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ABSTRACT 

The purpose of this thesis is to study the modelüng of hi& hquency financial time series 

when extra information is a d a b l e  from trading activities. 

The first chapter starts with a literstue review on the available econometric models 

that have been proposeci for modelling financial t h e  series, in particular, the re tum se- 

ries. These indude mode19 that assume retwns being drawn kom some time homogeneous 

distributions, and models that take into account the tirne dependency of returns. We con- 

centrate on modela that incorporate exogenous trading information. Since information is 

not practically observable, informational pr&es have to be used, instead. Typically, infor- 

mational proxies are constnicted fiom observed trading variables such as trading volume, 

the number of trades, the number of pice changes, the number of quote changes, and the 

number of executed order imbalance. The goal of this chapter is to identify suitable modeh 

and informational prdes  that would be potmtidy useful for modehg  high hquency 

data. 

Applied research in high eequency financial data has a very short history. Futher- 

more, ualike daily or weekly financial time series, the high hquency 1-minute data studied 

in this thesis has several distinguished fatUres that deserve our attention. Therefore, we 

devote the second chapter to a detaiIed examination of the 1-minute da ta  To facilitate 

the analysis, we select two representative stocks, IBM and INTEL, fiom the New York 

stock exchange, and British Telecom fkom the London Stock Exchange. We h d ,  h m  the 

constructed one-minute data, that neither the retunis series nor the trading variables are 

independently, identically, and normdy distributed. There also exists a large signiscant 

negative first-order autocorrelation in the onô-minute data. Since sigdicant negat ive k t -  

order autocorrelation typically does not exist in any retunis series with fÎequency lower than 

one day, it differentiates high fiequency data that we use hom the lower fiequency data. 

In the foUowing chapters, we will try to mode1 this interésting stylized faict. In addition to 

trading d a b l e s ,  the British Telecom data fkom the London Stock Exchange a h  contain 

extra buy/sd information on every single t r a m d o n .  In the preliminary FLnRlysis, we End 

that different types of buy/sell trades do not arrive independently and could be potentially 

iü 



helpf ui in explRining the returns autocorrelation. 

The third chapter begins the model building of this theais. Since information does not 

amve in equdy spaced intervals, we propose that a mixeci jumpdi&ision process is suitable 

for modelling both the returns dynamics and the information amival. In t h  chapter, we 

detail the rnodeIling, the estimation procedures, m d  the construction of some test statistics. 

The estimation and testing r d t s  of this modd using those three aforementioned data sets 

indiate that the number of trades typically perfonn bet ter than my other trading va..riable 

as the informational prcacy. In order to accommodate the non-homogeneous nature of the 

information variables, we then extend our model by allowing the information arrid inten- 

sity to f o h  a stochastic process. When this doubly stochsstic model is emplayed, we £ind 

that volatility persistence is much reduced compared to what is typically observed in the 

GARCH-type of models. The extended model is also capable of capturing the a r r id  of the 

number of trades. 

Although the models proposed in the third chapter are able to capture the amval of 

the number of trades and pin down the datil i ty persistence, it f& to describe the other 

styiized fact, signiSc811t negative first-order autocorrelation. In the final chapter, we extend 

our original homogeneous mixed jump-difkion model by incorporating the extra buy/sell 

information exkting in the British Telecom data. With this new setup, the significant nega- 

tive first-order autocorrelation is on average reduced by 40%. In addition to explaining the 

autocorrelation, we also use buy/sell signal3 in exploring market agymmetry in a threshold 

autoreregresive (TAR) framework. Specifically, we develop a qualitative threshold model 

with condi tional heteroskedasticity, where both the conditional mean and conditional vari- 

ance are regime-dependent. This model fits hi&-fiequency data better than the benchmark 

GARCH modd It a h  generates smder volatility persiatence. This finding is in accordance 

with the empirical evidence that high GARCH measure of volatility persistence may arise 

as a result of misspecifying &hg structural changes. Furthermore, our model provides 

much better in-sample and out-of-sample prediction on both returns and volatility. 
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One of the long-lasting debates in financial econometrics is whether a sequence of specu- 

lative asset returns are independently, identicdyl and normally distnbuted. Such an issue 

is important at least for the following two reasons. First of all, in many hancial stud- 

ies, economic hypothesea tue tested under the assumption that the daily stock returns are 

independently, identicallyl and normally distributed. Secondly, the distribution of s p d &  

tive price returns has implications for pricing derivative securities, whose pricing formula 

rely heavily on the variance of the underlying returna distribution. It is obvious that any 

departure from the i. i. d. normality assumption may lead to dubious statistical inferences 

and results. Hence, how to best model aaset retunis has always been an important issue in 

financial econometrics. 

The eariiest parametric distributional model for stock returns is proposed by Bachelier 

(1900). By sssuming the aequence of pricea have independent increments with expected 

increment e q u d  to zero, Bachelier constnicts a rsndom walk model of stock price changes. 

According to this model, pnce changes then follow a normal distribution with zero rnean and 



variance proportional to the time dlfference. In other words, they foiiow a standard Brown- 

ian motion. However, empirical evidence suggests that daily stock returns typicdy exhibit 

higher kurtosis and fatter tails than what wouid be expected out of a normal distribution. 

Fùrthrmore, it is well known that, in hancial markets, large price changes tend to bunch 

together. Simila.rly, s m d  price changes tend to be followed by s m d  price changes. This so 

c d e d  volatility-persistence phenomenon is an indication of time dependency of the retrvns 

series. In other words, no matter how uncorrelateci, a sequence of hancial retunis is rarely 

an independent series. Consequently, an independent homoskedastic Gaussian process is 

not adequate for describing finandal asset dpamicx 

Models proposeci by reseatchers in responding to the incapability of the i.i.d. nor- 

mal distribution in fitting stock r e t m  can be b r d y  categorized into two groups. The 

first group contsins models that asrume returna being drawn from some time homoge- 

neous distributions, while the second group contains models that take into account the 

time dependency. Examples of the k t  group include Mandelbrot's (1963) stable distrib 

ution, Praetz's &distribution (1972)' Clark's (1973) log-normal normal distribution, Kon's 

(1984) fmite mixture of normal distributions, and Merton's (1976) mixed j u m p - m o n  

model. This group of models originate fiom the stochastic nature of information arrival, 

and information asymmetry among market participants. Essentidy, they are derived either 

by compoundinp a normal distribution with a variance parameter drawn hom some other 

time-invariant distribution, or by compounding several normal distributions. Although un- 

conditional distributions derived fiom these modela exhibit fatter tails and higher kurtosis 

than those of a normal distribution, they do not take into account the time dependency of 

£hancial time series, and hence are unable to capture the volatiliw-persistence phenomenon. 

Therefore, we will not pursue m y  further discussion on these types of model. We include 

them here for the sake of completeness. 

To capture the serial dependency of stock returns, several candidate modela are avail- 

able. The mixed j r t r l i m o n  model provides a natural fbunework for us to study the 

time dependency of financial time series with exogenous trading information. Imagine that 

we a n  a p p r h a t e  the information arriva1 by some observable trsding activities, the time 

dependency is built into the modd via the dependency of trading activities. 0 t h  available 



models that are designed to capture the t ime dependency of financial time series include 

Engle's (1982) autoregresive conditional heteroskedasticity (ARCH) model, Bollerslev's 

(1986) generalized autoregressive conditional heteroskedastiuty (GARCH) model, Hamil- 

ton's (1989) regirwswitching model, and Tong's (1983) t hreshold model. These models 

enable us to study noniinearîty that e s  in the data. 

In this chapter, we survey these available models for modelling stock retunis. In par- 

ticular, since mark& participants react to informational available to them, it is natural 

to treat equity r e m  as results of the infiux of new information into the market, and 

of the re-evaluation of d t i n g  information. Consequently, we concentrate on models that 

enable us to incorporate the impact of information. However, information ia not practically 

observable, some proies have to be used, insted. To constnict these p rees ,  thae are 

public news releases which contain information available to the general pubüc. There ia 

aLso private information that is ultimatdy reflected in the trading activities. Due to the 

data bquency that we are examining in this thesis, we will focus on reviewing private 

informatiod proxies that are adoptecl in the empirical literature. The caadidates include 

trading volume, the nurnber of trades, average trading volume, the number of quote arriva.Is, 

the nuxnber of price chmges, and the executed order irnbalance. It is well known that the 

operation of hancial markets is far kom that of a W&asian cornpetitive market, and tends 

to be in a sequence of disequilibrium. This is especiaüy true in short t h e  horizons. Hence, 

despite theV imprecise role as informational prmies, trading activities are W y  to contain 

information about the disequilibrium dynamics of asset returns. 

The goal of this chapter is to identify suitable models and informational prcaEies that 

would be potentially useful for modelllig high hquency financial data. W e  staxt surveying 

available returns distribution models in the next section. In Section 1.3, we review trading 

variables that have been p r o p d  as proxies for private information. We provide some 

conduding remarks in the final section. 



Stock returos typically consist of quite a few discontinuities. The miwed-jump dinusion 

model of Merton (1976) is able to capture any abnormal informational shodcs and thus 

display discontinuous sample path. Basicdy, it is a mixture of a continuoua normal com- 

pomding and a Poisson jump process to d o w  instantaneous stock price increese or decrease. 

It exhibits certain martingale properties (see Harrison and Pliska (1981)), and is thus con- 

sistent with the efficient market hypothesis. 

The rnixed jumgdiihision mode1 could be describeci as the foUOOlTing 

Pt 1 
AN@) 

~ ( t )  = In(-) = (a - -2) + o ( ~ ( t )  - ~ ( t  - 1)) + C Qà 
Pt- 1 2 i=l 

where M ( t )  is the Poisson counting process with intensity parameter A; Qà memues the 

jump size and is distributed N b q ,  6); a is the instant sneous conditional expectation; and 

9 is the instantaneous conditional variance; z(t) is the standard Brownian motion. The 

unconditional density function of X(t) could be dculated as 

where p = cr - a2/2, and $(a, b) is the normai density with mean a, and variance b. All 

moments of this unconditional distribution exist. The unconditional distribution of X(t) is 

leptokurtic if A > 0, and is skewed if p~ # O. If the random variable is standardized by set- 

ting p = p~ = O, and d + ~4 = 1, the unconditional distribution of X ( t )  is more peaked 

around the center and exbibits longer tails than a standard normal distribution. To capture 

the serial dependency of stock rettunis, Oldfield, Rogalski and Jarrow (1977) employ the 

mixai jumpdifFusion model and allow for serial correlation between jumps, which implies 

serial correlation between each transaction. Their formulation sheds light on how one couid 

incorporate the informationai variables through the mixed jumpdiffusion model. Indeed, 

the mixed jumpdiffusion model provides a natural hrnework for us to study the tirne de- 

pendency of financial time series with exogenous trading information. Imagine that we can 

a p p r h a t e  the information arriva1 in a nrixed jumpdfhion model by some observable 

trading sctivities, the time dependency is built into the model via the dependency of trad- 

ing activities. Fùrthermore, we can indude buy/sell trading information into the model, 



or formulate the Poisson arrivd intemity parameter by some other stochastic process t hat 

depends on its own history. We s h d  explore these poasibilities in Chapter 3 and Chapter 

4. 

Other available models that are designed to capture the tim4ependency of hancial 

time series indude Engie's (1982) autoregressive conditional heteroskedasticity (ARCH) 

model, BoUerslevYs (1986) generaüzed autoregressive conditional heterosMasticity (GARCH) 

modei, Hamilton's (1989) regime-switching model, and Tong's (1983) threshold model. The 

GARCfi model formulate the m e n t  conditional vaxiance as a Ikiear function of past 

squared innovations and historieal conditional variances. This model can be spedied as 

the following 

This model and its variants are specificaliy designed to capture the commonly observed 

volatility dustering phenornenon of which the persistent level is measured by =,P=l f i  + 
x:=, 7j. They are also capable of describing other observed stylized fscts of hancial data, 

such as fat ta&, leverage effects, mean reversion, market asymmetry,. . ., etc. Therefore, 

this type of model is very popular in hancial modelling.' However, the GARCH-type 

modd has several shortcomings. First of dl, due to its deterministic formulation of the 

conditional variance, a GARCH mode1 is unable to display stochastic volatility which is 

another observed stq~iizeci fact of financial da ta  Secondly, a hi& GARCH measuse of 

volatility persisteme may be due to the failure to t a h  into account of structural shifts 

in the model (Lamoureux and Lastrapes (1990b)). Furthermore, the prediction power of 

a genenc GARCH is very poor when structural changes do Bost (Hamilton and S m 4  

(1994)). Thirdly, the generic GARCH mode1 does not consider market asymmetry. 

Tirne series models with nonlinearity include a very broad class of m d e h  which could 

IFor detail reviews of theae typa of modei and their applications in financial analyses, gee Bera 

and Higgbs (2995), BoUersIev, Chou and Kroner (1992), Bolldev, En& end Nelsan (1994) and 

Diebold and Lopez (1995). 



be estimateci either psrametncally or non-parametncdy. Tong (1990) and TeraMrta. 

Tjstheim, and Granger (19941, both provide a comprehensive coverage of the most populsr 

models in this class. Among the numerous parametric modela, the regime-switching (Ra) 

model of Hamilton (1989) has received extensive attention in the econometric iiterature. 

By assuming the variable of interest, Xt, fol lm an AR(1) process, we c m  write down a 

simple regimeswitching model as follows: 

where {at ) is a Markov chah which is irreducible and aperiodic and has a finite state space 

consisting of k states (regimes), si,. . . , sk { E ~ }  is a sequence of 2.i.d. random variables with 

zero mean and constant variance 9. To describe the transition between regimes, we need 

a transition probability mat& P(pij), where pu = P(at = sj  1 at-1 = si), i, j = 1, . . . , k. 

This type of model has the admatage of dowing the interaction between the data and the 

M s k o v  chain to endogenously determine the state of the world. It has been applied suc- 

cesshilly to determine structural breaka in long horizons, such as applications in estimating 

business cycles ( H d t o n  (1989), Durland and McCurdy (1994), Filardo (1994, 1998)), in 

fitting weekly and monthly Treasury bill excess returns (Cai (l994), Gray (1 996)), and ia 

fitting weekly stock retunis (Hsmilton and Susmel (1994)). However, a clear-cut major 

structural break is not likely to happen in a shorter horizon such as an intra-day period. 

This renders the application of the R-S model to intraday analysis problematic. Further- 

more, the estimation of the R-S type of model is usually computationally intensive and is 

quite sensitive to the specifîcation of the model, especially the specification of the transition 

probability function of the Mukov process. 

