does not asymptote to the 
regular isolatecl equiliïrium value and the accretion phase retains its irreducible quality. 

7.2.2 Mergers: Modeling of a merger event 

Mergers are commonly believed to hold a predominant position in hierarchical clustering, 
disfavouring the seeondary acnetion model of the SSIM. Syer & White [33] published 
a discussion in which repeated mergers, in a feed back mechanism between dynamical 
friction and tidal stripping of mergiag satellites, explained the emergence of the NFW 
universal profile as a dynamical attractor. 

The simple SSIM with its semi-attractor and seif-similarity as a drïving force presents 
itself as a serious candidate to explain some universali& in density profiles. It only 
appears to lack the merger paradigm. %king on the paradigm of repeated mergers, we 
included a model of its efkt  on the SSLM. 

Rom this model we have established that the SSIM density profile is affecteci by the 
impact of a merger in an interesting way: the average power law continuum of attractor 
gets sbnink (kom p s s r ~  = 2.143 to p = 2.024 f 0.001 and fiom b s s r ~  z 2.231 to 
p i 2.O9Sf 0.001 for strongly disruptive mergers) after the digestion of the satellite by the 
parent haio. Some indication of an outer steeper profile is visible for strongIy dwuptive 
mergers, getting close to Keplerian (p,& - 2.866 f 0.007). And some indications of 
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a flatter cusp can be obtained more clearly from the stmngiy disruptive mergers ( e-g. 
hna 1.63 k 0.02 for the moderately steep parent halo). Thus a picture closer to 
the Moore99 profile as an attractor emerges from the repetition of mergers; this wodd 
increase the shrinkiag of the range of the SSIM attracton into being indistinguishable 
fiom a unique one. 

Although this picture points towards the destruction of the scalefree unique power law 
of the SSIM by the introduction of a d e  fiom the merging satellite, a very interesting 
dynamical result is obtained. the continuation of the secondary mass iddi  btings the 
system back into the energetic quasi-stable state of the SSLM! Despite the destruction of 
its scabfiee featwes, the self-similar rescaiing of the systern also continues to hold. This 
robustness of the SSIM to merger disturbances of comparable mass and density proves 
the interest of self-simiiarity as a general intermediate attractor of the behaviour of the 
systern and the value of self-similarity as an explanatory principie for the behaviour of 
DM haloes. 
This exploration also contains an unexpected insight into the SSIM: it shows the la& 

of distinction between the SSIM and repeated mergers where satellites are small enough 
compareci to the parent, and the number of mergen fresuent enough to maintain a strong 
mass Bux through the system's boundary. The dSerence between the taro paradigms îs 
then shown to be a progressive and quantitative one, rather than the distinct division 
commoniy held. 

Nevertheless, mergers are neither the only nor the most tdicient mechaism leading 
to the central flattening and perïpherai steepening of the density profile. Evidence for 
non-radial motion in the centres of haloes, both numerid and observational, points 
towards another, or at least a mixed, explauation. Mo~e~ver,  the âattening obtained is 
not sufiicient to reach the very fht cusps observed. Thus more investigations were begun, 
extending the limits of the SSIM in order to ammer those furthet questions.. 

7.2.3 Modeling of halo angular momentum 

Taking its origin h m  differential asymmetrïc torques of extemal haloes, non-radiai mo- 
tion is omnipresent in any redistic acmunt of observations. Modifying the radiai infail 
of the SSIM to accommodate for some fonn of spheridy symmetric angular momentum 
was therefore neeessary if the SSIM was to hold any c l a h  to mode1 the principles of dark 
halo formation. 

Of the two forms of an@ momentum distribution retained, one praved to be very 
important: the Dimensionally motivated power law' angular momentum profile proves 
capable of producing srnoothly varying tswslope density profiles of the type made in fully 
threedimensiond collisioniess N-body simdations, In k t  the most important result of 
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this m r k  on pure CDM haloes is that the NFW profile can be fitted extremely wel to 
one of the reaiisations of the 'power law' aagular momentum SSIM. Compared with the 
results tiom the merger model, the SSIM shows that non-radial motion probably plays 
the primary role in the constitution of the density profile. The shrinking of the continuum 
range by mergers is not so important when considering the diiculty of discriminating the 
initial range fiom the isothermal attractor (p E [2; f ]  so the maximum deviation Erom 2 
is oniy 0.25). 

The second main result fiom the modeling of dark haloes with the SSIM is the extreme 
robustness of the model: despite the perturbation of the angular momentum distribution, 
which sets a scale at the inner tumaround of particles, the scaling and relaxation features 
of the SSIM are almost unaîTected. Remarkably, the Wial ratio mdng the quasi- 
equilibrium stable self-similar accretion phase slips smoothly into its isolated equilibrium 
d u e  in the presence of angular momentum instead of dropping after the last incoming 
partide is accreted. Overail, the robustness of the SSIM makes it a very convincing and 
attractive model for the principles of CDM halo formation. In addition, this version of 
the SSIM was chosen to test the mbustness of the resdts under a change in the dynamical 
remlution (force smoothing length). The induced better t h e  integration, and therefore 
dynamitai relaxation, did not have a major impact on the model, confirming that most 
of the relaxation occurs in the outskirts of the system, in the previously characterised 
relaxation and energy processing region. 

Eventually, the study of the relaxation of the shaiIow initial density profile systems 
reveals, surprisingly, that the more constrained form of angular momentum t u a s  out to 
be less &cient at reaching relaxation. The shape in phase space of that distribution leads 
to the discovery of traces in the SSIM of what another group claims to be a u n i d  
angular momentum profile (see Buliock et al. [113]). More investigations are needed on 
those matters. 

7.2.4 Modehg of central black hole 

Armed with the confidence bestowed upon the SSIM by its success in explaining pure 
datk halo behaviours, we can now turn to our attempt to augment the SSIM. The need for 
more than purely coilisionless DM modeling is driven by shallow central cusps observations 
(Kravtsov et ai. [31], Stil[75]). We have chosen to study the effect of a central black hole 
on the SSIM as a natural and elegant extension of the model. Henriksen & Le Delliou 
[86] have shown that the analytical SSIM model with a self-similar growing centrai bIack 
hoIe is able to explain the shallow cusps observed. 

In this work, a central mass was left to accrete in a radiai infall. A more complete 
model wouid have included non-radial motion as weii, but this was lefi for future works. 
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The simple radiai model dowed us to concentrate on the effects speciiic to the central 
mass presence. The need for physid scalings of the model in order to implement a 
Schwarzschild radius called for an evaluation of the model as a galaxy-size halo. Despite 
using a peculiarly large centrai mas ,  this evaluation demonstrates how tiny supermassive 
black holes are compared to their halo. That scale difference combined with o u .  mass 
resolution led the central mass to remain unable to accrete. In this classical model, the 
speed of light is an extemal constant. Adjusting its value aliowed us to enlarge the 
original Schwarzschild radius so the &&s of accretion were also studied. 

Rom these explorations, Henriksen & Le Delliou's analytical predictions of a cusp 
with dope -1.5, in the radial infd modei, are c o h e d .  Indeed, measured inner cusps 
are found with slopes around -1.5f 0.1. Instead of a smoothly varying density profile, the 
radiai infall retains the SSIM's results as an average dope of a kveslope behaviour with 
a sharp transition between the inner cusp and the outer envelope. Anaiytical calculations 
(Henriksen & Le Delliou [86]) combined with these results aiiow us to be confident that 
an an& momentum implementation of this central m a s  SSIM should yield the shallow 
0.5 central cusp. Of course this is to be confirmed in a future development of the model. 
Thus the simpiicity of the SSIM added to the presence of a central mass is a sac i en t  
condition to explain the observed density cusps. 

