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Abstract 

One ofthe *iimitations of nmait muitifiaiction myoelecüic contrd systems is the 

amount of myoelecûic signal data r e q u M  to classify with a reasonable acciiracy the 

signals to k used as a control input. The amount ofdata requiied introduces a time delay 

in the rnyoeledrïc coatml systee; -::kick hhnders the deveiopment of a continuous type of 

control. A new strategy is proposai to haadle tbis limitation by employing an anay of 

d h œ  electrodes and correlation feature vector. The aim is to develop a new strategy 

which can rnalre a reasoaably sffurate decision faster than the mechanical response of the 

systems. An array of S U r f k e  electrodes, placed around the targeted grnip of muscles, 

gives a broader and more complete characterization of the myoelectnc signal for each 

type of contraction. The i n f o d o a  captund by each chanwl is cornputeci by correlation 

methods to fom a comlation feature vectot. The pattems exhibited by the comlatioa 

feature vedot are used as aa input to classifiers. A total of five basic classifiers were 

employed to test the strategy on simulated and reai myoelectric signais data and results 

are presented. Using four myoelectric channels and a 10-feature vector, the strategy can 

pmvide input to the classifim to reasonably classify six basic hand movements with as 

Litîle as 50 ms of steaày-state data. This shows thaî the update rate of the strategy is fkster 

thaa the mechanical response of current prostheses limbs. 
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Chapter 1 

Introduction 

1.1. Background 

A muscle is mede h m  fibas which change their sute when they are excited by 

the ornes. When a muscle fiôer is excite& it generates a signal known as the action 

potential (AP) [LI, [2]. A signal generated as a rrsult of the stimulation of a gmup of 

muscle fikrs by a cornmon nerve axon is a motor unit action potential (MUAP). The 

spatial and temporal summation of many MUAPs is a myoelectric signal (MES) [LI. 

The MES is typically meesurrd with electrodcs and the information gathered is knom as 

an electromyogram (EMG). A more detailed discussion on the MES is provided in 

Chapter 2. 

Myoelectric control (MEC) is a conml stirategy for powered amficial limbs that 

employs the MES as the conml input. As in any control strategy, the reliability of the 

control systern depends on the input. The reliability of the MEC depends on the success 

of decoding the MES into reliable and distinguishable patteniS. Unfornnrately, decoâing 

MES into distinct patterns to k used as input is difficult due to the characteristics of the 

signal. The unique interaction ôetween MEC and the MES is explored in Chapter 2. 

The idea of employing MEC for powered prostheses had been suggested as early 

as late 19th cenhtry. However, lack of understanding and knowledge about the MES 

pmrented practical implementation until Reiter demonstrated a worLing MEC system m 



1948 131. The combination of Reiter's work and an increased demsnd for prostheses after 

Worid Wer II encouraged maay -hem to kvestigate MU= fkher. 

Coupled with the improved lmowledge in human physiology which provides a 

deeper understanding of the MES, many counûies, hcluding Engiand, Gemiany and 

Russia, competed to build better MEC systems [4]. In 1960, KobrinsLy expanded Reiter's 

work by showing thai the methoci cen k utilued to conml prosthetic devices [5]. 

Kobrinsys work was m e r  enhanced by Dorais and Scott h m  the University of New 

Brunswick (UNB) who developed a three-state MEC system which is now known as the 

sy-m [a 
In ment years, the advancements in cornputer technology bave aliowed M e r  

development of MEC. In 199 1, Hudgias proposed a new multifûuction MEC system 

using an artincial neural network to extract idormation patteras h m  the MES. This 

system pmvided proportional five-state conml [7]. Today, there are two principal 

approaches to MEC: state (ievel codsd) based and pattern (fature codd) base& Current 

MEC systems are addressed in Chapter 2. 

1.2. Problem Dennition 

Aithough both state-based and pattern-based m h e s  have offered improved 

fimctionality and reliability siire the inception of MEC, there is a commoa limitation. 

Both stratepies rquire a large arnount of MES data (> 200 ms) to achieve a muonable 

classincation accufacy. 

The amount of data r e @ d  by existing systcms introduces a time &hy in the 



selection of a prosthesis ftnction. This t h e  delay hiadgs the development of a 

continuous type of control wbae the input to the wntrol system is nquired to k faster 

tban or at least equal to the response of the system. Therefore, it is rrquind to h d  a way 

to make the update rate fâster than or equal to the mechanid response of MEC systems 

to ochieve a continuous type of cmtroL 

13. Objectives 

The gamal objective ofthe research is to develop a sttategy to solve the above 

common limitation of multifbnction MEC. The specific objective of the research is to 

reduce the time required for the selection of a fiinction with a nasonable classification 

accuracy. To ensure that the strategy is a d h d  to, the following criteria have been 

devised: 

The ciassification pedormance of the new strategy must be as good as or 

better than the current systems when using the same amount of MES data 

The MES &ta rrquirrd for the system to select a hction must d o w  an 

update rate equal to or fiaster than mechanical response of MEC systems. 

The control strategy must be hmed on voluntary and uatural contractions. 

The system must adapt to user's neeâs and rrquire minimum traiaiig. 

It is crucial that the classincation pcrfomumce of the pposed strategy be as gooâ 

as or beaa thaa the currrnt system wiui equivalent data, and exceeû those performance 

Imls with less data. It is expected that the medaod off& in this research will meet these 

criterîa and p v i &  a stariing point for continuous control. 



1.4. Thesis Outline 

Chapter 1 gave a brief background on MES and its relation to MEC. This chapter 

also showed an evolution of MEC, discir9scd the comnan problem thpt exists in ciimnt 

systems, and stated the objectives of the t e ~ e ~ l l ~ h .  

Chapter 2 explains the generation of MES and its characteristics. It also provides a 

review of the relevant iiterature on MEC. 

Chapter 3 presents the c h i l s  of the pmposed MEC strategy, foiloweâ by 

verification using simuiated data. Also, classification results h m  four different 

classifiers are presented. 

Cbapter 4 demonstrates the performance of the methoâ on real MES data. Various 

tests and approaches to validate the technive are dso demonstrated. 

Chapter 5 pmvides a surnmary of the resuits and discussion. As in any m h ,  

openiag a new horizon will p d u c e  more questions thaa answers. This chapter also 

includes suggestions for future work. 



Chapter 2 

Background and Literature Review 

2.1. MyaleeMc Signai 

A muscle is made h m  many muscle fibers which ciiaage their state when exciteû 

by the newes [l]. The change genmtes eleCtTicai activity because of elecüochemid 

processes in the fiber which cause the nkr to d e p o l e  dong the axis of the muscle. 

This resuiting signal can be recordcd by d a c e  electrodes. Details on the depolarization 

of muscle nbers caused by nme excitation can be found in any human physiology 

textbook or in [l], [2], [8] and [9]. 

The signal generated as a d t  of nber depolarization is lcnown as the action 

potentiai (AP). When a single rime innervates a cornmon group of muscle fibers lcnown 

as a motor unit, the rdt ing si@ generated by this group is caiied the motor unit action 

potentiai (MUAP). The spatial and temporal superposition of many MUAPs is a 

myoelectric signal (MES) [l]. An exemple of this superposition is show in Figure 2.1. 

Miude Fiben MURP 
Figure 2.1. - Generation of Myoelemic Signal (MES) 



Since the MES is a sumation of many asyacbronous Wgs, the MES hPP km 

modeled as a stochastic pnn#rs [l], [9]-[12]. This mdom nature is more apparent whea 

the MES is rewIcled by surtire eleetrodcs due to the pooled activity of the motot units 

within the pickup regions [7]. The recordeci MES is elso a f f î  by tissue layas that 

exist between the muscle and the skin where the recording surface electmk are placeû. 

These tissue layers attenuate and exert a low piiss 61tamg effect on the MES [13]. The 

random nature of the MES and the tissue filtering e f f i  on the MES make the adysis of 

the MES difficuit [7], [9], [14], [15]. 

2.2. MyoelecMe Control 

Hammond once said: 
"Designers of artificial limbs caanot hope to replace all the chmels carrying 
information between muscles and the central nmrous system lost through 
amputation. Howwer, the application of control theory and modem electronics 
is helping to proâuce diable artificial limbs which can even adapt siightly to 
theu environment" [16]. 

There are two methods of quiring control information of electrophysiological origin for 

ariincial limbs. The fint one is h m  the neural input [17] and the second one is h m  

myoeIeCtTic signals [18]. Although measuring the neural input is possible [lq, this 

technique is expcrimentai and not clinidy acceptable at present, The MES is an 

accepteci way of aquiring control i a f o d o n  for artifidal limbs. Thus, only conûoi 

strate@ using MES as input, known as MEC, wiU be considereû. 

There are two ways to obtain MES: using surface elecaodes and using 

intramuscular electrodes. Intramusculet elemodes have been used in the stuây of MES 

but are impractïcai for clinid applications. Siirface electrodes have also ken used in 



clinics and laboratory expaiments becsuse they are non-invasive and the abjects 

experience less discornfort, Therefore, ody MES obtained h m  siirf8ce electrodes is 

discussed. Udorhmately, the advantages of MES acquired by s w k e  electmks do not 

corne without penalty. As identifid in Section 2.1, the MES obtained using this method 

has a random natun and is af%cted by tissue filtering. In adriition, the recording 

elecaodcs contribute noise to the signal [19], [20]. The combination of the random natute, 

the tissue filter, and noise d e s  the MES a cornplex signal and âiflicuit to classi@. 

Therefore, strategies to extract the panmis borne in the MES and classify them reliably 

are crucial before the signai can be used as input for the contiol systems. As a result, the 

reliability of MEC &pends on the strategy used to classi@ patterns in the MES. 

ui general, there are two principal approaches in MEC systems: state (level coded) 

based and pattern (fature coded) baseci. Early MEC systems celied on the estimation of 

the amplinide [q or the nite of amplitude change of the MES [21] to select a state or a 

fûnction of the device. Once the state of the system is selecteâ, the speed of the device 

can be proportiody controiied [18]. These systems are sufncient for controllhg devices 

with one bction (Le. band open) or at most two fimctions (i.e. hand open - hand close) 

but insuffiCient to conml multihction devices [A, [22], [23]. 

To provide multifimction control, more inputs h m  MES to the eleca~mechanical 

system are nee&d. One method is to develop a strategy ta extract patterns contained in 

the MES [23]-[m. Many classification strategîes have been pposed to provide m m  

inputs to k used by MEC. Saridis and Gootee demomtmed that parameters in the MES 

such as signal zero crossing, signal variance and higher moments of the signal can be 



used to amtrol the prosthetic ami [23]. They used statistical analysis to clsssify 

combinations of six primitive fÙuctions (humerai rotation in, humeral rotation out, elbow 

flexion, elbow extension, wrist pronation, aad wrist supination) and the linear 

discriminant was chosen as a classifier to test their strategy. Saridis and Gootee found that 

information provideci by signal no crossïng and signai variance gave the ôest result for 

simple motions. Unfortunately, the strategy acbieved ody 65% classification rate when 

170 ms of MES data sampled at 3 KHz was used However, their work showed that there 

an indeed classifiable pattern in the MES. 