Threshold autoregressiive (TAR) models of Tong (1983) provide an alternative in the 

parametric dass of nonlinear models. A time series Xt is a TAR model if it haa the following 

fundional forrn 

where Lr form a mutudy exclusive partition of the real line in the sense that US, L, = R, 

and Li n Lj = q5, if i # j ;  p is the AR order; 0 is the decision d e  variable; d is the delay 

parameter; k is the threshold parameter; and {e:) is a sequence of i .F  d random vsriables 



with zero me= and variance 0:. {E: )  and (4) axe independent whenever i # j. This type of 

model exogenously sorts returns into different regirnes according to some threshold, usudy 

a function of the lagged dependent Mnable = Xt-d) and is thus termed self-exciting 

TAR (SETAR) model. Estimating TAR models are relatively easier than estirnating the 

R-S model. TAR models are also capable of capturing time-irreversibiiity, asymmetric Limit 

cycle and jump phenornenon. The major criticism of TAR rnodels cornes £rom the fact that 

reseatchers rarely know which state of the world they are currently in, which hinders the 

application of the TAR-type of model in ecoaomic time series. However, we thirik that the 

criticism of the TAR model is not always justified, especidy when we have scogenously 

o b-ble information t O det ermine the threshold. 

To sum up, extensions of the mixed-jump diffusion model and the TAR model both 

allow us to easily accommodate trading information into the model and are capable of 

capturing time dependency, market asymmetry, and nonlinearity exiating in fina,ntid data. 

In Chapter 3 and Chapter 4, we shall extend these two models and apply them in studying 

hi& hquency stock return data. 

Informationai proxiea adopted in the literature can be broadly cstegorized into two types, 

public information and private information. Examples of public information are scheduled 

macroeconomic news rd-, and amouncements of survey statistics. The impact of these 

publicly r e l d  news on interest rata, foreign exchange rates, foreign exchange rate fu- 

hrres, and stock retums has been exsmined by DeGennaro and Shrievea (1997), Ederington 

and Lee (1993), Goodhart et al. (1993), Hakko and Pearce (1985), Harvey aad Huang 

(Iggl), and Payne (1997). This literature shows that inbaday ~la t i l i ty  is significantly 

reduced when announcement efl'ects of public information are included in the e~timation.~ 

Unlike public information, private information by its very nature is not directly obse.rv- 

able. However, we do know that private information invariably affects trading decisions. 

2See Payne (1997) h r  a suryey of a list of public information variablea examine4 in this literature, 

and the 8880CiBted announcement e&ts of th- variablea. 



The observed trading activities are therefore the most suitable and popuiar prcxies for pi-  

vate information, see Admati and Pfleiderer (1988), Glosten and Milgrom (1985), and Kyle 

(1985) for theoretical arguments.3 Empirically, there is also a long history of using trading 

variables to explain retunis/volatility d y n d c s  at lower hequencies. The candidates in- 

dude, trading volume in Clark (l9?'3), the number of trades, and awrage trading volume in 

Jones, Kad, and Lipson (1994), the number of quote arrivals in BoUerslev and Domowitz 

(1993), and the executed order imbalance in Ladre and Sayers, (1993). In this thesis, we 

will only examine private information. Our reaaons are twofold. First of ail, public news 

announcements do not arrive at the same &quency as the hi& kequency transactional 

data we study in this thesis. Secondly, trading activities ultimately incorporate both public 

and private information. 

Trading volume is, by far, the most often used informational proxy in the empiricai 

study of stock returns. Ever since Clark (WEI), trading volume has been used to test the 

mixture of distributions hypothesis, see Harris (1987) ; to test the price-volume relationship, 

see Gallant et d. (1992) ;' and to examine stock returns volatility, see Andersen (1996) and 

Lamoureux et d (1994). 

However, in a recent paper, Jones, Kaul, and L i p n  (1994) show that trading volume 

has no idormational content beyond that contained in the number of trades. The use of 

number of trades 89 the idormational pruxy dates back to Osborne (l959), who rnodSed 

Bachelier's random walk mode1 by incorporating a diffusion process into the evolution of 

stock pices, with an instantaneous variance dependent on the nurnber of kades sampled 

from a UILiform distribution. The uniform distribution assumption on the number of trades 

is however dubious, because transaction time intervals are certaidy not uniformly distrib 

uted, see Oldfwld et ai. (1977). Recently, several researchem have revitalized the use of 

the number of trades and have given empirical support for LIS& them as alternative in- 

formational pdes .5  Marsh and Rock (1986) find that the net number of trades (number 

of seller-initiated minus buyer-initiated trades) explains ss much as does the net volume. 

3For ercample, market makera with ssymmetric information will adjust th& inventorka before 

the news is e n n o u n d  

4See 8180 Karpoff (1987) for s nurvey of previous studies on the price - trading volume dationsbip. 
5This is probably due to the svaüability of data As pointed out by Joncs, Ka& and Lipmn 



Geman and Ané (1996) demonstrate that the moments of the time change needed to induce 

retums normality match the moments of the number of trades for the S&P 500 one minute 

renims. Maàan and Chmg (1997) propose a variance gamma stock price process and con- 

6rm that normaiity is attained in the trade-based measure of tirne. AU of this new evidence 

indicates that the number of trades could be a better instrument for the nonquantifiable 

information than trading volume. 

In addition to trading volume and number of trades, average trading volume (trading 

volume divided by the nurnber of trades) is slso used in the empirid analysis of stock 

retums. Jones, Kaul, and Lipson (1994) actualiy use average trading volume, instead of 

total trading volume, in th& cornparison of the explanatory power of difFerent information 

prhes .  Their justzcation cornes £rom the observation that both the number of trades and 

the average trading volume are highly correlated with the total trading wlume; however, 

there is little correlation between the number of trades and average trading volume. In 

other words, the number of trades and the average trading wlume seem to contain different 

information. 

Quote changes are the number of times the valid market quoted prices changeci thtough- 

out the day for a certain &ty. Although Bollerslev and Domowitz (1993) find that mar- 

ket activity, as measured by the number of quote arrivals, has no statistically significant 

e t  on returns volatility, Smaby (1995) and Takezawa (1995) suggest that the number of 

quotes ia pcaitively and signiSca.ntly related to the intraday volatility of foreign exchange 

rat es in th& recent studies. 

An quivalent measure of the number of quote changes is the number of price changes for 

the trade data set. Again, this variable haa not often been used as a p r w  for information 

amival, possibly due its uuavailability. Both the number of quote changes and the number 

of price chmges seem to be intuitively g w d  instruments for the discrete price-jumps often 

observed in equity markets. In addition to the aforementioned information variables, Locke 

snd Say- (1993) have a h  examineci the impact of executed order imbdance in reducing 

(19941, dthough trading volume for the NASDAQ securities been amilable for many years, 

historid data on the number of ttansactions were not avaüable until recent years. 



Ali of these variables are observable and have empiricd implication of a random rate of 

flow of information. In this thesis, we only examine the performance of three information 

variables, nameiy trading volume and the number trades, and the number of pnce changes. 

In this chapter, we survey available models for modeiling the retunis series and concentrate 

on those models that enable us to incorporate information variables and to examine their 

Usefulnes in arplaining the returns dynarnics. It appears that the mixed jumpdiffusion 

model provides a naturd fimework for us to study the time dependency of financial time 

serie3 with exogenous trading information. The threshold autoregressive (TAR) mode1 pro- 

vides an alternative to study the nonlinearity d i n g  in financial time series. It is capable 

of capturing structural changa and it is easier to irnplement than the regime-switchhg 

models. We shall rely on the mixed jumpàifFuaion modd and the TAR model in our mod- 

W. 

Ftegmding the information contained in the trading activities, trading volume, the num- 

ber tradea, and the number of price changes seem to be the mœt popular proxies for private 

information. These are the three informational variables that we exarnine in this t hesis. 



Applied research employing high fiequency data has been an attractive and challenging 

topic in the area of Finmual Econometrics since the ever-increasing availsbiity of good 

quality tick-by-tick data. This can be seen by the amount of reaeazch dewted to the two in- 

ternational seminara on high-hquency data organized by the Olsen and Associates. It has a 

rather short history, although related earlier papers e t ,  see, for example, Roll (1984) . Due 
to the availability of data sets, researchers are able to uncover more interesting features of 

asset dynamics at intraday fiequency in recent years. Goodhart and O'Hara (1997) review a 

large Literature which contains the availability of databases, statistical properties, problems 

and difl[iculties sssoQated with high hquency data Unlike daily or weekly fimacial tirne 

series, the high frequency data studied in this thesia has several distinguished features that 

deserve our attention. Therefore, we devote thia chapter to the detail construction of the 

1-minute data, and examine their statistical properties. 

To facilitate the mal*, we select two representative stocks, IBM and INTEL, from 

the New York stock exchange, and British Telecom h m  the London Stock Exchange. We 

h d  that there d t s  a large sigdicant negative h r d e r  autocorrelation in the one- 

minute data. Since signi£icant negative first-order autocorrelation typically does not exiat 

in any returns series with fiequency lower than one day, it differentiates high frequency 

data that we use Eom the lower £requenG data In the foIIowing chapters, we will try to 

mode1 this stylized fact. In addition to trading variables, the British Telecom data from the 



London Stock Exchmge also contain extra buy/sell information on every single transaction. 

Based on a preliminary analysis, we b d  chat different types of buy/sell trade do not a.rrive 

independently and could be potentidy usefui in modelling the returns series. 

Data used in this paper corne from two sources. The US data are extracted fkom the Jan- 

uar-y 1994 Thde and Quote (TAQ) database, and the British data are extracted fiom the 

August 1994 London Stock Exchange Tramaction and Quotation Database (LSETQD) . ' 

Arnong the numerous sto& in TAQ, we only choose two hquently t rded  stocks, 

namely IBM and I l \ c i .  IBM has been employed in several intrsday trading analyses, for 

example Engle (1996) and Engle and Russe11 (1994). INTEL had the highest total trading 

volume among ail available stocks. In January 1994, there were 21 trading days, which 

are treated separately in the following study. Only those transactions that occumd be- 

tween 9:30 a.m. to 4:00 p.m. are extracted, since the s(chmges where IBM and INTEL 

were mostly traded, NYSE and NASDAQ respectively, were open during that penod.2 We 

ended up with 13,095 observationa of IBM stock traded on NYSE, and 72,831 observations 

of INTEI; traded on NSADAQ. Variables recorded for each. observation indude: a time 

stamp, a traded price and the associateci trading volume (shares). 

British Telecom (BT) is one of the major LSE securities that constitutes the FTSE 100 

index. The data set inchdes trade-by-trade information of BT kom 8:30a.m. to 4:30 p.m., 

during the period of August 1994. It contains 22 trading dates, and 18,116 otiservations. 

In addition to the Spes of information contained in the US data, the ISETQD data set 

also contains buyer's snd seller's identifiers being one of the following: market mskers (M), 

inter-deder brokers O), exchange members who are not registered aa market m&rs (P), 

'The TAQ database is producd monthiy by New York Stock &change (NYSE). This database 

conteins v i r t d y  every trade and every quote of every stock traded on major A k c a n  stock 

ex:-, like NYSE, AMEX, NASDAQ ,..., etc. 

*Although, th- m some t r d o n s  that occurred before 9:30 am. and some occurred after 

4:00 p.m., the perceatage of these acceptions are quite amail- Therefore, we decided to delete these 



brokers (A), and direct customm (x) .~  Because some of the pnces may simply reflect large 

measurement errors, we have filterd out trades with anomalous pnces using the Eollowing 

d e :  any trades with pricea that deviate fiom the adjacent price by 7 pence, roughly 4.5 

times the average bid-ask spread, were deleted. After applying this filter, we ended up with 

18,078 ob~ervations.~ In this subset , we categorize trade types into the following buyer-seller 

combinat ions: 

1. MM: inter market maken trades; 

2. MI & IM: trades between ma.rket makers and inter-dealer brokers; 

3. MP & PM: trades between market m h  and non-market maker exchange members; 

4. MA & AM: trades between market makem and brokers; 

5. MN & NM: trades between market makm and direct customers. 

where for each XY combination, X, Y E {M,  1, P, A, N ) ,  X denotes the buyer, and Y d e  

notes the seller. For example, MA refers to the case where a market maker buys shares 

eom a broker. 

Since the function of inter-dealer brokers is just to facilitate anonymous trades between 

market maloers, a pair of MI and IM trades should actualiy be treated as one MM trade. 

Ot herwise, we will doublscount the fiequencies and quantities of transactions. Af t er con- 

verting 467 MI & IM trades to 216 MM trades, o u  sample size is reduced to 17,827.~ Table 

2.1 presents the kequencies for the various types of trades and the 895ociated average trad- 

ing quantity and value. We show, in Table 2.2, that about 95% of the trades came &om 

b r o h  and direct customers dealing with market &, we refer to these as  extemal 

t d e a .  The rest of the trades are defineci as internal trrrdes. On average, the quantity and 

31nter-dealer brokers exiat to fRl'ilitate amnymous trading bet;ween market rdœm. This help 

market makera to unwind their ex- in.tory,  eapecislly when they are hit by trades with large 

volume. See Hsnach (1997) for s good description of the market structure of the LSE. See &O Board 

and SutciBk (1995) for the impact of the market structure. 
%ince there are only two obaervationa that invoive t r d o n a  between two brokers, we deleted 

them £rom the reet of the analyak as well. 

5See Appendix A for a detailed d d p t i o n  of the conversion scheme that we use. 



value for the externa1 trades axe much smder than those of internal trades. 

Table 2.1: Distribution of 'Ikade Tvoes 

1 

PM 1 36 1 42697 1 16315273 
M M  Inter-tMsrlQt iMsloer hades; 

MA: B r o h  SELL to Market ~Mekera; 
A M N :  Customers SELL to ~Marbt Makers; 
LU: Brokers BUY from Market Makers; 
NM: Customers BUY £rom Marlœt ,MaEQm; 

MP :Non-MM Exchange Member SELL to ,Market ItlIaker; 
PM : Non-MM Exchange Member BUY £rom -Market ,W. 

- - U r - -  

Types 
MM 
MA 

To faditate our d y s i s  in fixed time intemh, we sample these tick-by-tick data every 

Table 2.2: Internal m. Externa1 Trades 

minute. Our sampling procedure, sdopted by Locke and Sayers (1993, p. l7), is described 

Frequency 
438 

13472 

Internal 
Exterd  

1. Select the first recorded trade as  the observation for e d  minute. 

2. Retain the previous trade information for those following minutes with no trades. 

Quanti ty 
138493 

859 

internai trdee: MM, MP, Phi; 
Ejaernai truies: MA, AM MN, NM. 

Frequency 
488 

17339 

This yields roughly 390 obse~ltions per day for IBM and INTEL, and roughly 490 for BT. 

Value 
53001357 
326426 

While sampling the l-minute data, not only have we extracteci the price series, we have 

Quantity 
129793 
4639 

also caldated total trading volume (TVA), total number of trades (N) , and total number 

Value 
49663129 
1772007 

of price changea (NPC) for each one-minute intend. 



