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ABSTRACT

The purpose of this thesis is to study the modelling of high frequency financial time series
when extra information is available from trading activities.

The first chapter starts with a literature review on the available econometric models
that have been proposed for modelling financial time series, in particular, the returns se-
ries. These include models that assume returns being drawn from some time homogeneous
distributions, and models that take into account the time dependency of returns. We con-
centrate on models that incorporate exogenous trading information. Since information is
not practically observable, informational proxies have to be used, instead. Typically, infor-
mational proxies are constructed from observed trading variables such as trading volume,
the number of trades, the number of price changes, the number of quote changes, and the
number of executed order imbalance. The goal of this chapter is to identify suitable models
and informational proxies that would be potentially useful for modelling high frequency
data.

Applied research in high frequency financial data has a very short history. Further-
more, unlike daily or weekly financial time series, the high frequency l-minute data studied
in this thesis has several distinguished features that deserve our attention. Therefore, we
devote the second chapter to a detailed examination of the 1-minute data. To facilitate
the analysis, we select two representative stocks, IBM and INTEL, from the New York
stock exchange, and British Telecom from the London Stock Exchange. We find, from the
constructed one-minute data, that neither the returns series nor the trading variables are
independently, identically, and normally distributed. There also exists a large significant
negative first-order autocorrelation in the one-minute data. Since significant negative first-
order autocorrelation typically does not exist in any returns series with frequency lower than
one day, it differentiates high frequency data that we use from the lower frequency data.
In the following chapters, we will try to model this interesting stylized fact. In addition to
trading variables, the British Telecom data from the London Stock Exchange also contain
extra buy/sell information on every single transaction. In the preliminary analysis, we find
that different types of buy/sell trades do not arrive independently and could be potentially
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helpful in explaining the returns autocorrelation.

The third chapter begins the model building of this thesis. Since information does not
arrive in equally spaced intervals, we propose that a mixed jump-diffusion process is suitable
for modelling both the returns dynamics and the information arrival. In this chapter, we
detail the modelling, the estimation procedures, and the construction of some test statistics.
The estimation and testing results of this model using those three aforementioned data sets
indicate that the number of trades typically perform better than any other trading variable
as the informational proxy. In order to accommodate the non-homogeneous nature of the
information variables, we then extend our model by allowing the information arrival inten-
sity to follow a stochastic process. When this doubly stochastic model is employed, we find
that volatility persistence is much reduced compared to what is typically observed in the
GARCH-type of models. The extended model is also capable of capturing the arrival of the

number of trades.

Although the models proposed in the third chapter are able to capture the arrival of
the number of trades and pin down the volatility persistence, it fails to describe the other
stylized fact, significant negative first-order autocorrelation. In the final chapter, we extend
our original homogeneous mixed jump-diffusion model by incorporating the extra buy/sell
information existing in the British Telecorn data. With this new setup, the significant nega-
tive first-order autocorrelation is on average reduced by 40%. In addition to explaining the
autocorrelation, we also use buy/sell signals in exploring market asymmetry in a threshold
autoreregresive (TAR) framework. Specifically, we develop a qualitative threshold model
with conditional heteroskedasticity, where both the conditional mean and conditional vari-
ance are regime-dependent. This model fits high-frequency data better than the benchmark
GARCH model. It also generates smaller volatility persistence. This finding is in accordance
with the empirical evidence that high GARCH measure of volatility persistence may arise
as a result of mis-specifying existing structural changes. Furthermore, our model provides
much better in-sample and out-of-sample prediction on both returns and volatility.
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CHAPTER 1

FINANCIAL TIME SERIES MODELS AND

TRADING INFORMATION

1.1 INTRODUCTION

One of the long-lasting debates in financial econometrics is whether a sequence of specu-
lative asset returns are independently, identically, and normally distributed. Such an issue
is important at least for the following two reasons. First of all, in many financial stud-
ies, economic hypotheses are tested under the assumption that the daily stock returns are
independently, identically, and normally distributed. Secondly, the distribution of specula-
tive price returns has implications for pricing derivative securities, whose pricing formula
rely heavily on the variance of the underlying returns distribution. It is obvious that any
departure from the i.i.d. normality assumption may lead to dubious statistical inferences
and results. Hence, how to best model asset returns has always been an important issue in

financial econometrics.

The earliest parametric distributional model for stock returns is proposed by Bachelier
(1900). By assuming the sequence of prices have independent increments with expected
increment equal to zero, Bachelier constructs a random walk model of stock price changes.
According to this model, price changes then follow a normal distribution with zero mean and



variance proportional to the time difference. In other words, they follow a standard Brown-
ian motion. However, empirical evidence suggests that daily stock returns typically exhibit
higher kurtosis and fatter tails than what would be expected out of a normal distribution.
Furthermore, it is well known that, in financial markets, large price changes tend to bunch
together. Similarly, small price changes tend to be followed by small price changes. This so
called volatility-persistence phenomenon is an indication of time dependency of the returns
series. In other words, no matter how uncorrelated, a sequence of financial returns is rarely
an independent series. Consequently, an independent homoskedastic Gaussian process is

not adequate for describing financial asset dynamics.

Models proposed by researchers in responding to the incapability of the i.i.d. nor-
mal distribution in fitting stock returns can be broadly categorized into two groups. The
first group contains models that assume returns being drawn from some time homoge-
neous distributions, while the second group contains models that take into account the
time dependency. Examples of the first group include Mandelbrot’s (1963) stable distrib-
ution, Praetz’s t-distribution (1972), Clark’s (1973) log-normal normal distribution, Kon'’s
(1984) finite mixture of normal distributions, and Merton’s (1976) mixed jump-diffusion
model. This group of models originate from the stochastic nature of information arrival,
and information asymmetry among market participants. Essentially, they are derived either
by compounding a normal distribution with a variance parameter drawn from some other
time-invariant distribution, or by compounding several normal distributions. Although un-
conditional distributions derived from these models exhibit fatter tails and higher kurtosis
than those of a normal distribution, they do not take into account the time dependency of
financial time series, and hence are unable to capture the volatility-persistence phenomenon.
Therefore, we will not pursue any further discussion on these types of model. We include

them here for the sake of completeness.

To capture the serial dependency of stock returns, several candidate models are avail-
able. The mixed jump-diffusion model provides a natural framework for us to study the
time dependency of financial time series with exogenous trading information. Imagine that
we can approximate the information arrival by some observable trading activities, the time
dependency is built into the model via the dependency of trading activities. Other available
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models that are designed to capture the time dependency of financial time series include
Engle’s (1982) autoregressive conditional heteroskedasticity (ARCH) model, Bollerslev’s
(1986) generalized autoregressive conditional heteroskedasticity (GARCH) model, Hamil-
ton’s (1989) regime-switching model, and Tong’s (1983) threshold model. These models
enable us to study nonlinearity that exists in the data.

In this chapter, we survey these available models for modelling stock returns. In par-
ticular, since market participants react to informational available to them, it is natural
to treat equity returns as results of the influx of new information into the market, and
of the re-evaluation of existing information. Consequently, we concentrate on models that
enable us to incorporate the impact of information. However, information is not practically
observable, some praxies have to be used, instead. To construct these proxies, there are
public news releases which contain information available to the general public. There is
also private information that is ultimately reflected in the trading activities. Due to the
data frequency that we are examining in this thesis, we will focus on reviewing private
informational proxies that are adopted in the empirical literature. The candidates include
trading volume, the number of trades, average trading volume, the number of quote arrivals,
the number of price changes, and the executed order imbalance. It is well known that the
operation of financial markets is far from that of a Walrasian competitive market, and tends
to be in a sequence of disequilibrium. This is especially true in short time horizons. Hence,
despite their imprecise role as informational proxies, trading activities are likely to contain
information about the disequilibrium dynamics of asset returns.

The goal of this chapter is to identify suitable models and informational proxies that
would be potentially useful for modelling high frequency financial data. We start surveying
available returns distribution models in the next section. In Section 1.3, we review trading
variables that have been proposed as proxies for private information. We provide some
concluding remarks in the final section.



1.2 AVAILABLE RETURNS DISTRIBUTION MODELS

Stock returns typically consist of quite a few discontinuities. The mixed-jump diffusion
model of Merton (1976) is able to capture any abnormal informational shocks and thus
display discontinuous sample path. Basically, it is a mixture of a continuous normal com-
pounding and a Poisson jump process to allow instantaneous stock price increase or decrease.
It exhibits certain martingale properties (see Harrison and Pliska (1981)), and is thus con-
sistent with the efficient market hypothesis.

The mixed jump-diffusion model could be described as the following

AN(2)

X() = () = (@ - 30%) + o) — 2t~ ) + 3 Q (L1)

=1
where AN(t) is the Poisson counting process with intensity parameter A; Q; measures the
jump size and is distributed N(uq, a%); a is the instantaneous conditional expectation; and
o2 is the instantaneous conditional variance; z(t) is the standard Brownian motion. The

unconditional density function of X (t) could be calculated as
e M , .
pdf(X(8) =3 Zdlu+pg 510" + 04 4) (12)
j=04°

where 1 = a —02/2, and ¢(a,b) is the normal density with mean a, and variance b. All
moments of this unconditional distribution exist. The unconditional distribution of X (t) is
leptokurtic if A > 0, and is skewed if zqQ # 0. If the random variable is standardized by set-
ting p = pg =0, and o2 + Ao = 1, the unconditional distribution of X (t) is more peaked
around the center and exhibits longer tails than a standard normal distribution. To capture
the serial dependency of stock returns, Oldfield, Rogalski and Jarrow (1977) employ the
mixed jump-diffusion model and allow for serial correlation between jumps, which implies
serial correlation between each transaction. Their formulation sheds light on how one could
incorporate the informational variables through the mixed jump-diffusion model. Indeed,
the mixed jump-diffusion model provides a naturel framework for us to study the time de-
pendency of financial time series with exogenous trading information. Imagine that we can
appraximate the information arrival in a mixed jump-diffusion model by some observable
trading activities, the time dependency is built into the model via the dependency of trad-
ing activities. Furthermore, we can include buy/sell trading information into the model,



or formulate the Poisson arrival intensity parameter by some other stochastic process that
depends on its own history. We shall explore these possibilities in Chapter 3 and Chapter
4.

Other available models that are designed to capture the time-dependency of financial
time series include Engle’s (1982) autoregressive conditional heteroskedasticity (ARCH)
model, Bollerslev’s (1986) generalized autoregressive conditional heteroskedasticity (GARCH)
model, Hamilton’s (1989) regime-switching model, and Tong’s (1983) threshold model. The
GARCH model formulates the current conditional variance as a linear function of past
squared innovations and historical conditional variances. This model can be specified as

the following

X: = & (1.3)
where &, = ugh.tllz, v ~ iid (0, 1),

and he = a+B1el ) + o + Boft_p + Nheo1 + e + Yghe—g

This model and its variants are specifically designed to capture the commonly observed
volatility clustering phenomenon of which the persistent level is measured by Y°%_; 6; +
Y7_17;- They are also capable of describing other observed stylized facts of financial data,
such as fat tails, leverage effects, mean reversion, market asymmetry,..., etc. Therefore,
this type of model is very popular in financial modelling.! However, the GARCH-type
model has several shortcomings. First of all, due to its deterministic formulation of the
conditional variance, a GARCH model is unable to display stochastic volatility which is
another observed stylized fact of financial data. Secondly, a high GARCH measure of
volatility persistence may be due to the failure to take into account of structural shifts
in the model (Lamoureux and Lastrapes (1990b)). Furthermore, the prediction power of
a generic GARCH is very poor when structural changes do exist (Hamilton and Susmel
(1994)). Thirdly, the generic GARCH model does not consider market asymmetry.

Time series models with nonlinearity include a very broad class of models which could

1For detail reviews of these types of model and their applications in financial analyses, see Bera
and Higgins (1995), Bollerslev, Chou and Kroner (1992), Bolleralev, Engle and Nelson (1994) and
Diebold and Lopez (1995).



be estimated either parametrically or non-parametrically. Tong (1990) and Terisvirta,
Tjstheim, and Granger (1994), both provide a comprehensive coverage of the most popular
models in this class. Among the numerous parametric models, the regime-switching (R-S)
model of Hamilton (1989) has received extensive attention in the econometric literature.
By assuming the variable of interest, X;, follows an AR(1) process, we can write down a
simple regime-switching model as follows:

Xt = X1 +e,t=0,1,2,... (1.4)

where {a;} is a Markov chain which is irreducible and aperiodic and has a finite state space
consisting of k states (regimes), s1,...,3. {¢:} is a sequence of i.i.d. random variables with
zero mean and constant variance ¢2. To describe the transition between regimes, we need
a transition probability matrix P(p;;), where p;; = P(ay = 8; | ae—1 = 84), 3, = 1,...,k.
This type of model has the advantage of allowing the interaction between the data and the
Markov chain to endogenously determine the state of the world. It has been applied suc-
cessfully to determine structural breaks in long horizons, such as applications in estimating
business cycles (Hamilton (1989), Durland and McCurdy (1994), Filardo (1994, 1998)), in
fitting weekly and monthly Treasury bill excess returns (Cai (1994), Gray (1996)), and in
fitting weekly stock retwrns (Hamilton and Susmel (1994)). However, a clear-cut major
structural break is not likely to happen in a shorter horizon such as an intra-day period.
This renders the application of the R-S model to intra~day analysis problematic. Further-
more, the estimation of the R-S type of model is usually computationally intensive and is
quite sensitive to the specification of the model, especially the specification of the transition
probability function of the Markov process.

Threshold autoregressive (TAR) models of Tong (1983) provide an alternative in the
parametric class of nonlinear models. A time series X is a TAR model if it has the following
functional form

Xe=¢h+diXem1+...+9pXep+ei, if g€ Li,i=12,...,k (1.5)

where L; form a mutually exclusive partition of the real line in the sense that U, L; = R,
and L; N L;j = ¢, if i # j; p is the AR order; 8 is the decision rule variable; d is the delay

parameter; k is the threshold parameter; and {e}} is a sequence of i.i.d. random variables



with zero mean and variance o, {}} and {&]} are independent whenever i # j. This type of
model exogenously sorts returns into different regimes according to some threshold, usually
a function of the lagged dependent variable (f;—q4 = X;—4) and is thus termed self-exciting
TAR (SETAR) model. Estimating TAR models are relatively easier than estimating the
R-S model. TAR models are also capable of capturing time-irreversibility, asymmetric limit
cycle and jump phenomenon. The major criticism of TAR models comes from the fact that
researchers rarely know which state of the world they are currently in, which hinders the
application of the TAR-type of model in economic time series. However, we think that the
criticism of the TAR model is not always justified, especially when we have exogenously

observable information to determine the threshold.

To sum up, extensions of the mixed-jump diffusion model and the TAR model both
allow us to easily accommodate trading information into the model and are capable of
capturing time dependency, market asymmetry, and nonlinearity existing in financial data.
In Chapter 3 and Chapter 4, we shall extend these two models and apply them in studying
high frequency stock return data.

1.3 INFORMATIONAL PROXIES

Informational proxies adopted in the literature can be broadly categorized into two types,
public information and private information. Examples of public information are scheduled
macroeconomic news releases, and announcements of survey statistics. The impact of these
publicly released news on interest rates, foreign exchange rates, foreign exchange rate fu-
tures, and stock returns has been examined by DeGennaro and Shrieves (1997), Ederington
and Lee (1993), Goodhart et al. (1993), Hakkio and Pearce (1985), Harvey and Huang
(1991), and Payne (1997). This literature shows that intraday volatility is significantly

reduced when announcement effects of public information are included in the estimation.?

Unlike public information, private information by its very nature is not directly observ-
able. However, we do know that private information invariably affects trading decisions.

2See Payne (1997) for a survey of a list of public information variables examined in this literature,

and the associated announcement effects of these variables.



The observed trading activities are therefore the most suitable and popular praxies for pri-
vate information, see Admati and Pfleiderer (1988), Glosten and Milgrom (1985), and Kyle
(1985) for theoretical arguments.3 Empirically, there is also a long history of using trading
variables to explain returns/volatility dynamics at lower frequencies. The candidates in-
clude, trading volume in Clark (1973), the number of trades, and average trading volume in
Jones, Kaul, and Lipson (1994), the number of quote arrivals in Bollerslev and Domowitz
(1993), and the executed order imbalance in Locke and Sayers, (1993). In this thesis, we
will only examine private information. Our reasons are twofold. First of all, public news
announcements do not arrive at the same frequency as the high frequency transactional
data we study in this thesis. Secondly, trading activities ultimately incorporate both public

and private information.

Trading volume is, by far, the most often used informational proxy in the empirical
study of stock returns. Ever since Clark (1973), trading volume has been used to test the
mixture of distributions hypothesis, see Harris (1987); to test the price-volume relationship,
see Gallant et al. (1992);* and to examine stock returns volatility, see Andersen (1996) and
Lamoureux et al. (1994).

However, in a recent paper, Jones, Kaul, and Lipson (1994) show that trading volume
has no informational content beyond that contained in the number of trades. The use of
number of trades as the informational proxy dates back to Osborne (1959), who modified
Bachelier’s random walk model by incorporating a diffusion process into the evolution of
stock prices, with an instantaneous variance dependent on the number of trades sampled
from a uniform distribution. The uniform distribution assumption on the number of trades
is however dubious, because transaction time intervals are certainly not uniformly distrib-
uted, see Oldfield et al. (1977). Recently, several researchers have revitalized the use of
the number of trades and have given empirical support for using them as alternative in-
formational proxies.® Marsh and Rock (1986) find that the net number of trades (number
of seller-initiated minus buyer-initiated trades) explains as much as does the net volume.

3For example, market makers with asymmetric information will adjust their inventories before
the news is announced.

4See also Karpoft (1987) for a survey of previous studies on the price - trading volume relationship.
5This is probably due to the availability of data. As pointed out by Jones, Kaul, and Lipson



Geman and Ané (1996) demonstrate that the moments of the time change needed to induce
returns normality match the moments of the number of trades for the S&P 500 one minute
returns. Madan and Chang (1997) propose a variance gamma stock price process and con-
firm that normality is attained in the trade-based measure of time. All of this new evidence
indicates that the number of trades could be a better instrument for the non-quantifiable

information than trading volume.

In addition to trading volume and number of trades, average trading volume (trading
volume divided by the number of trades) is also used in the empirical analysis of stock
returns. Jones, Kaul, and Lipson (1994) actually use average trading volume, instead of
total trading volume, in their comparison of the explanatory power of different information
proxies. Their justification comes from the observation that both the number of trades and
the average trading volume are highly correlated with the total trading volume; however,
there is little correlation between the number of trades and average trading volume. In

other words, the number of trades and the average trading volume seem to contain different

information.

Quote changes are the number of times the valid market quoted prices changed through-
out the day for a certain security. Although Bollerslev and Domowitz (1993) find that mar-
ket activity, as measured by the number of quote arrivals, has no statistically significant
effect on returns volatility, Smaby (1995) and Takezawa (1995) suggest that the number of
quotes is positively and significantly related to the intra-day volatility of foreign exchange

rates in their recent studies.

An equivalent measure of the number of quote changes is the number of price changes for
the trade data set. Again, this variable has not often been used as a proxy for information
arrival, possibly due its unavailability. Both the number of quote changes and the number
of price changes seem to be intuitively good instruments for the discrete price-jumps often
observed in equity markets. In addition to the aforementioned information variables, Locke
and Sayers (1993) have also examined the impact of executed order imbalance in reducing

(1994), although trading volume for the NASDAQ securities have been available for many years,
historical data on the number of transactions were not available until recent years.



volatility persistence.

All of these variables are observable and have empirical implication of a random rate of
flow of information. In this thesis, we only examine the performance of three information

variables, namely trading volume and the number trades, and the number of price changes.

1.4 CONCLUDING REMARKS

In this chapter, we survey available models for modelling the returns series and concentrate
on those models that enable us to incorporate information variables and to examine their
usefulness in explaining the returns dynamics. It appears that the mixed jump-diffusion
model provides a natural framework for us to study the time dependency of financial time
series with exogenous trading information. The threshold autoregressive (TAR) model pro-
vides an alternative to study the nonlinearity existing in financial time series. It is capable
of capturing structural changes and it is easier to implement than the regime-switching
models. We shall rely on the mixed jump-diffusion model and the TAR model in our mod-

elling.

Regarding the information contained in the trading activities, trading volume, the num-
ber trades, and the number of price changes seem to be the most popular proxies for private

information. These are the three informational variables that we examine in this thesis.
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CHAPTER 2

HicH FREQUENCY ONE-MINUTE DATA

2.1 INTRODUCTION

Applied research employing high frequency data has been an attractive and challenging
topic in the area of Financial Econometrics since the ever-increasing availability of good
quality tick-by-tick data. This can be seen by the amount of research devoted to the two in-
ternational seminars on high-frequency data organized by the Olsen and Associates. It hasa
rather short history, although related earlier papers exist, see, for example, Roll (1984). Due
to the availability of data sets, researchers are able to uncover more interesting features of
asset dynamics at intraday frequency in recent years. Goodhart and O’Hara (1997) review a
large literature which contains the availability of databases, statistical properties, problems
and difficulties associated with high frequency data. Unlike daily or weekly financial time
series, the high frequency data studied in this thesis has several distinguished features that
deserve our attention. Therefore, we devote this chapter to the detail construction of the

1-minute data, and examine their statistical properties.

To facilitate the analysis, we select two representative stocks, IBM and INTEL, from
the New York stock exchange, and British Telecom from the London Stock Exchange. We
find that there exists a large significant negative first-order autocorrelation in the one-
minute data. Since significant negative first-order autocorrelation typically does not exist
in any returns series with frequency lower than one day, it differentiates high frequency
data that we use from the lower frequency data. In the following chapters, we will try to
model this stylized fact. In addition to trading variables, the British Telecom data from the

11



London Stock Exchange also contain extra buy/sell information on every single transaction.
Based on a preliminary analysis, we find that different types of buy/sell trade do not arrive
independently and could be potentially useful in modelling the returns series.

2.2 DAtA CONSTRUCTION

Data used in this paper come from two sources. The US data are extracted from the Jan-
uary 1994 Trade and Quote (TAQ) database, and the British data are extracted from the
August 1994 London Stock Exchange Transaction and Quotation Database (LSETQD).}

Among the numerous stocks in TAQ, we only choose two frequently traded stocks,
namely IBM and INTEL. IBM has been employed in several intraday trading analyses, for
example Engle (1996) and Engle and Russell (1994). INTEL had the highest total trading
volume among all available stocks. In January 1994, there were 21 trading days, which
are treated separately in the following study. Only those transactions that occurred be-
tween 9:30 a.m. to 4:00 p.m. are extracted, since the exchanges where IBM and INTEL
were mostly traded, NYSE and NASDAQ respectively, were open during that period.? We
ended up with 13,095 observations of IBM stock traded on NYSE, and 72,831 observations
of INTEL traded on NSADAQ. Variables recorded for each observation include: a time
stamp, a traded price and the associated trading volume (shares).

