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Abstract

One of the iimitations of current multifunction myoelectric control systems is the
amount of myoelectric signal data required to classify with a reasonable accuracy the
signals to be used as a control input. The amount of data required introduces a time delay
in the myoelectric control systen.; %ick hinders the development of a continuous type of
control. A new strategy is proposed to handle this limitation by employing an array of
surface electrodes and correlation feature vector. The aim is to develop a new strategy
which can make a reasonably accurate decision faster than the mechanical response of the
systems. An array of surface electrodes, placed around the targeted group of muscles,
gives a broader and more complete characterization of the myoelectric signal for each
type of contraction. The information captured by each channel is computed by correlation
methods to form a correlation feature vector. The patterns exhibited by the correlation
feature vector are used as an input to classifiers. A total of five basic classifiers were
employed to test the strategy on simulated and real myoelectric signals data and results
are presented. Using four myoelectric channels and a 10-feature vector, the strategy can
provide input to the classifiers to reasonably classify six basic hand movements with as
little as 50 ms of steady-state data. This shows that the update rate of the strategy is faster

than the mechanical response of current prostheses limbs.
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Chapter 1

Introduction

1.1. Background

A muscle is made from fibers which change their state when they are excited by
the nerves. When a muscle fiber is excited, it generates a signal known as the action
potential (AP) [1], [2]. A signal generated as a result of the stimulation of a group of
muscle fibers by a common nerve axon is a motor unit action potential (MUAP). The
spatial and temporal summation of many MUAPs is a myoelectric signal (MES) [1].
The MES is typically measured with electrodes and the information gathered is known as
an electromyogram (EMG). A more detailed discussion on the MES is provided in
Chapter 2.

Myoelectric control (MEC) is a control strategy for powered artificial limbs that
employs the MES as the control input. As in any control strategy, the reliability of the
control system depends on the input. The reliability of the MEC depends on the success
of decoding the MES into reliable and distinguishable patterns. Unfortunately, decoding
MES into distinct patterns to be used as input is difficult due to the characteristics of the
signal. The unique interaction between MEC and the MES is explored in Chapter 2.

The idea of employing MEC for powered prostheses had been suggested as early
as late 19th century. However, lack of understanding and knowledge about the MES

prevented practical implementation until Reiter demonstrated a working MEC system in



1948 [3]. The combination of Reiter’'s work and an increased demand for prostheses after
World War II encouraged many researchers to investigate MEC further.

Coupled with the improved knowledge in human physiology which provides a
deeper understanding of the MES, many countries, including England, Germany and
Russia, competed to build better MEC systems [4]. In 1960, Kobrinsky expanded Reiter's
work by showing that the method can be utilized to control prosthetic devices [5].
Kobrinsky's work was further enhanced by Dorcas and Scott from the University of New
Brunswick (UNB) who developed a three-state MEC system which is now known as the
UNB system [6].

In recent years, the advancements in computer technology have allowed further
development of MEC. In 1991, Hudgins proposed a new multifunction MEC system
using an artificial neural network to extract information patterns from the MES. This
system provided proportional five-state control [7]. Today, there are two principal
approaches to MEC: state (level coded) based and pattern (feature coded) based. Current

MEC systems are addressed in Chapter 2.

1.2. Problem Definition

Although both state-based and pattern-based approaches have offered improved
functionality and reliability since the inception of MEC, there is a common limitation.
Both strategies require a large amount of MES data (> 200 ms) to achieve a reasonable
classification accuracy.

The amount of data required by existing systems introduces a time delay in the



selection of a prosthesis function. This time delay hinders the development of a
continuous type of control where the input to the control system is required to be faster
than or at least equal to the response of the system. Therefore, it is required to find a way
to make the update rate faster than or equal to the mechanical response of MEC systems

to achieve a continuous type of control.

1.3. Objectives

The general objective of the research is to develop a strategy to solve the above
common limitation of multifunction MEC. The specific objective of the research is to
reduce the time required for the selection of a function with a reasonable classification
accuracy. To ensure that the strategy is adhered to, the following criteria have been
devised:

o The classification performance of the new strategy must be as good as or

better than the current systems when using the same amount of MES data.

o The MES data required for the system to select a function must allow an

update rate equal to or faster than mechanical response of MEC systems.

. The control strategy must be based on voluntary and natural contractions.

° The system must adapt to user’s needs and require minimum training.

It is crucial that the classification performance of the proposed strategy be as good
as or better than the current system with equivalent data, and exceed those performance
levels with less data. It is expected that the method offered in this research will meet these

criteria and provide a starting point for continuous control.



1.4. Thesis Outline

Chapter 1 gave a brief background on MES and its relation to MEC. This chapter
also showed an evolution of MEC, discussed the common problem that exists in current
systems, and stated the objectives of the research.

Chapter 2 explains the generation of MES and its characteristics. It also provides a
review of the relevant literature on MEC.

Chapter 3 presents the details of the proposed MEC strategy, followed by
verification using simulated data. Also, classification results from four different
classifiers are presented.

Chapter 4 demonstrates the performance of the method on real MES data. Various
tests and approaches to validate the technique are also demonstrated.

Chapter 5 provides a summary of the results and discussion. As in any research,
opening a new horizon will produce more questions than answers. This chapter also

includes suggestions for future work.



Chapter 2

Background and Literature Review

2.1. Myoelectric Signal

A muscle is made from many muscle fibers which change their state when excited
by the nerves [1]. The change generates electrical activity because of electrochemical
processes in the fiber which cause the fiber to depolarize along the axis of the muscle.
This resulting signal can be recorded by surface electrodes. Details on the depolarization
of muscle fibers caused by nerve excitation can be found in any human physiology
textbook or in [1], [2], [8] and [9].

The signal generated as a result of fiber depolarization is known as the action
potential (AP). When a single nerve innervates a common group of muscle fibers known
as a motor unit, the resulting signal generated by this group is called the motor unit action
potential (MUAP). The spatial and temporal superposition of many MUAPs is a
myoelectric signal (MES) [1]. An example of this superposition is shown in Figure 2.1.

Nerve
% Ly h— \
— I» 1|—ﬂv-— m I
X = o> Lk
\ == b
=y LA MES
Muscle Fibers MUAP
Figure 2.1. - Generation of Myoelectric Signal (MES)




Since the MES is a summation of many asynchronous firings, the MES has been
modeled as a stochastic process [1], [9]-[12]. This random nature is more apparent when
the MES is recorded by surface electrodes due to the pooled activity of the motor units
within the pickup regions [7]. The recorded MES is also affected by tissue layers that
exist between the muscle and the skin where the recording surface electrodes are placed.
These tissue layers attenuate and exert a low pass filtering effect on the MES [13]. The
random nature of the MES and the tissue filtering effect on the MES make the analysis of

the MES difficult [7], [9], [14], [15].

2.2. Myoelectric Control

Hammond once said:
“Designers of artificial limbs cannot hope to replace all the channels carrying
information between muscles and the central nervous system lost through
amputation. However, the application of control theory and modem electronics
is helping to produce reliable artificial limbs which can even adapt slightly to
their environment” [16].
There are two methods of acquiring control information of electrophysiological origin for
artificial limbs. The first one is from the neural input [17] and the second one is from
myoelectric signals [18]. Although measuring the neural input is possible [17], this
technique is experimental and not clinically acceptable at present. The MES is an
accepted way of acquiring control information for artificial limbs. Thus, only control
strategies using MES as input, known as MEC, will be considered.
There are two ways to obtain MES: using surface electrodes and using
intramuscular electrodes. Intramuscular electrodes have been used in the study of MES
but are impractical for clinical applications. Surface electrodes have also been used in

6



clinics and laboratory experiments because they are non-invasive and the subjects
experience less discomfort. Therefore, only MES obtained from surface electrodes is
discussed. Unfortunately, the advantages of MES acquired by surface electrodes do not
come without penalty. As identified in Section 2.1, the MES obtained using this method
has a random nature and is affected by tissue filtering. In addition, the recording
electrodes contribute noise to the signal [19], [20]. The combination of the random nature,
the tissue filter, and noise makes the MES a complex signal and difficult to classify.
Therefore, strategies to extract the patterns borne in the MES and classify them reliably
are crucial before the signal can be used as input for the control systems. As a result, the
reliability of MEC depends on the strategy used to classify patterns in the MES.

