
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the

text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e-g., maps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand comer and continuing from left to

right in equal sections with small overlaps. Each original is also photographed in

one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white photographic

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann A b r , MI 48106-1346 USA

800-521 -0600

Supporting Multiple Program Comprehension Strategies

During Software Maintenance

Susan Elliott Sim

A thesis submitted in conformity with the requirements for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

O Copyright by Susan Elliott Sim 1998

National Library 1*1 of Canada
Bibliotheque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395, me Wellington
Ottawa ON K I A O N 4 OttawaON K1AON4
Canada Canada

Your lSle V o m reference

Our 6ia Notre refdrence

The author has granted a non- L'auteur a accorde une licence non
exclusive licence allowing the exclusive pennettant a la
National Library of Canada to Bibliotheque nationale du Canada de
reproduce, loan, distribute or sell reproduire, preter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la forme de microfiche/^ de

reproduction sur papier ou sur format
electronique.

The author retains ownership of the L'auteur conserve la propriete du
copyright in this thesis. Neither the droit d'auteur qui protege cette these.
thesis nor substantid extracts fiom it Ni la these ni des extraits substantiels
may be printed or othewise de celle-ci ne doivent etre imprimes
reproduced without the author's ou autrement reproduits sans son
pennission. autorisation.

Abstract

Software maintainers are task-oriented knowledge seekers. They focus on getting the

answers they need to complete a task and they use a variety of sources and strategies to do it

This thesis describes the development of a search tool grug intended to support program

comprehension. This design was based on two user studies and previous work on program

comprehension models and tools developed by other researchers. The first study looked at

the habits of software maintainers with access to a software visualization tool, the Portable

Bookshelf (PBS). The strategies used by subjects to complete maintenance tasks indicated

PBS could be improved by adding a search tool, so that information relevant to the

immediate task could be more easily located. A second study was undertaken to further

characterize programmers' source code searching behaviour to determine what hctionality

to include in the search tool. Based on these studies and a review of other source code

searching and analysis tools, grug was designed. This tool supports bottom-up code

comprehension strategies by allowing users to search for semantic elements in source code,

which they can use to build higher-level concepts. When integrated with PBS, grug

provides a means of relating program code to the pictorial elements in the software

visualization, thereby supporting top-down code comprehension strategies. The suite of tools

taken together support multiple comprehension strategies and transitions between them.

Acknowledgements

My first debt of gratitude goes to those who participated in the user studies. Without these

people, this research would not have been possible. Standard ethics procedures do not allow

me to identi@ these people for their own protection, so I must thank this faceless cast

anonymously.

I would like to thank my supervisors, Ric, for getting me started, and Charlie, for getting me

to stop. Thanks also to my "second" reader, Marsha, for her helpful comments.

Finally, many thanks go to my husband, Jeff, for his unfailing support and encouragement.

Table of Contents

Chapter 1 : Introduction .. 1
. .

1.1 Motlvahon 1

1.2 Starting Points .. 2
. .

1.3 Orgamzatron ... 4

Chapter 2: The Portable Bookshelf .. 5

2.1 Overview -5

2.2 The Software Bookshelf Concept .. 5

2.3 Software Landscape 7

.. 2.4 Creating a PBS 8

2.4.1 Generating the Factbase -9

2.4.2 Recovering the S o h a r e Architecture .. 10

2.5 Populated Bookshelves .. 11

2.6 Summary .. 12

Chapter 3 : Empirical Studies of Software Maintainers ... 13

3.1 Overview .. 13

3.2 Methods for Studying S o h a r e Maintainers .. 13

3 -3 Code Comprehension Models .. 1 5

3 -4 Maintenance Tasks 1 7

3 -5 Work Practices ... 18

3 -6 Summary .. 20

Chapter 4: Studies of PBS Users ... 21

4.1 Overview 21

4.2 The Software Project .. 21

4.3 Software Immigrants ... 22

4.3.1 Method 23

.. 4.3.1.1 Data Collection 24

... 4.3.1.2 Data Analysis 25

4.3.2 Results 2 7

... 4.3.2.1 Mentoring 28

4.3 2.2 Difficulties Outside of the So&are System 30

.. 4.3.2.3 First Assignment ... -32

... 4.3.2.4 Predictors of Job Fit 33

... 4.3.3 Application o f the Results to PBS -35

... 4.4 Project Veterans -36

4.4.1 Questions about Edges -37

................................. 4.4.2 Maintainers' Comments on Anomalies,.. - 3 8

... 4.4.3 Journalism-Style Questions -38

4.4.4 Code Migration .. -39

4.5 Summary 40

Chapter 5: Source Code Searching Survey .. 42

.. 5.1 Overview .. 42

5.2 Method .. .43

5.2.1 Formulate the Research Questions ... 44

5.2.2 Create a Data Gathering Instrument .. 44

5.2.3 Define the Population and Sampling Method ... 48

... 5 .2.4 Administering the Survey49

.. 5.2.5 Analyze the Data -50

.. 5.2.6 Methodological Considerations 50

.. 5.2.6.1 External Validity 50

... 5.2.6.2 Reliability 5 1

5.3 Results .. 1

.. 5.5 Search Tools .53

5.6 Situations ... 54

... 5.6.1 Coding and Analysis of Anecdotes 55

.. 5.6.2 Search Targets -55
. 5.6.3 Motivations for Searching 56

.. 5.7 Searching Archetypes 58

5.7.1 Common Searches59

.. 5.7.2 Uncommon Searches 61

... 5 -8 Respondents' Suggestions for Features 62

.. 5.9 Implications for Tool Design -66

.. 5.1 0 Application of the Results 66

.. 5.1 1 Summary 67

Chapter 6: Supporting Queries on Source Code 69

.. 6.1 Overview69

.. 6.2 grep 70

.. 6.2.1 Strengths of grep 70

.. 6.2.2 Limitations of grep 72

.. 6.2.3 Analysis of g rep ' s Attributes 74

6.3 cgrep ... -74

6.4 sgrep .. 74

6.5 agrep .. 75

... 6.6 t ks ee 76

.. 6.7 SCRUPLE 76

6.8 LSME ... 77

.. 6.9 Comparison of Tools 78

... 6.1 0 Lessons Learned 79

Chapter 7: Design of grug .. 82

.. 7.1 Overview 82

... 7.2 Platform Requirements -82

.. 7.3 Functional Requirements -83

... 7.3.1 Basic g r u g Functionality ..83

... 7 .3.2 Requirements for the command-line version -85

... 7.3.3 Requirements for the Graphical User Interface Version 85

.................................... 7.3 -4 Requirements for Operating Across the World Wide Web 87

vii

7.4 Non-Functional Requirements 88

... 7.5 Specification of gr ug -89

.. 7.6 The GCL Query Language -89

.. 7.7 Markup Schema and Macros for grug -96

.................................. 7.8 Preliminary Implementation of g rug and the Searchable PBS 101

... 7.8.1 Expanding the Factbase 1 0 2

... 7.8 -2 Augmenting GCL 103

.. 7.8.3 Using grug 103

.. 7.8.4 The Searchable Bookshelf 1 05

7.9 Summary 107

.. Chapter 8: Conclusion 109

.. 8.1 Observations 109

.. ... 8.2 Future Work 110

... 8.2.1 User Testing 1 10

... 8.2.2 Organizational Studies 110

.. 8.2.3 Source Code Searching 1 1 1

... 8.2.4 Tool Implementation 1 1

.. References 1 13

... Appendix A: Dictionary of Terms .. 124

List of Tables

.................... Table 4.1 : Surnmary of Respondent Characteristics ... 24

Table 4.2. Summary of Question Set Usage 24

.. Table 5.1 : Origin of Participants By Newsgroup -52

Table 5.2. Origin of Participants by Email Domain .. 53

Table 5.3. Tools Used .. 53

Table 5.4. "Other" tools used ... 54

.. Table 5.5. Summary of Common Searches -56

Table 5.6. Summary of Motivations for Searching -58

Table 6.1 : Comparison of Tool Characteristics .. 79

Table 7.1 : Markup and Macros for Function Declarations ... -98

Table 7.2. Markup and Macros for Function Definitions .. 99

Table 7.3 : Markup and Macros of Function Calls .. 99

Table 7.4. Markup and Macros for Variable Declarations .. 100

Table 7.5. Markup and Macros for Variable Definitions ... 100

... Table 7 -6: Markup and Macros for Variable References 1 0 0

... Table 7.7. Markup and Macros for Structural References 101

Table 7.8. Available Options in grug .. 105

List of Figures

Figure 2.1 : Portable Bookshelf of the GNU C Compiler ... 6

... Figure 2.2. Objc Subsystem of GCC 8

Figure 2.3 : Syntax of Tuple Attribute Language in Backus-Naur Format 9

Figure 2.4. Example of TA Language Applied to Sofhlare 10

Figure 2.5. Factbase Schema for Software Landscape 1

Figure 4.1 : Question Set One ... 26

Figure 4.2. Question Set Two 26

.. Figure 4.3 : Question Set Three 26

.. Figure 4.4. Variables Used During Analysis -27

.. Figure 5.1 : Introductory Page of Questionnaire -45

.. Figure 5.2. Text of Questionnaire 47

.. Figure 5.3 : Message to Solicit Participants 49

.. Figure 5.4. Example of Scenario Anecdote - 3 4

... Figure 5.5 : Coding Categories 55

Figure 5.6. Usefulness of Searching Source Code by Task ... 57

.. Figure 5.7. Example of Wish List for Features 63

Figure 6.1 : Call Graph Extractor for C in SCRUPLE fkom [Griswo96] 76

Figure 6.2. Call Graph Extractor for C in LSME [Griswo96] ... 78

Figure 7.1 : Example of g r u g GUI Search Dialog Box 86

Figure 7.2. Syntax of the GCL Query Language in Backus-Naur Form 90

.................................... Figure 7.3 : Code Sample fiom gcc.c of the GNU C Compiler R2.7.2 91

Figure 7.4. Line 21 of Code Sample with Hypothetical File Positions Labeled 92

Figure 7.5. Markup Index for Line 2 1 of Code Sample ... 93

Figure 7.6. Example of Function Declaration .. 98

Figure 7.7. Example of Function Definition 99

Figure 7.8. Example of Function Call 99
... Figure 7.9. Example of Variable Declaration 100

.. Figure 7.10. Example of Variable Definition .. 100

Figure

Figure

Figure

Figure

Example

Factbase

... of Variable Reference 100

Schema for GCL Index in TA Format .. 102

... The Extended GCL Syntax 1 0 4

The Searchable Bookshelf 106

Chapter 1 : Introduction

I .I Motivation

Research in program comprehension is predicated on the notion that if it were easier for

maintainers of large complex software systems to understand the program source, it would be

easier to make modifications to that source. A robust model of the cognitive processes and

work habits of software maintainers could be used in the design of tools to support program

comprehension. An effective program comprehension tool would have many benefits for

maintainers, particularly for those working on large systems. Fewer errors in the

comprehension process would result in faster modifications and program code with fewer

errors. The combination of reduced effort and increased quality would result in lower

software maintenance costs. Considering the proportion of software development costs that

is typically allocated towards maintenance, the savings could be quite significant.

Source code has a structure that renders it difficult to read in a linear fashion, and this

problem is compounded when the system is large because it is infeasible to read the entire

corpus of code. Consequently, the maintainer must read selectively, which makes the task

more difficult and susceptible to error. Currently, most programmers rely on general-purpose

search tools such as text editor features and operating system utilities. There has been little

work on tools specifically for searching source code [Singer97a, Paul951 and even less on

searching as a component of maintenance tasks, so there is a great deal of work to be done in

this area.

There are both technical hurdles and human factors in developing a program comprehension

tool. The technical challenges revolve around the creation of a factbase about the software

system and the means to access the factbase. Sometimes the source code itself is used as the

factbase because it is often the only complete and reliable documentation for the system.

More often, the data is extracted fiom the source code using some combination of search

utilities, parsers, and code analyzers. Whatever mechanism is used, we must ensure that it is

capable of populating the factbase with the necessary information. We aiso need to provide

software maintainers with a mechanism to access the factbase. In some cases the factbase

may be viewed directly by the user; in other circumstances a query language is necessary to

search it. Both of these issues are examined in this thesis.

The human issues around creating a source code searching tool are perhaps more difficult to

resolve. In order to be successfd, a program comprehension tool must help software

rnaintainers to complete their work by providing relevant information in a timely fashion. We

need to anticipate the information requirements of software maintainers, so these needs can

be reflected in the design of the factbase schema. We must aiso ensure that the technical

solution developed is usable by the target user group. A subtle, but important, point is that a

tool is not successful if it is not adopted by the intended user group. The likelihood of

adoption can be increased by making the tool fit with how software maintainers work and

cooperate with their existing tools. A user study that focuses on usage patterns can assist in

this process.

1.2 Starting Points

This thesis evaluates an existing program comprehension tool, the Portable Bookshelf (PBS),

through user testing and proposes the addition of a search tool as an improvement. (A

dictionary of terms, tools, and acronyms can be found in the Appendix.) The main

contributions of this thesis are the results fiom the user studies and the design for a search

tool grug (grep using GCL). The grug tool is essentially a "semantic g r ep", that

supports searches for meaningll elements in source code, i.e. those elements that are

"understood" by the compiler. Although these elements are sometimes called syntactic, they

will be referred to as semantic for the remainder of the thesis. Searches for these elements

are specified using the GCL query language, developed by other researchers at the University

of Waterloo [Clarke95a, Clarke95bl.

Existing work on program comprehension tools and models served as the basis for the work

in this thesis. From a tools standpoint, the starting point was PBS, a reverse engineering tool

targeted for the re-documentation phase of a re-engineering or migration effort. The PBS

tool suite is an instantiation of the Software Bookshelf paradigm. This tool along with the

utilities to construct it have been developed over the years by researchers at the University of

Toronto, University of Victoria, and the Centre for Advanced Studies at IBM Canada Ltd.

Pemy92, Fman97, Finnig97, Holt971. The core of PBS is Software Landscape, an

abstract visual representation of a software system. This work is discussed in greater detail in

Chapter 2.

This thesis also draws on studies to define models of how programmers understand source

code. Traditionally, there are two types of code comprehension models: bottom-up and top-

down. Bottom-up models state that as source code is read, abstract concepts are formed by

amalgamating low-level information into meaningful units [Shneid79, Pennin871. Top-down

models state that a programmer uses domain knowledge to build a set of expectations that are

mapped onto elements in the source code [Brooks83, Littma86, Solowa841. A more recent

development was the integrated code comprehension model which states that programmers

switch back and forth between the two strategies to complete a task [vonMay95, Letovs861.

This last model is consistent with the findings of the user studies performed as part of this

thesis. When presented with low-level information, programmers wanted to relate it to high-

level concepts. When presented with high-level abstractions, they wanted to relate it to low-

level artifacts. A more detailed review of program comprehension research as it relates to

code comprehension models and software maintenance tasks is presented in Chapter 3.

The grug tool and the Searchable Bookshelf were designed with these strategies in mind.

Software maintainers can use g r u g to search for semantic elements in source code, thereby

building higher-level, more abstract concepts about the software. The grug tool can be used

to search for semantic elements such as fimction and variable definition and declarations.

From our second user study, these were the most common targets of searches on source code

when performing maintenance tasks. By assigning meaning to a portion of the text, a

collection of keywords, operators, and identifiers, becomes associated with a concept or a

step in an algorithm. They can also use g rug within the Searchable Bookshelf to relate

elements in Software Landscapes to source code. The box-and-line drawings of the software

architecture give a conceptual view of the software system. In order to use this information

to complete a task, a software maintainer needs to relate the various pictorial elements to

source code. These relationships can be established using grug. Together, g r u g and

Software Landscape support integrated code comprehension models.

1.3 Organization

As mentioned in the previous section, background information on PBS and studies of

sohmre maintainers are given in Chapters 2 and 3, respectively. The first of two user

studies is discussed in Chapter 4. This study looked at how software maintainers used a

deployed PBS in their daily work. Newcomers, or "software immigrants", were examined in

detail, and project veterans were also interviewed. This study indicated that a search tool

should be added to PBS. The second study, which is described in Chapter 5, characterizes

the habits of programmers as they relate to source code searching.

Based on the fmdings of the two user studies, we examined existing searching tools for their

strengths and limitations. This review helped guide decisions made in the design of g r u g

and the Searchable Bookshelf. Among the tools examined in Chapter 6 are search utilities

from the g rep family, tools for searching source code and source code analyzers.

In Chapter 7, the design of grug and the Searchable Bookshelf is presented. Included in this

chapter are the requirements and specification of the tool, dong with the description of a

preliminary implementation. Finally, the thesis concludes with a summary and a discussion

of future work in Chapter 8.

Chapter 2: The Portable Bookshelf

2.1 Overview

The PBS (Portable Bookshelf) was the starting point for the investigations in this thesis and

this chapter presents the concepts underlying PBS and one of its essential components,

Software Landscape. The implementation and construction of PBS are described, along with

a discussion of its shortcomings.

2.2 The Software Bookshelf Concept

Software Bookshelf is a reverse engineering tool that focuses on the re-documentation phase

of a re-engineering or migration effort Finnig971. As its name implies, the tool is based on a

bookshelf metaphor where each book on the shelf corresponds to particular view or aspect of

the system. Books are not limited to being written material, such as design documents and

source code, but also include tools, indices, and annotations. Some tools that have been

included on Software Bookshelf are Software Landscapes (discussed section 2.3) Penny921,

Rigi Wiiller931, and Refine warkos941.

PBS is a web-based implementation of the Software Bookshelf paradigm. It uses a web

server to deliver information from a shared repository through EITML (hypertext markup

language) pages, MIME (Mutipurpose Internet Mail Extension) types, Java applets, and CGI

(common gateway interface) scripts [Tzerpo97]. By using a Java-enabled web browser as a

fiont end, PBS presents users with a recognized interface that affords a familiar interaction

style.

Figure 2.1 shows PBS accessed £?om the Netscape Navigator web browser. The narrow

column along the left side contains the table of contents which lists the books for a subject

Figure 2.1: Portable Bookshelf of the GNU C Compiler

system. The Software Landscape diagram is found in the large fiame on the right. A

Landscape is a pictorial representation of the architecture of the software system being

documented. It is generated by a series of static analysis tools that use the source file as the

basic unit of analysis.

One shortcoming of PBS and Software Landscapes arises fiom the fact that that they were

designed to be browsed. The basic mode of navigation through PBS is point and click, just

as it is with other World Wide Web constructs. There is no mechanism for searching, and by

extension, hypothesis testing. Another problem is that PBS does not provide easy linkage

between top-down and bottom-up comprehension approaches. The Landscapes provide high-

level information, while source code provides low-level. Documentation provides

information at varying levels. The interface does not have the means to support smooth

transitions between the levels. These shortcomings become more conspicuous in the user

studies that are discussed in the Chapters 4 and 5.

2.3 Software Landscape

A Software Landscape of the Objective C subsystem of the GNU C Compiler (GCC) is in

Figure 2.2. This diagram was reached by clicking on the "Objc" box in Figure 2.1 - In that

landscape, the Objc subsystem is the right-most box on the third row fiom the top.

Subsystems are drawn as gray boxes with a tab on the top left to give the appearance of a

folder. Modules are drawn as blue boxes with the top right comer folded down to give the

appearance of a piece of paper or a document. Green edges represent variable references and

red edges represent fhction calls between these units.

The graph is drawn using a nested box formalism Ware188J. For example, at the top level is

a landscape diagram of a folder representing the entire system. In it are other folders

depicting a system decomposition. In order to see the contents of a subsystem, the user can

click on its box (select using a mouse button) which brings up a lower level Landscape.

Further branches of the decomposition can be browsed by pointing and clicking. Sometimes

the entire set of diagrams for an application is referred to as a Landscape.

Figure 2.2 shows a subsystem further down the decomposition. The row of boxes at the top

of the diagram are "clients" and the one at the bottom is a "server". Clients are other

subsystems that use a variable or a function contained in the subsystem being viewed. By

extension, servers are subsystems that contain a variable or function that is used by the

subsystem being viewed. By using this formalism, the target subsystem can be viewed in

context Penny921.

Figure 2.2: Objc Subsystem of GCC

In the next section, the steps and the tools involved in creating a PBS for a software system

are described.

2.4 Creating a PBS

The first step in creating a PBS is to extract the necessary facts fiom the subject software

system. A parser creates a factbase consisting of function calls and variable references that

cross file boundaries. Function cdIs and variable references that are local to a file are not

included in the factbase because these facts are not necessary for recovering the architecture

of a software system. The factbase and the information passed between tools are stored in

ASCII files using the Tuple Attribute Language (TA) [Holt97]. The decomposition of the

s o h a r e is recovered by clustering files into subsystems using manual techniques and a tool

called gro k. The resulting information is drawn and manipulated using Java applets on the

PBS Farman971. In the remainder of this section, each of these steps will be discussed in

greater detail.

2.4.1 Generating the Factbase

Parsers are the only language-dependent tool required to populate a PBS. The remainder of

the tools operate on factbases written in an intermediary language. A factbase for PLKX (a

variant of the PL/I programming language) source code is constructed using p l i x 2 r s f,

while one for C source uses the combination of cf x and f bgen. The factbase is stored in

TA, a language for representing coloured graphs.

itemId ::= stringToken
I " (" stringToken ") " / / Relation (edge class)
I " ! " stringToken stringToken stringToken ") "

TALanguage ::= {section)

section : :=
SCHEME TUPLE : tupleLanguage

I SCHEME ATTRIBUTE': attributeLanguage
I FACT TUPLE : tupleLanguage
I FACT ATTRIBUTE : attributelanguage

-- - - - -

Figure 2.3: Syntax of Tuple Attribute Language in Backus-Naur Format

A software system can be thought of as a coloured graph. Entities such as variables,

functions, files, modules, and subsystems can be represented as nodes. Relations between

them such as "use", "call", and "contain", can be represented as edges. Consequently, TA

can be used to represent a software system. Furthemore, nodes and edges can have

SINSTANCE summary-c module
SINSTANCE uti1s.c module
$ INSTLNCE end-of-month function
SINSTANCE printRecord function
end-o f-mont h {

defloc = summary.c:56
deflocend = summary.c:87

1
printRecord I

defloc = utils.c:365
deflocend = utils.c:425

1
funcdef summary.c end-of-month
funcdef uti1s.c printRecords
call end-ofmonth printRecords

- - --

Figure 2.4: Example of TA Language Applied to Software

attributes, such as a visual representation (colour, size of box, location of box, etc.) or

location in source code.