We first examine the retunis processes. For each stock and each day, we calculate various 

moments and test statistics of the retunis data, these are reported in Tables 2.5, 2.6, and 

2.7. The stock return concept used in this papa  is the one-minute log-return, dehed as the 

difference of the logarithm prices of two consecutive minutes. By ex- these tables, 

we notice that most retum processes are higldy kurtotic and non-normdy distributed. We 

compute the B e r s  Jarque normality test statistics, which is asymptotically distributed as 

X2(2). Thia test js rejected in most cases for IBM and BT, and is rejected in every case 

for INTEL. A~sQ, mcat retunis processe3 are d d y  not i.i.d., judging from the BDS test 

statistics proposeci by Brock, Dechert and Schc?inkman (1986). Another ssüent feature of 

the retunis series is that mast of them have signiscant large negative fmt-order autocor- 

relation, as repoded in Table 2.3. On average, the first-order autocorrelation is -0.484 for 

INTEL, -0.269 for IBM, and -0.428 for BT. Summaq statistics of trading hequency are 

reported in Table 2.4. We do this to see if autocorrelation in the data is caused by non- 

synchronicity, see Lo and McKiniay (1990). We note, fkom Table 2.4, that INTEL has the 

lowest rate of n-trades whilst having the largest correlation as reported earlier. Therefore, 

Lo and McKiday's nonsynchronous trading hypothesis does not seem to be able to explain 

the obsemed sigrifkant autocorrelation. 

We provide summary statistics of the three trading variables in Tables 2.8 to 2.14. We 

ob- that d three trading variables are positively skewed, highly kurtotic, and non- 

normal. Similu to return procenses, we reject that these trading variables are i.i.d. - 
distributed in most cases. Both IBM and BT have smaller turnover rates than INTEL, and 

s h  a very s imhr  distribution. 

2.4 A PRELIMINARY ANALYSIS ON THE BUY/SELL PAT- 

TERNS 

In this sedion, we d y s e  the buy/sell pattern of the BT data Since market & in 

the UK are allowed to delay reports of large truies (above 3 x Normal Market Size) for up 



Table 2.3: First Lag A 
lIBM Date 

01/03/94 
01/04/94 
01/05/94 
01/06/94 
O 1/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 

Average 

Date 
08/01/94 
08/02/94 
08/03/94 
08/04/94 
08/05/94 
08/08/94 
08/09/94 
08/10/94 
08/11/94 
O8/ 12/94 
08/15/94 
08/16/94 
08/17/94 
08/18/94 
08/19/94 
08/22/94 
08/23/94 
08/24/94 
08/25/94 
08/26/94 
08/30/94 
08/31/94 

to 90 minutes to o&t their inventory risk! we suspect that very little information would 

be contained in the interna1 trades (MM, MP, and PM) and decide to ~cclude those trades 

fkom the rest of the adysis. For the rest of the trsnsactioos (MN, NM, MA, and AM), 

we constnict m w a y  contuigency tables to help us understand the information contained 

in this extra variable. States üsted dong the first column refer to what happens in period 

t, while thare listeci along the £Ùst row refez to what happens in period t + 1. Table 

2.15 describes the observeà Gcequencies of difkrent types of transitions. The transitional 

probabilitiea axe preaented in Table 2.16. Since we are interesteci in whether diffaent types 

of transactions arrive independently, we w e m c t  expected 811fival frequenciea in Table 2.17 

under the essumption that different types of trades occur independently. To examine this 

null hypothesis, we calculate the contribution of each c d  and test the hypothesia with a 

%ee Board and S u t a  (1995). 



2 statistics in Table 2.18. The nul1 hypothesis is clearly rejected. We next reduce the 

types of t r h  to buyer-initiated trades (by aggregating NM and AM) and seller-initiateci 

trades (by aggregating MN and MA), and report the reaults in Tables 2.19, 2.20, 2.21, and 

2.22. Under this new categorization, we still reject the independence hypothesis. The above 

results indicate that buy/sell transitions do contain information. 

Table 2.4: Summary Statistics of the Trading Frequency 

We devote this chapter to a detded examination of the 1-minute data, and study their 

statistid properties. We h d ,  £rom our constructecl one-minute data, that neither the 

returns series nor the trading variables are independently, identically, and normdy distrib- 

uted. Furthemore, t h e  also a large sipificant negative firse-order autocorrelation 

in the one-minute data Since significant negative firseorder autocorrelation typically does 

not exkt in any retum series with kequency lower than one day, it differentiatea high 

frequency data that we use 5om the lower huency  data. In the following chapters, we 

will try to modei this interesting stylized fact. In addition to trading variables, the British 

Telecom data £rom the London Stock Exchange also contain extra buy/sell information on 

every single transaction. In the preliminsry anal*, we find that difFerent types of buy/sell 

tradea do not arrive independently and could be potentialiy helpful in explaining the returns 

autocorrelation. 

Minimum 
ist Quartile 
Median 
Mean 
3rd Q u d e  
Maximum 
No ?kade (%) 

IBM 
0.000 
0.000 
1.000 
1.596 
2.000 
14.000 
28.32 

INTEL, 
0.000 
3.000 
6.000 
8.689 
10.000 

170.000 
1.98 

BT 
0.000 
1.000 
1.000 
1.609 
2.000 
18.000 
22.93 



Date 
01/03/94 
01/04/94 
01/05/94 
01/06/94 
0 1/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 

N : N u n  

Table 2.5: Demiptive Statistio, of Log-Returns (INTEL) 
N Mean Variance K3 K4 BJ BDS 
389 -4.1632E005 8.67993-006 -0.074 0.261 1.5 

BJ : Bera-Jarqua N d @  ' k t  Statistica - 3 ( 2 )  with 5% critical value = 5.99. 
BDS = Brock-Dech- - N(0,l)-, Embedding Dimenaion = 3, 
Epdon = Standard DBvisttion/Spread 



Date 
01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
0 1/ 13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
O 1/27/94 
01/28/94 
01/31/94 
N : Num 

Table 2.6: Descriptive Statistics of Log-Returns (IBM) 
N Mean Variance K3 K4 BJ BDS 
388 3.37643-005 1.322iE006 0.229 2.210 82.4 

r of Obeervatiox~; K3 : (2oef6cient of Sloewneas; K4 : Coefficient of Kurtosis; 
BJ : Bere-Jarque Normality Test Statistica - X2(2) with 5% critical value = 5.99. 
BDS = Brock-Dechert-Schainlmuui .I N(0, l)w, Embedding Dimenaion = 3, 
Epsilon = Standard Deviation/Spread 



Date 
08/01/94 
08/02/94 
08/03/94 
08/04/94 
08/05/94 
08/08/94 
08/09/94 
08/10/94 
08/11/94 
08/12/94 
08/15/94 
08/16/94 
08/17/94 
08/18/94 
08/19/94 
08/22/94 
08/23/94 
08/24/94 
08/25/94 
08/26/94 
08/30/94 
08/31/94 
N : Num 

Table 2.7: Descriptive Statistics of Log-Retunis (BT) 
N Mean Variance K3 K4 BJ BDS 

z of Observations; K3 : CoeBcient of Skewnaa; K4 : Coacient of Kurtoeis; 
BJ : BeraJarque Normality Test Statiatica - 2 ( 2 )  with 5% critical value = 5.99. 
BDS = Bmclr-Dechert-SchF?inlrmAn - N(O,l)uy, Embedding Dimension = 3, 
Epsilon = Standard Deviation/Spread 



Table 2.8: Descriptive Statistics of the Total 'Pading Volume (INTEL) 
1 N Mean Variance K3 K4 BJ BDS Date 

01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
O 1/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 

N : N u ~ x i  
BJ : BereJarque Normaüty 'Ièst Statiatica - x2(2) with 5% critical d u e  = 5.99. 
BDS = Brock-Dechert-Schw - N(0, l)isy, Embedding Dimension = 3, 
E@on = Standard Deviation/Spread 



Date 
01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
O1/10/94 
01/11/94 
01/12/94 
01/ 13/94 
011 14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 

* N : Number of Observstions; K3 : CdEcient of Skenmeee; K4 : Coefficient of Kurtosis; 
BJ : Bera-Jarque NormaIity 'ht Sta t i s th  - J(2)  with 5% criticai value = 5.99. 
BDS = Brode-DechertiScheirdamm - N(O,l)uy, Embedding Dimension = 3, 
Epeilon = Stsndard Deviation/Spread 

Table 2.9: Desaiptive S tatistics of the Total 'Itading Volume (IBM) 

- N Mean Variance K3 K4 BJ BDS - 



Table 2.10: Descriptive Statistica of the Number of Trades (INTEL) 
Date 

01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 

- 
N Meaa Variance K3 K4 BJ BDS 
390 5.6 31.1 3.427 18.411 6271.7 13.59 

Number 
BJ : BereJarque Normaiity 'IW Statistics - ~ ~ ( 2 )  with 5% critical d u e  = 5.99. 
BDS = Brock-Dechert-Sch ' ' N N(0,l)-, Embedding Dimension = 3, 
Epdon = Standard Deviation/Spread 



Table 2.11: Descriptive Ststistics of the Number of Trades (IBMI 
Date 

01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 
N : Num 

- \ I 

N Mean Variance K3 K4 BJ BDS 
1.4 1.8 1.115 1.320 108.8 8.21 

BJ : Berdarque Normaiity Test Statistica - X2(2) with 5% critical d u e  = 5.99. 
. 

BDS = Brock-Mert-Scheinkman - N(0,l)-, Embedding Dimenaion = 3, 
Epdon = Standard Deviation/Spread 



Table 2.12: Descriptive Statistics of the Number of Thdes (BTI 
Date 

08/01/94 
08/02/94 
08/03/94 
08/04/94 
08/05/94 
08/08/94 
08/09/94 
08/10/94 
08/11/94 
08/12/94 
08/15/94 
08/16/94 
08/17/94 
08/18/94 
08/19/94 
08/22/94 
08/23/94 
08/24/94 
08/25/94 
08/26/94 
08/30/94 
08/31/94 
* N:Nun 

- . I 

N Mean Variance K3 K4 BJ BDS 
484 1.9 2.4 1.101 2.110 187.5 2.14 

BJ : BereJarque N d t y  'Est Staüstica - $(2) with 5% critid d u e  = 5.99. 
BDS = Br&-Dechert-Schehhan - N(O, l),, Embedding Dimenaion = 3, 
Epsilon = Standard Deviation/Sprd 



Table 2.13: Descriptive Statistics of the Number of Price Changes (INT 
Date 

01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
011 17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/!34 
01/27/94 
01/28/94 
01/31/94 
N : N d  

- .  'EL) 
N Mean Variance K3 K4 BJ BDS -. 

i - 

390 3.0103 7.2081 1.8741 6.1987 852.7 10.42 
390 3.1232 6.8691 1.7950 4.3085 511.1 4.76 
390 3.6564 10.7762 2.1332 6.8053 1048.4 9.89 
390 3.2026 8.6504 1.8694 5.1254 65Q.O 9.50 
390 4.6513 18.9835 1.8770 5.0057 636.2 1.62 
390 4.4718 10.1110 1.5547 3.7506 385.7 6.31 
390 3.2103 9.3696 2.7147 11.4268 2600.8 8.37 
390 5.3821 38.4012 3.4377 14.5498 4208.2 16.20 
390 3.0923 7.5647 2.1491 7.0446 1106.6 10.29 
390 4.0282 12.1560 2.4341 10.0782 2035.6 8.65 
390 3.5103 10.7441 2.4117 9.8556 1956.5 8.80 
390 4.8179 12.9668 1.8517 5.6909 749.1 10.62 
390 17.4667 144.3575 1.9079 5.2997 693.0 21.77 
390 6.7846 60.7915 5.4213 44.4658 34040.0 19.55 
390 4.9538 19.9824 3.6961 22.7886 9326.9 9.77 
390 4.1231 11.3833 1.9455 6.7445 985.2 9.57 
390 2.9077 6.3771 1.9183 5.5525 740.2 5.99 
390 3.9333 12.4480 2.1248 6.5732 995.6 9.12 
390 3.3846 7.7334 1.4063 2.7355 250.1 7.20 
390 2.7769 6.1481 2.07i6 7.7779 1262.0 10.79 
390 2.9000 7.5298 3.5401 23.4108 9720.7 4.14 
u of Observations; K3 : CoefEciant of Skewnesa; K4 : Coefficient of Kurtoeia; 

BJ : Ber&Jarque Normdty 'ht Statistim - X2(2) with 5% critical value = 5.99. 
BDS = Brodr-DecherbSchehkman N(O, 1),, Embedding Dimenaion = 3, 
Epsilon = Standard D&ation/Spread 



Date 
01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/!24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 
N : Numl x of Obeavations; K3 : Coeaicient of S h m ;  K4 : Coefficient of Kurtosis; 
BJ : Bera-Jarque N d t y  Test Statiatica - ~ ~ ( 2 )  with 5% critical value = 5.99. 
BDS = Brock-DecherliScheinlrmrin N N(0, l)w, Embedding Dimension = 3, 
Epilon = Standard Deviation/Spread 



Table 2.15: Observed Fkquency of Different Type of 'Itades 

MN 
MA 
&TM 
AM 

TOTAL 

Table 2.16: Obsemed Thmitional Probability of Different Type of M e s  

Table 2.17: Expected Frequency of Different Type of Tradea 

I I 

1 x2 statisticx = 272.5 with 12 demees of keedom 

MN 
10657 
198 
2326 
290 

13471 

/ M N  

MN 
MA 
NM 
AM 

TOTAL 

Table 2.18: Chi-square Contribution of Different Type of nades 

SEU: MA or MN; i.e. Broker or customera SELL to Market Maker; 
BUY: AM or NM; Le. Broker or matomers BUY h m  Market Maker. 
The 99% critical d u e  of a 3 atatistics with 2 d- of teedom 
equaia 9.21034; 
States liated in the h t  column refer to t r d o n  in period t ;  
States Med in the firat row refer to t r m n  in period t + 1, 

MA 
0.685 
O. 108 

MN 
MA 

MN 

MA 
209 
33 
47 
16 
305 

0.791 
0.015 

MN 
10467 
237 
2433 
335 

13471 

NM 
0.734 
0.019 

MN 
3.5 

NM 
2297 
61 
683 
90 

313 1 

AM 
0.715 
0.030 

MA 
237 
5 
55 
8 

305 

MA 
3.3 

AM 
308 
13 
75 
35 
431 

NM 
2433 
55 
565 
78 

3131 

TOTAL 
13471 
305 
3131 
431 

17338 

NM 
7.6 

AM 
335 
8 
78 
II 
431 

AM 
2.2 

TOTAL 
13471 
305 
3131 
431 

17338 .. 



