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ABSTRACT

Novel methods for event detection and signal compression are presented for the
electrocardiogram (ECG). The event detection method uses a simple and fast algo-
rithm which is highly effective. The method is based on the local and fuzzy evaluation
of the size of Haar wavelet transform coefficients of the signal. The average error rate
of the method was 0.68 % over the entire MIT-BIH database which is of the same
order as previously published results. The method achieves this level of performance
without operator interference, and with globally fixed parameters which is unique in
the literature. The compression method is based on active error control, and is the
first method which has successfully applied a local error measure to the electrocar-
diogram compression problem. A resampling strategy based on the physiology of the
signal is used to achieve performance improvement and computationally feasible ac-
cess to singular value decomposition. The method is simultaneously capable of higher
compression and higher fidelity of the reconstructed approximation than previously
reported results. The average compression rates achieved by the method are 27.1:1,
and 15.4:1 for the 100 and 200 series of the MIT-BIH database respectively.



Chapter 1
Introduction

The action of the heart is associated with an electric field. An electrocardiogram
(ECG) is a recording of the potential between two points within this field measured
as a function of time, usually, from the surface of the body. Scalar values of voltage
are generally recorded from several different positions on the surface of the body
simultaneously. The points on the body where the measurements are taken from have
been standardized and are referred to as lead placements [6]. Since the placements
of the electrodes are known and fixed, the directional vectors associated with the
voltages are also known. Using this recording, a great deal of information can be
inferred about the cardiovascular health of a patient.

Electrocardiograms are measured in a variety of ways in order to evaluate different
aspects of a patients cardiovascular health. Since the early 1960s ambulatory ECGs
(or Holter recordings) have been used to measure two or three lead ECGs over a period
of about 24 hours, and it is this type of ECG with which we are principally concerned.
The use of a Holter monitor is the only method which allows the measurement of the
ECG while a patient carries on with their normal daily activities and it has therefore
become a widely used and important diagnostic tool [4]. A Holter monitor records
the measured ECG signal on a tape or other storage medium. The interpretation
of the recorded ECG typically requires that the signal be quantized and discretely
sampled. The digital version of the signal can be displayed on a computer monitor,
transmitted for remote interpretation, stored for future reference, or subjected to
further processing using a multitude of digital signal processing techniques. A Holter
monitor typically has other capabilities, such as a clock to add a time stamp to the
recording and an event marker which allows a patient to record a flag at the onset
of any perceived symptoms. Ambulatory ECGs remain relatively expensive and time
consuming due to the dependence on skilled technicians for the interpretation of the



AR imerval R

> T
or 4
E P A/\-_
-0.5F L
' i Qs
QRS Interval | ST Segment

-1} PR Interval

[+] 0:2 0:4 0:8 015 ; 1:2 1:4 1:6 1..8 2
Tme (0)

Figure 1.1: An example of the normal ECG extracted from record 103 of the MIT-BIH

database showing important features and intervals with standard labels.

recordings and the unreliability of automated methods [4].

This study and others, including [2], [15], [7], and [9], have employed the MIT-BIH
Arrhythmia database [14]. The MIT-BIH database is a collection of digitized Holter
recordings which were produced for developing and testing automated techniques for
ECG analysis. The ECG recording has been annotated with markers that describe
the position and type of each beat, important changes in signal quality, changes in
the prevailing heart rhythm, and comments. The recordings were initially annotated
by two cardiologists independently. Discrepancies were subsequently resolved by con-
sensus [12]. In figure 1.1 an excerpt from channel 1 of record 103 of the MIT-BIH
database is shown. For reference, each visible feature in the cardiac cycle is shown
with its standard clinical label. The time intervals of particular interest to this study
are also displayed with their standard labels [16]. The cardiac cycle has three main
constituents, atrial activation, ventricular activation and ventricular repolarization
which are associated with the P-wave, QRS complex and the T-wave respectively.
The time evolution of these signal features is, under normal circumstances, approxi-
mately fixed with respect to the QRS complex. That is, the order, the shape and the
relative positions of these events are approximately constant within a normal beat’s
ECG.



1.1 Compression of the ECG

Our immediate concern is to determine an estimate for the amount of information
that requires storage. In order to maintain the fidelity of the signal, it should be
quantized with at least 10 bit precision and sampled at a rate on the order of 500 Hz
[8]. This yields a minimum storage requirement of about 50 Mb for each lead per day
of ECG recording. The large amount of data inherent in this kind of recording has
generated a great deal of interest in means of compressing the signal. If a suitable
compression technique could be developed, a great savings in storage costs could
be realized. In addition, the potential convenience of storing the digitized signal
directly in the Holter recorder presents many difficulties with respect to weight, size,
storage capacity, and power consumption which could be reduced through effective
compression.