Moreover, contrary to what Nakano & Makino [85] propose, the population inversion, 
or sharp cut off in the PDF, occws naturally in the SSIM due to its initiai conditions and 
relaxation properties. The cut off is thus not a direct result of the presence of the central 
mas: although the initial cut off in the steep initiai density profile proceeds outwards 
h m  the black hole, the s W o w  initial conditions produce an initial cut off inwards from 
the limits of the dark halo accretion basii, In our model the shallower cusps require the 
population inversion to yield a sharp cut off. It can be argued that other attempts to 
include a central supermassiye black hole cannot reproduce the same flat cusps (see e.g- 
Leeuwin & Athanassoula [lll]), and o u  CalCuIations even predict the cusp they display. 

Finaiiy: aii the energetic, phase space and relaxation results of the simple SSIM model 
are even more distinctly reproduced hem. The centrai mass dows for the numerical model 
to produce a real central cusp, which imitates the SSIM's natural power law cusp and 
thus s t a b i i  the behaviour of the simulation. Thus the steep initial profite's PDF cut 
off can be confirmeci thanks to that stabilisation. in fact, one can adopt the perspective 
of the SSIM and treat these results as a stabilised version of the simple SSIM and the best 
indicator of its properties. The evidence for a self-simiiar accretion through the enlargeci 
Schwarzschild radius is just indicative, but accretion only reinforces the stabilisation of 
the simulation. 
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7.2.5 General picture of a dark halo from the SSIM and its extensions 

The SSIM, when properly enhanced, contains al1 the elements essential for the under- 
standing of the various behaviours in CDM halo formation. 

The picture it presents of CDM haloes explains large N-body simulations and indirect 
observations of real haloes alike. Fkom its exploration, because we did not assume self- 
similar accretion but dowed for it to develop and uçed coordinates that make it evident, 
self-similar accretion appears very prominently in CDM halo formation as an intermediate 
stable quasi-equilibrium stage. It thus confirms itself as a primary principle of explanation 
for Large Scale Structure formation. 

We now understand the primordial importance of non-radial motion in the constitu- 
tion of dark haloes' density profiles. The merger paradigm appears as a secondary but 
non-trivial addition to the picture, driving the halo towards a unique attractor, even in 
the absence of angular momentum. The introduction of a central bhck hole offers itseif 
as a simple and natural way to explain the strong flattening of observed density cuspç. 

Understanding of the violent relaxation involved in cold collapse is refined in the light 
of the SSXM, Relaxation o c m  continuously during the infall, but in a few dynamical 
times for any given shell, It is mainly located in the peripheral regions of phase space. 
It is &ected by phase space instability after enough phase mixing has occurred. It  is 
moderately violent, a clear energy correlation remaining after relaxation, and is charac- 
terised by a sharp population inversion in its Distribution h c t i o n .  The origin of this 
cut off probably lies in initial conditions but it is remarkably maintaineci through the 
strong energy processing' of violent relaxation. 

The power of explanation of self-similarity as an intermediate attractor is thus strongiy 
iliustrated and promises more demlopments. 

7.3 Moving beyond 

'Ii est encore fécond, le ventre qui a vu 
naître la bête immondey 

La rédiide oscention d'Artun, Ili 
B E ~ O L D  BRECHT 

Predidion is very difücult, espeaally 
about the future. 
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In the present picture, the SSIM shows that the density profile of CDM haloes is 
determineci by non-radial motion and the presence of a central supermassive black hole. 
hpeated mergers of hierarchical clustering are not necessarily primordial in the constitu- 
tion of those density profiles, contrary to the Syer & White argument for the establishment 
of the NFW profile. Self-similarity points towards the existence of a universal profle, and 
for pureIy collisioniess secondary accretion haioes, the NFW profile is favoured over the 
Moore99 profile. The dynamics of gravitational collapse involve moderately violent re- 
taxation mediateci through phase mixing and instability. But the present project has left 
open numerous questions. 

The treatrnent of angular momentum reveals that a higher mass and dynamitai Tese 
tution exploration of the SSIM couid separate the NFW profile from the Moore99 beyond 
doubt. A study of the rotational velocities involved in the present modei in terms of r d -  
istic halo measurement should be conducted. An angular momentum profile derived iiom 
a careful modei of inter-halo tidai torques could be confronteci with the previous a priori 
results. Moreover, a careful study of the velocity anisotropy couid CO& N-body resdts 
and reinforce the grounds of the SSIM. Some prelidnary measurements of PDF in the 
presence of angular momentum were performed during the course of this work. Since they 
were using the assumptiom either of radial iddi, or of isotropic velocity field, which are 
contrary to and not guaranteed by, respectively, the present use of angular momentum, 
they were not reportai. Nevertheless, similarities of the isotropic velocity PDF measure- 
ments with that of other works (e-g. Hanyu & Habe [loi]) are promising new results. 
Given an isotropisation that we conjecture but has to be tested, the one-dimensional 
energy dependent PDF could be measured and compared with those works- 

The centrai mass results clearly show that a more careful control over the mass res+ 
lution length scale is needed to get the correct inner cusp as the Iirniting dope of density 
proûie. A higher mass tesolution might even yieid a real size black hole accretion. But a 
more robust accretion test has to be imagineci if the radiai model is to produce a correct 
view on the subject. 

in the end, the centrai b W  hole modei needs to be addressed in more realktic terms 
with the induion of angular momentum. This wiii aüow for the biack hole to accrete in 
a more natural mariner. The resulting profde shouid also be confionted with the observed 
very flat cusps and halo profiles. 

The exploration of mergers presented here has yielded some promising conjectures on 
the final density attractor. A logicai extention of the work should conduct a modei of the 
repetition of mergers by iteratuig the process: once the overdensity is digested by the core 
of the SSIM, a second overdensity should be added on its edges, and the haIo extended 
to allm for a new round of digestion. The combinatoric possibiiities dictate aIso some 
additional experiments: the effect of angular momentum on the merging process with the 
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SSIM could be exploreci, as weii as the impact of a merger on the accreting central mass 
model, or even a complete angular momentum with centrai black hole model could be 
perturbed by a merging satellite. 

Other questions regarding the SSIM itself remain unanswered: a more complete study 
of the virial function dependence on the initiai profile index should compare the numer- 
i d  results with the predictions caiculated from Henriksen & Widrow [42]. Further ex- 
plorations could address the main objection ta this work: the strength of the primordial 
density peak, kept constant here, could be modulatecl and its effects carefully s tudied. We 
used to describe the system a set of scaled variables so a s  to obtain a steady state when 
the system reachea self-similarity, In these variables, at a fixeci class of self-similarity, 
the size of the self-simjiac cote in phase space seems constant under changes involving 
mergers, central accreting maas and angular momentum perturbations of the SSIM. This 
poses the following question: what governs size of system in resded phase space? 

Eventually, leaving the h e w o r k  of the sphericai s h d  code, the SSIM in particular 
and the collisiodwa self-gravitating coiiapse in general can be studied using the self- 
similar formulation to better detmt the onset of self-similady, using the evolution of 
the PDF by the Collisionless Boltzmann's Ekpation, as in simulations conduded by 
coliaborators (Merrd [102]), or using this formulation to analyse the resuits from fully 
threedirnensionai N-body simulations. 