Figure 2.4 gives an example of TA applied to software. The first four tuples represent nodes

and the last three represent edges. The two stanzas in the middle assign attributes to the

e n d - of - month and p r i n t R e c o r d s entities. In the example, the file summary. c

defines the h c t i o n end - of - month on lines 56-87. The function p r i n t R e c o r d is

defined in the file u t i 1 s . c on lines 365-425. Finally, the end - of - month function calls

the p r i n t R e c o r d function.

2.4.2 Recovering the Software Architecture

The low-level factbase is to produce a high level factbase with the tuple schema

given in Figure 2.5. Processing is done using the gro k tool, essentially a binary relational

''calculator" that can be used to induce relationships about factbases. It can peIfom

operations analogous to those in SQL, such as selects, joins, and intersections, as well as

transitive closure. Common sequences of operations can be written into scripts, as is the case

for the operations to create a high-level factbase from the ones produced by plix2 rs f and

cfx/f bgen.

SINSTANCE [name] module
SINSTANCE [name] subsystem
useproc module module
useproc module subsystem
useproc subsystem module
useproc subsystem subsystem
usevar module module
usevar module subsystem
usevar subsystem module
usevar subsystem subsystem
implementby module module
contain subsystem module
contain subsystem subsystem

Figure 2.5: Factbase Schema for Software Landscape

The final step in creating the architectural level factbase is to cluster the files into

subsystems. A domain expert is consulted to identify a system decomposition and to allocate

files to subsystems. This information is used by grok to make further inferences about

interactions between subsystems and modules. Attributes are added as necessary by tools

that use the factbase. For example, 1 s layout, a tool for drawing software landscapes, adds

attributes such as colour, size, and location. An expert is often consulted during this phase of

the recovery as well. Although this approach is time consuming, the results are often better

than those generated using automated approaches alone. Users tend to find the visualizations

more aesthetically pleasing and consistent with their own mental models of the system

[Tzerp096].

2.5 Populated Bookshelves

A number of PBSs have been populated for "real world" software systems including GCC,

Linux, and TOBEY. The first two are relatively large systems (200-300 KLOC) with

publicly available source code, which makes them appropriate for testing PBS construction

tools. With a world-wide user base, both pieces of software are modified frequently, often by

people who do not know the source code intimately. Consequently, Software Bookshelves of

these systems have a purpose beyond an academic exercise.

The TOBEY (Toronto Optimizing Back End with Yorktown) system is a compiler

component maintained by a team at IBM Canada Ltd. A PBS for this software has been

populated in anticipation of a migration to C* from P L m . When the PBS was constructed,

there were about ten people on the development team, and the system consisted of

approximately 250 000 lines of code. Source code, some documentation, and Software

Landscapes had been put onto the PBS. Software immigrants and veterans of this group were

studied to evaluate the effectiveness of PBS as a program comprehension and reverse

engineering tool, and this work is reported in Chapter 4.

2.6 Summary

In this chapter, PBS concepts and architecture were explained. The PBS is a web-based

reverse engineering tool based on the metaphor of a bookshelf. On the shelf are books

corresponding to views of the system as presented by written material and tools. A web

server is the delivery mechanism for this repository. The main view in PBS is a visual

representation of a software system decomposition, known as Software Landscapes. In these

diagrams, document and folder icons represent source files or collections of source files, and

relationships between them are represented by arrows. Different levels of the system

decomposition depicted by Software Landscape can be browsed by pointing and clicking.

Also discussed in this chapter is a brief overview of how a PBS is constructed for a subject

system. The different tools in PBS use a language-independent factbase written in TA (Tuple

Attribute) Language. There exists a suite of lightweight tools to generate and manipulate the

factbases. The chapter concludes with the presentation of a list of software systems that have

been re-documented using PB S.

Chapter 3: Empirical Studies of Software Maintainers

3.1 Overview

In this chapter, developments in empirical studies of software maintainers relevant to the

work in this thesis are summarized. These developments include techniques used to study

s o h a r e maintainers, as well as the areas that have been examined such as models of code

comprehension, strategies for performing maintenance tasks, and work practices. It is

important to look at these aspects of software maintainers and their work to ensure the tools

that researchers develop for them are relevant. As the various studies are reviewed in this

chapter, the results will be related to the design of software tools for maintainers.

3.2 Methods for Studying Software Maintainers

The techniques used for studying software maintainers can be divided into two groups: those

that originate in psychology and those that originate in sociology. Although these methods

may have been adapted by empirical studies in software maintenance fkom intermediary

disciplines, such a s human-computer interaction, education, and business management, their

roots can be identified by their philosophical underpinnings.

Those that are psycho logical in origin are centered around studying individuals in connolled

experiments. Psychology experiments tend to have a very narrow focus and consequently are

used primarily in studies of programming-in-the-small or "maintenance-in-the-smdSy. These

studies may require performing tasks or filling out questionnaires, and they may occur in a

laboratory or an office.

Those that are sociological in origin are centered around making observations ofpeople

working in systems. Sociological studies tend to have a broader focus, looking at

interactions between people, particularly in groups, and consequently are used in studies of

communication and work ~ractices. These studies may involve surveys, field observations,

or examination of archives.

Techniques from both psychology and sociology can be used at various stages of research,

that is, they can be used both for exploratory work (theory building) and hypothesis testing

(theory validation). It should be noted that the research question, rather than the method, that

should dictate the approach used to analyse the data produced by a study. The two most

commonly used approaches in empirical studies of software maintainers are case studies

win941 and exploratory studies. Normally, psychology experiments form conclusions using

tests of statistical significance and sociology studies characterize populations using summary

statistics and error estimates. The purpose of generating these measures is to generalize the

results to a population. At this time in software engineering there are few studies that can do

so appropriately because there is insufficient demographic information about the software

maintainers and the systems they work on. There is almost no literature on number and

distribution of software maintainers working in industry and their characteristics such as

education, experience, skill level, and productivity. Similar information is also lacking about

the systems they work on, such as size, age, number of releases, and language of

implementation [Zvegin97]. As a result, the majority of studies performed in software

engineering have theories and models as their end products.

Psychological methods have primarily been applied to code comprehension and task

performance. The two most common techniques are protocol analysis and controlled

experiments. The researchers best known for using protocol analysis are Von Mayrhauser

and Vans vonMay93, VonMay971. In protocol analysis, a programmer is asked to articulate

her thoughts while performing a software maintenance task. The session is recorded on

audio or video, and is later analyzed along prescribed dimensions [Solowa88]. Controlled

experiments have been used by many researchers to develop code comprehension models

[Shneid80, Littma861, and to examine tool use EStorey961. In these studies, a set of

"conditions" are established in which each has a different "level" of independent variables.

For example, in an experiment to determine whether the amount and type of light affected the

performance of programmers, there are two conditions. The experiment could have two

levels for the type of light (incandescent and fluorescent) and three levels for the amount (0

watts, 40 watts, and 100 watts), for a total of six "treatments". Subjects are randomly

assigned to a treatment and their performances measured. These results are compared to

determine whether a particular independent variable affected any dependent variables.

SocioIogical methods have been applied to the study of work practices and, to a lesser

degree, task performance. Perry et al. [Perry941 and Singer et al. [Singer971 have used

techniques such as direct observation, questionnaires, and personal logging to characterize

the work practices of software maintainers at large telecommunications companies.

Eisenstadt used an informal survey to study what made some bugs more difficult than others

Fisens971. Seaman and Basili used observations and interviews to examine the effect of

different types of communication on code inspections [Seaman97].

In the remainder of this chapter, the results of the research performed using these methods are

presented.

3.3 Code Comprehension Models

Work has gone into developing a reliable and valid model of source code comprehension

because it is a fundamental part of so many software maintenance tasks. Before software can

be modified, the maintainer needs to understand the existing system. A robust model of code

comprehension is crucial to developing tools and processes that will assist maintainers with

their tasks. Early research in this area tended to use undergraduates as subjects in

experiments where the task was to modify small programs of 1000 lines of code or less.

Some experiments were bold enough to use "large" programs of 3000 lines of code. Recent

research during this decade have used industrial software maintainen as subjects and their

task was often chosen by the experimenter fiom the subject's list of pending tasks. Although

this method sacrifices experimental control, the studies more accurately reflect how software

maintainers work.

Code comprehension models can be grouped into the following taxonomy: bottom-up, top-

down, and integrated. Bottom-up models are arguably the oldest of the code comprehension

models. They state that as source code is read abstract concepts are formed by chunking

together low-level information [Shneid79, Pennin87]. These models were based on

observations of a small number of subjects reading source code. One of the strengths of this

model is it fits with some existing psychological models of how short-term and long-term

memory operate.

Based on observations of themseives and other programmers, some researchers found this

model unsatisfactory, particularly in situations where subjects didn't or couldn't read all of

the source code, as is the case with large legacy systems. Another drawback of the bottom-

up model is that it doesn't account for factors such as programmer expertise, domain

knowledge, and the complexity and design of the subject system. As a result, top-down

models were proposed. These models state that a programmer uses domain knowledge to

build a set of expectations that are mapped onto the source code prooks83, Littma86,

SolowaM]. The programmer looks for beacons or cues to indicate the hctionality of a

piece of source code without piecing together the algorithm one line at a time.

Others felt that top-down models also failed to adequately explain comprehension strategies

used by software maintainers. These researchers proposed integrated comprehension models

which state that a programmer switches between strategies as dictated by the available

information [vonMay95, Letovs861. The von Mayrhauser and Vans "Integrated Metamodel"

(IM) will be discussed in detail, as it encompasses many of the ideas in top-down and

bottom-up models, and is the dominant model in software maintenance research.

The IM has four components: the top-down model, the situation model, the program model,

and the knowledge base. This last component is a set of rules used to construct and link the

three sub-models during comprehension. The top-down model matches ideas with beacons

in essentially the same manner as Brooks' model [Brooks83]. The situation model relies on

domain knowledge to match operations in the code with real-world objects. The program

model captures the programmer's knowledge of how the program fimctions and is

constructed by understanding the structure of the source, such as control-flow. Information

in any of the models can be abstracted as necessary by chunking. According to the IM,

programmers construct all three sub-models simultaneously and switch fkeely between them

as information appropriate to a particular sub-model becomes available. The IM is by no

means a d e f ~ t i v e model, but it is attractive because it accounts for a large proportion of the

strategies used by maintainers of large software systems.

3.4 Maintenance Tasks

Aside from code comprehension, debugging is the maintenance task that has been most

studied. One possible explanation for this concentration is its prevalence as a maintenance

task. Another is the lack of good debugging tools; programmers still rely on their brains and

print statements as their primary means of finding bugs [Lieber97]. Beyond this, we have

debuggers and profilers, much the same tools that we had twenty years ago. Some studies

looked at what makes bugs difficult pessey89, Eisens971 and others looked at what

strategies were used to find the bugs [Spohre85, Katz881. All of these studies, except for one

by Eisenstadt Fisen971, examined how subjects behaved in controlled experiments using

small programs, some as short as 10 lines.

Eisenstadt on the other hand solicited anecdotes fiom programmers on electronic forums such

as USENET newsgroups and bulletin board systems, about particularly nasty bugs that they

had encountered. The author found that the most common reasons for defects being difficult

to foe were: large temporal or spatial gaps between the root cause and the symptom; and bugs

that rendered debugging tools inapplicable through situations such as race conditions. An

example of the former reason is a line of code that overwrites a portion of memory, but the

program does not crash until much later when the memory is read. These two reasons

accounted for over half the anecdotes reported.

Some of Eisenstadt's findings contradict one of Katz and Anderson's experiments, which

basically reported that if a subject could fmd a bug, she could repair it. With sufficiently

complex software, this result not longer holds. However, Singer et al. found using several

different measures that searching was the most common activity for software engineers

[Singer97c]. To quote one of their subjects, "First we search to find where the problem is,

then we search to find potential solutions, then we search to do impact analysis."[Singer97b]

This result suggests that software maintainers could benefit a great deal from a good search

tool.

Publications on other maintenance tasks, such as adding a feature to a large system and

supporting an undocumented system, have tended to be personal experience reports.

Lakhotia [Lakhot93] describes his experiences modifying the GNU C Compiler. He argues

software rnaintainers rarely try to understand a source code in its entirety. More often, they

only want and need to understand the minimum to get the job done.

There also exist some experience reports on working with undocumented systems. Fay and

Holmes Fay851 suggest specific strategies for dealing with the political situation and for

developing a sufficient understanding of the software system to complete the assigned

maintenance task. Pigoski and Looney report on their experiences on a team that had been

given the responsibility of supporting a system without any prior training and insufficient

documentation [Pigosk93].

3.5 Work Practices

Some of empirical studies of software rnaintainers look at their work habits and how their

teams function. The rationale behind this type of study is that before we can help s o h a r e

maintainers, we must first understand how they currently work. This understanding is

beneficial for process improvement, so that the negative aspects can be eliminated and the

positive enhanced. In the case of tool design, a good software maintenance tool should fit

with how the intended users do their jobs. Researchers in this area tend to use methods that

are sociological in origin. The focus is on the software maintainer as part of a development

team and a corporation, rather than as an individual toiling away on a task alone.

Perry et al. [Perry941 and van Solingen et d. [vanSol97] examined how programmers spend

their time. Both studies found that developen spend about half their time working on source

code. About 15% of their time is spent dealing with interruptions such as telephone calls,

email and visitors. These findings suggest that a possible way to increase the efficiency of

maintainers is to improve the management of information flow. For example, the work day

could be organized so that certain times are reserved for working alone and others are

allocated for communication. Another possibility is to determine the dependencies of a

particular task and ensure that requirements are met, so a maintainer is less Likely to become

blocked while coding. Seaman and Basili [Seaman971 also looked at communication, but

focussed on its effect on code inspections. They found that inspection teams that were less

familiar with each other and were more physically and organizationally distant fiom each

other spent longer on their inspections and found more defects in the code.

Singer and Lethbridge pethb1-97, Singer97al have studied work practices of software

engineers for the purpose of uncovering requirements for tool design. They have used

techniques such as questionnaires, interviews, and job shadowing. In a series of studies, they

identified 14 categories of tasks that maintainers perform. In one study, eight programmers

were each shadowed for one day as the performed their daily work. A note was made each

time they changed &om one task category to another. The three most common activities

were searching, changing the source code, and using an editor ESinger97aI.

In another study, Lethbridge and Singer looked at the positive and negative aspects of

software tools that maintainers currently use. Many of the comments in both areas relate to

usability issues. The subjects liked tools that were easy to use, had usefid or necessary

features, and had responsive performance. They disliked tools that were poorly integrated or

incompatible with other tools, tools that were not powerful enough or had features missing,

and tools that had too many features or were too big. The maintainen were also asked about

what kinds of tools they would like to have. The two most common requests were for better

exploration tools and automated testing tools bethbI-971.

Many of Singer and Lethbridge's results indicate that there exists a niche for a good search

tool. They have applied these fmdings the development of t ksee (Software Exploration

Environment using a t k interface), which will be discussed in Chapter 6.

3.6 Summary

When designing a tool for softwire maintainers, it is important to ensure that the tool fits

with how they work. To do otherwise would reduce the already slim chances of the tool

being adopted. In this chapter, some methods to uncover somare rnaintainers' work habits

and tool requirements are presented. As well, some considerations in tool design are

discussed: code comprehension models, tasks performed by maintainers, and the work habits

of maintainers. The research methods were adapted for two user studies that are reported in

this thesis. Chapter 4 describes the experiences of a development team with access to PBS

for their software system. Chapter 5 presents the results of a survey of programmers on their

requirements for a source code searching tool. The developments from this chapter and the

user studies are reflected in the design of g r u g and the Searchable Bookshelf in Chapter 7.

Chapter 4: Studies of PBS Users

4.1 Overview

Although a number of Software Bookshelves had been constructed, they had not been

evaluated as a software comprehension tool. A Software Bookshelf had been constructed for

a commercial software product, and usability studies were conducted with the team

maintaining the product. The intention was to evaluate how PBS helped them with their

daily work, but for myriad reasons it was difficult to find PBS users. Many of the reasons

were organizational, but some were due to shortcomings in the tool. The studies of PBS

users, their findings, and implications for PBS are documented in this chapter.

4.2 The Software Project

A PBS had been populated for a compiler maintained by a team at IBM Canada Ltd. in

anticipation of a migration to C* fkom a PL/I dialect. The software was originally created

fifteen years ago and has had twelve major releases. It consisted of approximately 250 000

lines of code in 1000 files. The system was supported by a team of ten developers.

Source code, some documentation, and Software Landscapes had been put onto the

bookshelf. The system's fiindarnental abstract data structure and a small number of

subsystems were well documented, but aside from the Sofhvare Landscapes there was little

on the remainder of the system.

The Software Bookshelf was designed with three groups of users in mind: newcomers to a

project who needed to learn about the system, project experts who required a reference on the

software, and project managers who wanted to track the maintenance effort. Ideally, detailed

studies should have been performed on each of these user groups, but this was not possible

due to organizational constraints.

The newcomers, or software immigrants, were relatively easy to study, since they did not yet

have a lot of responsibilities and consequently had time available to spend with a researcher.

As a result, a detailed, formal study was conducted with them using a method that was

sociological in origin. They were expected to use PBS a great deal, but they did not for the

reasons that are presented in Section 4.3.3. What started out as a study of tool use, concluded

in a broader characterization of the acclimation process for new employees. Presented in this

chapter is a subset of the results already published elsewhere [Sim98a].

The project veterans tended to be quite busy, and were only available for occasional

meetings. The findings on this user group are based on informal meetings and conversations.

The project manger, while eager to help, was probably the busiest person on the team, and as

a result there are no findings for this user "group". Ln this case, missing a single individual,

unfortunately resulted in the omission of an entire class of users. Nonetheless, valuable

lessons were learned fkom studies of the other two user groups.

4.3 Software Immigrants

New staff members are usually experienced programmers who already have a rich set of

skills and background knowledge. Despite their personal assets, they often lack basic

knowledge about the specific project. For these reasons, we call these new team members

"software immigrants", since their experience is analogous to those of people who arrive in a

new land and need to learn its language and culture. Software immigrants are often referred

to by other terms such as newcomers, newbies, recruits, new hires, rookies, and even "fkesh

blood". Novice is an inappropriate term since it implies a lack of experience. Extending this

analogy, the process by which software immigrants adapt to a new project is called

"naturalization". Others may call it acclimation, re-tooling, start-up, ramp-up or bringing

someone up to speed.

Studies have been undertaken in software engineering and cognitive psychology on working

with legacy systems. There are some experience reports which give practical advice for

working on undocumented software systemsFay85, Pigosk931 and anecdotes fiom

practitioners and consultants@3rooks95, DeMarc871. The most significant contribution

comes fiom Berlin Perlin931 who studied the interaction patterns between mentors and

apprentices at the conversation level and found that mentoring is a highly effective way to

transmit information about the system. Mentors provide not only answers to apprentices'

questions, but also explanations of design rationale. Their conversations tend to be highly

interactive in nature, using techniques such as confirmation and re-statement to verify that a

message has been passed correctly. While mentoring has its merits, it tends to be a time-

inefficient method to train a software immigrant because it results in a net decrease in team

productivity in the short term. As an antidote, Berlin suggests capturing the information that

mentors convey in documentation or an intensive course for apprentices.

4.3.1 Method

A multi-case study was performed with four respondents, all immigrating into a single team.

By interviewing subjects, we hoped to identify commonalties and differences in their

experiences, and to infer naturalization patterns fiom this comparison.

In this study, ow gods were to:

describe the naturalization process,

identify shortcomings and successes of the process, and

characterize the strategies software immigrants used to adapt to the new job.

In order to highlight areas that would profit fiom modification or improvement, we must first

identify strengths and weaknesses in the existing naturalization process.

The unit of analysis in this study is a single naturalization. The rationale for this choice is

that each participant could be studied more than once as they naturalized to a different

projects and teams. Data was coilected using structured interviews, and was analyzed using

qualitative data analysis methods. During analysis, variables of interest were identified using

a pattern matching technique. A data matrix was populated with these variables to articulate

cross-case patterns Niles941. In the following three subsections, we describe the data

collection procedure, and the data analysis techniques that were used.

4.3.l .I Data Collection

Interviews were conducted fiom February 1997 to June 1997 with four respondents. Data

collection began with S 1 and S2 shortly after they joined the company. As the study

proceeded, S3 and S4 were identified as relativeIy new software immigrants, and were

willing to participate in the study. Consequently, using c'controlled opportunism"

@senh89], they were interviewed using a sub-set of the questions used with the first two

respondents. At the time of interview, S4 was on an educational leave of absence. The

background of each respondent is summarized in Table 4.1.

Case

SI

S2

Interview
Frequency
Every 3 weeks
for 4 months
Every 3 weeks
for 4 months

7 months S3

Experience on Team
at Time of Interview

0 4 months

0-4 months

I Highest Level of Educational

Once

8 months (on leave) S4

Previous Work
Attained

, Masters in CS (compilers)

Once

Experience
4 co-op work

I
I

Masters in CS (compilers)

I optimizing

terms
3 years as
Windows system

Bachelors in CE
programmer
2 years with an

-

Table 4.1: Summary of Respondent Characteristics

Doctorate in CS (artificial
intelligence)

Structured interviews were used with all respondents. They were asked standard questions

and were allowed to elaborate as appropriate to their situation. AIl interviews were

conducted by a single investigator and were tape-recorded. Prior to being interviewed,

respondents signed consent forms. All raw data is kept confidential, and the anonymity on

the respondents is maintained.

compiler
Summer jobs

Three sets of questions were used: the first set of questions inquired about the respondent's

background, both educational and industrial; questions fiom the second set probed the

respondent's growing understanding of the software system and naturalization process in

progress; and the last set explored the respondent's naturalization experience in retrospect.

