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Abstract

The main objects of this thesis are graded Lie algebras associated with a Lie algebra or
a Lie algebroid such as the Frolicher-Nijenhuis algebra, the Kodaira-Spencer algebra and
the newly constructed Gelfand-Dorfman algebra and generalized Nijenhuis-Richardson
algebra. Main results are summarized as follows: We introduce a derived bracket which
contains the Frolicher-Nijenhuis bracket as a special case and prove an interesting formula
for this derived bracket. We develop a rigorous mechanism for the Kodaira-Spencer alge-
bra, reveal its relation with R-matrices in the sense of M. A. Semenov-Tian-Shansky and
construct from it a new example of the knit product structures of graded Lie algebras. For
a given Lie algebra, we construct a new graded Lie algebra called the Gelfand-Dorfman
algebra which provides for r-matrices a graded Lie algebra background and includes the
well-known Schouten-Nijenhuis algebra of the Lie algebra as a subalgebra. We establish
an anti-homomorphism from this graded Lie algebra to the Nijenhuis-Richardson alge-
bra of the dual space of the Lie algebra, which sheds new light on our understanding of
Drinfeld’s construction of Lie algebra structures on the dual space with r-matrices. In
addition, we generalize the Nijenhuis-Richardson algebra from the vector space case to the
vector bundle case so that Lie algebroids on a vector bundle are defined by this general-
ized Nijenhuis-Richardson algebra. We prove that this generalized Nijenhuis-Richardson
algebra is isomorphic to both the linear Schouten-Nijenhuis algebra on the dual bundle of
the vector bundle and the derivation algebra associated with the exterior algebra bundle
of this dual bundle. A concept of a 2n-ary Lie algebroid is proposed as an application of

these isomorphisms.
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Chapter 1

Introduction

Various constructions and algebra structures can be described in terms of degree 1,
bracket-square 0 elements of graded Lie algebras. Such descriptions usually provide new
perspectives when we are dealing with some problems associated with these construc-
tions and structures. This is clear in algebraic deformation theory ([GS], see also [LMS]).
The Gerstanhaber algebra and the Nijenhuis-Richardson algebra are powerful tools in the
study of deformations of associative and Lie algebras respectively ([G1] and [NR2]). It is
also clear in differential geometry. Examples here includes the characterization of Pois-
son structures on a manifold through the Schouten-Nijenhuis algebra over the manifold
([V1]) and the Newlander-Nirenberg theorem in terms of the Frélicher-Nijenhuis algebra
over a manifold ([NN] and [FN1,2]). We will construct in this thesis two new graded Lie
algebra structures which are called the Gelfand-Dorfman algebra for a Lie algebra and
the generalized Nijenhuis-Richardson algebra over a vector bundle and provides some new
insights into the well-known Frélicher-Nijenhuis algebra and the Kodaira-Spencer algebra.
These graded Lie algebras describe such important mathematical objects as r-matrices,

Lie algebroids, R-matrices and Nijenhuis operators in the above-mentioned manner.

1.1 Main Results

We list our main results in order of their appearance in the body of this thesis.



1.1.1 The Frolicher-Nijenhuis Algebra

The Frolicher-Nijenhuis algebra on Alt(V, V) for a Lie algebra V was studied in [N2]. Its
degree 1, bracket-square 0 elements are sometimes called Nijenhuis operators. A Nijenhuis
operator induces a second Lie algebra structure on V and this new Lie algebra structure
plays an important role in the bihamiltonain method of studying completely integrable
Hamiltonian systcms ([D] and [K-SM], see also [MM]).

In Chapter 4, we will introduce a bracket on Alt(V,V) which is derived from the
Nijenhuis-Richardson bracket on Alt(V, V)[1] (a graded vector space obtained by shifting
Alt(V,V) down by 1 degree) and which contains the Frolicher-Nijenhuis bracket as a
special case. We particularly focus on a formula associated with this derived bracket
(Theorem 4.5). Such a formula is established in [N2] for the Frolicher-Nijenhuis bracket
to express the Frolicher-Nijenhuis bracket for the new Lie algebra on V' induced by a
Nijenhuis operator in terms of the Frolicher-Nijenhuis bracket for the original Lie algebra
on V. While it is not diffcult to realize that Nijenhuis’ formula holds for our more general

derived bracket, the proof of this formula in our thesis is new.

1.1.2 The Kodaira-Spencer Algebra

In Chapter 5, we establish the Kodaira-Spencer algebra on Alt(V, V) for a Lie algebra V.
It provides a graded Lie algebra description of both the classical and the modified classical
Yang-Baxter equations associated with the Lie algebra V in the sense of Semenov-Tian-
Shansky ([STS]). Some interesting results of the Kodaira-Spencer algebra follow from our
approach to its constructon. For example, we easily have that an interesting operator © is
a homomorphism from the Kodaira-Spencer algebra to the Nijenhuis-Richardson algebra
of the underlying vector space of the Lie algebra V' ( see (5.4)). The fact that R-matrices,
as solutions to Yang-Baxter equations, define new Lie algebra structures on V' becomes a
direct consequence of this homomorphism.

The Kodaira-Spencer algebra was originally defined on the graded vector space of
vector-valued differential forms on a manifold ([KS] and [BM]). To my knowledge, the

version we consider in this thesis has not been studied before.



1.1.3 Knit Product Structures

A knit product is a graded Lie algebra structure on the direct sum of two graded Lie al-
gebras when they have mutual representations on each other satisfying certain conditions
(§2.1.5). In Chapter 4, we have a more clear (compared with [N2]) and more straight
(compared with [Mi}]) exposition of the knit product of the Nijenhuis-Richardson alge-
bra Alt(V,V)[1] ([NR2]) and the Frélicher-Nijenhuis algebra Alt(V,V) (Theorem 4.4).
In addition, we show in Chapter 5 there exists a knit product structure between the
Nijenhuis-Richardson algebra and the Kodaira-Spencer algebra (Theorem 5.6). As far as
I know, this is only the second example of a knit product of graded Lie algebras.

We point out constructions similar to the knit product have been studied for some
other algebra structures in mathematics. For exmple, Majid considered the Lie algebra
case and coined the name a matched pair ([M]) for two Lie algebras from the direct sum
of which a new Lie algebra can be constructed. Mokri studied a matched pair of Lie
algebroids ([Mo]). The newly constructed structure is called a twilled extension for Lie
algebras by Kosmann-Schwarzbach and Magri ([K-SM]) and for Lie-Reinhart algebras
by Huebschmann ([H]). The name of a knit product for graded Lie algebras is given by
Michor ([Mi]).

1.1.4 The Gelfand-Dorfman Algebra

The first new graded Lie algebra we construct in this thesis is the Gelfand-Dorfman
algebra A V@ V for a Lie algebra V. Its degree 1, bracket-square 0 elements are general
(not necessarily anti-symmetric) r-matrices of the Lie algebra V' ([Drl,2]).

In Chapter 6, besides the construction of the Gelfand-Dorfman algebra (Theorem
6.1), we establish two results. First, we show that the Gelfand-Dorfman algebra contains
a subalgebra isomorphic to the Schouten-Nijenhuis algebra (Theorem 6.7). This is a
natural result since anti-symmetric r-matrices are degree 1, bracket square 0 elements
of the Schouten-Nijenhuis algebra. Second, we establish an anti-homomorphism from
the Gelfand-Dorfman algebra to the Nijenhuis-Richardson algebra Alt(V*, V*)[1] for the
vector space V* (Theorem 6.9). This anti-homomorphism generalizes a construction of

Drinfeld in the Poisson-Lie group theory (see Proposition 6.8).



1.1.5 The Generalized Nijenhuis-Richardson Algebra

To describe the generalized Nijenhuis-Richardson algebra, it is convenient to recall the
notion of a Lie algebroid ([Mal,2]) first. A Lie algebroid over a smooth manifold M is
a vector bundle A over M together with a Lie algebra structure on the space ['(A) of
smooth sections of A and a bundle map p : A — T M such that p defines a Lie algebra
homomorphism from I'(A) to X(M), the Lie algebra of vector fields over M, and there
holds for f € C*°(M) and &, &, € I'(A), the following derivation law,

(f&, &) = fl&, &) ~p(&2)f - &1.

A Lie algebroid is a generalization of a Lie algebra. The natural question is : what
is the graded Lie algebra on a vector bundle which defines Lie algebroid structures? In
Chapter 7, we construct such a graded Lie algebra LR(A) for a vector bundle A through
a generalization of the Nijenhuis- Richardson algebra from the vector space case to the
vector bundle one (Theorem 7.3).

It is known that Lie algebroids on a vector bundle A are in one-one correspondence
with linear Poisson structures on its dual bundle A* ([C] and [CDW], see also [W1]).
This is sometimes called the generalized Lie-Poisson construction. In Chapter 7, we
point out that linear polyvector fields on a vector bundle constitute a subalgebra of the
Schouten-Nijenhuis algebra over the bundle (considered as a manifold), which will be
called the linear Schouten-Nijenhuis algebra over the bundle, and prove that the general-
ized Nijenhuis-Richardson algebra for a vector bundle is isomorphic to the linear Schouten-
Nijenhuis algebra over its dual bundle (Theorem 7.10). Since the degree 1, bracket-square
0 elements of the linear Schouten-Nijenhuis algebra define linear Poisson structures, our
result extends the generalized Lie-Poisson construction. In the course of developing The-
orem 7.10, we also give a different proof of the following result: the Schouten-Nijenhuis
algebra over a manifold N is a subalgebra of the Nijenhuis-Richardson algebra for the
vector space C*(N) ([CKMV)).

We also extend another correspondence in the Lie algebroid theory, the correspondence
between Lie algebroids on a vector bundle A and 1-differentials of sections of the exterior
algebra bundle of its dual bundle A* ([K-SM] and [X]). We establish an isomorphism
between the generalized Nijenhuis-Richardson algebra for A and the derivation algebra

4



of the above-mentioned exterior algebra of sections (Theorem 7.11). This isomorphism
also generalizes the classical work of Frolicher and Nijenhuis on the characterization of

the derivation ring of differential forms on a smooth manifold ([FN1}).

1.2 Techniques behind the Results

We briefly discuss here some ideas we use to develop our main results.

The semidirect product (Theorem 3.2) of the Nijenhuis-Richardson algebra Alt(V, V)[1]
for a vector space V and the Lie induced algebra Alt(V, W) associated with V and a Lie
algebra W ([NR3]) plays an important role in developing some of our main results. The
generalized Nijenhuis-Richardson algebra LR(A) is constructed as a subalgebra of this
semidirect product with V' = I'(A) and W = X(M). It is through a special case of this
semidirect product (V = W) that we get an effective way to attain the two knit products
in §1.1.3. This special case of the semidirect product was already used in [N2]. However,
as far as I know, the general construction of the semidirect product is considered in this
thesis for the first time.

In Chapter 3, we introduce an operator © which is “almost” the difference of two
coboundary operators § and D in the Lie algebra cohomology theory (see(3.8)). The
operator ¢ is for the adjoint representation and D is for the trivial representation on the
Lie algebra itself. However, it displays a fundamentally different property (Proposition
3.8) compared with the property of § and D (Lemma 3.7). Though, we find that with the
place of the operator § in [N2] taken by this operator ©® Nijenhuis’ idea there still works
well with necessary modifications. This leads to the Kodaira-Spencer algebra Alt(V,V)
and to some of its remarkable properties.

Mainly for readers’ convenience of comparing the Kodaira-Spencer algebra with the
Frolicher-Nijenhuis algebra, we include in Chapter 4 the mechanism used by Nijenhuis
in constructing the latter algebra ([N2]). Nijenhuis showed that the Frolicher-Nijenhuis
bracket is essentially a measure of the deviation of § from being a derivation of the
composition product on Al¢(V,V). Graded Lie brackets of this kind turn out to be
fairly commmon in mathematics and mathematical physics. An example is the Batalin-
Vilkovisky algebra (see [K-S4] and references therein). We do not know at this moment
whether brackets of the Kodaira-Spencer form as in (5.3) will find applications in physics.

5



1.3 The Structure of this Thesis

In Chapter 2, we introduce standard definitions and constructions in graded Lie algebra
theory. Then the shuffle algebra is introduced together with multi-shuffles as a tool in
dealing with some complicated computations in this thesis. In the third part of Chapter
2, we list some classical examples of a graded Lie algebra, including two versions of
the Schouten-Nijenhuis algebra, the Nijenhuis-Richardson algebra and the Lie induced
algebra.

The first section of the Chapter 3 constructs the semidirect product of the Nijenhuis-
Richardson algebra and the Lie induced algebra. In the second part, we introduce the
operators § and © and study their interaction with the cup algebra Alt(V,V) which is
the special case of Lie induced algebra Alt(V, W).

Chapter 4, 5 and 6 study the Frolicher-Nijenhuis algebra, the Kodaira-Spencer algebra
and the Gelfand-Dorfman algebra respectively.

In Chapter 7, we first construct the Nijenhuis-Richardson algebra, then prove two
isomorphism theorems mentioned in §1.1.5. Finally, through the introduction of 2n-
ary Lie algebroids, we illustrate, in a more general setting, the implications of these

isomorphisms for the Lie algebroid theory.



1.4 Cast of Characters

For convenience of the reader, we summarize in the following table graded Lie algebras

which appear in this thesis.

Graded Graded Graded Meaning of
Lie Vector Lie Degree 1, Bracket-Square 0
Algebra Space Bracket Element
Schouten-Nijenhuis
Algebra(1) AV[1] (2.10) anti-symmetric r-matrix
Schouten-Nijenhuis
Algebra(2) ATN (2.10) and others Poisson structure
Nijenhuis-Richardson | Alt(V,V)[1] | (2.12) and (2.11)
Algebra AV*@ VI1] | (2.12) and (2.14) Lie algebra structure
Lie Induced Alt(V,W) (2.16)
Algebra AV'@W (2.17)
Frolicher-Nijenhuis Alt(V,V) (4.3) or (4.12)
Algebra AV®V (4.13) Nijenhuis operator
Kodaira-Spencer Alt(V,V) (5.3) Or (5.5)
Algebra AV-®V (5.6) R-matrix
Gelfand-Dorfman Alt(V*V) (6.9)
Algebra AVRV (6.3) r-matrix
Generalized Nijenhuis-
Richardson Algebra LR(A) cf.(3.4) Lie algebroid




Chapter 2

Preliminaries

Without specification, all objects in this thesis are over real numbers R , and all vector
spaces and Lie algebras with the only exception of those in the last chapter are finite-

dimensional.

2.1 Graded Lie Algebras

Our survey of graded Lie algebras in this section is mainly based on [NR1] with the
exception of the knit product which is adapted from {Mi].

2.1.1 Basic Definitions

A graded vector space is a vector space B together with a family {B"‘}l,‘e 7 of subspaces
of B, indexed by Z, such that B is the direct sum of the family {B"}kE 7- The elements
of B* are called homogeneous of degree k. Graded subspaces are defined in the obvious
way. f B =@, zB* and C = Be ZC" are two graded vector spaces, then their direct
sum is a new graded vector space B C = EBkeZ(Bk @ C*).

A linear map [ of a graded vector space B = @, ZB" into a graded vector space
C=6,zC * is homogeneous of degree m if for every k € Z, [(B¥) C C**™. In particular,
shift operators ] are of homogeneous degree m. They act on elements as the identity but
shift their degrees down by m. In other words, given a graded vector space B = @, zB*,
B[m] is a new graded vector space with B[m]* = B**™ ke Z.

A graded algebra is a graded vector space B = Bre ZB" which is given an algebra

structure compatible with its graded structures, i.e., a bilinear map (b;,b2) — b1b; of



B x B into B such that B®"B™ C B™*" for m,n € Z. Graded subalgebras and ideals
are self-evident. A homomorphism of a graded algebra B into C is a homogeneous linear
map [ of degree zero of B into C such that [(b1b,) = {(b;)I(b2) for all by, b2 € B.

A graded algebra B is associative if (b1b2)b3 = by(babs) for all by,b2,b3 € B. Such a B
is commutative (anticommutative) if there holds for every pair of homogeneous elements
b € B™, k = 1,2, byb, = (—1)™"2byby (b1by = —(—1)™"2byby).

A graded Lie algebra is an graded anticommutative algebra which satisfies a graded
version of the classical Jacobi identity. Precisely, a graded Lie algebra is a graded vector
space B = @, 7B together with a bilinear map (by,52) = [b1,52] of B x B into B which

satisfies the following conditions:

(I) [B™, B"] C B™*",

(II) If b, € B™, b, € B™, then [by,by] = —(—1)""2[bs, by].
(III) by € B™, k =1,2,3, then

(=1)™™[by, [b2, b3)] + (—1)"2™ [bg, [b3, b1]] + (—1)™"2[bs, [b1, b2]] = 0.