The SSIM has demonstrated its riehness by ofiering a solid interpretation of self- 
gravitating dark haloes collisionless coüapse, but its possibilities are far £rom exhausted. 
subfigure 



Appendix A 

Glossary 

r BBGKY=Bogoliubov-Born-Green-Kirkwood-Yvo hierarchy equations: 
statistical description of a fluid originating fiom plasma physics . 

r BBKS=Bardeen, Bond, Kaiser & Szaiay: 1986 [22], extension of PS using 
density peaks. 

a BBN=Big Bang Nucleosynthesis: The part of the BB scenario wbkh corn- 
putes the ratio of primordial light elements fiom nuclear reactions in the hot, early 
universe. 

r BCEK=Bond, Cole, Efstathiou & Kaiser: 1991 [25], extension of BBKS to 
various mass scales. 

0 CBE=Collisionless Boltzmann's Epuation, also coined Vlasov Equation: 
goveming statistical equation for a collisionless system. 

r CMBR=Cosmic Microwave Background Radiation: relic radiation of light 
b m  near the beginning of the universe (in fact fiom the Recombination epoch, 
when electrons were captured by nuclei). 

r CHQl=Carter & Henriksen: 1991 [43]. First systematic presentation of self- 
similarity in Newtonian mechanics. 

r DM=Dark Matter: Generic term for electromagnetically quiet mass which would 
constitute most of the mass of the universe. 

r CDM=Cold Dark Matter, also referred as SCDM=Standard CDM- DM 
with non-relativistic velocities. Yieids bottom up LSS formation scenarii. 



O HDM=Hot Dark Matter: DM with relativistic to ultra-relativistic velocities. 
Yields top down LSS scenarii. 

CHDM=mixed Hot and Cold DM: intermediate scenario with the h o  types 
of DM present. 

O W D M = W m  Dark Matter: DM with almost relativistic veiocities. they are 
large enough to have an idumce but not enough to dominate the LSS formation. 

O ACDM=Cold Dark Matter mixed with A: CDM scenario with the addition 
of a cosmological constant. 

O FG84=Fhore & Goldreich:1984 [35], hrst presentation of the SSLM. 

a HS85=Hoi€man & Shaham: 1985 [VI, f.ust attempt at linking the SSIM to the 
cosmological spedrum of density fluctuations. 

Hot Big Bang Cosmology, or BB (Big Bang) Cosmolagy: standard cosme 
logicd sœnario where the uni- was mu& denser and hotter in the past. 

HI gas= Hydrogen type I= neutrai hydrogen: astrouorner designation for 
atomic hydrogen present in the interstellar medium around galaxies. 

a IBP =Integration By Part: mathematical met hod. 

LSBs and DMDGs=Low Surface Brightness galaxies and DM dominateci 
Dwad Galaxies: two types of galaxies exhibithg evidences for a very shaüow 
centrai densi@ cusp (or none at all). 

LSS=Large Scale Structures: The departures h m  uniformity that range b m  
galaxies to superclustas of galaxies. by extension to their cause, the DM haioes 
themselves. 

O MACHOs=MAssive Compact Halo Objects: one kind of DM made of normal 
matter (baryonic) but not luminous enough to be detected directly (mostly made 
of Jupiter-type massive abjects). 

MTJ=Merritt, 'lkemaine & Johnstone: 1989 [60], heuristic argumentation for 
the PDF 

MoND=Modiûed Newtonian Gravityr an alternative approach to the mus  
measurement discrepancy than DM, by morlifving the long range acceleration term 
in Newtonian gravity. 



O NFW=Navarro, fie& & White: 1996 [32], can refer to the paper or the 
universai density pmûie that is proposed in the paper. 

O PDF=Probability Distribution Function: the statistical measurement char- 
acteristic of a stationary self-gravitating system. 

PLAM+Power Law' Anguiar Momentum: Introduction of an initiai angular 
momentum in the SSIM which is motivated by Dimensional arguments. 

O PS=Press & Schechter: 1974 [27], first paper giving a heuristic argument for 
the Excursion set formaiism. 

RSL=Reduced Smoothing Length: explorations of the SSIM with a smaüer 
smoothing length, i.e. with an inaeased force resolution. 

SIM=(Spherical) Secondary InEall Model: mode1 of smooth accretion (in 
spherical symmetry) . 

O Specific (potential, kinetic or total) Energy: energy (potential, kinetic or 
total) per unit mass 

O SSIM=Self-Similar Secondary Infd Model: SIM where the coüapse is self- 
similar. 

O SSAM=Self-Similar Angulztr Momentum: Xntroduction of an initiai angular 
momentum in the SSIM which presenre the system's Fillmore & Goldreich self- 
similar characteristics. 



Appendix B 

Simplectic mechanics of the SSIM 

B.l Lagrange Equations in Spherical syrnmetry 

B.1.1 Definitions 

The Lagrangian Functional's definition rads 

L = T - m@(r) 

with 
1 1 

T = = -m(t$+v:+v$) 
2 

and the relationships betwe.en the velocities and the coordinates being 

v, = r 
ug = re . 

v, = r sin 

The dots denote derivation with respect to tirne. 

B J.2 Lagrange equations: 

The Lagrange equations then r d  

The f h t  one is Newton's law, where the angular momentum is 
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The second and third onea yield the conservation of angular momentwn: 
Eqs.(B.2:2,3)=+ 

l2 
(r2 *) =  CO^ O, 

so the time derivative of Eq(B.3) yields 

B.2 Hamilton's Equations in Spherical Symmetry 

B.2.1 Momenta definitions and the Hamiltonian 

from Lagrange Eqs.(B.2) : 
ar, pt=w=m+ 

= (?el 
p, = m.1 

and therefore the Hadtonian reads: 

B .2.2 Hamilton's eguations 

The Hamilton's equations are then giving back Lagrange's equations plus the momenta 
dehitions: 

bH &+* x = - ~ + , $ + $ i r  
BK=&- 6 m - '  

m.P  CO^ e = -pé . (B-5) 

Definuig the anguIar momentum again and using Eqs.(B.5:4,6) 



So using Eqs.(B.5:1) and (B.6) one can get back Eq.(B.2:1), Eqs.(B.5:3,4) yielding Eq.(B .2:2), 
or more exactly a combination of that and Eq.(B.4) and Eqs.(B.5:5,6) reproduce Eq.(B.2:3). 
Fq(B.6) also aiiows to write the Hamiltonian in the form: 



Appendix C 

Lagrangian indices and the 
Lagrangian treatment of the 

system 

In our implementations of the SSIM, the spherical system of mass distribution is treated in 
Lagrangian coordinates, that is to say coordinates independent of the material described, 
designating the instantanmus positions ofeach elementary part of the material described. 
This is to be opposed to Eulerian coordinates which are a canvas f i g  the whole available 
space and aiiowing for a fluid, or field, description of the material's physical properties, 
such as position, velocities, etc.., within this a d a b l e  space. In our case, the SSIM is 
desQlbed in terms of Lagrangian elementary mass shells. 