Cases
S1, S 2
S3, S4

Table 4.2: Summary of Question Set Usage

Question Set 3 Used During:
Last interview
Only interview

- --

Question Set 1 Used During: '~6stion~et2-used During:
First interview
Only interview

Interview every 3 weeks
No

Question set one was used during the first interview with a respondent, and set three during

the last. With S3 and S4, these occasions coincided. Question set two was used only with S 1

and S2 as we followed them through their naturalization. The usage of these question sets

with the respondents is summarized in Table 4.2. These question sets can be found in

Figures 4.1-4.3.

At the end of the four months, we concluded our interviews with S 1 and S2 because we felt

that the immigrants had reached a plateau in their naturalization. This is not to say that they

were completely familiar with the software system, but rather they had settled into a stable

work routine and would be making a steady transition to being fully productive team

members.

4.3.1.2 Data Analysis

Since a single investigator conducted all of the interviews, hypotheses were formulated

throughout the study, using a method of constant comparison [Eisenh89]. After data

collection concluded, notes and recordings made during the interviews were reviewed

entirely. During this stage, seventeen variables of interest in five major areas of inquiry were

identified using cross-case comparisons. It is important to note that the variables used were

not scalar, but quantitative. A "value" assigned to a variable could be numerical, but textual

descriptions and lists are also valid. The variables are listed in Figure 4.4 , and the areas are:

respondent characteristics,

orientation and training,

difficulties outside of learning about the system,

timing and type of tasks given, and

approaches used to understand the system.

Question Set One: Subject's Background
1. What is your educational background?
2. What experience have you as a professional software developer? What kinds of

projects did you work on? What tools and languages did you use?
3. Are there any educational materials that your found particularly useful such as books,

manuals, guides, course, videos ?
4. What do you enjoy most about your work?
5. What do you dislike most about your work?

Figure 4.1: Question Set One

Question.Set Two: Observing the Naturalization Process
1. What is your current assignment? What have you been working on over the last week?
2. How did you gather information about the problem?
3. What resources did you use? What documentation did you read? Who did YOU

consult?
4. What new things did you learn over the last week?
5. What new tools did you use over the last week?
6. Did you use Software Bookshelf? Include information about how and why if

appropriate.
7. Over the last week, what have you done to become more familiar with the software

system?
8. Draw a diagram of your current understanding of the system.

Figure 4.2: Question Set Two

Question Set Three: Recalling the Naturalization Process
1 . How long have you been working at this job?
2. What administrative issues did you have difficulties with? (i-e. badges, logins,

machines, payroll, etc.)
3. How many different computer systems do you have to use to do your job?
4. How many different tools or applications do you have to use to do your job?
5. What technical issues did you have difficulties with? (i.e. missing background

knowledge)
6. What difficulties did you encounter when learning about the system you are working

on?
7. How long did it take you to become comfortable with your new environment? (i-e.

office, building, cafeteria)
8. How long did it take you to figure out office numbers?
9. How long did it take to become productive?

Figure 4.3: Question Set Three

Data &om the interviews were used to assign values to these variables and this information

was put into a data matrix. A pattern matching technique was used, in which several pieces

of information from one or more cases were related to a theoretical proposition [Eisenh89,

Miles94, Yin941. Seven propositions or "patterns" were found. Some of the propositions

were grouped together because their causes or effects were tightly linked. These patterns will

be presented in the next section.

educational background
work experience
orientation
training
mentoring relationship
IDS acquired
computer systems used
tools used
time to fully functioning workstation
system administration tasks reported
initial task
time until initial task assigned
time until working independently
shortcomings of technical background
approach to learning system
time to comprehend office numbering system
other

Figure 4i4: Variables Used During Analysis

4.3.2 Results

In this subsection the findings of the study are presenting beginning with a narrative

overview of the naturalization process, then continuing with analytic results. Counts of some

variables will be presented, where relevant, using the following notation: (A, B, C, D) units.

This tuple indicates a count of A units for S 1, B units for S2, and so on. There are

sufficiently few cases that it is possible to present all the data, and this notation allows us to

do so compactly.

When software immigrants began work, they were each assigned a mentor. Only S3 received

a three-hour formal orientation session from the human resource department; the remainder

received informal orientations from their manager. Some respondents attended external

formal courses, but they did not find them relevant to their work; respondents attended (0, 1,

0,2) courses. Mentors acted as primary sources of information to software immigrants, and

they passed on a wide range of information to respondents. This information tended to be

practical low-level information, such as file naming conventions, system set-up, and pointers

on tool usage.

The first two weeks were focused on administrative issues, that is, providing the software

immigrant with the equipment, tools, and user identifications necessary to do his or her job.

Half the respondents received their first task after two weeks, the other half after three. These

first tasks tended to be isolated modifications to the software, or open-ended investigations

with no predetermined goal. After four months, five in the case of S4, respondents were

working independently of their mentors on tasks that had gradually increased in scope.

Although respondents did not yet have a thorough understanding of the system, they were on

their way to acquiring one. In the words of S3, "I'm fairly comfortable now. I can read the

code and understand it. . . .I know where to look for problems, and that's half the battle and I

know who to consult when I don't."

In the remainder of this subsection, patterns in the naturalization process will be discussed.

The pattern is substantiated with details from the cases, then its implications are discussed

and, where possible, related to the literature.

4.3.2.1 Mentoring

Pattern 1 : Mentoring is an effective, though inefficient, way to teach immigrants about

the software system.

Pattern 2: Lack of documentation forces software immigrants to rely on mentors or

consultants.

Evidence

When respondents joined the team, each was assigned a mentor who helped them with all

aspects of naturalization. This assistance ranged fkom providing basic information about the

software system, to workstation system administration, to steering them around food choices

in the lab's cafeteria. Initially, mentors spent many hours a day with their charge. This time

may have been lumped together into a long lecture or it may have been spread out over two

or three question and answer sessions in a day. This fiequency was maintained for about two

weeks and then tapered off quickly. The intensity and duration of the initial contact period

was less for subjects whose mentors were working on time-critical tasks. Although contact

with their mentors decreased over time, it never stopped completely as maintakers often

consult experts about esoteric parts of the software system. By four months, S 1's interaction

with his mentor consisted of a short question every two days or so. In contrast, S4 had a

steady ongoing contact with her mentor because they worked closely together on the same

problems.

There is a paucity of documentation for this system; what information does exist resides

primarily in the minds of those developers who designed the system architecture and

continue to maintain it. S3 stated, "Most people operate under the assumption that there are

no documents, so you shouldn't try asking for one." This shortage means that for

immigrants, their mentors become their primary source of information about the software

system.

Beyond passing on knowledge, mentoring fills a social function as well. Mentors act as a

means for integrating an immigrant into the social life of the software team, by providing

them with introductions at the lunch table and during coffee breaks. Newcomers need to

become conscious of their fellow team members and their areas of responsibility, so that they

can turn to the appropriate consultant when necessary.

Implications

A major drawback of mentoring is that it is very time consuming for the senior developer, a

phenomenon discussed in the introduction of this chapter. Despite the inefficiencies of

mentoring, it may not be possible, or even desirable, to eliminate the system. Mentors

h c t i o n as more than mere repositories of data about the legacy system; the information they

provide extends into the administrative and social domains as well. In light of the lack of

documentation, it is important to identify who the experts are to new team members.

If changes are to be made to the naturalization process, the mentoring system should be

complemented, but not replaced. The experiences of software immi-ts in this study were

consistent with those found by Berlin [Berlin93]. Like the apprentices in that study, these

software immigrants also had interactions with their mentors that were highly interactive, in

which they received timely feedback about their comprehension of the software. Efforts

should be made to reduce the time commitment required by mentors, so they can still

maintain their productivity, while providing adequate guidance to a software immigrant. AS

a result, an immigrant who has a mentor with a busy schedule, can still receive the necessary

training.

4.3.2.2 Difficulties Outside of the Software System

Pattern 3: Administrative and environmental issues were a major source of fnrstration

during naturalization.

Evidence

In every case, almost the entire first two weeks were spent dealing with administrative and

environmental issues. These difficulties included setting up their computers, configuring

sohare , acquiring access to systems or tools. In many instances, there was overhead

involved in performing simple tasks. Respondents had to maintain (1 1, 1 1,5, 5)

identifications, accounts or registrations to do their job.

Only S3 had a fully functioning workstation on the first day of work. Respondents had to

wait (3,6, 0, 1) weeks for fully fbnctioning machines. S4 had a computer on the f ist day,

but had to spend a week configuring it to be usable. S2 did not even have a workstation on

his desk for the first three weeks, and then needed another three weeks to set it up to meet his

needs.

Sometimes these problems are interrelated, as recalled by S 1, "I tried to [set up backups for

my machine], but I got stalled because I had to register my machine. So when that comes

back, I'll continue.. ." Although his computer was basically operational after three weeks, S 1

had to deal with system administration problems throughout the study.

Items ranging fiom user identifications to light bulbs had to be requested. Some requests

could be serviced quickly but most requests required an overnight wait. Once, when S2

returned to his office with a binder, his office mate asked him, "Where can I apply to get a

binder?" Ironically, binders, unlike so many other suppIies, did not need to be requested.

Although respondents worked hard to comprehend a large under-documented system, at no

time did they describe the task as frustrating. In contrast, h t r a t i o n was a word that every

respondent used with respect to at least one system administration task. This difficulty could

be attributed to respondents' lack of experience performing system administration, or the

feeling that machine problems were keeping them from their real jobs-programming.

Regardless of the causes of this sentiment, it is a problem common to software immigrants

during naturalization. Later discussions with the project manager indicated that difficulties

with the lack of computing resources were experienced by all members of the team.

hplicat ions

The problems with administrative and environmental issues, particularly the computing

resource shortage, would be worth addressing for this team, since benefits would be felt not

only by software immigrants but also by veterans. Some red productivity gains could be

made here if developers were not distracted by administrative issues. It is not very efficient

for every team member to invest the time to learn how to perform system administration, an

activity not directly related to writing code. Many of the processes could be streamlined or

combined; for example, user identifications for a set of tools could be linked so that access to

them does not need to be requested separately.

4.3.2.3 First Assignment

Pattern 4: Initial tasks were open-ended problems or simple bug repairs, that were begun

no earlier than two weeks after a software immigrant's arrival.

Pattern 5: Mentors tend to pass on low-level information about the software system.

Evidence

Shortly after respondents had functioning machines, they received their first assigned task.

which occurred at (3,4,2,2) weeks. These initial assignments tended to be limited in scope

and complexity, and did not have a fixed deadline. Three of the respondents were given

open-ended problems to explore, for the purpose of improving the compiler's performance.

S3 was given a bug repair that had been screened for excessive complexity by his mentor-

S4's f is t assignment was to add a feature to a subsystem, and she recalls, "It was a small

enough project and I didn't have to know anythmg else about the rest of the code. So it was a

matter of modifying, maybe three or four files.. . It didn't seem very challenging, but loo king

back, I appreciate the fact that they gave me something so isolated. It allowed me to gain

familiarity with at least those four files."

Three of the four mentors concentrated on conveying low-level information to immigrants.

These lessons tended to concentrate on the subsystem that an immigrant would be working

on and as a result tended to focus on knowledge that was immediately useful. Only S 1's

mentor began with high-level system design concepts, but even these lessons were limited to

a single subsystem. By concentrating on pragmatics, software immigrants were able to start

working with source code quickly.

Implicatiom

Clearly, patterns four and five are closely related: Given the types of information conveyed

by mentors, small, non-critical tasks are appropriate first assignments for software

immigrants, and vice versa Even in the absence of pressure fiom the team, respondents

tended to push themselves to contribute. S 1 observed this in himself, saying, ccSometimes

it's me trying to do several things at the same time: trying to set up my machine and . - .be a

little bit productive for the team." In such situations, the additional demands of a task with a

tight deadline is unnecessary. The relationship between these two patterns can be viewed as

symbiotic. Any modifications to one pattern, must be reflected in the other. Clearly, the

initial task needs to provide an opportunity for software immigrants to use the lessons

learned.

4.3.2.4 Predictors of Job Fit

Pattern 6: Programmers who prefer to use bottom-up comprehension approaches have a

smoother naturalization than those who don't.

Pattern 7: There needs to be a minimal interest match between immigrants and the

software system.

Evidence

At the end of the study, cases S 1-3 were still working on the software team, but case S4 was

on a temporary educational leave. This provides an opportunity to examine the differences

between a team member who may pursue other interests, and ones who are satisfied working

as software maintainers on a compiler. The three key differences were S4's inclination to

take a top-down approach to comprehending the software system, and her lack of previous

experience with compilers, coupled with her depth of background and interest in another

field.

Immigrants were trained up from simple tasks to more complex ones. Consequently,

software immigrants acquired their understanding of the software, one subsystem at a time, in

other words, in a bottom-up fashion. S 1-3 took this approach when they tackled a problem

by reading the source code or by profiling the subsystem. In contrast, S4 preferred to take a

top-down approach, although there were no real tools or documentation that supported this

line of inquiry. She said, "The system was humungous and I didn't know what comes first or

anything. So the only way to do it is to dump everything [execution traces]. I didn't do that

fiom the beginning, but I found it really h t ra t ing because I wouldn't know what was

actually being done. You need to know.. . or you don't know where to start."

S4's background also differed kom those of the other respondents. During their Masters

degrees, S 1-2 both wrote theses in the area of compilers. S3 had previous experience

working on a highly similar software system. S4 had completed a Doctorate in artificial

intelligence. She indicated this was another reason she did not find her work compelling, "I

had spent four years working on my Ph.D. and I got hired into an area that had nothing to do

with my Ph-D. I just never found it fascinating. They knew that when they hired me.

. ..They just wanted some one they felt could pick things up quickly."

At this point, it must be stated that S4 was not an unsuccessM software maintaker.

Although she is on leave, she has not given any indication that she will not return. When

describing her work, she included as many low-level details of the software system as S 1-3.

She was able to handle tasks that were as complex as the ones given to other respondents.

Furthermore, throughout the interview she emphasized that despite the interest mismatch she

had congenial relations with the development team. She stated, "The actual group was

amazing. I think I was very fortunate to be in that group," and " . . .it was a positive

experience. I don't regret working there."

Implications

Any improvement in job fit is, indirectly, an improvement on the naturalization process,

since reducing a possible turnover rate decreases the time spent in this area by the team as a

whole. When hiring new employees to be software maintainers on a large project, managers

should look for at least a minimal interest match and a preference to work with system details

in a bottom-up fashion. This is not to say that immigrants without these characteristics are

certain to fail or leave, but they will face greater frustration in their early months on the job, a

time that has its own share of difficulties. A newcomer with a strong interest match is more

likely to be buoyed by a high level of initial excitement about the position, a feeling that does

much to mitigate many of the frustrations he or she may face. Indicators of an interest match

could be experience in a related field, or it may be as simple as an expressed preference. A

scheme to give employees choices in the work they undertake is proposed by DeMarco and

Lister [DeMarc87].

4.3.3 Application of the Results to PBS

Taken as a group the patterns provide a coherent explanation for why s o h a r e immigrants

use PBS so little. They spent very little time accumulating domain level knowledge about

the system, usually about two weeks. During this time, software immigrants were struggling

to get a computer set up. For as long as they did not have a fully Mctioning computer,

software immigrants could not access PBS. By the time they had a computer on their

desktop, immigrants were assigned a maintenance task by their mentors and they began

tackling it immediately. These initial tasks were localized and only required immigrants to

be familiar with a small number of files in a single subsystem. When software immigrants

could access PBS, a Software Landscape was the only infoxmation available on the

subsystem they had been assigned to work on. These diagrams were too abstract to help

them understand an algorithm or a specific source file. After some experiments with PBS,

they found that it lacked the information they needed for their assigned tasks and put the tool

aside.

Software Landscape's main strength is that it reduces the complexity of a software system

that is inherent in a directory of source files, by presenting a picture of its conceptual

organization. While S3 found PBS to be an invaluable resource, he was the only respondent

who had a computer on his desk from the outset. He reported that PBS probably saved him

about two weeks of time accumulating background knowledge. Despite these positive early

experiences, S3 gradually stopped using the tool after his initial learning period. He

described PBS as a tool of "last resort" that he turned to when all other information sources

were exhausted.

The evidence regarding the efficacy of PBS for software immigrants is inconclusive.

Although there were some positive and negative comments, there is sufficient evidence to

make a strong argument, in either direction, for it as a program comprehension tool. The

only unequivocal result is that PBS did not fit well with how software immigrants are

naturalized on this development team. At a time when software immigrants would have

benefited from the information that PBS excels at delivering the tool was not available due to

organizational constraints. In order to keep PBS relevant throughout a software immigrant's

naturalization, it needs to be able to provide information that will help them with their initial

tasks as well. Some mechanism needs to be added that can provide structural infomation at

a lower level than the Landscapes do. Furthermore, this mechanism should complement the

Software Landscapes, so that PBS can provide a more complete picture of a software system.

4.4 Project Veterans

The second PBS user group studied were project veterans. It was expected that this group

would use PBS as a reference, that is, to look up information about relationships between

modules or to validate their knowledge of the software system. It was difficult to find

s o b a r e maintainers from this category using PBS in their daily work, so it was necessary to

use more innovative ways of evaluating PBS as a program comprehension tool for them.

Techniques that were used included formal demos, email, meetings to validate Landscapes,

and "coincidental" meetings. This study could be best described as informal and

consequently it does not have systematic results. However, the findings are intriguing and

highlight possible directions for fbture research.

Demos of Software Bookshelf were organized at IBM internally and at their annual

conference, CASCON. On these occasions, the concepts would be explained to team

members and their reactions to the Landscapes were noted. Email was exchanged with

developers to ask them about how they deal with specific maintenance tasks. Two of the

researchers developing the Software Bookshelf arranged meetings with senior team members

to validate the system decomposition used in S o h e Landscapes [Tzerpo96]. Interestingly,

during one of these meetings a bug was identified using only Landscapes. Ambushes

occurred when a researcher wouid see a software maintainer in the hallway, cafeteria, parking

lot, or in her or his own office, and ask for her or his thoughts on PBS. The remainder of this

section presents comments that were either common to many developers or uncommon

enough to be interesting.

4.4.1 Questions about Edges

After the basic Software Bookshelf concepts, such as the Table of Contents, a S o h a r e

Landscape and the meaning of boxes and lines, were explained the fust question that a

developer would ask was cbWhat's this edge? Where is it in the source?" They wanted to

know what line or lines of source code were responsible for putting a particular edge on the

Software Landscape. Developers had more questions about edges than nodes, because the

source artifact represented by a node was clear-it was either a file or a collection of files.

The source code represented by a box could be accessed just by clicking on the Landscape.

There is no mechanism in 1 s view to click on an edge and display the source code it

represented.

The question "What's this edge?" is difficult to answer for a number of reasons. First, the

low-level factbase only has information about entities such as variables, functions, and files,

but not source Iines. Even this information is induced to the file level to create the factbase

for a Software Landscape. As a result, variables and functions aren't even represented on a

Landscape, only the artifacts, such as boxes and arrows, that imply their presence are.

Second, it's not clear that "what's this edge?" is really the question that maintainers want

answered. Suppose that it was possible to bring up a list consisting of the lines of source

code that an edge represented and the list was similar to the following:

a m . c: 65 : i f (memory[i] == NULL)
codegen.c:168: m e m o r y [startMSP] = IorD;
machine. c : 5 9 : fprintf (s i n k f i l e , "%8hdf f f
memory [i]) ;.

This list only leads to other questions such as: What variable type is "memory"? What

functions are these lines from? Upon examination, the "What's this edge?" has deeper

implications beyond adding a feature to the 1 s v i e w Java applet.

4-42 Maintainem' Comments on Anomalies

When presented with a Software Landscape, developers exhibit a range of reactions. The

strongest reactions were from developers who thought they saw an obvious error in the

diagram. These "surprises" raised questions and comments. Sometimes these anomalies

were true tool emrs, for example a mistake was made during the clustering process and a file

was placed into the wrong subsystem. Sometimes these anomalies were a mismatch between

the developer's mental image of how the system should be drawn and the representation in

the S o b a r e Landscape. Other times the anomalies were actuaI errors in the TOBEY

implementation.

The implication of these criticisms is that there is an objective and a subjective element to

evaluating Software Landscapes. Both elements can manifest themselves in both the

psychological and technical domiins. From a psychological standpoint, the objective aspects

are apparent in the design principles that should be followed when displaying visuaf

information. The subjective aspect arises when the visual representation is compared with a

developer's mental picture of a software system. From a technical standpoint, the objective

element is relevant when evaluating whether files have been placed in the appropriate

subsystem. The subjective arises in the definition of subsystems in the first place. All four

aspects (the cross product of objective/subjective and technical/psychological) may be

sources of comments fiom software maintainers.

4.4.3 Journalism-Style Questions

Some of the questions that senio; maintainers asked when repairing a defect or evaluating a

set of Software Landscapes were surprising. A senior software maintainer who had been

working on a project for a long time sometimes asked journalism questions: who, what,

when, where, why and how. When looking at source code, a possible sequence of questions

and answers were:

What is this thing?
Who did this?
Oh, I remember, this was when X fixed bug Y.

Or

This looks like Z wrote this.
When was that? How long had Z been working then?
What was he trying to do?
He probably did this because.. .

These questions are indicative of an effort to recover design rationale. if a senior maintainer

can determine the circumstances surrounding a change, she or he can often infer why a

change was performed a particular way. In these situations, history is being used to make up

for the dearth of documentation on this software project. For example, a fact extractor could

be applied to configuration management or version control tools to collect historical

information.

4.4.4 Code Migration

It was expected that PBS would assist software maintainers as they migrated subsystems

Erom the PL/IX programming language to C++. Those who were involved in the migration

effort used Software Landscapes to verify some of their decisions rather than as a driver of

the process. There were three reasons for this reticence. One, maintainers did not completely

trust Software Landscapes, as they trusted their tried-and-true software tools such as g rep or

f i n d . While this reluctance was understandable, it was nonetheless disappointing. Two,

maintainers who were sufficiently senior to be entrusted with the task of designing the ported

subsystem already had good mental models of the software system as a whole. As a result,

they did not feel that they needed to rely on Software Landscapes for a decomposition.