The identity in (III) is called the Jacobi identity. When (II) is satisfied, it can be written

in the following equivalent forms:
(IIT') [b1, [b2, b3]] = [[b1, b2), ba] + (—1)"1"2[bg, [by, b3]).
(II1") {b1, [B2, bs]) — (—1)™"2[bg, [b1, b3]] = ([b1, b2], ba).

2.1.2 The Derivation Algebra

Much in the same way as the commutator defines a Lie algebra on an associative algebra,
so the graded commutator defines a graded Lie algebra on an associative graded algebra.
Precisely, if B = @, ZB" is an associative graded algebra, then the underlying graded
vector space of B with the bracket determined by

[b1, b2] = biby ~ (—1)™"2byby (2.1)

for by € B™, k = 1,2, is a graded Lie algebra.



As a particular example, let £ = @, 7E* be a graded vector space. Then we have

a natural structure of graded associative algebra on End(E) = @, 7End*(E), where

EndF(E) consists of linear endmorphisms of homogeneous degree k. We now further

suppose that E is a graded algebra. Let D : E — E be an element of End“(E). We

call D a k-derivation of the graded algebra F if there holds for any pair ¢; € E™ and
e, € E™,

D(eye3) = (Dey)ez + (1) e, (Dey). (2.2)

The set D*(E) of all k-derivations is a subspace of End*(E). Let D(E) denote the sum of
the family { D*(E)},.z; D(E) is a graded subspace of End(E). The commutator [D;, D,
of two derivations of degree n, and n, is an (n; + ny)-derivation. Therefore, D(E) is a
graded subalgebra of the graded Lie algebra End(E). We will call this graded Lie algebra
D(FE) the derivation algebra of the graded algebra E.

A k-derivation D becomes a k-differential if it satisfies D? = 0, which is equivalent
to [D,D] = 0 when k is an even number. A graded Lie algebra with specification of a
1-differential is an example of differential graded Lie algebras.

Let B = @, ZB" be a graded Lie algebra. Consider the adjoint representation. For
any b € B*, the (II') means ad(b) is a k-derivation of B. (III”) further gives

[ad(b1), ad(b2)] = ad[by, bs]

for by € B™ and b; € B™2. Hence adB is a graded Lie subalgebra of the derivation algebra
D(B). B becomes a differential graded Lie algebra with specification of an element b € B!
satisfying [b,b] = 0; the 1-differential is adb.

2.1.3 The Right Pre-Lie Algebra

The commutator also generates graded Lie algebras from right pre-Lie algebras. A graded
algebra B = &, 7BF is called a right pre-Lie algebra if there holds for all b, € B™,
k=1,2,3

by (b2b3) — (b1b2)bs = (—1)"" (b1(bsb2) — (b1b3)be). (2.3)

If B is a right pre-Lie algebra, then the underlying graded vector space B with bracket
determined by

{61, b2} = byby — (—1)""2byby (2.4)

10



for b, € B™, k = 1,2 is a graded Lie algebra. The usual commutator
[b1,b2] = byby — (—1)""2baby

also defines a graded Lie algebra on B.

2.1.4 The Semidirect Product

In this thesis, we will use the following notion of semidirect product for a graded Lie

algebra.
Let B and C be graded Lie algebras. If there is a graded Lie algebra homomorphism

$: B - D(C),

then we say that B acts on C through . Given an action of B on C through $, the
graded vector space B @ C equipped with the bracket determined by

[(b1, 1), (b2, €2)] = ([b1, b2], S(b1)ez — (=1)™"2F(b2)er + [e1, ¢2)) (2.5)

for by € B™, by, € B™,¢; € C™ and ¢; € C™, is a graded Lie algebra.

This graded Lie algebra structure B & C is the semidirect product of B and C and we
denote it as B x C.

Note that B is a subalgebra of B x C and that C is an ideal of B x C. This is
actually the characteristic property of semidirect product. Precisely, if there is a graded
Lie algebra structure on B @ C such that B is a subalgebra and that C is an ideal, then
there exists an action of B on C and as a graded Lie algebra, B @ C is isomorphic to the
semidirect product B x C which is induced by this action.

2.1.5 The Knit Product

We now introduce a notion similar to the semidirect product, the knit product of two
graded Lie algebras.

Let B and C be graded Lie algebras. A derivatively knitted pair of representations
(a, B) for B and C are graded Lie algebra homomorphisms

a: B — End(C)
B :C — End(B)

11



such that

a(b)lcr ezl = [a(b)er, ca] + (—1)"™ [er, a(b)cr]

—((—=1)"™ a(B(c1)b)ec; — (1) ™)™ a(5(c;)b)ey )
B(c)[br,b2] = [B(e)br,ba] + (—1)™™ [b1, B(c)bo]

~((=1)™™ B(a(bi)c)bs — (—1)t™*™)™ B(a(bs)c)by)

(2.6)

forbe B", b€ BM, b e B2, ce C™,¢c; € C™ and c; € C™2,
If there is a derivatively knitted pair («,3) for B and C, then the graded vector space
B & C equipped with the bracket determined by

(b1, &1), (b2, e2)] = ([b1, be] + B(er)ba — (—1)™ "™ (c2)br, [e1, €a] + by )e2 — (=1)" ™ a(b2)c1)
(2.7)
for by € B™, b, € B™, ¢; € C™ and c; € C™, is a graded Lie algebra.

This graded Lie algebra B @ C is called the knit product of B and C, and denoted as
BXC.

Note that, when 8 = 0, the knit product degenerates to a semi-direct product.

The characteristic property of the knit product is that both B and C are subalgebras of
BaC. Precisely, if there is a graded Lie algebra structure on B@® C such that both B and
C are graded Lie subalgebras, then there is a derivatively knitted pair of representations
for B and C such that, as a graded Lie algebra, B & C is isomorphic to the knit product
of B and C induced by this pair.

2.2 The Shuffle Algebra

We introduce the shuffle algebra and notations about multi-shuffles in this section. These
notations will be used in sequel and the basic properties of the shuffle algebra are helpful
for us to deal with some complicated computations. The shuffle algebra was studied in
[R] and in many subsequent works. Our exposition follows [AG].

Denote ¥, for the symmetric group of {1,2,---,n}. A (p,q)-shuffle o is an element
of ¥4, which satisfies

o(i)<o(t+1), t#p.

12



We will denote sh(p, q) for the set of (p, ¢)-shuffles.
Consider the group algebras R(X,), n = 0,1,2,--.. We formulate a graded vector

space

R(Z) = ®n3oR(Zn).
On this graded vector space, defining
Axg= 3 (-1)00o(Ax17)
o€sh(m,n)
for A€ X, and n € &,,, with

[ AG) 1<i<m
(Axn)(z)_{n(i—m)-i-m m+1<i<m+n,

we get a graded algebra.

The subalgebra of R(X) generated by 14, £ = 0,1,2, ---, is called the shuffle algebra.
The shuffle algebra is a graded commutative associative algebra, i.e, the following two
identities hold,

ln*x1, =(-1)""1,* 1, (2.8)

(I *1)* 1, =1m (1o x 1g). (2.9)

In this thesis, we will also use shuffles with more than two entries. For n,,:--,ng,
positive integers, we denote

’Sh(nla Ty nk)

for the set of 0 € X, +...4n, satisfying
o(i)<o(t+1), t#mn,n+ng--,n+-- + n(k-1) -
We will use notations

3hl("17"° 9nk) = {0' € ‘gh(nh“' )nk)la(l) = 1}’
sha(ny,---,ne) = {o € sh(ny,---,n)lo(n +1) =1},

shi(ny, -+ ,ne) = {o € sh(ny,---,me)lo(ni +na+---+niy +1) =1},

{o € sh(ny, -+, ne)|o(ny + - +mer +1) =1}

Shk(nly Tt n’k)
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For examples,

sh(2,3) = {(12345),(13245), (14235), (15234), (23145),
(24135), (25134), (34125), (35124), (45123)},
shi(2,3) = {(12345),(13245), (14235), (15234)},
sha(2,3) = {(23145),(24135), (25134), (34125), (35124), (45123)}.

Note that sh;(2,3)[)shk2(2,3) = @ and sh(2,3) = shy(2,3)Jsh2(2,3). Generally, we

have

shi(ny,- -, ne) [ shi(na, -+ ,ng) =0 fori # j,
k
sh(ny,- -+, ne) = | shi(n, -+, ni).

i=1
For any object
X = (X11X21 tee aXn1+ﬂ2+---+ﬂk)

and o € sh(n,---,n), we use multi-index abbreviations in the following manner:

Xo = (Xa(l)7 tee 1X0(m))’

X,z = (XO(NI+1)7 Ty Xo‘(nl +nz))7
XU" = (Xd(m +ngtbnig+1)y° "0 Xa(m +nz+--~+n.-))1

Xo" = (th(ﬂl +ngttng +1)r 77 Ty Xv(nl +n2+-"+nk))'

For a fixed ¢, ¢ € sh;(ny,---,nx), the notations X,1,- -+, Xpi-1, Xgitr, -, X, » are still

as above. However, X,i will mean (Xq(n, +ng+-+nii42)r° s Xo(ni +nattni))-

2.3 Classical Examples of the Graded Lie Algebra

We introduce some classical examples of a graded Lie algebra. They will be used in later

chapters.
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2.3.1 The Schouten-Nijenhuis Algebra for a Lie Algebra

Let V be a finite-dimensional Lie algebra. The underlying graded vector space of the
Schouten-Nijenhuis algebra for the Lie algebra V is

k+1

Avil=@Av.

k>0

Its graded Lie bracket is determined by

XA AXe i A A\ Yalsn
— Z(_l)i-i-j[x‘.,y}]/\xl.../\j{\i/\...){kl /\Y1 /\/\ff;/\/\nv

(2.10)

where X,,s=1,---,kjand Y;,t =1,--- ,kz are all in V.
Two remarks are ready to make here for this Schouten-Nijenhuis algebra. First, since

it also establishes that

[S1, 82 /\ Sslsn = [S1, Szlsw \ S5 + (—1)1 %218, A\[S1, Szlsw

for S; € /\k"*'1 V,i = 1,2,3, the Schouten-Nijenhuis algebra for a Lie algebra is an example
of the Gerstenhaber algebra ([G1, 2, 3]), which attracts a great deal of attention recently
in the mathematical physics community. Second, the degree 1, bracket-square 0 elements
of this Schouten-Nijenhuis algebra are exactly the anti-symmetric r-matrices of the Lie
algebra V. This was observed by Drinfeld ([Drl]), Gelfand and Dorfman ([GD]).

In this thesis, we will also call this Schouten-Nijenhuis algebra the algebraic Schouten-
Nijenhuis algebra.

2.3.2 The Schouten-Nijenhuis Algebra over a Manifold

Let N be a smooth manifold. The underlying graded vector space of the Schouten-
Nijenhuis algebra over the manifold N is the graded vector space of polyvector fields on

N,
k+1

ANTN =P (A TN),

k>—1
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where TN is the tangent bundle of N and I( /\"'H TN) is the space of sections of the
exterior algebra bundle /\""'l TN. The graded Lie bracket of this algebra is determined
by (2.10) with X,,Y, € X(N), together with [f, g]sn = 0for f,g € C®(N) and [X, flsy =
Xf.

This is the original algebra of Schouten ([S]) and Nijenhuis ([N1]) (See [MR] and [V1]
for a modern exposition).

The Schouten-Nijenhuis algebra over a manifold N is also an example of the Ger-
stenhaber algebra. Its degree 1, bracket-square 0 elements are Poisson structures on N.
Precisely, if § € T'(\® T N) satisfies [S, S]sy = 0, then {f, g} = S(df,dg) defines a Poisson
bracket on N, and any Poisson structure on N is of this form.

Sometimes, we will call this Schouten-Nijenhuis algebra the geometric Schouten- Ni-
jenhuis algebra.

2.3.3 The Nijenhuis-Richardson Algebra

Let V be a finite-dimensional vector space. Denote by Alt*(V,V) the space of k-linear
alternating morphisms from V x --- x V (k factors of V') to V and let Alt%(V,V) = V.
The Nijenhuis-Richardson algebra ([NR2]) is defined on the graded vector space

AV, V(1] = @ Al (V, V).
k>0

We need the concept of the composition product to introduce the graded Lie bracket
of the NR algebra. For P; € Altk+(V,V), i = 1,2, their composition product P,P, €
Althitk+l(V V) is

PPy(X1, Xiytg1) = Y, (1) Pi(Py(Xn), X,2). (2.11)
UEJh(kz-*-l,’q}

The graded Lie bracket of the Nijenhuis-Richardson algebra is determined by
[P],Pg]NR = P2P1 - (_l)klkzplpz. (2.12)

Denote V* for the dual space of V. Consider the graded vector space

AV ®V=BAT®V).

k>0
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Since V is finite-dimensional, we have a graded vector space isomorphism

AV, V)= AV @V (2.13)

This provides us an equivalent description for the Nijenhuis-Richardson algebra on A V= @) V1]
In terms of A V* @ V/, the composition product is

(11 @) X1) (12 Q) X2) = b2 \ ixaps @ X (2.14)

where ;i @ X; € A¥T' V=@ V,i = 1,2, and iy, is the usual insertion operator, and we
can get from this the corresponding graded Lie bracket.

The fact that the bracket (2.12) defines a graded Lie algebra can be easily proved
with this equivalent description. In fact, using (2.14), we can establish through a direct

calculation the so called commutative-associative law,
P\(P,P;) — (P P)P; = (—1)2k (P, (P P,) — (P, P3) P,), (2.15)

where P; € Alt5i+1(V,V),i = 1,2,3. Therefore, Al¢t(V, V)([1] with the composition product
is a right pre-Lie algebra.

We make two remarks here. First, when V is infinite-dimensional, the Nijenhuis-
Richardson algebra can still be defined on Alt(V, V)[1]. In this case, we can use (2.8) and
(2.9) to prove the bracket determined by (2.11) and (2.12) is a graded Lie bracket. We
will use this version of the Nijenhuis- Richardson algebra in Chapter 7. Second, some
authors consider the Nijenhuis- Richardson algebra as an algebra structure on Alt(V,V)
rather than on Alt(V,V)[1]. Our choice is to make its properties to be stated in a more

neat way.

2.3.4 The Lie Induced Algebra

Let V be a finite-dimensional vector space and W be a finite dimensional Lie algebra.
Let Alt*(V,W) denotes the space of k-linear alternating morphisms from V ® ..o ® |4

k

to W. On the graded vector space

AV, W) = @D Aitk(V, W),

k>0
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the bracket determined by

(B, BalLi(Xn - Xew) = ) (F1IE(Xr), Ba(X2)]  (2.16)
o€sh(ky k2)
for E; € Altki(V,W),i = 1,2, defines a graded Lie algebra.

This graded Lie algebra was used in [NR3] without a name. Since it is essentially
induced by the Lie algebra structure on vector space W, we would like to call it the Lze
induced algebra associated with V and W.

An equivalent description of the Lie induced algebra can be given through the following

identification
AV, W)= Av-Qw.

Here, we denote .
Av-@w=-@Av@w

In terms of A V" @ W, (2.16) is equivalent to

[1 @) Vi, v: @ Va1 = 11 A v: @V, Y2, (2.17)

forv; QY e A" V- @W,i =1,2.

For any commutative COalgera C and Lie algebra W, there is a natural graded Lie al-
gebra structure on Horn(C, W). Consider C = A V with its exterior COalgebra structure,
then the Lie induced algebra Alt(V, W) is just a special case of this general construction
since we clearly have Alt(V,W) = Hom(A V,W). For further information, we refer to
(SS].

Following [N2], we will call the Lie induced algebra in the case W = V the cup algebra
for the Lie algebra V.

When both V and W are infinite-dimensional, the Lie induced algebra can still be
defined on Alt(V,W). In this case we can use (2.8) and (2.9) to show the bracket (2.16)
defines a graded Lie bracket.
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Chapter 3

One Structure and Some Operators

This is a preparatory chapter. We construct a semidirect product structure of the
Nijenhuis-Richardson algebra and the Lie induced algebra. This structure will be used
in Chapter 4, 5 and 7. The other part of this chapter is devoted to the study of the cup
algebra. The focus is on its relations with two natural operators 4 and ©. These relations

will play an important role in Chapter 4 and Chapter 5.