In general, there are two principal approaches in MEC systems: state (level coded)
based and pattern (feature coded) based. Early MEC systems relied on the estimation of
the amplitude [6] or the rate of amplitude change of the MES [21] to select a state or a
function of the device. Once the state of the system is selected, the speed of the device
can be proportionally controlled [18]. These systems are sufficient for controlling devices
with one function (i.e. hand open) or at most two functions (i.e. hand open - hand close)
but insufficient to control multifunction devices [7], [22], [23].

To provide multifunction control, more inputs from MES to the electromechanical
system are needed. One method is to develop a strategy to extract patterns contained in
the MES [23]-[25]. Many classification strategies have been proposed to provide more
inputs to be used by MEC. Saridis and Gootee demonstrated that parameters in the MES

such as signal zero crossing, signal variance and higher moments of the signal can be



used to control the prosthetic arm [23]. They used statistical analysis to classify
combinations of six primitive functions (humeral rotation in, humeral rotation out, elbow
flexion, elbow extension, wrist pronation, and wrist supination) and the linear
discriminant was chosen as a classifier to test their strategy. Saridis and Gootee found that
information provided by signal zero crossing and signal variance gave the best result for
simple motions. Unfortunately, the strategy achieved only 65% classification rate when
170 ms of MES data sampled at 3 KHz was used. However, their work showed that there
are indeed classifiable patterns in the MES.

In another approach, Scott showed that MES spectra contain useful control
information {26]. Extending Scott’s work, Graupe proposed a time-series model. An
autoregressive (AR) model was developed [27] and was able to classify the MES into
four to six different basic limb functions with 99% success rate after the subjects were
trained for 12 hours to produce the parameters required [28]. This work was very
promising but no reported work was able to reproduce the results. Moreover, with
computing power available at that era, the time required to process the MES data (2.5 s)
was impractical. Furthermore, the burden imposed on the subjects is not acceptable.

There was a pause in the development of MEC until 1991 when Hudgins proposed
a new strategy for multifunction myoelectric control using an artificial neural network [7].
He used the MES mean absolute value (MAV), mean absolute value slope, zero
crossings, slope changes, and waveform lengths as the features to determine the limb
functions. Four different limb functions (elbow flexion, elbow extension, medial rotation

of the humerus, and lateral rotation of the humerus) were used to test the strategy. The



average classification rate achieved was approximately 91% for normally-limbed subjects
and approximately 86% for amputee subjects with 200 ms of MES data. These findings
sparked a new interest in MES classification for MEC.

Extencing Hudgins’ work, Englehart used time-frequency features to classify
myoelectric signals [22], [29]. Similar to Hudgins work, four limb functions (flexion and
extension of the elbow, and pronation and supination of the forearm) determined from
MES of the biceps and triceps were used to test the strategy. The average classification
rate was 93.75% for normally-limbed subjects with 256 ms of MES data.

All the work mentioned above use either one or two MES channels to obtain
control information. Work on multi-channel (array based) systems is discussed in the next

section.

2.3. Array Based Myoelectric Signal and Myoelectric Control

Linear arrays of surface electrodes placed along the direction of the muscle fibers
have been used for many years to measure conduction velocity and to localize motor units
[30]-[35]. Hogan and Mann placed four pairs of differential electrodes over the belly of
the biceps to estimate the MES amplitude [36], [37]. The electrodes were stainless steel
disks, 12.7 mm in diameter, spaced longitudinally at 35 mm centers and laterally at 14
mm centers. They showed that more than 90% improvement in signal-to-noise ratio

E(FY |3 . :
(SNR), where the SNR = | —————| *, can be achieved when this array

E{(F-F%
configuration was employed. Their results are corroborated by Clancy and Hogan who

used eight electrodes placed side by side latitudinally across the biceps brachii and triceps



muscles to record the MES. Clancy and Hogan showed that multiple sites in this
configuration improve the SNR for MES amplitude estimation up to 180% [38]. Their
results encouraged researchers to implement arrays for other applications.

It was suggested that multiple electrodes would provide a broader and more
complete MES characterization than a single chanre! since more information could be
captured by the array. Doerschuk ef al. used an a.ray of four electrodes to extend the work
of Graupe and Cline to find patterns in MES [39]. These pattems were discriminated by
analyzing the time history of all limb-function probabilities. By viewing the
discrimination problem as a statistical decision problem, a linear and time invariant AR

model was proposed as

k) = td.")(k-j) +e(k); m=1..M
/=1

where )(k) is the observed L x 1 vector of the MES, p is the order of the model (p = 4),
{Ap.ps - Ay p/ are L x L coefficient matrices, e, (k) is the one-step-ahead prediction error
vector, subscript m is the limb-function being modeled, M is the number of limb
functions, and L is the number of electrodes. All information borne in the MES, including
the crosstalk, was used to discriminate the signals. Six different limb functions (wrist
flexion, wrist extension, wrist abduction, wrist adduction, forearm supination, and
forearm pronation) each divided into four different phases (rest, initiation of function,
hold, and return to rest by reversing the movement) for each function were used to test the

AR model. Although the proposed model classified the six functions reasonably well, no

10



classification rate was given and no further research to extend this novel work can be

found.

2.4. A New Strategy

All the control strategies described above require approximately 200 ms of MES
data to extract the patterns from the signal. This amount of time is considered as the
minimum time necessary to get a reliable estimate of the characteristics of the MES. The
condition is true especially when the strategy employed (i.e. AR parameters) is very
sensitive to disturbances [7], (23], [25].

With motivation (1) to investigate further the approach by Doerschuk et al., (2) to
reduce the time needed for pattern classification, and (3) to develop a continuous type of
control for a prosthesis, a new strategy is proposed. The strategy will try to distinguish
patterns in the MES by analyzing all of the information captured by the array including
the crosstalk since it had been shown that the crosstalk contains useful information to
discriminate functions [26], [27], [39). Further discussion of the proposed new strategy is

found in Chapter 3.
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Chapter 3

A New Strategy

3.1. Methodology

The myoelectric control strategy outlined in this chapter is entirely new and
consists of two parts. Firstly, a modified linear array of surface electrodes is used to
obtain data. Instead of being placed along the muscle fiber, the array is placed around the
arm of a subject. Secondly, the myoelectric signal obtained by the array is processed to
form a correlation feature vector. The patterns exhibited by the vector identify the user’s
intent and are used as the control input for the prosthesis.

This technique was tested both on a set of simulated MES data and real MES data
obtained from volunteer subjects. Analysis of the data and the results are performed both
quantitatively and qualitatively. Performances of the method on a set of simulated data
are presented in Sections 3.2 and 3.3, while results of the strategy on real MES data are
discussed in Chapter 4.

3.1.1. Array of Surface Electrodes

A linear array of surface electrodes has been used and is accepted as one of the
standards for measuring the conduction velocity of a muscle. The array is normally placed
along the direction of muscle fiber as shown in Figure 3.1.

The new strategy modifies the placement of the electrodes by positioning the array

12



around the targeted group of muscles as shown in Figure 3.2. This configuration allows

greater signal capture as the muscles contract to perform various movements.

Figure 3.1. Array along the Muscle Fiber
(adopted and modified with permission, Gray, p. 370 [40])

Figure 3.2. Modified Array Configuration
(adopted and modified with permission, Gray, p. 370 [40])

As mentioned in Section 2.1, the MES obtained by surface electrodes is affected
by tissue filtering and often interfered with by other signals such as electrocardiogram
(ECG), motion artifact, interference from the power source (60 Hz or 50 Hz), skin stretch
potentials, cable and electrode capacitive effects. The situation is worsened when the
electrodes are used in an array configuration. The array configuration captures not only
signals from different channels simultaneously but also records crosstalk among channels
[10], [12], [14], [27], [38], [39].

Many researchers view crosstalk as another form of noise which does not contain

useful information. However, a few researchers have demonstrated that crosstalk can

13



improve the performance when it is properly used [38], [39]. The author believes that
crosstalk can be exploited to enhance pattern discrimination since it carries useful
information such as the relative activity of the muscles performing certain movements.
The array of surface electrodes as shown in Figure 3.2 is a plausible choice as it increases
the amount of signal information including the crosstalk without sacrificing either time

needed to capture the information or patient comfort.

3.1.2. Correlation Feature Vector

Cross-correlation and autocorrelation functions can provide spectral information
and 2™ order moments of signals [41], [42]. The correlation method is used extensively
in biological signal processing for the measurement of the conduction velocity of a
muscle. A typical approach is to compute the cross-correlation of the channels of the
array. The time delays exhibited by the computation show the propagation velocity of the
signal as it travels along the fibers of the muscle being monitored [35].