However, they did check the Landscapes after the design was complete to verify that there

were no surprises. Three, maintainers who were responsible for doing the actual migration

were working at a level too low to be helped by Software Landscapes. The task required

them to ask a lot of "What's this edge?' type questions that could not be answered using the

existing PBS tools.

4.5 Summary

The results from these two user studies have a number of implications for refining PBS as a

code comprehension tool. The points that are most relevant to this thesis are summarized in

this section,

Software rnaintainers want to relate pictorial elements to lines of source code.

- Low-level information is needed in PBS to complement architectural diagrams.

Evidence for this conclusion can be found in the prevalence of the question "What's this

edge?' While abstraction can be helpful for learning new concepts, it does not help

developers perform day-to-day maintenance tasks. Their jobs centre around modifying a

large corpus of source code. From studying how software maintainers work, we make the

following two observations:

Software maintainen use goal-directed knowledge acquisition.

Information is gathered by searching and asking questions.

Developers who were studied spent very little time learning for the sake of knowing. Even

software immigrants spent only two weeks on open-ended study. It is more often the case

that maintainers want to acquire a specific piece of knowledge for a particular maintenance

task. Maintainers fmd this information by searching source code or by asking their peers.

Asking questions is a key part of the problem solving process. Developers have been

observed asking questions aloud while working alone, and providing the answers themselves.

There are many conclusions that can be drawn from these lessons, two of them are:

PBS needs a search tool that lets users make queries about source code.

Additional studies are necessary to develop and understanding of what searches

programmers perform on source code and how.

In order to keep PBS relevant to software maintainers beyond the initial open-ended learning

period, a search tool needs to be added. The tool needs to be able to answer the "What's this

edge?'question, and all those that follow. The primary purpose of this tool would be to

search source code for information that programmers need to perform maintenance tasks.

There are two aspects of this problem that need to be examined more closely. First, an

understanding of source code searching for maintenance tasks needed to be developed. To

this end, a survey of programmers was undertaken and is described in the next chapter.

Second, the problem of source code as a search domain presents a technical challenge. A

collection of search tools and code analysis tools is examined in Chapter 6. Based on the

findings fiom these two lines of investigation, a design for a searching tool is presented in

Chapter 7.

Chapter 5: Source Code Searching Survey

5.1 Overview

A study was undertaken to characterize the source code searching behaviour of programmers.

Answers were sought to four research questions:

What tools do programmers use to search source code?

Which tasks require programmers to perform a search?

What do they look for when searching source?

What do they wish their tools could do?

The tools currently used for searching can serve as role models for the source code searching

tool being developed for PBS. Results from the second two questions could be used to

construct a series of archetypes to characterize searching behaviours. The last question

should provide not only a list of suggested features, but also provide insight into the

underlying questions that programmers are trying to answer when they search. This survey

and its results are reported in this chapter. A subset of this material has been accepted for

publication [Sim9 8 b] .

There were two objectives in this study. The primary objective was to understand how and

why programmers searched source code. We asked about the tools they used and situations

in which they searched source code. Qualitative and quantitative data from participants were

used to construct a model of searching behaviours. Anecdotes of the situations were used to

develop a series of archetypes of source code searching.

An archetype is a concept firom literary theory. It serves to unify recurring images across

literary works with a similar structure [Frye57]. In the context of source code searching, an

archetype is a theory to unify and integrate typical or recurring searches. As with literature, a

set of them will be necessary to characterize the range of searching anecdotes.

The secondary objective was to determine the efficacy of using a web-based questionnaire to

survey programmers. Surveying is a method often used in the social sciences to collect data

in a structured or systematic manner [deVaus96]. The methods in this study were similar to

those used by Eisenstadt [Eisens97].

The method is further described in Section 5.2, and the results are presented in Sections 5.3-

5.6 and Section 5.8. Archetypes and uncommon search situations are presented in Section

5.7- The chapter concludes with a discussion of how the results and archetypes can be

applied to tool design.

5.2 Method

In a survey, the specific data gathering technique chosen, i.e. interviews, questionnaires. or

archival research, depends on the phenomenon being studied [deVaus96]. Regardless of how

data is gathered, there are five steps in performing a survey:

1. Formulate the research question.

2. Create the data collection instrument.

3. Select the sample and sampling method.

4. Administer the survey.

5. Analyze the data.

This survey uses a written questionnaire to collect the data and availability sampling to

obtain the participants. The survey was administered using a World Wide Web page and

participants were solicited from seven USENET newsgroups. Both qualitative and

quantitative methods were used to analyze the data, because the s w e y had both open- and

closed-ended questions. These steps are described in detail in the following sections.

5.2. I Formulate the Research Questions

In this study, we wanted to understand how and why programmers searched source code.

The four questions that we wanted to answer in this study were:

What tools do programmers use to search source code?

Which tasks require programmers to perform a search?

What do they look for when searching source?

What do they wish their toois could do?

These research questions are exploratory in nature and our goal was to development a

preliminary characterization of source code searching. The tools currently used for searching

provide role models for future tool development, and their shortcomings suggest areas for

improvement. The targets and motivations for searches indicate some of the functionality

required in such a tool. The answers to the last two questions were given in anecdotes, so

analysis of this data resulted in a set of archetypes to further inform tool design.

5.2.2 Create a Data Gathering Instrument

A questionnaire was selected to be the data gathering instrument because we wanted to

collect information from a large number of respondents, many of whom we would not be able

to contact personally. The questionnaire consisted of two web pages. The first was an

introductory page with an explanation of the purpose of the survey and the rights of the

participants. A link at the bottom of the page led to the actual survey. This two page format

was used to encourage respondents to read this preamble before beginning the survey. The

introduction had two parts, each fulfilling a distinct aim: a purpose statement motivated

participants to give thoughtfbl responses to all the questions, and the statement of participant

rights informed respondents of their rights according to standard ethics procedures

CdeVaus96, Foddy931.

Figure 5.1: Introductory Page of Questionnaire

Question 1 : Tools Used
What tools do you use to search source code? Check all that apply.

g w , figrep, etc. 11
find or "File Find" 1 1

editor 11
e.g. vi, emacs, edit

integrated development environment [1
e.g. MSDS

other 1 I
Please specify:

Question 2: Program Analysis Tools
Do you use an integrated software analysis and exploration tool? Two examples are
SNiFF+ and CIA.

Yes 1 I
No [I

Question 3 : Development Activities Requiring Searching

How usem is it to search source code when:
Not at all usefbl Very useful

doing low-level design? 1 2 3 4 5
writing new code? 1 2 3 4 5
testing? 1 2 3 4 5
understanding old code? 1 2 3 4 5
repairing bugddefects? 1 2 3 4 5
adding a new feature to

old software? 1 2 3 4 5
improving performance? 1 2 3 4 5
inspecting and reviewing

code? 1 2 3 4 5
writing documentation? 1 2 3 4 5
maintaining documentation? 1 2 3 4 5

Question 4: Typical Usage Situations
Describe one or more situations when you needed to search source code. What did you
use to find it? What were you trying to find? Why did you need to find it?

Question 5: Wish List
What types of searches would you like to be able to perform?

Question 6: Primary Responsibilities
What are your primary job responsibilities? Check all that apply.

Research 11
Consulting [3
Developing software for a customer[]
Maintaining software for a customer[]
Developing a software product []
Maintaining a software product []
Developing in-house software [1
Maintaining in-house software []

Question 7: Time With Source Code Written By Others
Of your total time spent working with source code, what percentage of that time is spent
working on source code written by other people?

0-20% r 1
2 1-40% [1
4 1-60% [I
6 1-80% [3
81-100% 11

Question 8 : Participation
Where did you hear about this survey? (Please give the name of the newsgroup or email
sender .)

Question 9: Future Studies
Would you be willing to participate in future user studies of source code searching?

No [I
Yes [I
If yes, please provide your email address.
Email:

Figure 5.2: Text of Questionnaire

The questions and their wordings were tested in a pilot study of six respondents. These

respondents were contacted by personal email and they were later debriefed, again by email.

Our experiences from the pilot study are reflected in the find tea of the survey. Data from

the pilot study were not included in the anaiysis of the main survey. The text of the survey is

found in Figure 5.1 and Figure 5.2.

5.2.3 Define the Population and Sampling Method

The population of interest for the survey was loosely defined, so a random sampling method

could not be used. The population was any programmer who had worked with relatively

large pieces of existing source code. Due to a lack of demographic information it was

difficuit to operationalize this definition. It was not possible to enumerate the population and

randomly select participants. Consequently, availability sampling, also known as

convenience sampling, was chosen. Normally, this method is used only in exploratory

studies, such as this one.

Availability sampling is probably the least rigorous of the common sampling methods. It

operates by publicly soliciting volunteers to participate in a study. The main drawback of

using this technique is it does not obtain a representative sample. First, individuals with the

"volunteer personality" are over-represented in the sample. Second, the sample does not

represent the population of interest, in this case software maintainers.

In social research, the volunteer personality can be a serious confound because they differ

systematically from the rest of the population. While it is a factor in this survey, it is less of a

problem because the topic is technical rather than social. It could even be argued that its

influence is positive because volunteers tend to be more intelligent, better educated, and more

extraverted than the general population, resulting in a participants who can more easily

describe their habits [Rosent75].

Had another sampling method been used, it still would be difficult to show the results can be

generalized to the population of s o h e maintainers. Not enough is known about the

demographics of the population to determine whether a sample is representative. Since this

study is exploratory in nature and its goal is to build a model of source code searching,

availability sampling is adequate for the task.

--

Thanks to all of you who have filled out the s w e y . The responses
so far have been excellent. I'm posting another request for those
people who meant to do it and it slipped their mind, or for those
who just need a little more encouragement.

ses

UNAERSITY RESEARCH SURVEY ON SOURCE CODE SEARCHING

Are you a programmer? Have you ever had to search your source code?
If you have, please visit:

http ://www..turing.utoronto .ca/-simsUZ/s~r~ey/scss-intro. html

We're surveying computer professionals on how they search source
code as part of the ESSME project at the University of Toronto. We're
looking for fairly basic information, such as what tools you use and what
kinds of things you look for. Our research project builds tools that are
based on what programmers actually need rather than ideas that sound good.

So next time you're waiting for a compile, or if you're having a quiet
day during the "holidays," take 5- 10 minutes and fill out the
survey at:

http ://www.turing .utoronto ~ca~~simsUZ/sur~ey/scss-h~o .html

Any anecdotes, comments, or ideas that you have will be appreciated.

Thanks in advance for your participation.
--

Figure 5.3: Message to Solicit Participants

5.2.4 Administering the Survey

The pages were published on a web site and participants were solicited corn USENET
newsgroups. A message was posted to eight newsgroups:

cornp.lang.c.moderated,comp.lang.c++.moderated,

comp.lang.java.programmer,comp.lang.cobol,comp.lang.fortran,

comp.lang.smalltalk,comp.lang.lisp,andcornp.software-eng.

The same message was reposted one week later with an additional paragraph at the

beginning. There were no participants from cornp . l ang . c++ . moderated, because

requests for participation were filtered out by the moderator. Figure 5.3 shows the h a 1

message that was posted. All of the data were collected within a four week period.

5.2.5 Analyze the Data

Coding is the process of assigning vaiues to variables to represent each respondent. In the

analysis of the six multiple choice questions the variables were scalar, such as counts and

ratings. For the two fiee-form responses the variables were qualitative, meaning their

"values" were text descriptions or lists. These variables were analyzed by grouping similar

responses together. The anecdotes were coded using qualitative data analysis techniques in

several iterations Wles941. Coding of situations is described in greater detail in Section

3.3.1. During this process, we used grounded analysis, that is, the categorization of search

situations was driven by the data, rather than a theory of how a task is performed [Strauss90].

5.2.6 Methodological Considerations

Two issues affecting the validity of the study and the suitability of the chosen method:

external validity of the results, and reliability of the respondents.

5.2.6.1 External Validity

The method selected is appropriate for the gods of the study, to build a set of archetypal

source code searches. By using a structured data collection method, it is possible to can

beyond looking at an interesting story in isolation. With independent confirmation by

multiple sources, an anecdote becomes a thread of commonality across cases. Although

some of our data is quantitative, it would be inappropriate to generalize them to a population,

for the reasons stated in Section 5 -2.3.

These archetypes are best applied to the design of tools intended for a user group similar to

the sample. In the following sections, it becomes clear that the bulk of the participants work

with procedural programming languages, either on UMX or Windows operating systems.

There were enough Smalltalk and Lisp programmers among the respondents with unique

anecdotes to show that the archetypes do not fit them well.

5.2.6.2 Reliability

Since the primary interest of this survey was the range of source code searching behaviour,

we chose to use a survey rather than interviews or protocol analysis. Results from a

relatively large number of people were needed to construct this model, and it would have

been very time-consuming to use interviews or protocol analysis to collect the data. One of

the advantages of interviews is that they are more dynamic, more interactive, and open-

ended, so we attempted to emulate this by making parts of the survey open-ended fkee-form

questions. Recall fiom Chapter 3 that protocol analysis provides information about the

thought processes used while a task is performed by having subjects tallc aloud during an

experiment. While appropriate for constructing theories at a different level of analysis, this

method would not have provided us with data consistent with our goals.

The survey relied on software maintainers' self-reports of their searching behaviour. While

not as reiiable as direct observation, self-reports are still a good source of data to inform

research. Analysis was kept as grounded as possible, so the results presented tend to be

summaries of the data rather than a complex argument constructed around the data.

5.3 Results

Sixty-nine respondents provided descriptions of 11 1 search scenarios and 207 suggestions for

features. Overall the quality of the results were quite good; only a small number of

respondents did not answer every question on the survey. Most of the responses were in

point form, but their thoroughness often compensated for the lack of formality. Some

anecdotes were quit long, spanning more than a page. Other, the responses were humorous,

for instance, "'Show me the location of the next error I should fix' :-)."

The results of the survey are presented in four subsections. Respondents' backgrouods are

described in Section 5.4 and search tools they use are reviewed in Section 5.5. Targets and

the various requests for tool improvements are discussed in Section 5.8. Unless otherwise

specified, results are presented as counts inside brackets.

5.4 Participants

The credibility of the anecdotes depends on them originating fkom a variety of sources.

Therefore, it is important to show in this section that a diverse group of the participants were

obtained before presenting the trends in searching behaviour. The sixty-nine participants

who submitted questionnaires came from a variety of newsgroups and email domains, and

used a range of search tools. The participants originated from seven different newsgroups.

The distribution of their origins is given in Table 5.1.

Newsgroup Number of
Respondents

comp .software-eng
comp.lang.fortran

comp.1ang.java.programmer 4
comp. lang.smalltalk 3

Total 69

Table 5.1: Origin of Participants By Newsgroup

The last question of the survey asked if respondents were willing to participate in future

studies of source code searching. Forty-five respondents were willing to participate in future

studies and consequently gave their email address. An analysis of the domains of the mail

addresses indicated that more than two-thirds of them were from commercial and government

domains. The distribution of participants by domain name is in Table 5.2.

Domain Number
corn, gov, co.uk 26

net, org 5
edu, ac.uk 6

other 8
Total 45

- --

Table 5.2: Origin of Participants by Email Domain

5.5 Search Tools

The survey included a multiple choice question on the tools that respondents used to search

source code. The available choices are shown in Table 5.3. In addition, a box was provided

for the name of any tool that fell into the "othery' category. We found that the participants

generally relied on standard tools. The grep category included its variants such as f grep,

eg r e p, and a g r ep, which perform regular expression matching over files. Although it is

capable of much more, find, in its most basic form, is a tool that searches file names.

h o s t all the respondents (65) used either their editor or IDE (integrated development

environment) to search source code, and yet a large number of them used other tools as well.

Tools Used Number
editor 57
grep 47

f i n d or "File Find" 38
IDE 26
other 38

- -- -

Table 5.3: Tools Used

In the fill-in box for the "othery' category, a total of nineteen different tools were mentioned.

The distribution of the tools fiom this category is given in Table 5.4. Some participants

entered more than one tool. If a tool was mentioned in an anecdotes that was not already in

the list of "other" tools, then it was also added.

Included in the category of "tagging utilities", were e tags, c t ags, and f tags. The

"scripts" category includes any shell scripts, Per1 or awk programs, and batch files.

"Proprietary source browsers" included tools that were sold for the purpose of source

browsing such as Cygnus Source Navigator, SoftBench, and tools that were bundled with

third party Libraries. Smalltalk and Lisp programming environments were included in

"language environments." These tools were included in this category rather than IDE

because they include a number of elements that are tightly integrated with the language and

run-time environment. The UNM utility x r e f builds a cross-referencing index of functions

and variables. The last category included Norton Text Search, j avado c, the compiler, and

"my brain".

Tool Number
tagging utilities 11

scripts 7
proprietary source browsers 6

language environments 5
xref 4

miscellaneous 10

Table 5.4: "Other" tools used

5.6 Situations
- -

I needed to understand old spaghetti code which used global
variables for everything. Say there was a variable 'foot
which stored a critical value. I'd grep for reads and writes
to this variable, to see which functions were involved in
creating and using this value. I'd also search for it(in
emacs) in a cross-reference listing to make sure I didn't
miss some place.

I

Figure 5.4: Example of Scenario Anecdote

We received descriptions of 1 11 searches that ranged in length fiom a single line to more

than a page. All but four respondents contributed anecdotes. Figure 5.4 contains a typical

anecdote regarding a situation that required source code to be searched. In this subsection,

the results of analyzing the anecdotes are presented. First, the search targets and the

motivations for searching are discussed. In Section 5.7, the relationships between these two

dimensions are examined to formulate searching archetypes.

5.6.1 Coding and Analysis of Anecdotes

Anecdotes were categorized along two orthogonal dimensions: the specific search target and

the motivation for performing the search. The coding categories are presented in Figure 5.5.

Search targets tended to be quite easy to categorize, whereas motivations required stricter

rules for categorization. Some anecdotes had multiple search targets or multiple motivations.

The example presented above, the search targets were coded as "fimction definition" and "all

uses of a variable," and the motivation was coded as "program understanding".

Specific search target Motivation for Search
1. function declaration 16. dead code elimination
2. function defhition 17. clean up
3. function use 1 8. impact analysis
4. function use-a11 19. bug repair
5. variable definition 20. feature add
6. variable use 2 1. naming conflicts
7. variable use- all 22. porting
8. class definition 23. code reuse
9. class use 24. maintenance
10. class use- all 25. program understanding
1 1. specific string 26. other
12. specific string- output
13. specific string- corn
14. file
1 5. other

Figure 5.5: Coding Categories

The program understanding category was used as little as possible because it could be argued

that all searches are performed for that purpose. In the example, a program understanding

motivation was selected because the respondent gave no other explanation for why she was

performing the search. The maintenance category was also used in a similar manner. We

selected the most specific motivation for the search based on statements by the participant.

5.6.2 Search Targets

During coding of the 1 11 anecdotes, 154 search targets and 94 motivations were identified.

The four most common search targets were function definitions (26), all uses of a function

(23), all uses of a variable (23), and variable definitions (19). D e f ~ t i o n s are the portion of

the source code that implements a firnction body or determines the type of a variable.

Searches on functions, variables, and classes are summarized in Table 5.5. Further analysis

of the searches on variables indicated that respondents were more interested in locations

where a variable was written or assigned to (6) as opposed to simply read or referenced (1).

Clearly, a piece of code that changes a variable affects the program more than one that only

reads it.

I Function (Variable I Class

I (single) use I
I 1 1

11 I 9 1 121

mWm'8'

definition

I I I I I
column total 70 51 11 132

26

all uses

Table 5.5: Summary of Common Searches: Numbers shown on the table are counts of occurrences.
Top four values are in bold. There were 154 total search targets.

Other common targets of searches were strings, either those output by the program or those in

comments (I 0), and files where code was Iocated (5). All searches for strings output by the

program coincided with a defect repair. Software maintainers often take the error message in

a bug report as a starting point for their investigations. They search for the line of code that

is responsible for outputting that message and trace backwards from there.

19

23

5.6.3 Motivations for Searching

The motivations for source code searching were grouped into eleven categories as shown in

Table 5.6. The categories and names are straightforward, with the exception of "clean-up",

and "naming conflicts". These two categories will be discussed in greater detail and

examples for each are provided.

5

23

50

5 5 1

Clean-up occurs before a program is frozen for release. A programmer may hard-code some

strings during development, or leave notes to herself in the code. These items are removed

before the code is shipped. A naming conflict occurs if a new function, variable, or class

uses an existing identifier. A developer searches code to ensure a proposed identifier is

conflict-fiee. In such cases, the programmer picks a name and searches to ensure that no

conflict exists.

Motivation Number
defect repair 19
code reuse 14

program understanding 13
impact analysis 12

maintenance 7
feature addition 7

clean-up 5
naming conflicts 4

porting 3
dead code elimination 3

other 7
Total 94

Table 5.6: Summary of Motivations for Searching

The four most common motives for searching source code were defect repair(l9), code reuse

(14), program understanding (1 3), and impact analysis (12). The results of this analysis

should be compared with those fkom question three of the survey. It asked, "How useful is it

to search source code when.. ." along with a list of ten activities fkom the software

development cycle, and asked respondents to give a rating on a scale of one (low) to five

(high). It was found that the tasks in which searching was most useful (median rating 5) were

repairing bugs or defects, understanding old code, and adding a new feature to old software.

The distribution of the ratings are presented in Figure 5.6.

5.7 Searching Archetypes

Archetypes were generated by examining the search targets and motivations presented in the

previous section for patterns. Common or fiequently-occurring relationships between targets

and motivations were identified as a pattern. Eleven archetypes are presented in this section,

beginning with the strongest ones. Also presented in this section are uncommon searches

because they complement the archetypes by capturing the additional variability.

5.7.1 Common Searches

The pattern that emerged in the impact analysis category is the most d e f ~ t e .

1. During impact analysis, developers often looked for all uses of a variable or

bc t ion .

Of the twelve searches with this motivation, nine were for all uses of a fimction or variable.

Impact analysis is usually done to evaluate a change to the software. The developer wants to

make sure that she has not broken anything inadvertently, therefore checks all uses of the

modified component. This relationship is credible not only because the underlying

explanation is plausible. but also because the numbers in this category are consequentid-

In the program understanding category there were two main patterns of searching.