3.1 The Semidirect Product Structure

In this section we establish the semi-direct product structure of the Nijenhuis-Richardson
algebra Alt(V,V)[1] and the Lie induced algebra Alt(V, W).
Let P € Alt'*Y(V, V), E € AltF(V,W). We define

SPEXy, -, Xew) = Y, (I E(P(Xn), Xa). (3.1)
o€sh(l+1,k-1)

It is clear that S(P)E € Alt**!(V,W). Hence, S induces a morphism
S : Al(V,V)[1] —> End(Alt(V,W)).

The following proposition states ¥ actually defines a graded Lie algebra action of
Alt(V,V)[1] on Alt(V,W).
Proposition 3.1

(3.1.a) S(P) € D'(Al(V,W)).
(3.1.b) S: Alt(V,V)[1l] — D(Alt(V,W)) is a graded Lie algebra homomorphism.
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Proof. Let E; € Alt*%(V,W), i=1, 2. In order to prove (3.1.a), we have to show
S(P)[By, Bo] [ = [S(P)Ey, Exlp g + (1) By, S(P)Ea)r - (3.2)
Without loss of generality, we assume
P = #®X )
Ei = uv@QVY, i=1.2
Then

S(P)[Er, Eo)L1

= pN\ix(n A\ v) R, 13

= s \ixo A @M, Yo + (=1)%p A vi \ixe. @Y1, V3]
= [S(P)Ey, By + (—1) ¥Ry, /\#/\ X2 ®[Yl, Y]

= [S(P)E, Bal g + (-1) [E\, S(P)Ba]L 1 -

Note that in the above calculation we use
S(P)E: =#/\ixvi®Ys, 1=1,2.

Now, let P; € Altf+1(V,V),i = 1,2, and E € Alt(V,W). In order to prove (3.1.b),
we have to show

[S(R), S(P2)IE = S([P1, PINR)E - (3.3)

Without loss of generality, we can suppose

P, = #£®Xi, 1=1,2,
E = U®Y.
Then
[S(P.), S(P)IE
= S(P)S(B)E — (1) S(P,)S(P)E
= S(m@ XN \ixv QY) = (-1 (1 @ Xa) (1 \ ix, v @ V)
= m \ixm\in) QY - (18w A ix(m A i) @Y

20



= Nixp /\’:sz®y +(—1)F A 2 /\ ixxin”® Y
—(—1)k'k’#2 A ixzﬂl A ixxv ® Y + (—l)kl (er)#Z /\ Hi1 A ix2ixlv ®Y
M1 AixlﬂgAile)@Y —(—l)k'kzuz/\ixz;h /\ixlU®Y.

On the other hand,

[P, PINR = 1 N\ ixita @ X — (—1)%ix 1 A 12 @) X1 -

Therefore,

Ezr([1:’1, Pz]NR)E
= plAiX“uz/\ix,‘U®Y—(—l)k’ixzpl/\yg/\ixl'u@y'
= K Aanﬂ‘?/\iX:v@Y—(_l)klkz,uZ/\iXmul/\i)ﬁv@Y'

(3.3) is now clear. O

From §2.1.4, we have that the action & generates a semi-direct product of the Nijenhuis-
Richardson algebra Alt(V, V)[1] and the Lie induced algebra Alt(V, W). This is the graded
Lie algebra in the following theorem.

Theorem 3.2 On the graded vector space
SP(V,W) = Alt(V,V)[1] P Al(V, W),
the bracket determined by

(P, Er), (P2, E2)]gp
= ([P, P NR, [Br, B2) L1+ S(P) E; — (-1)%S(P,) Ey)

(3.4)

defines a graded Lie algebra, where P, € Alt5+(V,V) and E; € Alt5(V,V),i = 1,2.
For simplicity we will write

SP(V,W) = B SPH(V,W).
with the self-evident understanding
SPH(V,W) = Altt+1(V, W) P AltE(V, ).
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The notation SP(V) = SP(V,V) will also be used.

To end this section, we point out when V' and W are both infinite-dimensional, The-
orem 3.2 still holds. However, a different proof should be used. For such a proof, we can
use (2.8) and (2.9).

3.2 Two Operators and the Cup Algebra

In this section, we introduce the operators § and O, and discuss their interaction with the

cup bracket.

3.2.1 Operators 6 and ©
Consider 8 € Alt?(V,V). By definition, we have
06(X,, X2, X3) = 8(8(X1, X2), X3) + 0(6(X3, X3), X1) + 6(6(X3, X1), X2) .
Hence the bracket
(X1, X2] = 0(X1, Xz)
defines a Lie algebra if and only if 82 = 0, which is also equivalent to {6,8} = 0.

Fix such a f on V.

We recall that the Chavelley-Eilenberg([CE]) coboundary operator
§: AltR(V, V) — AltFTY(V, V)
for the adjoint representation of the Lie algebra V is defined by

JQ(Xh st 1Xk+l)

k+1

= 3 (D)X Q@Xny -, Koy ooy Xitr)]

i=1

+ Z(_l)i+jQ([Xi7 Xj]yXl, e 7:X\i’ ot sz) e vXk-i-l) .

i<
(3.5)

We also recall that coboundary operator for the trivial representation on V is defined
by

D : Alt"(V, V) — AltFY(V, V),
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DQ(Xh' vt 1Xk+l)
= Z(-l)i+jQ([Xi3Xj]’le tee $’X\i" * 'a’X\jv e )Xk+l) .

(3.6)

For § and D we have the following straight-forward result:

Proposition 3.3
(3.3.a) 6Q = —-[6,Q] yg-
(3.3.b) DQ = -Q4.

Now we introduce one more operator, which will play a critical role in our study of

the Kodaira-Spencer algebra. For Q € Alt¥(V, V), let us define

0Q = —6Q. (3.7)

It is clear that
[6,QINR = Q6 — (-1)*716Q.
Therefore, we have

0Q = (-1)*(§ - D)Q. (3.8)

We collect some identities associated with the above-introduced operators in the fol-
lowing,

Proposition 3.4
(3.4.a) 2=0.

(3.4.b) D2 =0.
(3.4.c) OD =40.
(3.4.d) ©2 = D§+4D.

Proof. (3.4.a) follows directly from the graded Jacobi identity of the Nijenhuis-Richardson
algebra.

By the commutative-associative law, we have

Q(F%) — (Q6)8 = —(Q(6) — (Q6)8).
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Since 2 = 0, this gives us
—~(Q8)0 = (Q6)6.
Therefore,
(Q6)6 =0,
i.e., D2Q = 0. This is (3.4.b).

For (3.4.c), again by the commutative-associative law, we have

8(Q8) - (6Q)8) = (-1)*7'(6(6Q) — (6*)Q) .

Since 6% = 0, it gives us
6(Q06) = [6,6QINR -

Hence, ©D = 0.

The last identity (3.4.d) follows from (3.8), (3.4.a) and (3.4.b). O

Proposition 3.4.a and 3.4.b are well-known. However, I have not seen their proofs
based on the commutative-associative law before. As far as I know, the operator © is

considered here for the first time.

3.2.2 The Cup Algebra

Recall the cup algebra is the Lie induced algebra with W = V. Here we express the cup
bracket in terms of ® and § and prove some formulae regarding its behaviour under the
action of D, é and ©. The formula associated with © is new.

Lemma 3.5 Let [ |7 denote the bracket for the cup algebra, and Q; € Althi(V,V),i = 1,2,

then there holds [Q1, Q2] o = (—1)%2((0Q2)Q1 — O(Q2Q,)).
Proof. We apply the isomorphism

AV, V) = AV QV.

Without loss of generality, we assume

9=u®Y€/2\V'®V.
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Let Q; = v; @ Xi,i = 1,2. We have

(0Q2)@:
= —(0Q2)Q
= —(2\ixw@Y)n @ X)
= —uN\ixnv \inw@Y +(-1)4w(X, X2)un A @ Y;

and
0(Q.¢1)
= —6(Q2Q1)
= —(w ® Y)(w /\ ix, V2 ® Xz)
= _UlAixlvaiX2w®Y‘
Therefore,

(0Q2)Q1 — 6(Q2Q1) = (-1)Fw(Xy, Xa)u /\ g ® Y.

However, it is clearly true that

[Qla QZ]C = W(Xl, Xg)’vl /\‘Ug ® Y .O

Proposition 3.6 ([N2]) Let Q;,i = 1,2 be as in the above lemma, we have [Q:, Q] =
(6Q2)Q1 — (—1)MQ28Q; + (-1)M8(Q2Q1)-
Proof. We can prove it as follows:
(8Q2)@Q1 — (—1)*Q26Q1 + (1) 6(Q2Q1)
= —[6, QINR@: + (—-1)" Q:[8, Q:INR — (-1)®[0, Q:Qi]NR

= —(Q20)Q1 + (=1)*71(8Q2)Q1 + (—-1)" Q2(@:16) — (—1)81%4~'Q,(6Q)
—(=1)"(Q2Q1)8 + (-1) *"1+R6(Q,Q,)

= (=1)"((-0Q2)Q: — (—6)(Q2@1))

(-1)*((0Q2)Q1 — (Q2Q1))

= [@, Q2]C .

The last step use lemma 3.5. O
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Lemma 3.7 Let Q; € Alt%(V,V),i =1,2. We have
(3.7.a) D[Q,Q:2]c=[DQ:1,Q2]c+ (-1 {Q, DQ.]c.
(3.7.b) §[Q1, Q2] = [6Q1, Q2] o+ (—1)%[Q1,6Q:] ¢
Proof. Without loss of generality, we assume Q; = v; @ X;, then
D[Qh Q?]C
= D(Ul /\ (%) ®[X1,X2])
= d(n /\ v2) ®[X1, Xa]

= dv1 /\ p) ®[X1, XQ] + (-1)/‘:l Uy A d’Uz ®[X1,X2]
= [DGh, Q¢ + (-1)"[Q, DQ:]c -

This is (3.7.a).
For (3.7.b), we use Proposition 3.6 and §2 = 0.

3[Q1, Qa)c = 6((8Q2)Q1) — (—1)% 6(Q26Qn),

[6Q1, Q2]c = 8Q26Q: + (—-1)M*16(Q26Q,),
(Q1,8Qz)c = (—1)"8((6Q2)@Q1) — (1) (6Q2)(6Q:) .

Therefore,

8[@1, Q2 = [6@Q1, Q2] + (—=1)"[8Q1,6Q;] ¢ .0

Lemma (3.7.a) and (3.7.b) shows that both operators D and § endow the cup algebra
Alt(V,V) with differential graded Lie algebra structures. In later chapters, we will also
use the fact that the Nijenhuis-Richardson algebra is also a differential graded Lie algebra,

ie.

§[Pr, BINR = [6P1, P]NR + (1) [P, 6 P))NR -

This identity is a direct consequence of the graded Jacobi identity of the algebra because

of Proposition 3.6.a.
Proposition 3.8 There holds

0[Q1, @2l = (-1)=(0Q:, Qal o+ [@1,0Qa]
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Proof. It is a consequence of Lemma 3.7 and the identity (3.8).

0[Q1,Q:lc
= (1) - D)[Q:,Q:lc
= (=1)B*R[(§ - D)Qi,Q:]c + (1) H*R[Q,, (6 — D)Q:]c
= (-1)%[(-1)"(5 - D)1, Q:]c + (@1, (-1)(6 — D)Q:l¢
= (-1)2[0Q1,Q:lc + [Q1,0Q:]¢c .0
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Chapter 4
The Frolicher-Nijenhuis Algebra

The Frolicher-Nijenhuis algebra was first defined in the geometric context by Frolicher and
Nijenhuis in 1957([FN1]). Later the version we are concerned was studied by Professor
Nijenhuis through a purely algebraic approach([N2}). In this chapter, we introduce Ni-
jenhuis’ idea with an emphasis on the knit product structure of the Nijenhuis-Richardson
and the Frolicher-Nijenhuis algebras, which was not explicitly demonstrated in the original
paper. New results include a different proof of an interesting formula recently discovered
by Nijenhuis ([N3]).

4.1 Nijenhuis’ Idea

We follow [N2] to introduce the Frolicher-Nijenhuis algebra associated with a Lie algebra.
Let V be a Lie algebra. Consider the graded vector space embedding

T: Alt(V,V) — SP(V),
Q) = ((-1)*4Q,Q),
(4.1)

where Q € Alt*(V,V).
Lemma 4.1 The image of T is a subalgebra of SP(V).
Proof. For Q; € Alt%(V,V),t = 1,2, we have

[((—l)kl 6017 Ql)’ ((_l)kz‘sQZa Q2)]SP
= ((-1)"**[6Q1,4Q:NR, (@1, Q2lc + (—1)M Q25Q, — (-1)2*.1*+1Q,4Q,.
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It only needs to show

§((-1)* Q26Q: — (1) +1Q,6Q, + [@1,Q2]c) = [6Q1,0Q2]NR - (4.2)

However,

§([Q1,Q2)c) + (—1)76(Q18Q) — (—1)2R+1§(Q16Q-)
= §((6Q2)Q1 — (1) Q2 - 6@, + (-1)46(Q2Q1))
+(-1)"8(Q26Q1) — (—-1)2*1+15(Q16Q>)
= §((8Q2)Q: — (-1)=*1*+1Qy(6Q,))
= J[QhJQZ]NR
= [0Q1,6Q2]NR -
Here we use Proposition 3.6 in the first step and (3.9) in the last step. This proves (4.2)
and hence the lemma. O

This lemma can be reformulated as
Theorem 4.2 ([N2]) The graded vector space Alt(V,V) with bracket determined by

(@1, Q] py = (@1, Q2]+ (—1)kQ28Q, — (—1):=1+1Q,6Q, (4.3)

is a graded Lie algebra and T of (4.1) is an injective graded Lie algebra homomorphism.
The graded Lie algebra in this theorem is commonly called the Frolicher-Nijenhuis
algebra for the Lie algebra V.
Applying Proposition 3.6, we have another expression for its graded Lie bracket,

(@1, Q2)pN = (=1)%6(Q2Q1) + [@1,0Q2INR - (4.4)

In terms of the bracket (4.3), we can rewrite (4.2) as

J[Qh Q2]FN = [JQh JQZINR . (45)

This shows ¢ is a graded Lie algebra homomorphism. Note that the fact that J is of
degree 1 plays an important role here. Since the Frélicher-Nijenhuis bracket is of degree
0 and the Nijenhuis-Richardson bracket is essentially of degree 1, this makes é a graded
Lie algebra of degree 0.
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From now on we will denote Altc(V,V) and Altpn(V,V) for the cup algebra and
Frolicher-Nijenhuis algebra on the graded vector space Alt(V, V), respectively.

The following proposition shows how the Frolicher-Nijenhuis bracket and the Nijenhuis-
Richardson interact.

Propasition 4.3 The morphisms

a: Alt(V,V)[1] — End(Alt(V,V)),
B : Alt pp(V, V) — End(Alt(V, V)[1])

determined by

o(P)Q = QF,
Q)P = (@, PlFN

(4.6)

for P € Alt(V,V)[1] and Q € Alt(V,V) constitute a derivatively knitted pair of represen-
tations of the Nijenhuis-Richardson algebra and the Frolicher-Nijenhuis algebra, i.e.

(4.3.a) a , B are graded Lie algebra homomorphisms.

(4.3.b) for Q € AI(V,V), Q; € Alth(V,V), P € Alt+\(V,V) and P € Alts+1(V,V),

t=1,2, we have

[Q1,Q2)pNP = [P, Qa2 py+ (-1)[Q1, Q2P gy
_((_l)kllQZ[QlaP]FN_ (_1)(k+h]lel[Q27 P]FN) ’

(4.7.1)
Q. [P, Pl NRlpN = (@, PN Blyp+ (-1)"(P,[Q, PlpNINR —
(1) [QP, P py— (-1)+8)2 (P, QP py) .

(4.7.2)

Proof. a is a graded Lie algebra homomorphism since the commutative-associative law
holds; 3 is also a homomorphism since the graded Jacobi identity of the Frolicher-Nijenhuis
algebra holds. A long but straight-forward calculation establishes (4.7.1) and (4.7.2). O
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A direct consequence of this proposition is
Theorem 4.4 On the graded vector space Alt(V,V)[1] @ Alt(V,V),the bracket

[(Ph Q1)1 (P27 Q?)]KP
= ([P, RBlygp+[Qu PN — (—=1)kk (@2, Pl s
(Q1, Q2] py + Q2P — (1) Q,P,),

(4.8)

defines a graded Lie algebra structure.

It is the knit product of the Nijenhuis-Richardson algebra and the Frolicher-Nijenhuis
algebra.

