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Abstract 

The main objects of this thesis are graded Lie algebras associated with a Lie algebra or 

a Lie dgebroid such as the Fkolicher-Nijenhuis algebra, the Kodaira-Spencer algebra and 

the newly constructed Gelfand-Dorfman algebra and generalized Nijenhuis-Richardson 

dgebra. Main results are summarized as follows: We introduce a derived bracket which 

contains the Rolicher-Nijenhuis bracket as a special case asd prove an interesting formula 

for this derived bracket. We develop a rigorous rnechonism for the Kodaira-Spencer alge- 

bra, reveal its relation with R-matrices in the sense of M. A. Semenov-Tian-Shansky and 

construct fiom it a new example of the knit product structures of graded Lie dgebras. For 

a given Lie algebra, we construct a new graded Lie algebra cded the Gelfand-Dorfman 

algebra which provides for r-matrices a graded Lie algebra background and includes the 

well-known Schouten-Nijenhuis algebra of the Lie algebra as a subalgebra. We establish 

an anti-homomorphism fiom th% graded Lie algebra to the Nijenhuis-Richardson dge- 

bra of the dual space of the Lie algebra, which sheds new light on our understanding of 

Drinfeld's construction of Lie algebra stmctures on the dual space with r-matrices. In 

addition, we generalize the Nijenhuis-Richardson algebra from the vector space case to the 

vector bundle case so that Lie algebroids on a vector bundle are defined by this general- 

ized Nijenhuis-Richardson algebra. We prove that this generalized Nijenhuis-Richardson 

algebra is isomorphic to both the linear Schouten-Nijenhuis algebra on the dual bundle of 

the vector bundle and the derivation dgebra associated with t h e  exterior algebra bundle 

of this dual bundle. A concept of a 2n-ary Lie dgebroid is proposed as an application of 

these isomorphisms. 
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Chapter 1 

Introduction 

Various constructions and algebra structures can be described in terms of degree 1, 

bradset-square O elements of gaded Lie algebras. Such descriptions usually provide new 

perspectives when we are dealing with some problems associated with these construc- 

tions and structures. This is clear in algebraic deformation theory ([GS] , see also [LMS]). 

The Gerstanhaber algebra and the Nijenhuis-Richardson algebra are powerful tools in the 

study of deformations of associative and Lie dgebras respectively ([Gl] and [NR2]). It is 

also clear in differential geometry. Examples here includes the characterization of Pois- 

son structures on a manifold through the Schouten-Nijenhuis algebra over the manifold 

([VI]) and the Newlander-Nirenberg theorem in tenns of the Frolicher-Nijenhuis algebra 

over a manifold ([NP?] and [FN1,2]). We will construct in this thesis two new graded Lie 

dgebra structures which are called the Gelfand-Dorfman algebra for a Lie algebra and 

the generalized Nijenhuis-Richardson algebra over a vector bundle and provides some new 

insights into the well-known Fkolicher-Nijenhuis algebra and the Kodaira-Spencer algebra. 

These graded Lie algebras describe such important mathematical objects as r-matrices, 

Lie algebroids, R-matrices and Nijenhuis operators in the above-mentioned manner. 

1.1 Main Results 

We Est our main results in order of their appearasce in the body of this thesis. 



1.1.1 The Fkolicher-Nijenhuis Algebra 

The Frclicher-Nijenhuis algebra on Alt(V, V) for a Lie algebra V was studied in [N2]. Its 

degree 1, bracket-square O elements are sometimes called Nijenhuis operators. A Nijenhuis 

operator induces a second Lie algebra structure on V and this new Lie algebra structure 

plays an important role in the bihamiltonain method of studying completely integrable 

Harniltonian systcms ([Dl and [K-SM], see also [MM]). 

In Chapter 4, we will introduce a bracket on AN(V, V) which is derived from the 

Nijenhuis-Richardson bracket on Alt(V, V)[1] (a graded vector space obtained by shifting 

Alt(V, V) down by 1 degree) and which contains the Rolicher-Nijenhuis bracket as a 

special case. We particulady focus on a formula associated with this derived bracket 

(Theorem 4.5). Such a formula is established in [N2] for the Ftiilicher-Nijenhuis bracket 

to express the Fkolicher-Nijenhuis bracket for the new Lie algebra on V induced by a 

Nijenhuis operator in terms of the Frolicher-Nijenhuis bracket for the original Lie algebra 

on V. While it is not diffcult to realize that Nijenhuis' formula holds for our more general 

derived bracket, the proof of this formula in our thesis is new. 

1.1.2 The Kodaira-Spencer Algebra 

In Chapter 5, we establish the Kodaira-Spencer algebra on Alt(V, V) for a Lie algebra V. 

It provides a graded Lie algebra description of both the classical and the modified classical 

Yang-Baxter equations associated with the Lie algebra V in the sense of Semenov-Tias- 

Shansky ([STS]). Some interesting results of the Kodaira-Spencer algebra follow from our 

approach to its constructon. For example, we easily have that an interesting operator 8 is 

a homomorphism from the Kodaira-Spencer algebra to the Nijenhuis-Richardson algebra 

of the underlying vector space of the Lie algebra V ( see (5.4)). The fact that R-matrices, 

as solutions to Yang-Baxter equations, define new Lie algebra structures on V becomes a 

direct consequence of this homomorphism. 

The Kodaira-Spencer algebra was originally defined on the graded vector space of 

vector-valued differential forms on a manifold ([KSI and [BM]). To my knowledge, the 

version we consider in this thesis has not been studied before. 



1.1.3 Knit Product Structures 

A knit product is a graded Lie algebra structure on the direct surn of two graded Lie al- 

gebras when they have mutual representations on each other satisfying certain conditions 

( 2 . 5 ) .  In Chapter 4, we have a more clear (compared with [N2]) and more straight 

(compared with [Mi]) exposition of the knit product of the Nijenhuis-Richardson alge- 

bra Alt (V, V) [l] ([NR2]) and the Fkolicher-Nijenhuis algebra Alt ( V, V) (Theorem 4.4). 

In addition, we show in Chapter 5 there exists a knit product structure between the 

Nijenhuis-Richardson dgebra and the Kodaira-Spencer algebra (Theorem 5.6). As far as 

1 know, this is only the second example of a knit product of graded Lie dgebras. 

We point out constructions similar to the knit product have been studied for some 

other algebra structures in mathematics. For exmple, Majid considered the Lie algebra 

case and coined the name a matched pair ([Ml) for two Lie algebras fiom the direct sum 

of which a new Lie algebra can be constructed. Mokri studied a matched pair of Lie 

algebroids ([Mo]). The newly constructed structure is called a twilled extension for Lie 

algebras by Kosmann-Schwanbach and Magri ([K-SM]) and for Lie-Reinhart algebras 

by Huebschmann ([HI). The name of a knit product for graded Lie algebras is given by 

Michor ([Mi]). 

1.1.4 The Gelfand-Dorfman Algebra 

The first new graded Lie algebra we construct in this thesis is the Gelfand-Dorfman 

algebra /\ V @ V for a Lie algebra V. Its degree 1, bracket-square O elements are general 

(not necessarily anti-symmetric) r-matrices of the Lie dgebra V ([Dr1,2]). 

In Chapter 6, besides the construction of the Gelfand-Dorfman algebra (Theorem 

6.1), we establish two results. First, we show that the Gelfand-Dorfman algebra contains 

a subalgebra isomorphic to the Schouten-Nijenhuis algebra (Theorem 6.7). This is a 

natural result since anti-symmetric r-matrices are degree 1, bracket square O elements 

of the Schouten-Nijenhuis algebra. Second, we establish an anti-homomorphism fiom 

the Gelfand-Dorfman dgebra to the Nijenhuis-Richardson algebra Alt(Vm, V*)[l] for the 

vector space V* (Theorem 6 -9). This anti-homomorphism generalizes a construction of 

Drinfeld in the Poisson-Lie group theory (see Proposition 6.8). 



1.1.5 The Generalized Nijenhuis-Richardson Algebra 

To describe the generalized Nijenhuis-Richardson algebra, it is convenient to r e c d  the 

notion of a Lie algebroid ([Ma1,2]) first. A Lie algebroid over a smooth manifold M is 

a vector bundle A over M together with a Lie algebra structure on the space r ( A )  of 

smooth sections of A and a bundle map p : A -t TM such that p defines a Lie algebra 

homomorphism from r ( A )  to X(M), the Lie algebra of vector fields over M, and there 

holds for f E C"(M) and tl, 6 E l'(A), the following derivation law, 

A Lie algebroid is a generalization of a Lie algebra. The natural question is : what 

is the graded Lie algebra on a vector bundle which defines Lie algebroid structures? In 

Chapter 7, we constmct such a graded Lie algebra LR(A) for a vector bundle A through 

a generalization of the Nijenhuis- Richatdson algebra from the vector space case to the 

vector bundle one (Theorem 7.3). 

It is known that Lie algebroids on a vector bundle A are in one-one correspondence 

with linear Poisson structures on its dual bundle A* ([Cl and [CDW], see also [Wl]). 

This is sometimes called the generalized Lie-Poisson construction. In Chapter 7, we 

point out that linear polyvector fields on a vector bundle constitute a subalgebra of the 

Schouten-Nijenhuis algebra over the bundle (considered as a manifold), which will be 

called the linear Schouten-Nijenhuis dgebra over the bundle, and prove that the general- 

ized Nijenhuis-Richardson algebra for a vector bundle is isomorphic to the linear Schouten- 

Nijenhuis algebra over its dual bundle (Theorem 7.10). Since the degree 1, bracket-square 

O elements of the Iinear Schouten-Nijenhuis algebra d e h e  linear Poisson structures, our 

result extends the generalized Lie-Poisson construction. In the course of developing The- 

orem 7.10, we dso give a different proof of the following result: the Schouten-Nijenhuis 

algebra over a manifold N is a subalgebra of the Nijenhuis-Richardson algebra for the 

vector space COD(N) ([CKMV]). 

We also extend another correspondence in the Lie algebroid theory, the correspondence 

between Lie algebroids on a vector bundle A and 1-difierentials of sections of the exterior 

algebra bundle of its dual bundle A* ([K-SM] and [XI). We establish an isomorphisrn 

between the generalized Nijenhuis-Richardson algebra for A and the derintion dgebra 



of the above-mentioned exterior algebra of sections (Theorem 7.11). This isomorphism 

also generalizes the classical work of Ftolicher and Nijenhuis on the characterization of 

the derivation ring of differential forms on a smooth manifold ( [FNl] ) . 