2. Searches motivated by program understanding sometimes sought function and

variable definitions.

3. At other times, the search targets were a use of a hc t ion , variable or object.

Of the thirteen searches performed for this purpose, five were looking for definitions of

kct ions or variables, and five were looking for function or variable or object use. In the

case of definitions, the maintainer was trying to determine the effect of a particular function

call or the data type of a variable. In the case of the latter, she understood the object,

variable, or bc t ion . but wanted to know how it fit with the rest of the program.

The code reuse category revealed two patterns of searches.

4. To reuse code, a programmer searched for fkction signatures to call it correctly.

5 . Alternatively, a programmer searched for hctionality that was known to exist,

but the name may not have been known.

Of the fourteen searches undertaken for the purpose of reusing code, seven were for h c t i o n

definitions and three for h c t i o n declarations. When reusing code, one of two scenarios may

occur: the developer knew the name of the function but needed to check the parameters in the

declaration or d e f ~ t i o n ; or the developer knew that code to perform a certain procedure

existed, but was unsure of its name, so she performed a search.

In the bug repair category, there were a large number of examples (1 9) with a variety of

search targets.

6. Maintakers tackled bugs by identifying the fhction that was misbehaving.

7. Another approach was to track usage of a variable.

8. An output string served as the starting point for a bug-hunt.

The three most common targets were function definitions (4), all uses of a variable (3), and

output strings (3). The first pattem corresponds to a situation where a programmer knew that

something was going wrong and was looking for the function responsible. Consequently, she

looked at a lot of function implementations or definitions. The second archetype corresponds

to a scenario where a maintainer knew a variable was set incorrectly during execution. In

such a case, she looked at all uses of that variable to find the error. In the case of the third

pattem, the prograrnrner has received a bug report containing an error message. The search

for the faulty code began by tracing how the message came to be printed. This pattern was

particularly strong because all instances of searches for output strings were motivated by bug

repairs.

In the porting, feature addition, and dead code elimination categories, relationships were

found, but due to the small number of anecdotes it is difficult to evaluate their significance.

9. To eliminate dead code, a maintainer needed to find all uses of the entity being

removed.

In all of the dead code elimination searches(3), the targets were all uses of either a fimction

(1) or a variable (2). In order to eliminate a variable or hc t ion , the maintainer has to make

sure that it is either not used at all or used only in b c t i o n s that will never be called.

Therefore, she needs to be able to account for every use of that function or variable. This

relationship is more credible than the others that have a small number of examples because

its underlying explanation was present in the anecdotes and is highly plausible.

10. When porting code, developers often examined variables.

In d l of the porting examples (3), the respondent was looking for information about

variables. In two cases, it was all uses of a variable, and in the third it was the variable

definition.

1 1. When adding features, developers sometimes examine functions.

In four of seven feature addition searches, the respondents were looking for information

about functions. There were no clear patterns found among the searches in the clean-up,

naming conflicts, and maintenance categories.

5.7.2 Uncommon Searches

In this section, we present some of the unique anecdotes we received in the survey. These

anecdotes are noteworthy because they illustrate some the issues that software maintainers

have to deal with, but are easily overlooked because they are atypical. We look at searches

performed for preventative maintenance, code reuse, and testing.

Although preventative maintenance is generally agreed to be a good idea, many software

shops don't have time to do it. In the study, we received two anecdotes that described

searches that were performed for the purpose of doing preventative maintenance, at least on a

small scale. Respondent 17 recalls an occasion when she discovered a variable had been

used unsafely and she went through the source to verify other uses of that variable.

Upon n o t i n g an unchecked s t r cpy () i n t o a g loba l c h a r *, [I
needed] t o l o c a t e the d e c l a r a t i o n f o r t h e v a r i a b l e t o
discover i t ' s s i z e and l o c a t e r e fe rences t o t h a t v a r i a b l e t o
see i f bounds check ing was performed e x p l i c i t l y .

Another application of searching to do preventative maintenance was described by

respondent 66. She would look through the code for:

mundane s p e l l co r rec t ion : how many ways did i s p e l l one
v a r i a b l e name by acc ident

If an identifier is used only once, then it is likely an error. An unused variable can be caught

by a compiler or interpreter if warning levels are set appropriately, but these discrepancies

can be a problem in languages that do not require variables to be declared before they are

used. An example of one such language is Perl. Although Perl is usually considered a

scripting language, used for quick and dirty programming, it is being used for increasingly

larger projects on the World Wide Web. Consequently, a tool that could ferret out identifiers

that occur only once could become increasingly important.

Some common code reuse examples were discussed in the previous section, and to these

respondent 23 adds the following example:

It has a l s o helped in t h e design phase t o be able t o find
a n o t h e r program that was used for t h e same purpose and t h i s
he lps o t h e r s t o develop t h e i r a p p l i c a t i o n s quicker.

Rather than just reusing existing functions during the implementation phase, her team tries to

reuse code during the design phase as well. This programmer searches for code with a

particular fhctionality to make fhther development easier. It's not clear how the respondent

performs these searches and what tools she uses, but the possibilities are intriguing.

The usellness of searching during testing had a low ranking (fifth out of ten maintenance

tasks), but a high rating (median of 4). An anecdote from respondent 66 illustrates this

finding:

how many i f d e f ? w h e r e a r e t h e y ? used t o figure o u t relevant
t e s t cases f o r ported code

Hence, searching is probably not used during the actual testing of code itself, but it can be

helphl in generating test cases.

5.8 Respondents' Suggestions for Features

We were interested in the shortcomings of existing tools and what kinds of searches

developers would perform if their tools could support them. In question five on the survey,

under the heading of "Wish List", we asked "What types of searches would you like to be

able to perform?"

Not all respondents gave suggestions for features, but those who did often had a lot to say.

Forty-three respondents gave 207 different suggestions for features. An example suggestion

is shown in Figure 5.7. It contains about as many suggestions as a typical response, but is

more concise. Some of the requests were for features already available ir. existing tools,

while others were novel and interesting ideas. There were suggestions that would have been

more appropriate for other software tools, such as visual debuggers, or editors. As with the

previous fiee form question, there were the humorous suggestions, one respondent wrote,

". . .and I want a built-in cupholder."
- - --

I'd l i k e a t o o l (b o t h command-line and i n t e r a c t i v e) which
d e a l s wi th t y p e s , macros , l o c a l & g l o b a l v a r i a b l e s , f u n c t i o n s ,
and where you can g e t all s o r t s o f l i s t i n g s , g i v e n a s e t of
s o u r c e f i l e s ; module & f u n c t i o n where it i s d e f i n e d , modules &
f u n c t i o n s where i t i s u s e d (r e a d vs . w r i t t e n)

Figure 5.7: Example of Wish List for Features

We found that a set of rational suggestions is not necessarily a rational set of suggestions.

While each respondent gave self-consistent suggestions, as a group the suggestions were

sometimes highly contradictory in nature. The list is by no means a recipe for success. Any

researcher who took the entire list of suggestions and implemented them all in a single tool

might be disappointed with the results.

The suggestions for features could be placed into three groups: requirements for a software

tool; requests for existing features; and suggestions for hctionality. The thirteen tool

requirements were the most contradictory. Below are portions of three responses to this

question.

...p l a y w e l l w i t h t h e e x i s t i n g u n i x envi ronment . ie, I n e e d
t o b e a b l e t o w r i t e s h e l l scripts around it, use it
c o m f o r t a b l y from w i t h i n emacs, o t h e r u t i l i t i e s , e t c .

If you c o u l d p r o v i d e a v i s u a l l y o r i e n t e d t o o l t h a t would
a l l o w m e t o c o n s t r u c t r e g u l a r e x p r e s s i o n s w i t h o u t h a v i n g t o
remember t h e r a t h e r a r c a n e s y n t a x I would b e most g r a t e f u l .

Here's what I would not want. Select from a menu to pop up
a form. Fill in the form. Click OK. I won't mention
names.

The overall message appears to be: developers want tools that fit with the way they work. SO

when designing a tool, it is important to know your users and how they work.

There were fourteen requests for existing functionality. Of these requests, seven were for

regular expression matching, four were for searches on multiple files or a subdirectory

hierarchy, and one each for optional case sensitivity, fast search summaries, and multiple

search targets. There are several possible explanations for these requests. Respondents may

have included these suggestions to emphasize how usell they found them. Or this

hctionality may not have been available in their operating environment. Alternatively, this

functionality was available, but the respondent was not aware of it.

In the remaining 170 suggestions, the most common recommendations were for building in

some awareness of the programming language (88) and greater ability to control the scope of

the search (28). Of the former group of suggestions, 47 were for the ability to easily find the

common search targets such as the declarations, definitions, uses, and ail uses of functions,

variables, or classes, as displayed in Table 5.5. In the case of variables, respondents again

wanted to be able to discern between uses of a variable that were assignments and references.

The other recommendations in this group were being able to include, exclude or focus on

elements such as identifiers, comments, and quoted strings. Some respondents wanted to be

able to optionally preprocess the code before searching. Others wanted the search tool to be

able to resolve references, such as pointers and macros.

The ability to control where a tool searched was also important to respondents. They wanted

to be able to specify multiple files, sets of files, a search path, multiple subdirectory

hierarchies, or modules. Three respondents suggested limiting the search to the current

compile environment, meaning the file from which the search is originating and the files that

it links with to form an executable. Others requests were to be able to search only among

instances of a particular data type, among those functions and variables currently in scope, or

within an # i fde f macro branch in CK*. Being able to easily control the search domain

meant not just being able to include elements, but exclude them as well.

Some respondents suggested being able to control the size of the successful match (7). A

single line was sometimes too small a range, and at other times it was too large. Participants

wanted to be able to match a target that appeared over several lines. They also wanted to

match only tokens from the language.

There were three requests for the ability to do searches that optionally ignored white space,

so that a search for a function call such as "add (" would match "add (", "add \ n (" and

"add (", as well. Although this search can be performed using regular expressions, its

specification requires more typing than most users are willing to do. There were other

requests that went beyond regular expressions. There were five recommendations for exact

matching of a literal string. Fuzzy searching was also requested, that is, the ability to specify

a target that is close to the desired result. For example, it is possible to perform a search for a

variable that is "kind of long and has a bunch of vowels at the beginning". It is useful for

finding a function that is known to exist, so it can be reused. Three respondents wanted to

perform searches on the search results, and two wanted to be able to perform searches based

on functionality, i.e. find a function that does matrix multiplication.

There were a large number of suggestions that appeared only once, and these tended to be

intriguing. One respondent wanted a tool that could identify all the functions that could have

an impact on a variable. This is similar to finding all locations where the value of the

variable is modified, but with the results in a call graph format. Another respondent wanted

to fmd blocks of code greater than a given number of lines that were identical. Once these

common areas were found, it may be possible to replace them with a single fimction.

5.9 Implications for Tool Design

As is evident in both the common search targets and the suggestions for features, respondents

search for semantic elements in the source code. In this context, "semantic" means units that

are meanin@ in the language and can be "understood" by the compiler. Sometimes the

units are labeled as syntactic, and the term semantic is reserved for their real-world meaning

or effects. The most common search targets were fimction demtions, d l uses of a hct ion,

all uses of a variable, and variable definitions. A large group of suggestions for search tool

features requested greater awareness of the programming language; 88 out of 180 suggestions

fell into this category.

The bottom-up aspect of the integrated code comprehension model seems to be at work here.

Programmers are trying to build meaningfbl units from text strings and by finding the

understanding the semantics associated with the identifiers. This strategy contrasts with the

ones applied to Software Landscapes. When presented with an abstract pictorial

representation of a software system, maintainers wanted to use a top-down approach. They

wanted to relate a visuai element, such as a box or arrow, to source code as directly as

possible. By adding a tool designed for searching source code to PBS, software maintainers

would then be able to use multiple code comprehension strategis, that is, both top-down and

bottom-up, in combination to understand a software system.

Although programmers are searching for semantic elements, few of their tools support

searches keyed in this manner. Instead, the mechanism that they use to perform these

searches is regular expression matching on the source code. Aside fiom editors, grep is the

tool most commonly used to search source. Given how grep is already being used, it can

aptly be augmented with semantic searches. Indeed, this problem has studied by many other

researchers as will become evident in the next chapter.

5.10 Application of the Results

The searching patterns that were identified in this study can also be used when designing

program comprehension tools. The situations presented in Section 5.6, particularly the

subsections on Common and Uncommon Searches include examples of searches. A designer

can evaluate her code comprehension tool by applying it to one of these situations and ask

questions such as: Could the tool provide the information that a software maintainer needs to

perform this task? What are the commands that the maintainer would have to use? How well

does the user interface perform in this situation? Could it be made more efficient? By using

a number of these situations, the designer can determine the flexibility of the tool. Finally,

the scenarios can also be used to guide the development of experiments with software

maintainers on the utility of the program comprehension tool.

The secondary purpose of this study was to determine the efficacy of our research method.

We were able to obtain responses fiom respondents in different organizations from around

the world, without the drawbacks of travelling. In many ways, web-based questionnaires are

superior to their paper-based counterparts: the logistics of dealing with paper are eliminated;

the researcher has greater control over the format and administration of the questionnaires;

and the respondent submits the data in electronic form, which removes the need for

transcription.

5-11 Summary

The goal of this study was to identify patterns of searching behaviour in order to construct a

model that could be used in tool design. We found that searching was most important during

defect repair, code reuse, program understanding, feature addition, and impact analysis. This

finding is supported by the ratings of the usellness of various software maintenance tasks,

and the most common motivations for searching in the anecdotes. The most common search

targets were function definitions, all uses of a function, all uses of a variable, and variable

defkitions.

The main suggestions for features in a tool was for greater awareness of the language being

searched and for greater control over the search domain. In other words, participants wanted

a tool that could match more than just characters in very specific locations. Far behind these

two requests were others for the ability to match more than just a single line, fuzzy matching,

exact matching, and searches on fimctiondity.

In the next chapter, a number of searching and source code analysis tools will be examined to

identlfy the various approaches to solving this problem. In Chapter 7, a design for a search

tool for PBS is presented. The results of this study will be used to guide design decisions in

the development of a ccsernantic grep" for use with PBS and Software Landscapes.

Chapter 6: Supporting Queries on Source Code

6.1 Overview

A conclusion fiom the previous chapter is that software maintainers seek information to

complete a particular task. To this end, they search source code for elements fiom which to

build conceptual models of how the software operates. One tool that is frequently used for

this purpose is the UNIX regular expression matching utility, grep. Adding semantic

awareness of a programming language to grep would help support bottom-up code

comprehension models. In this chapter, search tools and source code andysis tools are

examined as possible role models for a "semantic grep".

We make a distinction between tools to search source code and tools to analyze source code.

Analysis tools are employed to extract facts from a software system. These tools will be

examined for the approach they take to building a factbase. Search tools are employed to

make specific queries, and are often applied to factbases. Although analysis tools can be

tuned to answer specific questions, software maintainers' knowledge acquisition strategies

are more oriented towards searching. As goal-directed information seekers, they ask

questions and look for answers that are necessary to complete the task at hand; they are not

trying to build an encyclopedia about the software system.

This chapter begins with an examination of grep based on work done by Singer and

Lethbridge [Singer97b]. The remainder of the chapter examines different approaches to

searching or analysing source code. Some of the software tools that we consider are

specifically for working with source code, while others are tools for general purpose

searching or information retrieval. Only relatively lightweight tools were considered because

we are building a tool that fits cleanly with the PBS paradigm of lightweight tools. As a

result , tools such as Rigi wClller93], SNiFFt [SNiFF+96], and CIA [Chen90] were not

included in this survey.

Among the general purpose search tools that will be examined are additional members of the

grep family, cg r ep [Clarke96], sgrep [Jakko95], and a g r e p [Wu92]. Two

environments for searching source code, t ksee [Singer97a] and SCRUPLE pau194], are

included in the survey. Finally, language-independent approaches to extracting structural

information fiom source, LSME Wurphy961 and TAWK [Griswo96] are discussed. Similar

to the analysis performed on grep, the strengths and limitations of these tools will be

examined. These attributes will provide suggestions for the design of a semantic grep.

6.2 grep

The g r e p tool is a UNIX utility that performs regular expression matching over files on a

line-by-line basis. The success of this tool is evident in the family of tools that it has

spawned. The e g rep variant does extended reguiar expression matching, f g r e p does fast

string matching, z grep searches in zipped files, and there are others, cgrep, s grep, and

agrep that will be described in Sections 6.3-6.5. In our survey, 47 out of 69 respondents

used grep to search source code. The prevalence of this tool was also noticed by Singer and

Lethbridge [Singer97b] and they make a number of observations about grep as a model for

a program comprehension tool. A selection of the strengths and limitations they observed

along with our own observations are presented in Sections 6.2.1 and 6.2.2.

6.2.1 Strengths of grep

In this subsection, the positive aspects of grep are described. Attributes PGI -PG5 are taken

fiom Singer and Lethbridge [Singer97b] and PG6-PG8 come from our own experiences and

analyses.

PGI. Success, little cost of failure, and understanding of limitations = trust.

The g r e p tool excels at performing a specific task. Consequently, it is easy to specify a

search and the results are returned quickly, frequently with a relevant match. When the

search fails, little time or cognitive effort was wasted. Since grep is a small utility, users

can understand its many limitations.

PG2. Command-line interface.

With its command-line interface, g rep is able to fit with the other UNIX utilities, and by

extension, users' interface style. Furthermore, grep can be included easily in scripts and

macros to automate repeated tasks.

PG3. Straightforward specification

The only required arguments for a grep search are a target pattern and a search domain, all

other information is optional. The target pattern can be a simple string or a regular

expression. The search domain is one or more files or directories that can be specified

through file name expansion by the operating environment.

PG4. Results displayed in "parallel"

Since grep acts as a filter, all matches to the search patterns are displayed, as they are

found. These results can be scanned quickly for the relevant match. In contrast, many

editors display the results in sequence, stepping the user fkom match to match inside a file.

PG5. Scaffolded

Regardless of how much experience a user has had with g rep or the software system

being searched, the user will be able to obtain results fiom grep. The user does not need

to learn regular expression syntax and g r ep command options in order to use the tool.

This knowledge can be acquired as the user feels the need, and as a result there is a

smooth transition from novice to expert.

PG6. Portable and flexible

Programmers can use g rep with whatever software systems they are working on.

Software maintakers can bring their skill with this tool to any project, in any p r o g r d g

language. While grep is primarily a UNIX tool, implementations are available on other

operating systems.

PG7. Little overhead

No indexing of the search domain is needed. Users are not required to generate an index or

factbase of the source before using grep. Sometimes this requirement alone is enough to

dissuade a software maintainer fiom experimenting with a tool.

PG8. Responsiveness

Users don't have to open a new window and wait for it to initialize, just to perform a

"simple" search. The time spent waiting is too disruptive if a programmer is trying to

sustain a complex train of thought.

6.2.2 Limitations of ~ e p

Singer and Lethbridge also listed a number of limitations of grep, which indicate possible

areas of improvement. A subset of their observations is presented here as NGl-NGS and we

add observations NG6 and NG7.

NG1. Interpretation of output requires effort

When grep returns a large number of matches, it is sometimes difficult to find the most

relevant one. The string matching the search target may be difficult to find and the search

results themselves may need to be searched. Each match consists of a single line, which

often does not provide enough context to interpret the match.

NG2. No near searches

Matches can not be approximate and must be exact according to regular expression rules.

If there is a spelling mistake in a search target, there is no facility in grep to deal with this.

NG3. No semantic searches

The grep utility treats all input as straight text. When searching source code, there is no

way to limit the search domain, for instance to identifiers or comments.

NG4. No memory

Search targets or contexts are not stored and cannot be revisited for refinement or

modification. Saved sequences with annotations could be useful for teaching software

immigrants about a software systems. The command history of a shell can help, but is not

the complete solution.

NGS. No browsing

The search results can't be browsed like hypertext, for example clicking on a matched line

to display the entire file.

NG6. Fixed "hit" size

Searches using g r e p return whole lines that match. Sometimes the desired unit of return

or match may be larger than a line, such as a module or function definition. At other times

it may be smaller, such as a function parameter, an identifier, a specific column of a line, or

a literal string.

NG7. Sensitive to whitespace

Many programming languages are insensitive to whitespace, in that the number, or type, of

spaces between tokens is not significant. Searches in g r ep, however, are sensitive to

whitespace. For example, the expression "addo;" will not match "add 0;". Although, it is

possible to write an expression that is insensitive to whitespace, but to do so accurately

would require more effort than most users are willing to expend. Expressions such as

add[[:space:]] * () ; or add [\t] * () ; require bothanon-trivial amount of

knowledge of regular expressions and time to type out the specification.

6.2.3 Analysis of p p ' s Attributes

Clearly, g rep acquires many of its strengths and limitations from being a UNIX utility. It

would be difficult to address some of its shortcomings without modifying this interface and

compromising some of its strengths. For example, browsing through pointing and clicking is

difficult to achieve within a command-line interface. Adding semantic awareness would

require grep to parse its input, either when the search is invoked or beforehand to build an

index. Regardless of the option chosen, at least one of speed, flexibility, and portability

would be affected. Another factor to consider when adding semantic awareness to grep, is

the syntax needed to query the different elements. This problem is further compounded if the

user wants to search in units other than files, such as modules or subsystems. A syntax that

supports queries on these search elements needs to be added.

6.3 cgrep

One of grep's limitations is that matches must appear on a single line. The cg r ep (context

grep) tool addresses this shortcoming by treating the input as a character stream and

interpreting the newline character as ordinary text, so that it can return matches with arbitrary

sizes [Clarke96]. It uses a shortest-match algorithm and allows matches to overlap, but not

nest, which means the program reports "every substring of the input text that matches the

regular expression and that does not itself contain a matching substring." This change results

in a faster algorithm and is motivated by experience with structured text databases.

6.4 sgrep

The s g rep (structured g r ep) tool performs searches on text files or streams that have

structural markup, such as e-mail, USENET news, source code, HTML, bibliographies. etc

[Jaakko95]. Searches return regions that are delimited by strings or tags. Regions can be

arbitrarily long, overlapping, or nested. Although sgrep is essentially a command-line tool.

there is a t c 1 / t k graphical user interface, s g t oo 1, available.