Table 2.20: Observed Transitional Probability of Dinerent Type of %uy/Sell Trades 

1 1 SET,T, 1 BUY 1 

Table 2.19: Observed Frequency of Different Type of Buy/Sd Tkades 

SELL 
BUY 

TOTAL 

Table 2.22: Chi-Sqwe Contribution of Difkrent Type of Buy/Sell Trsdes 

Table 2.21: Expected Frequency of DEerent Type of Buy/Sell Trades 

I I SEUL I BUY I 

SELL 
11097 
2697 
13776 

S m  
BUY 

TOTAL 

1 I - - 

BUY 1 8.1 1 31.2 
statistics = 49.51 with 2 dweea of keedom 

S m :  MA or MN; Le. Broker or customera SELL to ~ W k e t  Maker; 
BUY: AM or NM; i.e. Broker or cudnrnera BUY h m  ,;Market Maker. 
The 99% critid value of a 2 statistics with 2 &grecs of ikedoxn 
quais 9.21034; 
Statea listed in the fmt colilmn refer to trauaaction in period t; 
States listai in the fimt row reièr ta transaction in period t + 1. 

BUY 
2697 
883 

3562 

SELL 
10946 
2830 
13776 

TOTAL 
13776 
3562 
17338 

BUY 
2830 
732 

3562 

TOTAL 
13776 
3562 
17338 



MODELLING 

INTRA-DAY EQUITY PRICES AND VOLATILITY 

USING INFORMATION ARRIVALS - A COMPAR- 

ATIVE STUDY OF DIFFERENT CHOICES O F  IN- 

FORMATIONAL PROXIES 

The purpose of this chapter is to present s mode1 for intraday asset prices and volatility 

generation processes. In particular, we consider alternative choices of conditionhg variables, 

i.e. exogenous variables, to help us in modelling. Although our methodobgy is general, 

we restrict ourselves to two U.S. stocks, IBM and INTEL and we t a h  tick by tick data 

for January 1994; these stocks were chosen on the basis of th& high liquidity. It rnight be 

argued that this is insuffiCient information to cany out our d y s i s ,  our response is that 

our use of data here is iuustrative and that a full d y s i s  involving many stocks and longer 

time periods codd be &ed out by researchem following the methodology presented here. 

Our Data cornes eom the New York Stock &&ange (NYSE) Trade and Quote (TAQ) 

database. This database contains virtually every trade and quote of every stock traded on 

major American stock exchanges. 

In Section 3.2, we present our initial models, investigate their statistid properties, and 



identify certain problems. We then discuss estimation techniques and provide estimation 

results in the same section. We h d  that our information variables do not satisfy the re- 

quirement of being independently and identically distributeci. To deal with this problem, 

we present an extended model based on doubly stoctiastic processes in Section 3.3. Sur- 

prisingly, these modeh are straightforward to estimate for all information vanables except 

volume. We find that volume does not appear to be a suitable variable for messuring infor- 

mation flow, whilst the number of trades or the number of pnce changes seem to work very 

well. Finslly, and importsntly in our opinion, we fhd no evidence of wlatiüty persistence 

in our d e l ,  although GARCH models measured on the same data show strong evidence of 

persistence. This indicates, to us  at Ieast, that the riRimed persistence of volatility may be 

an artifact of the choice of model and does not refiect a market opportunity or a forecastable 

feature of the data. We conclude this chapter in Section 3.4. 

The k t  model we examine is a homogeneous mixeci jumpdSusion model. The rationale 

of using such a mode1 is that it reveals systernatic discontinuities, which coincide with oc= 

sional jumps in hancial tirne series. This model was k t  examineci by Satchell and Yoon 

(1993) to study the influence of the number of transactions on the conditional mean and 

conditional variance of daily returna of five British stocks. By so1ving the standard jump 

di&sion stochastic differential equation desdbing the evolution of asset prices, Satchd 

and Yoon show that log-returns are conditionally normal with mean and d a n c e  being 

lin- functions of the number inhrmation arrivsl. 

We define our price generating equation as follows 

1 Wt) 
P(t) = P(0) -[(a - s2)t + +(t) - %(O)) + C Qi] 

i=l 

where P(t) denotes the p r i e  of an asset at time t, a and cr are parametem, z(t)  is s stan- 

dard Brownian motion, N(t) is a homogeneous Poisson procesa with parameter X (we shall 

relax the 8ssumption of homogeneity later in the chapter), Q ia a nomal madom variate 

with mean p~ and variance 4 in the interval (t, t + At]. In what follows, we assume that 

there is some observed variable which measures the number of information arrivai, N(t ) .  



As discussed in Chapter 2, such a variable could be trading volume, the number of trades, 

or the number of price changes,. a, etc. 

It is stra.ightfo~w&rd to derive the probability density function @df) of logarithmic re- 

We see that X(t) is independent and identicdy distributed (i.i.d.) and 

where p = a - 3 / 2 ,  and #(a, b) ia the normal density with mean a, aad variance 6. 

We next ampute pdf (X(t) lAlV(t)). Simple manipulations with equation (3.2) show 

that 

~ d f  (W I AJv(t)) = #(P + w A W ) , ~  + 02qWt)) (3-4) 

It follows, in regression notation, that 

where ~ ( t )  is N(0,l) and is independent of AN(t). Equation (3.5) may also be interpreted 

as a lin- regression mode1 with l i n s  heterœkedssticity in AN(t), as such it is an example 

of the heteroskedasticity modeis popular in econometrics, see Judge et  aL (1985, p.419) for 

a m y .  As long as p~ and 4 are found to be signifiant, our assumption that M ( t )  

Muences the conditional mean and variance of returns is not rejected. 

To test if M ( t )  influences the rate of retums, an appropriate test would be the joint 

hypothesis, that is, p ~ = 0  and %=O. We now devote some arguments to teaing our various 

hypotheses. We shall consider the different hypotheses in tum. Let the three tests be 



A test that p ~ = 0  impl" that the number of trades does not influence the expected 

rate of returns, whilst it increasea the volatility of the asset, an assertion investigated by 

Lamoureux and Lastrapes (1990a). A test chat sg=0 implies that jump magnitudes are 

of constant size, albeit iuiknown to the econometricisns. In t h  case, each amval of new 

information has the same kind of effect on stock pnces, Le., each transaction generates the 

same amount of trading volume aad consequently the same impact on prices. Simüarly, the 

joint hypothesis implies that the AN@) is completely independent of price changes. Since 

ail these hypotheses are interesting, it is worthwhile estimating and testing ou- model. We 

note two of the tests above have the Mculty that the point 4 = 0  lies on the boundary 

of the parameter space, so that the asymptotic distribution of the onesideci test will be 

non-standard, Le., not 2 (1). For this reason the Lagrange Multiplier (LM) test would be 

preferred to Wald or Iikeiihood Ratio (LR) tests, since it is well-known that the LM test 

retains its 2 (1) distribution under 6 even for boundary points. Here, computationd ease 

is required at the cœt of potential los of power. It is straightforward to derive the LM 

test, see Breusch and Pagan (1980). The derivation of the score statistics for the three 

hypotheses is shown in Appendix B. We present the results as a theorem. 

Theorem 3.2.1 The LM tests for our hypotheses given in equaEi'on (3.6) are 

where LMi U the test appmpnate for  Xgi. 

It should be noted that our test procedures are asymptoticalty g(1) for test statistics 

LMl, LM2 and 2 ( 2 )  for test statistica LM3. Thh is true despite the fact that the alter- 

native hypothesis invo1vea 4 bbaing positive, so that one may wish to use this information 

explicitly. This hss been done in general by Rogers (1986) in which ha proposes a test 

procedure b d  on the Kuhn-?Ùcker test of Gowieroux, HoUy and Monfort (1982). This 



shodd lead to a more powerful test but involves substantidy more computation; we s h d  

not investigate t h  point any furtha. 

We now tum to the estimation of equation (3.5), which can be estimateci by the EoUowing 

iterative feasible generalized least squares proceàure, 

1. First, we regress X ( t )  on U ( t )  by ordinary least squares (OLS), and calahte the 

residuals, say E's, from the resulting OLS estimates j?, k. In other words, É =Ê(t) = 

X ( t )  - - AN(t)pQ. 

2. Regress É1 on H ( t )  by nonünear le& squases (ErZS) to obtain 9, and â6.I 

3. Apply generalized least squares on equation (3.5) aRer dividing both sides of the equ* 

tion by ,/m. T'hi3 This produce another set of estimates, f i  and iig Based 

on these estimates, calculate the new squared residusl e2 = [X( t )  - - u ( t ) i i g j 2  
and iterate on step 2 and step 3. 

]Estimates derived from the above procedure will converge to IllEULimum W o o d  estimates 

by a familiar linearized maximum Likelihood axgument. Usudy, only the h t  three iter* 

tions are requiied to produce convergent estimates. 

Initidy, we use all three trading variables, Tvol, N, and NPC, es informational pracies. 

However, we find that whenever Tvol is ernployed, the above iterative procedure ha3 trouble 

converging. This is probsbly due to the high skewness typifnUv observed for the data on 

trading volume. The nonconvergence problem also indicates that Tvol is not a suitable 

informational p r q  in our model, which is consistent with ment empirical hding on the 

informational role of trading volume, as described in Chapter 2. Therefore, we exdude Tvol 

as one of the informational praies in the following 8I181ysis. 

The estimation results are reported in Tables 3.3 to 3.6. Judging from the tstatistics, 

neither the number of trades nor the number of price changea sigdicantly influence the 

mean and the d a n c e  of returns of INTEL. In contra&, both nurnber of tradea and num- 

ber of pria changes have signiscant impact on the variance of r e t m  of IBM. This may 

'To aMid getting negative va,rianœ estimates, we use NLS to obtain ô, and ÛQ. The standard 

errom of b, and SQ are then d m  by 6-rnethod. 



be related to the data in Table 2.4 where the higher numbers of trades and pnce changes 

for INTEL relative to IBM mean that their impact is lesa important. Technically, it is as if 

the Poisson process may be converging to Brownian motion again. 

Table 3.1: LM Test Statistics for Eauation 

Date 
01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
011 18/94 
01/19/94 
O l/ZO/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 

IBM 
LM1 L W  LM3 
0.607 69.5 390701 
0.022 41.4 420148 
0.038 26.6 236021 
0.243 24.8 215395 
1.007 55.1 2286418 
0.000 32.0 196540 
0.003 44.4 49963 
1.188 34.1 1571143 
2.092 41.9 14511512 
0.273 48.5 295116 
1.863 51.5 3808499 
0.010 40.9 427964 
1.975 18.4 3463029 
1.016 25.4 1136782 
0.330 27.5 330128 
0.328 77.9 24908 
0.675 29.4 96355 
1.734 84.3 2195317 
1.785 21.8 7945026 
0.247 29.9 2203044 
0.840 4 . 1  2574018 

To further investigate the dect of the number of trades, we conduct the LM test 

procedures detailed in Theorem 3.2.1. The results are reported in Table 3.1. In generd, 

we m o t  reject the null hypothssis = O for either INTEL or IBM. The n d  hypothesis 

6 = O cannot be rejected for moat IlWEL cases, while it is rejected for a.ll IBM cases. These 

hdhgs based on LMl aad LM2 are consistent with the findinga based on the previously 

reported t-statistics. However , the LM3 test is si@cant in all cases. This provides evidence 

that retum procesa?tj are indeed iduenced by the trading processes. The insigdicant 

results are pogsibly due to rnodelhg mis-specification. One way of examining the moddhg 

miaspecification is to examine the independence of the fitted residuals fiom the model. 



Since in equation (3.5) is assumed to be i.i.d., we test this assumption by ninning the 

BDS test on the standa.rdized estimateci residuals, namely 

From those results reported in Table 3.2, the i.i.d. assumption on ét is ciearly rejected 

for most cases. This Ieads us to the doubly stochastic modeiJing of information &vals in 

the next section, since rejection of the i.i.d. process is likely to be a consequence of more 

cornplex arriva1 processes than the ones we have modded. 

Tabte 3.2: BDt 
Date 

tiniated Residuah 
IBM 
9.1082 
5.9476 
3.6334 
4.0592 
3.9121 
1.1909 
3.5701 
3.3836 
4,5410 
5.8569 
4.0395 
7.2038 
2.3438 
4.2690 
2.8906 
9.7016 
0.5750 
2.4349 
3.3970 
5.7085 
2.3108 

BDS : Brock-DechertSche' ' ..mm- N(0, l)w, 
Ernbedding Dimension = 3, 
Epsilon : Standad Deviation/Spread 



We have shown that information a r r i d  are not consistent with the (homogeneous) Pois 

son process with a k e d  arrivd intensity parameter. In order to accommodate the non- 

homogeneous nature of the information data, we now introduce a more cornplex (non- 

homogeneous) Poisson process which dows X(t) to vary. By an appropriate choice of X(t), 

we can model the marginal distribution of ln(P(t)/P(t - 1)). T h e  are many candidates 

for the process of X(t). Here, X(t) is defineci in the form of a stochastic volatility model as 

where v(t) is N ( 0 , l )  unconditional in N(t), in fact, v(t) = Az(t) = r(t) - z(t - l), and 

I(t)  contains information up to the end of the minute.2 Heuristidy, the srpected number 

of jumps depends upon the previous volatility and the deviation fiom fundamental ~ z ~ ( t ) ,  

see equation (3.2). 

It follows fiom equation (3.2) that 

since X(t) is known given I(t - 1). To simpiify out model we shall assume that X(t) and 

m ( t )  are (weakly) st ationary. Under the assumption of weak stationarity, equation (3.9) 

where o=P(& + 4) ,0<8<1. We can caldate  the mean and the variance of X(t) , detailed 

in Appendix C, aa hiiows; 

*A GARCH-type model would hmlve interpreting t?(t - 1)  aa Vrrt(X(t - 1) 1 I( t  - 2)) x Az2 ( t)  for 

z(t )  - i.i.d. N(O,l) ,  This complicates the modei without adding to ita ~cplanatory m. We shall 

d e r  to this ss GARCH-type effects, although the model in quafion (3.9) is closer to a stochastic 

yoiatility modal, 



using the fact that v2(t) has a x2(1) distribution. 

Given our model, the information variable is not purely exogenous any more: its intensity 

ia dependent upon the past history of prices. This kamework is attractive because it dows 

a feedback effmt through the variables. It an explain certain phenornena in hancial time 

series such as ~ l a t i l i t y  clustering where large pirice change3 tend to bunch together. This 

non-homogeneous Poisson procesa also resolves the restrictive aspect of the homogeneous 

Poisson distribution which implies that mean and variance are equal. From the moment 

generating hinction of M(t) derived in Appendix C: 

we can derive the mean and the variance of M(t), 

Note that 

Moreover, 

the mean and the variance are not equal in the presence of stochastic X ( t ) .  

the serid correlation of m(t) can be shown to be 

2c?P 
a 2 + ~ u + a ) ( i ~ *  ifs = 1,2, ... - - 

Then ~ o m  equation (3.2), the moment conditions of X( t ) ,  detailed in Appendix D, are 

obtained as follows, 

- - - -- 

3We have 888umed that &(t) ia stationary, an altemathe exp&op can be calculated if we 

start from a k e d  atarting point. 



2dp$Oo 
i fs  = 1,2, ... 