1.2 Techniques behind the Results 

We briefly discuss here some ideas we use to develop our main results. 

The semidirect product (Theorem 3.2) of the Nijenhuis-Richardson algebra Alt(V, V)[l] 

for a vector space V and the Lie induced algebra Alt(V, W) associated with V a d  a Lie 

algebra W ([NR3]) plays an important role in developing some of Our main results. The 

generalized Nijenhuis-Richardson algebra L R( A) is constructed as a subalgebra of t his 

semidirect product with V = ï ( A )  and W = X ( M ) .  It is through a special case of this 

semidirect product (V = W) that we get an effective way to attain the two knit products 

in 51.1.3. This special case of the semidirect product was already used in [N2]. However, 

as fax as 1 know, the general constmction of the semidirect product is considered in this 

thesis for the first time. 

In Chapter 3, we introduce an operator O which is "almostn the difference of two 

coboundary operators 6 and D in the Lie algebra cohomology theory (see(3.8)). The 

operator 6 is for the adjoint representation and D is for the trivial representation on the 

Lie algebra itself. However, it displays a fundamentally different property (Proposition 

3.8) compared with the property of 6 and D (Lemma 3.7). Though, we find that with the 

place of the operator 6 in [N2] taken by this operator 8 Nijenhuis' idea there still works 

well with necessary modifications. This leads to the Kodaira-Spencer algebra Alt(V, V) 

and to some of its remarkable properties. 

Mainly for readers' convenience of comparing the Kodaira-Spencer algebra with the 

Frolicher-Nijenhuis algebra, we include ir Chapter 4 the mechanism used by Nijenhuis 

in constmcting the latter dgebra ([N2]). Nijenhuis showed that the Frolicher-Nijenhuis 

bracket is essentially a measure of the deviation of 6 from being a derivation of the 

composition product on Alt(V7 V). Graded Lie brackets of this kind turn out to be 

fairly commmon in mathematics and mathematicd physics. An example is the Batalin- 

Vikovisky dgebra (see [K-S4] and references therein). We do not know at this moment 

whether brackets of the Kodaira-Spencer form as in (5.3) will find applications in physics. 



1.3 The Structure of this Thesis 

In Chapter 2, we introduce standard definitions and constructions in graded Lie algebra 

theory. Then the shufae algebra is introduced together with multi-shuffles as a tool in 

dealing with some complicated cornputations in this thesis. In the third part of Chapter 

2, we list some classical examples of a graded Lie algebra, including two versions of 

the Schouten-Nijenhuis algebra, the Nijenhuis-Richardson algebra and the Lie induced 

algebrô. 

The first section of the Chapter 3 constructs the semidirect product of the Nijenhuis- 

Richardson algebra and the Lie induced algebra. In the second part, we introduce the 

operators 6 and 8 and study their interaction with the cup algebra Alt(V, V) which is 

the special case of Lie induced algebra Alt(V, W). 

Chapter 4,5 and 6 study the F'rolicher-Nijenhuis algebra, the Kodaira-Spencer dgebra 

and the Gelfand-Dorfman algebr a respect ively. 

In Chapter 7, we first construct the Nijenhuis-Richardson algebra, then prove two 

isomorphism theorems mentioned in 51.1.5. Finally, through the introduction of 2n- 

ary Lie algebroids, we illustrate, in a more general setting, the implications of these 

isomorphisms for the Lie algebroid theory. 



1.4 Cast of Characters 

For convenience of the reader, we sumrnarize in the following table graded Lie dgebras 

which appear in this thesis. 

Lie 1 ~ector 1 Lie 1 Degree 1, Bracket-Square O 
Graded 1 Graded 1 Graded Meaning of 

Alge bra 
Schouten-Nijenhuis 

Algebra(1) 
Schouten-Nijenhuis 

Algebra(2) 
Nijenhuis-Richardson 

Space 

Algebra 
Lie Induced 

/\ v[l ]  

I \TN 
Alt (V, V) [Il 

Algebra 
Froiicher-Nijenhuis 

Bracket 

/\V*@V[l] 
Alt(V, W) 

Algebra 
Kodaira-Spencer 

Element 

(2.10) 

(2.10) and others 
(2.12) and (2.11) 

/ \v*@w 
Alt(V, V) 

Algebra 
Gelfand-Dorfman 

Richardson Algebra 1 L R( A) 1 cf. (3.4) I Lie algebroid 

anti-syrnmetric r-matrix 

Poisson structure 

(2.12) and (2.14) 
(2.16) 
(2.17) 

(4.3) or (4.12) 
h p @ v  
Alt(V, V) 

Algebra 
Generalized Nijenhuis- 

Lie algebra structure 

W * @ v  1 (5-6) 
Alt(V*, V) 1 (6-9) 

(4.13) 
(5.3) Or (5.5) 

R-matrix 

I \v@v 

Nijenhuis operator 

(6.3 r-matrix 



Chapter 2 

Prelirninaries 

Without specification, a l l  objects in this thesis are over real numbers R , and dl vector 

spaces and Lie algebras with the only exception of those in the last chapter are finite- 

dimensional. 

2.1 Graded Lie Algebras 

Our survey of gaded Lie algebras in this section is mainly based on [NRl] with the 

exception of the knit product which is adapted from [Mi]. 

2.1.1 Basic Definitions 

A graded vector space is a vector space B together with a family { B ' } ~ , ~  of subspaces 

of B, indexed by 2, such that B is the direct sum of the family { B ~ } ~ , ~  The elements 

of are c d e d  homogeneous of degree k. Graded subspaces are defined in the obvious 

way. If B = ekEz Bk and C = $ k E Z ~ k  aze two graded vector spaces, then their direct 

sum is a new graded vector space 8 8 C = B ~ , ~ ( B *  @ C k ) .  

A linear map 2 of a gaded vector space B = $ k , Z ~ k  into a graded vector space 

C = $,,ZCk is homogeneous of degree rn if for every k E 2, 1(IIk) C Ck+m. ki particular, 

shift operators [ml are of homogeneous degree m. They act on elements as the identity but 

shift their degrees down by m. In other words, given a graded vector space B = @ k E z ~ k ,  

B[m] is a new graded vector space with B[mIk = Bk++", k E 2. 

A graded algebra is a graded vector space B = ekEZBk wwhich is given an algebra 

structure compatible with its graded structures, i.e., a bilinear map ( b l ,  b2)  + blbz of 



B x B into B such that BmBn c Bm+n for m, n E 2. Graded subdgebras and ideals 

are self-evident. A homomorphism of a graded algebra B into C is a homogeneous linear 

map 1 of degree zero of B into C such that 1 (bl b2) = 1 (bl)l(b2) for d bl, b2 E B. 

A graded algebra B is associative if (b1b2)b3 = bl (b2b3) for aJl bl, b2, b3 E B. Such a B 

is commutative (anticommutative) if there holds for every pair of homogeneous elements 

bk E Bn', k = 1,2, b i b  = (-l)"ln2b2b1 (blb2 = -(-l)n'n2b2bl). 

A gruded Lie algebra is a.n graded anticommutative algebra which satisfies a graded 

version of the classical Jacobi identity. Precisely, a graded Lie algebra is a graded vector 

space B = ekEZBk together with a bilinear map (bi, b2) -t [bl, b2] of B x B into B which 

satisfies the following conditions: 

(1) [Bm, Bn] c Bm+n. 

(II) If bl E Bnt , b2 E Bn2, then [b l ,  b2] = -(-l)"ln2[b2, bl]. 

(III) If bk E Bnk , k = 1,2,3, then 

The identity in (III) is called the Jacobi identity. When (II) is satisfied, it can be written 

in the following equivalent forms: 

2.1.2 The Derivation Algebra 

Much in the same way as the commutator dehes  a Lie algebra on an associative algebra, 

so the graded commutator defines a graded Lie algebra on an associative graded algebra. 

Precisely, if B = ekEZBk is an associative graded algebra, then the underlying graded 

vector space of B with the bracket determined by 

for bk E Bn*, k = l,2, is a graded Lie algebra. 



As a particular example, let E = B , , ~ E *  be a graded vector space. Then we have 

a natural structure of graded associative algebra on End(E) = @ k E f l n d k ( ~ ) ,  where 

E n d k ( ~ )  consists of linear endrnorphisms of homogeneous degree k. We now further 

suppose that E is a graded algebra. Let D : E + E be an element of Endk(E). We 

c d  D a k-derivation of the gaded algebra E if there holds for any pair el E En' and 

ez E Enz, 

D(ele2) = (Del)e2 + (-l)knl el ( ~ e 2 ) .  (2.2) 

The set Dk(E) of a l l  k-derivations is a subspace of Endk(E). Let D(E) denote the s u m  of 

the family {Dk(E))kEZ; D(E) is a graded subspace of End(E). The commutator [DI, D2] 

af two derivations of degree nl and n2 is an (ni + n2)-derivation. Therefore, D ( E )  is a 

graded subdgebra of the graded Lie algebra End(E). We will call this gaded Lie algebra 

D(E) the de7-iuatzon algebra of the graded algebra E. 

A k-derivation D becomes a k-differential if it satisfies D2 = O, which is equivalent 

to [D, LI] = O when k is an even number. A graded Lie algebra with specification of a 

1-differential is an example of differential graded Lie algebras. 

Let B = ekEZBk be a graded Lie dgebra. Consider the adjoint representation. For 

any b E gk, the (III') means ad@) is a k-derivation of B. (III") further gives 

for bl E Bnl and b2 E Bn2. Hence adB is a graded Lie subalgebra of the derivation algebra 

D(B). B becomes a differential graded Lie algebra with specification of an element b E B1 

satisfying [b, b] = 0; the 1-differentid is adb. 

2.1.3 The Right Pre-Lie Algebra 

The commutator also generates graded Lie algebras from right pre-Lie algebrus. A graded 

dgebra B = ekeZBk is c d e d  a right pre-Lie algebra if there holds for all bk E En*, 

k = 1,2,3 

bl (b2b3) - (blb2)b = (-1)n2n' (b l  (b3b2) - (blb3)b2)- w3 
If B is a right pre-Lie algebra, then the underlying graded vector space B with bracket 

de t ermined by 

{bl,b2) = b2b1 - (-l)n1n2blb2 (2-4) 



for bk E B n k  , k = 1 , 2  is a graded Lie algebra. The usual commutator 

also defines a graded Lie algebra on B. 

2.1.4 The Semidirect Product 

In this thesis, we will use the following notion of semidirect product for a graded Lie 

dgebra. 