The syntax for specifying queries in sgrep is based on the GCL query language taken from

Clarke EClarke95aI. The command-line specifications for sgrep searches can be quite

complex, but the tool can handle macros to simplify fiequent targets. However,

accompanying this specification complexity is a corresponding ability to handle complex

search targets. For example, the query 'show the if-statements containing the string "access"

in their condition in the setoptions function of the source files *.c9 is specified as:

sgrep ' " i f" n o t i n ("/*" q u o t e "* /" o r (' \ \n#" , . " \ \ n u)) \ \
(' (" . .)) c o n t a i n i n g "access" \ \

i n ('setOptions(" .. (. . " 1 ")) \ \ - . (\ \ { \ \ , . x \ } f f o r t \ ; r f) r *.c

With the following macro definitions,

d e f i n e (BLOCK, (" (" . . " 1 ")
d e f i n e (COMMENT, ('/*" quo te "*/"))
d e f i n e (PPLINE, (" # " i n start o r '\,\nn - . (' \ \nu o r

end) 1)
d e f i n e (I F - COND, (" i f" no t i n (COMMENT o r PPLINE) . .

(" (" 0 . ") ")))

the above command can be simplified to:

sgrep -p m4 -f c-macros -e 'IF COND c o n t a i n i n g "acces s " \ \
i n (" s e t o p t i o n s (" . . BLOCK) . . (BLOCK o r *. c

Even with these simplifications, the search specification syntax is quite complex. Users

would probably have to add aliases and scripts to make the tool more usable.

6.5 agrep

The agrep tool pug21 is another gr ep variant with three modifications. It allows

approximate matches by permitting a user-specified number of substitutions, insertions, or

deletions. Second, instead of restricting 'hits' to single lines, agrep can return matching

records, such as entire email messages. Finally, it allows the logical combination of patterns

using AND or OR.

Approximate matching would fulfill some of the suggestions fiom the source code searching

survey that asked for fuvy searches. It could be used in situations when the maintainer

didn't know the exact name of an identifier. As noted above by Singer and Lethbridge, while

the wildcards in regular expressions allow some degree of flexibility in the matches, they do

require the search to be specified accurately.

6.6 tksee

Singer et al. addressed limitations of g rep with t k s e e (Soba re Exploration Environment

with a t k interface) [Singer97a]. It is essentially a semantic grep inside a graphical user

interface. Search targets can be regular expressions, strings, identifiers, fimction and variable

definitions and uses, macros, etc., and can be entered in a text box, initiated by a pointer, or

selected &om a menu. Matches and their attributes can be browsed and searched. Search

history can be browsed by clicking and search sequences or sets can be saved.

The architecture of t ksee is similar to that of PBS. Its back end is a fast, object-oriented

database containing facts extracted from the source code. The factbase is language

independent and contains some clustering information. Data is passed between tools in a

Tuple Attribute Language variant, TA*. Clients must connect to the server, sometimes over

a network, to access the factbase.

6.7 SCRUPLE

In SCRUPLE pau1941, there are elements of both s grep and t k s ee. To find matches,

SCRUPLE parses the source code when the tool is invoked, and there are versions of the tool

that work with C and PL/AS. Users specify search targets using a pattern language, and the

results are displayed to standard output. Paul and Prakesh initially designed SCRUPLE to be

a command-line tool that extended grep, but later added an X-windows graphical user

interface. In the GUI, when a search is completed, the user is walked through the code to

each match.

1 St Sf-decl0
2 I *
3 @ *
4 @ (* X { * Sf - c a l l (# * I " 1 * I
5 @ *
6 " 1

Figure 6.1: Call Graph Extractor for C in SCRUPLE from [Griswo96]

In SCRUPLE'S pattern language, there are various wildcard symbols for different syntactic

entities. There are generic wildcards, wildcards for sets, and named wildcards. For example,

a declaration is represented by "Sd", a set of arbitrary declarations is "$*dm, while the

declaration of entity "count" is "%d_{count)". Other syntactic entities for which there are

wildcards are types, variables, functions, expressions, and statements. The query, "find all

declarations of the variable xy' is specified as "$ t x ; ". An example of a more complex

query is "$ t $ f - x <xmax> ($ v*) { @ * } ", which means "find all functions that

have references to the identifier xmax." A call graph extractor can be written using

SCRUPLE in just 6 lines, as shown in Figure 6.1. While this specification language is quite

powerfd, it is programming language specific. In other words, a new pattern language is

designed for each programming language to be searched.

6.8 LSME

A "source model" is a view of a software system, for example call graphs, file dependencies,

etc. and is usually extracted by parsing the source code. In contrast, LSME (Lexical Source

Model Extraction) Wurphy961 extracts source models without a language-specific parser.

Conceptually, LSME is much like awk [Ah0791 in that it scans through the source code

doing pattern matching of constructs and regular expressions, and executes commands as

matches are found. Like awk, LSME specifications are conceptually closer to a script or

program, than a command-line utility.

The LSME tool achieves language independence by requiring the user to specify the match

syntax. Running the specification:

[<type>] <func~ame>\ ([{<arg>) t] \) [{<type>,argc~ecl>; }+] \ {
<calledFcnName> \ ([{ , param>} +) \)
@write ("calls", f cnName, calledFcnName) @

on Kemighan and Ritchie style C source code [Kernig78], will fmd all function calls and

writes a tuple for each one. A call graph extractor can be written for LSME in 30 lines, as

shown in Figure 6.3. While LSME's lexical approach is responsible for both its main

advantage and disadvantage. The tool may not accurately find all matches, but it is portable

across languages. The LSME system has been used to extract source models from C, C+t,

CLOS, EiffeI, and TCL source code.

I comment / * * /
2
3 [<type>] <fn>
4 @ i f kywdq(fn) I o p q (f n) t h e n f a i l @
5 \ ([(<param>)+] \) [{ { < a t y p e >) + ;) +) \ I
6
7 <cn>
8 @ i f kywdq(cn) I opq(cn) t h e n f a i l @
9 \ ((-rg> [, I I + I 't)

10 @ w r i t e c a l l (f n , cn) @
11
12 procedure w r i t e c a l l (fn , c f)
13 s t a t i c idch
1 4 i n i t i a l i d c h := (6ucase ++ &lcase ++ & d i g i t s ++ '-' 1
15
16 r e a l f n := (f n ? (t a b (u p t o (i d c h)) , t a b (0)))
17 r e a l c f := (cf ? (t a b (u p t o (i d c h)) , t a b (0)))
18 re t t l rn w r i t e (r e a l f n , " " , r e a l c f)
1 9 end
20
21 # t r u e i f a keyword
22 procedure kywdq(nm)
23 r e t u r n nm == (" i f " I "while" 1 "Switch" I " for f f I "typedef")
24 end
25
26 # t r u e i f an o p e r a t o r (approximate)
27 procedure opq(nm)
28 r e t u r n any('? ; :+-*/%!&=I<>' , nm) &
2 9 (*nm ==I I *nm == 2 & a n y (' + = * / % & = [< > ' , nm[2])))
30 end

Figure 6.2: Call Graph Extractor for C in LSME [Grisw096]

There is another awk variant, TAWK, that takes an approach similar to LSME. There are

some technical differences, but the key distinction is that it is language-dependent

IGrisw0961.

6.9 Comparison of Tools

Although the tools have conceptual differences in how they approach the problem of

manipulating source code, it is possible to compare their features. Table 6.1 summarizes the

features offered by the tools. The basic differences are that grep and its variants are simple

UNIX utilities that behave as filters on an input stream, while t k s ee, SCRUPLE, and

LSME were designed to analyze or search source code. This is particularly evident in the last

two tools in the specialized query specification languages used.

Too1 Name

Tool Type
Searching
Analvsis

User Interface
Command

line
GLJI

Approximate
matching,
Semantic
searches .
Source
language
independent
Requires
factbase or

language

grep cgrep sg rep a g r e p tksee SCRUPLE LSME

exp.

only

1
regular GCL- I regular regular pattern
exp. based exp.- exp. and language

based navigation tailored to
source
l a w w =

own
pattern
l w w g e
with
ICON

f. only ar the lexical level

Table 6.1: Comparison of Tool Characteristics

6.10 Lessons Learned

We made a series of design decisions for our own source code searching tool based on the

user studies and tool analyses fiom this and earlier chapters. These decisions were influenced

by our goals as described in Chapters 4 and 5, grep's strengths and limitations, and the

various query mechanisms utilized by the tools.

Use an existing language to specify searches

Except for cg rep and a g rep, all the tools examined used their own query or pattern

language to specify searches. (In the case o f t k s e e , complex searches are accessed

through the GUI.) There are three lessons that can be learned. 1) In order to support

semantic or structural searches, the basic grep command syntax would not be sufficient;

2) The last thing the world needs is another query language. 3) Many of the languages used

in the tools examined have well documented syntax and semantics; one has an algebraic

basis. Reusing a query lanapages would take advantage of the work already done on its

formal specification.

Start with a command-line search tool

Many of grep ' s strengths, such as ease of use, compatibility with operating environment,

etc., arise fiom its command-line interface. A semantic grep that does not retain this

aspect of the g r e p paradigm is unlikely to be adopted by software maintainers.

Add a graphical user interface later

Both SCRUPLE and sgrep started out as command-line tools and later a graphical user

interface was grafted on top of them. This seems to be a reasonable course of action to

follow, since the GUI can be added when the tool is integrated with the Software

Bookshelf.

Maintain language-independence

A tool becomes much more powerful when it isn't tied to a particular programming

language, as is evident in the grep family and LSME. Familiarity with a tool or pattern

language becomes more valuable because of its portability. The PBS tools achieve

language-independence by using a common factbase. A search tool that is part of PBS

could do the same.

Further examination of these tools led to the selection of GCL (generalized concordance lists)

as the query language for the search tool. The syntax and semantics of sgrep is based on

GCL. There were three main reasons for this decision: it was designed to work with

structured documents, of which program source is an example, and it has an algebraic basis

for the grammar [Clarke95a]. Since GCL is a general-purpose query language, the search

space need not be limited to source code. Written documentation, HTML pages, and any

other structured material can be searched. Later implementation of our source code searching

tool could easily be adapted to include these documents as well. With this additional

capability, PBS becomes more like a traditional information repository. The GCL language

is described in the next chapter, along with a design of a the search tool g r ug (gr e p using

GCL) and how it fits with PBS.

6.11 Summary

In this chapter, a number of searching and source code analysis tools were examined for their

approaches to solving the problem of extracting semantic information fkom source code. The

general-purpose search tools were investigated for their interface and the syntax used to

specify searches. The analysis tools were considered for the mechanisms used to extract facts

fkom source code. Based on observations of these tools, a number of design decision were

made. An existing query language, GCL was chosen to specify patterns in the search tool

grug (grep using GCL). Initially, grug will be a command-line tool and a graphical user

interface will be added later. Finally, the design of grug should not restrict it to a specific

programming language. In the next chapter, these design decisions are be applied to the

specification of g r ug and Searchable Bookshelf.

Chapter 7: Design of g m g

7.1 Overview

This chapter unifies the concepts on program comprehension and source code analysis

presented in previous chapters. Ideas from this material are made concrete in the form of

requirements and specification for a source code searching tool, grug (grep using GCL).

The requirements outline the gods of the g rug tool and can later be used as criteria for

evaluating the success of the tool. The specification describes how the requirements can be

fulfilled. To recapitulate, the purpose of grug is to support multiple comprehension

strategies within the Portable Bookshelf by providing search capabilities. The search tool

needs to be able to link high-level abstractions such as those in the Software Landscapes with

source code and to search source code for semantic elements, such as function and variabIe

definition and uses. By supporting both top-down and bottom-up formation of program

concepts, grug with Software Landscapes allow users to use multiple program

comprehension strategies during software maintenance.

This chapter describes the design of grug and can be divided into two major parts. The first

half of the chapter is devoted to the requirements of grug and the second half is concerned

with its specification. Various platform, functional, non-functional, and data requirements

are discussed. The grug tool uses the GCL query language to specify searches, so a

description of this language and the markup index and necessary macros are included in the

specification. At the end of the chapter, a preliminary implementation of grug and its

integration with PBS are described.

7.2 Platform Requirements

The development of grug shall take place within the UNM environment, specifically

SunOS 4.1.4. All the tools discussed in Chapter 6 and the existing PBS tools operate in this

environment. As a result, there is a great deal of expertise available on developing source

analysis tools and program comprehension tools under the UND(operating system. From

these factors, we derive the following two platform requirements:

P1. Users shall be able to use g rug from the command-he.

P2. Users shall be able to access grug fiom a web browser.

The first requirement is motivated the discussion of the strengths of g r ep in Section 6.2

Many of grep's positive attributes are due to it being a command-line utility, and these are

attributes that we wish to build into grug. The second requirement is motivated by the need

to integrate the resulting tool into the existing PBS.

7.3 Functional Requirements

Some of the functional requirements of grug, as listed below, are contradictory and may not

be met with a single incarnation of the tool. For example, one of the requirements is to use

only standard input and standard output for input and output, while another is to be zble to

click on the results of a search. It may be possible to fdfill all these requirements with

implementation that accepts different invocations. To this end, the functional requirements

have been put into four groups: 1) those that apply to all versions of grug; 2) those that

apply to a command-line version of grug; 3) those that apply to a g r ug with a GUI; and 4)

those that apply to a g r u g used over the World Wide Web. There is some overlap between

the four groups. For example, the version of g rug with a GUI will still need to fulfill some

of the requirements of the text-only command-line version, such as maintaining d l existing

g r ep hctionality. The groups of fimctionality will be discussed in order in Sections 7.3.1-

7.3 -4.

7.3.1 Basic g m g Functionality

The hctionality that must be present in all the incarnations of g rug is presented in this

section. These requirements could be considered the defining characteristics of g r u g as a

semantic g rep .

F1. Users shall be able to search for semantic elements in source code.

Users shall be able to search for semantic elements such as declaration, definition, and all

uses of h c t i o n s and variables, using grug. This functionality is central to the purpose of

grug as a tool to support program comprehension.

F2. The functionality of g rug shall be a superset of the functionality in grep.

Any new hctionality should be added without taking away old functionality because users

have come to trust and value grep ' s capabilities. They will be more likely to adopt grug if

they can still do the same searches as they did with grep as well as the new ones.

F3. The query language used to specify searches shall be programming language-

independent.

Users should not have to learn a new syntax for each programming language. However, it

may be necessary to learn new options to address language-specific elements such as classes

in object-oriented languages or implementors in Smalltalk. By making g rug programming

language-independent, users can port their skills from one software system to another.

F4. The query language shall be independent of factbase schemata.

A corollary of making g r ug programming language independent, is to make g rug

independent of factbase schemata, i.e. it should be able to search for any element in the

factbase. Searches should be driven by available information rather than by specification

syntax of the search tool. The schema of the extracted factbase varies fiom system to system,

and g rug should be able to work with any properly formatted index. For example, a

factbase for a software system written in C++ would include information in classes, while

this would not be true for a software system written in C. Users should be able to use g rug

to search both software systems equally. Although grug does not restrict the contents of the

factbase, it will have to be stored in a fixed format or syntax so that it can be read by grug.

F5. Matches returned by grug shall not be limited to a fixed unit or size.

The tool shall retum matching units in sizes appropriate to the search, from an identifier to a

file. The size of the hit retumed should be driven by the query, not by some formatting

constraint imposed by a search tool. Often a line does not provide enough context for a

match. In many cases the desired match will be several lines or an entire fimction body.

Matches in g r u g should not be limited to a specific unit or size, such as a single line.

7.3.2 Requirements for the command-line version

The command-line version of grug shall have the following requirement imposed upon it in

addition to the ones outlined in the previous section.

C1. The grug tool shall retain as many grep options as possible.

The functionality that must be maintained includes the ability to match regular expression.

and support for the existing command flags and arguments. Users must be able to leverage

their existing knowledge when using grug. Minor differences in the user interface will

unnecessarily increase the knowledge that a user needs to become an expert.

C2. The grug tool shall operate in the style of a UNM utility.

It shall accept redirection of input and output. The additional fimctionality will be added

through new command-line flags. This requirement further defines the g r e p functionality

that must be retained.

7.3.3 Requirements for the Graphical User Interface Version

The g r u g search tool operating from within a GUI shall have the following requirements in

addition to the ones presented in Section 7.3.1. The requirements in this section should guide

the design of the interface, rather than dictate a particular implementation.

G1. Users shall specify searches inside a dialog box.

Searches shall be specified in dialog boxes, similar to the example presented in Figure 7.1

below. The left box will accept any basic g rep search. In the centre box, the user can

spec@ the semantic element that she is searching for. The right box allows the user to

specify the scope of the search: files, subsystems, components. The gray triangles denote the

availability of a drop-down list fiom which the user can select an item. These lists shall be

generated fiom the factbase schema of the software system. It should be noted that Figure

7.1 is an example only and other designs are possible.

Search for of type in

7 1 IxzT-TY pGGzqq
L

Figure 7.1: Example of grug GUI Search Dialog Box

It is important to separate the standard grep functionality from the new fimctionality for a

couple of reasons. Users can still use this tool as they would existing g rep tools. Also, this

separation serves to highlight the availability of additional features.

G2. The g rug tool shall display let users access all matches simultaneously.

G3. Results shall be displayed in a drop-down window.

The user should be able to access the multiple search results from a single window, that is,

the tool should not present the user with a sequence of individual matches. The results of the

search should be presented in a window attached to the search dialog box, directly below it.

Solutions to searches shall be displayed with some contextual infonnation about the match.

This may include the name of the file and the procedure or the subsystem in which the match

was found. The matched string shall be highlighted, so it stands out fiom the rest of the text.

After seeing the matches, the user shall be able to modify the search without re-typing all the

information.

G4. The search results shall be navigable.

The results of the search should navigable, meaning users shall be able to access and edit the

actual file containing the match. This linkage can be achieved using either the pointing

device or some other interface mechanism. Clicking on the matched string will open the file

containing the string in an user-specified editor. Clicking on the contextual information

about the match shall display an appropriate landscape. The user shall also be able to define

new searches using the search results.

G5. Users shall be able to save and playback searches and results.

The tool shall keep a history log of searches. The user can choose to save a set of searches to

a file. When this file is loaded later, the user can playback a sequence of searches. The save

searches can also include user-defined annotations. Replaying a sequence of searches can

serve a number of different purposes. When doing a bug repair, a software maintainer can

save the sequence of searches performed before the repair and replay them afterwards. This

allows her to do a validation of the repair analogous to regression testing. In a different

scenario, an "exploration sequence" could be defined for the purpose of teaching a new team

member about the system. A new team member could replay these searches to 'bfollow the

footsteps" of senior maintainer giving a tour of the software system.

7.3.4 Requirements for Operating Across the World Wide Web

Since grug needs to be integrated with PBS, a version of it has to be accessible across the

World Wide Web. In addition to the requirements in Sections 7.3.1 and 7.3.3, this version

shall meet the requirements imposed in this section.

W1. The GUI shall be replicated across platforms-

The web-client must replicate the same layout and interaction as the GUI of the local grug.

While the GUI need not be identical, users must be able to use the local version and remote

versions on different platforms interchangeably.

7.4 Non-Functional Requirements

Non-fhctional requirements are concerned with how the tool operates, rather than what it

does. In this section, some parameters on grug execution are stipulated.

NF1. The grug tool shall have a responsive start-up

Loading the GUI version of grug, either locally or over WWW, shall complete relatively

quickly. In the local version, the time required to start-up the initial dialog box should not

deter software maintainers fiom using the tool. A delay longer than a second would be too

disruptive and discourage adoption of the tool. The WWW version shall have a similar load

time, excluding the start-up of the browser. While this timing may be difficult to control due

to erratic network delays, the web page should be designed with this in mind.

NF2. Compute time for queries should be short.

Queries should return relatively quickly. Mouse clicks, in particular, should return as close

to instantaneously as possible. Users make queries when they are solving a problem, so

delays in responses can cause them to lose a train of thought, or become impatient. An

irritation such as this is sufficient to cause some users to avoid the tool, thereby making it a

failure.

NF3. The grug tool shall be able to handle multiple users simultaneously

More than one user shall be abie to use grug locally or over the WWW at the same time. An

upper limit on the number of users for a Searchable Bookshelf is 20, approximately the same

upper limit on a typical software maintenance team, however the system must continue to

operate with more than 20 users. A subset of the team should be able to shall access g r u g

concurrently with no appreciable degradation in performance.

NF4. The grug tool shall operate on source code and a markup index.

Since the intended users of grug are developers trying to performs maintenance tasks, they

will likely have access to source code. The markup index will contain the file positions of

relevant semantic elements. A pre-computed index should be used instead of run-time

parsing because this approach allows g r u g to be language independent-ane of the basic

requirements &om section 7.3 - 1.

7.5 Specification of grug

So far in this chapter, we have focused on the requirements or the goals of the grug tool. In

the remainder, of the chapter we give its specification, which describes how those gods

should be met. The query syntax is central to the specification, since other parts of the design

depend on this syntax. As mentioned in Chapter 6, the GCL query language was chosen to

specify searches. Since source code is an example of structure text and GCL was designed to

be a general-purpose query language for structured texts, GCL can be adapted easily for

source code searches.

Following the explanation of GCL in Section 7.6, is an description in Section 7.7 of the

markup schema and macros required for grug. As will become apparent in Section 7.6, a

markup schema is required to support all the searches required by grug and macros will be

necessary to simplify these searches. Following these two sections is a description of a

preliminary implementation of grug and the Searchable Bookshelf. This work provides an

opportunity to validate the design and obtain feedback fiom potential users of the find

implementation.

7.6 The GCL Query Language

GCL is a query language for schema-independent retrieval from structured text, such as

email, bibliographies, HTML pages, and source code. It has a formal definition [Clarke95a],

and has been implemented as part of the project on Very Large Multi-User Multi-Server Text

Databases [MultiT98]. GCL requires markup of the text at appropriate character locations to

indicate the boundaries of various structural elements. For example, HTML tags could serve

as the markup for a web document. Alternatively, an index of file locations of structural

elements could serve as implicit markup of a document. The syntax of the GCL query

language in Backus-Naur Form is included in Figure 7.2. Literal strings are defined as exact

matches of strings and regular expressions following the POSIX standard FEEE921.