In another appmach, Scott showeà that MES spectra contain usefùl conml 

information [26]. Extending Scott's work, Graupe proposed a thne-series model. An 

autoregressive (AR) rnodel was developed [27l and was able to classi@ the MES into 

four to six different basic limb hctions with 99.96 success rate after the subjects were 

trained for 12 hours to produce the parameters requind [28]. This wodc was very 

promishg but no report& work was able to repduce the resuits. Moreover, with 

computing power avaiiable at that era, the t h e  rrquirrd to process the MES daîa (2.5 s) 

was impracticai. Furthemore, the burden imposed on the subjects is not acceptable. 

There was a pause in the development of MEC uitil 1991 when Hudgins proposed 

a new strategy for multifimction myoelectric control using an a r e i f i d  neural network [A. 

He used the MES mean abdute value (MAV), mean absolute value slope, zero 

crossings, slope changes, and wavdom 1engtb.s as the fcatures to &termine the limb 

ftmctions. Four different limb fùnctions (elbow flexion, elbow extension, medial rotation 

of the humerus, and laterai mtation of the hum-) were used to test the stmtegy. The 



average classification rste achieved was appmximately 91% for nody-limbed subjects 

and appmximately 86% for amputee subjects with 2 0  ms of MES data niese findings 

sparked a new interest in MES classification for MEC. 

Exk:nC%g Hudgjns' work, Englehert used tirne-fkquency features to classi@ 

myoeiectnc signais [22], [29]. Similar to Hudgins w o k  four ümb fimctions (flexion and 

extension of the elbow, and pronation and supination ofthe forrami) âetennined h m  

MES of the biceps and triceps were used to test the strategy. The average classincation 

nite was 93.75% for normaliy-limbed subjec*r with 256 ms of MES &ta 

Ail the work mentioned above use either one or two MES channels to obtain 

control Sormation. Wodc on m d t i - c ~ e l  (array baseâ) systems is discusseâ in the next 

section. 

23. Array Based MyoeIectric Signai and Myoelectrie Control 

Linear arrays of surface electrodes placed dong the direction of the muscle fibers 

have been wd for maay years to measure conduction velocity and to localize motor units 

[30]-[35]. Hogan and Mann placed four pairs of diffkential ele*rodes over the kliy of 

the biceps to estimate the MES amplitude 1361, [31]. The electrodes were scainless steel 

disks, 12.7 mm in diameter, spaced longihidinally at 35 mm centers arid laterally at 14 

mm centers* They showed that more than 90% improvement in si@-to-noise ratio 

(WR), where the SNB = ', can k achiwd when this anay 

configuration was employed Theu results are comborated by Clmcy and Hogan who 

used eight electrodes piaceâ si& by side latinidinally anoss the biceps brachii and triceps 



muscles to recurd the MES. Ciancy and Hom sbowed thst multiple sites in this 

configuration impnwe the SNR for MES amplitude estimation up to 18036 [38]. Theu 

results encowaged researchers to impiement amys for other applications. 

It was suggested that multiple elearodes wouid pcovide a broada and more 

complete MES charactaization than a single channe! since more Siformation could be 

captured by the array. Doemhuk et al. useâ an a;my of four electdes to extend the work 

of Graupe and C h e  to find pattenu in MES [39]. These pattems were discnmurated . . .  
by 

analyzing the t h e  history of al1 iimb-fimction probabilities. By viewing the 

discrimiaaton problan as a statistical decision problem, a linear and tirne invariant AR 

mode1 was proposeû as 

where y(&) is the obsmred L x 1 vector of the MES, p is the order of the model @ = 4), 

{A,, ..., A d  are L x L coefficient matrices, eJk) is the one-stepahead prrdiction m r  

vector, subscript m is the hb-bction king modeled, Mis the number of iimb 

bctiom, and L is the number of electrodes. AU infomtion borne in the MES, including 

the msstalk, wss used to discriminate the signals. Six different limb hctions (wrist 

flexion, wrist extension, win abduction, Wnst adduction, foream supination, and 

forearm pronation) each divideci into four diffêrent phases (rest, initiation of hction, 

holà, and retum to rest by revershg the movement) for each hction were used to test the 

AR model. Although the pmposed mode1 classificd the six fimctîons reasonably weli, no 



classification rate was given a d  no firrthn rrserrch to extead this novel work can k 

found 

2.4. A New Stntcgy 

Ail the conml straîegies descr i i  above rrquirr approximately 200 ms of MES 

data to exeact the pattaiu h m  the signal. This amo~t  of time is consid4 as the 

minimum time necessary to get a nliable estimate of the charactaistics of the MES. The 

condition is tnie especially when the strategy employai (i.e. AR parameters) is vcry 

sensitive to disturbances [7], [23], [25]. 

With motivation (1) to investigate fiirther the approach by Doemchuk et al., (2) to 

reduce the time n d  for pattern classincation, and (3) to develop a continuous type of 

control for a prosthesis, a new strategy is pmposed. The srrategy wiU try to distinguhh 

patems in the MES by d y z i n g  aiI of the information captuted by the array inciuding 

the crosstalk since it had been shown that the crosstaik contains usefiil idormation to 

discriminate fiinctious [2q, [27], [39]. Furtber discussion of the pposed new strategy is 

found in Chapter 3. 



Chapter 3 

A New Stntegy 

3.1. Methodology 

The myoelectric control strategy outlined in this chapter is entirely new and 

consists of two parts. Fifftly, a modified lwar airay of siuface electrdes is used to 

obtain data. Instead of king placed dong the muscle fiber, the array is p l a d  mmd the 

arm of a subject. Secondly, the myoelectric signai obtained by the array is processed to 

fom a comlation feature vector. The patterns exhibited by the vector identify the user's 

intent and are used as the control input for the prosthesis. 

This technique was tested both on a set of simuiated MES data and ml MES data 

obtaiaed h m  volunteer subjects. Analysis of the data and the results are performed both 

quantitatively and qualitatively. Pafomances of the method on a set of simulated data 

are presented in Sections 3.2 and 3.3, while results of the strategy on real MES data are 

diSCUSSed in Chapter 4. 

3.1.1. Array of Surface Eledrodes 

A linear army of s i r r f i  electrodes has ken used and is accepteci as one of the 

standards for m d g  the conduction velocity of a muscle. The array is normaliy placed 

dong the direction of muscle nkr as show in Figure 3.1. 

The new strategy modifies the placement ofthe electrodes by positionhg the a m y  



a r o d  the targeted p u p  of muscles as show in Figure 3.2- This configuration ailows 

greata signal cap- as the muscles contract to perform various movements. 

Figure 3.1. Amy almg the Muscle Fiber 
(adopted and modified with permission, Gray, p. 370 [a]) 

Figure 3.2. Modified Amy Configuration 
(adopted aad modified with permission, Gray, p. 370 [Ml) 

As mention4 in Section 2.1, the MES obtained by d a c e  electrodes is affécted 

by tissue filtering and o h  interfiirecl with by other signals such as electrocardiogram 

(ECO), motion artifact, interference h m  the power source (60 Hz or 50 Hz), s h  stretch 

potentids, cable and electmde capacitive effects. The situation is wotseaed when the 

electtodes are used in an array configriration. The array configuration captures not only 

signais fiom diff i i t  channels simultaneously but also records crosstallr ammg channels 

Many researchers view crosstalk as auother fom of noise which does not contain 

usefiil Monaation. However, a few researchers have demonstrated that crosstalk cm 



impnnn the Wonnance when it is pperiy used [38], [39]. The author believes that 

czosstaik cm k atploited to eabance pattern disaimination since it auries usefbi 

information such as the relative 8Ctivity of the muscles performing certain movements. 

The arny of surbict electiodes as show11 in Figure 3.2 is a plausible choice as it hcrrases 

the amount of signal information inchding the nosstalk without Sacfificing either time 

needed to capture the information or patient cornfort. 

3.13. Comlation Feature Vector 

Crossarrelation and autoco~~elation hctiom can provide spectral information 

and 2" order moments of signals [4 11, [42]. The comlation method is useâ extensively 

in biologicai signal processing for the measurement of the conduction velocity of a 

muscle. A typical approach is to compute the cross-comlation of the channels of the 

anay. The time delays exhiiited by the computation show the propagation velocity of the 

signal as it travels dong the fibers of the muscle being monitod [35]. 

A signal classification problem typically Iooks for certain characteristics in a 

given set of signais to segregate the signals into a number of classes. The wmlation 

methoâ can also be uscd to discriminate signals since it also provides wfhl information. 

Doerschuk et al. demonmami that autocorrelation and cross-correlation features can be 

exploited to discrùninate pattern in the MES 1391. The author believes that information 

captured by comlations of the MES bas mique feaaires whkh can be put to use as a 

basis for pattern classiiication. If these unique feahncs are captiirrd and used to aeate 

pattern for each functional movement, it is possible to use the correlations for pattern 



ciassifkation and as the input for the myoelecüic coatrol system. 

As stated in the objective, the stntegy mrrb be able to make a reasonably acciirate 

decision thas is faster than the aannt MEC systems. To do that, the amount of MES daîa 

must be obtained in less then 2ûû ms Mthout sacrifihg the information content. Rich 

i n f o d o n  exbibiteci by correlation methods may be able to capture such infonnafion 

with short data records. Autocone1aîion of each channel gives a rnasurr of nlaîive 

activity which has ken used to develop a simple threedegree-of-Wom control[43]. 

However, this meapurr bas insuffiCient infocmation for more complex systeras where 

several hctions are to k controlied, Cross-correlations amwg channels in the array, on 

the other han& may exhibit some consisteat patterns for particular activities. A methoci is 

therefore rrquirrd to capture these patterns by using characteristics such as the power in 

each channel, and the cross-powers, to enable decision making in a shorter time than the 

cumnt MEC systems. 

Introducing a new fature vector, cded a m )  a Z ( i ,  which is defineci as 

follow s 

where the B(m) and Rrn) are defïned as 



where O,,#& is the cross-correlation coefficient of i and j channels with i + j, om(0 is 

the autocorrelation of ih channel of the array, and m is the c h .  The Z(n) and RH) 
correlation vectors can be ripdated continuously to give a measure of change in the 

activity. The correlation featute vector %) maps a path h the feaîure space which 

should be relatai to the continwus intent of the user. The correlation coefficients 

expresseci above are comp?red h m  

and 

w k  ~ : ( t ) ~  is the peak value of the cross-correlation between chaawl i and 

channei j, and R:(t) is the peak value of the autocorrelation of the i" channel (the 
POL 

II energy of the id channel). The ~l;(r)@, Ru and ~ l i ( t ) ~  are cornpuhi using 

Fast Fourier Transform method and the duration of the t h e  record used are the data 

record length. 

The classification probkm is reduced to recognizing pattems in the lower 

dimension a m )  vector rather than in the bigher dimension myoelectric signais. The 

feahm~ exhiiited in the vector npresent user intent and, assumiflg that differmt fcanu~ 

vectors exist for différent intent, this information can be used as the fimction selection of 

the c o ~ o l  systcm. A system diagram thaî descri i  tbis relatioiiship is shown in Figure 

3.3. The d t s  given in Chapter 4 dernonstrate that nich patterns exist for reai MES. 



The next sections descfi'be the d t s  for simulated MES daîa. 