British Telecom (BT) is one of the major LSE securities that constitutes the FTSE 100
index. The data set includes trade-by-trade information of BT from 8:30a.m. to 4:30 p.m.,
during the period of August 1994. It contains 22 trading dates, and 18,116 observations.
In addition to the types of information contained in the US data, the LSETQD data. set
also contains buyer’s and seller’s identifiers being one of the following: market makers (M),
inter-dealer brokers (I), exchange members who are not registered as market makers (P),

1The TAQ database is produced monthly by New York Stock Exchange (NYSE). This database

contains virtually every trade and every quote of every stock traded on major American stock

exchanges, like NYSE, AMEX, NASDAQ,..., etc.
2Although, there are some transactions that occurred before 9:30 a.m. and some occurred after

4:00 p.m., the percentage of these exceptions are quite small Therefore, we decided to delete these
observations.



brokers (A), and direct customers (N).3 Because some of the prices may simply reflect large
measurement errors, we have filtered out trades with anomalous prices using the following
rule: any trades with prices that deviate from the adjacent price by 7 pence, roughly 4.5
times the average bid-ask spread, were deleted. After applying this filter, we ended up with
18,078 observations.* In this subset, we categorize trade types into the following buyer-seller

combinations:

1. MM: inter market makers trades;

2. MI & IM: trades between market makers and inter-dealer brokers;

3. MP & PM: trades between market makers and non-market maker exchange members;
4. MA & AM: trades between market makers and brokers;

5. MN & NM: trades between market makers and direct customers.

where for each XY combination, X,Y € {M, I, P, A, N}, X denotes the buyer, and Y de-
notes the seller. For example, MA refers to the case where a market maker buys shares
from a broker.

Since the function of inter-dealer brokers is just to facilitate anonymous trades between
market makers, a pair of MI and IM trades should actually be treated as one MM trade.
Otherwise, we will double-count the frequencies and quantities of transactions. After con-
verting 467 MI & IM trades to 216 MM trades, our sample size is reduced to 17,827.5 Table
2.1 presents the frequencies for the various types of trades and the associated average trad-
ing quantity and value. We show, in Table 2.2, that about 95% of the trades came from
brokers and direct customers dealing with market makers, we refer to these as ezternal
trades. The rest of the trades are defined as internal trades. On average, the quantity and

3Inter-dealer brokers exist to facilitate anonymous trading between market makers. This helps
market makers to unwind their excess inventory, especislly when they are hit by trades with large
volume. See Hansch (1997) for a good description of the market structure of the LSE. See also Board

and Sutcliffe (1995) for the impact of the market structure.
4Since there are only two observations that involve transactions between two brokers, we deleted

them from the rest of the analysis as well.
5See Appendix A for a detailed description of the conversion scheme that we use.
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value for the external trades are much smaller than those of internal trades.

Table 2.1: Distribution of Trade Types

Types Frequency Quantity Value
MM 438 138493 53001357
MA 13472 839 326426
MN 305 37744 14349387
MP 14 81571 30975893
AM 3131 6417 2451340
NM 431 86438 33121842
PM 36 42697 16315273

MM: Inter-Market Maker trades;

MA: Brokers SELL to Market Makers;

MN: Customers SELL to Market Makers;

AM: Brokers BUY from Market Makers;

NM: Customers BUY from Market Makers;

MP :Non-MM Exchange Member SELL to Market Maker;
PM : Non-MM Exchange Member BUY from Market Maker.

Table 2.2: Internal vs. External Trades

Frequency Quantity Value
Internal 488 129793 49663129
External 17339 4639 1772007

“Internal trades: MM, MP, PM;
External trades: MA, AM MN, NM.

To facilitate our analysis in fixed time intervals, we sample these tick-by-tick data every
minute. Our sampling procedure, adopted by Locke and Sayers (1993, p.17), is described

as follows,
1. Select the first recorded trade as the observation for each minute.

2. Retain the previous trade information for those following minutes with no trades.

This yields roughly 390 observations per day for IBM and INTEL, and roughly 490 for BT.
While sampling the 1-minute data, not only have we extracted the price series, we have
also calculated total trading volume (TVol), total number of trades (N), and total number
of price changes (NPC) for each one-minute interval.



2.3 DESCRIPTIVE ANALYSES

We first examine the returns processes. For each stock and each day, we calculate various
moments and test statistics of the returns data, these are reported in Tables 2.5, 2.6, and
2.7. The stock return concept used in this paper is the one-minute log-return, defined as the
difference of the logarithm prices of two consecutive minutes. By examining these tables,
we notice that most return processes are highly kurtotic and non-normally distributed. We
compute the Bera-Jarque normality test statistics, which is asymptotically distributed as
x%(2). This test is rejected in most cases for IBM and BT, and is rejected in every case
for INTEL. Also, most returns processes are clearly not :.i.d., judging from the BDS test
statistics proposed by Brock, Dechert and Scheinkman (1986). Another salient feature of
the returns series is that most of them have significant large negative first-order autocor-
relation, as reported in Table 2.3. On average, the first-order autocorrelation is -0.484 for
INTEL, -0.269 for IBM, and -0.428 for BT. Summary statistics of trading frequency are
reported in Table 2.4. We do this to see if autocorrelation in the data is caused by non-
synchronicity, see Lo and McKinlay (1990). We note, from Table 2.4, that INTEL has the
lowest rate of no-trades whilst having the largest correlation as reported earlier. Therefore,
Lo and McKinlay’s nonsynchronous trading hypothesis does not seem to be able to explain
the observed significant autocorrelation.

We provide summary statistics of the three trading variables in Tables 2.8 to 2.14. We
observe that all three trading variables are positively skewed, highly kurtotic, and non-
normal. Similar to return processes, we reject that these trading variables are i.i.d. -
distributed in most cases. Both IBM and BT have smaller turnover rates than INTEL, and
share a very similar distribution.

2.4 A PRELIMINARY ANALYSIS ON THE BUY/SELL PAT-

TERNS

In this section, we analyse the buy/sell pattern of the BT data. Since market makers in
the UK are allowed to delay reports of large trades (above 3 x Normal Market Size) for up



Table 2.3: First Lag Autocorrelation

Date INTEL | IBM BT Date
01/03/94 | -0.485 | -0.399 || -0.429 | 08/01/94
01/04/94 | -0.464 | -0.302 |} -0.346 | 08/02/94
01/05/94 | -0.538 | -0.255 || -0.482 | 08/03/94
01/06/94 | -0.452 | -0.283 || -0.437 | 08/04/94
01/07/94 | -0.476 | -0.272 || -0.467 | 08/05/94
01/10/94 | -0.491 | -0.237 || -0.406 | 08/08/94
01/11/94 | -0.462 | -0.271 )| -0.397 | 08/09/94
01/12/94 | -0.467 | -0.316 [| -0.445 | 08/10/94
01/13/94 | -0.467 | -0.236 || -0.424 | 08/11/94
01/14/94 | -0.527 | -0.292 || -0.292 | 08/12/94
01/17/94 | -0.477 | -0.227 || -0.479 | 08/15/94
01/18/94 | -0.577 | -0.248 || -0.406 | 08/16/94
01/19/94 | -0.497 | -0.287 || -0.414 | 08/17/94
01/20/94 | -0.514 | -0.309 || -0.359 | 08/18/94
01/21/94 | -0.465 | -0.275 || -0.474 | 08/19/94
01/24/94 | -0.309 [ -0.554 || -0.565 | 08/22/94
01/25/94 | -0.524 | 0.030 | -0.358 | 08/23/94
01/26/94 | -0.474 | -0.105 [ -0.387 | 08/24/94
01/27/94 | -0.481 | -0.203 || -0.480 | 08/25/94
01/28/94 | -0.536 | -0.330 | -0.460 | 08/26/94
01/31/94 | -0.488 | -0.274 || -0.458 | 08/30/94

-0.451 | 08/31/94
Average | -0.484 | -0.269 || -0.428

to 90 minutes to offset their inventory risk,% we suspect that very little information would
be contained in the internal trades (MM, MP, and PM) and decide to exclude those trades
from the rest of the analysis. For the rest of the transactions (MN, NM, MA, and AM),
we construct two-way contingency tables to help us understand the information contained
in this extra variable. States listed along the first column refer to what happens in period
t, while those listed along the first row refer to what happens in period ¢t + 1. Table
2.15 describes the observed frequencies of different types of transitions. The transitional
probabilities are presented in Table 2.16. Since we are interested in whether different types
of transactions arrive independently, we construct expected arrival frequencies in Table 2.17
under the assumption that different types of trades occur independently. To examine this
null hypothesis, we calculate the contribution of each cell and test the hypothesis with a

6See Board and Sutcliffe (1995).
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Table 2.4: Summary Statistics of the Trading Frequency
IBM | INTEL BT

Minimum 0.000 0.000 | 0.000
1st Quartile 0.000 3.000 | 1.000
Median 1.000 6.000 | 1.000
Mean 1.596 8.689 | 1.609

3rd Quartile 2.000 | 10.000 | 2.000
Maximum 14.000 | 170.000 | 18.000
No Trade (%) | 28.32 1.98 | 22.93

x* statistics in Table 2.18. The null hypothesis is clearly rejected. We next reduce the
types of trades to buyer-initiated trades (by aggregating NM and AM) and seller-initiated
trades (by aggregating MN and MA), and report the results in Tables 2.19, 2.20, 2.21, and
2.22. Under this new categorization, we still reject the independence hypothesis. The above
results indicate that buy/sell transitions do contain information.

2.5 (CONCLUDING REMARKS

We devote this chapter to a detailed examination of the l-minute data, and study their
statistical properties. We find, from our constructed one-minute data, that neither the
returns series nor the trading variables are independently, identically, and normally distrib-
uted. Furthermore, there also exists a large significant negative first-order autocorrelation
in the one-minute data. Since significant negative first-order autocorrelation typically does
not exist in any returns series with frequency lower than one day, it differentiates high
frequency data that we use from the lower frequency data. In the following chapters, we
will try to model this interesting stylized fact. In addition to trading variables, the British
Telecom data from the London Stock Exchange also contain extra buy/sell information on
every single transaction. In the preliminary analysis, we find that different types of buy/sell
trades do not arrive independently and could be potentially helpful in explaining the returns

autocorrelation.
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Table 2.5: Descriptive Statistics of Log-Returns (INTEL)

Date N Mean Variance K3 K4 BJ BDS
01/03/94 | 389 -4.1632E-005 8.6799E-006 -0.074 0.261 1.5 8.47
01/04/94 | 389 1.0284E-004 7.9931E-006 0.118 1.326 20.4 7.55
01/05/94 { 389 4.0012E-005 7.6488E-006 0.121 0.997 17.1 8.99
01/06/94 | 389 -4.0012E-005 8.5810E-006 0.096 0.656 7.6 7.89
01/07/94 | 389 9.9267E-005 8.6340E-006 0.030 1.665 45.0 6.58
01/10/94 | 389 2.9048E-005 8.6570E-006 -0.267 2.862 1374 7.81
01/11/94 | 389 -4.8095E-006 8.5162E-006 0.116 0.442 4.0 6.84
01/12/94 | 389 0.0000E+000 9.9269E-006 -0.180 4.449 322.9 7.96
01/13/94 | 389 0.0000E+000 6.0198E-006 -0.000 -0.435 3.1 7.62
01/14/94 | 389 -9.3650E-006 9.1142E-006 0.018 0.890 12.9 6.88
01/17/94 | 389 -8.6177E-005 9.8798E-006 0.196 4.878 388.2 8.4
01/18/94 | 38¢ 3.3667E-005 1.4521E-005 0.281 8.987 1314.1 8.82
01/19/94 | 389 -1.0221E-005 2.0207E-005 -0.354 17.402 4916.5 8.75
01/20/94 | 389 4.0644E-005 1.1315E-005 0.023 2.334 88.3 6.91
01/21/94 | 389 2.9834E-005 7.1557E-006 -0.033 1.116 20.3 10.69
01/24/94 | 389 1.9775E-005 1.3870E-005 0.018 27.735 12467.9 7.93
01/25/94 | 389 -9.8683E-006 1.1452E-005 0.036 36.546 21647.6 8.04
01/26/94 | 389 -5.0554E-006 9.2477E-006 -0.027 0.599 5.9 8.90
01/27/94 | 389 1.0061E-005 8.1759E-006 -0.078 0.243 1.4 7.74
01/28/94 | 389 3.9857E-005 8.5613E-006 0.041 -0.001 0.1 9.43
01/31/94 | 389 0.0000E~+000 7.1059E-006 0.023 -0.373 2.3 8.88

* N : Number of Observations; K3 : Coefficient of Skewness; K4 : Coeflicient of Kurtosis;
BJ : Bera-Jarque Normality Test Statistica ~ x2(2) with 5% critical value = 5.99.

BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,

Epsilon = Standard Deviation/Spread
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Table 2.6: Descriptive Statistics of Log-Returns (IBM)

Date N Mean Variance K3 K4 BJ BDS
01/03/94 | 388 3.3764E-005 1.3221E-006 0.229 2.210 82.4 9.65
01/04/94 | 387 2.7636E-005 8.6563E-007 -0.123  3.260 172.3 6.01
01/05/94 | 387 2.7229E-005 7.3054E-007 0.331 4.317 307.6 3.67
01/06/94 | 385 -5.4684E-005 1.0495E-006 -0.206 1.859 58.2 4.06
01/07/94 | 388 2.1935E-005 8.2120E-007 0.061 2.590 108.7 3.99
01/10/94 | 388 2.1796E-005 8.8587E-007 0.048 2.146 74.6 1.20
01/11/94 | 389 -2.1832E-005 8.6346E-007 -0.053 2.299 85.9 3.63
01/12/94 | 387 -2.2085E-005 9.0234E-007 -0.048 2.133 73.5 3.39
01/13/94 | 389 2.1972E-005 7.9455E-007 -0.143 3.809 236.5 4.56
01/14/94 | 389 -1.0962E-005 7.1724E-007 0.197 4.554 338.6 5.89
01/17/94 | 388 -5.0047E-005 1.2484E-006 -0.600 3.788 255.3 4.28
01/18/94 | 389 -1.6857E-005 1.1145E-006 -0.164 2.000 66.6 7.29
01/19/94 | 388 -4.0048E-005 9.7580E-007 -0.084 2.075 70.0 2.35
01/20/94 | 389 -2.8917E-005 1.1908E-006 -0.169 1.856 57.7 4.29
01/21/94 | 386 5.8679E-006 9.1534E-007 0.016 2.644 1124 2.90
01/24/94 | 387 1.2993E-004 2.7850E-005 -0.146 25.620 10585.2 9.93
01/25/94 | 388 -2.1982E-005 4.3778E-006 -2.478 20.380 7112.0 2.97
01/26/94 | 382 -1.0802E-004 1.6862E-006 -0.352 2.498 107.2 3.09
01/27/94 | 389 1.6968E-005 1.1024E-006 -0.119 3.206 167.5 3.44
01/28/94 | 388 -2.2266E-005 9.9185E-007 -0.039 1.768 50.6 5.75
01/31/94 | 389 -5.0462E-005 1.0457E-006 -0.077 1.606 42.2 2.31

* N : Number of Obeervations; K3 : Coeficient of Skewness; K4 : Coefficient of Kurtosis:

BJ : Bera-Jarque Normality Test Statistics ~ x2(2) with 5% critical value = 5.99.

BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,

Epsilon = Standard Deviation/Spread
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Table 2.7: Descriptive Statistics of Log-Returns (BT)

Date N Mean Variance K3 K4 BJ BDS
08/01/94 | 483 5.6184E-006 4.9268E-006 -0.038 1.610 52.3 8.99
08/02/94 | 495 2.1492E-005 4.1006E-006 -0.037 1.948 78.4 5.39
08/03/94 | 487 0.0000E+000 1.1116E-005 0.033 1.643 54.9 11.62
08/04/94 | 484 -2.4744E-005 4.0706E-006 0.406 4.045 343.2 6.79
08/05/94 | 486  3.8359E-005 5.8192E-006 0.029 1.343 36.6 8.58
08/08/94 | 482 1.6315E-005 5.2781E-006 -0.177 4.345 381.8 7.60
08/09/94 | 489 -2.1470E-005 3.9849E-006 -0.046 2.478 125.2 7.69
08/10/94 | 491 2.6745E-006 5.7969E-006 0.037 1.803 66.6 7.92
08/11/94 | 486 -1.6309E-005 4.9622E-006 -0.033 1.394 39.4 7.16
08/12/94 | 485 0.0000E+4000 3.8430E-006 0.006 3.305 220.7 3.93
08/15/94 | 484 -1.9143E-005 5.0618E-006 0.059 1.013 21.0 7.99
08/16/94 | 486  8.2140E-006 6.0304E-006 0.058 0.766 12.2 5.99
08/17/94 | 501 0.0000E+-000 4.4222E-006 0.109 0.826 15.2 5.29
08/18/94 | 488 1.8810E-005 7.0930E-006 0.049 8.748 1556.1 9.02
08/19/94 | 490 1.6006E-005 3.5818E-006 0.110 2.705 1504 8.41
08/22/94 | 492 -3.4608E-005 5.9356E-006 0.016 2.747 154.8 10.48
08/23/94 | 487 -5.4328E-006 6.9500E-006 -0.098 0.888 16.8 5.02
08/24/94 | 489 4.2829E-005 5.1671E-006 0.021 0.840 14.4 5.76
08/25/94 | 500 -1.5365E-005 3.9066E-006 0.131 2.513 133.0 8.23
08/26/94 | 490 3.4210E-005 4.3316E-006 0.160 1.540 50.5 9.14
08/30/94 | 492 -1.5575E-005 5.7453E-006 0.003 1.038 22.1 9.20
08/31/94 | 485 5.2936E-006 3.8824E-006 -0.041 2379 1145 7.34

® N : Number of Observations; K3 : Coefficient of Skewness; K4 : Coefficient of Kurtosis;
BJ : Bera-Jarque Normality Test Statistics ~ x2(2) with 5% critical value = 5.99.

BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,

Epsilon = Standard Deviation/Spread



Table 2.8: Descriptive Statistics of the Total Trading Volume (INTEL)

Date N Mean  Variance K3 K4 BJ BDS
01/03/94 | 390 7257 1.223E+008 3.644 21.873 8637.6 7.13
01/04/94 | 390 9778 2.395E+008 3.648 16.515 5297.2 5.19
01/05/94 | 390 11397 3.374E+008 3.812 18.175 6312.7 3.33
01/06/94 | 390 7621 1.069E+008  2.665 9.259 1854.9 6.79
01/07/94 | 390 15337 5.906E+4-008 3.342 13.695 3774.0 9.36
01/10/94 | 330 10946 2.030E+008 2.912 11.483 2693.7 4.90
01/11/94 | 390 7537 1.382E+008 3.436 14.815 4334.1 5.15
01/12/94 | 390 15224 5.142E+008  2.838 9.350 1944.0 10.87
01/13/94 | 390 8333 1412E+008 2.433 6.476 1066.4 7.55
01/14/94 | 390 9849 1.944E+008 3.253 14.595 4149.4 7.88
01/17/94 | 390 12826 3.947E+008 4.077 25.435 11593.6 4.04
01/18/94 | 390 18317 9.682E+008 6.341 58.890 58968.3 3.60
01/19/94 { 390 62260 3.883E+009  1.855 4.394 337.4 11.87
01/20/94 | 390 20868 1.624E+009 10.006 146.424 354906.8 8.64
01/21/94 | 390 22353 1.183E+009 3.627 19.061 6759.0 3.13
01/24/94 | 390 14056 5.656E+008 3.912  20.940 8120.2 5.41
01/25/94 | 390 10155 3.237E+008 4.593 28.431  14506.7 3.25
01/26/94 | 390 18585 9.252E+008 3.815 20.081 7499.1 7.06
01/27/94 | 390 14278 3.513E+008  2.237 5.746 861.6 5.627
01/28/94 | 390 9490 2.760E+008 3.104 11.694 2848.2 8.86
01/31/94 | 390 8823 3.594E4+008 9.540 134.074 298024.3 5.95

* N: Numier of Observations; K3 : Coefficient of Skewness; K4 : Coefficient of Kurtosis;
BJ : Bera-Jarque Normality Test Statistics ~ x>(2) with 5% critical value = 5.99.

BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,

Epsilon = Standard Deviation/Spread



Table 2.9: Descriptive Statistics of the Total Trading Volume (IBM)

Date | N Mean  Varance K3 K4 BJ BDS
01/03/94 | 389 27810 3.858E+007 6.289 54.822 51278.1 1.47
01/04/94 | 388  3450.3 6.309E+007 7.724 93.777 146029.0 3.65
01/05/94 | 388  5356.4 1.526E+008 6.238 52.767  47530.5 5.52
01/06/94 | 386  4816.8 2.682E+008 13.836 230.536 867097.6 3.24
01/07/94 | 389 30859 5445E+007 7.091 69.460 81459.2 2.60
01/10/94 | 380  3654.2 5.468E+007 3.889 18.455  6500.7 0.51
01/11/94 | 300 3145.6 9.841E+007 7.440 64.934 72113.6 1.52
01/12/94 | 388  3162.6 5.333E+007 4.968 31.639 17778.7 2.66
01/13/94 | 390 3854.6 6.716E+007 4.136 24.657 109913 6.29
01/14/94 | 350 3101.8 5.128E+007 6.687 66.937 757155 2.21
01/17/94 | 389  2930.3 4.088E+007 3.894 19.024  6848.8 4.06
01/18/94 | 390 4350.8 7.373E+007 3.593 16.041  5020.3 4.46
01/19/94 | 389  3928.5 7.836E+007 4.496 24.729 112225 1.38
01/20/94 | 360 4535.1 7.614E+007 3.632 19.63¢ 71215 0.52
01/21/94 | 387 5741.1 2401E+008 9.786 134.918 299699.6 1.45
01/24/94 | 388  8797.4 2418E+008 6.477 71.144  84540.7 3.85
01/25/94 | 380 22047.8 1.172E+009 5.040 43.368 32130.5 4.85
01/26/94 | 383  8929.5 5.049E+008 12.836 209.362 710007.0 0.72
01/27/94 | 360  4600.8 9.495E+007 6.040 59.584  60062.0 4.28
01/28/94 | 380  2800.3 5.344E+007 7.468 82.443 113782.7 1.40
01/31/94 | 300  3863.3 5.466E+007 4.067 23.864 10328.7 1.04

* N : Number of Observations; K3 : Coefficient of Skewness; K4 : Coeficient of Kurtosis;
BJ : Bera-Jarque Normality Test Statistics ~ x2(2) with 5% critical value = 5.99.

BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,

Epsilon = Standard Deviation/Spread

(8]
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Table 2.10: Descriptive Statistics of the Number of Trades (INTEL)

Date N Mean Variance K3 K4 BJ BDS
01/03/94 | 390 5.6 31.1 3427 18.411 6271.7 13.59
01/04/94 | 390 6.1 346 3.565 19.955 7206.8 13.30
01/05/94 | 390 7.2 62.6 5.135 38.847 26237.0 11.53
01/06/94 | 390 5.9 31.1 2963 16.141 4804.5 13.44
01/07/94 | 390 9.8 174.6 6.211 61.325 63620.0 15.04
01/10/94 | 390 8.5 59.2 4.565 31.809 17796.9 7.96
01/11/94 | 390 6.1 30.9 3.255 16.362 5039.2 9.27
01/12/94 | 390 9.8 131.9 3911 18.829 6755.5 15.67
01/13/94 | 390 54 19.9 2148 6.437 973.3 12.97
01/14/94 | 390 7.4 60.1 4.589 32.046 18056.4 12.36
01/17/94 | 390 6.8 36.6 2.553 9.529 1898.9 13.49
01/18/94 | 390 9.2 50.5 2199 8.540 1499.5 14.66
01/19/94 | 390 33.9 5716 1.976 5.341 7173 23.57
01/20/94 | 390 13.1 157.0 3.828 21.546 8496.3 18.09
01/21/94 | 390 9.5 69.6 4.554 34.008 20142.5 13.22
01/24/94 | 390 74 43.0 3.058 15.990 4762.7 13.27
01/25/94 | 390 5.6 25.3 2.868 11.437 2660.3 10.71
01/26/94 | 390 7.4 40.1 2244 6.740 1065.4 12.84
01/27/94 | 390 6.6 31.0 2177 7.164 1142.0 14.25
01/28/94 | 390 9.9 36.3 4.436 27.983 14003.7 13.97
01/31/94 | 390 5.8 55.8 8.253 97.587 159180.7 9.92

* N : Number of Observations; K3 : Coefficient of Skewness; K4 : Coefficient of Kurtosis;
BJ : Bera-Jarque Normality Test Statistics ~ x2(2) with 5% critical value = 5.99.
BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,

Epsilon = Standard Deviation/Spread



Table 2.11: Descriptive Statistics of the Number of Trades (IBM)

Date N Mean Variance K3 K4 BJ BDS
01/03/94 | 389 1.4 1.8 1.115 1.320 108.8 8.21
01/04/94 | 388 14 21 1.315 1953 173.5 5.18
01/05/94 | 388 1.6 2.3 1.835 8.170 1296.7 4.01
01/06/94 | 386 1.6 2.3 1.040 0.815 80.2 6.67
01/07/94 | 389 1.3 1.5 0.918 0.419 57.5 2.21
01/10/94 | 389 1.5 2.0 1.020 0.979 82.9 2.31
01/11/94 | 390 1.2 16 1.159 1553 126.5 231
01/12/94 | 388 1.3 1.7 1.267 2049 171.7 5.02
01/13/94 | 390 1.3 1.8 1381 2008 189.4 6.84
01/14/94 | 390 1.2 1.7 1.243 1542 139.1 5.48
01/17/94 | 389 1.3 20 1.290 1.367 138.2 4.12
01/18/94 | 390 1.6 2.2 1060 1.144  94.2 4.84
01/19/94 | 389 14 1.9 1.386 2.781 250.0 1.36
01/20/94 | 390 1.5 1.9 1.360 2.535 224.6 4.51
01/21/94 | 387 1.5 22 1.292 2.246 189.1 5.03
01/24/94 | 388 2.6 49 1329 2465 2124 7.41
01/25/94 | 389 3.7 6.8 0.774 0.306 40.4 6.94
01/26/94 | 383 2.1 3.4 1.131 1.407 113.2 5.15
01/27/94 | 390 1.4 1.9 1.166 1.184 11l1.1 3.16
01/28/94 | 389 1.3 1.9 1407 2504 230.0 5.42
01/31/94 | 390 15 1.6 1.035 1.605 1115 0.40

® N : Number of Observations; K3 : Coefficient of Skewness; K4 : Coefficient of Kurtosis;
BJ : Bera-Jarque Normality Test Statistics ~ x2(2) with 5% critical value = 5.99.
BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,

Epsilon = Standard Deviation/Spread



Table 2.12: Descriptive Statistics of the Number of Trades (BT)

Date N Mean Variance K3 K4 BJ BDS
08/01/94 | 484 1.9 24 1.101 2.110 1875 2.14
08/02/94 | 496 1.7 21 0.926 0.696 80.9 1.03
08/03/94 | 488 1.9 24 1.260 2633 270.1 0.31
08/04/94 | 485 1.5 1.8 1.274 2342 242.1 3.20
08/05/94 | 487 1.5 1.7 0.968 1.151 103.0 0.08
08/08/94 | 483 1.9 3.1 2452 14.974 4996.1 3.11
08/09/94 | 490 1.6 1.8 0.819 0.460 59.0 0.72
08/10/94 | 492 1.3 1.6 1318 2.790 302.0 0.26
08/11/94 | 487 14 1.6 1.059 1.456 134.0 1.29
08/12/94 | 486 1.3 1.5 1162 1884 181.2 1.88
08/15/94 | 485 1.6 1.8 0.823 0.449 58.8 0.99
08/16/94 | 487 14 1.6 0.807 0.192 53.5 4.21
08/17/94 | 502 1.7 2.1 0.793 0.319 54.7 1.06
08/18/94 | 489 1.7 2.0 0.818 0.556 60.8 1.01
08/19/94 | 491 1.6 1.9 0.999 0997 1020 1.48
08/22/94 | 493 1.7 1.9 0.866 0.921 79.0 1.38
08/23/94 | 488 1.3 1.4 0.884 0.468 68.0 1.45
08/24/94 | 490 1.6 1.7 0.867 1446 104.0 1.74
08/25/94 | 501 2.0 22 1114 2438 227.7 0.35
08/26/94 | 491 1.8 23 1.110 168 159.0 2.16
08/30/94 | 493 2.1 25 0983 1378 1184 1.25
08/31/94 | 486 1.7 1.7 0.6%4 -0.074 39.2 0.27

* N : Number of Observations; K3 : Coefficient of Skewness; K4 : Coefficient of Kurtosis;

BJ : Bera-Jarque Normality Test Statistics ~ x2(2) with 5% critical value = 5.99.
BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,
Epsilon = Standard Deviation/Spread

ho
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Table 2.13: Descriptive Statistics of the Number of Price Changes (INTEL)

Date N  Mean Varance K3 K4 BJ BDS
01/03/94 | 390 3.0103  7.2081 1.8741 6.1087  852.7 10.42
01/04/94 | 390 3.1231  6.8691 1.7950 4.3085  511.1 4.76
01/05/94 | 390 3.6564  10.7762 2.1332 6.8053 1048.4 9.89
01/06/94 | 3900 3.2026 86504 1.8694 5.1254  654.0 9.50
01/07/94 | 390 4.6513  18.9835 1.8770 5.0057  636.2 1.62
01/10/94 | 390  4.4718  10.1110 1.5547 3.7506  385.7 6.31
01/11/94 | 390 3.2103  9.3696 2.7147 11.4268 2600.8 8.37
01/12/94 | 390  5.3821  38.4012 3.4377 14.5498  4208.2 16.20
01/13/94 | 390 3.0923  7.5647 2.1491 7.0446 1106.6 10.29
01/14/94 | 390 4.0282  12.1560 2.4341 10.0782  2035.6 8.65
01/17/94 | 390  3.5103  10.7441 2.4117 9.8556  1956.5 8.80
01/18/94 | 390 4.8179  12.9668 1.8517 5.6909  749.1 10.62
01/19/94 | 390 17.4667 144.3575 1.9079 5.2097  693.0 21.77
01/20/94 | 390 6.7846  60.7915 5.4213 44.4658 34040.0 19.55
01/21/94 | 300 4.9538  19.9824 3.6961 22.7886 9326.9 9.77
01/24/94 | 390 4.1231  11.3833 1.9455 6.7445  985.2 9.57
01/25/94 | 3900 2.9077  6.3771 1.9183 5.5525  740.2 5.99
01/26/94 | 390 3.9333 124480 2.1248 6.5732  995.6 9.12
01/27/94 | 390 3.3846  7.7334 14063 2.7355  250.1 7.20
01/28/94 | 3900 2.7769  6.1481 2.0716 7.7779 1262.0 10.79
01/31/94 | 390 29000  7.5208 3.5401 23.4108 9720.7 4.14

* N : Number of Observations; K3 : Coefficient of Skewness; K4 : Coeflicient of Kurtosis;

BJ : Bera-Jarque Normality Test Statistics ~ x2(2) with 5% critical value = 5.99.
BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,
Epsilon = Standard Deviation/Spread



Table 2.14: Descriptive Statistics of the Number of Price Changes (IBM)

(V]

Date N Mean Variance K3 K4 BJ BDS
01/03/94 | 389 0.3907 0.5531 2.0608 3.9658 530.3 9.06
01/04/94 | 388 0.2526 0.3391 28183 9.4730 1964.4 4.97
01/05/94 | 388 0.2088 0.2896 3.1204 11.6976 2841.8 3.79
01/06/94 | 386 0.3264 0.3867 2.1803 5.5918 808.7 3.85
01/07/94 | 389 0.2468 0.3101 2.4469 6.0589 983.2 4.70
01/10/94 | 389 0.3033 0.3614 2.0460 3.8552 512.3 3.99
01/11/94 | 390 0.2795 0.3613 2.5780 7.8688 1438.2 3.88
01/12/94 | 388 0.2526 0.2026 2.1648 4.2024 588.6 2.72
01/13/94 | 390 0.2000 0.2272 25245 6.5558 1112.7 4.17
01/14/94 | 390 0.1897 0.2364 2.8549 8.8073 1730.3 5.30
01/17/94 | 389 0.3188 0.3878 2.0971 4.3028 585.2 4.08
01/18/94 | 390 0.3487 0.4950 24629 6.9755 1185.0 6.49
01/19/94 | 389 0.2725 0.3585 2.4906 6.9718 1190.0 0.43
01/20/94 | 390 0.3308 0.3710 19398 3.7109 468.4 5.30
01/21/94 | 387 0.2248 0.2887 2.8445 9.9777 2127.2 2.40
01/24/94 | 388 0.6005 0.9589 2.2807 6.8562 1096.3 4.29
01/25/94 | 389 0.8483 1.1445 1.5243 23735 2420 8.07
01/26/94 | 383 0.4099 0.4938 1.7337 2.4843 2904 4.12
01/27/94 | 390 0.2410 0.2862 2.6665 9.2613 1856.0 2.52
01/28/94 | 389 0.2853 0.3282 2.0529 3.8841 5178 5.77
01/31/94 | 390 0.3154 0.4016 2.0610 3.7419 503.6 2.39

* N : Number of Observations; K3 : Coefficient of Skewness; K4 : Coefficient of Kurtosis;
BJ : Bera-Jarque Normality Test Statistics ~ x2(2) with 5% critical value = 5.99.
BDS = Brock-Dechert-Scheinkman ~ N(0, 1)asy, Embedding Dimension = 3,

Epsilon = Standard Deviation/Spread



Table 2.15: Observed Frequency of Different Type of Trades

MN MA NM AM TOTAL
MN 10657 209 2297 308 13471
MA 198 33 61 13 305
NM 2326 47 683 75 3131
AM 290 16 90 35 431
TOTAL 13471 305 3131 431 17338

Table 2.16: Observed Transitional Probability of Different Type of Trades

MN MA NM AM
MN 0.791 0.685 0.734 0.715
MA 0.015 0.108 0.019 0.030
NM 0.173 0.154 0.218 0.174
AM 1 0.022 0.052 _ 0.029 0.081
Table 2.17: Expected Frequency of Different Type of Trades .
MN MA NM AM TOTAL |
MN 10467 237 2433 335 13471
MA 237 5 55 8 305
NM 2433 55 565 78 3131
AM 335 8 78 11 431
TOTAL 13471 305 3131 431 17338 |
Table 2.18: Chi-square Contribution of Different Type of Trades
MN MA NM AM
MN 3.5 3.3 7.6 2.2
MA 6.4 142.3 0.6 3.9
NM 4.7 1.2 24.5 0.1
AM 6.0 9.3 1.9 55.0

X° statistics = 272.5 with 12 degrees of freedom

SELL: MA or MN; i.e. Broker or customers SELL to Market Maker;
BUY: AM or NM; i.e. Broker or customers BUY from Market Maker.
The 99% critical value of a x? statistics with 2 degrees of freedom
equals 9.21034;
States listed in the first column refer to transaction in period ¢;
States listed in the first row refer to transaction in period ¢ + 1.




Table 2.19: Observed Frequency of Different Type of Buy/Sell Trades

SELL BUY TOTAL
SELL 11097 2697 13776
BUY 2697 883 3562
TOTAL 13776 3562 17338

Table 2.20: Observed Transitional Probability of Different Type of Buy/Sell Trades

SELL

BUY

SELL

0.806

0.194

BUY

0.752

0.248

Table 2.21: Expected Frequency of Different Type of Buy/Sell Trades

Table 2.22: Chi-Square Contribution of Different Type of Buy/Sell Trades

SELL BUY TOTAL
SELL 10946 2830 13776
BUY 2830 732 3562
TOTAL | 13776 3562 17338 |

SELL

BUY

SELL

2.1

8.1

BUY

8.1

31.2

SELL: MA or MN; i.e. Broker or customers SELL to Market Maker;

X~ statistics = 49.51 with 2 degrees of freedom

BUY: AM or NM; i.e. Broker or customers BUY from Market Maker.
The 99% critical value of a X2 statistics with 2 degrees of freedom

equals 9.21034;

States listed in the first column refer to transaction in period ¢;
States listed in the first row refer to transaction in period £ + 1.



CHAPTER 3

MODELLING
INTRA-DAY EQUITY PRICES AND VOLATILITY
USING INFORMATION ARRIVALS - A COMPAR-
ATIVE STUDY OF DIFFERENT CHOICES OF IN-

FORMATIONAL PROXIES

3.1 INTRODUCTION

The purpose of this chapter is to present a model for intra-day asset prices and volatility
generation processes. In particular, we consider alternative choices of conditioning variables,
i.e. exogenous variables, to help us in modelling. Although our methodology is general,
we restrict ourselves to two U.S. stocks, IBM and INTEL and we take tick by tick data
for January 1994; these stocks were chosen on the basis of their high liquidity. It might be
argued that this is insufficient information to carry out our analysis, our response is that
our use of data here is illustrative and that a full analysis involving many stocks and longer
time periods could be carried out by researchers following the methodology presented here.
Our Data comes from the New York Stock Exchange (NYSE) Trade and Quote (TAQ)
database. This database contains virtually every trade and quote of every stock traded on
major American stock exchanges.

In Section 3.2, we present our initial models, investigate their statistical properties, and
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identify certain problems. We then discuss estimation techniques and provide estimation
results in the same section. We find that our information variables do not satisfy the re-
quirement of being independently and identically distributed. To deal with this problem,
we present an extended model based on doubly stochastic processes in Section 3.3. Sur-
prisingly, these models are straightforward to estimate for all information variables except
volume. We find that volume does not appear to be a suitable variable for measuring infor-
mation flow, whilst the number of trades or the number of price changes seem to work very
well. Finally, and importantly in our opinion, we find no evidence of volatility persistence
in our model, although GARCH models measured on the same data show strong evidence of
persistence. This indicates, to us at least, that the claimed persistence of volatility may be
an artifact of the choice of model and does not reflect a market opportunity or a forecastable
feature of the data. We conclude this chapter in Section 3.4.

3.2 A HOMOGENEOUS MIXED JUMP-DIFFUSION MODEL

The first model we examine is 8 homogeneous mixed jump-diffusion model. The rationale
of using such a model is that it reveals systematic discontinuities, which coincide with occa-
sional jumps in financial time series. This model was first examined by Satchell and Yoon
(1993) to study the influence of the number of transactions on the conditional mean and
conditional variance of daily returns of five British stocks. By solving the standard jump-
diffusion stochastic differential equation describing the evolution of asset prices, Satchell
and Yoon show that log-returns are conditionally normal with mean and variance being

linear functions of the number information arrival.

We define our price generating equation as follows

N(t)

P(t) = P(0) expl(a ~ 50%)t +0(2() — 2(0) + 3 Qi (3.1)

i=1
where P(t) denotes the price of an asset at time ¢, @ and o are parameters, 2(t) is a stan-
dard Brownian motion, N(t) is a homogeneous Poisson process with parameter A (we shall
relax the assumption of homogeneity later in the chapter), Q is a normal random variate
with mean uq and variance 03 in the interval (¢,£ + At]. In what follows, we assume that

there is some observed variable which measures the number of information arrival, N(t).
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As discussed in Chapter 2, such a variable could be trading volume, the number of trades,

or the number of price changes,- --, etc.

It is straightforward to derive the probability density function (pdf) of logarithmic re-
turns, X (t) = In(P(t)/P(t — 1)), since

1 AN(t)
X(t) = (a -~ 50'2) +o(z(t) —z(t~-1)+ > (3.2)
i=1
We see that X(t) is independent and identically distributed (i.i.d.) and
pdf(X(t)) =e™ ) %d’(u +uq - 5,0t +03-j) (3.3)
=07

where u = a —02/2, and ¢(a,b) is the normal density with mean a, and variance b.

We next compute pdf(X(£)]JAN(t)). Simple manipulations with equation (3.2) show
that
pdf(X(t) | AN(2)) = ¢(u + uAN(2),0% + cHAN(E)) (3-4)

It follows, in regression notation, that

X (t) = p+ pgAN(t) + /0% + cZAN(£)e(?) (3.5)

where &(t) is N(0, 1) and is independent of AN(t). Equation (3.5) may also be interpreted
as a linear regression model with linear heteroskedasticity in AN(t), as such it is an example
of the heteroskedasticity models popular in econometrics, see Judge et al (1985, p.419) for
a survey. As long as uqg and o are found to be significant, our assumption that AN(t)

influences the conditional mean and variance of returns is not rejected.

To test if AN(t) influences the rate of returns, an appropriate test would be the joint
hypothesis, that is, ug=0 and 6=0. We now devote some arguments to testing our various
hypotheses. We shall consider the different hypotheses in turn. Let the three tests be

Hyp : po=0 vs. Hio:puQ #0
Hyp : 05=0 vs. Hap: 04 #0 (3.6)
Hszp m:Oando%:Ovs.H:;;_:pq#Oora%#O



A test that pug=0 implies that the number of trades does not influence the expected
rate of returns, whilst it increases the volatility of the asset, an assertion investigated by
Lamoureux and Lastrapes (1990a). A test that 03=0 implies that jump magnitudes are
of constant size, albeit unknown to the econometricians. In this case, each arrival of new
information has the same kind of effect on stock prices, i.e., each transaction generates the
same amount of trading volume and consequently the same impact on prices. Similarly, the
joint hypothesis implies that the AN(t) is completely independent of price changes. Since
all these hypotheses are interesting, it is worthwhile estimating and testing our model. We
note two of the tests above have the difficulty that the point g3=0 lies on the boundary
of the parameter space, so that the asymptotic distribution of the one-sided test will be
non-standard, i.e., not x2(1). For this reason the Lagrange Multiplier (LM) test would be
preferred to Wald or Likelihood Ratio (LR) tests, since it is well-known that the LM test
retains its x2(1) distribution under Hy even for boundary points. Here, computational ease
is required at the cost of potential loss of power. It is straightforward to derive the LM
test, see Breusch and Pagan (1980). The derivation of the score statistics for the three
hypotheses is shown in Appendix B. We present the results as a theorem.

Theorem 3.2.1 The LM tests for our hypotheses given in equation (3.6) are

_ (ze - AN\ AN} ANy L -1)—
p - (CEper) (w2l EhE
where hy = 32+3%AN¢ (3.7
(= -5'2)ANc)_i_
264 (AN: — AN)?
(3 &AN:)?
723 (AN — AN)?

1

LMy = LM@&)= where & = z; — fi — fgAN:

LM where e, =z, — [i

LMs(&,) +

where LM; is the test appropriate for Hy;.

It should be noted that our test procedures are asymptotically x?(1) for test statistics
LMy, LM, and x2(2) for test statistics LMa. This is true despite the fact that the alter-
native hypothesis involves o} being positive, so that one may wish to use this information
explicitly. This has been done in general by Rogers (1986) in which he proposes a test
procedure based on the Kuhn-Tucker test of Gourieroux, Holly and Monfort (1982). This
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should lead to a more powerful test but involves substantially more computation; we shall

not investigate this point any further.

We now turn to the estimation of equation (3.5), which can be estimated by the following

iterative feasible generalized least squares procedure,

1. First, we regress X (t) on AN(t) by ordinary least squares (OLS), and calculate the
residuals, say é’s, from the resulting OLS estimates 7, fig. In other words, é =£(t) =
X(t) - B—- AN(t)iq.

2. Regress & on AN(¢) by nonlinear least squares (NLS) to obtain 32, and 53.!

3. Apply generalized least squares on equation (3.5) after dividing both sides of the equa-
tion by \ﬁi'z + AN(t)é% This will produce another set of estimates, i and fig. Based
on these estimates, calculate the new squared residual €2 = [X(t) — & — AN(t)fig]®

and iterate on step 2 and step 3.

Estimates derived from the above procedure will converge to maximum likelihood estimates
by a familiar linearized maximum likelihood argument. Usually, only the first three itera-

tions are required to produce convergent estimates.

Initially, we use all three trading variables, Tvol, N, and NPC, as informational proxies.
However, we find that whenever Tvol is employed, the above iterative procedure has trouble
converging. This is probably due to the high skewness typically observed for the data on
trading volume. The nonconvergence problem also indicates that Tvol is not a suitable
informational proxy in our model, which is consistent with recent empirical finding on the
informational role of trading volume, as described in Chapter 2. Therefore, we exclude Tvol
as one of the informational proxies in the following analysis.