The Lagrangian index values are labeling sheh throughout the entire sim- 
ulation. They are established initiaily by ordering the shells according to their initial 
radius: indexing of quantity Q (where n is the total number of shells used in the code) 
reads 

Q(i), at T = O such as Vi, j E l[i; n]l X(i)r,o < X ( ~ ) T , ~  =+ i < j, 

Intermediate times need then to be reordered according to the new positions of the sheils. 
This generates a new set of indices that are related to the Lagrangian indices by the 
h c t i o n  called in& : that yields an additionai indexing scheme for any physical quantity 
according to 
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OF TBE SYSTEM 

where indz(i) is the Lagrangian index value of the iUL sheii in the radial ordering existing 
at T. Again for Q = X ,  that translates into 



Appendix D 

Echoes in the overdensity Monte 
Car10 map 

D .1 Definitions 

The mass ratio is noted M for this appendix. the density ratio is noted D. The ratio 
noted Pert wiii be caiied A. The mass and volume of the core at that tirne are noted Mc 
and Vc. The avaage core density is then (p)= = The total mass of the overde~ity is 
MoD, that of the added mass on it is 6MoD, while the background is MBC. This dows 
for MoD to be written in a simple way: 

We assume a pawer law density with rational inda 

so the mass of the background halo can be written as 

D.2 Fixing a case : D is constant 

Thus, maintaining D and A constant, WU still alIm for freedom on M. The number 
of possible choice of M will tell if there is one, many or no system satisfying those 
conditions. in fa&, the freedom on M transfen to a fieedom on z,d in our notations. 
We will simplify them by noting x instead of zd- 
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The condition on the density then yieIds: 

D = M 6  3Vc = cst 
- 4qin 

This latest equation admits at least one trivial root: z,d = xkoin, but that is not 
a retainable value for creating an overdensity, because then MOD = (1 + A)MBG = 

2J-k-z3-k 

(1 + A)po ""d,-Fn = O. h t e a d  by assurning there exist at least another root, one can 
rewrite Eq.(D.l) into 

Depending on the rationaiity of k, there exist one lowest integer p which aiiows the 
previous equation to lead to a polynomid, acœpting an integer nurnber of roots. At 
most, max (3p, kp) roots (degree of the polynomial if 3 - k > O or 3 - k < O), therefore 
the possibiiity of max (3p, kp) - 1 solution bands. Here we see two bands, that codd 
correspond to k integer less than 3 (then p=l) which yields 2 solution bands. 



Appendix E 

Self-Similar Dynamical Time 
Calculat ion 

Considering the SSIM mass distribution at a given radius, the self-simiiar time it takes 
for a test particle to free fail from rest into the centre w h  the SSIM m a s  distribution is 
replaceci by a constant average density mode1 of the m a s  under the test particle is d e d  
the self-sirnilar dynamitai tirne. 

E. 1 Equations of motion 

We start from the SSIM equations of motion: foiiowing Eq(3.62) without angular 
momentum, noting with a dot dinerentiation with respect to self-simiiar time 

The Poisson equation is repked by the constant self-simiiar density approximation, 
settled by the test particle's initial radius, noted Xcc 

Thus, combining Eqs.(E.l) and (E.2), we obtain a linear second order ordinary differential 
equation for the test particle's radius as a function of time 
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E.2 Solutions 

Dependiog on the d u e  of the self-sirnilar density, Eq(E.3) adrnits three types of 

solutions: using the notation Q = -(6 - i), w = J-, the convention i = G, 
and the constants of integration Xi, X2, for the generai expressions, or Ai, Bi, with 
i E [l; 31 for the detailed expressions, the solutions c m  be written as 

They also can be presented in the more practical form, detailing the three types of 
solut ions 

.X = A~P COS W(T + B ~ )  f ~ ~ c e  > 
OX = A2em(l+ B2T) f w ~ c e = ;  - 

1 
03-41 

oX = &eRT(cosh WT + B3 sinhwT) for  pc, = 4 

ln the case of the evaluation of the self-similar dynarnical tirne, the initial conditions are 
used to settle down the values of the constant of integration. They are given by imposing 
the definition of fiee fali fiom the test particle's initial radius: 

which translates, through the expressions for X and its hrst derivative in T found in 
Eqs4E.4) and (E.l), into three cases by 

E.3 Dynamical times 

h e d  with the general solutions Eqs.(E.4), the definition of dynamitai tirne leads us 
to h d  the k t  time after Tc, at which the test particle foiiowing one of the xolutions 
reach the centre of the halo, namely X = O. That leads to the three solution for the time 
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of coiiapse to the centre: 

which leads, after some calculations using the initial conditions in Eqs.(E.S) for the tirne 
derivative of X (and in the third case using the Iogarithmic definition of argtanh and the 
exponential definition of tanh), to tbe dynamramrcai time as defined earlier by TDwomicnl = 
AT = Tfind - Ta, for the t h  cases 



Appendix F 

Semi-Analytical set up of an 
overdensity on the SSIM 

F.l Initial situation of the core 

The criterion retained to decide when to stop the pre1imin;uv evolution of the halo 
was to choose a given mass fraction of the core compared to the total ha10 simuiated 
Mfcme.  The preliminary simulation was stoppeti when that mass fraction was reached 
by the system defineci by the self-similar core. 

F.l.l Gravitationai core boundary 

The definition of the self-simiiar system (or core) is given by the Lagrangian index of the 
iast particie to enter the core (see Eq(4.2)). Gravitationally speaking, though, ail the 
mass present inside the largest sheil of the core is contributing to the dynarnics of the core. 
Therefore a way of definhg the acting mass of the core is through the Lagrangian index of 
the outermost sheii belonging to the core: using the core definition provided by Eq.(4.2), 
and establishing the bijection between Lagrangian indices and radiaily ordered number- 
ing of the shells, noted i& : iid~V,hd H iTId2(iradidIY = ifaqmM, the 
Lagrangian index of the outermost core sheii is given by 

This is illustrateci in figure 5.13. 
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F.1.2 Decision test 

Then the decision that the core is evolved enough to Lay the overdensity perturbation is 
made by comparing the mas inside sheIl i,, to the prescribed mass for the core. This 
prescribed mass is computed by multiplying the prescribed mass fraction of core versus 
halo Mf core by the total mass of the halo. That prescribed mas, when bracketed by the 
mass of shells inside i,- and that inside the sheiI immediately above i,,, triggers the 
recording ofquantitiea to be transmitted to the next step and the pause in the simulation, 
to be resumed after laying the overdense outer sheiis. That condition reads 

It translates on figure 5.13 into the time ôt which the dashed line of the prescribed core 
m a s  falls under the dotted Iine of the radial core boundary. 

F.1.3 Tkansmission to next step 

A.ii the physical parameters of the halo are then recorded in the radial order yielded at 
overdensity laying time: 

recording of X, Y, Mass, initial energies a a function of sheii radial order wiil follow 
the pattern (A stands for any physical quantity, Say X) 

T i e  wiil also be kept for testarthg the nui with same conditions. Eventualiy recording 
of the core Lagrangian index at that t h e ,  i,&, wili avoid unnecessary rdculations. 

F.1.4 Extendingthehaio 

In the case of a constant sheii spacing, it was necessary to extend the halo radius, without 
changhg the system in order to add time to the infall period and extension to the halo. 
This was necessary so as to embed merdensities comptetely inside the halo when otherwise 
they were too extended comparecl to the haIo boundary. This was done by ensuring that 
the definitions of the state of the core at averdensity laying time and of the position of 
the beginning of the overdensity region would remain the same. 