Let B and C be graded Lie dgebras. If there is a graded Lie algebra homomorphism 

then we Say that B acts on C through S. Given an action of B on C through 3, the 

graded vector space B $ C equipped with the bracket determined by 

for bl E Bnl, b2 E Bn2, cl E Cnl and c2 E Cn2, is a gaded Lie algebra. 

This graded Lie algebra structure B $ C is the semidirect product of B asd C and we 

denote it as B K C. 

Note that B is a subalgebra of B K C and that C is an ideal of B K C. This is 

actually the characteristic property of semidirect product. Precisely, if there is a graded 

Lie algebra structure on B $ C such that B is a subalgebra and that C is an ideal, then 

there exists an action of B on C and as a graded Lie algebra, B $ C is isomorphic to the 

semidirect product B K C which is induced by this action. 

2.1.5 The Knit Product 

We now introduce a notion similar to the semidirect product, the b i t  pîoduct of two 

graded Lie algebras. 

Let B and C be graded Lie algebras. A derivatively knitted pair of representations 

(a, ,û) for B and C are graded Lie dgebra homomorphisms 



such that 

(2.6) 

for 6 E Bn, bl E Bnl ,  b2 E Bn2, c E Cm, ci E Cml and q E Cm2. 

If there is a derivatively knitted pair (a, ,8) for B and C, then the graded vector space 

B $ C equipped with the bracket determined by 

[ ( ~ I A ) ,  (b2,ca)l = ([bc,b] +P(ci)bz - (-1)n1n2B(c2)bi, [CI, Q] + Q ( ~ I ) c ~  - (-l)n1n24b2)ci) 

(2- 7) 
for bi E Bnl, b2 E Bn2, ci E Cnl and ca E Cn2, is a graded Lie algebra. 

This graded Lie algebra B $ C is called the knit product of B and C, and denoted as 

B w C. 

Note that, when ,8 = 0, the b i t  product degenerates to a semi-direct product. 

The characteristic property of the knit product is that both B and C are subalgebras of 

B $ C. Precisely, if there is a graded Lie algebra structure on B $ C such that both B and 

C are graded Lie subalgebras, then there is a derivatively knitted pair of representations 

for B and C such that, as a 

of B and C induced by this 

2.2 The Shufae 

graded Lie algebra, B $ C is isomorphic to the knit product 

pair. 

Algebra 

We introduce the s h d e  algebra and notations about multi-shut8es in this section. These 

notations will be used in sequel and the basic properties of the shufae algebra are helphl 

for us to deal with some complicated computations. The ddf l e  algebra was studied in 

[RI and in many subsequent works. Our exposition follows [AG]. 

Denote Z n  for the symmetric group of {1,2, = O -  ,n). A (p,q)-shufle o is an element 

of Ce, which satisfies 

o(i) < o(i + l ) ,  i # p. 



We wiU denote sh(p,  q) for the set of (p, q)-shdes. 

Consider the group algebras R(C,), n = 0,1,2,  - O .  We formulate a graded vector 

space 

On this 

for A E 

graded vector space, defining 

Cm and 7 E En, with 

we get a graded algebra. 

The subdgebra of R(C) generated by lk, k = 0,1,2, - *  -, is called the shufle a k e b ~ a .  

The shutae algebra is a graded commutative associative algebra, i.e, the following two 

identities hold, 

lm * In = (-l)mnIn * lm 9 (2.8) 

In this thesis, we will also use shufaes with more than two entries. For nl , . -. , nk, 
positive integers, we denot e 

sh(n1, ---, nk) 

for the set of o E En,+ ...+,, satiseing 

W e  will use notations 



For examples, 

Note that sh1(2 ,3 )nsh2(2 ,3 )  = 0 and sh(2,3) = sh1(2 ,3)Ush2(2 ,3) .  Generally, we 

have 

For any object 

and o E sh(nt,  - , nk) ,  we use multi-index abbreviations in the following manner: 

For a fwed i ,  O E shi(nl, , nk) ,  the notations X,i , , X,i-1, X, i+i ,  , X,r axe still 

as above. However, X,i will mean (Xe(,, +m+-..+ni-I +q , , +m++-.+ni)). 

2.3 Classical Examples of the Graded Lie Algebra 

We introduce some classical examples of a graded Lie algebra. They will be used in later 

chapters. 



2.3.1 The Schouten-Nijenhuis Algebra for a Lie Algebra 

Let V be a finite-dimensional Lie algebra. The underlying graded vector space of the 

Schouten-Nijenhuis algebra for the Lie algebra V is 

Its gaded Lie bracket is determined by 

whereX,,s= 1,-,kl and k;,t = 1 , - , k 2  are allin V. 

Two remarks are ready to make here for this Schouten-Nijenhuis algebra. First, since 

it also establishes that 

for Si E A"'+' V, i = 1,2,3, the Schouten-Nijenhuis algebra for a Lie algebra is an example 

of the Gerstenhaber dgebra ([Gl, 2, 3]), which attracts a great deal of attention recently 

in the mathematicd physics community. Second, the degree 1, bracket-square O elements 

of this Schouten-Nijenhuis algebra are exactly the anti-symmetric r-matrices of the Lie 

algebra V. This was observed by Drinfeld ([Drl]), Gelfand and Dorfman ([GD]). 

In this thesis, we will also c d  this Schouten-Nijenhuis algebra the algebraic Schouten- 

Nijenhuis algebra. 

2.3.2 The Schout en-Nijenhuis Algebra over a Manifold 

Let N be a smooth manifold. The underlying graded vector space of the Schouten- 

Nijenhuis algebra ouer the manifold N is the graded vector space of polyvector fields on 



where TN is the tangent bundle of N and I'( / \"'TN) is the space of sections of the 

exterior algebra bundle /\k+l TN. The graded Lie bracket of this dgebra is determined 

by (2.10) with X.,x E X(N), together with [ f , g l s N  = Ofor f,g E C"(N) and [X ,  f ] s ~  = 

Xf 
This is the original algebra of Schouten ( [ S I )  and Nijenhuis ([NI]) (See [MR] and [VI] 

for a modem exposition) . 
The Schouten-Nijenhuis dgebra over a manifold N is also an example of the Ger- 

stenhaber algebra. Its degree 1, bracket-square O elements are Poisson structures on N. 

Precisely, if S E r(h2 TN) satisfies [S, SISN = O, then (f, g )  = S(df, dg) defines a Poisson 

bracket on N, and any Poisson structure on N is of this form. 

Sometimes, we will c d  this Schouten-Nijenhuis algebra the geomet ric Schouten- Ni- 

jenhuis algebra. 

2.3.3 The Nijenhuis-Richardson Algebra 

Let V be a finite-dimensional vector space. Denote by AHk(V, V) the space of k-linear 

alternating morphisms fiom V x O -  x V ( I c  factors of V) to V and let Alto(V, V) = V. 

The NijenhuiP-Richardson algebra ([NEU]) is defined on the graded vector space 

Alt (V, V )  [ l ]  = @ AW' (v, V )  . 
k 2 0  

We need the concept of the composition product to introduce the graded Lie bracket 

of the NR algebra. For Pi E Altki+'  (V, V), i = 1,2, their composition product PI Pz E 

(V, V) is 

The graded Lie bracket of the Nijenhuis-Richardson algebra is determined by 

Denote V* for the dual space of V. Consider the gaded vector space 



Since V is finite-dimensional, we have a graded vector space isomorphism 

This provides us an equivalent description for the Nijenhuis-Richardson algebra on I\ V* @ V[1]. 

In terms of /( V* @ V, the composition product is 

where pi @Xi E A&'+' Vn @ V, i = 1,2, and ix ,  is the usual insertion operator, and we 

can get from this the corresponding graded Lie bracket. 

The fact that the bracket (2.12) defines a graded Lie algebra can be easily proved 

with this equivalent description. In fact, using (2.14), we can astablish through a direct 

calculation the so cded  commutative-associative law, 

where Pi E ~ l t ~ i + '  (V, V), i = 1,2,3. Therefore, Alt (V,  V) [Il with the composition product 

is a right pre-Lie dgebra. 

We make two remarks here. First, when V is infinite-dimensional, the Nijenhuis- 

Richardson algebra can still be defined on Alt(V, V)[l]. In this case, we can use (2.8) and 

(2.9) to prove the bracket determined by (2.11) and (2.12) is a graded Lie bracket. We 

will use this version of the Nijenhuis- Richardson algebra in Chapter 7. Second, some 

autho~s consider the Nijenhuis- Richardson dgebra as an algebra stmcture on Alt(V, V) 

rather than on Alt (V, V)[l]. Our choice is to make its properties to be stated in a more 

neat way. 

2.3.4 The Lie Induced Algebra 

Let V be a finite-dimensional vector space and W be a finite dimensional Lie algebra. 

Let ~lt'((V, W) denotes the space of k-linear altemating morphisms from V @ - @ V 

to W. On the graded vector space 



the bracket determined by 

for Ei E ~ l t ~ i ( V ,  W ) ,  i = 1,2, dehes  a gaded Lie algebra. 

This graded Lie algebra was used in [NR3] without a name. Since it is essentially 

induced by the Lie algebra structure on vector space W, we would like to c d  it the Lie 

induced dgeb ta  associated with V and W. 

An equivalent description of the Lie induced algebra can be given through the following 

identification 

Alt(V, W) = /\ V* (g) W. 

Here, we denote 
k 

k20 

In terms of /\ V* @ W ,  (2.16) is equivalent to 

for vi @ E V'@ W,i = 1,2. 

For any commutative COalgera C and Lie algebra W, there is a natural graded Lie al- 

gebra structure on Hom(C, W). Consider C = /\ V with its exterior COalgebra structure, 

then the Lie induced algebra Alt(K W) is just a special case of this general construction 

since we clearly have Alt(V, W) = H a ( A  V ,  W). For further information, we refer to 

PSI 
Following [N2], we will c d  the Lie induced algebra in the case W = V the cup algebrrz 

for the Lie algebra V. 

When both V and W are infinite-dimensional, the Lie induced algebra can still be 

defined on Alt(V, W). In this case we can use (2.8) and (2.9) to show the bracket (2.16) 

defines a graded Lie bradret. 



Chapter 3 

One Structure and Some Operators 

This is a preparatory chapter. We construct a semidirect product structure of the 

Nijenhuis-Richardson algebra and the Lie induced algebra. This structure will be used 

in Chapter 4, 5 and 7. The other part of this chapter is devoted to the study of the cup 

algebra. The focus is on its relations with two naturd operators 6 and 0. These relations 

will play an important role in Chapter 4 and Chapter 5. 