A signal classification problem typically looks for certain characteristics in a
given set of signals to segregate the signals into a number of classes. The correlation
method can also be used to discriminate signals since it also provides useful information.
Doerschuk et al. demonstrated that autocorrélation and cross-correlation features can be
exploited to discriminate patterns in the MES [39]. The author believes that information
captured by correlations of the MES has unique features which can be put to use as a
basis for pattern classification. If these unique features are captured and used to create

patterns for each functional movement, it is possible to use the correlations for pattern
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classification and as the input for the myoelectric control system.

As stated in the objective, the strategy must be able to make a reasonably accurate
decision that is faster than the current MEC systems. To do that, the amount of MES data
must be obtained in less than 200 ms without sacrificing the information content. Rich
information exhibited by correlation methods may be able to capture such information
with short data records. Autocorrelation of each channel gives a measure of relative
activity which has been used to develop a simple three-degree-of-freedom control [43].
However, this measure has insufficient information for more complex systems where
several functions are to be controlled. Cross-correlations among channels in the array, on
the other hand, may exhibit some consistent patterns for particular activities. A method is
therefore required to capture these patterns by using characteristics such as the power in
each channel, and the cross-powers, to enable decision making in a shorter time than the
current MEC systems.

Introducing a new feature vector, called E(in) or Z(m), which is defined as

follows
Zm) - | U

where the H(m)and P(m)are defined as

_ 1
H(m) = nax @) [ﬂ.(i.l)] (2a)
- 1
P(m) = max(@ @) [0.(0] (2b)
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where Q_(iy) is the cross-correlation coefficient of i and j channels withi # j, w (i) is
the autocorrelation of i® channel of the array, and m is the class. The H(m) and P(m)
correlation vectors can be updated continuously to give a measure of change in the
activity. The correlation feature vector Z(m) maps a path in the feature space which

should be related to the continuous intent of the user. The correlation coefficients

expressed above are computed from
R'(x)
0,6 - - where is; Ga)
RI@_, * (RT®
and
@D = R et = RO (3b)

where R”.(t)mt is the peak value of the cross-correlation between channel i and
channel j, and R“"'(1.’)‘m.t is the peak value of the autocorrelation of the i channel (the
energy of the i* channel). The R,"(t) et R,,"(r)m, and R;'(r)w are computed using
Fast Fourier Transform method and the duration of the time record used are the data
record length.

The classification problem is reduced to recognizing pattems in the lower
dimension 2(».) vector rather than in the higher dimension myoelectric signals. The
features exhibited in the vector represent user intent and, assuming that different feature
vectors exist for different intent, this information can be used as the function selection of
the control system. A system diagram that describes this relationship is shown in Figure

3.3. The results given in Chapter 4 demonstrate that such pattems exist for real MES.
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The next sections describe the results for simulated MES data.

Feature set Class out
- . ‘_ —p Class 1
N————— Creation [ Ches 2 Myoelectric
Data of : Classifier - ass Control
Z(m) > System
— 1 Class m
Classification l’f.'?‘!‘i.“.ﬁ paterns v
Traming Y | Features space
Pattern Feature
. —®1 Set
Analysis g
torage

Figure 3.3. - Relationship between User Intent and Myoelectric Control System
(adopted and modified with permission, Hudgins [7])

3.2. Verification of the Strategy on a Set of Simulated MES Data

The strategy’s ability to correctly identify signals with short MES data records
was tested using simulated data. A model was developed to simulate the acquisition of
Gaussian distributed MES from an array of four surface electrodes. A Gaussian
distribution was chosen since the MES obtained from surface electrodes are Gaussian
distributed [9)]. The objective was to classify the simulated MES into three distinct
patterns. Modeling of the MES in this manner is done only to test the concept. It is by no
means assumed or implied that this simulated data accurately models real MES data. It is
used for test purposes only since accurately modeling surface MES from a number of

active muscles has been shown to be a difficult task.
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3.2.1. Generation of Simulated MES Data

Two sets of Gaussian random signals with zero mean and unity variance were
generated using Matlab 4.2¢c. These random signals were band-limited to dc-1000 Hz and
were considered to be the simulated MES of two identical active muscles as recorded at
the muscle surface. The third signal was generated from a weighted combination of those
two signals. Each signal was generated one-thousand times to make one-thousand
realizations. An example of a signal, generated using this simulation method, is shown in

Figure 34.

wmw M

T WM @ » W e
aumber of points

Figure 3.4. - A Sample of Simulated MES Data

The generated MES was filtered and scaled before being used to test the strategy.
Figure 3.5 illustrates the position of the electrodes and the effect of the tissue filters on the
simulated MES data. Four 4®-order Butterworth band-pass filters with different

bandwidths were produced using Matlab 4.2¢ to simulate the aspect of tissue filtering that
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exists between each muscle and each recording electrode site. The four filters had 3 dB
bandwidths of 20-180 Hz, 20-110 Hz, 20-140 Hz, and 20-200 Hz respectively. After
filtering, the signals were also scaled accordingly to reflect signal attenuation due to the
distance from the source to each of the electrodes. Attenuation factors A-H range from 1
when the muscle source is considered active to 0.1 when it is not active. These values
were obtained through experimental measurements from one normally-limbed subject
with electrodes configuration as in Figure 3.5 placed on biceps and triceps. Table 3.1
tabulates the combinations of the filters and the weighting factors that were used to model

the signal recorded at each electrode for the three possible muscle activity patterns.

Muscle A g -
?
R, - . F1:20-180 Hz

YE2 F2:20-110 Hz

. F3:20-140 Hz

F4: 20-200 Hz

A, B, ... H: Attenuatior
factors

Muscle B

Figure 3.5. - Illustration of Electrode Array and Tissue

Filter Effect for Simulated MES Data
Muscle Activity Signais Recorded at Electrode Location
tte
Pattern El E2 E3 E4
(F4*S1) + (0.955*F3*S1) + | (0.338*F2°*S1) + ] (0.332*F1°*Sl) +
(F2%0.1°S2) (F1%0.1*S2) (F4*0.1*S2) (F3*0.1*S2)

(F4*0.1°S1) +
(0.470°F2*S2)

(F4*S1) +
0.470*F2*S2

(F3*0.1*S1) +
(0.670°F1°S2)

(0.955°F3*S1) +
0.670°F1*S2

(F2*0.1*S1) +
(F4*S2)

(0.338°F2*S1) +

(F1*0.1*S1) +
(0.802°F3*S2)

(0.332°F1*S1) +
0.802*F3*S2

Table 3.1. - Combination of Weighting Factors and Bandpass Filters to Simulate Three
Distinct Patterns from Two Sources
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3.2.2. Classifiers Employed

Since there were three different signals to be classified and the array consisted of

four surface electrodes, the m™ contraction type vector is

Zm) = [Q,(12) 0,(1,3) Q(1,4) Q,23) 0,24) 0,64 0 (1) 0,2) 0,0) 0, @] m = 123

where the correlation coefficients were computed using Equations 3a and 3b foriand j =
L,...4.

Once the parameters of the correlation feature vector were established, techniques
to classify the signals were required. Four classifiers were employed to classify these
three signals. These classifiers were the rank order, the minimum distance (Euclidean

distance measure), the Bayes quadratic discriminant, and the fuzzy c-means.

3.2.2.1. The Rank Order Classifier

The method used for the rank order classifier is very simple. It classifies the
signals based on the pattern shown by the index of the feature vector after they have been
sorted in ascending order of amplitude. The values in the feature vector for each of the
one thousand realizations are computed and ranked in ascending order. After ranking,
only the order is relevant since the amplitude information is lost. The index of the
structure forms a unique pattern where the signals are clustered into different classes. At
this point, the last five coefficients of the ordered vector were taken as the class specific
pattern. A vector of more than five coefficients did not improve the classification and

indeed the added noise in the vector often caused poor classification results. Similarly, if

20



fewer coefficients were taken, insufficient information was available to classify the

signals. A sample Matlab 4.2c program is included in Appendix C (CD-ROM).

3.2.2.2. The Minimum Distance (Euclidean) Classifier

The minimum distance classifier discriminates the signals based on Euclidean
distance. The distance of a given vector is computed without any weight factors against

the center (mean) of established classes.
W NZ-p ) @wf s m =123

where p_ = E[Z(m)] is the mean-value of each class obtained from a training set. The

decision that a vector belongs to a particular class is determined by the smallest distance.
It is necessary to determine a training set and a test set for each of the classes,

since a mean value for each class must be established. The first five-hundred realizations

were used as the training set and the next five-hundred realizations as the test set.