Feature set Class out - - - - - - - 

Class 1 
CIass 2 M yoelec hic 

Data Conhol 
Ur) S ys tem 

Chss m 
Training patterns 4 Classification 1 - - - - - - - . - - - - * I . . . . . . - . * - - - * - - - - . - . . 

Training ,Li - 1 Features space 

Pattern Feanire 

Analy sis S toiage 

Figure 3.3. - Relationship between Usa Intent and Myoelectric Control System 
(adopted and modifieci with permission, Hudgins [7]) 

33. Verification of the Strategy on a Set of Simulated MES Data 

The straeegy's abiiity to comctly identify signals with short MES data ~ecords 

was tested using simulated âata. A model was developed to simulate the acquisition of 

Gaussian distncbuted MES h m  an amty of four surtiicc electrodes. A Gaussian 

distniution was chosen since the MES obtained h m  mrhx electrodes are Gaussian 

distriiuted [9]. The objective was ta classify the simdated MES into t h e  distinct 

patterns. Modeling of the MES in this manner is done ody to test the concept. It is by no 

meaiis assumed or implied that this simulated data accunitely models real MES data It is 

used for test pinposes ody since aocurately modeling siirface MES h m  a number of 

active muscles has ken show11 to be a difficult task 



3.2.1. Generation of Simuiated MES Data 

Two sets of Gaussian m&m si@ with zero mean and unity variance were 

generaîed using Matlab 4 2 .  These mdom signals were band-limited to dc-1000 Hz and 

were considered to be the simulated MES of two identicai active muscles as mrded at 

the muscle d a c e .  The third signal was generated h m  a weighted combination of those 

two signals. Each signal was generated one-thousaid times to make one-thousand 

reaiizations. An example of a signal, generated using this simulation methoâ, is shown in 

Figuse 3.4. 

Figure 3.4. - A Sample of Simdated MES Data 

The genetated MES was fltered and d e d  kfore king used to test the strategy. 

Figure 3.5 illustrates the position of the elecaodes and the effect of the tissue filtcrs on the 

simulated MES &ta. Four 4m-order Buner~orth band-pass f ï h s  with different 

bandwidtbs were produced using Maîîab 42c to simulate the aspect of tissue fltaing that 

18 



exists between each muscle and each recoiding electde site. The four filters had 3 dB 

bandwidths of 20-180 Hz, 2û-110 Hz, 20-140 Hz, and 2 6 2 0  Hz rrspcctively. ARn 

filtering, the signais were also d e d  accordingiy to reflect signal attenuation due to the 

distance b m  the source to each of the elearodes. Attenuation factors A-H range h m  1 

when the muscle source is wnsidd active to O. 1 when it is not active. These values 

were obtained through aperimentai rneasmmmts h m  one nody- l imbed  abject 

with electrodes configuration as in Figure 3.5 placed on biceps and triceps. Table 3.1 

tabulates the combinations of the tilters and the weighting factors that were used to mode1 

the signal recorded at each electrode for the three possible muscle activity patterns. 

F1: 2Q-180 Hz 
M: 2011 10 Hz 

ES F3:2û-l40Hz 
F4: 20-200 Hz 
A, B, .., H: Atttnuprior 

&tocs 

E3 
Figure 3.5. - IUustration of Elearode Amy and Tissue 

Filter Effect for Shulated MES Data 

M o d e  AetMty 1 Signais Recordeci at Elcctrode Location 
Pattern 

Muscle A 

Muscle B 

Muscle A + B 

Table 3.1. - Combination of Weigbting Factors and Bandpass Filters to Simulate Tbie+ 
Distinct Pattems h m  Two Sources 

L 

El 

(F4'Sl) + 
@2*0. 1 *S2) 

(F4'0, 1% I) + 
(0.470*F2*S2) 

(F4*S1) + 
(0.470*FZSS2) 

E2 

(O9955*F3*S1) + 
(F 1 *O. 1 *S2) 

(WO, 1's 1) + 
(0.670*Fl *S2) 

(0.955*F3*Sl) + 
(0.670*Fl S2) 

E3 

(0338*F2*S I) + 
(F4*0. 18S2) 

(FZ*O, l*S1) + 
(F4*S2) 

(0338*F2*S1) + 
(F4*S2) 

E4 

(0332*FISS 1) + 
(F3*0*1 *S2) 

(.1*0,1 *S 1) + 
(0.802*F3*S2) 

(0332*F18S1) + 
(0.802*FPS2) 



33.2. Classifkn Employed 

Shce there wen t h e  diffeteat signais to be classined and the array consisted of 

four siirface electrodes, the rnb contraction type vcctor is 

where the correlation coefficients w m  computed using Eqyations 3a and 3b for i and j = 

1,...,4. 

Once the parameters of the correlation feahne vector were established, techniques 

to classi@ the signals were requireâ. Four classifiers were employed to classify these 

ihree signals. These classifiers were the mk order, the minimum distance (Euclidean 

distance measun), the Bayes quadratic diSCTimitliiI14 and the fupy c-means. 

3.2.2.1. The Rank Order Classifier 

The method useâ for the r a d  order classifier is vey simple. It classifies the 

signals based on the pattern show11 by the index of the feature vector a t k  they have been 

sorted in ascending order of amplitude. The values in the f e .  vector for each of the 

one thousand te8lizatiom are computed and fanked in ascending order. After ranling, 

only the order is relevant since the ampiinide information is lost The index of the 

structure foms a unique pattern where the signals are clustered into different classes. At 

this point, the last five coefficients of the ordged vector were taken as the class specinc 

pattem. A vector of more than five coefficients did not improve the classification and 

indeed the added noise in the vector often caused poor classification results. Sïmüarly, if 

20 



fewer coefficients were taken, insufncient irifodon was avaihble to classify the 

signals. A sample Matlab 42c program is incl- in Appendix C (CD-ROM). 

3.2.2.2. The Minimum Distance (Euclidean) Classifier 

The minimum distance classifier discriminates 
. * 

the signais bescd on Euclidean 

distance. The distance of a given vector is computed without any weight fimors against 

the center (mean) of established classes. 

where p, = a q ( m ) ]  is the mean-value of each class obtained fiom a trainiag set. The 

decision thai a v-r belongs to a particuiar class is determineci by the smallest distance. 

It is aecessary to determine a training set and a test set for each of the classes, 

since a mean value for each class must be established. The h t  five-hundceâ realizations 

were used as the training set and the next five-hundred realizations as the test set. 

Sample of Matlab 42c code to perfomi these ddatiom is included in Appendix C (CD- 

ROM). 

3.2.23. The Bayes Quadratic Discriminant Classifier 

Since the simulated MES data bas a Gaussian distriiution, the bision d e  of the 

Bayes quadratic discriminant can be expressed by 



where N is the dimension of the correlation featurr vector a m )  (i.e. 10 or 16 for 4 MES 

channels), E, = E[(&) )- lif(qm)-p,) J is the covariance matrix, 1 E, 1 is the 

detenninant, and p, = E@(m)] is the mean-value of each class obtained h m  a trainhg 

set, @o. 
The training daia used the h t  five-huudred realizations to detemune the 

covariance and the mean for each class. The next five-hundred realizations were used as 

the test data A sample Matlab 42c program to pcrfom these calculations is included in 

Appdix C (CD-ROM). 

3 3 a 2 a 4 a  The Fuzy c-Means Classifier 

The fourth classifier was the fuzy c-means classifier. Fupy  c-means can tolerate 

contraâictions that o h  exist due to the mdom nature of the MES. The ability to handle 

contradictions is an advantage over the previous three classinas and one of the teasoas 

this classifier was selected The decision criteria is to minimize the sum-of-quami emns 

fûnction [44] 

where 



where 5 is the input vector, U, is the fiipy membership, and d, is the Euclidean nom 

between 3 and 5. More detailed explanation of the equations can be found in 1441 and 

[451- 

The value of c (partition index) was chosen to be three since t h  signais were to 

bc classfied. The fiuziness (àegree ofuncertaintylconfiision) of the classifier is 

controiîed by the value of m (fûzziness index). Although the fûzziness index can taLe any 

value between 1 s m < = , the index was chosen to be 2. This value is the recommended 

value in îiterature when a nipv classifier is compared to non-fùzzy classifiers such as the 

three previous classifiers [a], [45l. The initial membership fimction Vol (u@) e M~), 

whae Mfi stands for the mernbership of fiuy classifier, for each class is âetermined h m  

the apriori knowledge of the MES panan which was obtained h m  the rank oder 

technique. An arôitiary weight (certainty value) is assigneci to each fature element to 

maLe the wmplete membership hction. The vaiues of the weights are criticai. If the 



initial membaship hction is 85SigDed randomly, it will resuît in a poot classification 

accwacy- The value of U'"' was chosen as follows 

where the Grst two mws are the initial weighting nictor for muscle A and muscle B, and 

the last row is the initial weighting E.ictor when both muscle A and muscle B are active 

(cocontraction). 

'RE first five-hundreâ reaîizations were taken as a trainhg set where the data was 

used to cornpute the c - h v y  clusters ($) and the subsequent membership bction U"). 

As the computation pmgressed in the loop, the vaiues of @ and (3") were updated. 

Once the memmbmp hction and c - f w y  clusters had been updated by the 

training set, the fuPy c-means classifïed the next five-hundred reaiizations. The 

implementation of this classifier foilowed Bezdek's algorithm [44]. A sample program in 

Matlab 4 . 2 ~  cade is incluâed in Appcndix C (CD-ROM). 

33. Performance of the Strategy on Simdated MES Data 

The classification rates (in percent) of the four différent classifiers for differpnt 

data record sizes are smmarkâ  in Figure 3.6 and tabulated in Table 32. Al1 classifiers 

classified the simulated signals into three d B m t  classes with >90% accuracy if the 

sampled data was sufficiently long (Le. n > 200). The rank order classina gives the 

poorest d t s  for reasoaable âata records (ia. n < 200). The Bayes qusdratic 



discrimuiant, the minimum distance, and the fhzq c-means ail yielded 1W/o lrcuracy 

using 200 points of simulated MES &ta and give rasonable ciassification rates with as 

Little as 30 points of simulated MES data. 

Table 3.2. - Classification Rate (in percent) of D i f f i t  Strategies for Different Data 
Record Length on Simulated MES Data 

# of ssmple points 
1 

Radcorder 
I 

Min, Distance 

Quaci. Discriminant 

Fuzzy c-Means 

Figure 3.6. - Performance of Different Classiners for Merent 
Data Recod Length 

Since the sampling rate wd was 1OOO Hz (1 point = 1 ms), the d t s  of this 

simulation show that only a short data record ( i r  30 ms) is needed to estinme the conml 
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input nasonaôly. Ifsimilar results can be obtained h m  mi MES data, the strstcgy am 

be used in continuous myoelectric contcol. Thus, m e r  investigation wa9 un&rtaken to 

test the technique on mal MES data This is prcsented in the next chapter. 