3.1 The Semidirect Product Structure 

In this section we establish the semi-direct product structure of the Nijenhuis-Richardson 

algebra AZt(V, V)[l] and the Lie induced algebra Alt(V, W). 

Let P E Alt1+' (V, V ) ,  E E ~ l t ~  (V, W ) .  We define 

It is clear that 9(P)E E Altk+'(V, W). Hence, û induces a morphism 

3 : AIt(V, V )  [1] + End(Alt(V, W)) . 

The following proposition states 8 ac tudy  defines a graded Lie dgebra action of 

Alt ( y  V )  [l] on Alt (V, W) . 
Proposition 3.1 

(3.l.a) Û ( P )  E DL (Alt(V, W ) )  . 

(3.l.b) 3 : AZt(V, V)[1] + D(Alt(V, W)) is a graded Lie algebra homomorphism. 



Proof. Let Ei E Altki(V, W ) ,  i=l,  2. In order to prove (3.l.a), we have to show 

Without loss of generality, we assume 

Note that in the above calculation we use 

Without loss of generality, we c m  suppose 



On the other hand, 

Therefore, 

(3.3) is now clear. O 

From 92.1.4, we have that the action 3 generates a semi-direct product of the Nijenhuis- 

Richardson algebra Alt (V, V) [1] and the Lie induced algebra Alt (V, W )  . This is the graded 

Lie algebra in the following t heorem. 

Theorem 3.2 On the graded vector space 

the bracket determined by 

defines a gruded Lie algebra, where Pi E AI~'~+'(v, V )  and E; E ~ l t ~ i ( ~ ,  V ) ,  i = 1,2. 

For simplicity we will mite 

wi t h the self-evident unders t anding 



The notation S P(V)  = SP(V, V) wiil also be used. 

To end this section, we point out when V and W axe both infinite-dimensional, The- 

orem 3.2 still holds. However, a different proof should be used. For such a proof, we can 

use (2.8) and (2.9). 

3.2 Two Operators and the Cup Algebra 

In this section, we introduce the operators 6 and 0, and discuss their interaction with the 

cup bracket . 

3.2.1 Operators 6 and O 

Consider 8 E Alt2(V, V). By definition, we have 

Hence the bracket 

[Xl, x21 = B(X1 v X2) 

defines a Lie algebra if and only if O2 = O, which is also equivalent to {O, 8) = 0. 

Fix such a 8 on V. 

We recall that the Chavelley-Eilenberg([CE]) coboundary operator 

for the adjoint representation of the Lie algebra V is defined by 

(3-5) 

We also r e c d  that coboundary operator for the trivial representation on V is dehed  

by 



For 6 and D we have the following straight-forward result: 

Proposition 3.3 

Now we introduce one more operator, which will play a critical role in our study of 

the Kodaira-Spencer algebra. For Q E AZtk(V, V ) ,  let us define 

It is clear that 

[O, QINR = Q8 - (-I)"'@Q. 

Therefore, we have 

@Q = (-i)&(s - D)Q . 

We collect some identities associated with the above-introduced operators in the fol- 

lowing, 

Proposition 3.4 

Proo f. (3.4.a) follows directly from the graded Jacobi identity of the Nijenhuis-Richardson 

dgebra. 

By the commutativeassociative law, we have 



Since 82 = 0, this gives us 

-(&@le = (Qe)e. 

Therefore, 

(Qtv = 0 ,  

i.e., D2Q = O. This is (3.4.b). 

For ( 3 . 4 . ~ ) ~  again by the commutative-associative law, we have 

Since 0' = O, it gives us 

e(Q9) = [O, ~ Q ] N R  - 
Hence, 8 D = 60. 

The last identity (3.4.d) follows from (3.8), (3.4.a) and (3.4.b). 

Proposition 3.4.a and 3.4.b are well-known. However, I have not seen their proofs 

based on the commutative-associative law before. As far as 1 know, the operator @ is 

considered here for the first time. 

3.2.2 The Cup Algebra 

Recall the cup algebra is the Lie induced dgebra with W = V. Here we express the cup 

bracket in terms of 0 and 6 and prove some fomulae regarding its behaviour under the 

action of D, 6 and 0. The formula associated with 8 is new. 

Lemma 3.5 Let []c denote the bracket for the cup dgebra, and Qi E ~ l t ~ ' ( v ,  V), i = 1,2, 

then t h e  [QI, Qz] c = ( - l ) k 2 ( ( @ Q 2 ) ~ i  - B(QzQi)). 
Proof. We apply the isomorphism 

Without loss of generality, we assume 



Let Qi = v i a X i Y i  = 1,2. We have 

and 

Therefore, 

(eQ2)Qi- @(QzQi) = ( - I ) " ~ ( X I ,  ~ 2 ) v l / \  v2 @ Y. 
However, it is clearly tme that 

Proposition 3.6 ([N2]) Let Qi, i = 1 , 2  be as in the above Iemma, we have [QI, Q2] c = 

(bQ2)Qi - (-1)" Q26Q1+ (-l)ki J(Q2Q1)- 

Proof. We can prove it as follows: 

The last step use lemma 3.5. 



Lemma 3.7 Let Qi E AUki(V, V), i = 1,2. We have 

P ~ o o f .  Without ~ O S S  of generality, we assume Qi = vi @ Xi, then 

This is (3.7.a). 

For (3.7.b), we use Proposition 3.6 and 62 = 0. 

Therefore, 

W ? l y  Qzlc = PQ1, Q~]c  + ( - ~ ) ~ l  [dQl, 6Q2IC .O 

Lemma (3.7.a) and (3.7.b) shows that both operators D and 6 endow the cup algebra 

Alt(V, V) with differentid graded Lie algebra structures. In later chapters, we will also 

use the fact that the Nijenhuis-Richardson algebra is also a differential graded Lie algebra, 

1.e. 

d[p17 P ~ ] N R  =  PI, P ~ ] N R  + (-1)" [[Pi, ~ P + ] N R  (3*9) 

This identity is a direct consequence of the graded Jacobi identity of the algeb~a because 

of Proposition 3.6 .a. 

Proposition 3.8 There holds 



Proof. It is a consequence of Lemma 3.7 and the identity (3.8). 



Chapter 4 

The Frolicher-Nijenhuis Algebra 

The F'rolicher-Nijenhuis dgebra was f ist  defined in the geometric context by Frdicher and 

Nijenhuis in 1957([FNl]). Later the version we are concerned was studied by Professor 

Nijenhuis through a purely algebraic approach([N2]). In this chapter, we introduce Ni- 

jenhuisl idea with an emphasis on the knit product structure of the Nijenhuis-Richadson 

and the Frolicher-Nijenhuis algebras, which was not explicitly demonstrated in the original 

paper. New results include a different proof of ôn interesting formula recently discovered 

by Nijenhuis ([N3]). 

4.1 Nijenhuis' Idea 

We follow [NZ] to introduce the Frolicher-Nijenhuis algebra associated with a Lie algebra. 

Let V be a Lie dgebra. Consider the graded vector space embedding 

where Q E Altk(V, V). 

Lemma 4.1 The image of r is a subalgebra of SP(V) .  

Proof. For Qi E A l t k i ( ~  V), i = 1,2, we have 



It only needs to show 

However, 

Here we use Proposition 3.6 in the first step and (3.9) in the last step. This proves (4.2) 

and hence the lemma. O 

This lemma can be reformulated as 

Theorem 4.2 ([NZ]) The graded vector space AIt(V, V) with bracket detenined by 

ts a graded Lie algebra and r of (4.1) is an injective graded Lie algebra homomorphism. 

The graded Lie dgebra in this theorem is comrnonly c d e d  the fiolicher-Nijenhuis 

algebra for the Lie algebra V. 

Applying Proposition 3.6, we have another expression for its gaded Lie bracket, 

In terms of the bracket (4.3), we can rewrite (4.2) as 

This shows d is a graded Lie algebra homomorphism. Note that the fact that d is of 

degree 1 plays an important role here. Since the Frôlicher-Nijenhuis bracket is of degree 

O and the Nijenhuis-Richardson bracket is essentidy of degree 1, this makes b a gaded 

Lie algebra of degree O. 



From now on we will denote AltC(V, V) and AltFN(V, V )  for the cup algebra and 

Rolicher-Nijenhuis algebra on the graded vector space Alt ( V,  V )  , respectively. 

The following proposition shows how the R6licher-Nijenhuis bracket and the Nijenhuis- 

Richardson interact . 
Proposition 4.3 The morphisms 

a : Alt (V, V )  [l] + End(Alt(V, V ) )  , 

p : AltFN(V, V )  + End(Alt(V, V )  [l] ) 

detennined by 

(4.6) 

for P E Alt(V, V ) [ 1 ]  and Q E Alt(V, V )  constitute a derivatively knitted pair of represen- 

tations of the Nijenhuis- Richardson dge bru and the holicher-Nijenhuis alge bru, i .  e .  

(4.3.a) a , @ are graded Lie algebra homomoq~hisms. 

Proof. a is a graded Lie algebra homomorphism since the commutative-sociative law 

holds; P is also a homomorphism since the gaded Jacobi identity of the Rdicher-Nijenhuis 

algebra holds. A long but straight-forward calculation establishes (4.7.1) and (4.7.2). O 



A direct consequence of this proposition is 

Theorem 4.4 On the g~aded vector space Alt(V, V )  [l] $ Alt(V, V) ,the bracket 

defines a gruded Lie algebra structure. 

It is the knit product of the Nijenhuis-Richardson algebra and the Frolicher-Nijenhuis 

algebra. 

A more straight way to show that the bracket (4.8) defines a graded lie algebra struc- 

ture on Alt(V, V) [l] $ Alt(V, V) is as follows: 

By (4.4) and (4.5), we have 

where Pi E Altki+'(V7 V )  and Qi E ~ l t ~ i ( ~ ,  V ) ,  i = 1,2. If we define 

for (P, Q) E ~ l t ' + ' ( ~ ,  V )  $ Altk(V, V )  then it follows fiom (4.9) 



Since i is a gaded vector space isomorphis, the graded Jacobi identity for the bracket 

(4.8) follows from that of the bracket [ Isp. 
We note that i is actually a graded Lie Jgebra homomorphism. 

In the end of this section, for cornparison with results in later chapters, we give two 

other expressions of the bracket (4.3) here (cf. [KMS]). 