Sample of Matlab 4.2c code to perform these calculations is included in Appendix C (CD-

ROM).

3.2.2.3. The Bayes Quadratic Discriminant Classifier

Since the simulated MES data has a Gaussian distribution, the decision rule of the

Bayes quadratic discriminant can be expressed by
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where N is the dimension of the correlation feature vector Z(m) (i.e. 10 or 16 for 4 MES
channels), E, = E[(Z{m)-p)"(Z(m)-1 )] is the covariance matrix, |E,p| is the
determinant, and B, = E[Z(m)] is the mean-value of each class obtained from a training
set, Z(m) .

The training data used the first five-hundred realizations to determine the
covariance and the mean for each class. The next five-hundred realizations were used as
the test data. A sample Matlab 4.2c program to perform these calculations is included in
Appendix C (CD-ROM).

3.2.2.4. The Fuzzy c-Means Classifier

The fourth classifier was the fuzzy c-means classifier. Fuzzy c-means can tolerate
contradictions that often exist due to the random nature of the MES. The ability to handle
contradictions is an advantage over the previous three classifiers and one of the reasons
this classifier was selected. The decision criteria is to minimize the sum-of-squared errors
function [44]

Iy = ¥ ¥ wray

k=11i=1

where
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I, = {illsisc; dy=lx,-v] =0}

where x, is the input vector, U, is the fuzzy membership, and d, is the Euchdean norm
between v, and x,. More detailed explanation of the equations can be found in [44] and
[45]).

The value of ¢ (partition index) was chosen to be three since three signals were to
be classified. The fuzziness (degree of uncertainty/confusion) of the classifier is
controlled by the value of m (fuzziness index). Although the fuzziness index can take any
value between 1 < m < =, the index was chosen to be 2. This value is the recommended
value in literature when a fuzzy classifier is compared to non-fuzzy classifiers such as the
three previous classifiers [44], [45]. The initial membership function U (U®e M),
where M, stands for the membership of fuzzy classifier, for each class is determined from
the apriori knowledge of the MES pattern which was obtained from the rank order
technique. An arbitrary weight (certainty value) is assigned to each feature element to

make the complete membership function. The values of the weights are critical. If the
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initial membership function is assigned randomly, it will result in a poor classification
accuracy. The value of U was chosen as follows

0.70 0.50 0.85 0.07 045 0.06 0.95 0.02 0.00 0.32

U® =015 040 0.10 0.86 045 009 0.00 0.02 096 0.36

0.15 0.10 0.05 0.07 0.10 0.85 0.05 0.96 0.04 0.32
where the first two rows are the initial weighting factor for muscle A and muscle B, and
the last row is the initial weighting factor when both muscle A and muscle B are active
(co-contraction).

The first five-hundred realizations were taken as a training set where the data was
used to compute the c-fuzzy clusters {v,"} and the subsequent membership function U®.
As the computation progressed in the loop, the values of U® and {v,"} were updated.

Once the membership function and c-fuzzy clusters had been updated by the
training set, the fuzzy c-means classified the next five-hundred realizations. The
implementation of this classifier followed Bezdek’s algorithm [44]. A sample program in

Matlab 4.2¢ code is included in Appendix C (CD-ROM).

3.3. Performance of the Strategy on Simulated MES Data

The classification rates (in percent) of the four different classifiers for different
data record sizes are summarized in Figure 3.6 and tabulated in Table 3.2. All classifiers
classified the simulated signals into three different classes with >90% accuracy if the
sampled data was sufficiently long (i.e. n > 200). The rank order classifier gives the

poorest results for reasonable data records (i.e. n <200). The Bayes quadratic
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discriminant, the minimum distance, and the fuzzy c-means all yielded 100% accuracy
using 200 points of simulated MES data and give reasonable classification rates with as

little as 30 points of simulated MES data.

# of sample points 5 10 | 20 | 30 | 40 | 50 | 100 | 200 | 500 | 1000
Rank Order 328 | 39.0 | 504 | 559 | 60.0 | 60.6 | 75.7 | 90.4 | 99.5 | 100
Min. Distance 77.0 | 80.1 | 889 | 934 | 957 | 973 199.7] 100 { 100 | 100
Quad. Discriminant | 79.3 | 83.1 | 90.1 | 963 | 99.3 | 99.7 | 100 | 100 | 100 | 100
Fuzzy c-Means 78.7 1 85.1 | 93.7 | 97.1 | 98.4 ] 99.1 | 996 | 100 | 100 | 100

Table 3.2. - Classification Rate (in percent) of Different Strategies for Different Data
Record Length on Simulated MES Data

Performance of Classifiers
(on a simuiated data)

g

g

¥

A

Classification Rate
i g

50%
40% 1
0%
5 10 20 30 40 50 100 200 S00 1000
Number of Data Points
—@— Rank Order —— Min. Distance —a— Quad. Discminant —C— Fuzzy c-Means

Figure 3.6. - Performance of Different Classifiers for Different
Data Record Length

Since the sampling rate used was 1000 Hz (1 point = 1 ms), the results of this

simulation show that only a short data record (i.e. 30 ms) is needed to estimate the control
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input reasonably. If similar results can be obtained from real MES data, the strategy can
be used in continuous myoelectric control. Thus, further investigation was undertaken to
test the technique on real MES data. This is presented in the next chapter.

The rank order and the fuzzy c-means classifiers were omitted in the analysis of
the real MES data. The rank order classifier was dropped due to its poor performance on
the simulated data. The rank order could classify the signals with >90% accuracy only
when the input data was 200 ms or more. The fuzzy c-means classifier gave the best
performance giving 93% classification accuracy with as little as 20 ms of simulated MES
data. However, the minimum distance and the Bayes quadratic discriminant performed
nearly as well (90%) with 20 ms of simulated MES data. In addition, the fuzzy c-means
classifier depends on the assigned values in the initial membership function. Assigning
the values for the initial membership function would be very difficult and time consuming
as it is subject dependent. Furthermore, choosing random values for the initial
membership function in the Bezdek’s fuzzy c-means will yield poor performance.
Therefore, there appears to be little advantage to using a more complex classifier such as
fuzzy c-means over the Bayes quadratic discriminant and the minimum distance

classifiers. Thus, the fuzzy c-means classifier was left for future work.
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Chapter 4

Performance of The Strategy with Real Myoelectric Signals

4.1. Data Acquisition

Chapter 3 showed that the new strategy which uses an electrode array and a
correlation feature vector was able to identify the simulated signals with high
classification accuracy with as little as 30 ms of simulated MES data. To confirm that the
method can be used in myoelectric control, it must be tested on real MES data.

Twelve volunteer subjects, eleven normally-limbed and one with a congenital
limb deficiency, were recruited. Each subject read and signed an informed consent form
(a sample of the consent form is included in Appendix B) before the experiment began.
The subjects were reminded during the experiment that they were free to withdraw at
anytime without any obligations. The subjects were asked to perform six basic upper-limb
(hand) movements as illustrated in Figure 4.1: finger flexion, finger extension, wrist
flexion, wrist extension, ulnar deviation and radial deviation. The amputee subject was
asked to visualize the same hand movements and perform them to the best of the subject’s
ability.

Finger Finger Wrist Wrist Ulnar Radial
Flexi Extensi Flexi Extensi Deviati Deviati

Figure 4.1. - lllustration of Six Different Movements
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The complexity of the correlation feature vector Z(m)depends on the number of
MES channels in the array. It was hoped that four myoelectric channels would be
sufficient to classify six basic hand movements while keeping the feature vector simple
and not computationally intensive. Therefore, an array that consisted of four myoelectric
channels was used to acquire the MES data. However, it does not mean that the feature
vector zm) is limited to four channels. When more complex movements are going to be
investigated, the features in the Z(m) vector may be increased by having more channels in
the array. The optimum number of channels in the array given a set of contractions is left
for future work.

An array of four surface electrodes was positioned around the arm of the subjects
(see Figure 3.2 for illustration). The array was placed in such a way that each channel
monitored either different active regions of the muscles (normally-limbed subjects) or so
that they were well separated with equal spacing between the electrodes (limb deficient
subject). No attempt was made to optimize the position of the array. The optimum
placement of the array is left for future work.