C m ( X ( t ) , X ( t  -s)) = ~ 2 ( 1 4 ~ ) + ~ ~ ; + o ~ ) ( l + ~ ) ( B ~ ~ ~ ) + ~ ~ ~  

Given that W ( t )  is observable, the joint W o o d  function of X ( t )  and AN(t)  can be 

Thus, the log-bkelihood function becomes 

where X(t) = + a X ( t  - 1) - p - /qPN(t - 1)  + P(PQ + aQ)W - 1) + o p v ( t  - 1 )  

Although the joint density is tractable, the marginal densities of X ( t )  and AN(t)  cannot 

be derived explicitly. This is one of the characteristics of a mixture of distributions which 

contain sever al random variables. 

We estimate equation (3.21) and report the r d t s  of in Tables 3.7, 3.8, 3.9, and 3.10. 

In terms of the signiscmce of coefEcients, & and G, in the d a n c e  equation, we obtsin 

simüar results as thaie obtained nom estimating the homogeneous mixeci jumpdinusion 

modal in equation (3.5). Namely, is highly significant for all IBM ceses, while is 

insiflcant in in& cases. In addition, B is highly signiscant for d cases. b r u  equation 

(3.9), we lmow that measun the sensitivity of information e v a l  intensity X(t) to pre- 

vious period's realized volatility. This is a strong evidence for the existence of a stochastic 

Another way of exarnining the performance of the doubly stdastic Poisson model is to 

compare the sample moments (mean and variance) of trading variables with those implied 



by the model in equation (3.16). The results are reported in Tables 3.11,3.12,3.13, and 3.14. 

An interestirtg resuit shown in these tables is that the implied expected values, Ê(ANt),  of 

the trading variables match their sample counterparts, E ( U t ) ,  quite well. To give a qui& 

measure of how close they are, we calculate a $ test statistics T'CF as 

All of the TCF's are well inside the critical region under conventionai significance levels. 

By comparing the magnitudes of TCFs, we a h  h d  that, for both INTEL and IBM, the 

number of tracles seem to be a slightly better p r c q  of information arrival. In addition, for 

IBM, implied variances, ?(ANt), of the trading variables are also very close to their sample 

counterparts, V( M t ) .  

Also reporteci in Tables 23 and Tables 24 are the B̂  values, which represent the de- 

of dependence of X(t) on A(t - l) from equation (3.12). This is an equivalent measure of 

volatility persisteme in GARCH modeis. On average, when the number of trades ia used 

as the informational proxy, 8 2 0.05 for INTEL, and 8 ~ 0 . 6 4  for IBM. Similar results are 

obtained when the number of pnce changea is used as the informational proxy. In that case, 

8 zz 0.1 for INTEL, and 8 = 0.64 for IBM on average. In ot her words, the volstili ty persis- 

tence implied by ow mode1 is rnuch smder  than those implied by the GARCH-type models. 

To compare the persistence of GARCH-type models versus that of idormational volatil- 

ity mode19 as in this paper, we fit a GARCH(1,l) model on the ssme data sets. We compare 

the ê values listed in Tables 3.11, 3.12, 3.13, and 3.14 with value of 6+p reported in Table 

3.15. We recall that Tables 3.11 and 3.12, describe the models for the number of trades, 

whilst Tables 3.13 and 3.14 describe the models for the number of p r i a  changes. In Tables 

3.11, for INTEL, there are no values of êgreater thsn 0.5, and there are only three d u e s  

p a t e r  than 0.1. Similarly, in Table 3.13, there are only 6 values of 8 greater than 0.1. 

However, for the GARCH(1,l) model for INTEL in Table 3.15, there are seven values of 

â+@ greater than 0.9, and most others mater than 0.5. Likewiae, for IBM, there are no 

valuas of 8 greater than 0.8 in either Table 3.12 or Table 3.14. But, for the GARCH(1,l) 

model for IBM in Table 3.15, there are eight values of 5+B greater than 0.9. This indicates, 

to us at least, that the claimed persistence of volatility may be an artifact of the choice of 



model and does not reflect a market opportunity or a forecastable feature of the data. 

However, the failure of this model is thst autocorreiation of returns must be positive, 

as given by equation (3.19). This is enough to invalidate it. We discuss this furthet in the 

next chapter. 

This chapter hss had three objectives. They are (i), to compare three different prmies 

for informational variables in hi& hquency equity data; (ii) , to model dynamic processes 

using doubly stochastic Poiswn models; (iii) , to investigate intrgday volatility persistence. 

We find that the number of trades and the nurnber of price changes seem to be the best 

choices for informational variables, volume being decidedly inférior. Secondly, we find that 

o u  model does seem to be estimable without undue diEculty and Gnally we tind that 

persistence in volatility is much reduced when our model ia u s 4  rather than GARCH(1,l). 

The use of informational variables seems to subatantially eliminate much of the persistence. 

Since persistence in volatility is a stylized fact that seems somewhat flawed in terms of 

theoretical explanations, the results leaà toward better modelling and understanding of 

in t rday  volatility. 



Table 3.3: Estimation Results of Equation (3.5) (INTEL) Using the 

Date 
01/03/94 

01/04/94 

01/05/94 

01/06/94 

01/07/94 

01/10/94 

01/11/94 

01/12/94 

01/13/94 

01/14/94 

01/17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

Numbera 

- 

=ber of Trades as the Conditioning Variable 

u GQ O() 
1-996E-O04 -4.329E005 8.838E006 1.312E015 

(0.94474) (-1.61103) (9.55341) 
1.5273=004 -8.23lE006 8.4293-006 

(0.73996) (-0.33619) (7.97083) 
-1.843E004 3.1193-005 7.8413-006 

(-0.97418) (1.75996) (8.67204) 
1.299E005 -8.968E006 9.263E006 

(0.05988) (-0.33559) (9.00200) 
-8.050E005 1.840E005 9.466E006 

(-0.43540) (1.63519) (9.17861) 
-3.7183-005 7.8503-006 9.052E006 

(-0.16752) (0.40331) (6.32805) 
-3.3143=005 4.7303-006 8.637E006 

(-0.15011) (0.17307) (8.63161) 
1.141E004 -1.l73EOO5 1.13'7E005 

(0.54093) (-0.82905) (6.75941) 
1.168E005 -2.199E006 4.492E-006 

(0.05941) (-0.06648) (7.59214) 
-3.3873-006 -8.203E007 9.382E006 

(-0.01597) (-0.04081) (8.67428) 
-4191E005 -6.560E006 8.997E-006 

(-0.17292) (-0.22794) (4.58957) 
2.183EW -2.009E005 9.172EOO6 

(0.70048) (-0.62542) (2.33811) 
4.652E005 -1.674E006 1.093E005 

(O. 12095) (-0.14970) (1.40840) 
-3.573E004 3.07l.E-005 5.678E006 

(-1.32397) (1.47524) (3.16975) 
-1.07I.E-004 1.453E005 7.759E006 

(-0.52230) (0.89053) (8.10009) 
-5.805E005 1.052E005 1.735E005 

(-0.20290) (0.36238) (3.00957) 
7.789E005 - l.587EOU5 1 .O63EOE 

(0.29767) (-0.42287) (1.97415) 
4.80331005 -7.1853-006 1.042E005 

(0.20184) (-0.29312) (8.95570) 
-4.3143-005 8.078E006 8.167E-006 

(-o. 19 in) (0.30938) (8.52901) 
-1.59lE-004 3.636E005 8-955E006 

(-0.79349) (1.47203) (10.87673) 
-7.144E005 1.234E005 7.523E006 

(-0.41732) (0.68072) (12.95443) 
L the parentheses are t-value8 

(-1.4283-007) 
3.862E014 

(-4.7533-007) 
5.2823-017 

( 4.500E008) 
4.1983-014 

(-4.769E007) 
l.24mO 14 

(-6.909EOO7) 
5.3193-014 

(-4.952E007) 
9.960E014 

(-4.6983.007) 
1.406E014 

(-4008E007) 
2.8463-007 

(3.30385) 
4.411E016 

(-9.808E008) 
1.266E007 

(0.58414) 
5.782E007 

(1.71119) 
2.7223-007 

(1.45586) 
4.3633-007 

(4.36392) 
6.499E014 

(-8.193E007) 
1.2953-018 

(-9.974EOlO) 
1.4323=007 

(O. 19728) 
1.688E015 

(-1.573EOO7) 
3.522E017 

(-2.953E008) 
4.182E015 

(-2 .?76EOO?) 
5.033E020 

(-1.8283.009) 



Table 3.4: Estimation Results of Equation (3.5) (IBM) Using the N u -  
ber of Trades as the ConditioninP Variable 

Date 
01/03/94 

01/04/94 

01/05/94 

01/06/94 

0 1/07/94 

01/10/94 

01/11/94 

01/12/94 

01/13/94 

01/14/94 

01/ 17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

Numbers 

(1.49222) 
3.548E005 

(0.69 125) 
l.ZBEOO5 

(O. 32467) 
-2.508E005 

(-0.39776) 
-3.14QE005 

(-0.65941) 
2.205E005 

(0.3875 1) 
-1.922E005 

(-0.36991) 
3.5843-005 

(O. 64646) 
-5.142E005 

(-1.06162) 
1.316E005 

(0.28891) 
3.241EOû5 

(0.54283) 
-1.056E005 

(-0.16881) 
-1.180E-004 

(- 1.8733 1) 
3.810E005 

(0.54601) 
3.71m005 

(0.6335'7) 
-6.196E005 

(-0.18828) 
1.102E004 

(0.n898) 
-4.424E006 

(-0.0'7222) 
-6.900E005 

(- 1.04948) 
-5.0023-005 

(-0.86796) 
- 1.133EOO4 

(-1 .i1928) (0.94092) (4.47511) (2.87036) 
n the parenth- are t-value8 



Table 3.5: Estimation R e d t s  of Equation (3.5) (INTEL) Using the 
l 

Date 
01/03/94 

01/04/94 

01/05/94 

01/06/94 

01/07/94 

01/10/94 

01/11/94 

01/12/94 

01/13/94 

01/14/94 

01/17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

N u m h  

unber of Price C h w e s  as  the Conditionim Variable 

(1.24956) 
1.29OEOO4 

(O. 5 7753) 
-6.153E005 

(-0.29259) 
-l.28&#5 

(-0.05847) 
-2.415E004 

(-1.11331) 
-1.618E004 

(-0.63430) 
-2.863EOO5 

(-0.13154) 
1.663E005 

(0 .O7846) 
6.7-005 

(0.36191) 
1.385E004 

(0.58783) 
-1.547E-004 

(-0.681 14) 
1.832E004 

(O S8729) 
7.124Eûû5 

(0.18416) 
-8.547E-005 

(-0.34831) 
-1.682E004 

(-0.81873) 
-9.6273-005 

(-0.32268) 
2.472S004 

(0.96579) 
5.779Eûû5 

(0.25008) 
-4.747S006 

(-0.02126) 
-8.705E-005 

(-0.39 123) 
-1.228E004 

(-0.62444) (0.85998) (10.95842) (-3.70lE-007) 
1 the parenthemil are t-vsluee 



Table 3.6: Estimation Results of Equation (3.5) (IBM) Using the Num- 

Date 
01/03/94 

01/04/94 

01/05/94 

0 1/06/94 

01/07/94 

01/10/94 

01/11/94 

01/12/94 

01/13/94 

01/14/94 

01/17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

Numbera 

w of Price Changes as the ~onditionïng ~ir iab le  

iz W 
6.026E005 -6.762E005 6.1723-007 1-7693-006 

L the parenthe- are t-valu- 



Table 3.7: MLE Estimation M t s  on Equation (3.21) (INTEL) when 

Date 
01/03/94 

01/04/94 

01/05/94 

01/06/94 

01/07/94 

01/10/94 

01/11/94 

01/12/94 

01/13/94 

01/14/94 

01/17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

Numberi 

the Number of Trades is Used as the Conditioning Variable 

li EQ â2 3, 6 B 

(4.563) 
0.359 
(5.699) 
-0.107 
(-2.258) 
0.008 
(0.190) 
-0.206 
(-6.326) 
0.039 
(O. 870) 
0.238 
(5.949) 
-0.197 
(-7.774) 
0.608 
(7.303) 
-0.160 
(-2.914) 
-0.035 
(-1.135) 
0.199 
(4.468) 
26.025 
(4.917) 
3.124 
(16.743) 
-0.090 
(-1.46 1) 
-0.068 
(-4.019) 
0.043 
(1 -369) 
-0.257 
(-5 .?8?) 
0.256 
(4.763) 
1.125 

(14.852) 
-0.416 

(-0.3 16) (0.380) (10.954) (0.436) (-6.621) (12.163) 
n the parentheses are t-value3 



Table 3.8: MLE Estimation Results on Equation (3.21) (IBM) when the 

Date 
01/03/94 

01/04/94 

01/05/94 

01/06/94 

01/07/94 

01/10/94 

01/11/94 

01/12/94 

01/13/94 

01/14/94 

01/17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

* Numberi 

Nuniber of nades is Used as the Conditioning Variable 

f i  h âZ z$ a P 
9.26E005 -6.55&005 3.71EOW 6.80E007 0.063 990164 

( -1.334 ) ( 0.474 ) ( 13.929 ) ( 8.577 ) ( 1.534 ) ( 15.040 ) 
in the parentheses are t-dues 



Table 3.9: MLE Estimation R e d t s  on Equation (3.21) (INTEL) when 

Date 
01/03/94 

01/04/94 

01/05/94 

01/06/94 

01/07/94 

01/10/94 

01/11/94 

01/12/94 

01/13/94 

01/14/94 

01/17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

+ Numbêr: 

the Nurnber of Price Changes is Used as the Conditioning 
Variable 

U W 2; a P 
4.39E005 2.28E005 9.12EOû6 3.ô4E014 0.266 321238 

(9.902) (-0.2~8) (-4.050) ( i i . n q  
xi the parentheses are t-values 



Table 3.10: MLE Estimation Results on Equation (3.21) (IBM) when the 

Date 
01/03/94 

01/04/94 

01/05/94 

01/06/94 

01/07/94 

01/10/94 

01/11/94 

01/ 12/94 

01/13/94 

01/14/94 

01/17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

Number of Price Changes is Used as the CoAditibning Vari- 
able 

c k u2 G P 
5.893-005 -1.29E004 3.64E007 2.60E006 0.037 255342 

the parentheses are 



Table 3.11: Moments and Persistace Level of Information Arriva1 (N of INTEL) 
Date 

01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 



Date 
01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
0 1/ 14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
0 1/24/94 
01/25/94 
01/26/94 
0 1/27/94 
01/28/94 
01/31/94 

Table 3.12: Moments and Persistence Level of Information Arrivai (N of IBM) - - 
V(N) w) E v(X> 8 CF 

1.352 1.780 1.351 1.336 1.493-002 0.678 1.92S004 
0.688 
0.620 
0.683 
0.880 
0.732 
0.726 
0.743 
0.637 
0.696 
0.643 
0.650 
0.508 
0.640 
0.649 
0.305 
0.516 
0.597 
0.592 
0.689 
0.603 
TCF 