A more straight way to show that the bracket (4.8) defines a graded lie algebra struc-
ture on Alt(V,V)[1] @ Alt(V,V) is as follows:

By (4.4) and (4.5), we have

(P + (~1)%8Q1, Q1), (P2 + (—1)76Q2, Q2)l5p
= ([P +(-1)"8Qy, P, + (-1)%6Q:]NR,
[Q1, Q2] + Q2(Pr + (—1)%6Q1) — (=1)%2Qy(P; + (~1)*26Q>))
= ([P, PINR + (-1)2[P1,6Q:2]NR + (—1)2 [6Q1, PoINR + (1) 52 [6Q1, 6Q2)NR-
[Q1, Qzlc + (1) Q26Q; — (-1)4* 11 Q,6Q, + Q. P, — (-1)M2Q, )
= ([P, PINR + (@1, PN — (-1)%[Qs, PRy +
(‘1)k1+k25([Q1, Q:2]pN + Q2P — (-1)k2Q, By),
[Q1, Q2pN + Q2P — (—1)R2Q, Py),

(4.9)
where P; € AltK*1(V,V) and Q; € Alt5(V, V), i = 1,2. If we define
#: AV, V)[1] @D Alt(V, V) — SP(V),
#(P,Q) = (P +(-1)*4Q,Q),
(4.10)

for (P, Q) € Alt**'(V, V) @ Alt*(V, V) then it follows from (4.9)
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7‘;[(F’la QI)1 (PZ? Q2)]KP
= [#(P,@Q1),7(P2, Q2)lgp -

(4.11)

Since 7 is a graded vector space isomorphis, the graded Jacobi identity for the bracket
(4.8) follows from that of the bracket [ |sp.

We note that 7 is actually a graded Lie algebra homomorphism.

In the end of this section, for comparison with results in later chapters, we give two
other expressions of the bracket (4.3) here (cf. [KMS]).

The first one is

[QlaQZ]FN(XIa te 1Xk1+k2)
= Y (-1 1Qi(Xe), Qa(Xo3)]

o€sh(k k2)

- Y (A QuQ1( Xt )y Xogry 1)), Xos)

o€sh(ky,t ,k2—1)

H=DkE N (1) Qu((Qa( X s Xk 41y Xos)
o€sh(k2,1,k1—1)

-(-1)" > (—1)° Q2(Qu([Xoa); Xo2)], Xo2), Xo3)

o€sh(2,ky -1,k 1)
+("‘1)k:(k'+l) Z (—1)7Qu(Q2([Xoq1), Xa(2)], Xa2), Xo2)

o€sh(2,k2—1,ky —1)
(4.12)

This follows directly from (4.3) and the definition of 4.

Consider the isomorphism

Arv,V)= AV-QV.

Let Q; = v; @ X;,t = 1,2. Then the bracket (4.3) can also be expressed as

[vy ®X1, vy ®X2]FN
= " A‘Ug ®[X1,X2] +mn AGd}ﬂ)g@Xz - ad}zvl sz ®X1
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+(—1)% (dvr A ix,v2 Q) Xz + ix,n1 [\ dv2 Q) X1)
= v A\ 22 @X1, Xz — (ix,dvr A\ v2 Q) X1 — (—1)*%ix,dvy \ 01 R) X2)
—(d(ix,n \v2) @) X1 — (~1)0 B d(ix, v ]\ v1) R) X2) .

(4.13)

Here ad* is the representation of V on A*® V*(or A* V*) induced by the adjoint repre-
sentation, d is the Chevalley-Eilenberg coboundary operator associated with the trivial

representation of V' on R and we use
ad} =ixd+diyx,

which can be easily proved.
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4.2 A Derived Bracket

We consider in this section a bracket derived from the Nijenhuis-Richardson bracket. This
derived bracket includes the Frolicher-Nijenhuis bracket as a special case. We prove an
interesting formula which reveals the relation between the Frélicher-Nijenhuis brackets of
a Lie algebra and of its Nijenhuis deformations.

Let V be a vector space. Inspired by (4.4), we consider for a fixed P € Alt*(V,V) the
bracket determined by

(@1, Qz]FN(p) = (-1)%[P,Q.Q:INR + (@1, [P, Q2]NRINR (4.14)

for Q; € Alt%(V,V),i=1,2.

Note that when V is equipped with a Lie algebra as before, its Frolicher-Nijenhuis
bracket is nothing but [ |rn(-g), i.e., [ |[F¥ = [ |Fn(-6). Also, the argument in last section
implies that the bracket (4.14) is a graded Lie algebra bracket on Alt(V,V) if P satisfies
[P, Plnr = 0.

For P € Alt*(V,V), Q € Alt'(V,V), it is clear [P, Q]NR € Alt}(V,V). Hence, we can
consider the bracket | ] FN(PRINR) defined by (4.14) for [P,Q)NR- The central result in
this section is the following theorem:

Theorem 4.5

[Qu Q:l NP, Q1 )
= [[@:QNnr QlpNp) + (@1, (@ Qi Nrl NPy — [@: Q1 Qal pv p) NR-

This theorem expresses the bracket [ ] FN(PQINR) in terms of [ |pn(pjand [@, |va.
We need a lemma to prove this theorem.
Lemma 4.6 For Q € Alt'(V,V),Q; € AltK(V,V),i = 1,2, we have

@, Qle]NR = [@, Q1]NRQ2 + Q1[Q, Qz]NR- (4.15)

Proof. The critical point is that for @ € Alt}(V,V) there holds

Q(Q1Q2) = (QQI)Q2 .
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Therefore,

[Qa Q1Q2]NR - [Q, Ql]NRQz - Ql[Q, Qz]NR
= (1Q2)Q — Q(Q1Q2) — (1Q)Q:2 + (QQ1)Q2 — Q1(Q2Q) + @:1(QQ2)

= (1Q2)Q — 1(Q2Q) — (@1Q)Q: + C1(QQ2)
= 0.

The last step uses the commutative-associative law. O
Proof of Theorem 4.5. Applying Lemma 4.6 and the graded Jacobi identity of the
Nijenhuis-Richardson algebra, we can make the following calculation:

1@ Q2IEN((P, QIxp)
= (=1)"[[P,QINR, @2QiINR + [@1, [P, QINR. Q2INRINR
= (-1)"[P[Q, Q:QiINRINR ~ (-1)* (@, [P, Q:Q:]NRINR
+(@1, [P, [Q, Q2INRINR — [@: [P, QzNRINRINR
= (-1)"[P,[Q, @:Q:INRINR — (-1)*(Q, [P, Q:Q:INRINR
+(Q1, [P, [Q, QaINRINRINR
+((Q, @:INR, [P, @2)NRINR — (@, (@1, [P, Q2)NRINRINR
= —[@,[Qu QlrN(p)INR
+(Q1, [P, (@, Q2NRINRINR + (-1)* [P, [Q, QINRQ1INR
+Q, QNR, [P, Q2INRINR + (=1)" [P, @:[Q, Q:INRINR
+H-1)"[P,[Q,Q:Q:INR — (@ Q2INRQ1 — Q2(Q, QiINRINR
(@, QuNR: QzlpN(p) +[@n: (@, QaNRIFN(P) —

@, (@1, Q2]FN(P)]NR .0

In order to provide an application of Theorem 4.5, we now suppose V' is equipped with

a Lie algebra structure as before.
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Let Q@ € Alt}(V,V) = Hom(V, V). We consider a bracket defined on V as follows,
[X1, Xalg = [@X1, Xa] + [X41, @Xa] — Q[X1, X (4.16)

Note that this bracket measures the deviation of Q from being a derivation of the original
Lie bracket of V.

We have
Proposition 4.7

(4.7.a) The bracket | |q defines a Lie algebra on V if and only if §[Q, Q) gy = 0.

(4.7.b) In particular, [Q,Q)rn = 0 if and only if | | defines a Lie algebra on V such
that
Q[X1, Xa]o = [@X1,QX]. (4.17)

We recall from [K-SM],
Definition 4.8 An element Q € AltY(V,V) = Hom(V,V) is called a Nijenhuis operator
of the Lie algebra V if (Q, Q] py = 0.

Proposition 4.7 shows that Nijenhuis operators induce deformations of the Lie algebra
V (see [NR2]). They are sometimes called the Nijenhuis deformation of V. They play an
important role in the Poisson-Nijenhuis structure theory ([K-SM], see also [MM]).

The proof of Proposition 4.7 is easy. In fact, (4.7.a) follows from 4{Q,QlpN =
[0@h1,6Q2]NR; (4.7.b) holds since we have from (4.2),

(@, QlFN(X1, Xa2)
= 2([Q(X1), Q(X2)] — Q([@X:, Xz] + [X1, @X2] — Q[X4, X2])) .
(4.18)

Applying Theorem 4.5, we have
Corollary 4.9 Let N be a Nijenhuis operator of the Lie algebra V. Then the Frélicher-
Nijenhuis bracket [ |' for the Lie algebra defined on V by the bracket

[X17X2]N = [NXl,Xz] + [Xl, NXQ} - N[X]_, Xg] . (419)
satisfies

[Qh Q‘Z]l = [Nv [Qla Q2]FN]NR - [[N, Ql]NRa Q2]FN— [Qla [N1 QZINR]FN‘ (420)
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Proof. 1t is clear

(X1, X2] = §N(X,, X3)-

Therefore, we have

(@1, Q2] = [Q1, Q2)FN(-sn) = —[Q1, Q2] FN([-0.NIwr)-

The result is then a direct consequence of Theorem 4.5 and { Jrn = [ |Fn(-g). O.

This corollary was first proved in [N3].
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Chapter 5

The Kodaira-Spencer Algebra

The Kodaira-Spencer algebra in the geometric context (cf.[KS]) came to existence several
decades ago, we will consider in this chapter its algebraic version and show that such
a version provides R-matrices a graded Lie algebra background. Our main contribution
here is developing a rigorous approach to its construction and providing a second example

of knit product structures from this graded Lie algebra.

5.1 Construction of the Kodaira-Spencer Algebra

Let V be a Lie algebra. We refer to Chapter 3 for the definition of the graded Lie algebra
SP(V) and that of the operator ©. Consider the graded vector space embedding

L2 ALV, V) — SP(V),
YQ) =(0Q,Q).

(5.1)

Lemma 5.1 The image of ¢ is a subalgebra of SP(V).
Proof. For Q; € Alt%(V,V),i = 1,2, we have

[(@le @Q1),(0Q2, QZ)]SP
= ([0Q1,0Q:]NR, (@1, Q2)c + Q2001 — (-1)hkQ,0Q,).

Therefore it only needs to be proven that

O([h, Q2]c + @200, ~ (-1)kQ,0Q,) = [0Q:, 0Q:NR - (5.2)
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We use Lemma 3.5 and Proposition 3.8,

0([Q1,Q2lc + Q2001 — (-1)*%Q,0Q,)
= (-1)2[0Q:,Q2)c + [@1,0Q:]c + 6(Q.0Q1) —- (-1)%%0(Q,0Q,)
= (0Q:2)(0Q)) - 0(Q.0Q:) + (-1)"*6(Q.(0Q2)) —
(—1)%2(0Q1)(0Q2) + O(Q20Q)) — (—1)%0(Q1(0Q:))
= 0Q.0Q, - (-1)"*6Q,0Q;
[0Q1,0Q:]NR O

We can reformulate this lemma as

Theorem 5.2 The graded vector space Alt(V,V) with bracket determined by

(@1, Q2] ks = (@1, Q2] o + Q20Q, — (1) Q,0Q, (5.3)

is a graded Lie algebra, and ¢ of (5.1) is an injective graded Lie algebra homomorphism.
In terms of bracket (5.3), the identity (5.2) is

O[le Q2]KS = [eQIS ®Q2]NR . (5.4)

By (5.3) and the definition of ©, we have

[Qh Q?]KS(XD et ’Xkl +kz)
Y (-17[Qu(Xo ), Qa( X2]

d’esh(kl ,kz)

- Y (1Y Qu[Qu(Xer ), Xoky+1))s Xos)

a€sh(ky,1,k2—1)

+H=1k Y (—1)7Qu([Q2( X ) Xagrpan)s X))

a€sh(ky,1,k ~1)

(5.5)

In the geometric context, formula (5.5) defines the Kodaira-Spencer algebra([{KS], cf.
also [BM]). For this reason we will call the graded Lie algebra in Theorem 5.2 the Kodaira-
Spencer algebra for the Lie algebra V' and denote it by Altgg(V,V).

Consider the isomorphism

AV, V)= AV QV.
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Let Qi = v; @ Xi,? = 1,2. Then we have directly from (5.5),

[vy ® X1, v2 ® Xa)ks
= v A\ v @X1, Xo] + 01 A adk, 02 Q) Xz — adyui A 2 Q) X1
(5.6)
This is another formula for the graded Lie bracket of the Kodaira-Spencer algebra besides

(5.3) and (5.5). We remark the fact that (5.6) defines a graded Lie algebra on Alt(V,V)
can also be proved directly through a calculation with the help of the following two obvious

identities:
adyady ~ adyady = adyy) (5.7)
ady (v /\ v2) = adyv; /\ v + vy /\ad}vg . (5.8)

From (5.5), we especially have
Corollary 5.3 For Q,,Q; € Alt'(V,V), there holds

[@1, Q2] g5( X1, Xa)

= [Qi(X1), Q2(X2)] + [Q2(X1), Qi (X2))]
—Q1([Q2(X1), Xo] + [X1, @2(Xz2)])
—Q:2([Q1(X1), X2) + [ X1, Qi(X2))) -

(5.9)

We now show how the Kodaira-Spencer algebra is related to R-matrices in the sense

of Semenov-Tian-Shansky.
For @ € AltY(V,V) = Hom(V, V), we denote T(Q) € Alt*}(V,V) for

T(Q)= %[Q,Q]KS- (5.10)
Proposition 5.4 The bracket
[X1, Xzl = [@X1, Xo] + [ X1, QX] (5.11)
defines a Lie algebra on V if and only if
oT(@)=0. (5.12)
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In particular, this condition is satisfied when T(Q) = c8 with c a constant real number.

Since

[QXI') X2] + [X17 QX2] = GQ(XMX?) = "QQ(X13X2) )
this proposition is a direct consequence of (5.4).
Note that T'(Q) = 0 and T'(Q) = —& are respectively equivalent to
[QXh QX2] - [QXh XZ] - [XhQXZ] =0
and
[@X1,@X2] - [Q@X1, Xa] — [X1, QX2 + [X1, Xa] = 0.

They are exactly the classical Yang-Baxter equation and the modified classical Yang-
Baxter equation, and their solutions are called R-matrices by Semenov-Tian-Shansky

([STS)).
To end this section, let us prove that the Kodaira-Spencer algebra is also a differential

graded Lie algebra.
Theorem 5.5 For Q; € Alt5(V,V),i = 1,2, we have

D[@1,Q:2)gs = [DQ1, Q2 g5 + (—1)*[Q1, DQ:] kg .- (5.13)

Proof. We use (5.6) and the fact
dady = adyd.

Without loss of generality, we suppose @; = v; @ X.,i =1,2.

D[v, ®X"”2®X2]KS
= D(v; /\ U ®[X1,X2] + (251 /\ ad}lvz ®X2 - ad}zvl A U2 ®X1)
= d(vi /\ v2) @[X1, Xa] + d(vs \ ady,v2) Q) X; — d(ady, v A\ v2) @) X:

= dn /\ (72 ®[X1,X2] + dv, /\ad‘xlvz ®Xz - ad}zdvl /\Uz ®X1
+(_1)k1 (‘01 A dUz ®[X1, Xz] + (21 /\ ad}l d‘Ug ® Xg - ad}zvl A d'vg ®X1)
= [P Q) X1), (2 @) Xa)lgs + (1) (21 Q) X1), D(v2 R) Xa)lks -

This proves (5.13). O
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5.2 A Second Knit Product

The Kodaira-Spencer algebra provides us a second example of knit product structures.
We explore this construction in this section.

Let (P;, Qi) € SP*(V),i = 1,2 and define

[(Ph Ql)’ (PZs QZ)]{KP
= ([P, PINR + ([Q2, Pl — Pi(BQ2)) — (-1)%([Q1, P]c — P2(0Q1)),
[Q1,Q2]Ks + Q2P — (1) Q1 Py),

(5.14)

we have
Theorem 5.6 On the graded vector space Alt(V,V)[1]@ Alt(V,V), the bracket deter-
mined by (5.14) defines a graded Lie algebra structure.

This new graded Lie algebra structure is the knit product of the Nijenhuis-Richardson
algebra and the Kodaira-Spencer algebra, because its restrictions to the first and the
second factors are respectively these algebras.