-

statement :: =
macro-definition

I query

macro-definition :: =
identifier = query

I identifer (parameters) = query

- -

query containing query
query contained i n query
query not containing query
query not contained i n query
quantity of (queries)
one of (queries)
a l l of (queries)
query ...q uery
(query)
quantity words
identifer (queries)
identifier
quoted-siring

queries ::= query I query , queries

parameters :: = identifier I identifier , parameters

quantity : : = positive-integer

quo t ed-string : : = single-quo ted-string
I double-quoted-string

single-quo ted-string : : = regular expression

double-quoted-string :: = literal s ping

Figure 7.2: Syntax of the GCL Query Language in Backus-Naur Form

/ * Search for a file named NAME trying various prefixes including the
user's -B prefix and some standard ones.
Return absolute file name found. If nothing is found, return NAME.+/

static char
find - file (name)

char *name;
I
char *newname;

/* Try multilib dir if it is defined. * /
if (multilib - dir != NULL)

i
char *try;

try = (char *)alloca (strlen (multilib-dir) + strlen (name
strcpy (try, multilib-dir) ;
strcat (try, dir-separator-str) ;
strcat (try, name) ;

newname = find - a-file (&startfile-prefixes, try, R-OK) ;

/* If we don't find it in the multi library dirt then fall
through and look for it in the normal places. + /

if (newname != NULL)
return newnarne;

1

newnarne = f ind-a-file s startfile-prefixes, name, R-OK) ;
return newname ? newname : name;

1

Figure 7.3: Code Sample from gcc . c of the GNU C Compiler R2.7.2

In this section, we give a brief description of the GCL query language, since subsequent

portions of the g rug specification depend on GCL syntax and semantics. More detailed

descriptions of the the GCL syntax can be found in other publications [Clarke95a, Clarke95bl

The GCL query language is explained using the code sample shown in Figure 7.3. The

function "find - f i l e " was taken fiom the file gcc. c ofversion2.7.2 ofGCC, and line

numbers have been added for discussion purposes. The examples in this thesis are based on

C source code, because C is a well-known programming language, but GCL would work with

any programming language. In the example queries to follow, the search space is limited to

the source in Figure 7.3. Furthermore, line 2 1 of the code sample:

21 newname = f ind-a-file (&startfile-prefixes, try, R-OK) ;,

will be taken and further annotated so that additional features of the GCL query language can

be illustrated.

In Figure 7.4, line 21 is shown with each character labeled starting with a hypothetical

database position (1 1). To show more than basic matches of literal strings and regular

expressions, it is necessary to add markup to this line. The specific markup generated would

be determined by the analysis to be performed. The type and format of the tags used in

Figure 7.5 were chosen to illustrate the GCL syntax. The markup also need not be implicit,

that is stored in a separate index file. An explicit markup could be used with the tags

embedded in the document, as is the case with HTML files.

. * n e w n a r n e g = * f i n d f i l e
11 12 13 I4 I5 16 17 18 19 20 21 22 23 24 25 26 27 28 39 30 32 33 34 35

i & s t a r t f I l e p r e f i x e s , - t r
36 37 38 39 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 55 56 57 58 59 60

Y I R O K \ n
61 62 63 64 65 66 67 68 69 70

Figure 7.4: Line 21 of Code Sample with Hypothetical File Positions Labeled

In GCL, the "solutiony' to a query is a set of "extents" or "regions" in the text. Consequently,

the markup index consists of a series of start positions and end positions of regions. In a

solution, the extents may overlap but they may not nest. This constraint will become clearer

as GCL queries and operators are discussed. In Figure 7.5 the pair of columns on the right

show a set of start markers and the pair to columns on the left show the corresponding end

markers.

Although the markup in Figure 7.5 is arbitrary, it does have a rationale. The <line> and

< / l i n e > are included because the GCL matching algorithm does not use the newline

character as a boundary between records and as a result the entire file is treated as a character

stream. If line-based matching is desired, markup is necessary.

Syntactically, line 21 shows a variable being assigned the return value of a function call.

Consequently, the syntactic elements of interest are included in the markup. The tags

<var re f > < / va rre f> denote a reference or access of a variable and <var > < / va r >

denote the variable name. The pair < f cnca 11 > and < / f cnca 11 > indicate a function call

and < f cn> < / f cn> indicate the function name. The remaining tags markup the argument

list for the function call and the individual arguments in the list.

T ~ E File Position TW File Position

Figure 7.5: Markup Index for Line 21 of Code Sample

The simplest query is a literal string or a regular expression. The query

"file name found"

returns all three word phrases that match the string exactly. In the example, there is only one

match, which is located on line 3. The query

'str*'

returns all the strings that match the regular expression. Solutions fiom the code sample in

Figure 7.3 are strlen on line 16 (twice), strcpy on line 17, and strcat on lines 18 and

19. String matching will span across lines and ignore markup, unless otherwise specified.

Quoted string queries can be combined using the GCL operators.

The eight GCL operators fall into three categories: ordering, combination, and containment.

The ordering operator ". . ." is used to link textual elements. For example, the query

'str*' ... "multilib - dir"
would return:

strlen (multilib - dir

from line 16 and

strcpy (try, multilib - dir

fiom line 17. Markup can also be used with the ordering operator. A search of

"<f c n c a l l > " ... "</fcncal l>"

on line 21 in Figure 7.4, would return

f i n d - a - f i l e (& s t a r t £ i l e - p r e f i x e s , t q , R - OK).

The combination operators have the basic form "quantity o f (list of queries 1 ". A

solution covers the solutions to 2 specified number of queries in the associated list. Quantiw

is normally a positive integer less than or equal to the length of the query list. A solution

must begin and end with a solution to one of the queries in the list. The query

"name",

would return the following solution fiom lines 7-1 1 :

name ;

I
char *newname;

/ * T r y rnul t i l ib-dir

three solutions fiom line 16:

try = (char *) a l l o c a (stxlen
s t r l e n (m u l t i l i b d i r ,
r n u l t i l i b d i r) + - s t r l e n (,

the following solution from lines 16-1 7:
name) + 2) ;
s t r c p y

and the following solutions:
s t r c p y (t r y , rnultilib d i r from h e 17, and
s t r c a t (try, name fiomline 19.

Note that the last solution demonstrates the rule that solutions can overlap but not nest. The

string

s t r c a t (try, d i r - separator - s t r) ; strcat (t r y , name

begins with ' s t r * ' and ends with "name", but is not a valid solution because it contains a

solution, the one that was reported as the last item on the list above.

The containment operators, " c o n t a i n i n g " , "conta ined in", "not containing",

and "not c o n t a i n e d in" are used to search for structural relationships. The query

searches can be performed. For example, with appropriate markup, the search "List all the

names of all the functions that are called by find-file" could be expressed as

FCN c o n t a i n e d i n (FCNDEF c o n t a i n i n g (FCNNAME c o n t a i n i n g
" f i n d - f i l e ")) .

Furthermore, if we include files and their names as a unit of analysis and define a subsystem

to be a set of files, we could make queries about the structure of a software system.

FILE = < f i l e > ... </ f i l e>
FILENAME = <fi lename> ... </filename>
CODEGEN.SS = FILE c o n t a i n i n g (FILENAME containing one of
(' "codegen. c", "codegen. h", "parsecodegen. h"))

Since GCL treats input as a stream of characters, the F I L E tags are necessary to indicate the

start and end of a file. The FILENAME tags are used to embed the filename in the character

seeam. A subsystem, such as CODEGEN . SS, wodd consist of a set of files. With these

additional markup and macros, a query such as, "What are the names of all the functions

defined in the codegen subsystem?" could be expressed as

FCNNAME c o n t a i n e d i n FCNDEF c o n t a i n e d i n CODEGEN.

From the examples in this section, it is clear that carel l selection of the markup schema and

the macros defined impact significantly on the types of searches the can be performed. These

parts of the g r u g specification will be discussed in the next section.

7.7 Markup Schema and Macros for g m g

Markup schema for source code can be separated into two groups: those that require parsing

and those that do not. Schemata that do not require parsing identify elements on the basis of

lexical items, such as special symbols and lexical tokens. These approaches can be quite

powefil, but are susceptible to errors such as false hits and misses, as is the case with

LSME. A markup requiring parsing is necessary to fulfill all the requirements for grug.

Before describing this schema that will be used, other approaches that do not employ parsing

will be discussed to illustrate some of their shortcomings.

A lexical approach to markup could be used if o d y structural searches are desired, like those

performed by s grep. The macro definitions from the discussion on sgr ep in the Section

6.4 have been translated into GCL macros below.

COMMENT = ("/*" .-- "*/")
BLOCK = ' (" ... " } "
PPLINE = (' " # ' ... ' s f 1
I F - COND = " i f " n o t contained in (one of (COMMENT,

P P L I N E))... (' (" ... ") ")
A C-style comment could be defined as a region of text that starts with the / * symbol and

ends with the * / symbol. A BLOCK is defined as a region beginning with { and ending with

. A PPLINE @re-processor line) is the entire line beginning with "#". An if-condition

(I F - COND) is an i f not within a comment or pre-processor line followed by a pair of

brackets.

These macros provide only approximate matching since they operated only on lexical

elements. The COMMENT and BLOCK macros would under-report true matches, whereas the

P PL INE and I F - CON D macros would over-report them. Although comments are not

allowed to nest, they may contain additional start markers /*. In such cases, a match would

be the t e a beginning with the last start marker up to the close marker rather than the entire

comment. Blocks have a similar problem. Because blocks of expressions are allowed to

nest, only the innermost blocks would be reported. The PPLINE macro could report lines

beginning with # inside comments and the I F - COND macro could report if-conditions inside

quoted strings. From these examples, we can see structural approaches do not i e d t in

highly precise matching, so parsing would be required to identify accurately semantic

elements of interest.

Schemata that require parsing can have semantic elements, such as variable names and

function definitions, in the markup index. Parsing is necessary to obtain the markup to meet

the requirements for g rug as set out in Section 7.3. In the remainder of this section, the

markup schema and macros for grug will be described. It should be noted that the schema

given here is one of many possibilities. Other schema are possible and can be developed

according to the needs of the target application. In the schema presented here, there are a

number of omissions such as user-defined types, macros, if-conditions, etc. The schema

chosen was based on the results of the study reported in Chapter 5. Programmers reported

that the most common search targets were function definitions, all uses of a function, all uses

of a variable, and variable definitions. The schema focuses on these elements, but could

easily be extended to include others. The purpose of the macros, as illustrated in the previous

section, is to simplify common searches and to make complex searches more readable.

Figure 7.6 is an example of a function declaration with the character positions labeled.

Normally, character positions are numbered from the beginning of the database, but in this

and subsequent examples character positions are numbered from the beginning of the line for

simplicity. A Eunction declaration is the declaration of the function type without the body,

such as those found in headers and forward declarations. Table 7.1 shows the markup

schema and macros for a function declaration. The columns show, in order, the element

being indexed, the start tag, the character position for the start tag in Figure 7.6, the end tag,

the character position for the end tag in the example, and the macro for the element. All

other tables of markup and macros in this chapter use the same column organization.

Semantic Element
declaration
name
return type
~Gameter list
parameter

Figure 7.6: Example of Function Declaration

I 1 I

<fcndclnarne> 1 4 1 4fcndc lnam~ 1 6 1 FCNDCLNAME

Macro
FCNDCL

-- -- - - -- -

Table 7.1: Markup and Macros for Function Declarations

25

<fcndclret>
<fcndclprmli~
<fcndclprm>

End Tag
4fcndcb

Start Tag
<fcndcl> 0

FCNDCLRET
FCNDCLPRMLIS
FCNDCLPARM

2
25
15,
24

0
8
9,
18

4fcndclret>
4fcndclprmli~
4fcndclprm>

An example of a function d e f ~ t i o n with the character positions labeled is given in Figure

7.7. A function definition is the section of code that implements the function or attaches a

body to a signature. Table 7.2 gives the markup and macros for h c t i o n definitions.

Figure 7.7: Example of Function Definition

Table 7.2: Markup and Macros for Function Definitions

A function call occurs when a function passes execution to another section of code such as a

user-defmed or library function. An example of a call is in Figure 7.8 and the markup and

macros are given in Table 7.3.

Macro
FCNDEF
FCNDEFNAME
FCNDEFRET
FCNDEFPRMLIS
FCNDEFPARM

Semantic Element
definition
name

F

return type
parameter list
parameter

Figure 7.8: Example of Function Call

Start Tag
<fcnde*
<fcndeharne>
<fcndefiet>
<fcndefpnnlie
cfcndefprmr

Table 7.3: Markup and Macros of Function Calls

Figure 7.9 is a variable declaration with labeled character positions. Figure 7.10 is a variable

definition with labeled character positions. The two figures appear to be identical, but they

differ in that the compiler allocates memory for definitions, but not for declarations. A

0
4
0
8
9,
18

Macro
FCNCALL
FCNCALLNAM E
FCNCALLARGLl S
FCNCALLARG

1 Semantic Element
cail
name
argument list
argument

End Tag
</fcndef>
4fcndehame>
4 f c n d e f i e ~
4fcndefprmlie
</fcndefprm>

Start Tag
<fcmcall>
<fcncallname>
<fcncallarglis>
<fcncallarg>

49
6
2
25
1 5,
24

1
End Tag
4fcncall> 17

3
17

1
5

4fcncallname>
4fcncallpnnli~

6,
12

</fcncallarg> 9,
16

100

declaration such as the one in Figure 7.9 would typically appear in a header file or in a source

file preceded by the keyword "extern". The markup and macros for declarations and

definitions are given in Table 7.4 and Table 7.5, respectively.

n t - c o u n t e r ; \ n
I : 1 2 3 4 5 6 1 8 9 1 0 1 1 1 2

Figure 7.9: Example of Variable Deciaration

1 type I I I I

I <vardcltyp>] 0 I 4vardcltylu 12 1 VARDCLTYP

Semantic Element
declaration
name

Table 7.4: Markup and Macros for Variable Declarations
- - - -

l i n t - c o u n t e r ; \n

Figure 7.10: Example of Variable Definition

Macro
VARDCL
VARDCLNAME

Start Tag
<vardcl>
<vardclnarne

Table 7.5: Markup and Macros for Variable Definitions

I End Tag
0 I 4vardcb

Semantic Element
definition
name

type

A variable reference occurs either when a variable is read or has a value assigned to it.

12

Figure 7.1 1 is an example of a variable being assigned a value, and Table 7.6 gives the

4 1 4vardclname> (10

Start Tag
<vardef,
<vardeharne>
<vardeftyp>

markup and macros for variable references.

Figure 7.11: Example of Variable Reference

I End Tag
0 1 4vardeD
4 1 4vardehame>
0 1 4vardeftyp>

Table 7.6: Markup and Macros for Variable References

25
10
2

Table 7.7 shows the markup and macros for structural elements. Lines and blocks are units

that are smaller than a file. Files, modules, and subsystems are parts of a software system.

The line is included as a structural element because it is a construct that pervades ZMD(

Macro
VARDEF
VARDEFNAME
VARDEFTW

Macro
VARREF
VARREFNAME

Semantic Element
reference
name

Start Tag
cvarr e f,

I End Tag
1 I 4varreB 11

cvarreharne. I 1 I4varrehal-n- 7

utilities [Pike87]. The rationale for including a block element is that it is a unit that provides

more context than a line, but usually less than a hct ion.

Modules and subsystems are defined using macros that allow the grouping of files into

organizational units. They are denoted by the . Mo D and . S S extensions. The modules and

Macro
LINE
BLOCK
FILE
*.MOD
*.SS

subsystems of a software system cannot be determined using a parser alone, and so there are

Table 7.7: Markup and Macros for Structural References

End Tag
<nine>
</block>
4file>

StructuraI Element
line
block
file
module
subsystem

no tags for them. They are usually defined by users or recovered using a reverse engineering

Start Tag
<line>
<block>
<file>

tool such as grok. This information is used to define the modules and subsystems as

macros.

7.8 Preliminary Implementation of g m g and the Searchable PBS

After developing the requirements and specification for a tool, the natural next step is to

implement it. After some initial explorations, it was determined that an implementation of

g r u g as designed would be beyond the scope of this thesis. However, the construction of a

prototype would provide valuable feedback on the design and experience on building a

source code searching tool. As a result, we chose to build a preliminary implementation of

g r u g that made use of as many existing components as possible. We used existing PBS

tools and factbases. a regular expression matching library (GNU regex 0.12), and a GCL

parsing module from the Multi-Text project WultiT981. The work performed to construct

g r u g consisted of making minor modifications to the PBS tools used to construct factbases

fiom C source code, a component to work with the GCL module, and an interface between

the GCL module and the factbase.

Some modifications were made to both the PBS tools and to the concepts and syntax of GCL,

SO that PBS parsers and factbases could be used. There was a mismatch between the

information contained in the factbases and the information required by GCL. The easiest

way to resolve this incompatibility was to make minor changes to both components. Some

location information was added to the factbase and the GCL syntax was extended so searches

could be based on line numbers rather than character positions. This change had a major

impact on the syntax and expressive power of the query ianguage, as is explained in the

remainder of this section.

f u n c d e f f i l e
f u n c d c l f i l e
f u n c d c l f i l e
v a r d e f f i l e
v a r d c l f i l e
i n c l u d e f i l e
c a l l f u n c t i o n
r e f f u n c t i o n

f u n c t i o n {
d e f l o c
def l o c e n d
d c l l o c

1

v a r i a b l e {
v a r d e f l o c
v a r d c l l o c

1

f u n c t i o n
f u n c t i o n
1 i b r a r y F u n c t i o n
v a r i a b l e
v a r i a b l e
f i l e
f u n c t i o n
v a r i a b l e

Figure 7.12: Factbase Schema for GCL Index in TA Format

7-8.7 Expanding the Factbase

In existing PBS factbases, a function would have attributes for a definition location and a

declaration location:

add {
def l o c = u t i l s - c: 234
dcl loc = u t i l s - h : 5 7

1
In order to generate solutions to a query, GCL needs to know the beginning and the end of a

region. In the case of function definitions, it needs to know not only where the definition

started, but also where it ended. Some modifications were made to the utilities for generating

a factbase from C source code, c f x and f bgen, so that they produced end locations as well.

Figure 7.12 is the schema for the GCL index in TA language. The d e f loc, d e f l o c e n d ,

dclloc , varde f loc, and vardclloc attributes are set to a file and line number, as in

the example above. Declarations and variable definitions are expected to span only a single

line, so "end" location attributes were not added to these.

7.8.2 Augmenting GCL

The other mismatch is between the address space of locations PBS factbases and the address

space of GCL. The factbase stored locations in terms of line numbers within a file, whereas

GCL requires locations to be specified in terms of file positions. The address space

mismatch was resolved by letting GCL match on a line-by-line basis and extending the query

syntax so it could match selected items that were smaller than a line.

Figure 7.13 shows the extended GCL syntax, with the new items denoted by asterixes. The

:keyword (quoted-string) syntax allows searches for function declarations, h c t i o n

definitions, function calls, variable declarations, variable definitions, and variable references;,

with the identifier as denoted by the quoted string. This syntax pennits searches that

distinguish, for instance between occurrences of the string "count" and instances of a

variable "count." Some examples of how this syntax is used are given in the next section.

7.8.3 Using grug

In the prototype of grug, users can search for literal strings, regular expressions, and six

semantic elements. Queries can also be combined using the eight GCL operators. A filed

called "TAfile" containing the factbase should be located in the same directory as the filcs

being searched. The command syntax is similar to one used by grep, which is

grug [options] query <files>.

The four options, -h, -i, -t, and -f, are summarized in Table 7.8.

statement :: =
macro-definition

l query

macro-definition : : =

identzFer = query
j identifier (parameters) = query

query .- .- =

*

queries

query containing query
query contained i n query
query not containing query
query not contained i n query
quantity of (queries)
one of (queries)
a l l of (queries)
query ...q uery
(query
quantity words
identifier (queries)
identz9er
.-keyword (quoted-string)
quoted-string

::= query I query, queries

parameters :: = ident~per I identifier , parameters

quantity :: = positive-integer

* keyword ::= f cndef I f cndcl I f cncall 1
vardef 1 vardcl I varref

quoted-string :: = single-quoted-string
I double-quoted-string

single-quoted-string :: = regular expression

do uble-quo ted-string :: = literal string
- - -

Figure 7.13: The Extended GCL Syntax

Option

I

-i 1 Case-insensitive is performed.

R e d t

-h Help information is displayed.

I command line.

Table 7.8: Available Options in grug

- t < f i 1 ename >

- f <f i l ename>

A typical g rep search such as "find all instances of the reguiar expression fprintf and sprintf

Instructs grug to use factbase found in < f i 1 e n ame >, rather than
the default.
Instructs grug to read queries fiom <f i lename>, rather than the

in stub.cW can be invoked as:

grug " ' [fs] p r i n t f ' " stub. c.

Notice that GCL requires regular expressions to be placed in single quotation.marks. In order

for these to be passed from the command line correctly, the query needs to be placed inside

double quotation marks. Similarly, strings are denoted by double quotation marks, and in

order for these queries to be passed fkom the command line, they need to be placed inside

single quotation marks. This problem can be circumvented by writing these queries to a file

and using the -f option. Other examples of grug invocations are given below.

The extended syntax is used when searching for semantic elements. The search 'find the

definition of the function c'Display-List" in .c files' is invoked as:

grug ' : f c n d e f (' D i s p l a y - List")' *.c.

A search to find where the variable "memory" is defined" is performed by issuing the

command:

g rug \ :vardef ("memory")' *. [ch].

7.8-4 The Searchable Bookshelf

This subsection shows how the Searchable Bookshelf was built with grug. In Figure 8.4,

the column along the left side contains the table of contents of the books of a subject system

in PBS. The landscape diagram is found in the large window in the right. In the small

window beneath is an HTML form that can be used to perform grug searches. It

Figure 7.14: Screen Capture of The Searchable Bookshelf

consists of a text box to enter the query, a scrolling selection box fiom which to choose the

search targets, and a set of check boxes to activate various options. A single Per1 script,

bs - s earch, is used to generate the form and process queries. The query is written to a file

and passed to grug using the - f option. Because the query never passes through the

command line, the problems with quotation marks at the shell level are circumvented, and the

query can be entered litelally.