The ranlr ordcr and the fuzzy c-wans classifiers were omittcd in the analysis of 

the reaî MES data The radc orda classik was hppeâ due to its p r  performance on 

the simuiated data The raak orda wdd ciassify the signals with accuracy only 

when the input data was 200 ms or more. The fuzy orneans classifier gave the best 

performance giving 93% classification acciiracy with as link as 20 ms of s i m u i d  MES 

data However, the minimum distance a d  the Bayes qyadratic discrimiaant perfomed 

nearly as weli (Wh) with 20 ms of simulatecl MES data. In addition, the f k y  c-meam 

classifier &pends on the assigned vaiues in the initial membership hction. Assigning 

the values for the initial membersbip fhction would be vecy diffidt and time consuming 

as it is subject dependent. Furthermore, choosing mdom values for the initial 

membemhip function in the Badek's fuPy c-means wilî yield poor performance. 

Therefore, there appears to k tittie advantage to using a more cornplex classifier such as 

fiiPy c-meaais over the Bayes quadratic discriminant and the minimum distance 

classifiers. Thus, the fuzy c-meam classifier was left for fuMe w o k  



Chapter 4 

Performance of The Strategy with Real Myoelectric Signais 

4.1. Data Acquisition 

Chapter 3 showed that the new strategy which uses an electrode array and a 

comlation feature vector was able to identify the simulateci sigaals with high 

classification accuracy with as liale as 30 ms of simuiated MES data To codhn that the 

methoci can be used in myoelectric control it must be testeci on reaî MES data 

Twelve volmteer subjects, eleven nomaiiy-limôed and one with a congenital 

Limb deficiency, were recniited, Each subject read and signed an inforneci consent fom 

(a sample of the consent fom is included in Appendix B) before the experiment began. 

The subjects were remindeci during the experùnent that they were fine to withdraw at 

anytime without any obligations. The subjects were asked to pdom six basic upper-limb 

(hand) movements as illustrateci in Figure 4.1 : figer flexion, hger extension, wrist 

fiexion, wrist extension, ulnar denation and radiai deviation. The amputee subject was 

asked to visualize the same hand movements and perform them to the best of the subject's 

ability. 



The aomplexity of the correlation fcatun vector &depends on the numkr of 

MES c b e l s  in the -yC It was hoped thnt four myoelectric channeis would be 

SuffiCient to classw s u  basic hand movements while keeping the fiatine vector simple 

and not computationaliy intensive. Therefore, an a m y  that coasisted of four myœlectric 

channels was uscd to aquire the MES data However, it does not mean that the feahnr 

vector a m )  is limited to four channels. When more cornplex movements are going to be 

investigateà, the fatum in the a m )  vector may k increased by having more channels in 

the array. The optimum nurnber of channels in the anay given a set of contractions is left 

for fiitllfe work. 

An a m y  of four Surface electrodes was positioned around the ann of the subjects 

(see Figure 3.2 for iilustration). The array was placed in such a way that each channel 

monitored either diffhnt active regions of the muscles (norxnally-limbed subjects) or so 

that they were well separated with quai spacing between the elecwdes Oimb deficient 

subject). No aaempt was made to optirnue the position of the -yC The optimum 

placement of the array is left for fiiture work. 

The data h m  each channe1 was amplined by a stanâard opto-isolateâ amplifier 

with a common mode rejection ratio greater than 100 dB. The arnplified signais w m  

simultaneously recorded at 1000 points per second (1 point = 1 ms) by a DAS 161330 

A D  board that was attachai to an IBM PC 486. In-house software, written in C and 

LabView, was used for data acquisitionC A block diagram of the data acquisition process 

is shown in Figure 4.2. 



iBM 486 
(m bouse softw ue) ' 

ir 

Figure 4.2. - Block Diagnim of the Data Acquisition 

4.2. Myoelectric Signal Data 

Two types of MES &ta were investigated in order to deterxnine the paforrnance 

of the strategy. The first data type was transient signais obtained from muscles that were 

recnllted âom a relaxeci state to an excited state. Hudgins, in his PhD. thesis, 

successfully demonstrateci that the 6rst 256 ms of MES &ta containeci specific 

(detemhistic) pattenu for différent types of contractions [A. This was corroborateci by 

the tecent fïnding of Engiehart who extended the d y s i s  of the transient MES into the 

tirne-ncqUency dornain [22]. Based on the fidings of Hudgins and Englehart, the 

proposed strategy was tested on the transient signais to evaluate its performance. Figure 

43(a) shows an example of the transient si@s messiired in each of the four MES 

chamels as the muscles go h m  a relaxeci to an active state and back to a relaxecl state. 

The second data type was h m  steaây-state signais. Steady-state data were 

obtained during a relatively isomeüic/isotonic contraction as shown in Figure 4.3b. 



Figure 4.3. An Example of (a) Transient Signals, (b) Steady-State Signals 
fiom Each of the Four Channels. 

Initially, the transient data was obtained using a monopolar configuration. The 

placement of the array in a monopolar configuration is shown in Figure 4.4. It was 

postulateci that this arrangement wodd give an accurate mesure of the activity h m  each 

electrode site. However, it was ciifficuit to fmd a cornmon reference site for the 

monopolar configuration. There is a possibility that the cornmon mode signals could 

mask signais h m  the recordhg channels ifthe reference site is p l a d  on active muscles. 

The problem was confirmed when the &ta coilected h m  one subject showed that a large 

common mode component was measured by eech channeî. Therefore, this configuration 

was abandoned and nplaced by a bipolar configuration The bipolar configiwbion shown 



in Figure 4.5 was used to coiiect ail otha MES data. 

- 
Figure 4.4. A m y  with Monopolar Configuration 

(adopted and modifiai with permission, Gray, p. 370 [a]) 

Cbiail3 

Figure 4.5. Amy with Bipolar Configuration 
(adopted and modified with permission, Gray, p. 370 [q) 

in obtaining the steady-state data, subjects were asked to hold one of the six hand 

movements for approximately sixty seconds while the data was recorded h m  the four 

channel array. Quaiitative anaiysis was pafonned to enme that the captured information 

containeci none of the initial transient signals. 

Since one of the research's objectives is to develop a strate= that roquirrs a 

shortet time to make a control dccisions in a more continuous manner, analyzing steady- 

state data is more cruciai than investigating the transient data. Testing the strategy with 

steady-state âaia can confirm if the mahod is usabk as a sraning point for the 

development of a continuous MEC system. 



4.3. Data Anrlysis 

Thne classifiers were used in the anaîysis of the mi MES data. Two ciassifiers, 

the Bayes quoQatic discnminan I . .  
t and the minimum distance, which were used to test the 

simuiaîed data, were used again in the analysis of the real dafa The real MES data was 

considemi to have a Gaussim distn%ution so that the Bayes quadratic discriminant wuld 

be useà as a classifier [9]. The third classifier, the hear discriminant, was adâed as a 

bridge between the Bayes quadratc discriminant and the minimum distance classifier. 

The Bayes SUaQatic discriminant classifier includes the covariances of each class. 

Although these separate considerations might bring more accurate representation of the 

characteristics of each class, the strict conditions imposed by the Bayes quadratic 

disaiminant might yield singuiarities on certain classes during training. On the other 

han4 the minimum distance classifier docs not consider the covariance h m  each class in 

its classification membersbip fiinaion. The linear discnminant maintains the information 

by averaging the covariance h m  ali  classes. This ceduces the computatioaal complexity. 

Therefore, the linear discrllnmant was chosen as the thid classifier. 

In the following sections, the analysis of the data is dimissed and is bmken into 

two main parts. First, the performance of the strategy on the transient data is discussed. 

D i f f i t  s d g s  and combinations of strategy parameters (Le. threshold window size in 

which the number of data points used in thrrshold caldation, data record length, and 

fuiaues of the correlation vector) were tested with the dnee d i f f i t  classifiers, are 

explored and discussed. Second, the paformance of the strategy on îhe oteady-state data 

is prrsented. SimiIar to the first part, various tests with diffezeat satings on the steady- 



state data wae paformed and the resuits are discussed For both types ofdata, the first 

~pcicentwasuseda9theh.ainingsetwhüethelestfiffypaccatwas~asthetest 

set. 

43.1. Andysis with the Transient Data 

It is important to note tbat the initiation of the signais mut k captured in order to 

classi@ the transient signais coIIieCfLy [A. If the starting point is captumi too early, the 

signal wntairis noise with no MES uiformation. Ifthe begirining of the signals is not 

obtaineà, then the deterministic paaans in the transient si@ are not captured. A 

quaiitative d y s i s  coupled with a simple algorithm was used to detennine the starting 

point of the transient sipnais* The algorithm used the mean absolute value (MAV) of the 

noise level of each channel. A value of three times the MAV of the noise level was used 

as the threshold When the MAV of the signais h m  any of the four channeis exceeded 

the thmholâ, the contraction was asmmed to srart. In addition, a qualitative d y s i s  was 

performed on every si@ and was used as a guide when the simple t k h o l d  algontbm 

failed to detect the initiation point which could happen for a very low level contraction. 

For every transient data record h m  every subject, the record length (amount of 

data or time diiration), the W h o l d  window size, and the featurrs of the a m )  vector 

were varied with each classifier. The record length was varieci h m  1024 to 10 m. The 

threshold window size wd six Wetent settings which arr 50,25,20,15,10, and 5 ms. 

The h) vectors were either normhed in which the Hl(m) and the R m )  wae 



or not nomielued in which case the H(m) and the Rn) were computed as 

Since the data was obtained h m  four elecbtodes, the am) vector can have either 

10 features or 16 features. A vector of ten features was created h m  the combination of 

the six cross-correlation featirres of the R(m) and the four autocorrelation features of the 

Rm). A vector of sixteen feahires was made firom these 10 featwes plus the âelays 

associateci with the cross-correlation between each channel. The combination of the 

faims of the Z(n) (10 or 16 f-), the threshold window size (50,25,20,15,10, 5 

ms) and the record length (1024,s 12,256,200, 100,50,40,30,20, 10 ms) was tested on 

the Bayes quadratic discriminant, the linear discriminant, and the minimum distance 

classifiers resulting in a total of 1920 tests. ûnly =Sul& fiom the nomialized feature 

vector are presented and discussed R d t s  h m  the non-nonmalized f m  v m r  can be 

found in Appendix C (CD-ROM). The programs and the results h m  aii subjects for all  

combinations pciformed are included in Appendix C (CD-ROM). 

Figures 4.6,4.7, and 4.8 show the classfication rate of the Bayes q y h t i c  



. . .  dummantt ,  the linear discnmiaan . , .  
t, and the minimum distance clessifïe~~ for six classes 

(hend movements) as the record length was varied with a thrrsbold window size of 25, 

and the a m )  v e r  had 10 featurrs nonnaluzd to the maximum value only. Figure 4.9 

compares the average pedormance of each classifiers employed over aii subjects for six 

classes. 

Figure 4.6. - Classification Rate of the 
Quadtatic Discriminant for Six Classes 

Figure 4.7. - Classification Rate of the 
Liaear Discriminant for Six CIasses 

Figure 4.8. - Classification Rate of the Figure 4.9. - Average Classification of Each 
Minimum Distance for Sut Classes Classifier over Ail Subjects for Six Classes 

t A d noise was &cd t0 prrvent singulanty fa  the Bayes quadtatic discriminant 
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The d t s  h m  the best subject, the average ovcr suôjects, and the worst subject 

h m  nine normaliy-limbed subjects are shown in Figures 4.6,4.7,4.8 and 4.9. 