The estimation results are reported in Tables 3.3 to 3.6. Judging from the t-statistics,
neither the number of trades nor the number of price changes significantly influence the
mean and the variance of returns of INTEL. In contrast, both number of trades and num-
ber of price changes have significant impact on the variance of returns of IBM. This may

1o avoid getting negative variance estimates, we use NLS to obtain &, and 0q. The standard
errors of 52, and &7, are then derived by §-method.
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be related to the data in Table 2.4 where the higher numbers of trades and price changes
for INTEL relative to IBM mean that their impact is less important. Technically, it is as if

the Poisson process may be converging to Brownian motion again.

Table 3.1: LM Test Statistics for Equation
INTEL IBM
Date LM1 LM2 LM3 | LMl LM2 LM3
01/03/94 | 2.532 0.1 295879 | 0.607 69.5 390701
01/04/94 | 0.108 0.6 14125 0.022 414 420148
01/05/94 | 3.067 0.3 402553 | 0.038 26.6 236021
01/06/94 | 0.104 1.2 13134 ( 0.243 24.8 215395
01/07/94 | 2.418 4.0 309104 | 1.007 55.1 2286418
01/10/94 | 0.156 04 18769 | 0.000 32.0 196540
01/11/94 | 0.030 0.0 3366 | 0.003 44.4 49963
01/12/94 | 0.603 5.7 67172 | 1.188 34.1 1571143
01/13/94 | 0.005 76 10195 | 2.092 419 14511512
01/14/94 | 0.002 0.2 178 | 0.273 485 295116
01/17/94 | 0.051 1.1 12681 | 1.863 51.5 3808499
01/18/94 | 0.387 15.1 20392 | 0.010 40.9 427964
01/19/94 | 0.022 20.1 6482 | 1.975 184 3463029
01/20/94 | 2.083 27.2 107936 | 1.016 254 1136782
01/21/94 | 0.720 1.2 110418 | 0330 275 330128
01/24/94 | 0.105 9.6 9392 | 0.328 779 24908
01/25/94 | 0.180 0.7 16356 | 0.675 29.4 96355
01/26/94 | 0.077 2.3 9226 | 1.734 84.3 2195317
01/27/94 | 0.096 0.0 11746 | 1.785 21.8 7945026
01/28/94 | 2.073 0.7 251009 | 0.247 299 2203044
01/31/94 | 0.437 1.3 65353 | 0.840 14.1 2574018

To further investigate the effect of the number of trades, we conduct the LM test
procedures detailed in Theorem 3.2.1. The results are reported in Table 3.1. In general,
we cannot reject the null hypothesis pzg = 0 for either INTEL or IBM. The null hypothesis
02Q = ( cannot be rejected for most INTEL cases, while it is rejected for all IBM cases. These
findings based on LM; and LM> are consistent with the findings based on the previously
reported t-statistics. However, the LMj3 test is significant in all cases, This provides evidence
that return processes are indeed influenced by the trading processes. The insignificant
results are possibly due to modelling mis-specification. One way of examining the modelling
mis-specification is to examine the independence of the fitted residuals from the model.



Since ¢ in equation (3.5) is assumed to be i.i.d., we test this assurnption by running the

BDS test on the standardized estimated residuals, namely

_ X(t) —B—Bg-AN()
V8% +38% - AN(2)

&) (3.8)

From those results reported in Table 3.2, the i.i.d. assumption on ¢; is clearly rejected
for most cases. This leads us to the doubly stochastic modelling of information arrivals in
the next section, since rejection of the i.i.d. process is likely to be a consequence of more

complex arrival processes than the ones we have modelled.

Table 3.2: BDS Test on the Estimated Residuals

Date INTEL IBM
01/03/94 | 8.617 9.1082
01/04/94 | 7.546 5.9476
01/05/94 | 9.205 3.6334
01/06/94 | 7.886 4.0592
01/07/94 | 6.410 3.9121
01/10/94 | 7.809 1.1909
01/11/94 | 6.837 3.5701
01/12/94 | 7.725 3.3836
01/13/94 | 7.647 4.5410
01/14/94 | 6.877 5.8569
01/17/94 | 8.231 4.0395
01/18/94 | 7.615 7.2038
01/19/94 | 6.974 2.3438
01/20/94 | 6.255 4.2690
01/21/94 | 10.590 2.8906
01/24/94 | 7.959 9.7016
01/25/94 | 7.923 0.5750
01/26/94 | 8.903 2.4349
01/27/94 | 7.744 3.3970
01/28/94 | 10.022 5.7085
01/31/94 | 8.953 2.3108
Standardized Residual: X{)=B_£g:ON()
9240%-AN(t)

BDS : Brock-Dechert-Scheinkman~ N(0, 1)asy,
Embedding Dimension = 3,
Epsilon : Standard Deviation/Spread
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3.3 DOUBLY STOCHASTIC PROCESS AND THE MARGINAL

DISTRIBUTION OF RETURNS

We have shown that information arrivals are not consistent with the (homogeneous) Pois-
son process with a fixed arrival intensity parameter. In order to accommodate the non-
homogeneous nature of the information data, we now introduce a more complex (non-
homogeneous) Poisson process which allows A(t) to vary. By an appropriate choice of A(t),
we can model the marginal distribution of In(P(t)/P(t — 1)). There are many candidates
for the process of A(t). Here, A(t) is defined in the form of a stochastic volatility mode] as

A(t) = av?(t — 1) + fVar(X(t — V)| I(t - 2)) (3.9)

where v(t) is N(0,1) unconditional in N(t), in fact, v(t) = Az(t) = 2(t) — 2(t — 1), and
I(t) contains information up to the end of the minute.? Heuristically, the expected number
of jumps depends upon the previous volatility and the deviation from fundamental Az3(t),

see equation (3.2).

It follows from equation (3.2) that

EXWI(E-1)] = p+pQA(t) (3.10)
Var(X(@Q)I(t-1)) = o+ (ud +03)A®) (3.11)

since A(t) is known given I(t — 1). To simplify our model we shall assume that X (t) and
AN(t) are (weakly) stationary. Under the assumption of weak stationarity, equation (3.9)

becomes

At) = av?(t — 1)+ Bo* +0A(t - 1) = lfg% +a ioivi’(t -j-1) (3.12)
i=0

where 9=ﬁ(1,% +03%),0<6<1. We can calculate the mean and the variance of A(t), detailed
in Appendix C, as follows;

2A GARCH-type model would involve interpreting v2(t —1) as Var(X(t—1)|1(¢—2)) x Az3(t) for
z(t) ~ i.id. N(0,1). This complicates the model without adding to its explanatory power. We shall
refer to this a8 GARCH-type effects, although the model in equation (3.9) is closer to a stochastic
volatility model.




B0? + «
1-6
202

Var(Mt)) = 1o (3.14)

using the fact that v2(¢) has a x?(1) distribution.

(3.13)

I

EA@)

Given our model, the information variable is not purely exogenous any more: its intensity
is dependent upon the past history of prices. This frarnework is attractive because it allows
a feedback effect through the variables. It can explain certain phenomena in financial time
series such as volatility clustering where large price changes tend to bunch together. This
non-homogeneous Poisson process also resolves the restrictive aspect of the homogeneous
Poisson distribution which implies that mean and variance are equal. From the moment

generating function of AN(t) derived in Appendix C,3

maN(s) = exp (%(exp(s) - 1)) - g (1-208@pe) -0)"" @)

we can derive the mean and the variance of AN(t),
E[AN(8)] = 5‘;2_:“ (3.16)
Var(AN(t)) = B‘l’z_“;"‘ + 12f29 (3.17)

Note that the mean and the variance are not equal in the presence of stochastic A(t).

Moreover, the serial correlation of AN(t) can be shown to be

Corr(AN(2), AN(t —5)) = CoENE—29), AN(E~3))

Var(AN(t))
#*Var(A(t — 8))
Var(AN(t)) (3.18)
= Ermzf;i‘%ﬂmﬁ fs=1,2,...
1, ifs=0

Then from equation (3.2), the moment conditions of X (¢), detailed in Appendix D, are

obtained as follows,

Bix@) = p+tabrte)

3We have assumed that AN(¢) is stationary, an alternative expression can be calculated if we
start from a fixed starting point.
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o2a (1g +03)(Bo% +a) 2024}

Var{X(t)] = = — (3.19)
2&2;4%8' .
o2(1-6%)+(p7 +02 )(1+9)(Bo?+a)+2a2us, * if s = 1, 2, .o
Corr(X(t), X(t — 3)) #at9q Y
L ifs=0

Given that AN(?) is observable, the joint likelihood function of X(t) and AN(t) can be

written as

T
L = [Irdf(X(t),ANQ)II(t-1)) (3.20)

t=1

T
= l:Ilpdf(X(t)lAN(t),I(t —1)) - pdf (AN ()L (¢ - 1))

A@®)(A@)aNe
AN(2)!

T
= [+ rAN(t),qa* + af,AN(t))exp(_
t=1

Thus, the log-likelihood function becomes

In L = const. — £ln(o? + g3AN(¢)) — % (X(tlz—fa—qrﬁ‘ﬁ(g(t))z

—ZA(t) + TAN(t) In(A(2)) (3.21)
X(t—1) - p—pQAN(t -
\/0'2 +0{AN(t - 1)

2
where A(t) = o2 + a ( 1)) + B(ud + o)At ~ 1)

Although the joint density is tractable, the marginal densities of X (¢) and AN(t) cannot
be derived explicitly. This is one of the characteristics of a mixture of distributions which

contain several random variables.

We estimate equation (3.21) and report the results of in Tables 3.7, 3.8, 3.9, and 3.10.
In terms of the significance of coefficients, fig and 3, in the variance equation, we obtain
similar results as those obtained from estimating the homogeneous mixed jump-diffusion
model in equation (3.5). Namely, 53 is highly significant for all IBM cases, while g is
insignificant in most cases. In addition, J is highly significant for all cases. From equation
(3.9), we know that B measure the sensitivity of information arrival intensity A() to pre-
vious period's realized volatility. This is a strong evidence for the existence of a stochastic

arrival intensity process.

Another way of examining the performance of the doubly stochastic Poisson model is to

compare the sample moments (mean and variance) of trading variables with those implied
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by the model in equation (3.16). The results are reported in Tables 3.11, 3.12, 3.13, and 3.14.
An interesting result shown in these tables is that the implied expected values, E(AN;,), of
the trading variables match their sample counterparts, E(AN;), quite well. To give a quick

measure of how close they are, we calculate a x? test statistics TCF as

i 21 [E(AN;) - B(AN, ]2
TCF = ;cz«} = ; BN ~ X*(20) (3.22)

All of the TCF’s are well inside the critical region under conventional significance levels.
By comparing the magnitudes of TCF's, we also find that, for both INTEL and IBM, the
number of trades seem to be a slightly better proxy of information arrival. In addition, for
IBM, implied variances, V(AN;), of the trading variables are also very close to their sample
counterparts, V(AN:).

Also reported in Tables 23 and Tables 24 are the § values, which represent the degree
of dependence of A(t) on A(t — 1) from equation (3.12). This is an equivalent measure of
volatility persistence in GARCH models. On average, when the number of trades is used
as the informational proxy, 8 ~ 0.05 for INTEL, and § ~0.64 for IBM. Similar results are
obtained when the number of price changes is used as the informational proxy. In that case,
8 ~ 0.1 for INTEL, and g ~ 0.64 for IBM on average. In other words, the volatility persis-
tence implied by our model is much smaller than those implied by the GARCH-type models.

To compare the persistence of GARCH-type models versus that of informational volatil-
ity models as in this paper, we fit a GARCH(1,1) model on the same data sets. We compare
the 8 values listed in Tables 3.11, 3.12, 3.13, and 3.14 with value of &+ reported in Table
3.15. We recall that Tables 3.11 and 3.12, describe the modeis for the number of trades,
whilst Tables 3.13 and 3.14 describe the models for the number of price changes. In Tables
3.11, for INTEL, there are no values of 8 greater than 0.5, and there are only three values
greater than 0.1. Similarly, in Table 3.13, there are only 6 values of § greater than 0.1.
However, for the GARCH(1,1) model for INTEL in Table 3.15, there are seven values of
&+3 greater than 0.9, and most others greater than 0.5. Likewise, for IBM, there are no
values of & greater than 0.8 in either Table 3.12 or Table 3.14. But, for the GARCH(1,1)
model for IBM in Table 3.15, there are eight values of &+ greater than 0.9. This indicates,
to us at least, that the claimed persistence of volatility may be an artifact of the choice of

40



model and does not reflect a market opportunity or a forecastable feature of the data.

However, the failure of this model is that autocorrelation of returns must be positive,
as given by equation (3.19). This is enough to invalidate it. We discuss this further in the

next chapter.

3.4 CONCLUSIONS

This chapter has had three objectives. They are (i), to compare three different proxies
for informational variables in high frequency equity data; (ii), to model dynamic processes
using doubly stochastic Poisson models; (iii), to investigate intra-day volatility persistence.
We find that the number of trades and the number of price changes seem to be the best
choices for informational variables, volume being decidedly inferior. Secondly, we find that
our model does seem to be estimable without undue difficulty and finally we find that
persistence in volatility is much reduced when our model is used rather than GARCH(1,1).
The use of informational variables seems to substantially eliminate much of the persistence.
Since persistence in volatility is a stylized fact that seems somewhat flawed in terms of
theoretical explanations, the results lead toward better modelling and understanding of
intra-day volatility.
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Table 3.3: Estimation Results of Equation (3.5) (INTEL) Using the
Number of Trades as the Conditioning Variable

Date 73 2qQ 23 5%

01/03/94 | 1.996E-004 -4.329E-005 8.838E-006 1.312E-015
(0.94474)  (-1.61103)  (9.55341) (-1.428E-007)

01/04/94 | 1.527E-004 -8.231E-006 8.429E-006 3.862E-014
(0.73996)  (-0.33619)  (7.97083) (-4.753E-007)

01/05/94 | -1.843E-004 3.119E-005 7.841E-006 5.282E-017
(-0.97418) (1.75996)  (8.67204) ( 4.500E-008)

01/06/94 | 1.299E-005 -8.968E-006 9.263E-006 4.198E-014
(0.05988)  (-0.33559)  (9-00200) (-4.769E-007)

01/07/94 | -8.050E-005 1.840E-005 9.466E-006 1.247E-014
(-0.43540) (1.63519)  (9.17861) (-6.909E-007)

01/10/94 | -3.718E-005 7.850E-006 9.052E-006 5.319E-014
(-0.16752) (0.40331)  (6.32805) (-4.952E-007)

01/11/94 | -3.314E-005 4.730E-006 8.637E-006 9.960E-014
(-0.15011) (0.17307)  (8.63161) (-4.698E-007)

01/12/94 | 1.141E-004 -1.173E-005 1.137E-005 1.406E-014
(0.54093)  (-0.82905)  (6.75941) (-4.008E-007)

01/13/94 | 1.168E-005 -2.199E-006 4.492E-006 2.846E-007
(0.05941)  (-0.06648)  (7.59214) (3.30385)

01/14/94 | -3.387E-006 -8.203E-007 9.382E-006 4.411E-016
(-0.01597)  (-0.04081)  (8.67428) (-9.808E-008)

01/17/94 | -4.191E-005 -6.560E-006 8.997E-006 1.266E-007
(-0.17292)  (-0.22794)  (4.58957) (0.58414)

01/18/94 | 2.183E-004 -2.009E-005 9.172E-006 5.782E-007
(0.70048)  (-0.62542)  (2.33811) (1.71119)

01/19/94 ) 4.652E-005 -1.674E-006 1.093E-005 2.722E-007
(0.12095)  (-0.14970)  (1.40840) (1.45586)

01/20/94 | -3.573E-004 3.071E-005 5.678E-006 4.363E-007
(-1.32397) (1.47524)  (3.16975) (4.36392)

01/21/94 | -1.071E-004 1.453E-005 7.759E-006 6.499E-014
(-0.52230) (0.89053)  (8.10009) (-8.193E-007)

01/24/94 | -5.805E-005 1.052E-005 1.735E-005 1.295E-018
(-0.20290) (0.36238)  (3.00957) (-9.974E-010)

01/25/94 | 7.789E-005 -1.587E-005 1.063E-005 1.432E-007
(0.29767)  (-0.42287)  (1.97415) (0.19728)

01/26/94 | 4.803E-005 -7.185E-006 1.042E-005 1.688E-015
(0.20184)  (-0.29312)  (8.95570) (-1.573E-007)

01/27/94 | -4.314E-005 8.078E-006 8.167E-006 3.522E-017
(-0.19172) (0.30938)  (8.52901) (-2.953E-008)

01/28/94 | -1.591E-004 3.636E-005 8.955E-006 4.182E-015
(-0.79349) (1.47203) (10.87673) (-2.776E-007)

01/31/94 | -7.144E-005 1.234E-005 7.523E-006 5.033E-020
(-0.41732) (0.68072) (12.95443) (-1.828E-009)

® Numbers in the parentheses are t-values




Table 3.4: Estimation Results of Equation (3.5) (IBM) Using the Num-
ber of Trades as the Conditioning Variable

Date 7 £Q G* O'QZ

01/03/94 | 8.476E-005 -3.769E-005 5.061E-007 6.011E-007
(1.49222) (-0.80970) (2.70837)  (6.11218)

01/04/94 | 3.548E-005 -5.719E-006 4.606E-007 2.940E-007
(0.69125)  (-0.15700) (3.39504)  (4.30002)

01/05/94 | 1.729E-005 6.371E-006 4.399E-007 1.849E-007
(0.32467) (0.20052) (3.35640)  (3.07845)

01/06/94 { -2.508E-005 -1.887E-005 6.229E-007 2.701E-007
(-0.39776) (-0.50228) (4.20342)  (3.96198)

01/07/94 | -3.140E-005 4.066E-005 3.467E-007 3.590E-007
(-0.65941) (1.05446) (2.75879)  (5.12474)

01/10/94 | 2.205E-005 -1.628E-007 4.955E-007 2.531E-007
(0.38751) (-0.00458) (3.78897)  (4.05828)

01/11/94 | -1.922E-005 -2.098E-006 4.518E-007 3.284E-007
(-0.36991) (-0.05135)  (3.65432)  (4.70252)

01/12/94 | 3.584E-005 -4.622E-005 5.312E-007 2.934E-007
(0.64646) (-1.12057)  (4.20136)  (4.16692)

01/13/94 | -5.142E-005 5.839E-005 4.264E-007 2.805E-007
(-1.06162) (1.57593) (3.35118)  (4.08225)

01/14/94 | 1.316E-005 -1.963E-005 3.785E-007 2.742E-007
(0.28891) (-0.54274) (3.03904)  (3.95972)

01/17/94 | 3.241E-005 -6.373E-005 6.459E-007 4.567E-007
(0.54283) (-1.40802) (3.25467)  (4.41821)

01/18/94 | -1.056E-005 -3.887E-006 5.499E-007 3.466E-007
(-0.16881) (-0.10026) (3.40469)  (4.72099)

01/19/94 | -1.180E-004 5.772E-005 6.743E-007 2.176E-007
(-1.87331) (1.42191) (4.92592)  (3.05282)

01/20/94 | 3.810E-005 -4.573E-005 7.201E-007 3.179E-007
(0.54601) (-1.02940) (4.26880)  (3.77777)

01/21/94 | 3.717E-005 -2.098E-005 5.734E-007 2.275E-007
(0.63357) (-0.58568) (4.13782)  (3.47190)

01/24/94 | -6.196E-005 7.478E-005 7.402E-006 7.937E-006
(-0.18828) (0.48924) (0.65732)  (2.38591)

01/25/94 | 1.102E-004 -3.546E-005 1.902E-006 6.626E-007
(0.71898) (-0.83679) (1.04523)  (1.65493)

01/26/94 | -4.424E-006 -4.935E-005 3.848E-007 6.162E-007
(-0.07222) (-1.32686) (1.53389)  (6.87969)

01/27/94 | -6.900E-005 6.118E-005 6.882E-007 2.824E-007
(-1.04948) (1.43605)  (3.88852)  (3.12824)

01/28/94 | -5.002E-005 2.189E-005 6.070E-007 2.991E-007
(-0.86796) (0.52766)  (4.69518)  (4.30378)

01/31/94 { -1.133E-004 4.083E-005 6.943E-007 2.235E-007
(-1.54928) (0.94092) (4.47511)  (2.87036)

® Numbers in the parentheses are t-values




Table 3.5: Estimation Results of Equation (3.5) (INTEL) Using the

Number of Price Changes as the Conditioning Variable

Date 7 iq a2 O'LE
01/03/94 | 2.797E-004 -1.073E-004 8.908E-006 1.1962E-014
(1.24956)  (-1.92245)  (9.05379) (-1.741E-007)
01/04/94 | 1.290E-004 -8.417E-006 7.850E-006 3.918E-008
(0.57753)  (-0.15131)  (6.86882) (0.13952)
01/05/94 | -6.153E-005 2.780E-005 7.208E-006 1.126E-007
(-0.29259) (0.62172)  (7.19134) (0.55261)
01/06/94 | -1.284E-005 -8.498E-006 8.232E-006 1.021E-007
(-0.05847)  (-0.16307)  (7.89459) (0.42606)
01/07/94 | -2.415E-004 7.327E-005 9.623E-006 2.476E-014
(-1.11331) (2.15278)  (7.95842) (-2.841E-007)
01/10/94 | -1.618E-004 4.273E-005 7.125E-006 3.356E-007
(-0.63430) (0.84874)  (4.30540) (1.11198)
01/11/94 | -2.863E-005 7.484E-006 7.878E-006  1.9320E-007
(-0.13154) (0.14092)  (8.07765) (0.86884)
01/12/94 | 1.663E-005 -3.113E-006 1.083E-005 4.441E-014
(0.07846)  (-0.11960)  (6.42574) (-2.945E-007)
01/13/94 | 6.764E-005 -2.202E-005 4.874E-006 3.655E-007
(0.36191)  (-0.42621)  (8.63130) (2.65741)
01/14/94 | 1.385E-004 -3.688E-005 8.525E-006 1.380E-007
(0.58783)  (-0.79119)  (7.17790) (0.61662)
01/17/94 | -1.547TE-004 1.960E-005 7.308E-006 7.280E-007
(-0.68114) (0.34487)  (3.83022) (1.82811)
01/18/94 | 1.832E-004 -3.109E-005 9.065E-006 1.130E-006
(0.58729)  (-0.50424)  (2.24456) (1.68045)
01/19/94 | 7.124E-005 -4.669E-006 1.097E-005 5.260E-007
(0.18416)  (-0.21381)  (1.39101) (1.41326)
01/20/94 | -8.547E-005 1.868E-005 5.818E-006 8.168E-007
(-0.34831) (0.51756)  (3.74100) (5.40690)
01/21/94 | -1.682E-004 4.006E-005 6.814E-006 6.004E-008
(-0.81873) (1.24356)  (7.25026) (0.42637)
01/24/94 | -9.627E-005 2.821E-005 1.778E-005 1.684E-021
(-0.32268) (0.50274)  (2.95583) (-1.912E-011)
01/25/94 | 2.472E-004 -8.903E-005 8.935E-006 8.328E-007
(0.96579)  (-1.16360)  (1.64408) (0.58457)
01/26/94 | 5.779E-005 -1.603E-005 9.595E-006 2.082E-016
(0.25008)  (-0.36543)  (8.53751) (-3.283E-008)
01/27/94 | -4.74TE-006 4.37TE-006 6.801E-006 4.003E-007
(-0.02126) (0.07827)  (7.01254) (1.80849)
01/28/94 | -8.705E-005 4.584E-005 7.879E-006 2.305E-007
(-0.39123) (0.72296)  (8.61021) (0.93629)
01/31/94 | -1.228E-004 4.249E-005 7.325E-006 5.385E-014
(-0.62444) (0.85998) (10.95842) (-3.701E-007)