The first one is 

This follows directly from (4.3) and the definition of 6. 

Consider the isomorphism 

Let Qi = vi @ Xi, i = 1,2. Then the bracket (4.3) can also be expressed as 



Here ad* is the representation of V on VV'(or l\k2 V*) induced by the adjoint repre- 

sentation, d is the Chevalley-Eilenberg coboundary operator associated with the trivial 

representation of V on R and we use 

which can be easily proved. 



4.2 A Derived Bracket 

We consider in this section a bracket derived from the Nijenhuis-Richardson bracket . This 
derived bracket includes the Fkolicher-Nijenhuis bracket as a special case. We prove an 

interest ing formula which reveals the relation between the Frolicher-Nijenhuis brackets of 

a Lie algebra and of its Nijenhuis deformations. 

Let V be a vector space. Inspired by (4.4), we consider for a fixed P E Alt2(V, V)  the 

bracket determined by 

for Qi E Alt"(V, V ) ,  i = 1,2. 

Note that when V is equipped with a Lie algebra as before, its Frolicher-Nijenhuis 

bracket i s  nothing but [ ] F N ( - e ) ,  i.e., [ I F N  = [ ] F N ( - B )  A~so, the argument in last section 

implies that the bracket (4.14) is a graded Lie algebra bracket on Alt(V, V) if P satisfies 

[P, P ] N R  = 0. 

For P E Alt2(l/: V),  Q E Altl(V, V ) ,  it is dear [P, QINR E Altz(V, V ) .  Hence, we can 

consider the bracket [ ] F N ( [ P , ~ ] ~ ~ )  defined b y  (4.14) for [P, QINR. The central result in 

this section is the following theorem: 

Theorem 4.5 

This theorem expresses the bracket [ ]FN([P,41NR) in t ems  of [ IFNp)and [Q, IN& 
We need a lemma to prove this theorem. 

Lemma 4.6 For Q E Altl(V, V), Qi E ~ l t ~ ' ( V ,  V),  i = 1,2, we have 

Proof. The critical point is that for Q E Altl(V, V) there holds 

Q(QiQ2) = (QQi)Qz 

34 



Therefore, 

The last step uses the commutativeassociative law. 

Proof of Theorem 4.5. Applying Lemma 4.6 and the graded Jacobi identity of the 

Nijenhuis-Richardson dgebra, we can make the following cdculation: 

In order to provide an application of Theorem 4.5, we now suppose V is equipped with 

a Lie algebra structure 2s before. 



Let Q E Altl(V, V) = Hom(V, V). We consider a bracket defined on V as follows, 

Note that this bracket measures the deviation of Q fkom being a derivation of the original 

Lie bracket of V. 

We have 

Proposition 4.7 

(4.7.a) The bracket [ Iq defines o Lie algebra on V if and only ÿ 6[Q, QIFN = 0. 

(4.7.b) In particular, [Q,  Q I F N  = O if and only ÿ [ I q  defines a Lie algebra on V such 

that 

Q[xi,&]q = [ Q ~ I ,  Qxz] (4.17) 

We r e c d  from [K-SM] , 
Definition 4.8 An element Q E Altl(V, V) = Hom(V, V )  is called a Nijenhuis operator 

of the Lie algebra V if [Q,  QI FN = O. 

Proposition 4.7 shows that Nijenhuis operators induce deformations of the Lie algebra 

V (see [NR2]). They are sometimes c d e d  the Nijenhuis deformation of V .  They play an 

important role in the Poisson-Nijenhuis structure theory ([K-SM], see also [MM]). 

The proof of Proposition 4.7 is easy. In fact, (4.7.a) follows fiom 6[Q, QIFN = 

[6Q1, 6Q2INR; (4.7.b) holds since we have from (4.2), 

Applying Theorem 4.5, we have 

Corollary 4.9 Let N be a Nijenhuis operator of the Lie algebra V .  Then the fidicher- 

Nijenhuis bracket [ 1' for the Lie olgebra dejined on V by the bracket 



Therefore, we have 

The result is then a direct consequence of Theorem 4.5 and [ I F N  = [ ] F N ( - o ) .  a. 
This corollary was fist proved in [N3]. 



Chapter 5 

The Kodaira-Spencer Algebra 

The Kodaira-Spencer algebra in the geometric context (cf.[KS]) came to existence several 

decades ago, we will consider in this chapter its algebraic version and show that such 

a version provides R-matrices a graded Lie dgebra background. Our main contribution 

here is developing a rigorous approach to itç construction and providing a second example 

of knit product structures from this graded Lie algebra. 

5.1 Construction of the Kodaira-Spencer Algebra 

Let V be a Lie algebra. We refer to Chapter 3 for the definition of the graded Lie algebra 

S P ( V )  and that of the operator 8. Consider the graded vector space embedding 

Lemma 5.1 The image of L is a subalgebra of SP(V) .  

Proof. For Qi E Altki(V, V ) ,  i = 1,2, we have 

Therefore it only needs to be proven that 



We use Lemma 3.5 and Proposition 3.8, 

We can reformulate this lemma as 

Theorem 5.2 The graded uector space Alt(V, V )  with bracket determined by 

is a graded Lie algebra, and L of (5.1) is an injective graded Lie ulgebra homomorphism. 

In tenns of bracket (5.3), the identity (5.2) is 

By (5.3) and the definition of O, we have 

(5.5) 

In the geometric context , formula (5.5) defines the Kodaira-Spencer algebra( [KSI, cf. 

also [BM]). For this reason we will c d  the graded Lie algebra in Theorem 5.2 the Kodaira- 

Spencer algebru for the Lie algebra V and denote it by AltKS(V, V). 

Consider the isomorphism 



Let Qi = v i @ X i , i  = 1,2. Then we have directlyfrom (5.5), 

(5-6)  

This is another formula for the graded Lie bracket of the Kodaira-Spencer algebra besides 

(5.3) and (5.5). We remark the fact that (5.6) defines a graded Lie algebra on Alt(V7 V) 

can also be proved directly through a calculation with the help of the following two obvious 

identities: 

aCxaCy - adpadX = a$,vl , (5-7) 

aG(v1 l\ v2) = a G v l / \  v2 + V I  /\ a 4 v 2  . (5.8) 

Rom ( 5 4 ,  we especially have 

Corollary 5.3 For QI, Q2 E Alt l (V, V ) ,  there ho[& 

We now show how the Kodaira-Spencer algebra is related to R-matrices in the sense 

of Semenov-Tian-Shansky. 

For Q E Alt1(V7 V )  = Hom(V, V), we denote T ( Q )  E Alt2(V, V) for 

1 

Proposition 5.4 The bracket 

[Xi x2] Q = [Qxi x2] + [XI 7 QXZ] 

def i e s  a Lie algebra on V if and only if 

8T (Q) = 0.  



In paiticular, this condition is satisfied when T ( Q )  = CO with c a constant real number. 

Since 

[Qxi ,&]  + [ X I ,  Q X 2 ] =  9 Q ( X d 2 )  = - O Q ( X J 2 )  

this proposition is a direct consequence of (5.4). 

Note that T(Q) = O and T(Q) = -8 are respectively equivalent to 

and 

They are exactly the classical Yang-Baxter equation and the modified classical Yang- 

Baxter equation, and their solutions axe called R-matrices by Semenov-Tian-Shansky 

([STSI 1- 
To end this section, let us prove that the Kodaira-Spencer algebra is dso  a differential 

graded Lie dgebra. 

Theorem 5.5 For Qi E Altki(V, V ) ,  i = 1,2 ,  we have 

Proof. We use (5.6) and the fact 

Without loss of generality, we suppose Qi = vi @ Xi, i = 1,2. 

This proves (5.13). CI 



5.2 A Second Knit Product 

The Kodaira-Spencer algebra provides us a second example of knit product structures. 

We explore this construction in this section. 

Let (Pi, Qi) E SP* (V), i = 1,2 and d e h e  

we have 

Theorem 5.6 On the graded vector space Alt(V, V)[l] @ Alt(V, V ) ,  the bracket deter- 

mined b y (5.14) defines a graded Lie algebra structure. 

This new graded Lie algebra structure is the knit product of the Nijenhuis-Richardson 

algebra and the Kodaira-Spencer algebra, because its restrictions to the first and the 

second factors are respectively these algebras. 

Proof. Note that 

Applying (2.12) and Lemma 3.5, we have 



(5.17) 

The theorem is implied in this identity since i is a graded vector space isomorphism. O 

From the proof, it is obvious that î of (5.16) is a gaded Lie algebra isomorphism from 

the knit product structure of Theorem 5.6 to the semi-direct product structure on SP(V) .  

By the expression (5.14), we know the derivatively knitted pair of representations 

correspondhg to this knit product s tnicture are 

cri : Alt(V, V)[1] + End(Alt(V, V)), 

ai (P)Q = Q P  

pi : A l t ~ s  (V, V )  + End(Alt(V, V) [Il), 

Pi(Q)P = (ad* + S(@Q))P* 



Here, 
add' = [Q,PIc 

a(eQ)P = P ~ Q ) .  

The fact a' is a graded Lie algebra homomorphism is already known in Chapter 3 (cf. 

Proposition 3.l.a). We can directly prove that ,B' is dso a graded Lie algebra homomor- 

phism as follows. 

First, we have from the graded Jacobi identity of the cup algebra AltC(V, V), 

We dso proved (cf. (3.3)) 

[ ~ ( @ Q I ) ,  %(@Qz)l = WoQl, @ Q ~ I N R )  

T herefore, 

we only need to show 

[S(P), adQ] = adqp . 

However, writing this identity explicitly, we can see that it is equivalent to Proposition 

3.1.a. 

We remark that formulae analogous to (2.6) can be writ ten down for this knit product 

structure. 

To end this section, we notice that the knit product structure in Theorem 5.6 enables 

us to consider the deformation of Lie algebra V through a pair of operators rather than 

just a R-matrix. 



Proposition 5.7 Let P E Alt2(v V ) ,  Q E Altl(V, V ) .  Then 

[(p,  QI? ( E  = 0 

if and only if the following two conditions hold, 

defines a Lie algebra stmctwe on V. 

We hope this proposition is useful in integrable Hamiltonian system theory. 



Chapter 6 

The Gelfand-Dorfman Algebra 

In this chapter we construct the Gelfand-Dorfman algebra and establish its relation the 

classicd r-matrices and the algebraic Schouten-Nijenhuis algebra. 