The topic of ECG compression has been actively pursued for 40 years [8] and has
generated a large literature. Of particular interest is irreversible or “lossy” compres-
sion due to the potential for much higher compression rates. The cost of a higher
compression rate is the loss of some information in the signal. If this loss were re-
stricted to noise and artifact, the cost would obviously be acceptable. Quantitative
evaluation of the quality of reconstructed ECG signals has been almost exclusively
based on ensemble averages of the mean squared error and related measures [2] [8]
[19]. Ensemble averages obviously do not ensure clinically adequate, beat-by-beat re-
construction since a number of beats must exceed the error criterion. The persistence
of this kind of evaluation is quite remarkable given the following:

1. An ECG is interpreted based on the relative character of features which are
localized in time and which make widely differing contributions to the variance
of the signal. Disturbances of these features which may have small influence on
signal variance can be of clinical significance.

2. The localization of ECG features in time has lead to the application of localized
bases such as wavelets to the ECG compression problem [19] [2].

Thus, research has been actively pursued in compressing a signal which is interpreted
based on the relative changes of temporally localized features with a basis which,
when truncated, generates compactly supported errors. However, the quality of the
reconstructed approximation to the signal, and, therefore, the effectiveness of the
algorithm, are evaluated using a globally averaged error measure. The use of such
error measures for evaluating the quality of compressed ECG signals has previously



been recognized as being of no practical value [8].

Algorithms such as AZTEC, CORTES, Fan/SAPA, and Turning Point have been
studied in [8] and [5] and have been shown to provide compression ratios of between
2:1 and 8:1 on data from the MIT-BIH database while failing to provide a clinically
adequate representation of the signal. The wavelet based algorithm MULTIWAVE,
introduced in [20], generated highly localized, and oscillatory errors in the ST-segment
of a normal ECG. In addition, the QRS complex was visibly broadened and phase
distortion was introduced in the signal through the use of a non-linear phase filter
bank. These characteristics were expressed at a compression ratio of 16:1. A greater
degree of success has been achieved using a combination of wavelets and a Karhunen—
Loeve transform (KLT) [2], where the author reports errors based on a fraction of the
original signals variance which was captured by the reconstruction. A compression
rate of 21.4:1 is achieved on a subset of the MIT-BIH database and visually better
reconstructions are claimed, however, the minimum amount of the variance captured
by the reconstruction was only 96.5 % and intervention was frequently required by
the author, in the form of threshold adjustments, in order to maintain an acceptable
result [2].

1.2 Event Detection in ECG

In order to take advantage of transform based compression methods, the detection of
individual beats is desirable. Great gains in compression can be obtained by taking
advantage of beat to beat correlations [1] [2]. Detection of beats generally implies
detection of the QRS complex. The QRS complex is the highest energy event in
the cardiac cycle, and therefore is the easiest feature to detect. QRS detection is a
fundamental step towards transform based compression methods, and also pattern
recognition methods for automated ECG interpretation, because other events in the
ECG are relatively fixed with respect to the QRS complex. As such, a large literature
has been generated in this field.

Three key papers which have appeared in the literature concerned with the topic
of QRS detection are [15], [7], and [9]. The authors report success rates of 99.33%,
99.46% and 99.85% respectively using the MIT-BIH database. At a fundamental level
the algorithms in these papers are closely related. In [15] an algorithm is presented
which uses a band-pass filter to improve the signal to noise ratio, followed by differ-
entiating and squaring of the signal to enhance regions of relatively high slope. QRS
complexes are then detected based on an adaptive threshold. In their algorithm a



strategy called refractory blanking is employed, where detections that occur during
a fixed interval after a previously detected beat are ignored. This facet of the algo-
rithm was justified based on the refractory period that the heart muscle experiences,
after ventricular depolarization, during which no activation pulse can be conducted
[16]. In addition, if no beat is detected for a length of time greater than a constant
times the local average RR interval, a search back technique is used where a lower
threshold is reapplied to the same interval in order that a supposedly missed beat
can be discovered. If an event is detected between the end of the refractory blanking
interval and 360 ms after a previously detected beat it is assumed to be a T-wave,
unless a criterion is met with respect to its slope. In [7] a virtually identical algorithm
is applied, however parameter optimization is performed to reduce the error rate.