The data from each channel was amplified by a standard opto-isolated amplifier
with a common mode rejection ratio greater than 100 dB. The amplified signals were
simultaneously recorded at 1000 points per second (1 point = 1 ms) by a DAS 16/330
A/D board that was attached to an IBM PC 486. In-house software, written in C and
LabView, was used for data acquisition. A block diagram of the data acquisition process

is shown in Figure 4.2.
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Figure 4.2. - Block Diagram of the Data Acquisition

4.2. Myoelectric Signal Data

Two types of MES data were investigated in order to determine the performance
of the strategy. The first data type was transient signals obtained from muscles that were
recruited from a relaxed state to an excited state. Hudgins, in his Ph.D. thesis,
successfully demonstrated that the first 256 ms of MES data contained specific
(deterministic) patterns for different types of contractions [7]. This was corroborated by
the recent finding of Englehart who extended the analysis of the transient MES into the
time-frequency domain [22]. Based on the findings of Hudgins and Englehart, the
proposed strategy was tested on the transient signals to evaluate its performance. Figure
4.3(a) shows an example of the transient signals measured in each of the four MES
channels as the muscles go from a relaxed to an active state and back to a relaxed state.

The second data type was from steady-state signals. Steady-state data were

obtained during a relatively isometric/isotonic contraction as shown in Figure 4.3b.
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f

i
2
0 500 1000 1500 ) 500 1000 1500
N
) — 0
5
o 500 1000 1500 So 500 1000 1500
o 5 5
g 0 ~+W——— 0
Q 5 -5
0 500 1000 1500 0 500 1000 1500
<« 5 5 i
E 0 r——-apin 0
© o 500 1000 1500 36 500 1000 15100
(ms) (ms)
@ (b)
Figure 4.3. An Example of (a) Transient Signals, (b) Steady-State Signals
from Each of the Four Channels.

Initially, the transient data was obtained using a monopolar configuration. The
placement of the array in a monopolar configuration is shown in Figure 4.4. It was
postulated that this arrangement would give an accurate measure of the activity from each
electrode site. However, it was difficult to find a common reference site for the
monopolar configuration. There is a possibility that the common mode signals could
mask signals from the recording channels if the reference site is placed on active muscles.
The problem was confirmed when the data collected from one subject showed that a large
common mode component was measured by each channel. Therefore, this configuration

was abandoned and replaced by a bipolar configuration. The bipolar configuration shown
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in Figure 4.5 was used to collect all other MES data.

Refwrenes/Gromd Chennel 3

Figure 4.4. Array with Monopolar Configuration
(adopted and modified with permission, Gray, p. 370 [40])

Figure 4.5. Array with Bipolar Configuration
(adopted and modified with permission, Gray, p. 370 {40])

In obtaining the steady-state data, subjects were asked to hold one of the six hand
movements for approximately sixty seconds while the data was recorded from the four
channel array. Qualitative analysis was performed to ensure that the captured information
contained none of the initial transient signals.

Since one of the research’s objectives is to develop a strategy that requires a
shorter time to make a control decisions in a more continuous manner, analyzing steady-
state data is more crucial than investigating the transient data. Testing the strategy with
steady-state data can confirm if the method is usable as a starting point for the

development of a continuous MEC system.
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4.3. Data Analysis

Three classifiers were used in the analysis of the real MES data. Two classifiers,
the Bayes quadratic discriminant and the minimum distance, which were used to test the
simulated data, were used again in the analysis of the real data. The real MES data was
considered to have a Gaussian distribution so that the Bayes quadratic discriminant could
be used as a classifier [9]). The third classifier, the linear discriminant, was added as a
bridge between the Bayes quadratic discriminant and the minimum distance classifier.
The Bayes quadratic discriminant classifier includes the covariances of each class.
Although these separate considerations might bring more accurate representation of the
characteristics of each class, the strict conditions imposed by the Bayes quadratic
discriminant might yield singularities on certain classes during training. On the other
hand, the minimum distance classifier does not consider the covariance from each class in
its classification membership function. The linear discriminant maintains the information
by averaging the covariance from all classes. This reduces the computational complexity.
Therefore, the linear discriminant was chosen as the third classifier.

In the following sections, the analysis of the data is discussed and is broken into
two main parts. First, the performance of the strategy on the transient data is discussed.
Different settings and combinations of strategy parameters (i.e. threshold window size in
which the number of data points used in threshold calculation, data record length, and
features of the correlation vector) were tested with the three different classifiers, are
explored and discussed. Second, the performance of the strategy on the steady-state data

is presented. Similar to the first part, various tests with different settings on the steady-
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state data were performed and the results are discussed. For both types of data, the first

fifty percent was used as the training set while the last fifty percent was used as the test

set.

4.3.1. Analysis with the Transient Data

It is important to note that the initiation of the signals must be captured in order to
classify the transient signals correctly [7]. If the starting point is captured too early, the
signal contains noise with no MES information. If the beginning of the signals is not
obtained, then the deterministic patterns in the transient signals are not captured. A
qualitative analysis coupled with a simple algorithm was used to determine the starting
point of the transient signals. The algorithm used the mean absolute value (MAV) of the
noise level of each channel. A value of three times the MAYV of the noise level was used
as the threshold. When the MAYV of the signals from any of the four channels exceeded
the threshold, the contraction was assumed to start. In addition, a qualitative analysis was
performed on every signal and was used as a guide when the simple threshold algorithm
failed to detect the initiation point which could happen for a very low level contraction.

For every transient data record from every subject, the record length (amount of
data or time duration), the threshold window size, and the features of the Z(tn) vector
were varied with each classifier. The record length was varied from 1024 to 10 ms. The
threshold window size used six different settings which are 50, 25, 20, 15, 10, and 5 ms.
The Z(m) vectors were either normalized in which the H(m) and the P(m) were
calculated as
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or not normalized in which case the Rm) and the P(m)were computed as

Hm) = [0,6)] o e - [0
Pm) <{0,0] o Pm = |0 0)

Since the data was obtained from four electrodes, the E(m) vector can have either
10 features or 16 features. A vector of ten features was created from the combination of
the six cross-correlation features of the H(m) and the four autocorrelation features of the
P(m). A vector of sixteen features was made from these 10 features plus the delays
associated with the cross-correlation between each channel. The combination of the
features of the f(m) (10 or 16 features), the threshold window size (50, 25, 20, 15, 10, §
ms) and the record length (1024, 512, 256, 200, 100, 50, 40, 30, 20, 10 ms) was tested on
the Bayes quadratic discriminant, the linear discriminant, and the minimum distance
classifiers resulting in a total of 1920 tests. Only results from the normalized feature
vector are presented and discussed. Results from the non-normalized feature vector can be
found in Appendix C (CD-ROM). The programs and the results from all subjects for all
combinations performed are included in Appendix C (CD-ROM).

Figures 4.6, 4.7, and 4.8 show the classification rate of the Bayes quadratic
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discriminant', the linear discriminant, and the minimum distance classifiers for six classes
(hand movements) as the record length was varied with a threshold window size of 25,
and the i(m) vector had 10 features normalized to the maximum value only. Figure 4.9

compares the average performance of each classifiers employed over all subjects for six

classes.
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The results from the best subject, the average over subjects, and the worst subject
from nine normally-limbed subjects are shown in Figures 4.6, 4.7, 4.8 and 4.9.

As shown by the graphs, the performance of the strategy in classifying the MES
data is respectable. Furthermore, with 200 ms of MES data the performance of the best
subject when six classes with ten-feature vector (93.4%) was tested by the quadratic
discriminant is comparable to the performance of the best subject on Hudgins’ work
which classified fewer classes (four limb functions) with 30 features (98%) [7]. However,
the strategy showed a significant performance degradation when it tried to classify the
transient signal with less than 200 ms of MES data. The significant decline in the
classification performance when the input data is less than 200 ms is also shown by
Hudgins and Englehart when they tried to classify four classes [7], [22]. Furthermore,
there is little difference in performance for the different classifiers. This suggests that 200
ms is the minimum amount of MES data required to classify the transient signals with a
reasonable accuracy.

Results from 16-feature vector (available in Appendix C on CD-ROM) also
showed that the performance degraded significantly when the data record length used was
less than 200 ms. These results also show that the higher dimension (16-feature) vector
did not improve the classification performance over the 10-feature vector. This means that
including the time delay terms in the feature vector did not add any new information.
Therefore, the 16-feature vector was no longer used.