6.1 Construction of the Gelfand-Dorfman Algebra 

In order to construct the Gelfand-Dorfman algebra, we recall that the adjoint represen- 

tation of a Lie dgebra V on itself induces representations on al1 the vector spaces l\k V ,  

k = 1,2, . Using the same notation "ad" for al1 these represent ations, we have for any 

X , X i  E V ,  Ti E A" V,i= lJ, 

Theorem 6.1 The bracket detennined by 

defines a graded Lie algeb~a o n  A V @ V .  
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Proof. We only have to consider simple tensors. We have 

This proves the graded anti-commutativity. 

The graded Jacobi identity for the bracket (6.3) follows from the Jacobi identity for 

the Lie algebra V and (6.1) and (6.2).0 

1 was led to the graded Lie algebra in the above theorem when 1 was studying the 

Gelfand and Dorfman work on the integability of Dirac structures ([DI). As we will see 

later, the bracket of this graded Lie algebra provides us an expression of the bracket of 

the algebraic Schouten-Nijenhuis algebra in terms of alternating mappings. The simplest 

form of such an expression, i.e., the bracket of two degee 1 elements of the algebraic 

Schouten-Nijenhuis algebra considered as alternating mappings, was first given by Gelfand 

and Dorfman. For this reason, we will c d  this graded Lie algebra the Geyund-Do~finan 

algebra associated with Lie dgebra V. 

Several observations are ready to be made here. 

First,the construction in Theorem 6.1 generalizes easily to /\ V @  W where W is dso a 

Lie algebra. In this case, the adjoint representation should be replaced by a representation 

of W on V. This observation was pointed out to me by Professor Stasheff. 

Second, the Gelfand-Dorfman algebra provides a graded Lie algebra background for 

general (not necessarily ant i-symmet ric ) r -matrices ([Dr l] ) . Act u d y ,  comparing the equa- 

tion defining r-matrices in [Drl] with (6.3), we can see that r-matrices are nothing but 

degree 1, bracket-square O elements of the Gelfand-Dorfman algebra. 

Third, the Kodaira-Spencer dgebra and the Gelfand-DorfÎnan algebra become iden- 

tical when Lie algebra V is semisimple. In this case, there is a non-degenerate invariant 

bilineas form on V through which we can identie V and V* aad fkther identiS. the 

adjoint and coadjoint representation of this Lie dgebra. This observation is then clear 

from (5.6) and (6.3). 



6.2 The Cyclic Subalgebra 

Note that 

Therefore, we have a graded vector space isomorphism 

with 

A l t ( V ,  V )  = @ ~ l t * ( ~ * ,  V). 
k 2 0  

Through this isomorphism we cm also think of the Gelfand-Dorfman dgebra as defined 

on Alt(VW, V). Let us express its graded Lie bracket in terms of this graded vector space 

Recail the coadjoint representation of a Lie algebra V.  It is given for XI, X2 E V ,  

Hence, t here holds 

ad',,$ = - I l ( adx , )  

as operators on V .  We can rewrite this as 

The following lernma generalizes (6.6). 

Lemma 6.2 For T E I \ ~  V, ',lli, , llir E V* and X E V ,  we have 

Proof. Without loss of generality, we assume 



By the pairing 

we have 

This completes the proof. 01 

Note that 



A direct application of this identity and Lemma 6.2 gives 

Theorem 6.3 Let Ii E ~l t ' i ( v ' ,  V ) ,  i = 1,2.  We have 

Now, we use this theorem to establish an interesting subalgebra of the Gelfand- 

Dorfman algebra Alt(V', V) = A V @ V. This is our main goal for this section. 

Definition 6.4 Let I E Attk(V', V )  . I is called cyclic if for al1 $1, - - -, îC>k+l E V' , 

Since 1 is dternating, (6.10) is equivalent to 

for arbitrary i = 1,2, - O  -, k + 1. 
We denote cAltk(V', V) for a l l  the cyclic elements in ~ l t ~ ( ~ ' ,  V) and define the gaded 

vector space 

cAl t (V ,  V )  = @ c ~ l t ~ ( ~ ' ,  V ) .  
&>O 

Theorem 6.5 If Il, I2 are cyclic, so is [Il, Iz] GD. Therefore, cAltk(V*, V )  is a subalgebra 

of A l t ( V ,  V ) .  



Proof. The following calculôtions use extensively (6.6) and the cyclic property of Il and 



Similady, we have 

By the above three identities, we can evaluate 

Note that, 

Considering the position of $tl+k2+tY we can also show, 

and 



Therefore, we have fiom (6.9), 

Hence, [Il, is cyclic and the proof is completed. O 

We will reveal in next section the exact meaning of the subalgebra in the above theo- 

rem. 



6.3 The Schouten-Nijenhuis Algebra 

Ln this section, we show that the subalgebra of cyclic elernents of the Gelfaad-Dorfman 

dgebra we est ablished in the last section is isomorphic to the Schouten- Nijenhuis algebra 

for the Lie algebra V. 

We first show that cAIt(Vm, V) and /\ V[1] are isomorphic as graded vector spaces. 

This is archived through explicitly constructing a pair of mutually inverse homomorphisrns 

between them. 

For I E cAZ~*(V'~ V ) ,  let 

The cyclic property of I implies Id  E A'+' V. Therefore, we have a well-defined graded 

vector space homomorphism, 

For S E  A ~ + ' V ,  S =  X1/\-&+1, let 

Note that 

(This is nothing but two different expansions of the determinant det (Xi ($ j ) )  ) . Therefore, 

we have 



This implies S" c ~ l t ~ ( V * ,  V). Hence we get a second well-defined graded vector space 

homomorphism, 

.b : /\ V[1] -t cAlt(V*, V ) .  

By (6.12) and (6.15), we get 

and 

These two identities show 

We have proved 

Theorem 6.6 The m o p  =' and W b  detemine mutually inverse graded uector space iso- 

moiphisms betueen cAlt(l/', V )  and I\ V[1] . 
The following theorem is the main result of this section, which states that under -d 

and O b  the graded Lie algebrô cAlt(Ve, V )  of Theorem 6.5 is isomorphic to the Schouten- 

Nijenhuis algebra. 

Theorem 6.7 For li E ~ ~ l t ~ i ( V * ,  V )  and Si E A&'+' V, i = 1,2, we have 



Proof. Since (6.16) and 

generality, we suppose 

(6.17) are equivalent, we only prove (6.17). Without loss of 

By definition, we have 

Applying (6.3), we have 



By the definition of a b  and (2.10), we have 

Exchanging the implicit indices i and s in the 2nd and 3rd terms, j and s in the 4th 

and 5th terms of the right hand side of this identity and comparing the result with what 

we already calculated for [S:, we have (6.17). O 

This theorem embeds the Schouten-Nijerihuis algebra for the Lie algebra V into the 

Gelfand-Dorfman algebra. Therefore, it provides us an an expression of the Schouten- 

Nijenhuis bracket, which is defined on V[l], in terms of elements in Alt(V', V) through 

the embedding of V[1] into Alt(V', V). As remaxked before, Gelfand and Dorfman were 

the first to give such kind of formula. Their result ([GD] and [Dl) only involves the degree 

1 elernents. However, the Schouten-Nijenhuis algebra there is defined in a more general 



6.4 Drinfeld9s Construction 

At  the very beginning of Poisson-Lie group and Lie bialgebra theory, Drinfeld ([Drl]) 

pointed out that Schouten-Nijenhuis algebras can be applied to describe a very important 

class of Poisson-Lie groups arising from the r-matrix formalism in the theory of integrable 

systems. In our terminology, his observation is the following: 

Proposition 6.8 ([Drl]) Let V be a Lie algeb~a and r E /\* V .  We have 

if and only if the bracket on Va detennined by 

defines a Lie algebra. 

A simple calculation will verifjr that Lie algebras V and VS(with Lie bracket deter- 

mined by (6.18)) constitute a Lie bialgebra ([Drl], see also [Lu]). It is usudy called a 

coboundary Lie bidgebra. 

In this section we want to show that when r in the above proposition is replaced by 

an arbitrary homogeneous element of the Schouten-Nijenhuis algebra certain condition 

exists so that we have a generalization of this result. The condition will be expressed in 

terms of the Nijenhuis-Richardson algebra Alt(Vu, V*) of the dud space of V. 

For I E Atk(v* ,  V), let 

It is routine to check that L ( I )  E ~lt*+'(V*, V'). Therefore, we have a well-defmed 

gaded vector space homomorphism 



Note that under the isomorphism Alt(V', V )  = A V @ V ,  we have 

for a simple f ensor T @ X in /\ V @ V .  

Theorem 6.9 For Ii E ~lt ' i(V' ,  V ) ,  i = 1,2,  we have 

Proof. Without loss of generality, we suppose 

Ii = ~i @ xi, 

By (6.20), we have 

Hence, 

Now, let us compute [L ( I l ) ,  L(&)]NR. 



Similarly, we have 

Therefore, there holds 

and comparing the result with (6.22), we get (6.21). a 
We need one more result to attain a generalization of Proposition 6.8. 

Theorem 6.10 If I E cAltk(V*, V), we have 



Proof. Without loss of generality, we assume 

I' = x1 / \ *  *I\xk+l, 

Hence, 

Corollary 6.11 If Ii E cAltki(v*, V ) ,  we have 

for any X E V .  



This corollary generalizes the formula [V3, (1.8)] (see also [K-SM] and [LX]) in the 

algebraic content. We expect it will be useM. 

Proof. It follows fiom Theorem 6.7, Theorem 6.9 and Theorem 6.10. 0 

Corollary 6.12 Let I E cAltk(V*, V ) ,  then [ L ( I ) ,  L(I )]  NR = O if and only if adx[lfl,  In]SN = 

O for al1 X E V .  

Proposition 6.8 is a specid case of this corollary. 



Chapter 7 

The Generalized 
Nijenhuis-Richardson Algebra 

In this chapter, we first generalize the Nijenhuis-Richardson algebra to the vector bundle 

case, then prove that this generalized Nijenhuis-Richardson algebra is isomorphic to two 

other interesting graded Lie algebras associated with a vector bundle. In the last section, 

through the introduction of 2n-âry Lie dgebroids, we give an example of the application 

of these isomorphisms. 

7.1 Building the Algebra 

We generalize the Nijenhuis-Richardson algebra from the vector space case to the vector 

bundle case in this section. 

Our development will start from the semi-direct product structure SP(V, W) associ- 

ated with aa infinite-dimensional vector space V and an infinite-dimensional Lie dgebra 

W.  