~((N)-Ê((N)] . v m ~ e ;  ê= B(fi8 + G); CF =Criteriop bc t iop-  

TCF = ~ g , C f i  
E(N)  



Table 3.13: Moments and Persistence Level of Information Md (NPC of INTEL) 

Date 
01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
01/10/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 

8.84E002 
9.18E002 
3.67E002 
5.62E002 
2.75E001 
1.84E004 
1.4631005 
2.21E002 
5.93EOû4 
3.32E001 
1.94E001 
8.41EL002 
3.04E001 
3.6931002 
2.33E004 
3.40EQ01 
4.56E002 
1.58E001 
1.683-002 
2.70E002 

TCF 



Table 3.14: Moments and Persistence Level of Information Arriva1 (NPC of IBM) 

Date 
01/03/94 
01/04/94 
01/05/94 
01/06/94 
01/07/94 
0 1/ 1O/94 
01/11/94 
01/12/94 
01/13/94 
01/14/94 
01/17/94 
01/18/94 
01/19/94 
01/20/94 
01/21/94 
01/24/94 
01/25/94 
01/26/94 
01/27/94 
01/28/94 
01/31/94 

TCF 2.64E003 



Table 3.15: Estimation R d t s  of a GARCH(l.1) Mode1 
-- -- 

Date 
01/03/94 

01/04/94 

01/05/94 

01/06/94 

01/07/94 

01/10/94 

01/11/94 

01/12/94 

01/13/94 

01/14/94 

01/17/94 

01/18/94 

01/19/94 

01/20/94 

01/21/94 

01/24/94 

01/25/94 

01/26/94 

01/27/94 

01/28/94 

01/31/94 

(2.289) 
O. 1345 
(2.123) 
0.1176 
(2.537) 
0.0643 
(2.155) 
0.0326 
(2.190) 
0.1140 
(2.126) 
0.0536 
(1.642) 
0.2070 
(2.615) 
0.0062 
(0.210) 
0.0790 
( l m )  
0.2700 
(3.109) 
0.1046 
(2.597) 
0,4192 
(4.337) 
0.0865 
(3.228) 
0.0679 
(2.010) 
O .2??9 
(2 A26) 
0.4140 
(3.627) 
0.0980 
(2.897) 
0.0587 
( 1 * W  
0.0778 
(2.555) 
0.0275 

(O. n o )  

a; 
0.3032 
(3.786) 
O. 1848 
(3.559) 
0-0756 
(2.225) 
0.0628 
(3.004) 
0.0579 

(3.379) 
0.0158 
(O. 882) 
o. 1090 
(3.091) 
0.0856 
(2.305) 
O. IN6  

(2.948) 
0.0731 
(3.696) 
O. l'Il6 
(3.215) 
0.1119 
(4.733) 
0.0650 
(1.456) 
O. 1147 
(2.297) 
0.0858 
(2. ln) 
0.6866 
(8.520) 
0.1218 
(3.180) 
0.1146 
(3.352) 
0.1547 
(3.813) 
0. IO05 
(3.414) 
0.0439 

IBM 
B 

0.3064 
( 2.080) 

0.5668 
( 7.342) 

0.7296 
( 4.646) 
0.9134 

(28.020) 
0.8950 

(32.166) 
0.8985 

( 8.227) 
0,7308 

( 8.371) 
0.6787 

( 5.012) 
0.6368 

( 4.988) 
0.8973 

(30.635) 
0.5462 

( 4.869) 
0.8736 

(35.903) 
0.0000 

( 0.000) 
0.4616 

( 2.914) 
0.0654 

( 0.090) 
0.3134 

( 7.587) 
0.8451 

(17.185) 
0.8103 

(14.984) 
0.7330 

(11.422) 
0,7660 

(11.561) 
0.5490 

k = @ + + f i  h-1; Numbers in the parentheaee are t-due8 



TRADING INFORMATION AND BUY/SELL SIG- 

NALS 

Although the models proposecl in the third chapter are able to capture the arrivai of the 

number of trades and pin down the volatility persistence, it fails to describe the 0th- 

stylized fact, signihmt negative -order autocorrelation. In the preliminssy analysis in 

Chapter 2, we show evidence that different types of buylsell t rdes  do not arrive indepen- 

dently. Whereaa buy or seU X o m t i o n  may infiuence the price, returns will be influenceci 

by whether buy followed sel1 or ary of the three 0th- possibilities. In this chapter, we 

explore the wefbess of the extra buy/seU information in explaining the retums autocor- 

relation. 

A str aightfozward way of incorporating buy/sell information, is to decompose transac- 

tions into the folloaing four types: (1) BS a buyer-initiated transaction followed by a seller- 

initiateci transaction; (2) SB: a seller-initiated t r d o n  followed by a buyer-initiated 

transaction; (3) BB: a buyer-initiated transaction followed by another buyer-initiated trsna 

action; (4) SS a seller-initiated transaction hllowed by snother der-initiateci tramaction. 



Accordmg to this decompœition, we modify our homogeneous mixed jumpdifhsion model 

in Chapter 3 conespondingly. We show that this model dows us to examine the impact 

of buy/sell information Mthin a simple regreaaion kamework. Most importantiy, the sig- 

d c a n t  negative b o r d e r  autocorrelation is on average reduced by 40% within this new 

framewrk. Fhthermore, once we have captured this feature, conditional vdatility is re- 

duced. 

In addition to exphining the autocorrelation, we a h  use buy/se.U signais in exploring 

market asymmetry in a threshold autoreregresive (TAR) hmework. TAR models axe m 

pable of capturing tirne-irreversibility, asynmetric limit cycle and jump phenornenon. The 

major criticism of TAR models cornes kom the fact that researchem rarely know which 

state of the wrld they are currently in, which hinders the application of the TAR models 

in economic time series. In this chapter, we demonstrate that the TAR mode1 is a promis- 

ing alternative for d y z i n g  high fiequency t h e  series. We argue that the criticism of 

the TAR model is not aiways justifiai, especially when we have exogenously observable 

information to determine the threshold. Specifically, wa use the sign of net buy/sell trading 

volume from the preceding period as the switching rule and develop a q d t a t i v e  threshold 

autoregressive model with conditional heteroakedasticity, where both the conditional mean 

and conditionai variance are regime-dependent. We show this modei has a lower volatil- 

ity persistence and outperfonms a benchmark GARCH(1,l) specification in terms of data 

fit ting. We also compare t heir in-sarnple prediction and the one-stepahead out-of-sample 

forecasting performance. Surprisingly, oour QTAR-GARCH model consistent1 y outperforma 

the GARCH(1,l) modei throughout the 22 auuninecl trading days. Although the issue of 

fitting the trading procesa as in our extendeci mixed jumpdifhion model is not discussed 

here, our QTAR-GARCH model is endowed with superior predicting power and thus pr* 

vides a good alternative to the GARCH models in studying nonlinearity exbthg in hancial 

data. 

In the next section, we &art with a short survey on empirical evidence that show signif- 

icant negatiw autocomlation in high hquency returns data, followed by some p r o p d  

theoretical explanations. We alw provide general conditions under which large negative 

autocorrelation in returns codd occur. We detail the construction of our extended mixeci 



jumpdiffusion model with buy/sell information and the estimation results in Section 4.3. 

in Section 4.4, we present our QTAR-GARm model and the estimation results. In the 

hal section, we discuss extensions of our model, and condude the paper. 

As demonstrated in Chapter 2, one saüent feature of the intraday individual stock retunis 

series is that most of them have extremely high negative first-order autocorrelation. Most 

literature on the intraday anaiysis of ex-e rates aud stock indices note the presence 

of significmt negative btrt omall, first-order autocorrelation, see Andersen and Bollerslev 

(lgg'i), Goodhart and Figliuoli (1991), and Goodhart and O'Hara (1997). Earlier research 

by Roll (1983) suggests that bid/ask bounce can cause negative serial correlation in transac- 

tional price changes, dthough Roll is unable to demonstrate this point by using da* data 

kom AMEX and NYSE listed stoda. Zhou (1996) reports significant large negative first- 

order autocorrelation for tick-by-tick DM/US$ and JPY/US$ exchange rates He models 

the logarithm of exchange rattes by a Brownian motion with noise, and shows that, as the 

sampling t h e  span keeps shrhking, the market noise is going to dominate the variation 

that cornes fiom the diffusion term. The sample autocorrelation of such return series is thus 

-50%. Other explanations for the negative b o r d e r  autocorrelation include: nongynchro- 

nous trading of Lo and McKinlay (NgO), and brokers' inventory considerations of Goodhart 

and O'Hsrs (1997). It would seem prudent at this point to adcireas the question of what 

sort of mmmptions are required on the price process to imply negative autocorrelation in 

returns. These are preaented in the follOWiDg Lemma. 

L e m  4.2.1 If lnPt folbws a stationary pmcess with a negatàue first-order automne- 

Mon,  the crssociated mturns p-s Xt = ln Pt - ln Pt,l rnust have negative first-order 

autocomdation. 

Proof. 

Consider the autocovariance between Xt and Xt-l 



where 7, = Cm(h Pt, ln&-j)  and pj = 7,/7& 

For Cai(Xt, Xt-l) to be negative requirea 1 - 2p1 + pz > O. Thus exam- the 

autocorrelation rnatrix for a stationary process, we have, for some 3 x 3 m a t h  

and since R is positive definite, we note, kom the Hawkins-Simons condition for positive 

(i) 1 - 2 > O. 

(ii) implies 1 + p2 > 22 and thus 

Thus any stationaxy process with p l  < O wiU give negative first order autocorrelation in 

first ciifferences. I 

The result in the above Lemma cannot be extendecl to cover general stationsry procesmi 

with positive firstdrder a~tocorrelation.~ However, we note that Cov(Xt, Xt-1) will be non- 

positive for all AR(1) and MA(1) processes as we now show 

AR(1): xt = &t-1 +et with pl = 4, p2 = Sr gives 1 - 2pi +pz  = (1 - #12 > 0. 
 MA(^): = Et + e ~ ~ - ~ w i t h  pi = B / ( 1 +  e2), pa = O, gives 1 - 2p1+ = s, o. 

l A straightforward counter-~c~mpla can be constnicted h m  a MA(2) process. Let Pt = ut + 
+&ut-2, where ut -- i.i.d.(O,l). In this case, f i  = (91 + &&)/(1+ 4 +&). If = 0.8 

and & = 0.1, pl ~i 0.533 > O. Thua the result dom not foUcnv for this MA(2) procesa. 



4.3 AN EXTENDED MIXED JUMP-DIFFUSION MODEL 

In this section, we extend our initial modela analyzed in Sections 3.2 and 3.3 by incorporat- 

ing buy/sell information to help us explain the signifiant negative autocorrelation in the 

data. 

Our motivation cornes form the fact that the initial models in Chapter 3 were unable to 

capture the significant first-order autocorrelation in the data  We h d  that the decrease in 

the autocorrelation, after incorporating the number of tradea in the model, is less than 5% 

for ail three stocks. Although our model in the previow section captures the information 

srrival very well, it also predicts, in equation (3.19), that the autocorrelation in returns is 

positive, which contradicts the empirical facts presented in Chapter 2. To overcome this 

difficulty, we note, in Tables 2.15 to 2.22, that Merent types of transactions do not arrive 

randomly. This evidence indicates t hat buy/sell transitions do cont ain information and 

wodd help in explainhg the signiscant negative autocorrelation. 

Notice that, by dedinition, the sum of buyer-initiated and seller-initiateci transactions is 

qua i  to the total number of extemai transactions. Whereas buy or sel1 information may 

iduence the price, returns will be duenced by whether buy followed sel1 or any of the 

three other possibilities. A straightfomard way of incorporating buy/seIl information, is to 

decornpaie transactions into the following four types: (1) BS a buyer-init iated transaction 

followed by a seller-initiated transaction; (2) SB: a seller-initiated transaction followed by a 

buyer-ini tiated transaction; (3) BB: a buyer-initiated transaction followed by mot her buyer- 

initiat ed transaction; (4) SS a seller-initiated t r d o n  followed by anot her seller-initiated 

transaction. According to this decomposition, we modify our initial model correspondingly. 

F i  of all, the prie  generation process desaibed in equstion (3.1) becornes 

where Q*j - id N ( p , , 4 ) .  kssuming &VNt(t), i = 1,. . . ,4, axe jointly Poisson distributeci, 

we can rewrite the retums procesa descrïbed in equation (3.2) as 



For simplicity, we also set a - 12 = 0, and o: = 6, i = 1,. . . ,4. Consequently, the 

conditiond density function of X ( t )  becornes 

where M ( t )  = z4=1 AN(t) .  We set ANi = ANBs, AN2 = U s B ,  W3 = ANBB, AN4 = 

AN&, snd likewise for the rnean parsmeters &S. This d o w s  us to examine the impact of 

buy/sell information within a simple regresion hnework stated as follows; 

We estimate this new model by the same iterative feasible generaiized 1- squares proce- 

dure descsibed in last section. The results are presented in Table 4.1. We find that the four 

new explanatory variables are aU highly sigdicant under conventionai sighificance levels. 

We also examine the autocomlrttion of the fitted residuals. As shown in Table 4.2, we 

observe that, on average, the firstorder autocorrelation drops by 40 percent after incorpa- 

rating buy/sell information in the conditional mean. The buy/sell information slso help in 

expl- intraday volatiiity, this could be seen by comparing the estimateci conditional 

variance tenn 9 + ô $ W ( t )  in equation (3.5) and equation (4.7). We estimate equation 

(3.5) using BT data and present the estimation results in Table 4.3. Comparing Table 4.1 

with Table 4.3, we find that both $ and are reduced for every day once buy/sell infor- 

mation is incorporated in the estimation Therefore, the conditional variance $ + ~ ( t )  

ia also reduced. 

It might be passible to extend our second model a little further by postulathg a joint 

pdf for AN,,(t), i = 1,. . . ,4, and deriving a relationship similar to equation (3.21). This 

wodd require modelling some joint Poison proceas and bding the joint pdf of ANi(t) and 

AN(t). One model that could be used ia the continuous time tirne-homogeneous MarkDv 

chah defined on a finite state space S of dimension 4, where S' = {BS, SB, BB, SS). W e  

w d d  need to spec* a 4 x 4 generator mat* A = [(Aj)] where 2 O, i, j E 9, and 

where A, represents an intensity or infinitesimal probability of moving from one state to 

the rest. The probability that the system is in state j at thne t, given it was in an initial 

state i at time O, is given by %(t). This probability is the i, jth element of P(t) and can 



be computed £rom 

which is intqreted as a mat& equation, see Chiang (l968), especially chapter 7. Over a 

given time interval, it is pcssible, but complicated, to compute the joint pdf of AN,(t), the 

number of times the system is in each of the four States. This is a fascinating extension but 

wouid require considerable further analysis. 