At constant shell spacing, extendhg the M o  means to add shells on the outside. if 
the initial total radius of the simulated halo shifts fiom ri to r2, then correspondingly, 
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must the number of sheiis nl increase to n2, keeping the intershell spacing constant: 

Keeping the same definitions for the core at iaying and inferior range of the overdensity 
involves modifving the ratios M h r e  (decision test relative mass of the core) and MfBump 
(relative m a s  fiaction for the iaying of the inner boundary of the added overdensity). 
Since at initial time the m a s  profile behaves like 

F. 2 Placement and parameterisation of the overdensity 

At first ail physical quantity are retrieved fiom the p r e m  into temporary storages 
X(i),Y (i),mass(i) and initiai energies, and we begin with the core d&ed by i,, = icozto 

F.2.1 Initial situation of inferior sheU of overdensity 

We define the position of the 6rst shell of the overdensiw in the radius-ordered space. 
The position of this sheii is dehed  by prescribing an initial mass Fraction out of the totai 
halo. This in turns sets the amount of m a s  of the halo which shodd lie uuderneath this 
first overdensity sheii in a similar way as was de6ned the decision test core mas: 

N ( i )  5 M f bump.iM (n) * ik@,, = i. 
iM(i + 1) 1 M f bump.iM(n) 

There is no need to reorder the shells with radius since their new Lagrangian indexing 
after the p r e m  is aiready ordered in radius at the beginning of the overdensity m. 

F.2.2 Conesponding superior sheii 

To circumscribe the superior sheii of the overdense region in order to add a gadian  
overdensity on top of the preexisting halo, one has to define two fractional quantities. 
The mass ratio of the overdensity with respect to the core of the haio is 

Mass of overdensity region N( id  + 1) - &f(ik9in) 
Mratio = - - 

Mass of m e  w ~ m e o  1 
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The average density ratio between these same entities reads 

Of course these two ratios are related: 

Using the expressions for those two volumes, one can invert VmndmJitv to get the radius 
of the last sheli satisfying those two constïaints given the position of the Erst sheii: 

One c m  then define the index of the superior shell of the overdensity in the old halo 
radial hierarchy as that of the shell immediately under the radius xi: 

F.2.3 Mass pronle parameters 

To establish the gaugian overdensity distribution on top of the original halo, we have to 
add the two densities together. Moreover we want to increase the mass resalution over 
the range of the overdensity by subdividing the originai s h d  distribution into d e r ,  
lighter sheh (see figure 5.14). Combining these constraints, it was simpler to mode1 , 

the original halo mass profile with second degree poiymrnial interpolations betwen the 
boundaries of each shell included within the two overdensity boundary sh&. This is 
done for each sheii by constraining the polynomial parameters fkom the original d u e s  
of the halo. The densities at the edge of each original sheil region and the mass of the 
originai sheii are evaluated and used to set up the third order linear system for the sheli's 
polynomial coefficients. They are then used to calcuiate intermediate densities at new 
shek' subdivisions which are integrated to yield the new sheils' mams. 

Because the mass of one original halo shd,  which represents the volume between radii 
xa and xe, is caicuiated according to 
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the expressions for the densities at the edges, computed accordhg to the convention from 
section 4.5.3, and for the mass reads, in the calculations adopted here where the denzity 
is a second degree polynomïai, 

This linear system was solved using the LU decomposition with partiai pivoting and row 
interchanges routine DGESV fiom the open source package LAPACK- Thus we used the 
output computed coefficients so as to mode1 the background density over the original hdo 
shell as 

~back~round halo ( 2 )  = a2x2 + 012 + @ 1 

and the background original halo mass profile, only vaiid over that original halo shell 
d e h h g  the coefficients, as 

Then we mode1 the overdensity by a gaupian of the form 

with charaderistics as foiiow: the gaufliau is chosen to be centered an a radial barycentre 
of its boundaries 

X= = W . Z ~  + ( 1  - w)x(ia+,J, 

(we chose to keep the fiee weight w = a in the simulations) with the radial range spanned 
by the averdensity 

f i  = xi - x(ibegin). 

Its radial dispersion is defined as 
qyo c=- 
ni 

where q is the mjnimai weight, or fractional radial distance to the edge of the overdensity, 
defined as 

q = i n f ( w , I - w ) ,  (F -4) 

so that nl represents the smaüer integer number of dispersion length separating the peak 
density a t  z, and one of the edges of the radiai span of the overdensity. From the mass 
of the gaq9ian overdensity defined, for the added perturbation part, in a(F .2 ) :  



AJ'PENDIX F. SEM-ANALYl7CAL SET UP OF AN OVERDENSITY ON THE 
SSIM 

the presaibed total mass of the overdensity allows the peak central density to be definecl. 
That m a s  can be calculateci using the presctibed mass ratio on one hand, and combining 
the overdensity region's original halo mass with the mass of the gauaian overdensity on 
the other hand, yieldùig an expression for the peak density: 

with the background mass measured on the hd mass distribution before Iaying the 
overdensity 

Mdd hdo = M(Imd) - w(Ibegin - 1)t 

(recall that for sheils which have not f d e n  into the cote, the Lagrangian index is equal 
to the radid ordering) and the perturbation mass apprkrnated by the infinite gaufiian 

The density peak is then chosen as 

Of course since we are interesteci in adding to the halo mass over the range of the over- 
density region, a negative po just means that the interplay between Mrotio and Dr,ti, led 
to a negative overdensity "addedn m a s ,  which will have to be rejected and a new set of 
paameters established. 

The approximation made in the mass calcuiation is expliciteci by a change of variables 

Writing f (X) = ë2 and using the definitions of Eqs.(Fd) and (F.3), the apprmrimation 
made conesponds to keeping the edges of the ga@ian as flat as possible: 

It is ensured in the definition of the value of ni. This value is constraind by the choice 
of a number kL such that kl » 1, so that the condition of EQ-(FB) are satisfied for dues 
of nl Iarger or equal to the choice we make: 



APPENDIX F. SEMI-ANALYTICAL SET UP OF AN OVERDENSITY ON THE 
SSlM 

F.3 Overdensity mass profile 

Using the previously defined parameters, one can calculate the new mass profile over 
the overdensity range in radius. An increase of the arrays sue d l  hplement the planned 
increase of mass definition of the overdensity region. 

At k t ,  the temporary storage variables are recorded for Lagrangian indices up to 
ikgi,,-1. Then the x-grid is subdivided over the range of the overdensity laying region 
(£rom kgin to icnd). 

The total n u b e r  of extra sheih is divided according to a radiai range weighting 
between each old halo sheh (the width of shells over the total overdensity radial width 
gives the fraction of sheiis aiiotted to them): the number of new sheU spanning old halo 
sheii 'i' is given by 

Equai spacing is established between each extra sheii within a given old halo sheii. The 
new indices for the refined grid shells are noted with upper cases and calculated fiom the 
old indices as foilow 

Rom kgin-l, the radiai distribution of new shells foiiows: 

where the distinction made between old and new sheU is refiected in the use of lower and 
upper cases respectively. Similarly for the distriiution of velocities for new shells: 

For the masses, we add on the gaupian overdensity mass to the polynomial-modeled 
background îiom Eq.(F.l) 

where the mdens i ty  m a s  is caidated using a simple adaptive ttapeze integration 
scheme: each new s h d  is subdividd evenly for the integration with a subdivision number 
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inueased from O until the relative mass difference between the total overdensity added 
mass and its theoretical gaupian evaiuation is negligible, in the sense that this relative 
mass ddfierence is less than 1 /ki. Thus, an optimal number of subdivision n,a yields the 
overdensity m a s  for sheii '1' 

where the subdivisions are defined by 

To keep track of the overdensity in the new system we d l  just need ta record the new 
beginning and ending shells' indices: 

(the last equalib may not be true in practice). 
For the rest of the halo, the transfer from old to new indices is straightforward: 

We wiii resume using lower cases for the indices now that the extended haIo with over- 
density is estabiished. 