® Numbers in the parentheses are t-values




Table 3.6: Estimation Results of Equation (3.5) (IBM) Using the Num-

ber of Price Changes as the Conditioning Variable

Date I I 52 ?‘Q
01/03/94 | 6.026E-005 -6.762E-005 6.172E-007 1.769E-006
(1.46349) (-0.61591) (4.55751)  (10.97768)
01/04/94 | 7.588E-005 -1.905E-004 3.694E-007 1.906E-006
(2.48022) (-1.41183) (4.16398) (13.63471)
01/05/94 { 1.571E-005 5.502E-005 3.686E-007 1.727E-006
(0.50900) (0.37617) (4.30642) (11.64407)
01/06/94 | -5.648E-005 5.477TE-006 4.852E-007 1.715E-006
(-1.50418) (0.04517) (4.81681) (11.95872)
01/07/94 | -5.255E-006 1.099E-004 3.225E-007 2.008E-006
(-0.18449) (0.79623) (4.26582) (16.17123)
01/10/94 | 3.789E-005 -5.292E-005 4.159E-007 1.529E-006
(1.10772) (-0.45048) (4.77369) (11.81812)
01/11/94 | -4.200E-005 7.198E-005 3.318E-007 1.885E-006
(-1.40281) (0.55665) (4.33180) (16.30588)
01/12/94 | 4.232E-005 -2.543E-004 3.934E-007 1.919E-006
(1.28267) (-1.79089) (4.67616) (13.61706)
01/13/94 | -1.270E-005 1.729E-004 2.664E-007 2.609E-006
(-0.48989) (0.99633) (3.24443) (16.41958)
01/14/94 { 3.216E-005 -2.267E-004 3.079E-007 2.081E-006
(1.20046) (-1.44434) (3.63448) (12.81442)
01/17/94 | -3.231E-005 -5.548E-005 5.335E-007 2.228E-006
(-0.79160) (-0.38794) (3.53979) (10.34310)
01/18/94 | -6.470E-005 1.368E-004 4.756E-007 1.836E-006
(-1.69856) (1.11706) (4.60249) (13.95372)
01/19/94 | -6.733E-005 9.985E-005 5.116E-007 1.666E-006
(-1.77032) (0.75106) (5.50270) (11.79130)
01/20/94 | -4.766E-005 5.651E-005 5.806E-007 1.827E-006
(-1.15499) (0.44705) (4.92443) (10.74088)
01/21/94 | 2.324E-005 -7.708E-005 4.426E-007 2.074E-006
(0.69293) (-0.50643) (4.99179) (13.61826)
01/24/94 | 3.607E-005 1.559E-004 7.168E-016 5.060E-005
(0.25796 ) ( 4.134E-006) (-1.554E-009)  (7.13034)
01/25/94 | 4.234E-005 -7.563E-005 1.933E-006 2.864E-006
(0.44948) (-0.64119) (1.47035)  (2.97583)
01/26/94 | -2.175E-005 -2.099E-004 7.664E-007 2.215E-006
(-0.42620) (-1.58869) (3.99335) (9.39011)
01/27/94 | -1.460E-005 1.306E-004 4.411E-007 2.689E-006
(-0.45798) (0.84308) (3.88487) (13.89358)
01/28/94 | -2.892E-005 2.324E-005 3.725E-007 2.156E-006
(-0.88786) (0.16630) (4.49665) (16.65284)
01/31/94 | -1.956E-005 -9.774E-005 4.688E-007 1.827E-006
(-0.54239) (-0.78937) (5.08685) (14.03249)

® Numbers in the parentheses are t-values



Table 3.7: MLE Estimation Results on Equation (3.21) (INTEL) when

the Number of Trades is Used as the Conditioning Variable

Date i Hq &2 7 a fé]

01/03/94 | 5.64E-004 -1.38E-004 9.67E-006 8.25E-014 0.154 583748

(2.395)  (-5281)  (11.700) (2.0E-006) (4.563) (12.059)

01/04/94 | -3.26E-004 1.19E-004 9.30E-006 1.62E-015 0.359 649453

(-1.291) (3.964)  (11.379) (-1.2E-006) (5.699) (14.303)

01/05/94 | -2.32E-004 3.24FE-005 7.45E-006 1.79E-008 -0.107 958372

(-1.159) (1311)  (10.703) (0.188) (-2.258) (16.172)

01/06/94 | 1.52E-005 -9.44E-006 8.59E-006 2.66E-018 0.008 685890

(0.064)  (-0.283) (9.188)  (6.6E-009) (0.180) (15.300)

01/07/94 | 4.95E-005 9.96E-006 8.59E-006 1.39E-016 -0.206 1159475

(0.293) (0.732)  (16.557) (-8.5E-009) (-6.326) (15.847)

01/10/94 | -3.56E-005 9.63E-006 8.59E-006 3.45E-015  0.039 971904

(-0.131) (0.354) (9.320) (-24E-007) (0.870) (20.818)

01/11/94 | -8.07E-005 5.88E-006 8.53E-006 3.2E-019 0.238 676035

(-0.371)  (0.26277)  (12.731) (-3.7E-000) (5.949) (15.062)

01/12/94 | 8.05E-005 -7.58E-006 9.92E-006 7.04E-020 -0.197 990418

(0.458)  (-0.706)  (22.246) (-5.8E-000) (-7.774) (24.090)

01/13/94 | 7.77E-004 -2.03E-004 7.56E-006 1.47E-014  0.608 637174

(3.486) (-7.779) (9.801) (-1.1E-007) (7.303) (10.853)

01/14/94 | -6.02E-006 5.01E-006 9.00E-006 9.45E-009 -0.160 815408

(-0.025) (0.178)  (12.640) (0.162) (-2914) (16.443)

01/17/94 | -5.46E-005 -6.31E-006 8.29E-006 2.32E-007 -0.035 687441

(-0.204) (-0.172) (10.074) (1.803) (-1.135) (22.495)

01/18/94 | 3.44E-004 -4.281E-005 1.20E-005 2.43E-007 0.199 628407

(0917)  (-1.30052)  (13.412) (3.624) (4.468) (26.134)

01/19/94 -0.004 -0.001 4.13E-011 6.32E-005 26.025 1465

(-6.721)  (-54.772) (-5.8E-007) (4.790) (4917) (4.777)

01/20/94 -0.003 6.86E-004 2.10E-005 2.56E-006  3.124 162954

(-17.544)  (48.216)  (13.694) (14.230) (16.743) (16.825)

01/21/94 | -8.05E-005 1.26E-005 7.13E-006 3.87E-017 -0.090 1326696

(-0.358) (0.597)  (11.562) (-4.5E-008) (-1.461) (15.532)

01/24/94 | -6.51E-005 1.11E-005 1.38E-005 2.90E-017 -0.068 537886

(-0.228) (0.315)  (30.146) (-3.0E-008) (-4.019) (33.728)

01/25/94 | 1.04E-004 -2.29E-005 1.14E-005 5.41E-016 0.043 477442

(0.336)  (-0.434)  (10.800) (-5.4E-008) (1.369) (34.725)

01/26/94 | 1.49E-004 -2.36E-005 8.94E-006 3.21E-008 -0.257 829013

(0.757)  (-1056)  (12.334) (0.562) (-5.787) (15.641)

01/27/94 | -1.20E-004 2.97E-005 8.18E-006 3.99E-017  0.256 767316

(-0.541) (1404)  (11.245) (-5.1E-008) (4.763) (14.353)

01/28/94 -0.001 3.37E-004 1.20E-005 6.75E-014  1.125 342264

(-5.749)  (16455)  (14.005) (-2.2E-006) (14.852) (13.736)

01/31/94 | -4.45E-005 6.29E-006 6.92E-006 3.36E-008 -0.416 864783
(-0.316) (0.380)  (10.954) (0.436) (:6.621) (12.163)

* Numbers in the parentheses are t-values
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Table 3.8: MLE Estimation Results on Equation (3.21) (IBM) when the

Number of Trades is Used as the Conditioning Variable

Date i faq 52 G2 a ]

01/03/94 9.26E-005 -6.55E-005 3.71E-007 6.80E-007 0.063 990164
(1.334) (-1.277) (13681) (12.816) (3.450) ( 18.043)

01/04/94 | 5.40E-005 -2.77E-005 2.47E-007 4.46E-007 0.040 1541930
(0.643) (-0.507) (11556) (13.800) (2.413)  (19.553)

01/05/94 | 3.00E-005 -1.35E-006 2.67E-007 3.08E-007 0.055 2009605
(0541) (-0035) (16.672) (12.957) (3.189)  (21.223)

01/06/94 | -7.38E-006 -2.65E-005 3.28E-007 5.15E-007 0.064 1325644
(-0.129) (-0590) (16.292) (11.283) (3.891)  ( 17.039)

01/07/94 | -3.43E-005 3.56E-005 1.06E-007 5.67E-007 -0.008 1547819
(-0.346)  (0.498) (10.055) (16582) (-L153)  ( 18.828)

01/10/94 | 2.13E-006 8.56E-006 2.28E-007 4.50E-007 0.033 1627898
(0.037) (0191) (17.481) (13.483) (2013)  ( 18.406)

01/11/94 | -2.17E-005 1.66E-006 2.69E-007 5.30E-007 -0.028 1371322
(-0.450)  (0.034) (20.217) (10.820) (-2.562)  (15.386)

01/12/94 | 5.00E-005 -6.16E-005 2.41E-007 6.08E-007 0.030 1213033
(0925) (-1140) (17.946) (11543) (1.963)  ( 15.455)

01/13/94 | -3.88E-005 4.46E-005 2.76E-007 3.99E-007 0.011 1586913
(0.775)  (1.020) (19927) (13.009) (0.772)  (19.828)

01/14/94 | 2.10E-005 -4.30E-005 2.11E-007 4.44E-007 0.045 1559873
(0523) (-1.012) (24.277) (13.235) (3.486) (18.371)

01/17/94 | 2.19E-005 -3.17E-005 4.26E-007 6.56E-007 0.037 979631
(0.371) (-0584) (16.900) (12.956) (2.637)  (20.980)

01/18/94 | -3.08E-005 1.03E-005 3.70E-007 4.99E-007 0.089 1303136
(-0.468)  (0.222) (24074) (9.527) (4398)  (14.605)

01/19/94 | -1.16E-004 5.75E-005 5.05E-007 3.65E-007 -0.032 1376933
(-1677)  (1.140) (13.603) (7.357) (-1852)  (15.900)

01/20/94 | 4.06E-005 -5.17TE-005 4.21E-007 5.53E-007 0.039 1153405
(0507) (-0981) (14.042) (9478) (1912)  (15.159)

01/21/94 | 3.56E-005 -2.25E-005 3.33E-007 4.28E-007 0.021 1514227
(0.637) (-0.507) (17.762) (10.393) (1211)  (16.688)

01/24/94 | -3.71E-006 5.24E-005 1.86E-005 3.17E-006 -0.007 96231
(0011) (0493) (32.624) (-9914) (-0.807) (35528)

01/25/94 | 1.34E-004 -4.70E-005 2.02E-006 6.17E-007 0.118 833443
(0.724) (-0994) (10.245) (9.010) (4901) (37.122)

01/26/94 | -4.01E-005 4.44E-006 5.31E-007 4.91E-007 0.230 1215796
(-0.501) (0.118) (12.227) (1L135) (6.678) ( 15.76848)

01/27/94 | -4.89E-005 4.30E-005 4.52E-007 4.95E-007 0.035 1191080
(-0670) (0.779) (19.765) (-10.157) (1972)  (17.873)

01/28/94 | -3.14E-005 1.67E-005 3.08E-007 5.79E-007 0.022 1188794
(0.622) (0326) (19500) (10.141) (1523)  (15.041)

01/31/94 { -8.91E-005 2.35E-005 4.22E-007 4.40E-007 0.037 1367254
(-1334)  (0474) (13929) (8577) (1534) (15.040)

* Numbers in the parentheses are t-values



Table 3.9: MLE Estimation Results on Equation (3.21) (INTEL) when
the Number of Price Changes is Used as the Conditioning

__Varjable -—
Date i J77) 7* 0, gi a B

01/03/94 4.39E-005 2.28E-005 9.12E-006 3.64F-014 0.266 321238
(0.185)  (0.422)  (12.326) (-2.35E-007) (5.073) (1L988)
01/04/94 1.19E-004 -5.33E-006 7.29E-006 2.27E-007 -0.020 389596
(0.478)  (-0.075)  (7.883) (0.896) (-0.387) (15.557)
01/05/94 | -5.53E-005 2.62E-005 6.97E-006 1.91E-007 -0.002 477996
(-0226)  (0.466) (8.877) (-0.878) (-0.041) (15.798)
01/06/94 | 8.37E-004 -3.98E-004 1.18E-005 2.96E-014 0.526 231624
(3026)  (-7.727)  (10.949) (-3.75E-007) (8.413) (12.133)
01/07/94 | -9.62E-004 4.28E-004 1.26E-005 6.85E-015 0.752 306435
(-3918)  (11.341)  (13.034) (-2.64E-007) (9.465) (12.311)
01/10/94 | -2.42E-004 6.93E-005 6.25E-006 5.4E-007 0.086 505050
(-0.814)  (1.147) (5.639) (-2.360)  (L877) (19.265)
01/11/94 | 2.89E-005 2.22E-005 1.02E-005 5.09E-013 0.185 374330
(0.112)  (0.459) (9.540) (3.70E-006) (3.328) (11.865)
01/12/94 | 2.70E-005 -5.20E-006 9.92E-006 1.19E-018 -0.074 540704
(0.131)  (-0.184)  (20.182) (9.42E-009) (-3.100) (23.680)
01/13/94 | 5.897E-004 -2.37E-004 7.08E-006 4.10E-018 0.384 392595
(2.891)  (-5.978) (9.530) (-1.09E-008) (5.932) (10.150)
01/14/94 | 1.296E-004 -3.70E-005 9.06E-006 1.17E-018 0.050 433865
(0.524)  (-0.821)  (10.110) (3.78E-009) (0.975) (15.376)
01/17/94 | -1.81E-004 2.37E-005 6.50E-006 9.23E-007 -0.007 359775
(-0.726)  (0.354) (9.025) (-5.750) (-0.275) (20.147)
01/18/94 1.49E-004 -2.42E-005 1.14E-005 5.80E-007 0.053 334170
(0.410)  (-0.406)  (12.090) (3.344) (L.158) (27.265)
01/19/94 -0.00366 -0.00174 1.28E-012 5.98E-005 12.524 1339
(-8.867)  (49.338) (-6.8E-007) (4.461) (4.549)  (4.300)
01/20/94 0.00229 -8.21E-004 2.22E-005 1.85E-006 2.011 120470
(9.122)  (-27.059)  (13.866) (9.510) (19.491) (17.977)
01/21/94 | -1.67E-004 4.01E-005 6.86E-006 5.19E-008 0.002 689308
(-0.756)  (1.189) (9.402) (0.369)  (0.034) (16.462)
01/24/94 | -9.70E-005 2.79E-005 1.38E-005 1.29E-021 -0.033 299702
(-0290)  (0.388)  (15.391) (-5.20E-011) (-3.505) (23.610)
01/25/94 1.88E-004 -7.05E-005 7.51E-006 1.35E-006 0.019 251587
(0.583)  (-0.647)  (13.289) (6.948) (1.268) (40.919)
01/26/94 0.001 -3.92E-004 1.19E-005 6.05E-014 0.462 297088
(3.558)  (-7.349)  (12.596) (-3.72E-007) (6.509) (12.237)
01/27/94 | 8.13E-006 2.84E-006 6.86E-006 3.88E-007 0.050 407225
(0.034)  (0.049)  (6.983) (-1655)  (1.095) (13.391)
01/28/94 | -5.68E-004 2.37E-004 9.18E-006 7.87E-018 0.190 299799
(-2.084)  (3463)  (7.977) (4.52E-009) (3.219) (11.426)
01/31/94 | -1.44E-004 3.01E-005 6.92E-006 6.09E-008 -0.241 436765
(0.732)  (0.530) (9.902) (-0.288) (-4.050) (11.775)

* Numbers in the parentheses are t-values



Table 3.10: MLE Estimation Results on Equation (3.21) (IBM) when the
Number of Price Changes is Used as the Conditioning Vari-

—___able

Date 7 J77a) 52 6’6 a 8

01/03/94 | 5.89E-005 -1.29E-004 3.64E-007 2.60E-006 0.037 255342
(1.566) (-0.885) (27.271) (5.297) (3.638) (7.332)

01/04/94 | 7.76E-005 -2.06E-004 2.48E-007 2.58E-006 0.033 243157
(2234) (-1.236) (28.674) (4376) (4.026) (6.077)

01/05/94 | 1.58E-005 4.90E-005 2.84E-007 2.14E-006 0.004 276309
(0.525) (0.282) (34.075) (4.627) (0674) (7.614)

01/06/94 { -5.52E-005 2.05E-005 3.32E-007 2.37E-006 0.019 279091
(-1.545) (0.135) (28.126) (4258) (2148) (6.254)

01/07/94 | -8.86E-006 1.06E-004 2.20E-007 2.56E-006 0.017 268972
(-0.332) (0.627) ( 38.656) (3.159) (3.057) (4.379)

01/10/94 | 3.79E-005 -4.75E-005 2.93E-007 2.08E-006 0.014 312964
(1.169) (-0.324) (31.357) (3901) (1820) (5.829)

01/11/94 | -4.31E-005 8.50E-005 2.34E-007 2.56E-006 0.019 276424
(-1.486) (0.512) (35.148) (3.149) (2.870) (4.296)

01/12/94 | 4.09E-005 -2.47E-004 3.00E-007 2.46E-006 0.008 261973
(1.263) (-1.390) (31.646) (3.238) (1.157) (4.865)

01/13/94 | -1.53E-005 1.85E-004 1.95E-007 3.35E-006 0.017 212449
(-0.622) (0.808) (42.182) (3317) (2675) (4.366)

01/14/94 | 2.67TE-005 -2.40E-004 2.02E-007 3.07E-006 0.026 209445
(1.032) (-1.081) (39.583) (4297) (3.144) (5.669)

01/17/94 | -3.02E-005 -1.76E-005 4.57E-007 2.50E-006 0.016 240100
(-0.651) (-0.111) (42.806) (3.055) (1.627) (5.001)

01/18/94 | -7.62E-005 1.50E-004 3.93E-007 2.07E-006 0.045 270105
(-1.814) (1.167) (30.615) (3.885) (4419) (6.247)

01/19/94 | -6.49E-005 7.66E-005 3.91E-007 2.43E-006 0.014 245865
(-1.752) (0.440) (28.120) (2995) (L710) (4.816)

01/20/94 | -4.87E-005 6.29E-005 3.97E-007 2.58E-006 0.009 257071
(-1.262) (0393) (27.684) (4.185) (0983) (6.145)

01/21/94 | 2.22E-005 -6.17E-005 3.09E-007 2.90E-006 0.007 227475
(0702) (-0.307) (34.496) (2813) (0973) (4.277)

01/24/94 | 4.54E-005 1.38E-004 7.67E-006 2.50E-005 7.57E-004 26339
(0.249) (0.437) (-73.583) (-19.148) (0.224) (25.795)

01/25/94 | 7.70E-005 -1.33E-004 1.20E-006 4.15E-006 0.073 164220
(0.952) (-0.899) (16.352) (22.946) (3.990) (26.642)

01/26/94 | -5.69E-006 -2.4E-004 6.46E-007 2.47E-006 0.069 203008
(-0.113) (-1.650) (23.548) (7077) (3.822) (10.399)

01/27/94 | -1.36E-005 1.34E-004 2.56E-007 3.46E-006 0.018 203408
(-0.434) (0.686) (45.409) (4.042) (2893) (5453)

01/28/94 | -2.40E-005 7.15E-005 2.90E-007 2.35E-006 0.032 261737
(-0.746 ) (0.489) (32.247) (3631) (3452) (5.395)

01/31/94 | -1.84E-005 -1.06E-004 3.26E-007 2.50E-006 0.008 274554
(-0.551) (-0.664) (31.510) (3.188) (1.146) (4.530)

* Numbers in the parentheses are t-values
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Table 3.11: Moments and Persistence Level of Information Arrival (N of INTEL)

Date | E(N) V(N) V(N) E V(N ) CF
01/03/94 | 5600 31.058 5014 5866 4.77E-002 L.ILE-0C2 L.21E-002
01/04/94 | 6.079 34.567  6.716 6.459 2.57E-001 9.13E-003 2.24E-002
01/05/94 | 7223 62.621  7.189 7.166 2.29E-002 1.81E-002 4.53E-004
01/06/94 | 5928 31.090  5.896 5.896 1.14E-004 6.12E-005 L1.74E-004
01/07/94 | 9.779 174.604  9.834 9.749 8.49E-002 1.15E-004 9.23E-005
01/10/94 | 8467 59.211 8387 8.384 3.11E-003 9.02E-005 8.22E-004
01/11/94 | 6.051 30.861  6.116 6.002 1.13E-001 2.34E-005 4.00E-004
01/12/94 | 9.831 131.946  9.709 9.631 7.73E-002 5.69E-005 4.15E-003
01/13/94 | 5362 19.908  6.314 5.574 7.40E-001 2.63E-002 8.06E-003
01/14/94 | 7.359 60.112  7.286 7.235 5.11E-002 7.73E-003 2.13E-003
01/17/94 | 6.787 36.626  6.746 6.744 2.53E-003 1.60E-001 2.74E-004
01/18/94 | 9.213 50461  9.258 9.177 8.13E-002 1.54E-001 1.41E-004
01/19/94 | 33.931 571.561 1395.703 28.760 1.37E+003 9.51E-002 9.30E-001
01/20/94 | 13.064 156.955  38.734 12.924 2.58E+001 4.94E-001 1.52E-003
01/21/94 | 9456 69.565  9.386 9.370 1.61E-002 2.12E-004 7.89E-004
01/24/94 | 7438 42.987  7.386 7.376 9.12E-003 6.59E-005 5.21E-004
01/25/94 | 5579 25.283 5503 5.499 3.69E-003 2.51E-004 1.16E-003
01/26/94 | 7.423 40132 7486 7.354 1.32E-001 2.71E-002 6.47E-004
01/27/94 | 6597 30951  6.668 6.537 1.31E-001 6.78E-004 5.51E-004
01/28/94 | 5500 36.256  7.991 5.458 2.53E+000 3.89E-002 3.23E-004
01/31/94 | 5808 55.806  6.079 5.732 3.47E-001 2.91E-002 1.01E-003