4.4 THE QTAR-GARCH MODEL 

The autoregressive conditional heteroskedastic (ARCH) mode1 of Engle (1982) and the gen- 

eralized ARCH (GARCH) mode1 of Bollerslev (1987) are very popular in financial modelling, 

and are capable of capturing the commonly observeci volatility ciustering phenornenon. A 

GARCH model can be sp&ed as the following 

Xt = Et 

where et = y - iid (Ol l), 

However, th& generic GARCH model hm several shortcomings. First of all, a high GARCH 

measure of volatility persistence may be due to the failure to take into account of structural 

shifts in the model (Lamoureux and Lastrapes (1990b)). F'urthermore, the prediction power 

of a generic GARCH is very poor when s t n r ~ a l  chmges do exkt (Hamilton and Susmel 

(1994)). Secondly, the generic GARCH mode1 does not consider market asymmetry. In this 

section, we scpiore the usefulneeas of buy/sell signsls in capturing m u h t  asymmetry. We 

shsll develop a q d t a t i v e  threshold kamework with conditional heteroskedasticity, where 

bo th the conditional mean and conditional variance are regimedependent . Wit h additional 

information obtained h m  trading activities, we expect o u  model to have a better predict- 

ing power than the GARCH model. 

A time series Xt is a TAR model if it hss the followiag functional form 



where Li fonn a mutually exclusive partition of the real line in the sense that u:,, L* = R, 

and Li n L = 9, if i # j ;  p is the AR order; B is the decision d e  mriable; d is the delay 

parameter; k is the threshold parameter; and {ci) is a sequence of i.i.d. random variables 

with zero mean and &ance 3, {ci) and (4) are independent whenever i # j .  When 

= Xt-d, Le. decision d e s  depend on some past d u e  of the dependent variable, the 

mode1 in equation (4.10) becomes a self-acciting TAR (SETAR) mode1 of Tong (1983). In 

the application, p is chasen by the best lin- AR model, while the choice of d and k are 

dependent on the data according to some threshold linearity tests. 

Obviously, the switching d e  does not have to depend on the lagged dependent variable. 

In this paper, we propose to use the signs of net buy/sell trading volume as the decision rule 

variable. WhiIe constmcting the 1-minute returns series, we also calculate the total trading 

volume initiated by bu- and that by seilers in each oneminute in tend2 We construct a 

dummy series (Dt)  according to the relative magnitudes of buyer-initiated trading volume 

(BK- i )  and der-initiated trsding vo1ume (SVt- 1) from the preceding period. Spdcally,  

where the mbscript, t E N, indicates time. Subsequently, we name periods essociated with 

Dt = 1 as buyer-dominating peziods, and those associateci with Dt = O as der-dominating 

periods. Note that BV and SV are the accumulateci trading volume in each period and 

thus refiect market activities better than the price series. 

It remaius to justify why DL is a suitable threshold indicator. Our explanations are 

as follows. Fi& of dl, as demonstrated in Chapter 2, buyer-initiated trades and d e r -  

initiated trades do not arrive independently, and possess ditferent leveis of persistence. 

Clearly, buy/sell transitions do contain valuable information. Secondly, due to the risk 

that market makm bear, we believe that returns should perfonn asymmetrically when a 

market is dominated by buy-contracta and when a market ia dorninated by sell-contracts. 

Thirdly, as pointed out by Rms (1987), the operation of hancial markets is far fkom that 

2A truie with the market maker as the buyer ia clruwifid as a der-initiated trade, while a trade 

with the market mdœr as the d e r  ia chssi6ed es a buyer-initiated trade. 



of a Walrasian competitive market, and tends to be in a sequence of disequilibrïum. This is 

especiaJly mie in short time horizons. Hence, exces demand is likely to reveal information 

about the disequilibrium asset dynamics. In other words, net buy/sell trading volume fiom 

the preceding period shodd at least reveal as much information as lagged returns. F b  

thmore ,  due to the re-sampling scheme commonly used in constructing ked-interval high 

freciuency returns data, the selected representative price in each interd and hence returns 

may not fuUy reflect current m u k t  activities and information containeci therein. 

We present our model as folIow9 

where the lagged return Xt-1 is speded in the conditional mean equation to capture the 

signiscmt first-order autocorrelation in the 1-minute data Since the dummy, Dt, is a 

qualitative variable, we cal1 this model a quaiitative tbreshold autoregressiive model with 

GARCH(1,l) conditional heteroekedasticity (QTAR-GARCH) . Note that only the intercept 

te- in the conditional variance equation are regime dependent. We specify our model as 

such to avoid numerical problems and over-parameterkation as suggested in H d t o n  and 

Susmel (1994). 

We estimate this modd by quasi rmwimum W o o d  (QML) and present the r d t s  

in Table 4.4. The table shows at  lead two major fin-. First of d, nonlinearity not 

only d s  in the conditional variance but also d s  in the conditionai mean of intrsr 

day high Eequency retunis data. Secondly, buyerdominating regirnes me associated with 

negative returns (&), higher serial correlstion (âil) and higher vohtility (hl), while seller- 

dorninating regimes are associatecl with the oppasite. These d t 3  accord quite well with 

the hypothesis that financial markets constantly stay in disequilibrium states in short tirne 

horizom. In addition, in Table 4.5, we End that the volatility persisteme measure ,& + 
has been reduced in our model by more than 20% in 10 out of 22 days, while oniy slightly 

increases in 2 dap. This hding is in accordance with the empiricd evidence that high 

GARCH measure of volatiiiity persistenœ may arise as a result of mis-.rpeafying &ing 



stnlctwal changes. 

We compaxe our QTAR-GARCII modd with a h e m  regression rnodel (OLS, hereatter) 

and a GARCH(1,l) models. In Table 4.6, we report their log-likelihood hct ions,  and 

Akaike Information Criterion (AIC). The QTAR-GARCH model clearly dominates the other 

twa models in both criteria throughout the 22 trading dates. To d e  their relative 

forecasting performance, we compsse their in-sample prediction on the conditionai 

mean and conditional &ance.. For the conditional mean, the criterion we use is the mean 

squared error (MSE) between the observed and fitted rehinis 

1 - -  
M S E  = C (xt -$)' 

# o f o b  ,, 
For the conditional variance, we use the meen absolute error (MAE) between the fitted 

squared residuals 

In the OLS case, 

and the fitted conditional variance 

1 
M A E  = c I$-%I 

# ofobs ,=, 
& = s2. The r d t s  are reporteci in Table 4.7. For almost every case, 

our QTAR-GARCH model has the smallest dues of MSE and MAE. To strengthen our 

confidence on the QTAR-GARCH model, we perform one-step ahead out-of-sample predic- 

tion on all t h e  models. We rewve the first .100 observations (about 50% of the sample 

sizes) for estimating the parameters. Based on these parameter estimates, we generate one- 

step ahead prediction iteratively, i.e. on the mlth observation, then the 402",. . ., etc. . 

The performance criteria we use for the conditional mean and variance are similar to the 

in-sample prediction measures. For the conditional mean, 

J. 
MSE = C (xt 

(# of obs - 400) 

For the conditional variance, 

We report the results in Table 4.8. It is interesting to note that, in most cases, the QTAR- 

GARCH model consistently outperforms the other taro models in predicting both the con- 

ditional mesn and the conditional variance. All these results are quite robust throughout 



a,Ii 22 days of data that we examine, and hence provide strong support for the potential 

Usefulness of the qualitative threshold model in snalyzing the dynamics of high frequency 

equity returns. 

In this chapter, we investigate the information content of trading activities. In particular, 

we demonstrate the usefulness of the Bara buy/sell information in expiahhg the retunis 

autocorrelation and market asymmetry. Wlth additional information on buy/sell transitions 

from the UK stocks, we have pinned d m  a significant amount of negative autocorrelation 

in returns. We propose two models, of which the extended mixed jumpdifbion model is 

better at reducing the conditional volatility, whüe the QTAR-GARCR model is endowed 

wit h good predicting power. Bot h of these two models outperform the popular GARCH(1,l) 

model. The conclusion of our d y s i s  is that buy / seil transitions do contain information. 

They augment the information srrival models we use for the US data to explain the negstive 

autocorrelation in retunis. 

A potentidy interesting extension of our mixed jumpdifFusion model is to derive the 

joint or marginal distribution of stock retums with buy/sell information. W e  have not done 

this due to the complexity introduced by the assumption that the four buy/sell variables are 

jointly Poisson distributeci. Regardhg our QTAR-GARCH model, a useful extension is to 

introduce a sm 00th transition between the buyer-dominating and seller-dominating regimes. 

TerWirta (1994) suggests a logistic formulation of the transition. However, Schlittgen 

(IgW), £rom a simulation on Terasvirts's model, h d s  that it is almost impossible to esti- 

mate the parameters due to the convergence problem. We l e m  these problems for future 

research. 



( 10.308 ) ( -8.489 ) ( 4.352 ) 
0.00198 -0.00124 5.4lE-004 

( 9.275 ) ( -5.746 ) ( 2.122 ) 
0.00325 -0.00248 0.00193 

( 10.836 ) ( -7.942 ) ( 3.611 ) 
0.00174 -0.00153 0.00143 

( 8.085 ) ( -6.990 ) ( 4.601 ) 
0.00279 -0.00190 0.00119 

( 11.204) ( -7.323 ) ( 2.780 ) 
0.00237 -0.00136 0.00123 

( 9.735 ) ( -5.404) ( 3.534 ) 
0.00187 -0.00163 0.00171 

( 9.548 ) ( -8.004 ) ( 5.718 ) 
0.00281 -0.00206 7.40E004 

( 12.454 ) ( -8.829 ) ( 3.216 ) 
0.00258 -0.00133 0.00162 

( 12.204 ) ( -6.200 ) ( 4.219 ) 
0.00179 -0.00122 0.00120 

( 7.618 ) ( -5.137 ) ( 3.803 ) 
0.00215 -0.00134 4.60E004 

( 10.646 j ( -6.596 ) ( 1.841 ) 
0.00210 -0.00151 8.-004 

( 9.282 ) ( -6.623 ) ( 3.350 ) 
0.00180 -0.00148 7.4E004 

( 10.372 ) ( -8.274 ) ( 4.252 ) 
0.00283 -0.00211 0.00154 

( 12.349 ) ( -8.587 ) ( 4.480 ) 
0.00256 -0.00124 5.39E004 

( 13.858 ) ( -6.295 ) ( 1.667 ) 
0.00285 -0.00193 3.74E004 

( 12.846 ) ( -8.226 ) ( 0.889 ) 
0.00234 -0.00187 0.00141 
(9.461) (-7.146) (5.117) 
0.001'77 -0.00128 8.79E004 

( 8.618 ) ( -5.939 ) ( 2.810 ) 
0.00193 -0.00160 0.00128 

( 12.322 ) ( -9.762 ) ( 5.317 ) 
0.00190 -0.00165 9.26E-004 

( 9.034 ) ( -7.282 ) ( 2.994 ) 
0.00239 -0.00201 4.76E-004 

( 9.909 ) ( -8.236 ) ( 1.628 ) 
0.00206 -0.00152 7.54.E-004 

( 9.802 ) ( -6.932 ) ( 2.464 ) 
L the pareatheeee are t-valm 

Date 
08/01/94 

08/02/94 

08/03/94 

08/04/94 

08/05/94 

08/08/94 

08/09/94 

O8/ 10194 

08/11/94 

08/12/94 

O8/ 15/94 

08/16/94 

08/17/94 

O81 18/94 

08/19/94 

08/22/94 

08/23/94 

08/24/94 

08/25/94 

08/26/94 

08/30/94 

08/31/94 

* Numbem 

Table 4.1: Estimation Results of Eqution (4.7) using Buy/Sell Information 

PBS PSB PBB Pss 56 
0.00208 -0.00182 0.00162 -1.7lE-004 3.55E006 1.06E007 

I 

l 

i 

- - 
ia 



Table 4.2: FVst-Order Autocorrelation (BTI 
Date 
08/01/94 
08/02/94 
08/03/94 
08/04/94 
08/05/94 
08/08/94 
08/09/94 
O81 10194 
08/11/94 
08/12/94 
O8/ 15/94 
08/16/94 
O81 17/94 
081 18/94 
08/19/94 
08/22/94 
08/23/94 
08/24/94 
08/25/94 
08/26/94 
08/30/94 
08/31/94 
Average 

- 

tefers 

- 
T - 

- 
L 

Gautocorrelation of raw retunzs 
refers to autocorrelation of fitted Residusls of Equation. (3.5) 
refem to autocorrelation of fitted RRsiduals with Buy/SeU Identitiea 
refers to percentage decrease in autocorreiation, (4)=((1)-(3)]/(1) 



Date 
08/01/94 

08/02/94 

08/03/94 

08/04/94 

08/05/94 

08/08/94 

08/09/94 

08/10/94 

O8/ 11/94 

08/12/94 

08/15/94 

O81 16/94 

08/17/94 

08/18/94 

08/19/94 

08/22/94 

08/23/94 

08/24/94 

08/25/94 

08/26/94 

08/30/94 

08/31/94 

Numben 
( 1.318) (-1.506) ( 5.383) 

n the parenthaxa are t-values 

Table 4.3: 
Trades 

h 

A - 
3 

Estimation Resuits of Equation (BT) Using the Xurnber of 
as the Conditionhg Variable 