F.4 Accretion of the surrounding halo by the overdensity 

We use the Lagrangian index for treating the overdensity separately as being contained 
between kgin and in Lagrangian space. The evolution of the overdensity leads to a 
redeîxnition of the edge indices. 

The innermost sheii is redefined starting fcom the original innermost s h d  in La- 
grangian order. In Lagrangian order it is restricted to the range bdow the original 
innermost sheiL Foliowing the Lagrange Liouviiie stream winding towards the centre of 
the haIo, the procedure then searches for the last radial density caustic, characterised by 
a vertical tangent to the phase space sheet. The new innermost sheU is then d e h e d  as 
that just below that last radial density caustic, this time in the decreasing radius order. 
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The outermost sheii is definecl in the same way symmetrically: above the original 
outermost shell in Lagrangin order, and foiiowing the Lagrange Liouville stream winding 
towards the outermost shells of the halo. The procedure again searches for the outermost 
radial density caustic, characterised in the same manner as for the innermost caustic-The 
new outermost sheii is then defined as that just above that last radial density caustic, 
this time in the increasing radius order. These constructive definitions of the edges of the 
evolved overdensity are summarïsed in figure 5.15. 



Appendix G 

Initial conditions of a collapse 
central mass 

The set up of initial conditions for a centrai coiiapsed mass resembles closely that of 
the smoothed central density cusp, but admits crucial variations. In th& case the cen- 
tral outer limit of the region initiaily coiiapsed into the black hole is set by rmin- The 
density contrast, or power law, proportionality constant is chosen so that the m m  term 
that corresponds to the primordial density contrast is proportional to A and the sa le  

-c 
dependence ia expressed in units of rmin (g oc A (&) ). Thus thh proportionality 
constant reads 

G .1 Cosmological halo 

1 .  Initial density profile 

In this case, the notation for the density profile is &en as 

Inside of the limit radius, the density is O, except for the singuiarïty in the centre. In 
practice, we used the first sheil of the halo placed at X=Y=O to represent the coiiapsed 
mas.  The second s h d  beùig piaced at rmin. 
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(2.1.2 Initial mass profiie 

If one remains outside the centrai region, the cumulative mass inside a given radius cari 

be caicuiated as 

1 dQr-' 
iM = ir pr2dr = *r3(- + -) + SM. r 2 r,,,iny 3 3 - É  

where SM. is the extra mass in the black hole compared with the simple collapse of the 
power law density profile onto the central rnass. For radii inside that central region, the 
mass is constant and given by 

1 
iM = amtralMass = m. = + A) + SM.. 

Apart hom the black hole perturbation, the m a s  profiie is of the same form as the one 
which leads to the inversion Eq.(4.18) except that iM in that equation has to be replaced 
by iM - 6M. and the A(r) function admits the new expression 

leading to the new inversion formula 

where 
1 

= iM - SM. = iM - centralMass + Par$,(- + A ) ~ ) ) .  3 

6.1.3 SheUs initial masses and phase space position 

FoUowing similar methods as section 4.5.1, we wiii mode1 the density distribution by 
Eq(4.3) with the central sheli representing the singuiarity in density. The continuous 
haio can again be implemented in three different ways. The cosmoIogical shells s t U  
foUow a Hubble flow: 

2 
g( i )  = ix( i )*  

Then same distinction between various methods is applied 6tom the need to use the 
inversion method of EQ.(G.l) and the need for an initial shell placement in the constitution 
of the mass profiie. 
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Constant sheii initial density 

This method is also motivated by its resemblance to the cosmological concept of density 
fluctuation of a constant density background. We start here from central point mass and 
constant density equal to the background.The centrai mass is set as 

with its location debed  at the origin and being stable by its position and velocity ac- 
cording to 

z( i )  = O; y(1) = O. 

Then for the halo sheb, we set the initial constant spacing with 

The masses of the shells are med according to a constant density: for i 2 2, 

with xici,l=rmin for i=2. 
Finaiiy, we shift the shell positions accordhg to Eq.(G.l) to reproduce the density 

profile of the expected halo. The characteristics of this method are discussed in its 
smoot hed density counterpart section (4.S.l). 

Constant sheii initial spacing 

As for the previous smooth densiw set up, this method doesn't require mass inversion. 
The first sheil represents the black hole in the same tashion as stated previously, in the 
constant shell initial density subparagraph. The rest of the sheiis are computed simihrly 
as for the smoothed density, starting at r,i, instead of O: constant spacing for the shells 

We again include the central point mass as o u  first shell: 

Note the first sheii, the cen td  mas, is sitting stili in the centre of the halo: 
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The masses are then set to follow the expectd density profile: 

Constant shell mass 

This tirne, the inversion of the mass profile is needed, but the expression for the masses 
is trivial: again, the ûrst shell is our central point mas, then aii other shek  have same 

mass, és required 
mass(1) = mi = m. = centralMass 

mass(i) = mi smass 

Then the positions of the shells are computed according to the approximation of Eq.(G.1). 

G.2 Non-cosmological test of tba dynamics 

Once more, to allow for the possibiity of a test using Henriksen & Widrow's results, 
given a special central mass so that bM. = 0, the black hole configuration was aiiowed 
for a pure power law initial density and O initial velocities. 

G.2.1 Initial density profile 

Using the same terms dehitions as previously, the density profile then reads 

For the density inside rmin, it is nul1 everywhere except for the singular centre, holding 
the black hole mass. 

6.2.2 Initial mass profile 

Foliowing the given density profile, 
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whereas when the mass is measured inside Tm,+,, 

iM = central Mass = rn, = par$i,, A + bM,. 

Because of the use of constant sheii spacing to m a t e  the initiai shells, though possible 
in an exact fashion, we won% need to invert the mass proûie. 

6.2.3 Shells initial masses and phase space position 

The k t  sheU is stiU o u .  centml point mas: 

rnuss(1) = na1 = rn, = centralMass 

and we assume no flow 
y ( i )  = O. 

Constant shell spacing 

This is again the simplest choice of implementation. Shek are distributed evenly dong 
the radiai axis, starting fiom rmh: 

the masses then foUow in order to form the prescribed density profile: 

G.3 Density definition by shelis and their positions 

Because of the special status of the first centrai point mass sheii, the definitions are 
slightly aitered compared with the smoothed centrai density case.Moreover, the handling 
of the halo is simplified by considexhg that the innemat  sheil's inside boundary shifts 
immediately iiom rmin to O as soon as the halo is ewlved. Otherwise a complex account 
of the evolution of this inside boundary would have been necessary, which was not in the 
scope of this test conûguration. 
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G.3.1 Density contrast with background 

The definition for the mass taken into account for the calculation of the density around 
sheii "in, smoothing over a number smooth of shells, is now (E(n) still being the integer 
part of n): 

The definition of the volume of those shells is also altered (tnm = O corresponds to the 
initiai tirne, the only one for which the region between O and r- is considered empty): 

Again, the density contrast reads: 

G.3.2 Relative density without background 

In the non-cosmological case, the relative density to an equivaient Einstein-de Sitter 
background is using the previous dehitions of mass and volume to get: 
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Real numbers and units(?) 

Assuming the mapping of our mode1 to the DM halo of the Miiky Way, we can take 
appraximates values to fit our halo at the end of the seif-similar phase and the beginning 
of the virialised phase (at a self-simiiar tirne noted Te). 