TCF 9.87E-001

E=Mean; V=Variance; E=Estimated Mean; E = E(N) = E(\); V =Estimated

~ 12
Variance; § = ﬁ(ﬁzq + 6%). CF =Criterion Function= B B s TCF =Y 2, CF;

E(N)




Table 3.12: Moments and Persistence Level of Information Arrival (N of IBM)
Date | E(N) V(N) V(N) E V(N 7 CF
01/03/94 | 1.352 1.780 1.351 1.336 1.49E-002 0.678  1.92E-004
01/04/94 | 1.371 2.053 1.353 1.347 6.01E-003 0.688  4.28E-004
01/05/94 | 1.562 2.324 1.564 1.554 09.83E-003 0.620 4.12E-005
01/06/94 | 1.568 2.256 1.588 1.573 1.52E-002 0.683  1.59E-005
01/07/94 | 1.316 1.505 1.311 1.311 5.06E-004 0.880 1.91E-005
01/10/94 | 1.537 2.048 1.516 1.512 4.70E-003 0.732  4.13E-004
01/11/94 | 1.246 1.579 1.248 1.244 3.25E-003 0.726  3.22E-006
01/12/94 | 1.257 1.655 1.258 1.253 4.08E-003 0.743 1.28E-005
01/13/94 | 1.256 1.847 1.235 1.234 4.01E-004 0.637  3.92E-004
01/14/94 | 1.228 1.724 1.235 1.228 7.70E-003 0.696 0.00E+000
01/17/94 | 1.296 2.013 1.277 1.272 4.58E-003 0.643  4.53E-004
01/18/94 | 1.618 2216 1.661 1.634 2.73E-002 0.650 1.57E-004
01/19/94 | 1.352 1.863 1.349 1.346 2.74E-003 0.508  2.68E-005
01/20/94 | 1.467 1.869 1.463 1.458 5.16E-003 0.640  5.56E-005
01/21/94 | 1.504 2.271 1.496 1.495 1.46E-003 0.649  5.42E-005
01/24/94 | 2.568 4.885 2.562 2.562 1.18E-004 0.305 1.41E-005
01/25/94 | 3.728 6.750 3.753 3.715 3.82E-002 0.516  4.55E-005
01/26/94 | 2.129 3.539 2.257 2.121 1.37E-001 0.597  3.02E-005
01/27/94 | 1.403 1.871 1.409 1.405 3.76E-003 0.592  2.85E-006
01/28/94 | 1.270 1.852 1.251 1.249 1.89E-003 0.689 3.53E-004
01/31/94 | 1.538 1.596 1.550 1.545 4.28E-003 0.603  3.17E-005
TCF _ 2.74E-003

E=Mean; V=Variance; E=Estimated Mean; E = E(N) = E()); V=Estimated
~ 12

Variance; § = B(B% +&3); CF =Criterion Function= E(N;z:;)( al ;

TCF =Y2,CF,




Table 3.13: Moments and Persistence Level of Information Arrival (NPC of INTEL)

Date | E(NPC) V(NPC) V(NPC) E ZeN ; CF
01/03/94 | 3.010  7.208  3.338 8.197 1.42E-001 1.675-004 L.09E-002
01/04/94 | 3123  6.869  3.094 3.093 8.26E-004 8.84E-002 2.91E-004
01/05/94 | 3.656 10.776  3.666 3.666 1.05E-005 9.18E-002 2.73E-005
01/06/94 | 3203 8650 3945 3391 5.54E-001 3.67E-002 1.04E-002
01/07/94 | 4651 18983  6.022 4.888 L113E+000 5.62E-002 1.15E-002
01/10/94 | 4472  10.111 4490 4474 1.60E-002 2.75E-001 8.94E-007
01/11/94 | 3210 9370  4.088 4019 6.87E-002 1.84E-004 1.63E-001
01/12/94 | 5382 38401 5302 5291 1.10E-002 1.46E-005 1.57E-003
01/13/94 | 3.002  7.565 3528 3.233 2.95E-001 2.21E-002 6.15E-003
01/14/94 | 4.028 12156  3.980 3.984 5.08E-003 5093E-004 4.86E-004
01/17/94 | 3510 10.744  3.492 3.492 1.19E-004 3.32E-001  9.28E-005
01/18/94 | 4818 12967 4809 4.803 5.88E-003 1.94E-001 4.68E-005
01/19/94 | 17.467 144.357 320.588 13.673 3.16E+002 8.41E-002 1.05E+000
01/20/94 | 6.785 60.792 15638 6.720 8.91E+000 3.04E-001 4.66E-004
01/21/94 | 4954 19982 4915 4915 7.15E-006 3.69E-002 3.09E-004
01/24/94 | 4.123 11.383 4118 4116 2.12E-003 2.33E-004 1.19E-005
01/25/94 | 2908 6377  2.890 2.889 7.85E-004 3.40E-001 1.25E-004
01/26/94 | 3933 12448 4617 4189 4.28E-001 4.56E-002 1.56E-002
01/27/94 | 3.385  7.733  3.383 3.378 5.06E-003 1.58E-001 1.45E-005
01/28/94 | 2777 6148  3.065 2.993 7.23E-002 1.68E-002 1.56E-002
01/31/94| 2900 7530  2.973 2857 1.16E-001 2.70E-002 6.47E-004

TCF 1.29E+000

E—Mean; V—Variance; E—Estimated Mean; £ = E(NPC) = E()\); V—Estimated

-~ 2
Variance; § = ﬁ@% + 3%), CF =Criterion Function= E(N) - E(N) i TCF =2 CF;

E(N)
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Table 3.14: Moments and Persistence Level of Information Arrival (NPC of IBM)

Date | E(NPC) V(NPC) V(NPC) E 7O ] CF

01/03/94 0.391 0.553 0.395 0.390 5.04E-003 0.666 2.56E-006
01/04/94 0.253 0.339 0.265 0.261 3.80E-003 0.641 2.45E-004
01/05/94 0.209 0.290 0.202 0.202 5.75E-005 0.590 2.43E-004
01/06/94 0.328 0.387 0.333 0.332 1.34E-003 0.662 4.82E-005
01/07/94 0.247 0.310 0.249 0.248 1.15E-003 0.692 4.03E-006
01/10/94 0.303 0.361 0.302 0.301 6.54E-004 0.650 1.33E-005
01/11/94 0.279 0.361 0.290 0.288 1.46E-003 0.710 2.81E-004
01/12/94 0.252 0.292 0.256 0.256 2.26E-004 0.662 6.25E-005
01/13/94 0.200 0.227 0.208 0.207 1.17E-003 0.719 2.37E-004
01/14/94 0.190 0.236 0.201 0.198 242E-003 0.653 3.23E-004
01/17/94 0.319 0.388 0.314 0.313 7.58E-004 0.599 1.15E-004
01/18/94 0.349 0.495 0.356 0.349 6.08E-003 0.566 0.00E+000
01/19/94 0.272 0.359 0.277 0.276 6.33E-004 0.600 5.80E-~005
01/20/94 0.331 0.371 0.335 0.334 2.98E-004 0.667 2.69E-005
01/21/94 0.234 0.309 0.225 0.225 1.50E-004 0.658 3.60E-004
01/24/94 0.607 0.971 0.595 0.595 2.02E-006 0.659 2.42E-004
01/25/94 0.848 1.144 0.874 0.854 2.01E-002 0.686 4.22E-005
01/26/94 0.420 0.523 0.424 0.411 1.30E-002 0.512 1.98E-004
01/27/94 0.241 0.286 0.239 0.238 1.23E-003 0.707 3.78E-005
01/28/94 0.285 0.328 0.283 0.280 3.28E-003 0.614 8.93E-005
01/31/94 0.315 0.402 0.313 0.313 2.36E-004 0.688 1.28E-005

TCF  2.64E-003

E=Mean; V=Variance; E=Estimated Mean; E = E(NPC) = E(])); V=Estimated

- 2
Variance; & = ﬁ(ﬁzq + 3‘5), CF =Criterion Function= [E(g;:;N)] i TCF = Zﬁ: CF;




Table 3.15: Estimation Results of a GARCH(1,1) Model

INTEL IBM

Date a 3 a+ 3 a E a+ 3

01/03/94 | 0.0750 0.8504 0.9255 | 0.3032 0.3064 0.6096
(2.289) ( 13.271) (3.786)  ( 2.080)

01/04/94 | 0.1345 0.5361 0.6706 | 0.1848 0.5668 0.7516
(2.123) ( 2.115) (3.559) (7.342)

01/05/94 | 0.1176 0.7069 0.8245 | 0.0756  0.7296 0.8051
(2.537) ( 6.235) (2.225) ( 4.646)

01/06/94 | 0.0643 0.8674 0.9317 | 0.0628 0.9134 0.9761
(2.155) ( 15.254) (3.004) (28.020)

01/07/94 | 0.0326 0.9475 0.9801 | 0.0579  0.8950 0.9529
(2.190) ( 40.441) (3.379) (32.166)

01/10/94 | 0.1140 0.3627 0.4767 | 0.0158 0.8985 0.9142
(2.126) ( 1.722) (0.882) (8.227)

01/11/94 | 0.0536 0.8071 0.8607 | 0.1090 0.7308 0.8398
(1.642) ( 7.651) (3.091) (8.371)

01/12/94 | 0.2070  0.5692 0.7761 | 0.0856  0.6787 0.7644
(2.615) ( 2.935) (2.305) (5.012)

01/13/94 | 0.0062 0.8897 0.8959 | 0.1506 0.6368 0.7874
(0.210)  ( 3.470) (2.948) (4.988)

01/14/94 | 0.0790 0.7777 0.8567 | 0.0731  0.8973 0.9704
(1.721)  ( 5.739) (3.696) (30.635)

01/17/94 | 0.2700 0.2186 0.4885 | 0.1716  0.5462 0.7178
(3.109) ( 1.353) (3.215) ( 4.869)

01/18/94 | 0.1046 0.5887 0.6932 | 0.1119  0.8736 0.9855
(2.597)  ( 4.144) (4.733) (35.903)

01/19/94 | 0.4192 0.5548 0.9740 | 0.0650 0.0000 0.0650
(4.337) (7.962) (1.456) ( 0.000)

01/20/94 | 0.0865 0.8616 0.9481 | 0.1147 0.4616 0.5762
(3.228) ( 20.637) (2.297) (2.914)

01/21/94 | 0.0679 0.7176 0.7855 | 0.0858 0.0654 0.1512
(2.010) (6.288) (2.177)  (0.090)

01/24/94 | 0.2779 0.2249 0.5028 | 0.6866 0.3134 1.0000
(2.426) ( 1.385) (8.520) (7.587)

01/25/94 | 0.4140 0.1855 0.5995 | 0.1218 0.8451 0.9669
(3.627)  ( 0.689) (3.180) (17.185)

01/26/94 | 0.0980 08135 0.9115| 0.1146 0.8103 0.9249
(2.897) (13.318) (3.352) (14.984)

01/27/94 | 0.0587 0.6096 0.6683 | 0.1547 0.7330 0.8877
(1.248) (2.219) (3.813) (11.422)

01/28/94 | 0.0778 0.8468 0.9246 | 0.1005 0.7660 0.8665
(2.555) (13.144) (3.414) (11.561)

01/31/94 | 0.0275 0.7464 0.7738 | 0.0439 0.5490 0.5928
(0.770) ( 2.438) (1.204) ( 2.080)

GARCH(1,1) model: r¢ = &, & = vt - By 2, ve ~ N(0,1)
hs = ag + ag?_; + B hy—1; Numbers in the parentheses are t-values



CHAPTER 4

MODELLING VOLATILITY, COR-
RELATION, AND MARKET ASYMMETRY USING
TRADING INFORMATION AND BUY/SELL SiG-

NALS

4.1 INTRODUCTION

Although the models proposed in the third chapter are able to capture the arrival of the
number of trades and pin down the volatility persistence, it fails to describe the other
stylized fact, significant negative first-order autocorrelation. In the preliminary analysis in
Chapter 2, we show evidence that different types of buy/sell trades do not arrive indepen-
dently. Whereas buy or sell information may influence the price, returns will be influenced
by whether buy followed sell or any of the three other possibilities. In this chapter, we
explore the usefulness of the extra buy/sell information in explaining the returns autocor-
relation.

A straightforward way of incorporating buy/sell information, is to decompose transac-
tions into the following four types: (1) BS: a buyer-initiated transaction followed by a seller-
initiated transaction; (2) SB: a seller-initiated transaction followed by a buyer-initiated
transaction; (3) BB: a buyer-initiated transaction followed by another buyer-initiated trans-
action; (4) SS: a seller-initiated transaction followed by another seller-initiated transaction.
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According to this decomposition, we modify our homogeneous mixed jump-diffusion model
in Chapter 3 correspondingly. We show that this model allows us to examine the impact
of buy/sell information within a simple regression framework. Most importantly, the sig-
nificant negative first-order autocorrelation is on average reduced by 40% within this new
framework. Furthermore, once we have captured this feature, conditional volatility is re-
duced.

In addition to explaining the autocorrelation, we also use buy/sell signals in exploring
market asymmetry in a threshold autoreregresive (TAR) framework. TAR models are ca-
pable of capturing time-irreversibility, asymmetric limit cycle and jump phenomenon. The
major criticism of TAR models comes from the fact that researchers rarely know which
state of the world they are currently in, which hinders the application of the TAR models
in economic time series. In this chapter, we demonstrate that the TAR model is a promis-
ing alternative for analyzing high frequency time series. We argue that the criticism of
the TAR model is not always justified, especially when we have exogenously observable
information to determine the threshold. Specifically, we use the sign of net buy/sell trading
volume from the preceding period as the switching rule and develop a qualitative threshold
autoregressive model with conditional heteroskedasticity, where both the conditional mean
and conditional variance are regime-dependent. We show this model has a lower volatil-
ity persistence and outperforms a benchmark GARCH(1,1) specification in terms of data
fitting. We also compare their in-sample prediction and the one-step-ahead out-of-sample
forecasting performance. Surprisingly, our QTAR-GARCH model consistently outperforms
the GARCH(1,1) model throughout the 22 examined trading days. Although the issue of
fitting the trading process as in our extended mixed jump-diffusion model is not discussed
here, our QTAR-GARCH model is endowed with superior predicting power and thus pro-
vides a good alternative to the GARCH models in studying nonlinearity existing in financial

data.

In the next section, we start with a short survey on empirical evidence that show signif-
icant negative autocorrelation in high frequency returns data, followed by some proposed
theoretical explanations. We also provide general conditions under which large negative
autocorrelation in returns could occur. We detail the construction of our extended mixed



jump-diffusion model with buy/sell information and the estimation results in Section 4.3.
In Section 4.4, we present our QTAR-GARCH model and the estimation results. In the

final section, we discuss extensions of our model, and conclude the paper.

4.2 AUTOCORRELATION

As demonstrated in Chapter 2, one salient feature of the intraday individual stock returns
series is that most of them have extremely high negative first-order autocorrelation. Most
literature on the intraday analysis of exchange rates and stock indices note the presence
of significant negative but small, first-order autocorrelation, see Andersen and Bollerslev
(1997), Goodhart and Figliuoli (1991), and Goodhart and O’Hara (1997). Earlier research
by Roll (1983) suggests that bid/ask bounce can cause negative serial correlation in transac-
tional price changes, although Roll is unable to demonstrate this point by using daily data
from AMEX and NYSE listed stocks. Zhou (1996) reports significant large negative first-
order autocorrelation for tick-by-tick DM/US$ and JPY/US$ exchange rates. He models
the logarithm of exchange rates by a Brownian motion with noise, and shows that, as the
sampling time span keeps shrinking, the market noise is going to dominate the variation
that comes from the diffusion term. The sample autocorrelation of such return series is thus
-50%. Other explanations for the negative first-order autocorrelation include: nonsynchro-
nous trading of Lo and McKinlay (1990), and brokers’ inventory considerations of Goodhart
and O’Hara (1997). It would seem prudent at this point to address the question of what
sort of assumptions are required on the price process to imply negative autocorrelation in

returns. These are presented in the following Lemma.

Lemma 4.2.1 If In P, follows a stationary process with a negative first-order autocorre-
lation, the associated returns process X: = In P, — In P,_1 must have negative first-order

autocorrelation.

Proof.

Consider the autocovariance between X; and X;_;

Cov(X¢, Xt—1) = Cov(nP—InP),InFy —InPF3)
= Cov(nP,InP,_,) - Var(lnP,_,)

W

=4



—Cov(ln P, In P—2) + Cov(ln P,_1,In P, )
= -P+2n-7

—0(1 — 2p1 + p2) (4.1)

where Y; = Cav(lnPg,]nPg_J-) and P = ‘71'/"70.
For Cou(X:, Xi-1) to be negative requires 1 — 2p; + p2 > 0. Thus examining the

autocorrelation matrix for a stationary process, we have, for some 3 x 3 matrix 2

L ;o p2
Q= P1 1 /1 (42)

p2 ;1
and since §? is positive definite, we note, from the Hawkins-Simons condition for positive

definiteness,
(i) 1—p2 >0.
(ii) 121 = (1 - p2)(1+ p2 — 26}) > 0.
(ii) implies 1 + p2 > 2} and thus
1-2p1+p2>2p1(p1—-1) >0, ifp1 <0 (4.3)

Thus any stationary process with p; < 0 will give negative first order autocorrelation in
first differences. W

The result in the above Lemma cannot be extended to cover general stationary processes
with positive first-order autocorrelation.! However, we note that Cou(X¢, X;—) will be non-
positive for all AR(1) and MA(1) processes as we now show
AR(1): z; = ¢xe—1 + & with py =@, pa = ¢?, gives 1 — 2p1 + p2 = (1 — ¢)® > 0.

MA(L): z; = €t + fet_ with py = 8/(1 +6?), p2 =0, gives 1 —2p; +p2 = i"g . >0.

1 A straightforward counter-example can be constructed from a MA(2) process. Let P, = v; +
®1Ue—1 + doue_3, where v, ~ i.1.d.(0,1). In this case, p; = (¢1 + d162)/(1 + 2 + ¢2). If ¢; = 0.8
and ¢9 = 0.1, p; ~ 0.533 > 0. Thus the result does not follow for this MA(2) process.



4.3 AN EXTENDED MIXED JUMP-DIFFUSION MODEL

In this section, we extend our initial models analyzed in Sections 3.2 and 3.3 by incorporat-
ing buy/sell information to help us explain the significant negative autocorrelation in the

data.

Our motivation comes form the fact that the initial models in Chapter 3 were unable to
capture the significant first-order autocorrelation in the data. We find that the decrease in
the autocorrelation, after incorporating the number of trades in the model, is less than 5%
for all three stocks. Although our model in the previous section captures the information
arrival very well, it also predicts, in equation (3.19), that the autocorrelation in returns is
positive, which contradicts the empirical facts presented in Chapter 2. To overcome this
difficulty, we note, in Tables 2.15 to 2.22, that different types of transactions do not arrive
randomly. This evidence indicates that buy/sell transitions do contain information and

would help in explaining the significant negative autocorrelation.

Notice that, by definition, the sum of buyer-initiated and seller-initiated transactions is
equal to the total number of external transactions. Whereas buy or sell information may
influence the price, returns will be influenced by whether buy followed sell or any of the
three other possibilities. A straightforward way of incorporating buy/sell information, is to
decompose transactions into the following four types: (1) BS: a buyer-initiated transaction
followed by a seller-initiated transaction; (2) SB: a seller-initiated transaction followed by a
buyer-initiated transaction; (3) BB: a buyer-initiated transaction followed by another buyer-
initiated transaction; (4) SS: a seller-initiated transaction followed by another seller-initiated
transaction. According to this decomposition, we modify our initial model correspondingly.
First of all, the price generation process described in equation (3.1) becomes

4 Ne(t)

P(t) = P(0) expl(e — 500t +o(a(t) — Q) + 3 3 Qs (4.4)

=1 5=l

where Q;; ~ ind N(j,07). Assuming AN(t), i = 1,...,4, are jointly Poisson distributed,
we can rewrite the returns process described in equation (3.2) as

4 AN;(t)

X() = (@ = 50%) +0(:() 2t - D) +3 Y. Qu (4.5)

i=1 j=1



For simplicity, we also set a — 302 = 0, and 02 = 03, i = 1,...,4. Consequently, the
conditional density function of X(¢) becomes
4
paf(X(t) | AN(t) = ¢(D_ mANi(t), 0* + oHAN () (4.6)
=1
where AN (t) = Y4, AN;(t). Weset AN} = ANgg, AN2 = ANsg, AN; = ANgg, ANy =
ANss, and likewise for the mean parameters g;’s. This allows us to examine the impact of

buy/sell information within a simple regression framework stated as follows;

X(t) = uBsANBgs + 1spANsp + uppANpp + pussANss + \/02 +03AN()e(t) (4.7)

We estimate this new model by the same iterative feasible generalized least squares proce-
dure described in last section. The results are presented in Table 4.1. We find that the four
new explanatory variables are all highly significant under conventional sighificance levels.
We also examine the autocorrelation of the fitted residuals. As shown in Table 4.2, we
observe that, on average, the first-order autocorrelation drops by 40 percent after incorpo-
rating buy/sell information in the conditional mean. The buy/sell information also help in
explaining intraday volatility, this could be seen by comparing the estimated conditional
variance term &2 + G3AN(t) in equation (3.5) and equation (4.7). We estimate equation
(3.5) using BT data and present the estimation results in Table 4.3. Comparing Table 4.1
with Table 4.3, we find that both 52 and 8% are reduced for every day once buy/sell infor-
mation is incorporated in the estimation. Therefore, the conditional variance 5% +33AN(2)
is also reduced.