G Ci4 
2.37E004 -1.19E004 4.62E-006 1.363-007 

il 



Table 4.4: Estimation Fbdts of a QTAR-GARCH(1, 1) Mode1 

Date 
08/01/94 

08/02/94 

08/03/94 

08/04/94 

08/05/94 

08/08/94 

08/09/94 

08/10/94 

08/ 11/94 

08/12/94 

08/15/94 

08/16/94 

O8/ 17/94 

08/18/94 

O8/ 19/94 

os/n/g4 

08/23/94 

08/24/94 

08/25/94 

W W 9 4  

08/30/94 

08/31/94 

t G A R a  
Et = Vt * Numbem 

(-4.364) (5.139) (-6.152) (-1.872) (8.561) (19.384) ( 1 . m )  ( 0.000) 
4.0786 0.0351 -0.2684 4.1602 0.0209 0.0148 0.0885 0.3323 
(-4.985) (3.941) (-3.388) (-2.489) (2.779) ( 2.764) (2.150) ( 1.584) 
-0.1401 0.0472 -0.3928 4.2596 0.0025 0.0010 0.0773 0.9039 
(-5.908) (3.889) (-5.439) (-4.541) (1.094) ( 1.316) (3.024) (32.445) 
-0.1065 0.0394 -0.3969 -0.0856 0.0194 0.0171 0.3760 0.0000 
(-7.784) (5.037) (-4.560) (-1.110) (4.525) (5.702) (3.988) (0.000) 
-0.0721 0.0339 -0.4420 -0.0998 0.0204 0.0007 O.oO00 0.8565 
(-2.960) (4.037) (-5.955) (-1.51) (4.478) ( 2.194) (0.000) (32.673) 
-0.0987 0.0361 -0.4667 4.0671 0.0708 0.0236 0.0000 0.0000 
(-3.178) (4.215) (-4.485) (-1.440) (2.945) ( 4.874) (0.000) ( 0.000) 
-0.0694 0.0262 -0.4302 -0.1404 0.0168 0.0085 0.1259 0.4625 
(-3.627) (3.470) (-4.840) (-2.178) (2.872) (2.662) (2.676) (2.906) 
4.0884 0.0507 -0.4237 4.1164 0.0423 0.0240 0.0877 0.1701 
(-4.049) (5.063) (-5.568) (-1.820) (4.308) (4.953) (1.753) (1.237) 
-0.0695 0.0431 6.5100 -0.2174 0.0176 0.0093 0.1290 0.5478 
(-2.904) (4.721) (-5.289) (-3.737) (2.699) ( 2.634) (2.852) ( 4.119) 
-0.0787 0.0314 6.2204 4.0436 0.0153 0.0043 0 . m  0.6775 
(-3.983) (4.169) (-2.421) (-0.637) (2.924) ( 3.0'72) (2.704) ( 8.614) 
-0.0624 0.0443 -0.4577 -0.2119 0.0028 0.0005 0.0604 0.9001 
(-4.259) (4.766) (-7.121 (-3.398) (2.102) ( 1.147) (3.661) (39.930) 
-0.0989 0.0547 4.2790 4.2268 0.0009 0.0016 0.0806 0.8897 
(-6.541) (4.732) (-4.514) (-3.429) (0.816) (1.522) (3.498) (29.120) 
-0.0495 0.0417 -0.3624 4.1368 0.0099 0.0040 0.0377 0.7567 
(-3.339) (4.274) (-5.339) (-2.045) (2.318) ( 1.657) (1.555) ( 7.736) 
4.0395 0.0343 4.4320 -0.2625 0.0612 0.0229 0.2813 0.0740 
(-1.788) (3.455) (-5.268) (-4.155) (5.679) ( 7.458) (3.557) ( 1.028) 
-0.0395 0.0242 -0.5828 4.1988 0.0022 0.OOQO 0.0411 0.9415 
(-2.264) (3.791) (-8.0'77) (-3.259) (2.129) ( 0.313) (3.884) (86.707) 
-0.0655 0.0212 4.5740 4.3329 0.0014 0.0028 0.0647 0.87l1 
(-3.474) (2.097) (-7.882) (-5.832) (0.665) ( 1.853) (2.604) (16.512) 
-0.1012 0.0532 -0.1922 -0.1993 0.0250 0.0114 0.0727 0.6013 
(4.766) (4.552) (-2.336) (-3.147) (1.162) ( 0.925) (1.552) ( 1.804) 
4.0578 0.0502 -0.3841 -0.1790 0.031 0.0030 0.0616 0.8565 
(-3.921) (4.647) (-6.016) (-2.736) (1.132) ( 1.390) (2.293) (10.627) 
4.0362 0.0200 -0.4988 -0.3580 0.0023 0.0004 0.0482 0.9147 
(-2.560) (2.501) (-7.725) (-5.991) (2.291) ( 1.150) (2.657) (35.129) 
-0.0597 0.0204 4.4579 4.2744 0.0002 0.0002 0.0774 0.9155 
(-4-731) (3.239) (-6.922) (-4.581) (0.248) ( 1.470) (4512) (60.265) 
4.0945 0 . W  -0.4523 -0.2120 0.0408 0.0281 0.1168 0.0925 
(-4.585) (3.455) (-6.140) (-3.481) (4.104) ( 4 .M)  (2.334) ( 0.541) 
-0.0590 0.0296 -0.5560 -0.lOOQ 0.0316 0.0204 0.1073 0.0000 
(-3.164) (3.760) (-6.987) (-1.678) (5.499) ( 7.042) (1.764) ( 0.000) 
.,1)-QTARCH model: Xt = D (wi + al lXt - i )  + (1 - D) (% + alzXt-l) + ét 

ut- ~(~,l),andht=D=Bol+(l-D)~DmfPi&~+& ht-1 
n the parenthem are t-value8 



Table 4.5: Reduaion in Volatility Persistence 

Date 
08/01/94 

08/02/94 

08/03/94 

08/04/94 

08/05/94 

08/08/94 

08/09/94 

08/10/94 

08/11/94 

08/12/94 

08/15/94 

08/16/94 

08/17/94 

08/18/94 

08/19/94 

08/22/94 

08/23/94 

08/24/94 

08/25/94 

08/26/94 

08/30/94 

08/31/94 

QTAR-G 

GARCH 
Di 

0.40712 
( 2.38 ) 
0.63830 
( 1.69 ) 
0.93537 
( 45.88 ) 
0.19522 
( 1.74 ) 
0.86671 
( 24.35 ) 
0.85511 
( 39.35 ) 
0.45165 
( 2.92 ) 
0.34554 
( 1.78 ) 
O. 7449 1 
( 3.74 ) 
0.87059 
( 17.92 ) 
0.91441 
( 41.94 ) 
0.90186 
( 37.43 ) 
0.84302 
( 13.25 ) 
0.87956 
( 2s.n ) 
0.93035 
( 63.49 ) 
0.85154 
( 17.72 ) 
0.84648 
( 10.15 ) 
0.90845 
( 20.25 ) 
0.90326 
( 30.64 ) 
0.90340 
( 54-40 
0.29734 
( 0.93 ) 
0.10042 

QTAR-G 



Date 
08/01/94 
08/02/94 
08/03/94 
08/04/94 
08/05/94 
08/08/94 
08/09/94 
08/10/94 
08/11/94 
08/12/94 
08/15/94 
O8/ 16/94 
08/17/94 
08/18/94 
08/19/94 
08/22/94 
08/23/94 
08/24/94 
08/25/94 
08/26/94 
û8/30/94 
08/31/94 
Average 
* QTAR-( 

Table 4.6: Cornparison of Log-iikelihood and AIC 

-- - - 

Log-L 
OLS GARCH QTAR-G 

L&L: ~ o g - ~ i k ~ _ 2 i h 0 0 d  hction. 
AIC: Akaike Information Criterion 

A= 
OLS GARCH QTAR-G 
114 118 162 

AIC= Log-LikeiihOOd function - number of parameters. 



Table 4.7: Cornparison of Wample Prediction 

Date 
08/01/94 
08/02/94 
08/03/94 
08/04/94 
08/05/94 
08/08/94 
08/09/94 
08/10/94 
08/11/94 
08/12/94 
08/15/94 
08/16/94 
08/17/94 
08/18/94 
08/19/94 
08/22/94 
08/23/94 
08/24/94 
08/25/94 
08/26/94 
08/30/94 
08/31/94 
Average 

" QTAR-( 

A 
OLS GARCH QTAR-G 

0.03600 0.03606 

B 
OLS GARCH QTAR-G 

0.04788 0.04534 0.03926 

Panel A reports the mean sqwed error (MSE) between the obsemed and 
# ""b"(& - Zt)2; fitted returns MSE = a-. 

P d  B reports the m& absolute error (MAE) between the fitted sqwed 
residuais and the fitted conditional variasce. 
MAE = ,kG xEyf ob lEf - &(. Io. the OIS case, Kt = S. 



Table 4.8: Cornpariaon of One-Step ahead Out-of-Sample Prediction 

Date 
08/01/94 
08/02/94 
08/03/94 
08/04/94 
08/05/94 
08/08/94 
08/09/94 
08/10/94 
08/11/94 
08/12/94 
08/15/94 
O8/ 16/94 
08/17/94 
O8/ 18/94 
O8/ 19/94 
08/22/94 
08/23/94 
08/24/94 
08/25/94 
08/26/94 
08/30/94 
08/31/94 

A 
OLS GARCH QTAR-G 

0.05233 0.05212 0.04894 
0.03524 0.03512 0.03143 
0.02339 0.02335 0.02199 
0.03380 0.03381 0.03119 
0.02149 0.02163 0.01863 
0.04145 0.04109 0.03744 
0.02336 0.02341 0.01969 
0.05816 0.05772 0.05474 
0.05387 0.05389 0.04ô49 
0.01105 0.01099 0.01043 
0.01971 0.01961 0.01762 
0.03230 0.03242 0.02909 
0.03215 0.03220 0.02877 
0.02159 0.02147 0.02126 
0.04947 0.04906 0.04565 
0.04287 0.04297 0.03863 
0.04437 0.04455 0.04448 
0.02333 0.02358 0.02606 
0.03108 0.03102 0.02883 
0.01558 0.01562 0.01406 
0.03314 0.03315 0.03304 
0.02633 0.02646 0.02482 
0.03300 0.03297 0.03060 
the fi& 400 observations to c 

OLS GARCH QTAR-G 
0.05887 0.05681 0.05217 

. - - -.  

itah parameter estimates. The 
one-step ahead out-of-sample prediction is then b d  these estimates. 
QTARG incikates QTAR-GARCH(1,l) model; 
Panel A reports the mesn sqwed  error (MSE) between the observed and 
fitted returns MSE = lg of 1 x,,""(xt - 2 t l 2 ;  

* Panel B reports the mesn absolut: error (MAE) between the fitted squared 
residuals and the fitted conditional variance. 
MAE = (+ 1 of o h  , o,-m~ zLl I$ - A& 1. In the OLS case, = c2. 
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CONVERTING IM-MI TRADES TO MM 
TRADES 

ù1 this appendix, we describe our scheme of re-coding pairs of IM-MI trades into an o b  

servstions of MM trade. The following table shows an extracteci example of a sequence of 

Table A.l: An Example of a Sequence of IM-MI Trades 
Seq. No* Time Buyer Seller Qty. Value Ask Bid Pnce 
13787 11:Ol M 1 30000 11540700 385 384 384.69 
13788 11:Ol 1 M 30000 11535000 385 384 384.50 
13829 11:17 1 M 100000 38450000 385 384 384.50 
13831 11:18 M 1 100000 38469000 385 384 384.69 
13850 11:26 M 1 10000 3840000 385 383 384.00 
13851 11:26 1 M 10000 3838100 385 383 383.81 
13956 1226 M 1 10OûûO 38350000 385 383 383.50 
13957 12:n 1 M 100000 38331000 385 383 383.31 
13986 12:48 M 1 25000 9604750 385 383 384.19 
13987 12:48 1 M 100000 38400000 385 383 384.00 
13988 1249 1 M 25000 9600000 385 383 384.00 
13989 12:49 M 1 100000 38419000 385 383 384.19 
14159 14% M 1 10000 3856900 386 385 385.69 
14162 14% 1 M 10000 3855000 386 385 385.50 

*Sq. No conesponde to the secpence that each o k r v a n  occura in the original data 
set. Note th& al1 the other non-iM-~MI tradea are taken out of this table for 
illustration prupose. 



Ln the simplest cases, if an IM trade is followed by an MI trade, or vice versa, with the 

same traded quantity, we treat this pair of IM and MI trades as an MM t d e .  The 13,787~ 

observation and the 13,788~~ observation in the table constitute such an example. However, 

complication occurs in the following t h  situations: 

1. Pairs of IM & MI trades may not be located right besides eacà other along the se- 

quence of recorded observations. For example, there is s non-IM-MI: trade occurs 

between the 13,829" and the 13831th observation. However, by matching the quan- 

tity, we wuld st i l l  be able that say that these two observations belong to the same 

MM trade. in this situation, we take the h t  recorded time as the time for the newly 

recoded observation, and a h  maintain its sequence in the dataset. 

2. Since the inter-dealer brokers charge commicrsion when facilitating trades between 

market makers, there would be two different prias for each pair in the table, as  is 

invariably the case in the table. The pnce we choose is the "deaner price", which is 

a multiple of 25 pence. 

3. Trades between market makers and inter-dealer bmkers rnay involve more than three 

parties: a market maker as a buyer, a market maker as a seller and an inter-dealer. 

For example, the 13,986", 13,98Pht 13,988th and 13,989*obsennrtions. Again, we can 

treat this sequence of trades as the ssme block of MM trade by matching the involved 

quantities and buy-sell prices. The previous two criteria aiso apply in this case. 



LM TESTS 

Our equation can be written as 

where ~ ( t ) ,  conditional on N( t ) ,  is N ( O , d  + 4 ~ ~ ( t ) ) .  Let Y be a (T x 2) mstrix Y' = 
r 7 

1 , 
' J , -/ = b, p ~ ]  , P)  = [$, 41. Then the Iikelihood function L 

MI, m 2 ,  "',  NT 
can be written as 

1 1 
L = L(7,P) = -sCInh - Z ~ 4 / h r  (W 

where ht = o'Kf, is the t-th row of Y ,  et = Xc - KT, and the constant term is omit ted. 

It follows that the h t  derivatives of the log-lilaelihood fiinction are 

The second derivat ives follow immediately, 

#L - -  KY, 
wv - C- 

ht 

Given the abave information, the Fisher's information matrix can be constructed as 



a2L We now calculate @H, = E H ~  (--), j=l, 2,3 where 19' = [y, 31, that is, 

The score test for the hypothesis Hi, j=1,2,3,  is of the form U ~ , @ E ~ D ~ ,  which will be 

a~~mptotically distributeci ss x2(1) for j = I ,  2 and 2 ( 2 )  for j=3. In tuni, fiom (A.3) 

where ht is equal to (evaluated under Ho). 

We can cornpute LM, = D;lt t&: D ~ ,  for j = 1,2,3 explicitly as follows: 

1 (C ~ t m t ) ~  
LM3 = LMa(Et) + 3 C ( U t  - L I N ) 2  where 5 = xt - S 



A Poisson distributeci random variable s with density function f (z) 

has the foilowing moment generat ing function 

Now. 

which implies 



Based on this moment generating function, we can derive associateci moments of AN(t)  as 

the follcnwing, 

where 

Define 

It follows that 

(C.9) 

(C. 10) 

(C. 12) 

(C. 13) 



APPENDIX D 

MOMENT CONDITIONS OF AN@),  AND X ( t )  

Rom our model, 

Then we derive the foUowing recursively, 

2d8a2 
Cou(Ahyt), anr(t - a)) = - 

1 - e2 

Finally, i t follow that 

CorT(AN(t),AN(t - s)) = C 4 A w t ) ,  M ( t  - 8 ) )  

v a ~ ( ~ ( t )  

For the moment8 of X(t ) ,  

it foUows that 



The correlation between X ( t) and X (t -s) can be recursiveiy derived by using Cm(X ( t )  , X ( t  - 
1)). It is straightforward to show that 

Then we derive the following recursively, 

Findly, it follows that 



IMAGE NALUATION 
TEST TARGET (QA-3) 

APPLIED IMAGE, lnc 
1653 East Main Street - -. - Rochester. NY 14ôû9 USA -- -- - - Phone: 71 W482-0300 -- -- - - Fa: i l  61288-5989 