Proof. Note that

[(PL+0Q1,@Q1), (P2 + ©Q2,Q2)]sp
= ([P +0Q1, P; + OQ:]NR, (@1, Q2] + @2(Pr + ©Q1) — (-1)9RQy (P, + ©Q2))
= ([P, P2]NR + [P1,©Q2NR + [0Q1, P2INR + ©O[Q1, Q2]KsS »

(@1, Q2)Ks + Q2P — (-1)0R2Q, )
= ([Pu PNR + ([P, OQ2NR — ©(Q2P1)) — (1) ([P, ©Q1]NR —

O(Q1P,)) + 0([Q1, Qz)ks + Q2P — (—-1)%Q, Py),

[Q1,Q2lks + Q2P — (1) Q. Py).

Applying (2.12) and Lemma 3.5, we have

[P1, ©QaNR — ©(Q2P1) = [Q2, Pi]c — PA(0Q2)

and

(P2, OQ1INR — ©(Q1P2) = [Q1, P — P2(OQh).-
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Therefore,

(P 4+ OQh, Ch), (P2 + ©Q2,Q:)]lsp

= ([P, PNR + ([Q2, Pilc — Pi(8Q2)) — (-1)"%([Q1, )¢ — P(0Q1)) +
0([Q1, Q2lks + Q2P — (1) Q. Py),
[Q1,Q2lks + Q2P — (-1)2Qu P,).

(5.15)
If we define
i AV, V)] @D Alt(V,V) — SP(V),
i(P,Q)=(P+0Q,Q),
(5.16)
it follows from (5.15),
{(Pr, Q1)s (Poy @)l p
= [{(P1,Q1),i(P2, Q2)]sp -
(5.17)

The theorem is implied in this identity since £ is a graded vector space isomorphism. O
From the proof, it is obvious that ¢ of (5.16) is a graded Lie algebra isomorphism from

the knit product structure of Theorem 5.6 to the semi-direct product structure on SP(V).
By the expression (5.14), we know the derivatively knitted pair of representations

corresponding to this knit product structure are

o 1 Alt(V, V)[1] — End(Alt(V,V)),
«(P)Q = QP

B': Altgs(V, V) — End(Alt(V, V)[1]),
B(Q)P = (adg + I(OQ))P.

(5.18)
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Here,
adgP = [QaP]C'I
NeR)P = P(OQ).

The fact o' is a graded Lie algebra homomorphism is already known in Chapter 3 (cf.
Proposition 3.1.a). We can directly prove that 3’ is also a graded Lie algebra homomor-
phism as follows.

First, we have from the graded Jacobi identity of the cup algebra Alt(V,V),

ad[Qth]C = [a'de ’ asz] .

We also proved (cf. (3.3))

[3(0@1), 3(0Q2)] = H([OQ1, OQaINR) -

Therefore,

[8(@1),5(Q2)]

= [adg, + (OQ)), adg, + F(OQ:)]

= adig,,g,)¢ + S([0Q1,0Q:]NR) + [ada;, H(OQ2)] +
[S(0Q1), adq,]

= ad[Qx.Qle + $(0[Q1, Q2]Kkg) + [adq,, S(OQ2)] +
[S(OQ1), adq,].

In order to prove
B'Q1, Qs = [6(@1),8'(Q2)],

we only need to show
(S(P), adg| = adgp -

However, writing this identity explicitly, we can see that it is equivalent to Proposition
3.1.a.

We remark that formulae analogous to (2.6) can be written down for this knit product
structure.

To end this section, we notice that the knit product structure in Theorem 5.6 enables
us to consider the deformation of Lie algebra V through a pair of operators rather than

just a R-matrix.



Proposition 5.7 Let P € Alt}(V,V),Q € Alt}(V,V). Then
(P, Q),(P,@)p =0
if and only if the following two conditions hold,
(5.7.a) the bracket determined by
[X1, Xa)(p gy = [@X1, X2] + [X1,QX2] — P(X1,X2)

defines a Lie algebra structure on V.

(5.7.b) We have
QX1, Xaolipq) = [@%1,QXa].

We hope this proposition is useful in integrable Hamiltonian system theory.

45



Chapter 6
The Gelfand-Dorfman Algebra

In this chapter we construct the Gelfand-Dorfman algebra and establish its relation the

classical r-matrices and the algebraic Schouten-Nijenhuis algebra.

6.1 Construction of the Gelfand-Dorfman Algebra

In order to construct the Gelfand-Dorfman algebra, we recall that the adjoint represen-
tation of a Lie algebra V' on itself induces representations on all the vector spaces /\1c V,
k=1,2,---. Using the same notation “ad” for all these representations, we have for any
X, Xi eV, Tie \¥V,i=1,2,

adx| adx, - adx,adxl = ad[xhxﬂ, (6.1)

adx(Ty \ T2) = (adxT)) \ T2 + T1 ]\ (adxT2). (6.2)

Consider the graded vector space

AVRV=BNAVvRV).

k>0

Theorem 6.1 The bracket determined by
QX1 . @ Xlgp = T ATQX1, Xo] + Ti \ adx, T2 Q) Xz -
adx,Ti \ . Q) Xi
(6.3)
defines a graded Lie algebra on AV @ V.
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Proof. We only have to consider simple tensors. We have

[T X) X2, T: Q) Xilgp
= T, AT\ @, Xi] + T2 A adx, T: Q) X1 — adx, T: \ T1 Q) X2
= —(-)b (M AT QX1 Xa] + Ti N adx, T Q) X — adx, Ti \ T: Q) X1)
—(~1)** (1, Q) X1, T2 Q) Xa]gD-

This proves the graded anti-commutativity.

The graded Jacobi identity for the bracket (6.3) follows from the Jacobi identity for
the Lie algebra V' and (6.1) and (6.2).0

I was led to the graded Lie algebra in the above theorem when I was studying the

il

Gelfand and Dorfman work on the integrability of Dirac structures ([D]). As we will see
later, the bracket of this graded Lie algebra provides us an expression of the bracket of
the algebraic Schouten-Nijenhuis algebra in terms of alternating mappings. The simplest
form of such an expression, i.e., the bracket of two degree 1 elements of the algebraic
Schouten-Nijenhuis algebra considered as alternating mappings, was first given by Gelfand
and Dorfman. For this reason, we will call this graded Lie algebra the Gelfand-Dorfman
algebra associated with Lie algebra V.

Several observations are ready to be made here.

First,the construction in Theorem 6.1 generalizes easily to A V ® W where W is also a
Lie algebra. In this case, the adjoint representation should be replaced by a representation
of W on V. This observation was pointed out to me by Professor Stasheff.

Second, the Gelfand-Dorfman algebra provides a graded Lie algebra background for
general (not necessarily anti-symmetric) r-matrices ([Drl]). Actually, comparing the equa-
tion defining r-matrices in [Drl] with (6.3), we can see that r-matrices are nothing but
degree 1, bracket-square 0 elements of the Gelfand-Dorfman algebra.

Third, the Kodaira-Spencer algebra and the Gelfand-Dorfman algebra become iden-
tical when Lie algebra V is semisimple. In this case, there is a non-degenerate invariant
bilinear form on V' through which we can identify V and V* and further identify the
adjoint and coadjoint representation of this Lie algebra. This observation is then clear
from (5.6) and (6.3).
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6.2 The Cyclic Subalgebra
Note that
AtV V) = NVRV, k=12,

Therefore, we have a graded vector space isomorphism

AV, V)= AVvQV

with
Alt(V*, V) = @ Ai*(v", V).

k>0

Through this isomorphism we can also think of the Gelfand-Dorfman algebra as defined
on Alt(V*,V). Let us express its graded Lie bracket in terms of this graded vector space

first.

Recall the coadjoint representation of a Lie algebra V. It is given for X;,X; € V,

Y € V™ by
< ad}l%b,Xz >=< Y, [Xz,Xl] > .

Hence, there holds

as operators on V. We can rewrite this as
< ad,\qu,w >=< —Xz,ad}ld) > .

The following lemma generalizes (6.6).
Lemma 6.2 For T € A*V,¢y,+++,9x € V" and X € V, we have

k
<adxT, 91 \--- Ave>==>" < T, Ao Aadzti - A vw)-
=1

Proof. Without loss of generality, we assume

T=X M\ \Xe

Then

k
ade=ZX1/\-~/\adXX,-/\--~Xk.

=1
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By the pairing
<X N AXeon A N\ e >= det(Xi(v)),

we have
<adxT,h [\ - Aou >

= S <X A NadeX A AXut A A >

i=1

k
= Z Z (=1)7 < X1, %0q1) > -+ < adx Xiy o) >< - Xie, Yo() >

i=1 o€,

k
= —Z 2(-1)" <X W) > o0 < Xiyadyx o) > -0 < Xiy Yor) >

1=1 c€Z,

“3 <X A AT A Ao A A >

=1

= -i<Ts¢1/\"'/\ad}¢i/\"'/\¢k>-

=1

This completes the proof. O
Note that

k
Z<Ta¢1/\"'/\ad}1/)i/\“‘/\¢’k>

1=1

k

= Z(—l)“‘ <T,ad}¢.—/\¢1/\~--/\$.-/\---/\¢k>.

i=1

(6.8)
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A direct application of this identity and Lemma 6.2 gives
Theorem 6.3 Let I; € Alts(V*,V),i = 1,2. We have

[IIaI2JGD(d)h"'7wk1+kg)
= Y (m1)° (W), Ia(t52)]

a€sh(ky k3)

- Z (=1)7 I2(ad}, (y_, \Poky +1)s Yos )

oesh(k ,1,kz—1)

+(-—1)k'k’ z (—l)dll(ad;,(‘[,"l)¢‘¢(kg+l)1 d’o’)

oc€sh(ky,1,k—1)

(6.9)

Now, we use this theorem to establish an interesting subalgebra of the Gelfand-
Dorfman algebra Alt(V*,V)= AV @ V. This is our main goal for this section.
Definition 6.4 Let I € Altk(V*,V). I is called cyclic if for all 1y, ==~ r4y € V=,

< ¢19I(¢27" : ,¢k+1) >= (—l)k < I('/}la' ¢ '1wk)7 "r/)k+l > . (6-10)

Since [ is alternating, (6.10) is equivalent to

< ¢I1I(¢2a"'1¢k+l) >
= (—1)‘—1 < wirI(wl,"'od;ia"'a¢k+l) >

(6.11)

for arbitrary t = 1,2,~- -,k + 1.
We denote cAlt*(V*, V) for all the cyclic elements in Alt*(V*, V) and define the graded
vector space
cAlt(V",V) = €D cAlt (v*, V).

k>0
Theorem 6.5 If I, I, are cyclic, so is [I;, L] gp. Therefore, cAlt*(V*,V) is a subalgebra
of Alt(V*,V).
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Proof. The following calculations use extensively (6.6) and the cyclic property of I} and
L.

DG VR ACRD W ACTRY) TR

a€sh(ky ,k2)

= Z (-—l)a < [I1(¢I,¢al)112(¢02)]1 wkl'i'kz-l-l >

o€shy (ki ,k2)

+ 3 (=1 < [Li(a), T, o)), ik 41 >

o€shy(ky ka}

= Z (—1)0 < Il(¢ly ¢01)1 ad;2(¢02)¢k1+k2+1 >
o€shy (ki k2)

_ Z (__l)cr < Iz(lbl, 'nbaz)sad;l(.pa,)wk;-l-kg-i-l >
o€sha(ky k2)

— 3 (-1 <% Diladi g ke o) >
a€shy (k; k2)

Y (1) < Badi g, et Yor > -
o€sha(ky k2)

Z (—l)a < IQ(Gd;t(wcl)wa(kl-i-l)v ¢03)7 wkg+k3+1 >
de’h(kl vl vk2- 1)

= Z (_1)6(_1)’62 < a‘d,;l (vn |¢¢3)¢0(k1+1)7 Iz(¢65?¢k1+kz+l) >
deafll(kl,l,kg—l)

+ > (FIT(=1R < adyy, b1 Lo($os Bk 4k 1) >
o€shg (k1 ,1,k2)

- Z (“1)6(_1)1‘2 <, I?(ad;l (¥,1 )wa(kl +1)» Vo3, wk; +k2+1) >
06"'3("1 )1)k2“1)

=D DI CS V€S VR A TSR Y. SR R
a€shy (ki ,1,kz2—1)

— Y (21D <y, [T, Yl i) T (001)] >

UEth(kl .l'k'."‘l)

- Z (=1)7(=1)" < 91, To(ady, (g, , )Ptk +1): Yos » by 4hy 41) >
o€shs(ky,1,k2—1)

k:
= E (—l)c(—'l) * < 1/’laIl(ad;z(¢,a,lﬁkl+k,+1)¢’a‘(k1+l)a 1/-’01) >
UECh[ (kl vlakz_l}

— Y (=D < ¥, (o), B(Wot, Yy k1)) >

‘Gﬂhz (kl »1 ."2"1)
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- Z (_]')"(—]‘)kz < ¢11I2(ad;l(¢ol)¢a(k1+l)7 d"va:wk]-l-kz-i-l) > .
a€shy(k1,1,kz—1)

Similarly, we have

z (—1) < I(adi,(y_ ) ¥otkat1)s Yo3 )s Phy4ka 41 >
e€sh(kz,1,k ~1)

ST (FUT(R <, Da(0d], g ey sy ) Pt 1)s Bt ) >
o€shy(kz,1,k; 1)

- Z (_]-)‘,(_]-)kl < ¢ls [12(¢c' )1 Il(¢'ﬂ"‘! ¢k1+k2+1)] >

O'E!’Iz (k2llvkl _1)

- Z (-1°(-1)k < Y1, L(ady, (g, Vo (kat1)s Yoo, Ykitkas1) >
o€shg(ka,1,k-1)

By the above three identities, we can evaluate

< [IIQIZ’]GD('bla"'1¢'k1+k3)1¢k;+k;+l >.

Note that,

> =R < o, (e ), Da(dos s Yk tha )] >

o€sha(ky,l,ka~1)

=1k ST (1P (=1)R <, (L0 ), Do, Yk )] >

o€sha(kz,1,k~1)

= (-0 N <, (W), b(¥e)] > -

aesh(kl ,kg)
Counsidering the position of Yk, 4k, +1, We can also show,
Z (—‘1)0 < ¢1,Ig(ad;l(¢,al)¢k1+k;+l9 1/)03) >
o€asha (k) ka)

+ z (=1)°(-1)k < 9, I(ady, g ) Yotk +1)) Vo3 Yk +ha+1) >
deahs(kl,l,kg—l)

+(-1)fk Y (F1T(=D8 < 1, L(ad}, gy i, yuy 1) Ptk 1)s Yt ) >
o€shy (ka,1.ky~1)

= —(-1)fth Z (=1)7 < 1, Lo(ady, (y_ Y Yotk +2), Yor) >
o€sh(ky,1,k2—-1)

and

= Y (1) <, Dady ) Ph ket o) >

o Eshy (k1 ,k2)
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- S (F1T(-1)R < g, Di(adyy gy i)Yol +1)s Yot )
o€shy (ky,1,k2—1)

_(_l)k' ka z (—1)6(_1)"1 < ¥, Il(ad;2(¢c,)¢d(k2+l)y 1/)03711)k1+k2+1) >
o€shy(k2,1,ky~1)

= (—]_)kx-f-k:(_l)k:kn Z (—]_)‘y < ".bhIl(ad;2(¢”1)¢¢(kg+2)7¢os) > .
o€sh(kaz,1,k)—1)

Therefore, we have from (6.9),

< [Ny LlgD (%1, + s Yky ke )y Yy kg 41 >
= (_1)k1+k2 < wlv[IhI'-’]GD(w?’” ' 1¢kl+kz+l) > .

Hence, [I1, ]G is cyclic and the proof is completed. D

We will reveal in next section the exact meaning of the subalgebra in the above theo-

rem.
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6.3 The Schouten-Nijenhuis Algebra

In this section, we show that the subalgebra of cyclic elements of the Gelfand-Dorfman
algebra we established in the last section is isomorphic to the Schouten- Nijenhuis algebra
for the Lie algebra V.

We first show that cAlt(V*,V) and A V[1] are isomorphic as graded vector spaces.
This is archived through explicitly constructing a pair of mutually inverse homomorphisms
between them.

For I € cAlt*(V*, V), let

< Iu,l/h/\ ' "A¢k+1) =< Y1, [(Y2, -+, Yr41) > . (6.12)

The cyclic property of I implies I € /\k"'1 V. Therefore, we have a well-defined graded

vector space homomorphism,
2 cAlt(ve,v) — A\ VL.