H.l  Real numbers from the Milky Way 

We recall (eg. from Wilkinson & Evans 1999 [98], and fiom Binney & M e d e l d  1998 
[108], figure 10.36 for the estimate of the velocity dispersion) Milky Way approximate 
values for the halo, the values used in astronomy for the units of various quantities and 
we use standard units for the values of fundamentai constants: 

MW cz 2.10'~M~ 
RMW !Z 2Wkpc 

ov = N 2 0 0 h . ~ - ~  
G = 6.67 - l ~ - ~ ~ m ~ k ~ - ~ s - ~  . 

c zz 3.10~tn.s-* 
lMo = 1.99 - 1030kg 
lpc = 3.086 1016m 

The value of Rm should be compareci with, for instance, our distance to the Andromeda 
galaxy, which is located at about 700kpc h m  us. A mical black hole at the centre of a 
generic halo could range over M. = 108 - logMo. Even though there is no real evidence 
for the Milky Way to contain a centrai biack hole of mass larger than 106 Mo, we are more 
interested in ge&c and qualitative behaviom of the SSIM with a black hole- Because 
of the asmptions made in the model, masses, densities, lengths and times are measured 
in modifieci units. Masses are measured in units of G.& because, in the dynamical 
equations (eg Eq.(3.62)), gravity is set with G=I. Densities are measured in units of 
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~TG.U,.U~~, where UL, is the unit of length adopted in the simulation at the t h e  
of density measurement, because of our definition of the background de Sitter density 
(Eq.(3.û4)). Lengths are measured in units of Ux = ~ , e - ~ ~ ,  which shows how it depends 
on tirne, the self-similar t h e  being unitless, and derives directly from the rescaling of 
Length in self-similar variables (Eq(3.26)). Finally, non-self-similar tirne is measured in 
units of the initiai t h e ,  which is set to 1 in the simulations. Tt can be taken as the 
epoch of recombination (around 3 x 105years) to stand for the end of the dark matter 
fluctuation linear growth phase, also cded Zel'Dovich approxhation era. On another 
hand, velocity units are setting a natural t h e  unit when combineci with length units. 

H.2 Units fkom the simulations 

In what follows, units of a given measurement, say Meusurement, are represented 
by the corresponding unit symbol , say UMmfrmmt. For mas, radial length and radial 
veiocity units, we have adopted the convention that units within the simulations are 
represented by th& name in lower case and theü expression within the fhmework of 
the Milky Way-type dark halo will be in upper case: masses in the simdations are in 
Um and in the r d  scaies are in UM (or Ucm and UGM when considering gravitating 
mass). Radial lengths are expresseci in units Ur in the simulations and UR respectively, 
and radiai velocities are in units of U,, in simulations whereas they are in UV in MKS 
units. The mode1 at virialisation (at T = Te) can be defined in terms of its total mass, 
its radial velocity dispersion (thanks to discussions and help hom J.Stil [log]) and its 
maximum radius, as weli as the respective translations between simulation units and reai 
unit5 for radii and radial velocities. Its total mass sets the mass resolution, or mass of 
one shell in the constant mass framework, here given for 10 000 sheiis. Thus its values 
from simulations are given by 

The presence of G in the mass expressions coma ficorn the fact that G is taken to be 1 
for the caldations, but is still present, for instance in the definition of the gravitational 
acceleration. We will suppress it eventuaily in the last expressions involving simdated 
mas, Fkom there on, one can determine mass units, length units and velocity units, 
keeping in mind that the latter two, because of rescaling will depend on the self-similarity 
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H.3 Determination of Dimensional units 

H.3.1 Mass scales and resolutions 

The m a s  seale is straightforward to compute (we use capitals for real units and lower 
cases for simulation units, the simulation units being set to 1 according to the point of 
reference taken) 

C m h r l a = 2 0 0 = C M ~ ~  =&fK=$ 
k m  UCM UM U ~ = M ~ + = ~ =  mm 1010 Mo ' 

and the mass resolution is then 

Mlshcll = mlshcllu~ = 2 . 1 0 ~ ~ 0 ,  

which is similar to the typical mass of a dwarf galaxy, thought to be the elementary 
merging bricks for galaxy formation. 

Using the upper range of the central black hole masses (M. = logMo) we can find 
that for the simulation one can use the value of initial central black hole mass according 

H.3.2 Length scales 

The Iength units are set by the real radius at the virialisation, but the real units cor- 
reqmnd to non s d e d  radius (we use the same upper case/lower case conventions and 
the simulation unit real radius of 1). It can be computeà simiiarly to the mass unit, but 
keeping in mind the different scalings 

the time Te of virialisation, which is almost exactly the end of the self s i d a  phase, 
depending also on the self-sirnilar class. 

H.3.3 Velocity scales 

The velocity unit springs out of the velocity dispersion: 
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If we use the naturai time units Erom the combination of velocity units with length units, 
its expression is then 

and the formation time of the system, Erom primordial fluctuation to the end of the 
accretion phase can be computd as 

which is hed by the choice of velocity dispersion and radius of the Milky Way halo and 
is consistent with and of order of the age of the universe. 

H.4 The scaled Schwarzschild radius 

H.4.1 General expression 

The Schwarzschild radius can then be derived, using the upper case notation for its 
real mass and the lower case for the simulation's black hole mass, and Erom those units 
foliowing its definition in terms of the black hole mass and in terms of the simulation's 

Now G and c are expressed in MKS units in the previous equality and the UR and UM 
units are in parsecs and Mo, so the conversion yields 

which reaàs for the expression found for UR 

Conversely, in real units the Schwarzschild radius reads 



H.4.2 Time evolution 

For a self-similar growth of the mass (recall that self-sidar mass scales like e(36-2~)T), 
thii scaled radius is not constant but changes like 

for any self-similar chas but for = 1. 

H.5 Scales and self-similarity class 

H.5.1 Length and velocity scales 

In the main emblematic cases studied, recall that when the initial density profile goes 
like p a r-<, the self-simïlarity c h ,  with a chosen to be 1, is 6 = $(l + $) and prwious 
simulations teach us that %(E = 9 )  2 10 whereas Te(€ = !) = 15. In those cases, the 
length and velocity units read 

Of the two cases presented here only the shallow case (e = $) is consistent with a galactic 
halo typical velocity (the maximum adable Y vaiue being of order 0.3 in the shaiiow 
case, implying velocities of order 150 km/s), the steep case exhibiting values which are 
more compatible with clusters' dark haloes (with Ys of 0.6, the velocities reach 2500 

W s )  

H.5.2 Scaled and real Schwarzschild radius 

The scaled Schwarzschild radius becomes, at the beginning of the growth phase 

so the Schwarzschild radius then reads, in real units and then in scaied units: 

E = # =k 6 = $ XSchinird = 9.4 - ~ o - ~ T ? z . ~ ~ ~ ~ ~ ~  
5 

E = 2 =+ 6 = # XSchinjta = 1.6 104m.kili.I ' 

It  becomes at the end of the infall phase, because of the length scaling, 



so it then reads, in reai units and then in sded units: 

H.5.3 Minimishg the t h e  evolution of XSdr 

The latter value for the scaled Schwamchiid radius is the same as the initial value only 
for m. cc em, that is gruwing seif--aimilady, and with = 1. For this reamn, instead of 
the the c = and $ cases used as typicd cases otherwise, this study focused on values 
of the initial density contrast indices around 2 (namely E = 1.9 and 2.1). This is so 
because these values lead to self-similarify classes as close to the conditions for which 
the self-similar growth of the black hole mass becornes stationary in scaled radius. The 
corresponding self-simiiar mass evcilution (growth), with self-similar tirne, is then given 
byp=36-~=~ in the framewherrwehavese ta= l :  

If the mass of the bIack hoIe g m  according to self-similady (m. a eT) the length 
rescaling in XSch WU translate hto an evolution with time foilowing Xsd a e2(6-L)T 
charactaiaed by the exponent inda 2(6- 1) = f ( I  - 1) , sa that the expected behaviour 
of the scaled Schwarzschild radius if the m a s  of the black hole grows self-similady will 
be 

E = 1.9 2(6 - 1) cz +0.035 
c=2.1 2(6- 1) -0.032 ' (H.3) 

which offer very little evolution compared to the expected noise in mass evolution of the 
black hole. 