It might be possible to extend our second model a little further by postulating a joint
pdf for AN;(t), i = 1,...,4, and deriving a relationship similar to equation (3.21). This
would require modelling some joint Poison process and finding the joint pdf of AN;(t) and
AN(t). One model that could be used is the continuous time time-homogeneous Markov
chain defined on a finite state space S* of dimension 4, where S* = {BS,SB, BB, SS}. We
would need to specify a 4 x 4 generator matrix A = [(A\¢;)] where \;; > 0, 4, j € S*, and
where A;; represents an intensity or infinitesimal probability of moving from one state to
the rest. The probability that the system is in state j at time ¢, given it was in an initial
state i at time 0, is given by P,;(t). This probability is the %, j** element of P(t) and can
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be computed from
P(t) = exp(At) (4.8)

which is interpreted as a matrix equation, see Chiang (1968), especially chapter 7. Over a
given time interval, it is possible, but complicated, to compute the joint pdf of AN;(t), the
number of times the system is in each of the four states. This is a fascinating extension but

would require considerable further analysis.

4.4 THE QTAR-GARCH MODEL

The autoregressive conditional heteroskedastic (ARCH) model of Engle (1982) and the gen-
eralized ARCH (GARCH) model of Bollerslev (1987) are very popular in financial modelling,
and are capable of capturing the commonly observed volatility clustering phenomenon. A
GARCH model can be specified as the following

X¢ = & (49)
wheree; = uthtl/z, v ~ iid (0, 1),

and t = a+ ﬁleg_l + eee + Bpsg—p + 71ht—l + ...+ '7qht—q

However, this generic GARCH model has several shortcomings. First of all, a high GARCH
measure of volatility persistence may be due to the failure to take into account of structural
shifts in the model (Lamoureux and Lastrapes (1990b)). Furthermore, the prediction power
of a generic GARCH is very poor when structural changes do exist (Hamilton and Susmel
(1994)). Secondly, the generic GARCH model does not consider market asymmetry. In this
section, we explore the usefulness of buy/sell signals in capturing market asymmetry. We
shall develop a qualitative threshold framework with conditional heteroskedasticity, where
both the conditional mean and conditional variance are regime-dependent. With additional
information obtained from trading activities, we expect our model to have a better predict-
ing power than the GARCH model.

A time series X; is a TAR model if it has the following functional form

Xe=¢h+ i X1 +...+ G Xep+6,if g€ Li,i=1,2,...,k (4.10)
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where L; form a mutually exclusive partition of the real line in the sense that US| L; = R,
and Ly N Lj = ¢, if i # j; p is the AR order; 8 is the decision rule variable; d is the delay
parameter; k is the threshold parameter; and {¢}} is a sequence of i.i.d. random variables
with zero mean and variance o?, {¢i} and {¢]} are independent whenever i # j. When
0:—4 = Xt—d, i.e. decision rules depend on some past value of the dependent variable, the
model in equation (4.10) becomes a self-exciting TAR (SETAR) model of Tong (1983). In
the application, p is chosen by the best linear AR model, while the choice of d and k are
dependent on the data according to some threshold linearity tests.

Obviously, the switching rule does not have to depend on the lagged dependent variable.
In this paper, we propose to use the signs of net buy/sell trading volume as the decision rule
variable. While constructing the 1-minute returns series, we also calculate the total trading
volume initiated by buyers and that by sellers in each one-minute interval.2 We construct a
dummy series (D;) according to the relative magnitudes of buyer-initiated trading volume
(BVi-1) and seller-initiated trading volume (SV;-;) from the preceding period. Specifically,
we assign
D, = 1, if (BVt—1—5Ve-1)>0 (4.11)
0, if (BVt—1 —SVi-1) <0
where the subscript, ¢ € N, indicates time. Subsequently, we name periods associated with
D; = 1 as buyer-dominating periods, and those associated with D; = ( as seller-dominating
periods. Note that BV and SV are the accumulated trading volume in each period and
thus reflect market activities better than the price series.

It remains to justify why D, is a suitable threshold indicator. Our explanations are
as follows. First of all, as demonstrated in Chapter 2, buyer-initiated trades and seller-
initiated trades do not arrive independently, and possess different levels of persistence.
Clearly, buy/sell transitions do contain valuable information. Secondly, due to the risk
that market makers bear, we believe that returns should perform asymmetrically when a
market is dominated by buy-contracts and when a market is dominated by sell-contracts.
Thirdly, as pointed out by Ross (1987), the operation of financial markets is far from that

2A trade with the market maker as the buyer is classified as a seller-initiated trade, while a trade
with the market maker as the seller is classified as a buyer-initiated trade.



of 2 Walrasian competitive market, and tends to be in a sequence of disequilibrium. This is
especially true in short time horizons. Hence, excess demand is likely to reveal information
about the disequilibrium asset dynamics. In other words, net buy/sell trading volume from
the preceding period should at least reveal as much information as lagged returns. Fur-
thermore, due to the re-sampling scheme commonly used in constructing fixed-interval high
frequency returns data, the selected representative price in each interval and hence returns

may not fully reflect current market activities and information contained therein.

We present our model as follows

X: = Deagr + (1 = Di)aoz + [Dearr + (1 — Di)eg] Xe—1 + & (4.12)
where £, = Vch—,l/z, v~ N(0,1),
and hy = D¢fo1 + (1 — Dt)ﬁ02 +ﬁ1€?_1 + Bahe1

where the lagged return X, _, is specified in the conditional mean equation to capture the
significant first-order autocorrelation in the l-minute data. Since the dummy, Dy, is a
qualitative variable, we call this model a qualitative threshold autoregressive model with
GARCH(1,1) conditional heteroskedasticity (QTAR-GARCH). Note that only the intercept
terms in the conditional variance equation are regime dependent. We specify our model as
such to avoid numerical problems and over-parameterization as suggested in Hamilton and

Susmel (1994).

We estimate this model by quasi meximum likelihood (QML) and present the results
in Table 4.4. The table shows at least two major findings. First of all, nonlinearity not
only exists in the conditional variance but also exists in the conditional mean of intra-
day high frequency returns data. Secondly, buyer-dominating regimes are associated with
negative returns (& ), higher serial correlation (&;) and higher volatility (5;), while seller-
dominating regimes are associated with the opposite. These results accord quite well with
the hypothesis that financial markets constantly stay in disequilibrium states in short time
horizons. In addition, in Table 4.5, we find that the volatility persistence measure 5 +
has been reduced in our model by more than 20% in 10 out of 22 days, while only slightly
increases in 2 days. This finding is in accordance with the empirical evidence that high
GARCH measure of volatility persistence may arise as a result of mis-specifying existing
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structural changes.

We compare our QTAR-GARCH model with a linear regression model (OLS, hereafter)
and a GARCH(1,1) models. In Table 4.6, we report their log-likelihood functions, and
Akaike Information Criterion (AIC). The QTAR-GARCH model clearly dominates the other
two models in both criteria throughout the 22 trading dates. To examine their relative
forecasting performance, we first compare their in-sample prediction on the conditional
mean and conditional variance.. For the conditional mean, the criterion we use is the mean

squared error (MSE) between the observed and fitted returns

1 # of obs N
MSE = ——— Y (X:-X;)? (4.13)
#ofobs =

For the conditional variance, we use the mean absolute error (MAE) between the fitted

squared residuals and the fitted conditional variance

1 # of obs -
MAE=m ; IE?—’HI (4.14)

In the OLS case, h; = &2. The results are reported in Table 4.7. For almost every case,
our QTAR-GARCH model has the smallest values of MSE and MAE. To strengthen our
confidence on the QTAR-GARCH model, we perform one-step ahead out-of-sample predic-
tion on all three models. We reserve the first 400 observations (about 80% of the sample
sizes) for estimating the parameters. Based on these parameter estimates, we generate one-
step ahead prediction iteratively, i.e. on the 401t® observation, then the 402¢* ..., etc. .
The performance criteria we use for the conditional mean and variance are similar to the

in-sample prediction measures. For the conditional mean,

1 # of obs .
MSE = (# of obs — 400) t;m (% - X’ (4.15)
For the conditional variance,
1 # of obs N
MAE = e o5 g:m R (4.16)

We report the results in Table 4.8. It is interesting to note that, in most cases, the QTAR-
GARCH model consistently outperforms the other two models in predicting both the con-
ditional mean and the conditional variance. All these results are quite robust throughout
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all 22 days of data that we examine, and hence provide strong support for the potential
usefulness of the qualitative threshold model in analyzing the dynamics of high frequency

equity returns.

4.5 CONCLUSIONS

In this chapter, we investigate the information content of trading activities. In particular,
we demonstrate the usefulness of the extra buy/sell information in explaining the returns
autocorrelation and market asymmetry. With additional information on buy/sell transitions
from the UK stocks, we have pinned down a significant amount of negative autocorrelation
in returns. We propose two models, of which the extended mixed jump-diffusion model is
better at reducing the conditional volatility, while the QTAR-GARCH model is endowed
with good predicting power. Both of these two models outperform the popular GARCH(1,1)
model. The conclusion of our analysis is that buy/sell transitions do contain information.
They augment the information arrival models we use for the US data to explain the negative

autocorrelation in returns.

A potentially interesting extension of our mixed jump-diffusion model is to derive the
joint or marginal distribution of stock returns with buy/sell information. We have not done
this due to the complexity introduced by the assumption that the four buy/sell variables are
jointly Poisson distributed. Regarding our QTAR-GARCH model, a useful extension is to
introduce a smooth transition between the buyer-dominating and seller-dominating regimes.
Terdsvirta (1994) suggests a logistic formulation of the transition. However, Schlittgen
(1997), from a simulation on Terésvirta’s model, finds that it is almost impossible to esti-
mate the parameters due to the convergence problem. We leave these problems for future

research.



Table 4.1: Estimation Results of Equation (4.7) using Buy/Sell Information

Date iBs LsB BBB ss 52 G2

08/01/94 0.00208 -0.00182 0.00162 -1.71E-004 3.55E-006 1.06E-007
(10.308) (-8.489) (4.352) (-3560) (6.740) (0.500)

08/02/94 0.00198 -0.00124 5.41E-004 -2.31E-004 2.69E-006 3.75E-007
(9.275) (-5.746) (2122) (-3839) (5979) (L777)

08/03/94 0.00325 -0.00248 0.00193 -2.67E-004 7.19E-006 6.49E-007
(10.836) (-7.942) (3611) (-3331) (5.947) (1.275)

08/04/94 0.00174 -0.00153 0.00143 -2.50E-004 2.52E-006 5.67E-007
(8085) (-6990) (4.601) (-3711) (4.838) (2.129)

08/05/94 0.00279 -0.00190 0.00119 -3.33E-004 3.04E-006 9.22E-007
(11.204) (-7.323) (2.780) (-4.452)  (5.369) (3.177)

08/08/94 0.00237 -0.00136 0.00123 -2.37E-004 3.53E-006 3.43E-007
(9.735) (-5.404) (3534) (-4.427) (4.669) (L173)

08/09/94 0.00187 -0.00163 0.00171 -1.87E-004 2.78E-006 1.63E-007
(9.548) (-8.004) (5718) (-3483) (6.122) (0.745)

08/10/94 0.00281 -0.00206 7.40E-004 -3.02E-004 3.32E-006 5.84E-007
(12454) (-8.829) (3.216) (-3835) (6.261) (2.021)

08 / 11 / 94 0.00258 -0.00133 0.00162 -3.63E-004 2.08E-006 1.03E-006
(12204) (-6.200) (4219) (-4876) (4.469) (4.173)

08/12/94 0.00179 -0.00122 0.00120 -1.87E-004 2.93E-006 2.54E-007
(7618) (-5.137) (3803) (-2.876) (5.823) (0.877)

08/15/94 0.00215 -0.00134 4.60E-004 -3.48E-004 2.66E-006 7.67E-007
(10.646) (-6596) (1841) (-4.644) (5.586) (3.370)

08/16/94 0.00210 -0.0015@1 8.34E-004 -4.36E-004 3.15E-006 1.04E-C06
(9.282) (-6623) (3.350) (-4.833) (6.54117) (4.110)

08/17/94 0.00180 -0.00148 7.4E-004 -2.94E-004 2.96E-006 2.41E-007
(10.372) (-8.274) (4.252) (-4316) (7.349) ( 1.305)

08/18/94 0.00283 -0.00211 0.00154 -3.56E~004 3.98E-006 6.41E-007
(12.349) (-8587) (4480) (-4978) (3.193) (1.103)

08/19/94 0.00256 -0.00124 5.39E-004 -1.94E-004 2.18E-006 2.02E-007
(13858) (-6:295) (1.667) (-4.105) (5560) (1.093)

08/22/94 0.00285 -0.00193 3.74E-004 -3.4E-004 2.72E-006 9.18E-007
(12.846) (-8.226) (0889) (-4810) (4.462) (3.201)

08/23/94 0.00234 -0.00187 0.00141 -5.10E-004 3.69E-006 1.32E-006
(9461) (-7.146) (5.117) (-4515) (6.461) (3.923)

08/24/94 0.00177 -0.00128 8.79E-004 -2.66E-004 3.73E-006 3.70E-007
(8618) (-5939) (2810) (-3470) (7.352) (1475)

08/25/94 0.00193 -0.00160 0.00128 -1.68E-004 2.27E-006 1.18E-007
(12.322) (-9762) (5317) (-3.720) (6.554) (0.804)

08/26/94 0.00190 -0.00165 9.26E-004 -2.01E-004 2.38E-006 6.81E-007
(9.034) (-7.282) (2994) (-3.180) (5.251) (3.424)

08/30/94 0.00239 -0.00201 4.76E-004 -1.46E-004 4.10E-006 2.73E-007
(9909) (-8236) (1628) (-2559) (6.817) (1.186)

08/31/94 0.00206 -0.00152 7.54E-004 -1.91E-004 2.60E-006 3.21E-007
(9.802) (-6.932) (2.464) (-3.440) (5.444) (1.399)

* Numbers in the parentheses are t-values
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Table 4.2: First-Order Autocorrelation (BT)

Date | )@ OB @
08/01/94 | -0.429 -0.424 -0.261 -39.2%
08/02/94 | -0.346 -0.339 -0.243 -29.8%
08/03/94 | -0.482 -0.474 -0.249 -48.3%
08/04/94 | -0.437 -0.430 -0.277 -36.6%
08/05/94 | -0.467 -0.458 -0.368 -21.2%
08/08/94 | -0.406 -0.399 -0.293 -27.8%
08/09/94 | -0.397 -0.390 -0.248 -37.5%
08/10/94 | -0.445 -0.430 -0.247 -44.5%
08/11/94 | -0.424 -0.415 -0.229 -46.0%
08/12/94 | -0.292 -0.289 -0.220 -24.7%
08/15/94 | -0.479 -0.448 -0.248 -48.2%
08/16/94 | -0.406 -0.381 -0.233 -42.6%
08/17/94 | -0.414 -0.417 -0.263 -36.5%
08/18/94 | -0.359 -0.348 -0.170 -52.6%
08/19/94 | -0.474 -0.467 -0.213 -55.1%
08/22/94 | -0.565 -0.553 -0.383 -32.2%
08/23/94 | -0.358 -0.355 -0.226 -36.9%
08/24/94 | -0.387 -0.388 -0.294 -24.0%
08/25/94 | -0.480 -0.459 -0.221 -54.0%
08/26/94 | -0.460 -0.434 -0.275 -40.2%
08/30/94 | -0.458 -0.455 -0.225 -50.9%
08/31/94 | -0.451 -0.444 -0.270 -40.1%
Average | -0.428 -0.418 -0.257 -39.5%

(1) refers to autocorrelation of raw returns

(2) refers to autocorrelation of fitted Residuals of Equation. (3.5)

(3) refers to autocorrelation of fitted Residuals with Buy/Sell Identities
(4) refers to percentage decrease in autocorrelation, (4)=({(1)-(3)}/(1)



Table 4.3: Estimation Results of Equation (BT) Using the Number of
Trades as the Conditioning Variable

Date i f7e) 2 35
08/01/94 | 2.37E-004 -1.19E-004 4.62E-006 1.36E-007
( 1.472) (-1.782)  (6.827)  ( 0.500)
08/02/94 | 1.58E-004 -8.42E-005 3.15E-006 5.84E-007
( 1.215) (-1.221)  (5.620) ( 2.241)
08/03/94 | 1.47E-004 -8.09E-005 9.06E-006 1.12E-006
( 0.651) (-0.767)  (6.087)  ( 1.784)
08/04/94 | 1.45E-004 -1.19E-004 3.60E-006 3.11E-007
( 1.107) (-1.644)  (5.426)  (0.919)
08/05/94 | 3.05E-004 -1.84E-004 3.94E-006 1.25E-006
( 2.096) (-2.054) (5596 ( 3.469)
08/08/94 | 1.26E-004 -5.815E-005 4.26E-006 5.30E-007
( 0.832) (-0.867)  (4.891) ( L.573)
08/09/94 | 6.68E-005 -5.59E-005 3.43E-006 3.44E-007
( 0.499) (-0.805)  (5.871)  ( 1.221)
08/10/94 | 1.72E-005 -1.10E-005 4.35E-006 1.09E-006
(0.119) (-0.119)  (5981) (2.737)
08/11/94 | -1.37TE-004 8.72E-005 3.18E-006 1.26E-006
( -1.051) (1.016)  (5.295)  (3.935)
08/12/94 | 1.07E-005 -8.51E-006 3.38E-006 3.59E-007
( 0.085) (-0.109)  (5841)  ( 1.077)
08/15/94 | 1.33E-005 -2.02E-005 3.23E-006 1.14E-006
( 0.095) (-0.252)  (5.276)  ( 3.878)
08/16/94 | 2.02E-004 -1.38E-004 3.82E-006 1.55E-006
( 1.415) (-1.482)  (5.789)  ( 4.454)
08/17/94 | -5.49E-005 3.32E-005 3.57E-006 5.09E-007
( -0.402) (0.479)  (7.061)  ( 2.190)
08/18/94 | 2.80E-004 -1.58E-004 5.60E-006 8.60E-007
( 1.571) (-1.713)  (3401)  ( 1.120)
08/19/94 | -1.04E-004  7.45E-005 2.72E-006 5.21E-007
( -0.841) (1.119)  (5.073)  (2.054)
08/22/94 | 1.55E-004 -1.16E-004 3.87E-006 1.25E-006
( 1.014) (-1.353)  (4.210) ( 2.886)
08/23/94 | 8.12E-005 -7.02E-005 4.94E-006 1.62E-006
( 0.524) (-0.644)  (6.438) (3.598)
08/24/94 | 1.67E-004 -7.96E-005 4.57E-006 3.71E-007
( 1.062) (-0.965) (7435  ( 1.225)
08/25/94 | -4.20E-005 1.41E-005 3.00E-006 4.75E-007
( -0.302) (0.216)  (4913) ( 1.837)
08/26/94 | 2.65E-004 -1.33E-004 3.11E-006 6.81E-007
( 1.982) (-1.955)  (5.611)  (2.803)
08/30/94 | 6.09E-005 -3.72E-005 4.72E-006 4.93E-007
( 0.357) (-0.522)  (6.428)  ( 1.744)
08/31/94 | 1.81E-004 -1.08E-004 3.20E-008 4.05E-007
( 1.318) (-1.506)  (5.383) ( 1.417)

* Numbers in the parentheses are t-values

63



Table 4.4: Estimation Results of a QTAR-GARCH(1, 1) Model

-~

Date Qo1 Qg2 ayy Q12 Bo1 Boz B B2

08/01/94 | -0.0871 0.0435 -0.4960 -0.1010 0.0467 0.0216 0.0776 0.0000
(4.364) (5.130) (-6.152) (-1.872) (8.561) (19.384) (L.771) ( 0.000)
08/02/04 | -0.0786 0.0351 -0.2684 -0.1602 00209 00148 00885  0.3323
(-4.985) (3.941) (-3.388) (-2.489) (2.779) (2.764) (2.150) ( 1.584)
08/03/94 | -0.1401 0.0472 -0.3928 -0.2596 0.0025 0.0010 0.0773 0.9039
(-5.008) (3.889) (-5.430) (4.541) (L094) (1.316) (3.024) (32.445)
08/04/94 | -0.1065 (0.0394 -0.3969 -0.0856 0.0194 0.0171 0.3760 0.0000
(-7.784) (5.037) (-4.560) (-1.110) (4.525) (5.702) (3.988) ( 0.000)
08/05/94 | -0.0721 0.0339 -0.4420 -0.0998 0.0204 0.0007 0.0000 0.8565
(-2.960) (4.037) (-5.955) (-L518) (4.478) (2.194) (0.000) (32.673)
08/08/94 | -0.0987 0.0361 -0.4667 -0.0671 0.0708 0.0236 0.0000 0.0000
(-3.178) (4.215) (-4.485) (-1.440) (2.945) (4.874) (0.000) ( 0.000)
08/09/94 | -0.0694 0.0262 -0.4302 -0.1404 0.0168 0.0085 0.1259 0.4625
(-3.627) (3.470) (4.840) (-2.178) (2.872) (2.662) (2.676) ( 2.906)
08/10/94 | -0.0884 0.0507 -0.4237 -0.1164 0.0423 0.0240 0.0877 0.1701
(-4.049) (5.063) (-5.568) (-1.820) (4.308) (4.953) (1.753) ( 1.237)
08/11/94 | -0.0695 0.0431 -0.5100 -0.2174 0.0176 0.0093 0.1280 0.5478
(-2.004) (4.721) (-5.280) (-3.737) (2.699) (2.634) (2.852) ( 4.119)
08/12/94 | -0.0787 0.0314 -0.2204 -0.0436 0.0153 0.0043 0.0640 0.6775
(-3.983) (4169) (-2.421) (0.637) (2.924) (3.072) (2.704) ( 8.614)
08/ 15/94 | -0.0624 0.0443 -0.4577 -0.2119 0.0028 0.0005 0.0604 0.9001
(4.250) (4.766) (-.121) (-3.398) (2.102) (1.147) (3.661) (39.930)
08/16/94 | -0.0989 0.0547 -0.2790 -0.2268 0.0009 0.0016  0.0806 0.8897
(-6.541) (4.732) (-4.514) (-3.429) (0.816) (1.522) (3.498) (29.120)
08/17/94 | -0.0495 0.0417 -0.3624 -0.1368 0.0096 0.0040 0.0377 0.7567
(-3.339) (4.274) (-5.339) (-2.045) (2.318) (1.657) (1.555) ( 7.736)
08/18/94 | -0.0395 0.0343 -0.4320 -0.2625 0.0612 0.0229 0.2813 0.0740
(-1.788) (3.455) (-5.268) (4.155) (5.679) (7.458) (3.557) ( 1.028)
08/19/94 | -0.0395 0.0242 -0.5828 -0.1988 0.0022 0.0000 0.0411 0.9415
(-2.264) (3.791) (-8.077) (-3.259) (2.129) (0.313) (3.884) (86.707)
08/22/94 | -0.0655 0.0212 -0.5740 -0.3329 0.0014 0.0028 0.0647 0.8711
(-3.474) (2.007) (-7.882) (-5.832) (0.665) (1.853) (2.604) (16.512)
08/23/94 | -0.1012 0.0532 -0.1922 -0.1993 0.0250 0.0114 0.0727 0.6013
(4.766) (4.552) (-2.336) (-3.147) (1.162) (0.925) (1.552) ( 1.804)
08/24/94 | -0.0578 0.0502 -0.3841 -0.1790 0.0031 0.0030 0.0616 0.8565
(-3.921) (4.647) (-6.016) (-2.736) (1.132) (1.390) (2.293) (10.627)
08/25/94 | -0.0362 0.0200 -0.4988 -0.3580 0.0023 0.0004 0.0482 0.9147
(-2.560) (2.501) (-7.125) (-5.991) (2.201) (1.150) (2.657) (35.129)
08/26/94 | -0.0597 0.0204 -0.4579 -0.2744 0.0002 0.0002 0.0774 0.9155
(-4.731) (3.239) (-6.922) (4.581) (0.248) (1.470) (4512) (60.265)
08/30/94 | -0.0045 0.0343 -0.4523 -0.2120 0.0408 0.0281 01168  0.0925
(4.585) (3455) (-6.140) (-3481) (4.104) (4.245) (2.334) ( 0.541)
08/31/94 | -0.0590 0.0296 -0.5560 -0.1004 0.0316 0.0204 0.1073 0.0000
(-3.164) (3.760) (-6.987) (-1.678) (5.499) (7.042) (L764) ( 0.000)

f GARCH(I,I)-QTARCH model: Xg =D- iam + 011Xg_1; + (1 bt D) - (0'02 + 012X¢_15 +€g
€ =ve-h}/?, vy ~ N(0,1), and hy = D - fo1 + (1 — D) - Bz + B1€F_; + B2 her
¥ Numbers in the parentheses are t-values