For Se A"V, S =X, A Xiwn, let

k41
Sb(lf’h"'ﬂl’k) = Z(_l)i_l < XI A"‘/\X\iA"’AXk.f.l,wl/\"'/\?,/Jk > X.‘.
= (6.13)
Note that
<X1/\"'/\Xk+1,¢1/\"‘/\¢k+1 >
k+1
= S (-0"Xw) <X N AN AXewr)soz -+ \ o >
=1
k+1
= Z( 1)’°+1+'X i(Ye41) < Xi /\ /\X /\ AXk+ls Kbl/\ . '/\llik >
i=1
k+1
= (DY (D Xalen) < XA AN AKX i A A v >
(6.14)

(This is nothing but two different expansions of the determinant det(X;(y;))). Therefore,

we have

<5,¢1/\"'/\¢’k+1 >
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= < 1,5 (%2, Yks1) >
= (_l)k < Sb(d’l""awk)v ‘wk-{v-l > .

(6.15)

This implies 5* € cAlt*(V*,V). Hence we get a second well-defined graded vector space

homomorphism,
L A VI — cAl(V", V).

By (6.12) and (6.15), we get

< Sb)“,zbl/\“‘/\lpkﬂ >
= < ¢1,Sb(¢2s"'7¢k+l) >
= <S,¢1/\-"/\l/)k+1>

and

< ¢1:(In)b(d)2""7¢k+l) >
o <P N\ s >
= <¢11I(¢21"'1d)k+1) >.

These two identities show

(8 = 8,
Yy =1

We have proved
Theorem 6.6 The maps ! and - determine mutually inverse graded vector space iso-
morphisms between cAlt(V*,V) and A V[1].

The following theorem is the main result of this section, which states that under -*
and -* the graded Lie algebra cAlt(V*,V) of Theorem 6.5 is isomorphic to the Schouten-
Nijenhuis algebra.

Theorem 6.7 For I; € cAlt5(V*,V) and S; € /\k‘+1 V,i=1,2, we have

(51, IZII‘GD = [If, Ig]SN’ (6.16)
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[S1, Szlth = [S:, 5';] GD (6.17)

Proof. Since (6.16) and (6.17) are equivalent, we only prove (6.17). Without loss of

generality, we suppose
S1
Sz

Xi A A X,
iA---AYih.

hn

By definition, we have

S = LT XA AKGA A X @ X,
Sy = zj:(-l)f-*vx/\---/\E/\---/\nm@ys-

Applying (6.3), we have

= TEUFXAATA - AXust AG A AGA Aot @K, Y

FTEDHXA - AKA Ao Aadx (B A AG A AVen) @Y,
~Z(DMady (XA AX A AKes) AV A AT A Ao @ X,
= TEDPXAATA Ao A A AT A Al @K Y]
+ T )RR YA A AXA A AA AT A
,7>S
AGA-An®Y; X
+ T )R YIAXA AT A AKX AV A AT A
L,1<s
ALA AV ®Y; _
+ T CUFREGEIAXG A AT A AK A X AV A
J,t > s
AGA AV @Xi .
+ T CUFHXGIAKGA AT AK A Xen AV A
Ht<s

AL A AYon @ X
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By the definition of -* and (2.10), we have

(51, Sl _ )
= (LEDPXGVGIAXA - AXi N AXar AVi A AY; AYign)

= TEDHXA AT Ao A A AT A Ao @K i
+ T UG GIAG A AKAAK A AKX AV A A

78>
A AV ®X, N
+ T EDFRXGGIAXA A A AN AXen AV A A

5,8<1
LA Al ®X, )
+ X (FDFHRGYIAXGA - AXAAXen AT AV A

,s<J
YA AYon @Y. _ X
+ X (FDTHHREDGYIAXA - AXN - AXn AVI A AYGA -

1,8 > ]
YA - AVt @Y.

Exchanging the implicit indices ¢ and s in the 2nd and 3rd terms, j and s in the 4th
and 5th terms of the right hand side of this identity and comparing the result with what
we already calculated for [S7, S3]qp, we have (6.17). O

This theorem embeds the Schouten-Nijenhuis algebra for the Lie algebra V into the
Gelfand-Dorfman algebra. Therefore, it provides us an an expression of the Schouten-
Nijenhuis bracket, which is defined on V[1], in terms of elements in Alt(V*,V) through
the embedding of V[1] into Alt(V*,V). As remarked before, Gelfand and Dorfman were
the first to give such kind of formula. Their result ((GD] and [D]) only involves the degree
1 elements. However, the Schouten-Nijenhuis algebra there is defined in a more general

setting.
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6.4 Drinfeld’s Construction

At the very beginning of Poisson-Lie group and Lie bialgebra theory, Drinfeld ([Drl))
pointed out that Schouten-Nijenhuis algebras can be applied to describe a very important
class of Poisson-Lie groups arising from the r-matrix formalism in the theory of integrable
systems. In our terminology, his observation is the following:

Proposition 6.8 ([Dr1]) Let V be a Lie algebra and r € A* V. We have

adx[r,r]gy =0 XeV
if and only if the bracket on V™ determined by

[d’h 1/“2] = —ad:b(wz)ll)l + ad:l(¢l)¢2 (618)

defines a Lie algebra.

A simple calculation will verify that Lie algebras V and V*(with Lie bracket deter-
mined by (6.18)) constitute a Lie bialgebra ([Drl], see also [Lu]). It is usually called a
coboundary Lie bialgebra.

In this section we want to show that when r in the above proposition is replaced by
an arbitrary homogeneous element of the Schouten-Nijenhuis algebra certain condition
exists so that we have a generalization of this result. The condition will be expressed in
terms of the Nijenhuis-Richardson algebra Alt(V*,V*) of the dual space of V.

For I € AltF(V*,V), let

L(I)(%1, -y Y1)
k+1 _
G s

& [($1 iy k1)

S (—1)7ad5g Yot
o€sh(k~1,1) I($o(1) - ¥a(n—1)) PO (k)

(6.19)
It is routine to check that L(I) € Alt**(V*,V*). Therefore, we have a well-defined

graded vector space homomorphism

L: Alt(V*,V) — Alt(V*, V7)[1).
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Note that under the isomorphism Al{(V*, V)= AV @V, we have

LT X) =T ) adx (6.20)

for a simple tensor T@ X in AV V.
Theorem 6.9 For I; € Altki(V*,V),i = 1,2, we have

(1, Ll gp) = ~(L(L), L(E)] v (6.21)

Proof. Without loss of generality, we suppose
L=T.Q) X i=1,2
By (6.20), we have

L([h, blgp) = LM AT QX1 Xz]+Ti A adx, T: Q) X — adx, i \ T: Q) X1)
= Ty AT N\ edix, xpy + 1 \\ adx, T2 \\ ady, — adx, Ty \ T2 |\ ad, -

Hence,

L([I, Llgp) (%1, s Yky ko t1)

= ) (~1Ti(¥er ) Ta(¥or)adfx, etk +r 41)
o€sh(ky ka,1)

- Z (=1)°Th (%01 ) T2(adx, Yok, +1) Vo3 )adx, Yo (ky +ka+1)
o€sh{ky,1,k2—1,1)

+ Z (—l)aTl(ad},tpa(l), ¢’02)T2(¢aﬂ )afl';(1 ¢C(k1+k2+1)-
o€sh(1,k) -1,k2,1)

(6.22)
Now, let us compute {L(I), L(I2)]NR.

L(L)L(I) (%1, Ok +ha+1)
= Y (R LB L) (%), ber)

acsh(ky +1,kz)

Y (R L) (T(¥e Jad, Yo +1) o)

o€sh(ky,1,k2)

= Z (—l)d(Tz A ad‘xz)(Tl("/’a‘ )ad;(l ¢a(k;+1), ¢d“)

o€sh(ky,1,k2)
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= Y (F1)°(-1)RTi($e ) Te(s2)ady, adk, Yorr+1)
o€sh(ky ,1,k3)

ka+1
Y (CUTa )Y (CUF Ty ady, bege s,
aEah(k, ,l,kg) =2

————

Yok +2)s° " ¢a(k1+n’)a Tty
Yo (ky +kz+1) )Gd}g d’a(kl +i) )
Y. (V) Tu(¥0r ) Ta(¥e2 )ad, ad, Yotk +hs+1)

o€sh(k) kz,1)

+ Z (=1 Th (%o ) T2(ad, Yok, +1), Vo3 )adx, Yo (k) +k2+1)
c€sh(k;,1,k2—1,1)

(6.23)

Similarly, we have

L{L)L(L2) (%1, -+ s ¥ky tka 1)
Y. (FU (0 )Ta(¥er)adk, adi, Yotk 442+1)

dEsh(kz vk :l)

+ Y () (e ) Ti(adx, Yoky1)s o3 )ad, ok +k+1)
o€sh(kz,1,k1—1,1)

Therefore, there holds

~(=1)8R L(L)L(L) (%1, -+, Yiey+ha41)

= - Z (=1)"T1 (e ) T2(02 Jady, ady, Yo(ky +ka+1)
c€sh(ky k2,1)

- Z (=1)"Ti(ad, Yo(1), Vo2 ) T2(¥os )ad, Yo(k, +ka+1)-
o€sh(1,ky —1,kz,1)
(6.24)

Adding (6.23) and (6.24), applying
ad;ﬁad.xz - ad}zad}l = adthle’

and comparing the result with (6.22), we get (6.21).
We need one more result to attain a generalization of Proposition 6.8.
Theorem 6.10 If I € cAltk(V*,V), we have

= <X, LD, ¥e) >=< adx P py N\ N > (6.25)
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Proof. Without loss of generality, we assume

=X1A""AXk+h

then
k+1 . ——
I= 307N AN A Xen @ X,
k+1
L = 3 (075N AXA - A Xen A\ ady..
Hence,

<X, L(I)(¥1,- "y Ykt1) >
k1

= < X,Z(—l)i-l(xl A AX A AXk-H ® ¢'11 e 1¢'k+1) >

1=1
k+1

= <X Z(XIA Aad‘ /\ /\Xk-i-l)(wla "»¢k+1)>
= Z( 1)'+J<xadx @) >< X N AN AXer, 0 Ao NG N N\ s >
Z DX XD < X N AX A AXer ot N AB A At >)

k+1

= =Y <X A AGXKIA A X o A N\ e >

i=1

= - <adX(Xl/\"'/\Xk+l)1¢lA"‘/\¢'k+l >

= =< adxfﬂ,d)l/\'“/\'bkﬂ >.0

Corollary 6.11 If I; € cAltki(V*,V), we have

< X, [L(1), L(L2)| yg >
= adx[I}, IilgN
(6.26)

forany X e V.
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This corollary generalizes the formula [V3, (1.8)] (see also [K-SM] and [LX]) in the
algebraic content. We expect it will be useful.
Proof. It follows from Theorem 6.7, Theorem 6.9 and Theorem 6.10. O
Corollary 6.12 Let I € cAlt*(V*,V), then [L(I), L(I)] yg = 0 if and only if adx[I", '] g5y =
0forall XeV.

Proposition 6.8 is a special case of this corollary.
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Chapter 7

The Generalized
Nijenhuis-Richardson Algebra

In this chapter, we first generalize the Nijenhuis-Richardson algebra to the vector bundle
case, then prove that this generalized Nijenhuis-Richardson algebra is isomorphic to two
other interesting graded Lie algebras associated with a vector bundle. In the last section,
through the introduction of 2n-ary Lie algebroids, we give an example of the application

of these isomorphisms.

7.1 Building the Algebra

We generalize the Nijenhuis-Richardson algebra from the vector space case to the vector
bundle case in this section.

Our development will start from the semi-direct product structure SP(V, W) associ-
ated with an infinite-dimensional vector space V' and an infinite-dimensional Lie algebra
w.

From now on, we will denote [ Jyg as { } and [ }J1,7 as [ ] for simplicity.

Let A be a vector bundle on a smooth manifold M. We consider the vector space
V =T(A) of sections of A and the Lie algebra W =X(M) of vector fields over M.
Definition 7.1 Let (¢,p) € AltFt1(T(A),T(A)) & AltF(D(A),X(M)). (p,p) is called o
Lie-Rinehart pair of homogeneous degree k if we have the following:

(7'1‘3) f01" any f € COD(M)Ja'nd 517' °t 7§k € F(A)1

P(fEhgz’”"fk) = fp(flaf?:"'v&k)
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and

(7.1.b) for any f € C°(M) end &1, -+, k41 € T(A)

(P(f€11£2a"'7§k+1)
= f‘P(é.hEZs vt afk-i-l) - (—l)kp(£2a§3a ter 7£k+l )fé.l'

We denote LR*(A) for the space of all Lie-Rinehart pairs of homogeneous degree k
and formulate the graded vector space

LR(A) = @»>_1LRE(A) (7.1)

(LR™'(A) = I'(A)). It is a subspace of the underlying graded vector space of SP(I'(A),X(M)).
Remark 7.2

(7.2.a) Definition (7.1.a) is equivalent to p € Alt'é.w(M)(F(A),X(M)), t.e., p is C®(M)-
linear. In other words, p is induced from a bundle map from A*A to TM ([GHV]).

(7.2.b) By the alternating property, the condition (7.1.b) can be rewritten as

‘P(éls"'9f§ia""§k+l)
= f‘p(gla'"1§i1"'1§k+1)+(_l)k-Hp(E?'"1éi1"'7‘§k+l)f'§l'

forany:=1,2,--- k+1.

The main result of this section is
Theorem 7.3 LR(A) is a subalgebra of the semidirect product SP(I'(A),X(M)).

We will call this subalgebra LR(A) the generalized Nijenhuis-Richardson algebra of
the vector bundle A since when the vector bundle A degenerates to a vector space, this
graded Lie algebra is just the Nijenhuis-Richardson algebra of the vector space.

Proof. Let (¢4, p:) € LR*(A), i = 1,2. We need to verify two identities,

(S(e1)p2 — (=1) 82 S(2)p1 + [p1, p2])(fE1 €20+ + Ekyka)
= f(s((ipl)pz - (_l)klkgs((p?)pl + [Pl,p2])(€1, 621 e 7€k1+k3)

(7.2)
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and

{e1,02}(f&1 &2, s Eby tka)

= f{¢1:‘P2}(Ela§2a Tty §k1+k2+l)
—~(=1)F1+%2(S(p1)p2 — (1) S(@2)p1 + [1102]) (E2s -+ 1 by ky+1) - &

(7.3)
Let us do (7.2) first.
By (i, pi) € LR%(A), i = 1,2, we have expansions

S(1)p2(FEry €2y 7 5 Ekytka)
fg(‘Pl )p2(€ls '521 R} fkl +k2)

i

-
~

—=08 S (S0l )f - palEns )

o€sh; (k1 +1,k2 —1)

and
S(p2)o1(f€rr€2s -+ s Ekytka)

= fHe2)pr(€1:62, Erytka)

b

P

™

(=R Y (-1 m(En)f - (66

a€shy(k2+1,kr ~1)

[fph p2](f€17§2a e s§k1+k:)
= f[Pl’ PZ](fh 621 et s€k1+k2)

al

”~

TN (-1 ) el Eon)

o €shg(ky k2)

bl

—

”~ ™~

— Z (—1)0p2(£¢2 )f . pl(gly 50‘) .

o€shy (ky ka)

A careful combinatorial analysis shows

a+a
—(—=1)ktkzp + ¥

o
ee

The identity (7.2) follows immediately.
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As for (7.3), we can expand the left hand side into 12 terms,
{e1,02}(fb1, €2y -+ s Eiythat1)

ay
I N
’” ~

= Z (—l)cf(Pz((pl(Eol)ighfoz)

a€sha(ky +1,k2)

a2

s

~

R Y (C (b)) 6

o€sha(k, +1,kz)

—(cER S (1) fer(palbn ), 1, bor)

a€sha(ka+1,ky)

a4

N

—(~h(=1kR S (—1)pi(pa(En),6n)f 6

o€sha(k2+1.k1)

as
—"
”~ ~

+ Y (FV fea(pr(6ir 6o )i bn2)

a€sh (ki +1,k2)

as
A

” ™~

—(-1% Y (1) f - pr(brs o)

ocahy (ky +1,k3)

az

—(-1 Y (—1plen)f - palEr )

aeshl (kl +1,k2)

NG

DR S (1) m(en)m(En)f &

o€shy (kl +1 ,kz)
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D

3 (—1P ferlpa(n ) Er)

o€shy (ka+1,k;)

(-1

aio

S (1 n(En)f - ealbrsbor)
o€shy (kz-!-l,kla)“

S
”~

7~

+(-1)8 (-1

~

S G DI G ) b Y GO § (I (RO PN (SN AN

o€shy (k2+1,k)
leE
'_(_1)k1+k2(_1)k1k2 Z

a€shy (k241,41 )
The following combinations can be checked through a careful count of signs:

(=1) p1(€s3)p2(€nn ) f - €1

a1 + a3 + as + as = f{p1, p2}(€1, 62, - 5 Gk +kat1)
—(=1)**R2a; = S(p1)p2(Ear s ka1 ) f - 1
—(—1)"*Ras = —(=1)"BS(p2)o1 (&2, - s Gy b 1) - &1
—(—1)k‘+k’(as + a12) = [p1,p2)(2, "+ s Eky +ha 1) f - &1

ag +a;; =0

ar+ap=0

This completes the proof of (7.3), therefore that of Theorem 7.4.0
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7.2 The Linear Schouten-Nijenhuis Algebra

In this section, we first embed the geometric Schouten-Nijenhuis algebra (i.e. the Schouten-
Nijenhuis algebra over a manifold, see [MR]) into the Nijenhuis-Richardson algebra of the
space of smooth functions on that manifold. Then, we point out that linear multideriva-
tion fields on the vector bundle A* constitute a subalgebra of the Schouten-Nijenhuis
algebra of the manifold A, which we will call the linear Schouten-Nijenhuis on A*. At
the end, we prove the main theorem: the Nijenhuis-Richardson algebra on A is isomorphic
to this linear Schouten-Nijenhuis algebra.