H.6 Angular momentum evaluation with real units 

In order to render the PLAM commensurable, &m&xistic rotationai veiocities and 
the Peebies' rotation parameter will be evaluated for o u  mode1 in this section. 

Because of spherical symmetry, the SSIM cannot evolve angular momentum assigneri 
to its particle. In our simulations, the form of the angular momentum profle was o b  
tained hom Dimensional and sim;lxrity arguments, But the amplitude of the prof& was 
iïmited according to visible &éch on the system while maintainhg a central cote. In 

order to evaluate the physicai meaning of thase amplitudes, the next twa section wlll 
devote themelves to evaluating a rotational velocity characteristic of the prome using 
physical units. The iast section wiii ampute the corresponding PeebIes' Xp parameters. 
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H.6.1 Characteristic rotational velocity 

h o m  a given initial angular momentum protile j2(r),  the correspondhg rotation profile 
can be obtained via -II 

In the interesting case of the 'power Iaw' profile, the initiai form of the mass profile 
dictates that of the angular momentum, thus of the rotation profile, in scaled variables 
(note that since we place ourselves at T=O, X=r and aii self-similar quantities are q u a i  
to their unscaled ones): 

with X = A(l - B)r&,,, giving the amplitude of the primordial density fluctuation. In 
our simuktions, was taken A = il 3 = in order to reproduce the inner mass of 
a power law with our smoothed inna cusp, po = $ for an Einstein-de Sitter background 
and r,, = 0.5. For the shaüow and steep case studied with the presence of angular 
mornentum, the values of c = 5 and c = $ for the initiai density profile and 3 = 10-~ 
and 52 = 9.10-3 for the anguiar mornentum profüe amplitude were respectively chosen. 

The characteristic rotational velocity for the rotation profile was then defineci by 
taking the average over the bound particles, i.e- those which should end up inside the 
constituted system. This conditions leads to the d a t i o n  of a maximum radius, at a 
given value of pl labeled X-, over which the average is taken: 

With the proper rescaling, this is equident to taking 

Evaiuation of X,, 

The Einstein-de Sitter uni- is marginaiiy bound, thus taking a perturbation on it 
yields a distribution that is bound everywhere: 

is aiways negative, using the modells values of iI = 3, and f i  = f ,  because & - = 

O < &X-€ is a h y s  verifid (A > O,€ < 3) for any X. Adding the angular momentum, 
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the situation yields a value for X-. Indeed the dect  of j is to make sheih less bound 
by increasing their kinetic energies with rotation. Finding the shells that remain bound 
proceeds from evaiuating the inequality 

In the previous string of equaiities, the k t  step cornes fiom recognising the form of the 
'power law' angular momentum profile. The solution yields the 
according to 

range of bound particles 

= x-, (H-5) 

From this expression can be seen that X,, tend to Wty when 52 = O, which is the 
usual Einsteinde Sitter case, and X,, O. 

JZ+2  

Evaluation of the characteristic rotation velocity 

From Eqs.(H.4) and (H.5), one can obtain the expression 

Thus the characteristic rotation velociQ in sded variables which represents the amount 
of anguiat momentum present in a given model is givea by 

H.6.2 Physicd characteristic rotational velocity 

In order to compare the characteristic rotation of a model with more real evaluations on 
haloes, one has to translate the nnits into real ones. This is done foilowing appendix H.3: 

with Te being the self-similar time at the end of the self-similar phase (10 in the shdow 
case used here, 15 in the steep one) and b stiil representing the seKsimilar class. With the 



values used in our simulations, the characteristic rotationai docities are for the shaliow 
and steep cases respectively 

which are quite reasonabk 

H.6.3 Peebbs' rotational support parameter ( to be appendix 1, G ,  H, 
or ...) 

In the description of turbulence in cosmological stnictures, a parameter cm be d&ed 
that characterises the rotational support of a given system (see Peebles 1993 [114]): if 
we estimate the ratio of centrifugai acceleration fiom the systm's characteristic rota- 
tional velocity to its characteristic gravitational acceleration, we cm define the rotational 
parameter as 

where we have used the total mass of the system M, its anguIar momentum L and its 
total energy E. In the ligbt of previous caicuiations, we can liuk the angutar momentum 
L tu the specific anguiar momentum used in the mode1 by computing the characteristic 
specific angular momentwn of the s y s k m L  = M ( j2 )  . The totd energy can be de6ned 
using the radius of the system X,, at the end of the self-similar phase Te : 

Putting those d a t i o n s  together with the k t  that the masç of the system is given 
by the initial masi at the last binding radius Xm, {see section K.6.1), one can rewrite 
h4H.7)  into 

~ d 2  ( j 2 )  GM* ( j 2 )  
" = QMSJYme& = GMX,.Ce. 

In the previous expression, our model gives the various quantities in model units, so to 
get the reai value for the parameter we need to transfer into reaI units. 

Expression of the modelys rotation parameter 

We ikst evaluate the operative expression of the parameter Ag in terms of the expressions 
given in the problem: the mass of the system and the characteristic angular momentum- 



Mass of the system The expression for the mass of the system cornes £rom the m a s  
of the initialiy bound system: 

The expression for the 1st bound radius have been computed previously (section H.5), 
so combining it with the expression for X = A ( l -  B)rk, in the mass (and A=0.5) yields 

Characteristic angular momentum In parallel with Eq.(H.4), the characteristic 
angular momentum can be defined initially by 

The expression of ( j 2 )  can then be rewritten in the same way as for the mass into 

Rotation parameter Thus the rotation parameter can be expressed in terms of the 
problem's quantities so that 

Real units 

The model's masses are always expressed in mcaied units, therefore the masses in mks 
units can be written 

Mred = MUM.(lMo) 
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(see appendix ??) whereas if the angular momentum is ais0 expresseci in unscaled units, 
the conversion to real ones requires to transit through scaied angular momentum before 
getting to real mks units 

The need for mks units cornes tiom the use of G in the expressions. Again the an&= 
momentum is taken at the end of the infaii phase, so T = Te. Eventually the radius is 
made real with 

reorc = x ~ ~ ~ ~ u R ( ~ ~ ~ c ) .  

Thus the rotation parameter should be corrected for real units by 

Thus the real rotation parameter can be obtained with 

Real rotation parameter expression and values 

Generai expression The general expression yielded for the rotation parameter as a 
function of initial density contrast index E, the corresponding simüarity clam & and tirne 
of the end of infail Te as weii as the angular momentum parameter can be obtained 
from Eqs.(H.9) and (H.10) into the form 

The previous expression enables us to compute the values for each case c o n s i d d .  
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Shallow case In the shallow case, where we took E = g, the cocresponding d u e s  
for the similarity class, the end tirne of infaii and the angular momentum parameter 
are respectively 6 = F, Te = 10 and 52 = 10-~. The corresponding calculation for the 
rotation parameter yields 

Steep case In the steep case we took E = $, and the corresponding 6 = s, Te = 15 
and 52 = 9 x ~ 0 ' ~ .  The rotation parameter then becornes 
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