‘Table 4.5: Reduction in Volatility Persistence

— GARCH ___ | _ __ QIARG
Date B B B+B| B B B+ 5
08/01/94 | 0.10413 0.40712  0.5112 | 0.077581 0.000005  0.0776
(262) (2.38) (L771) (0.000)
08/02/94 | 0.04908 0.63830 0.6874 | 0.088548 0.332278  0.4208
(167) (169) (2.150) (1.584)
08/03/94 | 0.05364 0.93537 0.9890 | 0.077256 0.903916 0.9812
(343) (45.88) (3.024) (32.445)
08/04/94 | 0.20482 0.19522 0.4000 | 0.375963 0.000012  0.3760
(368) (174) (3.988) (0.000)
08/05/94 | 0.08818 0.86671 0.9549 | 0.000006 0.856465 0.8565
(356) (24.35) (0.000) (32673)
08/08/94 | 0.10247 0.85511 0.9576 | 0.000000 0.000003  0.0000
(515) (39.35) (0.000) (0.000)
08/09/94 | 0.16016 0.45165 0.6118 | 0.125854 0.462483  0.5884
(3.00) (292) (2.676) (2.906)
08/10/94 | 0.10573 0.34554 0.4512 | 0.087694 0.170137 0.2578
(250) (L78) (1.753) (1.237)
08/11/94 | 0.10039 0.74491 0.8453 | 0.129005 0.547811 0.6768
(179) (3.74) (2.852) (4.119)
08/12/94 | 0.05764 0.87059 0.9282 | 0.064047 0.677458 0.7415
(3.12) (17.92) (2.704) (8.614)
08/15/94 | 0.05846 0.91441 0.9729 | 0.060364 0.900052  0.9605
(340) (41.94) (3.661) (39.930)
08/16/94 | 0.07028 0.90186 0.9722 | 0.080590 0.889724  0.9703
(375) (37.43) (3.498) (29.120)
08/17/94 | 0.05345 0.84302 0.8964 | 0.037698 0.756657  0.7944
(243) (13.25) (1555) (7.736)
08/18/94 | 0.08345 0.87956 0.9631 | 0.281280 0.074017 0.3553
(3.96) (26.77) (3557) (1.028)
08/19/94 | 0.06421 0.93035 0.9945 | 0.041087 0.941483  0.9826
(4.40) (63.49) (3.884) (86.707)
08/22/94 | 0.07690 0.85154 0.9284 | 0.064743 0.871089 0.9358
(3.07) (17.72) (2.604) (16512)
08/23/94 | 0.06042 0.84648 0.9069 | 0.072709 0.601325 0.6740
(203) (10.15) (1552) (1.804)
08/24/94 | 0.04055 0.90845 0.9490 | 0.061577 0.856492 0.9181
(253) (20.25) (2.203) (10.627)
08/25/94 | 0.06673 0.90326 0.9700 | 0.048153 0.914736 0.9629
(3.70) (30.64) (2.657) (35.129)
08/26/94 | 0.08854 0.90340 0.9919 | 0.077443 0.915530 0.9929
(459) (54.40) (4.512) (60.265)
08/30/94 | 0.09881 0.29734 0.3961 | 0.116779 0.092472 0.2093
(2.08) (0.93) (2.334) (0.541)
08/31/94 | 0.13620 0.10042 0.2366 | 0.107287 0.000032 0.1073
(279) (053) (1764) (0.000)
QTAR.G indicates QTAR.GARCH(L,1) modeL.



Table 4.6: Comparison of Log-likelihood and AIC

Log-L AIC
Date | OLS GARCH QTAR-G|OLS GARCH QTAR-G
08/01/94 | 117 123 170 114 118 162
08/02/94 | 152 155 179 149 150 171
08/03/94 | -74 -40 -12 -7 -45 -20
08/04/94 | 155 177 219 152 172 211
08/05/94 | 64 80 121 61 75 113
08/08/94 | 93 131 159 90 126 151
08/09/94 | 173 190 217 170 185 209
08/10/94 | 70 76 110 67 71 102
08/11/94 | 101 115 140 98 110 132
08/12/94 | 156 174 207 153 169 199
08/15/94 | 117 128 155 114 123 147
08/16/94 | 47 59 90 44 54 82
08/17/94 | 141 147 168 138 142 160
08/18/94 | 0 57 66 -3 52 58
08/19/94 | 193 233 256 190 228 248
08/22/94 | 90 101 116 87 96 108
08/23/94 | 16 22 51 13 17 43
08/24/94 | 93 100 120 90 95 112
08/25/94 | 184 204 214 181 199 206
08/26/94 | 147 209 229 144 204 221
08/30/94 | 75 79 103 72 74 95
08/31/94 | 171 179 207 168 174 199
Average | 104 123 149 101 118 141

@ QTAR-G indicates QTAR-GARCH(1,1) model.
% Log-L: Log-Likelihood function.
¢ AIC: Aknike Information Criterion
AJIC= Log-Likelihood function - number of parameters.



Table 4.7: Comparison of In-Sample Prediction

A B
Date OLS GARCH QTAR-G| OLS GARCH QTAR-G

08/01/94 | 0.03600 0.03606  0.03117 | 0.04788 0.04534 0.03926
08/02/94 | 0.03145 0.03146  0.02908 | 0.04142 0.04106 0.03479
08/03/94 | 0.07939 0.07946  0.07160 | 0.09757 0.09142 0.08364
08/04/94 | 0.03072 0.03075  0.02811 | 0.04252 0.03915 0.03385
08/05/94 | 0.04488 0.04503 0.03965 | 0.06038 0.05721 0.05192
08/08/94 | 0.03966 0.03977  0.03422 | 0.05559 0.05132 0.04651
08/09/94 { 0.02879 0.02905 0.02615 | 0.03845 0.03542 0.03265
08/10/94 | 0.04396 0.04399 0.03934 | 0.05735 0.05550 0.04817
08/11/94 | 0.03854 0.03859  0.03484 | 0.04769 0.04387 0.04050
08/12/94 | 0.03067 0.03072  0.02796 | 0.04646 0.04576 0.03834
08/15/94 | 0.03608 0.03611  0.03254 | 0.04379 0.04200 0.03701
08/16/94 | 0.04828 0.04833  0.04283 | 0.05763 0.05596 0.04567
08/17/94 | 0.03311 0.03312 0.03073 | 0.03942 0.03905 0.03559
08/18/94 | 0.05856 0.05868  0.05812 | 0.07402 0.06852 0.06629
08/19/94 | 0.02629 0.02631  0.02339 | 0.03639 0.03386 0.03224
08/22/94 { 0.04051 0.04059 0.03786 | 0.05117 0.04866 0.04785
08/23/94 | 0.05477 0.05478  0.04975 | 0.07007 0.06925 0.05567
08/24/94 | 0.03981 0.03986  0.03707 | 0.04898 0.04771 0.04137
08/25/94 | 0.02797 0.02799  0.02684 | 0.03442 0.03187 0.03077
08/26/94 | 0.03200 0.03214 0.02972 | 0.04128 0.03686 0.03518
08/30/94 | 0.04302 0.04306 0.03970 | 0.05492 0.05334 0.04960
08/31/94 | 0.02880. 0.02885  0.02584 | 0.03812 0.03558 0.03416

Average | 0.03969 0.03976  0.03620 | 0.05116 0.04858 0.04368

% QTAR-G indicates QTAR-GARCH(1,1) model;

b Panel A reports the mean squa.red error (M SE) between the observed and
fitted returns MSFE = m Z# Ofou(Xg - 2:)2;

¢ Panel B reports the mean absolute error (M AFE) between the fitted squared
residuals and the fitted conditional variance.
MAE = 37 TE % |6 — he|. In the OLS case, b, = 2.



Table 4.8: Comparison of One-Step ahead Qut-of-Sample Prediction

A B
Date OLS GARCH QTAR-G| OLS GARCH QTAR-G

08/01/94 | 0.05233 0.05212  0.04804 | 0.05887 0.05681 _ 0.05217
08/02/94 | 0.03524 0.03512 0.03143 | 0.04250 0.04260  0.03493
08/03/94 | 0.02339 0.02335 0.02199 | 0.07854 0.04306  0.03627
08/04/94 | 0.03380 0.03381  0.03119 | 0.04508 0.04184  0.03501
08/05/94 | 0.02149 0.02163 0.01863 | 0.05388 0.04056  0.03789
08/08/94 | 0.04145 0.04109 0.03744 | 0.05264 0.05151  0.04981
08/09/94 | 0.02336 0.02341 0.01969 | 0.03654 0.03232  0.02681
08/10/94 | 0.05816 0.05772 0.05474 | 0.06590 0.06404  0.05730
08/11/94 | 0.05387 0.05389  0.04649 | 0.05852 0.05821  0.05131
08/12/94 | 0.01105 0.01099 0.01043 | 0.03428 0.02829  0.02281
08/15/94 | 0.01971 0.01961 0.01762 | 0.03207 0.02591  0.02243
08/16/94 | 0.03230 0.03242  0.02909 | 0.05161 0.04494  0.03660
08/17/94 | 0.03215 0.03220 0.02877 | 0.03218 0.03215  0.03078
08/18/94 | 0.02159 0.02147 0.02126 | 0.04999 0.03275  0.03737
08/19/94 | 0.04947 0.04906 0.04565 | 0.05244 0.05671  0.04678
08/22/94 | 0.04287 0.04297 0.03863 | 0.05126 0.04852  0.04613
08/23/94 | 0.04437 0.04455 004448 | 0.06656 0.06372  0.05362
08/24/94 | 0.02333 0.02358 0.02606 | 0.04382 0.03930  0.03441
08/25/94 | 0.03108 0.03102 0.02883 | 0.03406 0.03203  0.03055
08/26/94 | 0.01558 0.01562 0.01406 | 0.03140 0.02046  0.01970
08/30/94 | 0.03314 0.03315 0.03304 | 0.04739 0.04602  0.04408
08/31/94 | 0.02633 0.02646 0.02482 | 0.03492 0.03272  0.03285

Average | 0.03300 0.03297 0.03060 | 0.04797 0.04248 0.03821

% We reserve the first 400 observations to obtain parameter estimates. The
one-step ahead out-of-sample prediction is then based these estimates.

® QTAR-G indicates QTAR-GARCH(1,1) model;

¢ Panel A reports the mean squa.red error (M SE) between the observed and
fitted returns MSE = m 2# of Ob‘(Xt ft)

4 Panel B reports the mean absolute error (M AE) between the fitted squared
residuals and the fitted conditional variance.

MAFE = mz# of obs la:Q h'tl In the OLS case, hg 2
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APPENDIX A

CONVERTING IM-MI TRADES TO MM
TRADES

In this appendix, we describe our scheme of re-coding pairs of IM-MI trades into an ob-
servations of MM trade. The following table shows an extracted example of a sequence of

IM-MI trades.

Table A.1: An Example of a Sequence of IM-MI Trades
Seq. No* Time Buyer Seller Qty. Value Ask Bid Price

13787 11:.01 M I 30000 11540700 385 384  384.69
13788 11:01 I M 30000 11535000 385 384  384.50
13829 11:17 I M 100000 38450000 385 384  384.50
13831 11:18 M I 100000 38469000 385 384 384.69
13850 11:26 M I 10000 3840000 385 383 384.00
13851 11:26 I M 10000 3838100 385 383 383.81
13956  12:26 M I 100000 38350000 385 383 383.50
13957  12:27 I M 100000 38331000 385 383 383.31
13986  12:48 M I 25000 9604750 385 383 384.19
13987  12:48 I M 100000 38400000 385 383  384.00
13988  12:49 I M 25000 9600000 385 383  384.00
13989 12:49 M I 100000 38419000 385 383 384.19
14159  14:35 M I 10000 3856900 386 385  385.69
14162  14:35 I M 10000 3855000 386 385  385.50

*Seq. No corresponds to the sequence that each obeervation occurs in tE;_original data
set. Note that all the other non-IM-MI trades are taken out of this table for
illustration purpose.
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In the simplest cases, if an IM trade is followed by an MI trade, or vice versa, with the
same traded quantity, we treat this pair of IM and MI trades as an MM trade. The 13,787¢*
observation and the 13,788 observation in the table constitute such an example. However,
complication occurs in the following three situations:

1. Pairs of IM & MI trades may not be located right besides each other along the se-
quence of recorded observations. For example, there is a non-IM-MI trade occurs
between the 13,829¢* and the 13831°* observation. However, by matching the quan-
tity, we would still be able that say that these two observations belong to the same
MM trade. In this situation, we take the first recorded time as the time for the newly
re-coded observation, and also maintain its sequence in the dataset.

2. Since the inter-dealer brokers charge commission when facilitating trades between
market makers, there would be two different prices for each pair in the table, as is
invariably the case in the table. The price we choose is the “cleaner price”, which is

a multiple of 25 pence.

3. Trades between market makers and inter-dealer brokers may involve more than three
parties: a market maker as a buyer, a market maker as a seller and an inter-dealer.
For example, the 13,986, 13,9874, 13,988 and 13,989**observations. Again, we can
treat this sequence of trades as the same block of MM trade by matching the involved
quantities and buy-sell prices. The previous two criteria also apply in this case.



APPENDIX B

LM TESTS

Our equation can be written as
X(t) = p+ pQAN(t) +£(t) (B.1)
where &(t), conditional on N(t), is N(0, o> +0’%AN(t)). Let Y be a (T x 2) matrix Y’ =

lv 1: - 1 B s :
Y = (i, 1q], B = [02,03). Then the likelihood function L
ANy ANy, -, anp |) 7 " pereh =il

can be written as . )
L =L(v,) = —5TInh, — ;5e}/hy (B.2)

where hy = §'Y/, Y, is the t-th row of Y, e, = X — Y;~, and the constant term is omitted.
It follows that the first derivatives of the log-likelihood function are
oL eY:

= YX— B.3
B he (B:3)
8L 1Y, 1_eY,
B - R TITR
The second derivatives follow immediately,
3L Yy,
ialind he
2 1 1 4
ZL 1o pdtn ”
Glelafe) 2 R h
&L _ _ze,ym
ovop' hi
Given the above information, the Fisher’s information metrix can be constructed as
2 EY’Yg Eng‘Yg
oL 5 A (B.5)

5068 zﬂ;éﬁ gﬂh’?’ﬁ _%gl'g.z
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We now calculate ¢x, = Er,(—#), j=1,2,3 where & = [v, 3], that is,

¢ ’ Ergi ] (B.6)
H, = Y'Y, .
! | 0 éz—,?-
[ 1 YIY 0 1 0
P AL S R Y %o
0 %T(Y Y) 0 55T
¢H3 = ¢H2

The score test for the hypothesis Hj, j=1,2,3, is of the form D’ng‘),};DHj which will be

asymptotically distributed as x?(1) for j=1,2 and x?(2) for j=3. In turn, from (A.3)

[ 0 |

Ei:g—ﬁ!ANg

Dy, = he (B.7)
0

0

- -

where h, is equal to 3'Y; (evaluated under Hp).

0
0
Dy, = 0 (B.8)

P& - 6D AN,

where é; = X; — ji — AN, and 62 = 2é2/T, and

0
LTZAN,
Dy, = 52 "5 ¢ (B.9)

-2;-‘-2(6,2 - 52 AN:

where & = X; — i and 32 = £&7/T.
We can compute LM; = Dy ¢;,;DH,. for 7 = 1,2, 3 explicitly as follows:

_ (ze — B)AN: 2( AN? ANy i_—l)
L = (Z_‘E_) S-S
where hy = 32 +GHAMN (B.10)
(L@ -52)AN)"
254 33(AN; ~ AN)?
1 (T &AN:)?
2y (AN, ~ AN)?

-1

LMz = LMz(Eg) = where é} =T — ﬁ -~ ﬁQANg

LM; = LMs(e)+ whereé; =z, — @i
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APPENDIX C

MOMENT GENERATING FUNCTION AND

MOMENTS OF AN(t)

AN(t)|M(t) ~ Poisson (A(t))
E(exp(s- AN(t))|X(t)] = mgf of a Poisson Process
A Poisson distributed random variable z with density function f(z)
/\.7: —-A
flz) =
has the following moment generating functlon

,2=0,1,2,.

az] = —A Z (,\ea)z

= exp(/\e’)
= exp(-M1—e¢?)
= exp(M(e” - 1))
Therefore, E [exp(s - AN(£))|A(t)] = exp(A()(e” - 1)).
Now,

Alt) = —ﬁi +a Z 80,1y

which implies -
Efexp(gA(2))] = exv(qfﬁ;ig)E[arp(qa PR LA
=0

Since v} _;_;) ~ i.i.d. x*(1),

E[exp(qag:o@"v?z_,-_n)] = IOBIIE[exp(qaﬂ"xz(l))]
b =

= ﬁ(l - 2q08%)"1/?
t=1

(C.1)

(C2)

(C.3)

(C.4)

(C.5)

(C.6)



Thus

Elexp(s-AN(2))] = E[exp(A(t)(e® —1))] (C.7)

= exp( 15f26(e’ ~1))-] [1-2067(e* —1)] 7"
t=1

Based on this moment generating function, we can derive associated moments of AN(t) as
the following,

E[AN(®)IA®)] At) (C.8)
E(AN(@t) = E[A@)]
Var(AN(t) = E[Var(AN(®)A({))] + Var (E (AN(£)IA®))]
= E[A(t)] + Var [A#)]

where

B = 2t ©9)
Define
M(g) = InElexp(gA(®)] (C.10)
Ba?\ 1 .
= q (1—__9) - 52111(1 - 2gaf’)
aM(Q) _ ﬁ0-2 1 & —2a87
dq “1-9'51_;0(1_279;) (C.11)
It follows that
2 i
Var[A(t)] = 3 [az: (T—_W]Fo (C.12)
= a) /(-1)(1 - 2ga6’)"*(—2a8)|—0
22
T 1-£
Therefore,
E[AN(Y)] = ﬁf_:a (C.13)
Var[AN(t)] = Bo? +a 207

1-4 1—62



APPENDIX D

MOMENT CONDITIONS OF AN(t), AND X (%)

From our model,

Cov(AN(t),AN(t—=1)) = Eye-1)[Cov(AN(),AN(t—1)|I(t~1))]

+Couye—1) (E[AN()|I(t - 1)], E[AN(t — 1)|I(t — 1)])
= Covyg_1) (av®(t — 1) + Bo® + OA(t — 1), At - 1))
= 0Cour(—1) (At — 1), A(t — 1)) = Vars_y) (At — 1))

Finally, it follows that

it follows that

20a?
= 1-e (D-1)
Then we derive the following recursively,
C 20°a?
ov(AN(t), AN(t - 8)) = =52 (D.2)
Corr(AN(£),AN(t —5)) = Cw(ﬂr(zmg —3) (D.3)
_ | =i, a2l
1, ifs=0
For the moments of X(t),
AN()
Xt)=p+o(z(t)—z(t-1)+ Y. Qi (D.4)
i=1
BX() = b+ ugBA@) = -+ LGt (D5)

fo*+a 2%
1-6 @ 1-62

Var[X(t)] = o+ (u) +0d)

86
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The correlation between X (t) and X (¢—s) can be recursively derived by using Cov(X (t), X (t—
1)). It is straightforward to show that

AN(t) AN(t—1)
Cov(X(t),X(t-1)) = Cov (av(t) + Z Q:i,ov(t—1) + Z Q,-) (D.6)
=1

=1

t=1 =1

AN(E) AN(t-1)
= E[(g_l) [CO'U ( z QilI(t - 1), Z QilI(t"' 1))}

=1 =1

AN(t-1)
,E[ > QiII(t"l)})
=1

= udCove_1) (AN(E),AN(t — 1)) = pgCou (A(2), A(t — 1))

2 2&29
o142

AN(2) AN(t) AN(t-1)
= oCov ( S Qi —1)) +Cov ( > Qi > Qi)
i=1

AN(t)
+Covye—y) (E [ > QilIe-1)

=1

Then we derive the following recursively,

2;%0:29‘

Finally, it follows that

Cou(X(t), X (¢ —s))
Var(X(t))

2 ga
{ 2o ugh ifs>1

Corr(X(t),X(t —3)) = (D-8)

a5(1—-85)+u% +03)(1+9)(Bo% +aj+2a2us,
1, ifs=0
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