From now on, we wiu denote [ INR as { ) and [ ILI as [ ] for simplicity. 

Let A be a vector bundle on a smooth manifold M. We consider the vector space 

V = r ( A )  of sections of A and the Lie dgebra W = X ( M )  of vector fields over hl. 

Definition 7.1 Let (rp, p )  E Altk+' ( î ( A ) ,  ï ( A ) )  $ A l t k ( r ( A ) , X ( M ) ) .  (9, p )  is called a 

Lie-Rinehart pair of hornogeneow degree k if we have the follouring: 

(7.l.a) for any f E Cm(M),and el,-  ,& E I'(A), 



and 

(7.l.b) for any f E Coo(M) and fl,-,&+l E r ( A )  

We denote LRk(A) for the space of aU Lie-Rinehart pairs of homogeneous degree k 

and formulate the graded vector space 

(LR-'(A) = I'(A)). It is a subspace of the underlying graded vector space of SP(I ' (A) ,X(M)) .  

Remark 7.2 

(7.2.a) D e w t i o n  (7.l .a) W equivalent to p E A ~ ~ $ , ( , , ( ~ ( A ) , X ( M ) ) ,  i.e., p is Cm(M)- 

linear. In other words, p ia induced from a bundle map from A k ~  to T M  ([GHV]). 

(7.2.b) By the alternating property, the condition (7.l.b) can be rewritten as 

for any i = 1 , 2 , - , k  + 1 .  

The main result of this section is 

Theorem 7.3 LR(A) is a subalgebra of the semidirect product S P ( r ( A ) , X ( M ) ) .  

We will c d  this subdgebra LR(A) the generalized Nijenhuis-Richarcbon algebra of 

the vector bundle A since when the vector bundle A degenerates to a vector space, this 

graded Lie algebra is just the Nijenhuis-Richardson algebra of the vector space. 

Proof. Let (<p i ,  pi) E LRki ( A ) ,  i = 1,2. We need to verie two identities, 



and 

Let us do (7.2) first. 

~y (vi, p i )  L Rki ( A ) ,  i = 1,2, we have expansions 

and 

@Eshl (kl ,kz 1 

A caxeiùl combinatorial analysis shows 

The identity (7.2) follows immediately. 



As for (7.3), we can expand the left hand side into 12 ternis, 

7- - --- - - 
- --- 

+ C ( - l ) u f v 2 ( ( 0 1 ( t 1 1  fut ) 1  t u 4  



aE8hl (kz+l,ki  ) 

The following combinations can be checked through a careful count of signs: 

This completes the proof of (7.3), therefore that of Theorem 7.4.0 



7.2 The Linear Schouten-Nijenhuis Algebra 

In this section, we Çs t  embed the geometric Schouten-Nijenhuis algebra (i.e. the Schouten- 

Nijenhuis algebra oves a manifold, see [MR]) into the Nijenhuis-Richardson algebra of the 

space of smooth functions on that manifold. Then, we point out that linear multideriva- 

tion fields on the vector bundle A' constitute a subalgebra of the Schouten-Nijenhuis 

algebra of the manifold A*, which we will call the linear Schouten-Nijenhuis on A'. At 

the end, we prove the main theorem: the Nijenhuis-Richardson algebra on A is isomorphic 

to this lima Schouten-Nijenhuis algebra. 

Let N be a smooth manifold and V = COD(N) denote the space of smooth functions 

on N. 

Definition 7.4 For k > O ,  S E A I ~ ' ( c ~ ( N ) ,  C m ( N ) )  is called a k-derivation field on N 

if for any f ,  g ,  fi, , fk E C m ( N )  there holds 

(7.4) 

Le., S(-, fi, , f k )  is a derivation of Cm(N). We wzll denote S k ( ~ )  for the space of al1 

k-derivation fields on N .  

Remark 7 .5  The termznology k-derivation field is from [CKMV]. It is well-known that 

S ' ( N )  con be identified with X(N)= r ( T N )  (see [FNl]). The same argument extends to 

the proof of the identification 

Elements in ï ( i i k T N )  are wually called k-vector fields. 

By the alternating property of S, (7.4) is equivdent to 



for f , g ,  f 1 , -  = , f k  E C"(N),  i = 1 , 2 , -  , k .  

We consider the graded vector space 

with So(N)  = C" ( N ) .  Note that the Nijenhuis-Richardson algebra Alt ( C m ( N ) ,  C m ( N )  ) [ l ]  

on C"(N) is well-defined. We have 

Theorem 7.6 S ( N ) [ 1 ]  is a subalgebru of the Nzjenhuis-Richardson algebra 

Al t (Cm(N) ,  Cm(N))[l]. 

Proof. Let Si E Sh+l(N) ,  i = 1,2. We need to show {Si, S2) E s ~ + ~ z + ' ( N ) ,  Le., 



The h s t  term is 

The second term is 

The third tenn is 

bl 



And the fourth term is 

We clearly have 

A combinatorial analysis gives us 

The proof of (7.8) is comp1eted.n 

Another proof of Theorem 7.6 is given in [CKMV]. The proof here seems to be more 

straightfomard. Also in [CKMV] (see also [dWL]), the authors explain that with the 

identification (7.5), the gaded Lie algebra S ( N ) [ l ]  is identical to the Schouten-Nijenhuis 

algebra of N. Therefore, we can reasonably call S ( N ) [ l ]  the Schouten-Nijenhuis algebra 

of N. 

Now, we consider the special case N = A', the dual bundle of the vector bundle A. 

It is cleat that for any ( E ï ( A ) ,  the function le E CCO(A*), 

is fiber-linear. In fact, (7.10) identifies fibre-lineax functions on A* with î ( A ) .  

If we denote n : A' + M to be the projection of the vector bunde A*, then the 

following two identities are obvious, 



where T' is the pull-badc map, and f, fi, fa E COD(M), 6 E ï ( A ) .  

We are interested in a special kind of multiderivation field on the manifold A'. 

Definition 7.7 A k-derivation field S E Sk(A') is called linear if for any CI,  - --, & E 

ï ( A ) ,  there ex&& a unique E E r(A) such that 

In  other words, the value of a Iinear k-derivation field on h e u r  finctions is a linear 

function. 

Denote LS~(A')  the space of al1 linear k-derivation fields on A', k 2 O (LSo(Aa)  = 

{le : ( E î (A)) ) .  We cm define a graded vector space 

It is a subspace of S(A*). We can easily prove that 

Proposition 7.8 LS(A*)[l] is a subalgebm of S(A')[l]. 

We will c d  LS(Au)[1] the lineut Schouten-Nijenhuis algebra of A*. 

Remark 7.9 Let (xa) be a local coordinate system on M and let el, - - - , en be a busis 

of local sections of A. We denote by (xa, zi) the corresponding coordinate system on A*. 

Then 

lek = ZL, k = 1 , 2 , * - , n .  

Under identification (74, the linear multi-derivation field S becomes a linear polyvector 

field S .  It can be ptoved that E ï (Ak+'TP)  is a linear ( k  + 1)-uector field if and o d y  

ih locally, it is of the form 

where S,f, ...;,+, (x), SE ( x )  E COD( M )  . Ptoposition 7.8 is clear throvgh this approach b y 

applying the local formula for the uszlol Schouten- Nijenhuis alg e bru ([VI]). 

The central goal of this section is to show that this linear Schouten-Nijenhuis algebra 

is isomorphic to the graded Lie algebra LR(A). 

We will construct a map J : LS(A') [l] -+ L R(A).  



Given a linear k-derivation field S E LS'+' (A*), for any el, * *, tk+t E ï( A), by 

Definition 7.7, we can define p(&, Ck++') E r ( A )  through 

Then <p E Altk++'(ï(A), r(A)). 

Now we show that S also uniquely defines a p E A ~ ~ & ( ~ ( A ) , x ( M ) ) .  

Note that for any f E C a D ( M )  and (1, , &+, E I'(A), there holds 

In terms of cp, this can be remitten as 

From this identity, we immediately have 

huther, for any g E Cm(M), e2, , G+i E l '(A), there holds 

Because Zt2 is a fiber-linear function, we must have 

W f ,  n*s, 4 3  , . , lFk+, ) = 0. 
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Retuming to (7.17), we have 

Since S is a (k + 1)-derivation field, we naturally have 

Identities (7.18) and (7.19) hold for any f ,  g E C m ( M )  and h, &+i E î ( A ) .  
Therefore, by the injectivity of ir*, we have a unique p E A ~ ~ & # ' ( A ) , x ( M ) )  such 

t hat 

(7.20) 

Further the above (9, p )  decided by S is in L R ~ ( A ) .  Actually, (7.16) can be rewritten 

in terms of p as 

and this is nothing but 



The central result of this section is 

Theorem 7.10 J is a graded Lie algebra isomorphism. 

Proof. If (9, p )  = O, then we have 

By the third identity, for any h E C m ( M ) ,  we have 

Continuing with this approach, we can show 

S(n* f ,  n'g, -) = 0, 

where "* * e 7 '  represents elements of the fonn le for E r(A) ,  or rr'h for h E Cm(M). 

The value of S E Sk+'(A*) is uniquely determined by its d u e  on le ,  n'f ,  5 E r(A), 

f E C w ( M ) .  Therefore, by (7.15) and (7.20), S must be O when (9, p )  = O. That is, J is 
injective. 

Given (9, p) E L R ~ ( A ) ,  we define S through 

- 
'('~i 9 ' € 2  9 9 '&+i ) - lY(& ....&+i) 

s(r*f7't2, d < k + , )  = - ( - l ) k * * ( p ( ~ ,  , &+i)f) 
S(R. f, ~'g, -) = 0, 

where in the third identity, U- * e n  represents functions of form l6 for 5 E I'(A), or xmd f for 

f E COe(M). It is easy to show that S E LS~+' (A*) and J ( S )  = (9, p ) .  Hence, J is dso 

surjective. 



We are left to prove 

J ( 4 ,  Sz) = [J (S l ) ,  J(S2)1, 

where Si E LS$+' (A*) ,  J ( S i )  = (vi, p i ) ,  i = 1 , 2  and h denotes the action of the Nijenhuis- 

Richardson algebra on the LI algebra as defined in the Subsection 3.1.3. 

By definition of J ,  (7.22) is equivalent to 

and 

(7.22)" 

The identity (7.22)' follows directly from 

The proof of (7.22)" is a long computation similar to that used in the proof of Theorem 

7.3. We refrain fiom repeating it again.0 



7.3 The Derivation Algebra 

We prove in this section a second isornorphisrn theorem associated with the generalized 

Nijenhuis-Richardson L R( A). Let us begin with some recollections about the algebra 

ï (A*A*)  from Chapter II of [GHV]. 