Figures 4.10, 4.11, and 4.12 demonstrate the effect of the threshold window size

on the average performances of the Bayes quadratic discriminant, the linear discriminant
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and the minimum distance classifiers when the Z(m) vector used 10 features normalized

to the maximum value only.
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Six Classes

Although the window size of 25 shows the best classification rate overall, it is clear from

the graphs that the window size has little effect on the performance of the strategy from
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the graphs. The performance degradation is also evident from the Figures 4.10, 4.11 and
4.12 when the strategy tried to classify the transient signal with less than 200 ms of MES
data. All other results on the effect of the threshold window size of different combinations

are included in Appendix C (CD-ROM).

4.3.2. Analysis with the Steady-State Data

The steady-state data was analyzed differently from the transient data. The
threshold window size was dropped since no starting point needed to be found. The Z(m)
vector used 10 features where the H(m)and the ?(m) were either normalized in which

case they were calculated as
Amy - — [0,60] with  Fm) = ——— [0,00]
max(@_G7)) o= max(@, @) =

or not normalized in which case the ii(m) and the i(m) were calculated as

Hm) = [Q,G)] with  Pm) = |o,0]

Again, the same three classifiers were used to test the performance of the strategy on the

steady-state data.

4.3.2.1. Performance of the Steady-State Data

Six different tests were performed to analyze the steady-state data from nine
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normal-limbed subjects. Results from the Bayes quadratic discriminant® (Q. D.) are

shown in Figures 4.13 and 4.14. Results from the linear discriminant (L. D.) are shown in

Figures 4.15 and 4.16, while results from the minimum distance (M. D.) are given in

Figures 4.17 and 4.18. Again, only results from the best subject, the average over all

subjects and the poorest subject are shown in the graphs for clarity. All other results can

be found in Appendix C (CD-ROM).
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2A small noise was added to prevent singularity for the Bayes quadratic discriminant
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As shown by the graphs, the strategy can classify six classes (hand movements)
with a high degree of classification accuracy up to 200 ms of MES data. Furthermore, the
technique can classify six classes with as little as 50 ms of MES data with less than a 10%
drop in the performance. This finding is significant considering all the data was obtained
from untrained subjects. In addition, the performance of the normalized feature vector
(Figures 4.13, 4.15, and 4.17) are more consistent than the non-normalized feature vector
(Figures 4.14, 4.16, and 4.18). This means that the pattermns exhibited by the normalized
feature vector are more stable than the non-normalized vector since the ratio are kept
approximately the same. However, the non-normalized vector also has some advantage in
that the relative strength (force) information is retained. This information is very useful if
a proportional control is desired (although a simple MAV measure can be used as well).
The normalized and the non-normalized feature vector can be coupled to produce one
system. The normalized feature vector can be used to classify the signals by maintaining

the consistency while the non-normalized feature vector can be used to control the speed.
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This investigation and other possible use of the non-normalized feature vector are left for
future work.

On the other hand, although the Bayes quadratic discriminant gave a better
performance when the feature vector was not normalized (Figure 4.14) and the
performances of the linear discriminant classifier for the normalized (Figure 4.15) and the
non-normalized (Figure 4.16) cases are almost identical, there are negative effects of this
non-normalized feature vector. A detrimental effect of this non-normalized feature vector
on the classification performance is shown by Figure 4.18 where the minimum distance
classifier was used. The performance of the minimum distance classifier drops more than
10% for the same amount of data when the feature vector is not normalized. Therefore, a

non-normalized feature vector is not used for further analysis.

4.3.2.2. Performance of a Fixed Length Training Set

It was postulated that the larger the data record used for training, the higher the
test set classification performance. Thus, a trial where the data record length of the
training set was fixed at 1024 ms while the data record length test set was varied from
1024 to 10 ms was carried out. The experiment was run only on the normalized 10-feature
Z(m) vector. Figure 4.19 shows the output of the Bayes quadratic discriminant, Figure
4.20 displays the resuit of the linear discriminant, and Figure 4.21 exhibits the outcome of
the minimum distance. Figure 4.22 compares the performance of each classifier over all
subjects when classifying six classes (hand movements) for fixed and variable training set
data record length.
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It is evident from Figure 4.22 that the fixed length training set approach constantly

performs more poorly than the variable training data record length (results of fixed length

training set are shown using the solid lines while the dashed-line represented results of

variable length training set). This phenomena can be explained. The fixed length strategy

used 1024 ms to train the classifier resulting in tightly bound classes with small variances.

When test data with large variance was classified, the spread confused the classifier. The
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classifier could not determine to which class the data belonged, since it was not trained to
handle data with large variances. As a result, only the dominant classes could be
classified correctly while the other classes were misclassified as one of the dominant
class. Confusion matrices, showing how the other classes are misclassified and other
results of the test, are included in Appendix C (CD-ROM).

4.4. Four Class Problem

The results previously shown were for the six class (six distinct hand movements)
problem. If the confusion matrices are examined, it is clear that there are major and minor
classes. These minor classes lowered the performance of the strategy. Examples of the
confusion matrices from the Bayes quadratic discriminant with a variable length training
set using the steady-state data are shown in Table 4.1a, 4.1b, 4.1¢, 4.1d, 4.1e, and 4.1f.
The rows give the record length of the input data while the columns are the classification
accuracy and the classification error. The correct classification of Table 4.1a is finger
flexion (F. F.) and the classification error column are the other five classes (hand
movements). Table 4.1b, 4.1c, 4.1d, 4.1e, and 4.1f show the correct classification of the
finger extension (F. E.), the wrist flexion (W. F.), the wrist extension (W. E.), the ulnar

deviation (U. D.), and the radial deviation (R. D.) respectively.

43



Table 4.1a. - Classrﬁcauon Rate of Fmger Flexlon versus Data Record Sizes w1th
Error Rate of Other Five Classes

Table 4.1b. Classrﬁcanon Rate of Fmger Extcnsron versus Data Record Sizes wnh
Error Rate of Other Five Classes

Table 4.lc. Classrﬁcatmn Rate of Wnst Flexnon versus Data Record Slzes w1th
Error Rate of Other Five Classes



Table 4.1d. - Classxﬁcanon Rate of Wnst Extensnon versus Data Record Sizes wnh
Error Rate of Other Five Classes

Table 4.1e. - Classlﬁcanon Rate of Ulnar Devmnon versus Data Record Sizes thh
Error Rate of Other Five Classes

Table 4.1f. - Classnﬁutxon Rate of Radlal Devmnon versus Data Record Sizes w1th
Error Rate of Other Five Classes
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From the tables, there are unclassifiable data sets even with 1024 ms of MES data.
The dominant classes such as finger flexion and wrist flexion are classifiable with 100%
accuracy when the input data is sufficient but suffer from misclassification as the data is
shortened (shown by Table 4.1a and 4.1c). Tables 4.1b, 4.1d, 4.1e, and 4.1f show that
certain contractions are confused with other classes even when the data is sufficient. The
classification accuracy drops as the data is shortened.

The purpose of the test is to determine if the classification accuracy is improved
by reducing the problem to four classes. Only steady-state data from three subjects was
tested. To reduce the time and the analysis, the Bayes quadratic discriminant, the linear
discriminant and the minimum distance classifiers with a variable length training set were
used. The four major classes and the two minor classes were determined from the
performance of the steady-state data. The minor classes were ignored and assumed to be
one of the major classes. The choice of lumping a minor class with a major class was
decided qualitatively.

The results of the Bayes quadratic discriminant, the linear discriminant and the
minimum distance for four classes are exhibited in Table 4.2, Table 4.3, and Table 4.4.

The six class performance is also shown for comparison.
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As seen from the tables, the performance of each classifier improved by
approximately 10% for all subjects when the problem was reduced to four classes. The
classification accuracy of Subject #2 with 1024 ms of MES data was improved from 80-
85% for six class problem to 98-99% when the two confused classes were removed. And,
the classification accuracy was improved from 70-74% to 79-87% even with only 50 ms
of MES data when four classes were considered. The performance of Subject #3 is
similar. A classification accuracy (84-95% with 1024 ms data) improved to 96-100%
when four classes were considered. Furthermore, the performance of Subject #3 with four
classes is 96.7% even with 50 ms of MES data (the Bayes quadratic discriminant was
used). These results show that the proposed strategy can identify patterns in the MES with

a high classification accuracy even when the data record is short.