As shown by the gaphs, the pafonnmce of the strategy in classifymg the MES 

data is mqatable. Furthemore, with 200 ms of MES data the pafomiance of the best 

subject when six classes with ten-feature vector (93.4%) was testcd by the quadratic 

disaiminant is comparaôle to the perfotmance of the best subject on Hudgins' work 

which classifieci fewer classes (four limb hctions) with 30 features (98%) [m. However, 

the strategy showed a si@cant @ocmace degrdation when it tried ta classify the 

transient signal with las than 200 ms of MES data The signincant decline in the 

classification performance when the input data is less than 200 ms is also shown by 

Huâgins and Englehart when they tried to classify four classes [q, [22]. Furthmore, 

there is little ciifference in performance for the diffennt classifiers. This suggests that 200 

ms is the minimum amount of MES data rrquVed to classify the transient signals with a 

reasonable accuracy. 

Results f?om 16-feature vector (availabie in Appendix C on CD-ROM) also 

showed that the performance degradeci signifïcantly when the data record length used was 

less than 200 ms. These results also show that the higher dimension (ldfeature) vector 

àid not improve the classification @ormance over the 10-fature vector. This means that 

including the time delay tcrms in the feature vector did not adâ any new infonnatio~~ 

Therefore, the 16-feaa~e vector was no longer used 

Figures 4.10,4.1 1, and 4.12 dernoashate the efféct of the tbteshold window size 

on the average pcrfomiances of the Bayes quaQatic discriminant, the linear discriminant 



and the minimum distance classifiers when the a m )  vector used 10 featuns normalized 

to the maximum value only. 

I -10 +a8 -10 1s -10 + d  

Figure 4.10. - Effect of the Threshold 
Il 

Window Size on the Average 
Performance of the Quadratic 
Discriminant for Six Classes 

Figure 4.1 1. - Effect of the Threshold 
Window Size on the Average 
Performance of the Linear 

Discrimiaaiit for Six Classes 

+g -25 +aD 1s -10 *s 
L 

Figure 4.12. - Effcct of the ThreshoId 
Window Size on the Average Performance 
of the Minimum Distance Discriminant for 

Six Classes 

Although the window size of 25 shows the best classification rate overaii, it is clear h m  

the graphs that the window size has liale effect on the performance of the strategy h m  



the mhs. The winnuuce &gradation is also &&nt h m  the Figures 4.10,4.11 aud 

4.12 wtim the strategy tiied to clossify the transient signai with less than 200 ms of MES 

data AU other resuits on the e f f i  of the tbmhold window size of différent wmbinati011~ 

are included in Appenâix C (CD-ROM). 

43.2. Anaiysis with the Steady-State Data 

The steaây-state data was anaiyzed differently h m  the transient deta. The 

thrrshold window size was dmpped since no starting point needed to be founâ. The am) 

vector used 10 faîures where the R(m)and theRm) were either nonnalized in which 

case they were calculated as 

or not nonnalized in which case the Bim) 

Again, the saw three classihas were used to test the paformance of the m t e g y  on the 

steedy--data. 

43.2.1. Performance of the Steady-State Data 

Six Merent tests were perfonned to d y z e  the steady-state data h m  nine 



normal-Iimbed abjects. Results h m  the Bayes quadratic discriminane (Q. D.) are 

shown in Figures 4.13 and 4.14. R d t s  h m  the hear  discnminan 
. . *  

t (L. D.) are shown in 

Figures 4.15 and 4.16, while results h m  the minimum distance (M. D.) are given in 

Figures 4.17 and 4.18. Again, only d t s  h m  the kst subject, the average over al1 

subjects and the poonst subject are shown in the graphs for clarity. AU other d t s  caa 

be found in Appendix C (CD-ROM). 

Figure 4.13. - Classification Rate of the 
Normalized Q. D. for Six Classes 

Figure 4.14. - Classification Rate of the 
Non-Normaüzed Q. D. for Six Classes 

Figure 4.15. - Classification Raîe of the 
Normaüzed L. D. for Six Classes 

Figure 4.16. - Classification Rate of the 
Non-Nonnabai L. D. for Six Classes 

'A d mise was addui to prevcnt singuiarity for the Baya qwjraîic dkrïmbmt 
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Figure 4.17. - Classification Rate of the 
N o m W  M. D. for Six Classes 
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Figure 4.18. - Classification Rate of the 
Non-Normalized M* D. for Six Classes 

As shown by the graphs, the strategy can classify six classes (band movements) 

with a high de- of classification acciiracy up to 200 ms of MES data Furthemore, the 

technique can classify six classes with as little as 50 ms of MES data with less than a 1W 

&op in the performance. This fïnding is signifiant considering al l  the &ta was obtained 

h m  untrained subjects. In aûâition, the performance of the normalized featrne vector 

(Figures 4.13,4.15, and 4.17) are more consistent than the non-normaiized féaîure vector 

(Figures 4.14,4.16, and 4.18). This means that the patterns exhibited by the normalized 

feature vector are more stable than the non-normalized veaor since the ratio are kept 

approximately the same. However, the non-nomaiid vector also has some Avantage in 

that the relative strength (force) information is retained. This information is very usefbi if 

a pmportioI181 contml is desirrd (although a simple MAV mesure can be used as well). 

The mrmalipd and the non-nomialued featurr vectar can be coupled to prodw one 

system, The normalized festun vector cm k used to classify the signals by maintaining 

the c011sistency while the non-normalized fe- vector can k wd to conml the spccd. 
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This invtstigstion and otha possible use of the non-normalized feanae vector are left for 

fiiane work. 

ûn the o k  hsnd, aithough the Bayes quadratic Qscnminim 
. . *  tgaveabetîer 

perfonnance when the feshirr vector was not nomililipd (Figure 4.14) and the 

performances of the lin= discnmuian . . .  t classina for the nommiid (Figure 4.15) and the 

non-normaüÿcd (Figure 4.16) cases are almost identicai, there are negaiive effects of this 

non-normalized feature vector. A detrimental effect of this non-normalid feanire vector 

on the classification perfommce is shown by Figure 4.18 w h m  the minimum distance 

classifier was used. The pedormance of the minimum distance classifier drops more than 

lm for the same amount of data when the feature vector is not normalized Therefore, a 

non-normalized feanirr vector is not usecl for fiirttier dysis. 

4.323. Performance of a Pixed Leagth Training Set 

It was postulated that the b e r  the data recod used for training, the hi@= the 

test set classificaîion paformance. Thus, a trial where the data record Iength of the 

training set was ked at 1024 ms while thc daîa record length test set was varid h m  

1024 to 10 ms was carried out. The expriment was nm oniy on the noimaüzed 1O-f#iturr 
- 
z(rn) vector. Figure 4.19 shows the output of the Bayes quadratic dischinan4 Figure 

4.20 displays the redt  of the linear discriminant, and Figure 4.21 exhibits the outcome of 

the mmimum distance- Fi- 4.22 cornpares the pdommce of each classifier over 1 

abjects when classifying Su classes @and movements) for Eixed and variable training set 

data record lengch. 



Figure 4.19. - ClassinC8tion Rate of the 
QD. with a Fixed Length Training Set 

(1024) for Sis Classes 

Figure 4.20. - Classification Rste of the 
LJ). with a Fixed Length Training Set 

(1024) for Six Classes 

lom 
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Figure 4.2 1. - Classification Rate of the 
MD. with a F M  Length Training Set 

(1024) for Six Classes 

Figure 4.22. - Performance Cornparison 
between Fixed Length Training Set and 

Variable Length ~rainingset 

It is evident fmm Figure 4.22 that the k e d  length training set approach constantly 

performs more poorly than the variable training data record length (resuits of fixai length 

training set are shown using the solid lines while the dashed-line reptesented results of 

variable length training set). This phenornena can be explsined The k e d  length sttategy 

used 1024 ms to train the classifier resulting in tightly bond classes with small variances. 

When test data with large variance was classified, the spnad coafusod the classifier. The 



classifia wuld not dctamine to which class the data belonged, since it was not mirai to 

handle data with large vsiiriaas. As a dt, oniy the &minant classes d d  be 

classifieci comçtly while the o k  classcs wae  misciassifiai as one of the dominant 

class. Confuson matrices, showhg how the other classes are misclassifieci and other 

d t s  of the test, are included in Appendix C (CBROM). 

4.4. Four Class Problem 

The d t s  previously shown were for the six class (six distinct hand rnovements) 

problem. If the confusion matrices are examineci, it is clear îhat there are major and minor 

classes. These miwr clappes lowered the performance of the sttategy. Examples of the 

confiision matiices h m  the Bayes quadratic discriminant wïth a variable length training 

set using the steady-state data are shown in Table 4. la, 4.1 b, 4.1 c, 4. Id, 4. le, and 4.1 f. 

The rows give the record length of the input data while the columns are the classification 

eccuracy and the classification errer. The comxt classification of Table 4. la is hger 

flexion (F. F.) and the classification m r  wlumn are the other five classes (hand 

movements). Table 4.1 b, 4.1 c, 4. ld, 4. le, and 4.1 f show the wmct classincation of the 

finga extemion (F. E.), the wrist flexion (W. F.), the wrist extension (W. E.), the ulnar 

deviation (ü. D.), and the radial dMation (R D.) rrspeaive1y. 



(ms) 
T 

512 
256 
200 
100 
50 
40 
30 
20 
10 

Table 4.1 a 

Input uata 
(ms) 
T 

512 
256 
200 
100 
50 
40 
30 
20 
10 - 

76.7% 1 0.0% 1 13.3% 8.3% 1 0.0% 1 1.7% 
hssifkation Rate of Finger Flexion versus Data Record Sizes with 

Emx Rate of mer Five Classes 

Table 4.lb. - Classification Rate of Finga Extension versus Data Record Sizes with 
Emr Rate of Other Five Classes 

input uata 
(ma 
T 

512 
256 
200 
100 
50 
40 
30 
20 

wnSt 
Flexion 

100.0% 
lW.O% 
100.0% 
100.0% 
96.7% 
100.0% 
100.0% 
100.0% 

Table 4.1~. - Classification Raîe of Wrist Flexion versus Data Record Sizes with 
Error Rate of ûther Five Classes 



Extension 
13.- 

6.7% 
8.3% 
16.7% 
21.7% 
15.0% 
23.3% 
36.7% 
28.3% 

input vata 
(ms) 

10 - 
Table 4. le. - 

input uata 

Error Rate of ûther Five Classes 

Umar 
Oevia tion 

06.7% 
81 -7% 
75.0% 
65.0% 
38.3% 
43.3% 
28.3% 
31 -7% 
25.0% 

œ 

II 

m 
:lassification Rate of Ulnar Deviation versus Data Record Sizes with 

Emr Rate of ûther Five Classes 

Kaalal 
Deviation 

85.0% 
75.0% 
75.0% 
56.7% 
51 -7% 
58.3% 
55.0% 
48.3% 

Table 4.K - Classification Rate of Radial M o n  versus Data Record Sizes with 
Emr Rate of Other Five Classes 



From the taôles, there are unclassinable data sets even with 1024 ms of MES data 

The dominant classes such as finga flexion and wiist flexion are classifiable with 1Wh 

acniracy when the input data is SUfncient but di h m  misclassification as the data is 

shortened (shown by Table 4. la and 4. lc). Tables 4. lb, 4.14 4.1 e, and 4.1 f show that 

certain contractions are confbd with other classes even when the data is sufncient. The 

classification acciuacy drops as the data is shortened. 