The exterior algebra bundle of A* is, by definition, the Whitney sum 

where AoA' = M x R is the rank 1 trivial bundle over M, and hkA* is the k-th exterior 

power of A*. 

The following identifications of Cw(M)-modules will be used throughout this section: 

With these identifications, we have 

There is obviously an exterior algebra structure on l'(Aœ A'). 

We will consider the derivation algebra D î ( A * A W )  of this exterior algebra. Note that 

because of (7.23) any element of Dl? (A' A') is uniquely determined by i t s action on Ca ( M) 

and ï (Am).  

Given ( 9 , p )  E LRk(A), define D(<p,p) on f E C W ( M )  through 

and for 7 E î (Am)  through 



Since p E A~~&., , (~(A),x(M)) ,  we have D(cp,p) f E I'(AkA') b y  (7.23). It is also 

clear from (7.25) that for g E Cm(M), 

huther, by Definition (7.l.b), we also have 

Hence, D(Q, p ) ~  E I'(Ak+' A'). 

This argument shows that we can extend D(p, p )  to a k-derivation of l'(n'A*). It is 

easy to verify that the action of this k-derivation D ( 9 ,  p )  on w E î (AkA')  is given by 

The construction of D ( 9 ,  p )  above determines a linear map 

We want to show that it is a graded Lie dgebra isomorphism. 

The injective property of H is clear from (7.25) and (7.26). Given any k-derivation II 

of I'(h'Ae), we d e h e  ip and p through 



where f E C m ( M )  and 7 E ï (A') .  Since II is a derivation of I'(A'Am), we have 

Therefore, p E ~ l t & , ( ï ( ~ ) ,  C m ( M ) ) .  The formula (7.26)' satisfies Definition (7. Lb), 

hence, (<p,p) E L R ~ ( A ) .  It is clear that D(9,p)  = II. This proves the surjective property 

of H. 
We are left to show that for (fi, p i )  E L R ~ ~ ( A ) ,  i = 1,2, there holds 

It is enough to check only that both sides of (7.29) act equally on f E COe(M) and 

7 E ï(Aa), respectively. In fact, by (7.25) and (7.27), we have 



Note that 

Therefore, 

This is exactly 



Let y E I'(A*). 

Similarly, we have 



Note that 

In order to prove (7.29) for y E r(A*), we only have to show 

This finishes the case y E ï ( A m )  for the proof of (7.31), and hence completes the proof of 

the following theorem: 

Theorem 7.11 The map of (7.28) is a graded Lie algebra isomorphism. 



7.4 2n-ary Lie Algebroids 

At h o s t  the same time, Stasheff and his associates fiom homotopy theory([SL], [S t]), 

Hanlon and Wachs from combinatorial algebra([HW]), Gnedbaye from cyclic cohornol- 

ogy([Gn]) and Azckaga and Bueno fiom physics([dAPB]) came to be interested in a 

specific kind of higher order generalizations of Lie algebras. They brought up this object 

along difFerent paths and with different motivâtions. However, a single identity, c d e d  

"generalized Jacobi identityn(see (7.15.b) in [dAPB]), is the focus for all of them. 

When this identity appeared, mathematicians who are familiar wit h Nijenhuis-Richardson 

dgebras realized immediately that it can be expressed by Nijenhuis and Richardson's 

graded Lie bracket ([MV]) as a generalization of the usual Jacobi identity. 

Definition 7.12 Let V be a vector space. V is a 2n-ary Lie algebra if there is  a 2n-ary 

bracket 

Let us denote 

~ ( V I ,  v2n) = -[VI, 7 ~ n ] -  (7.30) 

Then the condition (7.12.a) is equivalent to 9 E Alt2"(V, V), while (7.12.b) is equivalent 

to the composition product 

'PV = 0 (7.31) 

which is again equivalent to 

(97 d = 0- 

Therefore, 2n-ary Lie algebra structures on a vector space V are defined by degree 2n - 1, 

bracket-square O elements of its Nijenhuis-Richardson algebra. 

Remark 7.13 While Definition 7.12 does make sewe for o d d - c ~ y  brackets, we restrict 

OUT attention to this even-ary case. The Teason is that we want to use the equzvalence 



between (7.12.b) and (7.91) so that we con make a neat exposition. In the odd-ary case, 

this equivalence does no t  ezist becairse for cp of odd degree (7.32) is alwuys tme. For 

similar reasons, we will d e f i e  higher order Lie algebroids and Poisson structures only for 

the even case in sequel. 

A Zn-ary Lie algebra is obviously a generalization of a Lie algebra. We know a Lie 

algebroid is also a generalization of a Lie algebra. Considering these two generalizations, 

we have a natural question: What's the proper object on vector bundles which generalizes 

2n-ary Lie algebras on vector spaces? In this section we propose a definition of Zn-ary 

Lie algebroid and give a brief discussion about the implications of the results obtained in 

the last several sections for this object. 

Our proposal is 

Definition 7.14 Let A + M be a vector bundle. A 2n-ary Lie algebroid structure o n  A 

cowis t s  of (1) a Zn-ary Lie algebra o n  î ( A )  and (2) a bundle m a p  p : A~"-'A -t TM 

such that 

und 

(G) [feliJ2i***rC~n] = f[éi>ihn] - ~ ( h i * * * , & n ) f .  C i ,  w h e ~  f E C m ( M )  und 

& E I'(A), k = 1,2, - -  * ,  4n - 2. 

We will c d  p the anchor m a p  of this Zn-ary Lie algebroid. 

Remark 7.15 

(7.15.a) W h e n  n = 1, Zn-ary Lie  algebroids are just the usual Lie algebroids. 

(7.15.b) W h e n  M = pt ,  a single point, Sn-ary Lie algebroids degenerate t o  Sn-ary Lie 
alge bras. 

Many basic constructions for Lie algebroids ([Mal]) and for Zn-a.ry Lie algebras ([dAIPB]) 

can be carried out on this higher order Lie dgebroid stmcture. 

Let the 2n-ary Lie algebra on r ( A )  be deked  by 9 E AltZn(r(A), r ( A ) )  through 



(7.30), then we c m  rewrite ( i )  and (ii) of Definition 7.14 as 

Since p is a bundle map, as a map in A l t ( ï ( A ) , X ( M ) ) ,  it is Cm(M)-linear. Aence, (ii)' 

implies ( < p 7 p )  E LR2"-'(A). We note that {(079) = O and (i)' are nothing but 

Therefore, the following proposition is proved. 

Proposition 7.16 A is a 2n-ary Lie algebroid i f  and only i f  (9,  p )  E LR2"-' ( A )  and 

[(Y, P), (Y, P)I = 0- 
If we want to specify ( p l  p), we will write the Zn-ary Lie algebroid as (A, 9, p ) .  

This proposition in particular implies 

Corollary 7.17 Lie algebroid structures on a vector bundle A correspond bijectively to 

degree 1, bracket-square O elements of the graded Lie algebra LR(A) .  

Applying the isomorphisrn H between LR(A) and DI'(WA'), Proposition 7.16 also 

gives 

Proposition 7.18 2n-ary Lie algebroida on A correspond bijectively to (2n-1)-differentials 

of the graded Lie algebra î (A*A*) .  

The case n = 1 of this proposition was proved in [K-SM] and [XI. 

Suppose the Sn-ary Lie algebroid is defined by (q, p ) ,  then the corresponding (2n - 1)- 

differential is D = D ( y ,  p )  . By (7.25) and (7.2?), we can mite  the correspondence in this 

proposition explicitly as  



wherew E r(AkAA'), & E r ( A ) ,  i =  1,-,2n- 1 + k .  

The following concept is c d e d  a "generalized Poisson structuren in [dAPPB] . 
Definition 7.19 Let N be a smooth manifold. A Zn-ary Poisson structure on N is a 

Zn-ary bracket 

and 

Then, (7.19.a) and (7.19.b) above are equident to S E S2"(N), while (7.19.~) is nothing 

but the composition product 

SS = O 

which is f u t  her equivalent t O 

{S, S) = o. 

Therefore, 2n-ary Poisson structures on a smooth manifold N are defined by degree 

(2n - l), bracket-square O elements of the Schouten-Nijenhuis algebra of N. 



A smooth manifold with a 2n-ary Poisson structure on it will be called a 2n-rtry 

Poisson manifold. In the case discussed above, we will write (N, S) for the 2n-ary Poisson 

manifold. 

When it cornes to vector bundles, such as A*, a 2n-ary Poisson stmcture is called 

linear if S is a linear 2n-derivation field on the vector bundle. 

By the isomorphism J between LR(A) and LS(A*)[l], we have 

Proposition 7.20 2n-ary Lie algebroid structures on a vector bundle A are equivalent to 

linear 2n-ary Poisson structures on its dual bundle A'. 

When n = 1, this proposition gives the famous generalized Lie-Poisson construction 

of T. Courant and A. Weinstein ([Cl and [CDW]). 

The equidence can be given explicitly. If the 2n-ary Lie algebroid on A is defined by 

(p,p),  then the linear 2n-ary Poisson structure on A* is dehed  by S = J- l (p,p) .  We 

have 

where f, g E Cm ( M )  , 5 E î( A) ,  i = 1,2, * ,272, and in the third identity, ' ' 0  e n  represent s 

elements of the f o m  n'h, h E C m ( M )  or le, ( E I'(A). 

The most prominent example of Lie algebroids is probably the cotangent bundle of 

a Poisson manifold ([VI]). A similar constmction can also be carried out in Our higher 

order case. 

Proposition 7.21 The cotangent bundle of a 2n-ary Poisson manifold is a Sn-ary Lie 

algebroid. 

We can prove this proposition through a technique called tangent lift ([GU] and [YI]). 

The complete lift is a homomorphism from the Schouten-Nijenhuis algebra S ( N )  to the 

linear Schouten-Nijenhuis algebra L S ( T N )  for a manifold N. Therefore, 2n-ary Pois- 

son structures on N are correspondent to linear Ln-ary Poisson structures on TN. The 

proposition then follows from Proposition 7.20 with A = T'N. Because the concepts and 

cdculations needed in this proof are all included in [GU]. We will omit the details here. 
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Appendix: Glossary of Important Symbols 

We List important symbois used in this thesis. The number followed indicates the page 

where the symbol's definition or description is givrn. 