4.5. Tracking

To show that the proposed strategy can be used as a continuous type of control, a
tracking scheme was devised. Six different hand movements with ten seconds per activity
for a total of one minute of motion were performed by the subjects.

Again, the same three classifiers were used to test the scheme. The steady-state
data was used as the training set, while the dynamic data was the test set. A sample of the
dynamic data is shown in Figure 4.23. The record length of the input data was varied

from 1024 to 10 ms with a 50% window overlap.
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Figures 4.24a, 4.24b, 4.24c, and 4.24d demonstrate results of the strategy when
the Bayes quadratic discriminant (Q. D.) classifier is used to track the dynamic data.
Figure 4.24a shows the output of the classifier when 1024 ms with 512 ms overlap used
as the input data to track the changes. This means that the decision was made every M
samples based on the previous 2M samples (i.e. 50% overlap). The strategy tracked the
changes with average classification error for six classes (hand movements) of 17.0%.
Figure 4.24b shows the tracking result when the data of 256 ms with 128 ms window was
used. The error rate is 18.0%. Figure 4.24c shows the output when the input data used
100 ms and Figure 4.24d displays the result as the input data employed was 50 ms. The
average classification error are 15.6% and 15.8% respectively. The average error rate for
shorter data record is lower because the shorter the data record duration, the more

iterations available for a given data record length (10 seconds for each movement) which
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results in lower percentage error (i.e. 5/100 is less than 1/16). The results shown were
excerpted from the best subject for the Bayes quadratic discriminant. Other results with

other record lengths are included in Appendix C (CD-ROM).

Discriminant - Variahle Quadvatic Discriminant - Varisble
(1034, 10 max, normelzed, add noise) (258, 10 maw, normalized. s nolee)
[} [ ]
(1 s
2 2
' 0 2 ] [} «0 100 120 '0 100 200 300 400 500
) Maciessifled - /- Trus Vahe ¢ Macwessified - True Vehe
Figure 4.24a. - Tracking Result using Q. D. Figure 4.24b. - Tracking Result using Q. D.
with the Input Data of 1024 ms with the Input Data of 256 ms
Discriminent - Variable Quadratic Discriminent - Variable
(100, 10 mes, norvaiized, add noise) (50, 10 max, normaiizad, add noise)

L
w»

u
|
]
|

“
“

- »
- ”»
&

1 .

-] 20 400 600 00 1000 1200 0 500 1000 1500 2000 2500

! Macasefed -t T Vee ' Muckssfied - 1- TruaVake

Figure 4.24c¢. - Tracking Result using Q. D. Figure 4.24d. - Tracking Resuit using Q. D.
with the Input Data of 100 ms with the Input Data of 50 ms

Figures 4.25a, 4.25b, 4.25¢, and 4.25d demonstrate results of the strategy when
the linear discriminant (L. D.) classifier was employed to track the dynamic data with

1024, 256, 100, and 50 ms respectively. Again, 50% of the input data record length was
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used as the overlap window. The average classification error for six classes are 9.0%,

4.4%, 7.0% and 13.8% respectively. Those results were taken from the best subject.
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The results of the minimum distance (M. D.) classifier tracking the dynamic data
with 1024, 256, 100 and 50 ms record length are shown in Figures 4.26a, 4.26b, 4.26c,
and 4.26d respectively. The overlap window is 50% of the input data record length. The

average classification error of the minimum distance classifier shown in the figures while
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tracking the dynamic data are 12.4%, 10.2%, 12.5%, and 16.5%. Those results were

selected from the best subject.
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Table 4.5 shows the average error rate of each classifier tracking the dynamic data.
The first column represents the record length of the data input. The second, fourth, and
sixth columns show the error rate of the best subject for each classifier. The third, fifth,

and seventh columns summarize the average error rate of each classifier over all subjects
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tracking six classes of the dynamic data.

Table 4.5. - Average Error of The Dynamic Data for Six Movements of
(a) the best subject, (b) average over all subjects

Although Table 4.5 shows that the classification rate decreases as the data is
reduced, the best subject can track the six classes of the dynamic data with less than 20%
error even with 40 ms of MES data. This means that the decision was made every 20 ms
which is faster than the mechanical response of the current MEC systems (a decision is
made every M samples for every 2M samples). The resuits show that this strategy can be
used by some individuals to continuously track the changes exhibited by the MES data.
The average error in this case is approximately 40% which means that for most
individuals, six class problem is perhaps too complex. A reduced four class problem
would certainly improve the performance and lower the classification error.

Whether the performance can be improved when (1) more electrodes are used, and
(2) the window overlap is changed, is still unknown. These options and other possibilities
are left for future work.
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Chapter S

Conclusions and Future Work

§.1. Summary

It was noted that current multifunction MEC systems require at least 200 ms of
MES data to select a function with an acceptable classification rate. This is a major
hindrance to the development of a continuous type of control. The purpose of this thesis
was to determine if the time to select a function can be reduced while maintaining an
acceptable classification accuracy. Chapter 1 introduced the background, stated the
problem, presented the thesis objectives, and outlined the topics for each chapter. Chapter
2 provided additional background on the MES, relevant literature review on MEC, the
evolution of MEC and reasons for employing an electrode array. Chapter 3 formulated
and presented a new strategy for MEC which uses an array of surface electrodes and a
correlation feature vector, Z(m). It also demonstrated the performance of the strategy in
which it was able to classify three distinct patterns with greater than 90% accuracy with
only 30 ms data on a simple set of simulated MES data. Chapter 4 presented results of the
strategy when it was tested on real MES data. The transient and the steady-state data were
tested using different variable combinations (i.e. threshold window size, correlation
feature vector -Km), and data record length) on three different classifiers. When tested
with transient data, the strategy achieved an average of 85% classification accuracy with

256 ms of MES data. The result is comparable to current MEC systems that use transient
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MES data. It also demonstrated that 200 ms of MES data seems to be the minimum time
required to capture sufficient information to extract distinct patterns in the transient data.
When tested with steady-state data, the strategy was able to classify six classes with an
average of 90% classification accuracy with 256 ms and an average of 85% classification
accuracy with as little as 50 ms of MES data. This performance performs same strategy
on the transient data as shown by Hudgins. However, the current strategy uses a different
set, different class, and different thresholding techniques to capture the transient pattern.
When the problem was reduced to classify four classes, the performance of the strategy
significantly improved (over 10%). Section 4.5 also demonstrated the ability of the

strategy to track dynamic movements as the data was shortened.

5.2. Discussion

Early myoelectric control systems such as the three-state UNB systems can be
modified to provide continuous control. However, these systems are limited to one or
two functions. Newer systems such as those based on pattern recognition (i.e. Hudgins',
Graupe) were developed to increase the functionality of the MEC. Unfortunately,
although the number of controlled functions were indeed increased, these systems forced
a time delay between function selections which hinders their use for continuous control.
Therefore, the new strategy outline in this thesis was proposed to reduce the time delay
between switching between functions in the multifunction MEC systems.

As demonstrated in this thesis, the new strategy uses a correlation feature vector

extracted from an array of surface electrodes. The information from the electrode array
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provides a broader and more complete measure of MES characteristics than the
information measured from a single site. The correlation feature vector is employed to
efficiently capture both within channel (autocorrelation) and across channel (cross-
correlation) information from every channel of the array. This exploits the existence of
crosstalk which has different characteristics from different contraction conditions.

In this thesis the array consisted of four signal channels. This work has shown that
this arrangement was sufficient to capture information to classify six basic hand
movements with a high degree of success. However, the number of myoelectric channels
is not limited to four channels. When more complex movements are to be classified, the
channels can be increased to allow a greater capture of the signal and to enrich the

information of the feature vector.

5.3. Conclusion

The new strategy takes advantages of the information captured by the array of
surface electrodes and features exhibited by the autocorrelation and the cross-correlation
to extract patterns in the myoelectric signal. It exploits the existence of the crosstalk and
using all the information it gathers from an active site, including crosstalk, the new
strategy increases the speed of decision making and subsequently the response tirne. The
results show that the strategy can make a reasonable decision with only 50 ms of the

steady-state myoelectric signal data.

56



5.4. Original Contribution

In the author’s opinion, the original contribution of this research is:
for the first time, to the knowledge of the author, a myoelectric control strategy can
extract patterns in the MES with a reasonable accuracy with as littie as 50 ms myoelectric
signal data. The decision time is faster than the mechanical response of the existing

powered prostheses.