The purpose of the test is to detamine if the classification accu~acy is impmved 

by reducing the problem to four classes. ûniy steady-state &ta h m  three subjects was 

tested. To nduce the time and the analysis, the Bayes quadratc discrimiasnt, the iinear 

discriminant and the minimum distance classiners witb a variable length training set were 

used. The four major classes and the two minor classes were detennined h m  the 

performance of the steaây-state data The minor classes were i gnod  and assumai to be 

one of the major classes. The choice of lumping a minor class with a major class was 

decided qualitatively. 

The results of the Bayes quadratic discriminant, the linear discriminant and the 

minimum distance for four classes are exhibiteci in Table 4.2, Table 4.3, and Table 4.4. 

The six class paformance is also shown for cornparison. 



Tablc 4.2. - Performance of the Bayes Quadratic Discriminaat for Four Class and 
Six Class h b l &  v m  the Record h g t h  

(ml 
7 

5t2 
256 
200 
100 
50 
40 
30 
20 
10 

Table 4 

r-- - 

Record Length 

7 

10 
Table 4 

- -- a--- -- - 

- - Performance of the 

---a--- -- - 
Average A- 
6r-innn 4d8ss 

82.50% 95.83% 
79.44% 94.58% 
82.78% 93.33% 
83.33% 94.1 7% 
70.83% 81.67% 
65.56% 75.83% 
63.89% 70.00% 
!W2% 59.17% - 

near Discriminant for 
Six Class Pmblem versus the Record Length 

our Class and 

- 
Average 

I I  

1, - Performance of the Minimum Distance for Four CIass and 
Six C h  RobIern vasus the Record Length 



As seen h m  the tables, the paformance of each classifier improved by 

a~~m)ximately lW for ali subjects when the pmblem was rrduad to four CW. The 

classificaiion accuracy of Subject #2 with 1024 ms of MES data was impfoved h m  80- 

85% for six c h  problem to 98-99?? when the two confuseci classes were removed And, 

the classification ac~acy was improved h m  70-74% to 79987% men with ody 50 ms 

of MES data when four ciasses were ansidacd The @ormance of Subject #3 is 

similm. A classification acciiracy (8495% with 1024 ms daîa) improved to 96-100.h 

when four classes were cunsidered. Furthemiore, the performance of Subject #3 with four 

classes is 96.7% even with 50 ms of MES data (the Bayes quadratic discrllninaat was 

used). Tbese results show that the proposeci stnitegy can identify paaems in the MES with 

a high classification acmacy even when the data record is short. 

To show that the proposeà strategy can be used as a continuous type of control, a 

tracking schcmc was devisecl. Six diffèrent hand movements with ten seconds per activity 

for a total of one minute of motion were pcrformed by the subjects. 

Again, the same t h  classifiers wae used to test the scheme. The steady-state 

data was uaed as the trainhg set, while the dynamic data was the test set. A sample of the 

dynamic âata is shown in Figure 4.23. The record length of the input data was vaned 

h m  1024 to 10 ms with a 50% window ovalap. 



Data 

(sûcorids) 

Figure 4.23. - A Sample of the Dynamic Data 

Figures 4.24% 4.24b, 4.24c, and 4.24 demonstrate mults of the strategy when 

the Bayes quadratc c ü m t  (Q. D.) classifier is used to track the dynamic data. 

Figure 4.24a shows the output of the classifier wben 1024 ms with 5 12 ms overlap used 

as the input data to track the changes. This meam that the decision was made every M 

samp1es based on the pmrious 2M samples (Le. 50% overlap). The strategy tracked the 

changes with average classincatio~~ emr for six classes (hand movements) of 1 7 . K  

Figure 4.241, shows the tracking result when the &a of256 ms with 128 ms window was 

used. The error rate is 18.00h. Figure 4.24~ shows the output when the input data used 

100 ms and Figure 4.24d displays the resuit as the input data employai was 50 ms. The 

average classification aror are 1 5.6% and 1 5.8% rrspectively. The average error rate for 

shorter chta record is Iowa because the shorter the chta record duration, the more 

iteraîions available for a given data record length (1 0 seconds for each movement) which 



d t s  in lowa pefcefltage erra (Le. 5/10 is less ihim 1/16). The results sbown were 

excnpted h m  the best subjezt for the Bayes quaQetc discriminant. Mer resuits with 

other record lengths are Mcluded in Appendix C (CI)-ROM). 

- Tracking Result using Q. D. Figure 4.24b. - Tracking Result using Q. D. - 

with the Input Data of 1024 ms with the Input Data of 256 ms 

Figure 4.24~. - Tracking Result using Q. D. Figure 4 2 M  - Tracking Resuit using Q. D. 
with theInput Daîaof lûûms with the Input Data of 50 ms 

Figures 425a, 4.25b. 415c, and 415d demonsîraîe results of the strate~y when 

the linear drscrrmman 9 9 .  

t (L. D.) classifier was employed to track the âynamïc data with 

1024,256,100, and 50 ms rrspeaively. Again, 50?6 of the input data record Iength was 



used as the overiap window. The average ciassincation aror for six ciasses an 9.0.h, 

4.4%, 7.o./o and 13.8% nspectively. Those d t s  were takm h m  the kst abject. 

Figure 4.25~. - Tracking Result using L. D. Figure 4.2% - Tracking R d t  using L. D. 
with the Input Data of 100 ms with the Input Data of 50 ms 

O z ~ o m m t o o t a ~  

l 'v-.--- . I - T r n y . L i ,  

The muhs of the minimum distance (M. D.) classifier üacking the dynamic data 

with 1024,256, 100 and 50 ms record length are shown m Figures 4.26% 4.26b, 4.26c, 

and 426d rrspectively. The overiap wiaQw is 50% of the input data record length. The 

O l o o a o o ~ w r i  YI0 

t - 1 .  TnirVllr 

average classification em>r of the minimum distance classifier shown in the figures wlde 

Figure 4.2% - Tracking Result using L. D. Figure 4.239. - Tracking Result ushg L. D. 
with the Input Data of 1024 ms with the Input Data of 256 ms 



tnicking the âymmic àata are 12.4%, 110-2966 12.5%, d 16.5%. Those d t s  wac 

selected h m  the test abject 

a 

s 
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3 
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m . . . . . . . . . ,  

Figure 4.26a. - Tracking Result using M. D. Figure 426b. - Tracking Result using M. D. 
with the Input Data of 1024 ms with the Input ~ a t a  of 256 & 

Figure 4.26~. - Tracking Result using M. D. 
with the Input Data of 100 ms 

w 

D 

Figure 426d - Tracking Result using M. D. 
with the Input Data of 50 ms 

Table 4.5 shows the 3verage emn rate of eaeh classina tracking the dynamic data 

The h t  column represents the record length of the data input. The seconcl, fourth, and 

sixth columns show the e m r  rate of the best subject for each classifia. The third, nffh, 

and seventh columns summarip the average emn rate of each ciassina over ail  subjects 



îracking six classes of the dynrmic data 

(a) I (a) I 

Table 4.5. - Average Errer of The Dynamic Data for Six Movements of 
(a) the best subject, (b) average over all subjects 

Although Table 4.5 shows that the classification rate decrrascs as the data is 

reduced, the best subject am üack the six classes of the dyaamic data with less than 20% 

e m r  even with 40 ms of MES data. This means that the decision was made wery 20 ms 

which is faster thsn the mechanical response of the cumnt MEC systems (a decision is 

made every M samples for evay 2M ssmples). The resuits show that this stnitegy can k 

used by some individuais to continuously track the changes exhibiteci by the MES data 

The average emn in this case is appmximately 40% which means that for most 

iadividuals, six c h  problem is perhaps too cornplex. A reâuced four class problem 

wodd crrrainly irnprove the @ormance and iower the classification error. 

Whether the performance can be impved when (1) more electfodes arr use& anâ 

(2) the winQw ovetlap is changeci, is st i l l  unhiown. These options and other possibilities 

are lefi for fbtuce w& 



Chapter 5 

Conclusions and Future Work 

It was noted that cumnt muitihnction MEC systems requin at least 200 ms of 

MES data to select a bction with an acceptable classification rate. This is a major 

hindrance to the development of a continwus type of control. The purpose of this thesis 

was to determine if the time to select a hction aui be reduced while maintaining an 

acceptable classification acamcy. Chapter 1 introduceâ the bIrzkpund, stated the 

problem, presented the thesis objectives, and outlined the topics for each chapter. Chapter 

2 provided additionai background on the MES, relevant iiteratwe review on MEC, the 

evolution of MEC and reasons for employing an electrode amy. Chapter 3 formulata! 

and presented a new sûa!egy for MEC which uses an array of d a c e  electrodes and a 

comlation fcaturr vectar, a m ) .  It also demollstrated the performance of the strategy in 

which it was able to classify th= distiact pattems with grratcr than 90% accuracy with 

ody 30 ms data on a simple set of simulateci MES data Cbspter 4 presented d t s  of the 

strategy when it was tested on nal MES data. The transient and the steady-state data were 

testeci using dinaent variable combinations (Le. tbnshold window size, correlation 

fa- vector am)). and data record length) on three Maent classifim. When testcd 

with transient data, the strategy achieved an average of 85% classxfication accuracy with 

256 ms of MES data. The resuit is comparable to cumnt MEC systems thet use transient 



MES data. It a h  dcmommted that 200 ms of MES data seems to be the minimum time 

nquired to capture dcient  in fodon to extract distinct paftems in the transient data. 

When testeâ with stcady-state data, the strategy was able to classi@ six classes with an 

average of W h  classification accuracy with 256 ms and an average of 85% classification 

accuracy with as Liale as 50 ms of MES data This pafomiance perfiorms same strategy 

on the transient data as shown by Hudgins. However, the cumnt strategy uses a different 

set, different class, and differe~lt thresholding techniques to capture the traosient pattem. 

When the problem was reduced to ciassify four classes, the performance of the stmtegy 

signiscantly improved (ovn 1W). Section 4.5 a h  demonstrated the ability of the 

strategy to ûack dynamic movements as the data was shortend. 

5.2. Discussion 

Early myoelectric control systems such as the thme-scate UNB systems can be 

modifieci to pmvide continuous control. However, these systems are limited to one or 

two fiinctions. Newer systems such as those based on pattern recognition (Le. HudgiPiJ', 

Graupe) were developed to increase the fùnctio1181ity of the MEC. UnfortunateIy, 

although the numba of controîied fiinctions were inâeed incrrased, these systems forceâ 

a t h e  delay ôetween hction selections which hinders their use for continuous control. 

Thmfore, the new strategy outline in this thesis was proposed to reduce the time delay 

between switching between fûnctions in the multifunction MEC systems. 

As demoaseated in this thesis, the new strategy uses a comlation feam vector 

exûacted h m  an array of suif9ce elcctrodes. The information h m  the electmde army 



provides a bmdcr and mom oomplete mersiin of MES characteristics than the 

i n f o d o n  m d  âom a single site. The correlation feaa~e  vectot is employed to 

efficiently capture both within channel (autocornhiion) sid paoes channel (cross- 

correlation) i n f d o n  h m  every chraael of the enay. This exploits the existence of 

crossîaik which has different characteristics h m  differe~lt contraction co~~ditions. 