Let N be a smooth manifold and V = C*°(N) denote the space of smooth functions
on N.
Definition 7.4 For k > 0, S € Alt"(C®(N),C*®(N)) is called a k-derivation field on N
if for any f,g, f2,-**, fx € C°(N) there holds

S(fgvf%"'afk)
= fS(gafZa"'sfk)+gs(f1f23"'1fk)
(7.4)

i.e., S(, fa,#**, fr) is a derivation of C*®(N). We will denote S*¥(N) for the space of all
k-derivation fields on N.

Remark 7.5 The terminology k-derivation field is from [CKMV]. It is well-known that
SY(N) can be identified with X(N)= [(TN) (see [FN1]). The same argument eztends to
the proof of the identification

S¥(N) = T(A*TN), k>1. (7.5)

Elements in ['(A*TN) are usually called k-vector fields.
By the alternating property of S, (7.4) is equivalent to

s(fl""'r i—l’fgvfi+la"‘,fk)
= fs(fla"'1fl'—lvg’ﬁ'+17"°1fk)
+9S(frs- s fiets o fiv1s oo fi)

(7.6)
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for f?gafla" '7fk € Cm(N), 1= 1,2’...,]‘:.
We consider the graded vector space

S(N) = P s*(m) (7.7)

k>0
with S°(N) = C°(N). Note that the Nijenhuis-Richardson algebra Alt(C®(N), C=(N))[1]
on C®(N) is well-defined. We have
Theorem 7.6 S(N)[1] is a subalgebra of the Nijenhuis-Richardson algebra
Al(C*®(N),C>=(N))[1].
Proof. Let S; € S5*1(N), i = 1,2. We need to show {5}, S;} € s th+l(N), i.e.,

{Sla 52}(9’11 fayo e, fk,+k,+1)
= 9{51, Sz}(hv f?a cte 1fk1+kz+l)
+h{51, Sz}(gi f2’ Ty fk|+k2+l)

holds for any h't 9, f’Za Ty fk1+k2+1 € CN(N)
In fact,

{51’32}(gh7f21'"ifk|+kz+l)
= Y (=1)7S:(Si(gh, f)

o€shy (k +1,k2)

+ Y (-1 S(Si(f), b, fr2)

a€shy (ki +1,k2)

—(-18k 3" (=1)7Si(Sa(gh, fr), fr2)

o€shy (kz+1,k; )

_.(—].)k'l¢2 Z (—l)csl(SZ(fdl)’ghafdz)

a€sha(kz+1,k)
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The first term is

&

A
”~ ~

Y (-1)°95x(Si(h, fr), for)

o€shy (ki +1.k2)

b2

+ Z (—=1)°S1(h, f51) - S2(g, fcr’)‘

o€shy (ki +1,k7)

bs
_—
s ™~

+ > (=1)7RS(Si(g, for), fur)

a€shy (k1 +1,kz)

by
>
-~ —~

+ Z (=1)7S1(g, for) - S2(h, fo2) .

o€shy (ky+1,k2)

The second term is

bs
- .
- -

Z (—1)6952(Sl(f0‘)1haf02)

a€shz(k1+1,k2)

be
P -
- )

Y (CUThSSfn)ig fr)

o€shy(k1+1,k2)

The third term is

'
b
1
7 -

—(=DR% " (=1)7gSi(Sa(h, for), f2)

o€shy(ka+1,k;)

b

N

-

(-1 (L1 Sa(h, fr) - Silg fra)

o€shy (ka+1,k1)

by
—(-1fR Y (C1RSSig, for), fir)

o€shy (k2 +1,k;)

by

v

-~

—(=18R S (108(g, f) - Sulhy fir)

o€shy (k2+1.k)
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And the fourth term is
bg

A

™~

(8RS (<17 gSi(Sa(fr), by fir)

o€sha(ka2+1,ky)

bs

-

™~

i(_l)klkz z (—1)"h52(51(fcl)ag, fd’)

o€sha(ka+1,k)

We clearly have

by +bs+ b +b; = g{S1,S:Hh, fa,+, frythps1)
b3+b6+b;;+b:; = h{sl}s2}(gaf2y'”afk1+kz+l)

A combinatorial analysis gives us

bo+b, = 0

The proof of (7.8) is completed.O

Another proof of Theorem 7.6 is given in [CKMV]. The proof here seems to be more
straightforward. Also in [CKMV] (see also [dWL]), the authors explain that with the
identification (7.5), the graded Lie algebra S(NV)[1] is identical to the Schouten-Nijenhuis
algebra of N. Therefore, we can reasonably call S(IV)[1] the Schouten-Nijenhuis algebra
of N.

Now, we consider the special case N = A*, the dual bundle of the vector bundle A.

It is clear that for any € € I'(A), the function [ € C®(A4~),

lfw) =<§w> weA (7.10)

is fiber-linear. In fact, (7.10) identifies fibre-linear functions on A* with I'(A4).
If we denote 7 : A* — M to be the projection of the vector bundle A*, then the

following two identities are obvious,
m(fif2) = ()7 (f2) (7.11)
T!“f . lf = lff (712)
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where 7* is the pull-back map, and f, fi, f2 € C®(M), £ € T'(A).

We are interested in a special kind of multiderivation field on the manifold A*.
Definition 7.7 A k-derivation field S € S*¥(A*) is called linear if for any & ,~~~,& €
['(A), there ezists a unique § € I'(A) such that

Sley -y le,) = le. (7.13)

In other words, the value of a linear k-derivation field on linear functions is a linear
function.

Denote LS*(A*) the space of all linear k-derivation fields on A*, £ > 0 (LS°(A4") =
{le : € € T(A)}). We can define a graded vector space

LS(A") = @k0LS*(A"). (7.14)

It is a subspace of S(A*). We can easily prove that
Proposition 7.8 LS(A")[1] is a subalgebra of S(A%)[1].
We will call LS(A*)[1] the linear Schouten-Nijenhuis algebra of A™.
Remark 7.9 Let (z%) be @ local coordinate system on M and let e,,~~~,e, be a basis
of local sections of A. We denote by (z°,2;) the corresponding coordinate system on A™.
Then
le, = 2k, k=1,2,---,n

Under identification (7.5), the linear multi-derivation field S becomes a linear polyvector
field S. It can be proved that S € T(A*'T A*) is a linear (k + 1)-vector field if and only
tf, locally, it is of the form

- d d
§ = Z SJ 'k+lz'73 A.“Aaz.'k_“

It <o Lipgt

9 9 9
t Y Sheallga g A A

a0 <<Jk

where .S',’1 ings ()5 Sz
applying the local formula for the usual Schouten-Nijenhuis algebra ([V1]).

The central goal of this section is to show that this linear Schouten-Nijenhuis algebra
is isomorphic to the graded Lie algebra LR(A).

We will construct a map J : LS(A*)[1] — LR(A).

z) € C®(M). Proposition 7.8 is clear through this approach by
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Given a linear k-derivation field S € LS**!(A4”), for any &,-*,€x41 € T'(A), by
Definition 7.7, we can define ©(&;,***, éxs1) € T(A) through

S(lfx PR l€h+1) = l¢(fx vebkgn)* (7‘15)

Then ¢ € Altk+'(I'(A), [(A)).
Now we show that S also uniquely defines a p € Alt’é.m(M)(l"(A),X(M)).
Note that for any f € C*(M) and &, -+, &4 € ['(A), there holds

S(lf& 3 l€27 T lfk-u )
= S(ﬂ"flix gy, l€k+x)
= ”‘fs(lfuléz’ Ty lfn-n) + lfxs(".f’ lfzv Tty lﬁh-u )-

In terms of ¢, this can be rewritten as
S(r f, lEz’ Tty lfk-n )lfx
= l‘P(fEI’EL“'vfk-tl) - lfv(Ex &2, \Ehp1)”

(7.16)

From this identity, we immediately have
S(m™folegy -2 lgyy,) € T"CP(M).
Further, for any g € C*(M), &, ,&+1 € ['(A), there holds

S(ﬂ'.fa lyfz1 MR lfk-n)
= S(Tl"f, W‘gl&’ ttty l€k+1 )lfz
+7r"gS(7r'f, 152’ R l$k+| )

(7.17)

Since S(7* f,lge;,- -+ s leyy,) and 72stgS(m*f,ley, -+, lg,,, ) are in 7*C®(M), we have
S(mf, 77, by ey, Yl € m"C2(M).
Because /¢, is a fiber-linear function, we must have
S(mf,m g ey, lgey,) = 0.
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Returning to (7.17), we have

S(W.fa lyf:v R lfk-n)
= ”'g‘s’((ﬂ"fa lfz? Ty lfk-H )

(7.18)
Since S is a (k + 1)-derivation field, we naturally have
S(”.(flfz)s lﬁzv T vl€n+1 )
= 7r"f15'(7r'f2,152, s 7lfk+) + W‘fzS(Tl"‘fl,l&, s ,lek+1).
(7.19)

Identities (7.18) and (7.19) hold for any f,g € C®(M) and &, &+1 € [(A).
Therefore, by the injectivity of 7*, we have a unique p € Alt’éw( m)(L'(A),X(M)) such
that

S(m*f, lf:’ . 'alfk-n)
= —(=1)*n"(p(&2, -+, &41) ).

(7.20)
Further the above (i, p) decided by S is in LR*(A). Actually, (7.16) can be rewritten

in terms of p as

lv(ffl &2, Ekp1)

= lfoiertarmtne) — (—1)5p(E2y ++ &tr) f - &1,

and this is nothing but
@(f61,62, -1 Erit) = feo(€1, 62+ 1 Eker) — (—1)*p(E2, - -+, &k ) f - &1
We define the promised map J by

J : LS(A™)[1] = LR(A)
J(S) = (¢,p)
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(7.21)

The central result of this section is
Theorem 7.10 J is a graded Lie algebra isomorphism.
Proof. If (¢,p) = 0, then we have

S(l€1"°'7lfk+1) =0,
S(Tr'fvlfz"' ' 7l€~+1) =0,
S(ﬂ"f,ﬂ"g,len“ ) ’l€k+1) = 0.

By the third identity, for any A € C*°(M), we have

0 = S(n°f,m"g,lhess -+ leuys)
= S(r"f,n g, mh ey, le, e
+S(m"f, 779, ley, leyy -+ lenya)
= S(m7fimg, 7R e,y gy, )
ie.,
S(n*f,m g, mh,lg,, -, lg,,,) = 0.
Continuing with this approach, we can show

S(n"f,x"g,-) =0,

where “. +.” represents elements of the form l¢ for £ € I'(A), or m*h for h € C=(M).

The value of S € S¥*1(A4") is uniquely determined by its value on l¢, 7" f, £ € T(A),
f € C=(M). Therefore, by (7.15) and (7.20), S must be 0 when (¢, p) = 0. That is, J is
injective.

Given (p,p) € LR¥(A), we define S through
S(ley, legs -, ley) = l‘P(elv"‘-€K+l)
S filegy s lepy,) = —(=1)*7"(p(&2, 7, Eks1) f)
S(ﬂ'-fa n°g, ) = 0,

where in the third identity, “- +-” represents functions of form I¢ for £ € I'(A), or =" f for
f € C®(M). It is easy to show that S € LS**1(4*) and J(S) = (¢, p). Hence, J is also

surjective.
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We are left to prove
J(Sh 52) = [J(Sl)’ J(SZ)]’

ie.,

J{S1, 82} = ({1, 02}, S(21)p2 — (—1)%S(2)p1 + 1, £2)), (7.22)

where S; € LS5+ A*), J(Si) = (i, pi), t = 1,2 and h denotes the action of the Nijenhuis-
Richardson algebra on the LI algebra as defined in the Subsection 3.1.3.

By definition of J, (7.22) is equivalent to

{Sl: 52}(l€| 1" lék,+k,+x)

= l{m w22 HE1 v Exy kg +1)

and

{51, 52}(7r.fa léza Tty l$h1+k2+l )

The identity (7.22)’ follows directly from

Sl'(lfl 37T lfk;-q-l )

= l i=1,2.

wille ol 41 )

—(—D)f 2" ((S(p1)p2 = (=) S(p2)p1 + [p1, pa]) (E2, -

(7.22)

Ty E’Cl +k2+1 )f)

(7.22)"

The proof of (7.22)" is a long computation similar to that used in the proof of Theorem

7.3. We refrain from repeating it again.O
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7.3 The Derivation Algebra

We prove in this section a second isomorphism theorem associated with the generalized
Nijenhuis-Richardson LR(A). Let us begin with some recollections about the algebra
[(A*A*) from Chapter II of [GHV].
The exterior algebra bundle of A* is, by definition, the Whitney sum
A-A- - @kzoAkA-,

where A°A” = M x R is the rank 1 trivial bundle over M, and A*¥A* is the k-th exterior
power of A*.

The following identifications of C*°(M)-modules will be used throughout this section:
L(A*A") = A'(‘;m(M)I"(A') = Alt'(‘;m(M}(P(A), C*=(M)). (7.23)
With these identifications, we have

[(A"A") = @rxol(A*A%) = @kgo(Aléw(M)r‘(A-))
EBkzo(Alt'Ew(M)(r(A)a C=(M))).

(7.24)

There is obviously an exterior algebra structure on ['(A~A").

We will consider the derivation algebra DI'(A*A*) of this exterior algebra. Note that
because of (7.23) any element of DI'(A*A") is uniquely determined by its action on C*(M)
and I['(A").

Given (¢, p) € LR¥(A), define D(¢,p) on f € C*(M) through

D(‘P’P)(f)(fl'y"'afk) =P(§1,"‘ aék)f (7.25)
and for v € I['(4") through

D(e,p)7(1, "+ 1 Eksr)
= (€15 Eert)) + (15 D (1) p(En, -5 iy G V(&)

i>1

(7.26)
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Since p € Alt'é.m(M)(lf‘(A),X(M))1 we have D(p,p)f € T(A*¥A*) by (7.23). It is also
clear from (7.25) that for g € C*=(M),

D(p,p)(fg) = fD(p,p)g + gD(p,p)f.

Further, by Definition (7.1.b), we also have

D(p, p)v(gé1, &2, -+ Ekr)
= (g€, &) — (=1)*p(&2, -, Eks1)g - &)
—1)k Z(—l)i*lgp(fl» T ,éi, oy G )7(&)

i>1
+(=1)*p(&2, -+, Ekg1)g - Y(E1)
= gD(p, p)7(&1s s Eks)-
Hence, D(p,p)y € T(AF+147).