The list of search targets can contain subsystems, modules, or files, depending on the

Landscape displayed. The Iandscape in Figure 7.14 is of the C488 compiler which consists of

eight subsystems. These eight are reflected in the list of search targets in the query window.

The b s - search script generates this list using the same tuple file as 1 s v i e w , the existing

Java applet that displays the S o h a r e Landscapes. Using the form, queries can be made

about any or all of the subsystems.

A search is invoked by typing a query into the textbox, selecting the subsystems to be

searched from the scrolling menu, and pressing the "Search" button. For example, if a user

wanted to search for all the variables that were defined in the main . s s subsystem, she

would type : varde f (' * ') in the query box, select main-ss f?om the scrolling menu, and

click on "Search". This search would return the following:

main.c:12: static char mainversion[] =

This result indicates that there is only one variable defined in the m a in. s s subsystem that is

used by another file, and this variable is defined on line 12 of the file main . c. Recall fiom

Chapter 2 that the factbase only has information on functions and variables with uses that

cross file boundaries, i.e. they are called or referenced by a file other than the one in which

they were defined. Functions and variables that are used only within the file in which they

are defmed are not included in the factbase.

7.9 Summary

The requirements and specification for g rug were presented in this chapter. In basic form,

grug is a command-line utility that is capable of grep-style searches as well as searches for

semantic elements in source code. The GCL query language is used to specify search targets

which allows grug to be language-independent, factbase schema-independent, and to return

solutions of arbitrary size. A markup schema for the GCL markup index is presented along

with a set of macros to simplify search specification.

This search tool, when integrated with PB S, results in the Searchable Bookshelf, a program

comprehension tool that supports integrated comprehension strategies. Working alone,

grug supports bottom-up comprehension sirategies, in which source lines are amalgamated

into semantic chunks. Software Landscapes are capable of supporting top-down strategies.

The two tools taken together are capable of supporting integrated strategies, in which

s o h a r e maintainers use multiple approaches and switch keely between them. Prototypes of

grug and Searchable Bookshelf were described at the end of this chapter. Although they

implement a subset of the functionality discussed in the design, they serve as a proof of

concept and as a basis for validating the design. In future, we plan to implement versions of

grug and the Szarchable Bookshelf with the complete set of fimctionality described in this

chapter. These tools can serve as the basis of fiuther studies of program comprehension

strategies employed during software maintenance.

Chapter 8: Conclusion

8.1 Observations

Throughout this thesis we learned many lessons about the code comprehension process

during somare maintenance. These lessons in turn influenced our design of grug and the

Searchable Bookshelf. We summarize the observations made during this process here.

From the user studies, we Iearned that software maintainers are task-oriented problem

solvers. They acquire knowledge to complete a specific task because it would be too

difficult and time-consuming to learn about the entire system for its own sake. During

problem solving, software maintainers construct mental models of the software system by

using integrated code comprehension strategies. When looking at source code they

employ a bottom-up strategy, seeking to relate lines of text to abstract concepts. When

looking at Software Landscapes, they employ a top-down strategy, seeking to relate pictorial

elements to code artifacts. Maintainers also switch freely between different strategies when

gathering information from a single source and when synthesizing infomation fiom multiple

sources.

Since software maintainers are task-oriented, their data acquisition process is guided by

questions. They ask questions about the system and they search to fmd the answers.

Based on these observations a search tool was designed to support multiple code

comprehension strategies. The grug utility supports bottom-up strategies by allowing

users to perform "semantic grep's". Using the tool, they can search for semantic units in

the source code, such as functions and variables. Sy integrating grug into PBS, the

Searchable Bookshelf was created to support both top-down and bottom-up strategies. Using

the Searchable Bookshelf, users can use Software Landscapes and grug simultaneously and

switch freely between the two tools to build a mental model of the software system.

A prototype of grug and the Searchable Bookshelf was developed as a proof of concept-

This prototype serves as a test of the principles and concepts laid out in the design. Although

these too 1s have limited functionality, the experience of constructing these implementations

is valuable in the development of source code searching and analysis tools. In the next

section, the fuhue work for the tools as well as user studies are described.

8.2 Future Work

As is typical of empirical research in software engineering, this thesis has identified more

questions than it answered. The directions for fume work discussed in this section are

divided into four areas: usability testing, organizationd studies, source code searching, and

tool implementation. Any one of the questions raised could be the basis for a significant

sequence of research.

8.2.1 User Testing

In the next iteration of the spiral model of development, the design and prototype of grug

and the Searchable Bookshelf need to be validated. User tests need to be performed with

software maintainers to determine whether g rug meets their information needs. The results

&om these studies could be fed back into the development of a g rug as a program

comprehension tool.

8.2.2 Organizational Studies

The studies of software immigrants and project veterans have highlighted an area that has

been largely unexamined by software engineering research. The patterns fiom the software

immigrants study need to be validated by studying the naturaiization process in other

organizations to determine whether they can be generalized. This knowledge would valuable

because the purpose of program comprehension tools is to assist users in understanding a

software system; a tool needs to fit with how newcomers naturalize to be successful.

While software immigrants have been little studied as users of PBS, project veterans have

been studied even less. The informal investigation performed in this thesis indicates that the

strategies they use and the questions they ask can be quite different fiom those of software

immigrants.

8.23 Source Code Searching

The study undertaken illuminated two lines of investigation, one having to do with research

methodology and the other with the models created. A s w e y was used to collect the data,

and a significant part of making a survey rigorous is the sampling technique. A very weak

sampling technique, convenience sampling, was used because not enough was known about

the characteristics of the population of software maintainers to create a representative

sampling fkarne. Knowledge about the size of the software maintenance population, the

amount of source code they support, the types of applications they support, and the

programming languages they use could be valuable for guiding software engineering

research. For example, it is not known on what platform the most problematic legacy

systems reside and what programming language they are written in, yet most research into

software tools use the UNIX environment and work with source code written in C.

The source code searching survey resulted in a series of archetypal searches to guide tool

design. This model of searching needs to be validated and quantified, that is, it needs to be

tested to determine its accuracy and the relative frequency of the searches. This could be

done using either protocol analysis or another survey.

8 . U Tool Implementation

With respect to g rug and the Searchable Bookshelf prototypes, the most obvious

improvement would be to construct the character-based markup index for grug. This index

would be built using a parser to generate a factbase for a software system with the schema

from Chapter 7. With this index it would be possible to use the M l functionality of GCL and

eliminate the awkward keyword syntax. It would also facilitate further user tests to evaluate

the utility of grug and the Searchable Bookshelf.

On a different level, the application of GCL to source code suggests the application of an

information retrieval approach to software searching and analysis. It would be possible to

create PBS factbases by making GCL queries using the character-based markup index.

Information retrieval techniques could be applied to assist software maintenance tasks.

Common operations that are candidates for moving into a utility firnction could be identified

by making a query such as "find all regions of five or more lines that are identical". A

weighting mechanism similar to those used by World Wide Web search engines could be

applied to solutions returned by grug to make it easier to identify starting points for finther

investigation.

References

Ah079

A.V. Aho, B.W. Kernighan, and P.J. Weinberger. Awk - A Pattern Scanning and

Processing Language. So_Fware Practice and Experience, Vol. 9, No. 9, pages 267-280,

1979.

Berlin93

L.M. Berlin. Beyond Program Understanding: A Look at Programming Expertise in

Industry. Empirical Studies of Programmers, Fzph Workshop, pages 6-25, Palo Alto,

USA., 1993.

Boehrn88

B. Boehm. A Spiral Model of Software Development and Enhancement. Computer,

pages 6 1-72, (May, 1988).

Brooks83

R. Brooks. Towards a theory of the comprehension of computer programs. Internarionaf

Journal of Man-Machine Studies, Vol. 18, page 543-554,1983.

Brooks95

F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering, Anniversa~.

Edition. Addison-Wesley, 1995.

Chen90

Y. Chen, M.Y. Nishirnoto, and C.V. Rarnoorthy. "The C Information Abstraction

System." I ' E Transactions on Software Engineering, Voi. 1 6, No. 3, pages 325-3 34,

(March, 1990).

Clarke95a

C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski. An Algebra for Structured Text

Search and a Framework for its Implementation. The Computer Journal, Voi. 3 8, No. 1,

pages 43-56, 1995.

Clarke95b

C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski. Schema-Independent Retrieval from

Heterogeneous Structured Text. Fourth Annual Symposium on Document Analysis and

Informution Retrieval, pages 279-289, Las Vegas, USA, 1995.

CIarke96

C.L.A. Clarke and G.V. Cormack. Context grep. Technical Report CS-96-41,

Department of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G 1.

Clarke97

C.L.A.Clarke and G.V. Cormack. On the Use of Regular Expressions for Searching Text.

ACM Transacrions on Programming Languages and Systems, Vol. 1 9, No. 3, pages 4 1 3 -
426, (May, 1997).

DeMarc87

T. DeMarco and T. Lister. Peopleware: Productive Projects and Teams. Dorset House

Publishing, 1987.

DeVaus96

D .A. deVaus. Surveys in Social Research, Fourth Edition. UCL Press, 1 996.

Eisenh89

K. M. Eisenhardt. Building Theories fiom Case Study Research. Academy of

Management Review, Vol. 14, No. 4, pages 532-550, 1989.

Eisens97

M. Eisenstadt. My Hairiest Bug War Stories. Communications of the ACM, Vol. 40,

No. 4, pages 30-37, (April, 1997).

Farman97

G. Farmaner. Setting Up o Portable Bookrhelf: Available at

Chttp ://www.turing .utoronto .ca/-bookshelfldocs/bookshelf.htmb

Fay85

S.D. Fay and D.F. Holmes. Help! I Have to Update an Undocumented Program. IEEE

Conference on S o f ~ r e Maintenance, pages 1 94-202, Washington DC, USA, 1985.

Finnig97

P. Finnigan, R. Holt. I Kalas, S. Ken, K Kontogiannis, H. Miiller, J. Mylopoulos, S.

Perelgut, M. Stanley, and K. Wong. The Software Bookshelf. TBMSysterns Journal,

Vol. 36, No. 4, pages 564-593, (November, 1997).

Foddy93

W. Foddy Constructing Questions for Interviews and Questionnaires: Theory and

Practice in Social Research. Cambridge University Press, 1 993.

Frye57

N. Frye. Anatomy of Criticism: Four Essays. Princeton University Press, Princeton,

1957.

Griswo96

W.G. Griswold, D.C. Atkinson, and C. McCurdy. Fast, Flexible, Syntactic Pattern

Matching and Processing. Proceeedings of the IEEE 1996 Worhhop on Program

Comprehension, Berlin, Germany, 1996.

Hare18 8

D. Harel. On Visual Formalisms. Communications of the ACM, Vol. 3 1, No. 5, pages

514-530, (May, 1988).

Holt97

R.C. Holt Introduction to TA: Tuple Attribute Language. Available at

Institute of Electrical and Electronics Engineers. Standard for Informati on TechnoIogl

Portable Operating System Interface (POSW Part 2 (Shell and Utilities) Section 2.8

Regular Expression Notation. IEEE Std 1003 -2, September, 1992.

Jaakko95

J. Jaakkola, and P. Kilpeliiinen. Sgrep home page. Department of Computer Science.

University of Helsinki, Helsinki, Finland. Available at

<http://www.cs. helsinki. fd-jj aakkoVsgrep.html>

Katz8 8

LR. Katz and J.R. Anderson. Debugging: An Analysis of bug-location strategies.

Human-Computer Interaction, VoI. 3 , No. 4, pages 351-399, (April, 1988).

Kernig78

B. Kernighan and D. Richie. The C Programming Language. Prentice-Hall, 1978.

Lakhot93

A. Lakhotia. Understanding Someone Else's Code: Analysis of Experiences. Journal of

Systems Sofiare, Vol. 23, pages 269-275, 1993.

Lethbr97

T.C. Lethbridge and J. Singer. Understanding Software Maintenance Tools: Some

Empirical Research. Proceedings of 2nd liternational Workshop on Empirical Studies of

Sofiare Maintenance, pages 1 57- 1 62, Bari, Italy, 1 997.

Letovs86

S. Letovsky. Cognitive Processes in Program Comprehension. Empirical Studies of

Programmers, First Workshop, pages 58-79, Washington DC, USA, 1 9 86.

Lieber97

H. Lieberman. The Debugging Scandal and What to Do About It. Communications of

the ACM, Vol. 40, N o . 4, (April, 1997).

L ima86

D. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental Models and Software

Maintenance. Empirical Studies of Programmers, First Workshop, pages 8 0-98,

Washington DC, USA, 1986.

Markos94

L. Markosian, P. Newcomb, R. Brand, S. Burson, and T. Kitrmiller. "Using An Enabling

Technology to Reeingineer Legacy Systems" Communications of the ACM, Vol. 37, NO.

5, pages 58-70, (May, 1994).

Miles94

M.B. Miles and A.M. Huberman. Qualitative Data Analysis: An Expanded Sourcebook,

Second Edition. Sage Publications, 1994.

Miillex93

H.A. Muller, M. Orgun, S. Tilley, and J. Uhl. "Reverse Engineering Approach to

Subsystem Structure Identification." Journal of Sofiware Maintenance: Research and

Practice, Vol. 5 , No. 4, pages 1 8 1 -204, (December, 1 993).

MultiT98

The Very Large Multi-User Multi-Server Text Bases Project Home Page. Available at

<http://dtitext.uwaterioo.ca~.

Murp hy9 6

G. M q h y and D. Notkin. Lightweight Lexical Source Model Extraction. ACM

Transactions on Sofhare Engineering and Methodology. Vol. 5 , No . 3, pages 262-292,

(July, 1996).

Paul94

S. Paul and A. Prakesh. A Framework for Source Code Search Using Program Patterns.

IEEE Transactions on Sofrwne Engineering, Vol. 20, No. 6, pages 463-475, (June,

1994).

Pennin87

N. Pennington. Stimulus Structures and Mental Representations in Expert

Comprehension of Computer Programs. Cognitive Psycholom, Vol. 1 9 , pages 295-34 1,

1987.

Penny92

D. Penny. The Sofivare Landscape: A Visual Formalism for Programming-in-the-Large,

Ph.D. Thesis, Department of Computer Science, University of Toronto, 1992.

Perry94

D.E. Perry, N.A. Staudenmayer, and LG. Votta. People, Organizations, and Process

Improvement. IEEE Sofiware, pages 36-45, (July, 1 994).

Pike87

R. Pike. Structural Regular Expressions. Proceedings of the European UNIX User's

Group Conference, 1 987.

Pigos93

T.M. Pigoski and C.S. Looney. Software Maintenance Training: Transition Experiences.

International Conference on Sofrwae Maintenance, pages 3 14-3 18, Montreal, Canada,

lsenthal and R.L. Rosno ~w. The Volunteer Subject. Wiley & Sons, 1975.

C.B. Seaman and V.R BasiIi. An Empirical Study of Communication in Code

Inspections. Proceedings of the 19th Iinternationul Conf rence on Sofrwae Engineering,

pages 96-106, Boston, USA, 1997.

S hneid79

B. Shneiderman and R. Mayer. Syntactic/Semantic Interactions in Programmer

Behavior: A Model and Experimental Results. International Journal of Computer and

Information Studies, Vol. 8, No. 3, pages 2 1 1 9-23 8, 1979.

S hneid8 0

B . S hneideman. Software Psychology: Human Factors in Computer and 1 formation

Systems. Winthrop Publishers Inc., 1980.

Sim98a

S.E. Sim and R.C. Holt. The Ramp-Up Problem in Software Projects: A Case Study of

How Software Immigrants Naturalize. Proceedings of the 20th International Conference

on So f iure Engineering, forthcoming, Kyoto, Japan, 1 99 8.

Sim98b

S.E. Sim, C.L.A. Clarke, and R.C. Holt. Archetypal Source Code Searches: A Survey of

Software Developers and Maintainers. International Workshop on Program

Comprehension, forthcoming, Ischia, Italy, 1998.

Singer97a

J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An Examination of Software

Engineering Work Practices. In Proceedings of CASCON '97, pages 209-223, Toronto,

Canada, 1997.

S inger97b

J. Singer and T.C. Lethbridge. What's so great about grep? Available at

<htcp://wwwsel.iit.nrc.ca/-singer/grep/-

SNiFF+96

SNiFF+ 2.3. User's Guide and Reference. TakeFive Software. Available at

<http://www.takefive.com>, (December, 1 996).

Solowa84

E. Soloway and K. Erlich. Empirical Studies of Programming Knowledge. IEEE

Transactions on Software Engineering. Vol. SE-I 0, No. 5, pages 595-609, (September,

1984).

Solowa88

E. Soloway, J. Pinto, S. Letovsky, D. Littman and R. Lampert. Designing

Documentation to Compensate for Delocalized Plans. Communications of the ACM, Vol.

3 1, No. 1 1, pages 1259-1267, (November, 1988).

Spool92

J.M. Spool. Product Usability Survival Techniques. Tutorial at the ACM Conference of

Human Factors in Computing Systems (CHI), Monterey, California, May, 1992.

Spohre85

J.C. Spohrer, E. Soloway, and E.A. Pope. Goal/Plan Analysis of Buggy Pascal Programs.

Human-Computer Interaction, Vol. 1 , No. 2, pages 163-207, (February, 1985).

S torey96

M.-A.D. Storey, K. Wong, and H.A. Miiller. On Designing an Experiment to Evaluate a

Reverse Engineering Tool Proceedings of the Third Working Conference on Reverse

Engineering, pages 3 1-40, Monterey, USA, 1 996.

S torey97

M.-A.D. Storey, K. Wong, and H.A. Miiller. How Do Program Understanding Tools

Affect How Programmers Understand Programs? Proceedings of the Fourth Working

Conference on Reverse Engineering, pages 1 2-2 1, Amsterdam, Holland, 1 997.

straus90

A. Strauss and J. Corbin. Basics of Qualitative Research: Grounded Theory Procedures

and Techniques, Sage Publications, 1990.

Tzerpo96

V. Tzerpos, and R.C. Holt. A Hybrid Process for Recovering Software Architecture.

Proceedings of CASCON96, Toronto, Canada, 1 996.

Tzerpo97

V. Tzerpos, R.C. Holt and G. Farmaner. "Web-Based Presentation of Hierarchic

Software Architecture", Workshop on Sofiware Engineering on the World Wide Web,

International Conference on Sof iare Engineering, 1997, Also available at

<http://www. turing .utoronto .ca/-vtzer>.

Vessey8 9

I. Vessey. Toward a Theory of Computer Program Bugs: An Empirical Test.

International Journal of Man-Machine Studies, Vol. 3 0, pages 123- 146, 1 989.

VonMay93

A. von Mayrhauser and A.-M. Vans. From code understanding needs to reverse

engineering tool capabilities. Proceedings of the 6fh International Workshop on

Computer Aided Software Engineering, pages 230-239, Piscataway, USA, 1993.

VonMay95

A. von Mayrhauser and A.-M. Vans. Program Comprehension During Software

Maintenance and Evolution. Computer, pages 44-5 5 , (August, 1 995).

VonMay97

A. von Mayrhauser and A.-M. Vans. Hypothesis-Driven Understanding Processes

During Corrective Maintenance of Large Scale Software. Proceedings of the

International Conference on Software Maintenance, pages 12-20, Bari, Italy, 1997.

vans0197

R. van Solingen, H. Leliveld, E. Berghout, and R. van Latum. Applying Software

Measurement to Organizational Issues. Proceedings of the 8th European Softwae

Control Metrics Conference (ESCOik(l, Berlin, Germany, 1997.

Wu92

S. Wu and U. Manber. Agrep-A Fast Approximately Pattern-Matching Tool. USENLY

Winter 1992 Technical Conference, pages 153- 162, San Francisco, U.S .Am, 1992.

Yin94

R.K. Yin. Case Study Research: Design and Method, Second Edition Sage

Publications, 1994.

Zvegin97

N. Zvegintzov. Session 4: Maintenance Practices Within and Across Organizations.

Second international Workshop on Empirical Studies of So f ~ a r e Maintenance, B ari,

Italy, 1997.

Appendix A: Dictionary of Terms

bs - search
cfx

factbase

GCL
General
Concordance Lists

grok

lslayout

PBS
PL/IX

Portable Bookshelf

Refine

Rigi

Rigi Standard Form

RSF

Description

Main c~i-bin scr i~t used to access the PBS.
Extracts facts fiom c source code into an
intermediary format that is readable by f bge n.
A database of facts (syntactic iaformation) about a
software system.
Converts data fiom c f x into a factbase.

- - - - -- - -- -

--see General Concordance Lists
A general purpose query language for structured
texts.
A UNIX utility that matches regular expressions
within a file; more generally, a family of tools with
this functionality.
Used for manipulating binary relations and can
perform select, join, intersections, and transitive
closure.
A Java applet for drawing S o b a r e Landscapes
inside the PB S .
--see Portable Bookshelf
A variant of the PL/I programming language created
bv IBM.
Generates a factbase for PL/IX source code.
A web-based documentation repository that integrates
Software Landscapes, system documentation, and
other HTML files. AIso known as PBS.
A reverse engineering tool design to automatically
migrate code based on a formal specification.
A tool suite to explore and manipulate a software
system represented as nodes and edges.
A syntax for storing information about a software
system based on triples. This format is a precursor to
TA. Also known as RSF.
--see Rigi Standard Form
A metaphor for a shared repository of information
about a software system.

Source

HoIt Group
-

Holt Group

Holt Group

Clarke95bl
UNIX operating
system

Holt Group

Holt Group

-

U. of Victoria
Holt Group
Farman971

Reasoning Systems

University of
Victoria

Software Landscape F
Tuple Attribute *

Description

A visual representation of a software system that uses
a nested box formalism.
-see Tuple Attribute Language
Syntax for describing coloured graphs, i.e. nodes,
edges, and their attributes. Also known as TA.

Source