In this thesis the anay consisted of four signai channels. niis work has show that 

this arrangement was sufncient to capture information to classify six basic hand 

movenzents with a high degne of success. However, the number of myoelectric charuiels 

is not limiteci to four chrmnels. When more cornplex movexuextts are to k classifieci, the 

channels c m  k incrpa9ed to dow a grrater capture of the signal and to enrich the 

idonnation of the featiae vector. 

53. Conclusion 

The new strategy takes advantages of the information capairrd by the array of 

d a c e  electrodes and fatures exhiiited by the autocorrelation and the cross-correlation 

to extraa paaans in the myoelectric signal. It exploits the existence of the crosstalk and 

using all the i n f o d o n  it gaihem h m  an active site, including cmstalk, the new 

strategy incnases the speed of decision making and subscquently the respollse the. The 

results show that the strategy can make a teasonable decision with only 50 ms of the 

steady-state myoelectric signal data. 



SA. Originaï Contribution 

In the author's opinion, the original contriMon of this nsearch is: 

for the fint the, to the knowledge of the author, a myoelecûic contrd strategy can 

extract pattems in the MES with a nasonable acciiracy with as iittle as 50 ms myœlectfic 

signal data. The decision tirne is fasta than the mechanical response of the existing 

p o w d  prostheses. 

5.5. Recommendation and Future Work 

As in any field, the introduction of a new conccpt o h  brings more questions than 

amwers. The foîlowing fiiture work is recommended: 

Extend the work of Chepter 4 to test the strategy on more s u b j e  which shouid 

include amputee subjects. 

Investigaîe the effect of increasing the number ofmyoelectric charnels. The results 

shown are for four myoelectric channels. The addition of more channels may capaire 

more information which could nsult in more distinct patkms. 

Detemine the optimum positions of the el& array. 

investigaie paformance scnsitmty to anay displacement A preliminary result of the 

smsitivity test is presented in Appendix A. 

Develop more & a n d  classifias such as neural networks to test the strategy. 

Develop an algorithm to detect the initiation point of the transient MES data. 

Implement the hrvdwarr so that clinical testîng of the strate@ can be d e d  out in 

r d  the. 



Bsrirjian, John V., and Car10 J. De Lucq YMirelci Aiive: Th& Fpidbnr 

RevuIed by Ekctmmyogmphym, 5th cd, Baltimore: W i  and W ' i ,  1985. 

Plonsey, R And Roger C. Barr, YBkkctddQ : a Quantitative Appm8cht), New 

York: Plenum Press, 1991. 

Starkennann, R, &A New EIeetrohmdt). Original article: Reiter, von Reinhold, 

"EIie NC.C EkLtrokPartbmd", Grmgebiete der Medmn, vol. 1, no. 4,1948, 

133-135. 

Simpson, D. C., YTbe ConW of r MPIa-Movemcnt P o w e d  Upper Limb 

Pirwthesisf), The Ewopean Syniposnlm on Md Elec., part 2, September 28 - 
October 1, 1965. 

Kobriasb, A. Ye., YBicnlt!ctrid Control of Roiaetic Devices*, US. Joint 

Publicatiom Research Senice, 18 Novemba 1960. 

Dorcas, D. S., and R N. Scott, Th&t& Myodectric Conîrol", Med md 

Biol. Eng., vol. 4, m. 4,1%6,367-370. 

Hudgins, &rnard S., New Approacb to Miiltifiinction Myoelectric ControltS, 

Ph.D. Thesis, Uniwnüy of New B m c S  199 1. 

Katz, B., YNewe, Muscle and SynapseB, New York McGraw-Hill, 1966. 

9. Parker, P. A., YOptiium Signal Rocuaing for r MPICihuc!bn MyoelCCtrfc 

CommPaicItioa CLwcP, Pli9. fieSig, University of New Bninswick 1975. 



DeLuca, C. J., YPhydobgy u d  Mitheamtics of Myoelectric SipibH, lEEE 

Trans. on Bionred Eng., vol. BME-26, A@ 1979, pp. 3 13-325. 

Kttife14 J. G., and S. Yao, UA S i g m b - O I I i a e  Invdgation of Nonlinar 

Elçctro~~~yogrrphi~ Proccuoram, lEEE T'm. on Bionred Eng., vol. BME-21, no. 

4, Maich 1974, p ~ .  298-308. 

H o p ,  N. J., YMydectric PmthaI Controk Opt/.ll( Eaümtion Applid to 

EMG and the Cyberneüc Conddemdom for Ib Use in 8 Mu-Mickine 

InterhceS, PhB. d-ation, M.I.T., Cambridge, Massachusetts, 1976. 

Cunningham, E. A., and N. Hogan, YEffects of Tissue Layen on The Surface 

Myrdectric Signai", lEEE 1981 Frontim ofœEng. in Heulth Ciare, 1981,3-7. 

Merletti, R, and L. R Lo Conte, uAdvuar in Roceshg of Surface M y o e H c  

Sig& Part l", Med & Biol. Eng. & Cmp., vol. 33, no. 3, May 1995,3629372. 

Lo Conte, L. R, and R Merletti, YAdvmces in Pmcdng of Surliw Myoelectric 

Signais: P u t  2", Med & Biol. Eng. & Comp., vol. 33, no.3, May 1995,373384 

Hammon4 P.H., T h e  Coatrd of Artitidrl Limbsm, DUcovery, London, vol. 27, 

March 1966.21-25. 

Wan, E. A, Kovacs, G. T. A., Rosen, J. M., and B. Widrow, 'Ikveiopment of i 

Neunl Network Interfhce for Direct Central Newous Control of r Pnwtbetic 

Limb", ROC. Inrl. Joint Conf: on N d  NetworAs, Washington D.C. - USA, 1990, 

II-3-11-2 1. 

Scott, R N., and P. A. Parker, UMydecîri~ Prostb~: Seitc of the Art", J m  of 

iCkd Eng. & T i ,  vol. 12, no. 4,1988,143451- 



Parkcr, P. A, Scott, R N., and Y. T. Zhg, YBrkgroand N o k  in Myoelec&k 

Cbwd: E f f '  on SNR of ME Signib': &oc lj* ~ n - 1  ~orfheust ~ i o ~ n g .  

Con$, Boston - USA, 1989,237-238. 

Godin, D. T., Parker, P. A, and R N. Scott, UNok Chamteristics of S t d d a r -  

S t d  Surîact Eltcîrodts", Med & Bid. Eng. & C~omp, vol. 29, no. 6, Novanber 

l99l,S8S-S9O. 

Childress, D. A., YA Mydectrîc T b  State Controllet adag Rate SenaitMtyn, 

hoc. b Ml. Con$ in Med. îmd Biol. Eng., Chicago - USA, 1%9,4-5. 

Englehart, Kevin B., YSignd Repmentation for Cbific1fion of tLe Trimient 

Myotlectric Signai", Ph9. Thesir, Uniwrsty of N m  Bnmrwick, 1998. 

Saridis, G. N., and T. P. Goatee, %MG Pattern Anilyrb and Classification for a 

PrOstbetic Armn, EEE T i .  on Biomed. Eng*, vol. BME-29, no. 6, June 1982, 

403412. 

Hudgins, Bcmard S., Parker, P. A., and Robert N. Scott, "A New Strategy for 

MrltiIPnetion MyocIcctric Conttoln, EEE Trolls. on Biomed Eng., vol. 40, no. 1, 

J ~ U I Y  1993,82-94. 

Hudgim, Bernard S., Parker P. A., and Robert N. Scott, YControl of Artiiicirl 

Limb  hg My~nltctrfc Pattern Rccopitbnn, M i  Br Lve Ski. Eng., vol. 13, 

1994,2138. 

Scott, R N., Wgdecîric Entrgy Specîra", M d  & BioL Eng*, vol. 5,1967,303- 

305. 



27. Graupe, D., and W. K. Cline, YPudkul Separation of EMG S i p r b  via 

ARMA I d e n ~ t i o n  Mcthds for Pnntbeah Contra1 PqmaP, IEEE Trum. 

S y 8 f ~ ,  A b ,  Cybenieti~~, VOL SMC-S, ïiO. 2, Mmh 1975,252-259. 

28. Graupe, D., Magnussen, J., and A Beex, &A Microproce~~c System for Mplti 

hinctîond Contrd of Upper Llaib Pmthma via Myœicetric Signai 

IdentMationH, lEEE Tram. on Auto. Contr., vol. AC-23, August 1978,538-544. 

29. Englehart, K., Hudgins, B., ParLa, P. A., and M. Starenson, Tirne-Frquency 

Methodr for Cliuifiatkn of the Tramkit Myoekctric Signalw, ROC. IF 

Congtess of the Intï. Soc. of EZectrophysiology ami Kinesiology, Montreal - Canada, 

1998,22-23. 

30. Masuda, T., Reiiable Myoeiectric Signal Detecbr on the Propagation 

Cbrvrcteristics of Motor Unit Action PotenWsn, ZEEE Tnai~ .  on Biomed. Eng., 

vol BME-33, no. 9, September 1986,876-878. 

3 1. Reucher, H., Ray G., and Jiri Silny, YSpibiil Fiitering of Noniavmive 

MiiltfeICCfCOdt EMG: Part 1 - Introduction to Mcuwing Technique and 

 application^*, IEEE Trons. on Biomed Eng., vol. BME-34, no. 2, Febniary 1987, 

98-105. 

32. Reucher, H., Silny J., and Gunter Rau, YSpatirl Fütering of Noiliivufvc 

MuitielCCtrOde EMG: Part II - Fikr Pedormance h Tkory .id ModeUngf), 

IEEE Tram on Biomed Eng., vol. BME-34, no. 2, Febniary l98f,l06- 1 13. 



33. P-u, M. J., P h ,  P. A., and R N. Scott, YMeasomment of M u d e  

Pibu Conduct&n Vdod(y u b g  S u b r c  EMG", Proc. 4 A ~ I  Con$ IEEE 

Eng. in Md md B i '  Soc., Bosîon - USA, 1987,331-332. 

34. Ray G., Silny, J., anâ J. Schneider, Y M w i l u  Coaduc!îon Vdodtg Detœtd 

N0dWdVrdy by 8 spothl Ekctnnlt m g m ,  hX. 9* 

Annual Con$ ZEEE Eng. in M d  and Bid Soc., Boston - USA, 1987,339-34. 

35. HarbP, M. 1. A, hh, 1. F., and A K. Naief, YOmLUne Mcuurement of Muscle 

Fibre Condodon Vtbchy: Aarlyab and ûptiinintioa of Perfonaucew, Jour. 

Biomd. Eng., vol. 10, Januaq 1988,334. 

36. Hogan, N., and R W. Matm, WIyodccMe Signai hcmsing: Optimal 

Estimation AppMtâ to Elcetromyqipphy - P u t  1: Denntlon of The Optimal 

Myoproecuar", lEEE T r w .  on Biomeci Eng., vol. BME-27, July 1980,382-395. 