This argument shows that we can extend D(yp,p) to a k-derivation of I'(A*A*). It is
easy to verify that the action of this k-derivation D(y, p) on w € ['(AFA*) is given by

D(‘P’p)w(éla R} €k+l)
Y (1wl ) 02

o€sh(k+1,n-1)

+ Y (=1Y ol Jw(£na).

o€(k.n)
(7.27)
The construction of D(yp, p) above determines a linear map
H:LR(A) —» DI'(A™A")
H(p,p) = D(¢, p)-
(7.28)

We want to show that it is a graded Lie algebra isomorphism.
The injective property of H is clear from (7.25) and (7.26). Given any k-derivation II
of ['(A*A*), we define ¢ and p through

(Hf)(§1"”1§k) =p(€11"'7§k)f’ (725)I

78



Ty (p(8rs -+ k1)) = V(En, s Eear) = (18 D (1) p(Ery o+ &y G J(E0),
= (7.26)'
where f € C®°(M) and v € ['(A*). Since II is a derivation of ['(A*A"), we have
II(fg) = (ILf)g + f(Ig)
and
(ILF)(g6r, -+ &) = g{ILF )y, &),
ie., p(é1, -, &) €EX(M) and

p(g61, -+ &k) = gp(brs- - k)
Therefore, p € Alt'éw(M)(F(A), C>(M)). The formula (7.26)’ satisfies Definition (7.1.b),
hence, (v, p) € LRF(A). 1t is clear that D(¢p,p) = II. This proves the surjective property

of H.
We are left to show that for (¢, p;) € LR¥(A), i = 1,2, there holds

H((¢1,p1), (p2,p2)] = [H(p1, 1), H(p2,p2)],
i.e.,
D({(Pl"f’?}vg((lol )p'l - (—l)k‘kzg(()o‘l)pl + [p11p2])

= [D(¢1,p1), D(p2, p2)}-
(7.29)

It is enough to check only that both sides of (7.29) act equally on f € C*°(M) and
v € T'(A*), respectively. In fact, by (7.25) and (7.27), we have

D(e1,p1)(D(p2,p2) FY &1y -+ 5 Ekytka)
= ) (=1)°(D(p2,p2) f)(@1(s ), €s2)

acah(ky+1,k2—1)

+ 2 (=1Yp1(&n )(D(#2sp2) f)(£2)

o€sh(k ,k2}

a
o

~

= Z (—1)’p2((p1(§,1 )1 Ec’)f‘

o€sh(ky+1,kz~1)
b

+' Z (—l)cpl(fcl)Pz(&:)}.

a€sh(ky kz2)
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Similarly,
D(pz,p2)(D(pr1, P ) )€1y Ery4ka)

a
A

”~

= Z (—1)0P1 (‘P2(§a‘ )7 fa’ )f?

o€sh(kz+1,k1 —1)

bl

A

”~

+ Y (C)mlEn () f

o€sh(ks k)

Note that
a = ?5(901)02(51," '1§k1+k3)f7
ad = S(‘P2)P1(§h" : 1§k|+kz )f’
b~ (—l)k"‘zb' = [Phpzl(fl, oy Ekyka ) S
Therefore,

([D(‘Phpl)v D(‘PZ-; pQ)]f)(El, e ,§k1+kz)
= (3‘((‘01 )p2 - (_l)klkzg(‘lgz)pl + [plvp2])(fla te 7€k1+kz)f-

This is exactly

D({¢1, 02}, S(1)p2 — (=1)*2S(02)p1 + [p1, p2])
= [D(‘Plvpl)? D(‘Ph p2)]f-
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Let v € T'(A4%).

D(p1,p1)(D(p2,p2)7)(€1y -+ 5 Eky 4k 41)
= Y (=1)(D(p2, p2)7)(p1(651 ), Eo2)

o€sh(k) +1,k3)

+ X (=10 )(D(e2, p2)7)(E2)

o€sh(ky k2+1)

ay

e "

= Z (—1)07(@2(“91(601)760'2))

aEah(k; +l,k2)

az
"

-

-8 S~ @r(n))

oc€sh(k+1,k2)

o€sh(ki+1 k)
oy Eatki k) 7 2 Eothy +ha+1)) Y btk +4))

a4

-

+(~1)* Y (=17 (-1 pa(er(En )y Eoiry 42) }
k22 (as)

~ ™~

+ ) (=1l r(pa(En))

o€sh(ky ka+1)

+(—~1)k > (21 (1) pi(€ar )p2(Eaiky 41) } :
as

o€sh(ky k2+1) R k>1
“tty fa(kl +k)s """ €¢7(k1 +ka+1) )7(6’("1 +k) )

Similarly, we have

D(ep2, Pz)(D(‘PlaT)‘/)(fh "oty €k +ha 1)

-
”~ -

= Z (—1)67(‘91(‘P2(§a‘)1 Ea”))

o€sh(ky+1,k; )

b2

g

~

+E—1)*1 . (1) pi(a)r(wa(ba))
a€sh(ka+1,ky }

+(_1)k1 Z (_1)0 2(—1),:-1‘)1(992(66‘)7§a(k3+2)a
(b3)

o€sh(ka+1k ) k>2

s afd(kz-i'k)a Tty &7("1 +k3+1))7(§c(k§+k))
by

> .
”~ ~

+ D (—Um(ln r(er(ba))

a€sh(ka ky+1)

+(~1)k Y (=17 (=1 " p2(ba ) pr1(Eotha 1) }
k51 (bs)

o€sh(kz k +1)

-

T Ed’(k2+k)7 tt Ea(kl +ka+1) )7(§c(kg+k))~
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Note that

ax _(_l)klkzbl 7({‘P11 ‘Pz}(flv""gkl'('kz'l'l)),
az — (—1)k‘k’b4 0,
as — (-1)0kp, = 0.

In order to prove (7.29) for ¥ € ['(A*), we only have to show

as + as — (—l)klkzba - (—l)klkzb5

= (=18 Y (1) N(S(p1)ez — (15 S(p2)p1 + [p1, p2])
k>1

(6]1 T ék? T Ekl +kz+l)’7(€k)-

Checking by terms ~v(&;), ¢ = 1,2,---,k + k; + 1, we have

az = (—1)k‘+k’Z(—l)k_ls‘(‘Pl)Pz(Eh'",ék,"',€k1+k2+1)’7(§k),

k>1
by = (_1)k1+k3 Z(_l)k-ls((ia'-')pl (fla Tty ék, Ty fkl +kz+l)7(6k)v
k>1
as — (—1)%b, = (—1)htk Z(—l)k-l[Pth](fl, v E k) 7(6R).
k21

This finishes the case y € I'(A*) for the proof of (7.31), and hence completes the proof of
the following theorem:

Theorem 7.11 The map of (7.28) is a graded Lie algebra isomorphism.
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7.4 2n-ary Lie Algebroids

At almost the same time, Stasheff and his associates from homotopy theory([SL],[St]),
Hanlon and Wachs from combinatorial algebra((HW]), Gnedbaye from cyclic cohomol-
ogy([Gn]) and Azcédrraga and Bueno from physics([dAPB]) came to be interested in a
specific kind of higher order generalizations of Lie algebras. They brought up this object
along different paths and with different motivations. However, a single identity, called
“generalized Jacobi identity”(see (7.15.b) in [dAPBY]), is the focus for all of them.

When this identity appeared, mathematicians who are familiar with Nijenhuis-Richardson
algebras realized immediately that it can be expressed by Nijenhuis and Richardson’s
graded Lie bracket ([MV]) as a generalization of the usual Jacobi identity.

Definition 7.12 Let V be a vector space. V is a 2n-ary Lie algebra if there is a 2n-ary
bracket
[ ' Vx---xV 2V

2n
satisfying

(7.12.3) [‘Ul, ce ,‘Ugn] = (—1)”[1.),(1), trey v,(g,.)], fOT‘ g e Zgn and V1, " ,VUsn € V.

(7.12.b) > (=1)°[[ve(1)s - - * s Vo(2n))s Vaznt1)s * * * s Vo(an-1)] =0, for
o€sh(2n,2n-1)
V1, Vgno1 € V.
Let us denote
o(v1,y -+, v2) = —{v1,-- -, Van). (7.30)
Then the condition (7.12.a) is equivalent to ¢ € Alt**(V, V), while (7.12.b) is equivalent
to the composition product
pp=0 (7.31)
which is again equivalent to
{p,0} =0. (7.32)
Therefore, 2n-ary Lie algebra structures on a vector space V are defined by degree 2n —1,
bracket-square 0 elements of its Nijenhuis-Richardson algebra.
Remark 7.13 While Definition 7.12 does make sense for odd-ary brackets, we restrict

our attention to this even-ary case. The reason is that we want to use the equivalence
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between (7.12.b) and (7.81) so that we can make a neat ezposition. In the odd-ary case,
this equivalence does not ezist because for ¢ of odd degree (7.82) is always true. For
similar reasons, we will define higher order Lie algebroids and Potisson structures only for
the even case in sequel.

A 2n-ary Lie algebra is obviously a generalization of a Lie algebra. We know a Lie
algebroid is also a generalization of a Lie algebra. Considering these two generalizations,
we have a natural question: What’s the proper object on vector bundles which generalizes
2n-ary Lie algebras on vector spaces? In this section we propose a definition of 2n-ary
Lie algebroid and give a brief discussion about the implications of the results obtained in
the last several sections for this object.

Our proposal is
Definition 7.14 Let A & M be a vector bundle. A 2n-ary Lie algebroid structure on A
consists of (1) a 2n-ary Lie algebra on I'(A) and (2) a bundle map p : A" 'A - TM
such that

(¢) 3 > (=1)7[p(Eaqrys - * + Eazn-1))s P(Ea(an)s = * + Eatan—2))]

o€sh(2n—-1,2n-1)

(_l)ap([fc(l)y T Ea(Zn)]a fa(2n+l)a T fo(«m—z))
ocsh(2n,2n-2)

and

(i) [f€,62, - &an] = fl€1y:++ €2n] — p(€2, - E2n)f - &1, where f € C(M) and
& €l(A), k=1,2,---,4n - 2.

We will call p the anchor map of this 2n-ary Lie algebroid.
Remark 7.15

(7.15.a) When n = 1, 2n-ary Lie algebroids are just the usual Lie algebroids.

(7.15.b) When M = pt, a single point, 2n-ary Lie algebroids degenerate to 2n-ary Lie

algebras.

Many basic constructions for Lie algebroids ([Mal]) and for 2n-ary Lie algebras ([dAIPB))
can be carried out on this higher order Lie algebroid structure.
Let the 2n-ary Lie algebra on I'(A) be defined by ¢ € Alt**(I'(A),['(A)) through
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(7.30), then we can rewrite (i) and (ii) of Definition 7.14 as

(l)’ Z (*1)0[10(60(1)’ R 60(211-—1))1 p(Ea(Zn)a R Ea’(4n-2))]+

o€sh(2n—-1,2n-1)

2 Z (—1)0P((P(£a(1), A Ea(2n)): Ed(2n+l)a o ) = 07

o€sh(2n,2n-2)
("’)’ (P(f€l$€2? Ut 7€2n) = f‘P(El! | 621!) + p(§27 T E’Zn)f * 61-
Since p is a bundle map, as a map in Al¢(I'(A),X(M)), it is C>°(M)-linear. Hence, (ii)’
implies (p,p) € LR**"!(A). We note that {p,»} = 0 and (i)’ are nothing but

[(¢,0), (¢,0)] = 0. (7.33)

Therefore, the following proposition is proved.
Proposition 7.16 A is a 2n-ary Lie algebroid if and only if (p,p) € LR**~'(A) and
[(¢,0), (s p)} = 0.

If we want to specify (¢, p), we will write the 2n-ary Lie algebroid as (4, ¢, p).

This proposition in particular implies
Corollary 7.17 Lie algebroid structures on a vector bundle A correspond bijectively to
degree 1, bracket-square 0 elements of the graded Lie algebra LR(A).

Applying the isomorphism H between LR(A) and DI'(A*A*), Proposition 7.16 also
gives
Proposition 7.18 2n-ary Lie algebroids on A correspond bijectively to (2n—1)-differentials
of the graded Lie algebra I'(A*A®).

The case n =1 of this proposition was proved in [K-SM] and [X].

Suppose the 2n-ary Lie algebroid is defined by (¢, p), then the corresponding (2n — 1)-
differential is D = D(¢, p). By (7.25) and (7.27), we can write the correspondence in this
proposition explicitly as

Df(€17""§2n—l) =p(§1a"'a§2n—l)f, (7.34)
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Dw(&,,- -+, €an—14k)
z (_l)ap(gc(l)a Ty 50(2n-l))w(€c(2n)a Tt 60(2n—1+k))

o€sh(2n—1,k)

- Z (_l)aw([fa(l)a e 7€a(2n)]1£¢7(2n+1)1 v ')’

o€sh(2n,k~-1)

(7.35)

where w € ['(A*A4"), &, e T(A),i=1,---,2n — 1 + k.

The following concept is called a “generalized Poisson structure” in [dAPPB].
Definition 7.19 Let N be a smooth manifold. A 2n-ary Poisson structure on N is a
2n-ary bracket

{ }:C°(N)x--- x C®(N) = C=(N)

o a

2n

satisfying
(7.19.3) {fh Tt sf?n} = (—1)’{f¢(1), Tty fa(2n)}'

(7'19'b) {gh’ f21' o 1f2n} = Q{h, f2» e sf2n} + h{g,fz, ct 1f2n};

and

(7.19.¢) » (=17 {{feq)s s foem}: foans1)s- -} = 0.

o€sh(2n,2n—1)
Let us denote
S(fiy-++y fan) = ={f1,--+, fan}- (7.36)
Then, (7.19.2) and (7.19.b) above are equivalent to S € S?*(N), while (7.19.c) is nothing

but the composition product
S$5§=0

which is further equivalent to
{S,5}=0. (7.37)

Therefore, 2n-ary Poisson structures on a smooth manifold N are defined by degree
(2n — 1), bracket-square 0 elements of the Schouten-Nijenhuis algebra of N.
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A smooth manifold with a 2n-ary Poisson structure on it will be called a 2n-ary
Poisson manifold. In the case discussed above, we will write (V, S) for the 2n-ary Poisson
manifold.

When it comes to vector bundles, such as A*, a 2n-ary Poisson structure is called
linear if S is a linear 2n-derivation field on the vector bundle.

By the isomorphism J between LR(A) and LS(A*)[1], we have
Proposition 7.20 2n-ary Lie algebroid structures on a vector bundle A are equivalent to
linear 2n-ary Poisson structures on its dual bundle A™.

When n = 1, this proposition gives the famous generalized Lie-Poisson construction
of T. Courant and A. Weinstein ([C] and [CDW]).

The equivalence can be given explicitly. If the 2n-ary Lie algebroid on A is defined by
(v, p), then the linear 2n-ary Poisson structure on A* is defined by S = J~!(¢,p). We
have

{r*fileay 5 lean} = 77 (p(&2s -~ - 1 €20 ) f)s (7.38)
{r*f,7"g,---} =0,
where f,g € C®(M), & € I'(A),i = 1,2,--,2n, and in the third identity, “ - .” represents
elements of the form n*h, h € C*°(M) or l¢, £ € T'(A).

The most prominent example of Lie algebroids is probably the cotangent bundle of

{ {lfl 170 lfzn} = l[fl-'"vanI’

a Poisson manifold ([V1]). A similar construction can also be carried out in our higher
order case.

Proposition 7.21 The cotangent bundle of a 2n-ary Poisson manifold is a 2n-ary Lie
algebroid.

We can prove this proposition through a technique called tangent lift ((GU] and {YT]).
The complete lift is a homomorphism from the Schouten-Nijenhuis algebra S(N) to the
linear Schouten-Nijenhuis algebra LS(T'N) for a manifold N. Therefore, 2n-ary Pois-
son structures on N are correspondent to linear 2n-ary Poisson structures on T'N. The
proposition then follows from Proposition 7.20 with A = T*N. Because the concepts and
calculations needed in this proof are all included in [GU]. We will omit the details here.
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Appendix: Glossary of Important Symbols

We list important symbols used in this thesis. The number followed indicates the page

where the symbol’s definition or description is given.

[ e 24 ix 17
[ JFNn 29 le 71
[ e 16 S(N) 69
[ |xep 31 Q) 40
[ Jkp 42 X(M) 4

[ ks 39 X(N) 68
[ et 18 ['(A) 3

[ Ine 16 r(4’) 77
[ Isn 15 ady 46
[ ]sp 21 adq 44
[ ]FN(P) 34 ady 32
AV[1] 15 C>=(M) 4

AVRV 48 C>=(N) 68
AV@RW 47 LR(A) 64
AV@®V 16 LS(A™) 72
AV @W 18 LS(A")[1] 72
ATN 15 SP(V) 22
N A" 77 L(ATA") 77
L 55 SP(V,W) 21
b 54 SP(I'(A),X(M)) 64
a 11,30 DI'(A"A™) 77
o 43 Aly(V, V) 17
8 11,30 Alte(V, V) 30
o 43 Alten(V,V) 30
é 22 Altgs(V,V) 39
0 22 Al(V,V)[1] 16
© 23 Alt(V, W) 17
T 28 Alt(v=,V) 48
7 31 Aly(V=, V=) 58
L 38 Alt(V=, v*)[1] 58
Z 43 cAlt(V*,V) o0
R 11,19 sh(ny, -+, nk) 13
d 33 shi(ny, - -+ ,ng) 13
D 22 J 75
H 78 L 58
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