5.5. Recommendation and Future Work

As in any field, the introduction of a new concept often brings more questions than
answers. The following future work is recommended:

1. Extend the work of Chapter 4 to test the strategy on more subjects which should
include amputee subjects.

2. Investigate the effect of increasing the number of myoelectric channels. The results
shown are for four myoelectric channels. The addition of more channels may capture
more information which could result in more distinct paticms.

3. Determine the optimum positions of the electrode array.

4. Investigate performance sensitivity to array displacement. A preliminary result of the
sensitivity test is presented in Appendix A.

5. Develop more advanced classifiers such as neural networks to test the strategy.

6. Develop an algorithm to detect the initiation point of the transient MES data.

7. Implement the hardware so that clinical testing of the strategy can be carried out in

real time.
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Appendix A

Test of sensitivity

It has been reported that one of the drawbacks of employing an electrode array is the
difficulty in repeatedly placing it in the same location [36], [37], [39]. Since an array is
sensitive to the displacement due to the different pickup regions, consistent myoelectric
signals are difficult to obtain. The purpose of this test was to determine how much the
new strategy suffers when the location of the array is moved.

Three subjects participated in the test. They were asked to return to the laboratory
one week after the original set of data was collected. The electrodes were placed 0.5-2 cm
laterally from the original positions. The subjects were asked to perform the same six
basic hand movements. Although both steady-state and transient data were collected and
analyzed, only the steady-state output is presented here.

Again, three classifiers (the Bayes quadratic discriminant, the linear discriminant,
and the minimum distance) were used in the analysis. Figures A.la, A.2a, and A.3a show
the results of each classifier when the record length of the training set equaled 1024 ms
and the record length of the test set was varied from 1024 to 10 ms. Figures A.1b, A.2b,
and A.3b display the results of each classifier when the record length of the training set

was varied to match with the data length of the test set.
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In the legends of each figure, Subject #1 (a), Subject #2 (a), and Subject #3 (a)
represent the average performance of two data sets (show by dashed lines). The legends of
Subject #1 (b), Subject #2 (b), and Subject #3 (b) represent the results of the sensitivity
test where the first data set was used as the training set and the second data set was used
as the test set.

The results showed that the array is very sensitive to changes in its location. Only
major classes could be identified correctly. The minor classes were completely masked by
major classes. A clearer look at how the minor classes were totally covered by the major
classes can be seen from the confusion matrices (included in Appendix C on CD-ROM).
The results show that, out of six classes (hand movements), only two could be reasonably
identified. Two movements were 50% misclassified, and the remaining two were
completely misclassified. As a result of this, the error rate was very high.

Since the test was done in the worst case (by purposely moving the location of the
electrodes), the success of recognizing four classes showed that the strategy was not a
total failure. Furthermore, current technology allows a very tight and precise socket
placement which can restrict the electrodes to a small displacement (< 1cm). However,
further studies on this sensitivity issue must be carried out before the strategy can be

implemented.



Appendix B

A sample of a consent form and the letter of correspondence are included in the following
two pages. Each subject read and signed the consent form and answered the additional
information asked in the letter of correspondence.



Informed Consent Form

Title: Investigation of an Array of Electrodes on Myoelectric Signals

Researchers: Supervisors: Bemard Hudgins, Ph.D.
Philip A. Parker, Ph.D.
Investigator: Sentiono Leowinata, B.Sc.

Purpose:

The purpose of this experiment is to investigate whether an array of electrodes has more
advantages in capturing myoelectric signal from the skin surface than the ordinary two channels
configuration of electrodes. The array of electrodes is to record from the skin surface the
electrical signals as a result of the activities of the above elbow muscles such as biceps and
triceps.

The signals obtained will be used to develop and to evaluate enhancement for myoelectric
control prostheses. The information captured, if it is proven successful, is an important step to
achieve simultaneous control of an artificial prosthetic limb.

Procedure:

A small area around the upper arm where the electrodes are placed will be treated. As part
of skin preparation, the stratum corneum (that is the dead upper layer of the skin surface) will be
removed carefully using a soft sand paper and then followed by treating it with alcohol. An array
of electrodes which consist of four surface electrodes in an elastic band will be placed on around
the upper arm where the area has been cleaned.

The subject is asked to produce a normal muscle contraction. The signals produced will be
captured by the electrodes. The electrodes are connected to electronic instrumentation which
amplify and record the signals for further analysis.

Risk:

As any other experimental procedure, there is a very small risk associated with electrical
shock. Every precautions and possible steps have been considered to keep the subject as safe as
possible by using opto-isolator to isolate the electronic instrumentations from the subject.

Withdrawal:
The subject is free to withdraw from the experiment at any time without any obligation.
L certify that I have read and understood the above explanation of
the research procedure and all of my questions have been answered to my satisfaction.
Signature
Witness : Signature:
Date : (mo/dt/yr)
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Appendix |
Dear (name inserted),

Thank you for your interest to participate in the experiment. I really appreciate your help.

Please allow me to explain the purpose of the experiment. The purpose of this experiment is
to investigate whether an array of electrodes can obtain more signals than the standard/usual
configuration (use two pairs of electrodes). Until today, the idea of simultaneous myoelectrically
controlled artificial limbs is up in the air because insufficient number of inputs can be obtained
from the muscle. This experiment will try to reduce the gaps and make the dream come true.
Your participation will give a chance to reach this goal.

The experiment will be conducted inside the Institute of Biomedical Engineering building, a
building below the bookstore, inside University of New Brunswick, Fredericton campus.
I would like to get more information from you and schedule the time to perform the experiment.

Name :

Age :

Sex :

Do you have any allergic reactions with rubber? Yes No
Do you have any allergic reactions with alcohol (not to drink, just rubbing)? Yes No
Do you have any anomalies or any diseases related to upper arm muscles? Yes No
Can you perform normal functional movements such as touching the nose,

the ear or the lips, contracting/extending your arm? Yes No
Have you ever performed similar experiments (recording upper arm

myoelectric signals with surface electrodes)? Yes No

Is there anything you would like to add? (especially regarding to your health or prior experience
with this type of research)

What is good time for you to perform the experiment?

Thank you very much and if you have any other questions, please do not hesitate to ask.
Sincerely yours,

Sentiono Leowinata

Fredericton-NB-Canada, cSip@unb.ca, 506-458-7889

Ps. Please note that you are free to withdraw at any time without any obligations if the
experiment is not as you expected.



Appendix C

List of CD-ROM Contents

The CD-ROM is logically divided into three main directories. The first directory
consists of the data used in the experiment. The second directory contains template of
MATLAB scripts. The third directory holds the results of all calculation performed.
DATA

The data of subjects is broken into four parts: the dynamic data, the simulated data,
the steady-state data, and the transient data.

Dynamic data sub-directories (please read the readme.txt file):

\Data\Dynamic\Subject! - \Data\Dynamic\SubjectB
Simulated data file:

\Data\Simulated\rawdata.dat
Steady-State data sub-directories (please read the readme.txt file):

\Data\Steady\Subject] - \Data\Steady\SubjectC
Transient data sub-directories (please read the readme.txt file):

\Data\Transient\Subject] - \Data\Transient\SubjectC
MATLAB SCRIPTS

The scripts is divided into three main directories, according to the data: the
simulated data, the steady state data, and the transient data.

The simulatedidata contains the following sub-directories: Bayes Quadratic Discriminant
(3.2.2.3), Fuzzy c-Means (3.2.2.4), Minimum Distance (3.2.2.2) and Rank Order
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(3.2.2.1). The Bayes Quadratic Discriminant and the Minimum Distance directories are
also divided further. Please check the respective directories as they are self explanatory.
The steady state data directory is divided into few sub-directories: Four Class
Classification (4.4), Performance Measure (4.3.2.2), Six Class Classification (4.3.2.1),
Test of Sensitivity (Appendix A), Tracking Dynamic Data (4.5). Each directory contains
few sub-directories.
The transient data directory is divided into 3 main sub-directories: Bayes Quadratic
Discriminant, Linear Discriminant and Minimum Distance. Each directory again divided
into two main sub-directories: 10-Feature Vector and 16-Feature Vector. The transient
data directory gives scripts samples of section 4.3.1.
RESULTS

Results that cannot be included in the thesis can be found in this CD-ROM. The
results are categorized into 5 main sub-directories: Four-Class (4.4), Sensitivity

(Appendix A), Steady-State (4.3.2), Tracking (4.5), and Transient (4.3.1).
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