37. Hogan, N., and R W. Mann. 9lyoeiectr-i~ Signai Rocesing: Optinrl 

Estimation Appocd to Electmmyogmphy - P u t  2: ExptrJPembl 

Demomtmtba of ûptimai Myopmœmr PerCocrrrmce1), EEE Trtms* on 

B i o m d  Eng., vol. BME27, July 1980,3964 10. 

38. Clancy, E d w d  A., and Nedie Hogan, 'LMiiopIe Site Elcrtromyogmph 

Amphde  El(hartio~~, EEE Trum. on Biomd Eng., vol. 42, no. 2, February 

1995,203-2 1 1. 

39. Doetschuk, Peter C., Gwtafkon, Donaid E., and Alan S. WiLlsLy, Wpptr 

Ertrtmky Limb F u d b n  Discrimiution u i y  EMG Signal Auiysism, EEE 

Trm. on Bionwd Eng., vol. BME-30, no. 1, Jan- 1983,18-29. 



4û. Gray, H., YGray's Anrtomym, editrd by. T. Pickering Pick and Robert Howden, 

IS* d, New York Bamcs & Noble Books, 1995,350-392. 

41. Papoulis, A, Y S i p i i  AulJnbm, Montreal: McGraw-Hill, 1977. 

42. Haykh, S., uAàapt€ve Filter Thmrym, 2* d, Toronto: Prentice-Hall, 1991. 

43. Hunt, James A, 3-Degree4-Pradorn Myoekctrk Control Siibbk for E.ry 

44. Bczdek, James C., "Pattern Rceolnftion rrW P.py Objective Fundion 

Aigoritbmsm, New York: Plenum Press, 1987. 

45. Bezdek, Jarnes C., and Sankar K. Pd, YFuy ModeIs for Pattern ReqpMon: 

Methods Thor Semch for Smcmes in Data", New YorL: IEEE Press, 1992. 



Appenaix A 

Test of sensitMty 

It hss been rrporied that one of the ârawbacks of employing an electrode array is the 

diffidty in npeatedly placing it in the ssme location [3q, [37], [39]. Since an array is 

sensitive to the displacement mie to the Mirent pichp regions, consistent myoelectnc 

signals are Micult ta obtain. The piupose of this test was to determine how much the 

new stfategy di when the location of the anay is moved. 

'ïbree subjects participaîed in the test. They were asked to retum to the laboratory 

one week after the original set of data was collected. The ekectrodes were placeà 0.5-2 cm 

lataally h m  the original positions. The subjects were askeâ to perfom the same six 

basic hand movements. Although both steady-state and transient âata were couected and 

aaalyzed, ody the steady--srete output is presented h m .  

Again, îbree classifiers (the Bayes quadiatic disairnuien . . .  
t, îhe lineardiscriminanî, 

and the minimum distance) were wed in the analysis. Figures A. la, AZa, and A3a show 

the d t s  of cach classifier when the record length of the training set eqUaed 1024 ms 

and the record lmgth of the test set was varieû h m  1024 to 10 ms. Figures A. lb, A2b, 

and A.3b display the resuits of each classifier when the record length of the training set 

was varied to match with the âata length of the test set. 



- -- 

Figure A 1 a - Q. D. Classification Rste 
using Fixed Length Training Set 

Figure A.& - L. D. Ciassification Rate 
using Fixeâ Length Training Set 

Figure A3a - M. D. Classification Rate 
using Fixed Length Training Set 

Figure A. lb. - Q. D. Classification Rate 
using Vanable Length Training Set 

Figure A.2b. - L. D. Classification Rate 
using Variable Length Training Set 

Figure A3b. - M. D. Classification Rate 
using Variable Length Training Set 



In the legends of caeh fi- Subject #1 (a), Subject #2 (a), and Subject #3 (a) 

rrprrsent the average pediormanct of two data sets (show by dasheû lincs). The legends of 

Subjcct #l O, Suôject #2 (b), and Subject #3 @) nprrscnt the d t s  of the sensitivity 

testwh~tbenrStdata~awarusadasbutiainingsctendthe~ec~nddata~awasused 

as the test set. 

The d t s  showed that the anay is vay sensitive to changes in its locaîion. Oaly 

major classes c d d  be identifiai correctiy. The minor classes were completely d e d  by 

major classes. A cl- look at how the minor classes were totaiiy c o v d  by the major 

classes can be seen h m  the conf'usion matrices (incluâed in Appendix C on CD-ROM). 

The results show that, out of six classes (hand movements), only two could be nasonably 

identified. Two movements were 5 W  misclassifïed, and the rrmaining two were 

completely misclassifieci. As a result of this, the emr rate was veiy high. 

Since the test was &ne in the worst case (by purposely moving the location of the 

electrodes), the success of recopnizing four classes showeâ that the strategy was not a 

total failure. Furthetmore, nnrrnt technology aiiows a very tight and precise socket 

placement which can reStnct the e l m e s  to a smali displacement (< lm). However, 

M e r  studies on this sensitivity issue m u t  be carried out before the strate= can be 

implemented 



A sample of a consent form and the letter of correspondence are included in the following 
two pages. Each abject read and signed the consent form and answered the additional 
information asked in the letter of comspondence. 



Infomed Consent Fom 

Title: hvestigaîion of an Amy of El- on MyocIectric Si@ 

Researchm: SupmisoR: BanaidHudgias,Ph.D. 
Philip A. Parker, P U .  

Investigator Sentiono Lmwinata, B.%. 

Rirpose: 
The purpose of this experiment is to investigate wbether an array of elecûdes ha9 mon 

advantages in capturing myoelectnc signai h m  the okin Surnre than the oidinary two channels 
configuration of eleçrrodes. The array of electrodes is to record h m  the slrin surtiice the 
electricd signals as a result of the activities of the above elbow muscles such as biceps and 
triceps. 

The signais obtained will k used to âevelop and to evaluate enhancement for myoelectric 
control prostheses. The informetion captureû, ifit is p v e n  successfhi, is an important step to 
achieve simultaneous conml of an artiticial prosthetic limb. 

Procedure: 
A small area around the upper arm where the electrodes are placed w i l l  be treated. As part 

of skin M o n ,  the stratum corneum (that is the dead upper layer of the skin d a c e )  wili  be 
removed carrfblly using a soft sand paper and then folîowed by trrating it with alcohol. An anay 
of electrodes which consist of four sirrface elcctrodes in an elastic band will be placed on around 
the upper arm where the area has ken cleaned. 

The subject is d e d  to producc a normal muscle contraction. The signals produceci wiii be 
captureâ by the eleCtTOdes. The electrodes are comected to electtonic instrumentation which 
ampli@ and record the si@s for fùr&her analysis. 

Ri&: 
As any otha expedmental proccdrm, there is a very small ri& associated with electncal 

sh& Every precautions and possible steps have ken considered to keep the subject as d e  as 
possible by using op~isolator to isolate the electronic instnimentatiom h m  the subjact. 

Withhwal: 
The stibject is fiee to withdraw h m  the expairnent at any tirne without any obligation. 

&, certify that 1 have read and understood the above enpisnation of 
the research proce&re and ail of my questions bave ken z m m w d  to rny satidàction. 

Witness Signature: 



Th* you for your interest to participate in the expriment. 1 d y  appmhte your help. 
Please dow me to explain the puqose of the expaiment. The purpose of this experùnent is 

to investigate whether an array of elcctrodes caa obtain more signais than the standard/usual 
configuration (use two pairs of electrodts). Until today, the idea of simuitaneous myoelectricaliy 
controiled ar&ifïcial limbs is up in the air kcausc insuffiCient number of inputs can be obtained 
h m  the muscle. This expriment wüî try to icduce the gaps and maLe the &eam corne tme. 
Your participation will give a chance to reach diis goal. 

The arperiment wili be conâucteâ inside the ïnstitute ofBiornedical Engineering building, a 
building below the bookstore, inside University of New Brunswick, Frrdericton campus. 
1 wodd like to get more information h m  you and schedule the tirne to paforrn the experiment. 

Name : 
Age : 
Sex : 

Do you have any allergie reactions with rubber? 
Do you have any allergic reactions with alcohol (not to drink, just nibbing)? 
Do you have any anomalies or any diseases related to upper am muscles? 
Can you perform normal fiinctional movements such as touching the nose, 
the ear or the lips, contracting/extending your am? 
Have you ever pedormed similar experiments (recorâing uppei ann 
myoelecûic signals with d i  electrodes)? Yes 

Yes 
Yes 
Yes 

Yes 

No 

1s there anything you would like to add? (-y regardhg to your health or prior experience 
with this type of m h )  

What is g d  time for you to m o r m  the experiment? 

Thank you very much and if you have any other questions, please do not hesitaîe to ask. 
Siacerely yom, 
Sentiono Leowinata 
Fredericton-NB-Caaeda, c5idaunb.ca, 5W58-7889 

Ps. Please note that you are fke to withdraw at any time without any obiigations if the 
experiment is not as you Qcpccted. 



Appendix C 

List of CD-ROM Contents 

The CDROM is logidy divided into thne main directories. The nrSt directory 

coasists of the data used in the wt. The second directory contains tanplate of 

MATLAB scripts. The thgd directory holds the d t s  of ail caldation perfomied. 

DATA 

The data of subjects is broken iato four pazts: the dynamic data, the sirnulated data, 

the steady-state daEs, and the m i e n t  data 

Dynamic data mbirectories (please read the readme.at nle): 

U)ata\Dyaamic\Subj ect 1 - u)ata\Dynamic\Subj ectB 

Simulaîed &ta file: 

\Data\Simulatedhwdatadat 

Steady-State data subdkectories (please m û  the rradme.txt file): 

U>ata\Steady\SubjectI - W\Steady\SubjectC 

Transient data subdirectories @1ease read the rradme.at file): 

\Data\Transient\Subject 1 - U>ata\Transient\SubjectC 

fU4IZiBscm 

nie scripts is d i a  lato three main directories, according to the data: the 

simulami data, the steady state dota. and the traasient dsta 

The simuiated data contains the foliowing subdnectories: Bayes Quadratic Discnmman 
* . .  

t 

(3 ZU), Fuzy  c-Means (322.4), Minhimi Distence (3222) and Rank Orda 

69 



(322.1). The Bayes Quadratic Disaiminsnt a d  the Minimum Dkîame directories srr 

aiso divided kther. Plcase check the mpective dinetories as they are seifnpianatory- 

The stedy sEate data dircctory is divided into few subirectories: Four C h  

Clsssincation (4-4), Paf-cc Messrire (4.3.2.2), Six Cîass Classification (4.3.2.l), 

Test of Seasitivity (Appcndix A), Tracking Dynamic Data (4.5). Each dircctory contains 

few subdhcmies. 

The transient data directory is dividcd inîo 3 main su&directories: Bayes Quadratic 

. . .  
Discriminant, Linear Disamiinant and Minimum Distance. Each directory again divided 

into two main subdktories: 10IFeature Vector and 16-Fe- Vectot. The transient 

data directory gives scripts samples of section 4.3.1. 

REsmTS 

Resuits that m o t  be included in the thesis can be found in this CWROM. The 

results are categorkd into 5 main subdktories: Four-Class (4-4), Sensitivity 

(Appendix A), Steady-State (4.32), Tracking (4.9, and Transient (4.3.1). 