In [9] a strategy based on adaptive thresholding of the detail coefficients of the
signal’s wavelet transform was introduced which is a modified version of the adaptive
technique used in [15]. In this approach maximum-minimum pairs within a short
window at each level of the decomposition were found. The existence of a zero
crossing in the detail coefficients of the wavelet transform implies that there was
a slope change in the event being examined, as would be expected of a QRS complex,
and as would likely be absent from a rapid base line shift. In addition, an attempt was
made to estimate the singular degree of the signal so as to exclude noise and artifact.
The refractory blanking and search back techniques optimized in [7] for the MIT-BIH
database were retained. Let W, be a continuous wavelet transform operator at scale
s. Let our wavelet function, 1(z), be the first derivative of a smoothing function 6(z),
that is:

Y@ =2 (1.1)

Let f(x) represent a function in the L? space. In [10] it was shown how if 1.1 holds
that the zero crossings of the wavelet transform, W, f(z), correspond to the extrema
in f(z). The decay of the wavelet coefficients across small scales is a function of the
Lipschitz regularity of the signal. Given the wavelet transform of f(z), the following
remarks are made:

1. When the scale s is small enough, the maxima of |W, f(z)| indicate the location
of sharp variation signal points.

2. The function f(z) is Lipschitz a € (0, 1) over [a, b] iff there exists a constant A
such that Vz € [a, b],

[Wai f(z)| < A2 (1.2)
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In addition, these notions were recast in a discrete framework and a fast transform
algorithm was provided [10].

Let W, be a dyadic wavelet transform operator at scale 27, such that the wavelet
transform of a signal, say f(n), can be written in the following manner:

S f(n) =D hiSpi-1 f(n — 2972k) (1.3)
k

Wai f(n) =Y geSai-1 f(n — 277 1k) (1.4)
k

The wavelet coeflicients were computed in [9] using equations 1.3 and 1.4 at levels j =
1,2,3,4. The magnitude of the wavelet coefficients in each subband were evaluated
using four separate adaptive thresholds. A list of modulus maxima which exceeded the
threshold was generated for each subband and was denoted ni for levels j = 1,2,3,4
where 7 is the index of the kth event in the ECG signal. The R-waves in the ECG
signal were then identified by searching through these lists of detected singular events,
7, and finding points where local modulus maxima occurred in different subbands at
approximately the same time. In [9] an estimate of the upper bound on the Lipschitz
exponent, o, was then computed based on the decay of the modulus maxima of
the wavelet coefficients, |Wy; f(z)|, across subbands. Let aj(nk) = |Was f(nx)]. The
estimate of o’ was computed in [9] using:

o =Hte (L.5)
2
where,
a; = logy aj41(n”™') — logy a;(n). (1.6)

A sharp reduction in o' from a singularity at n; to the next, at nx4+1, was used as
evidence that the event at 7n,; was noise or artifact. The mechanism by which a
“sharp reduction” is evaluated is not specified in [9], and therefore the algorithm
cannot be reproduced. In addition, because the wavelet coefficients are primarily
dependent on the slope of the signal due to nature of the wavelet basis, the decay
of the wavelet coefficients is dependent on signal regularity and is insensitive to its
magnitude. Thus, in order to apply the Lipschitz analysis significant singularities
must be preselected based on the size of the coefficients, which can be seen to be a
source of a great deal of complexity.

Several serious flaws exist in the three methods. Most importantly, in each of
the methods the operator initializes the thresholds, and the RR interval based on
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data extracted form each record manually before analysis is commenced. Given that
the ECG is only constrained within an individual, this intervention applies a critical
constraint on the range of parameters to apply during the detection. In essence, each
of the algorithms must be supplied with a local definition of a normal beat by a human
interpreter in order to function. The use of this initialization procedure implies that
these techniques are unstable and cannot maintain their reported accuracies in the
presence of sudden changes in signal character. Because changes in signal character
are common in ECG recordings [4] the requirement of this kind of manipulation is
inappropriate.

All three methods employ search back techniques which are a fundamentally flawed
approach to QRS detection. A search back technique can only be applied to improve
the detection rate in a situation where the investigator knows e priort that each beat
is closely followed by another, such as for example, in a fixed database. Obviously, in
practice no such constraint exists.

In [15] and [7] the strategy of rejecting T-waves based on the occurrence of a
detected event at a fixed interval beyond a detected beat has no basis in physiology.
These algorithms used values of 200 ms and 360 ms for this strategy. Since the QT
interval is a function of heart rate [4] a fixed interval can only be used on a restricted
set of data.

In addition to fundamental flaws in the algorithms, the following specific points
should be considered:

1. The parameters for search back and refractory blanking used in [9] and [7] were
optimized over the entire MIT-BIH database. The database was subsequently
used as the testing set.

2. Two minutes and 24 seconds of data were censored from record 207 of the MIT-
BIH database in (7] in order to reduce the error rate of the method. During
this time ventricular flutter waves were recorded on the ECG, which are not
associated with a distinct QRS complex [4]. Ventricular flutter is considered a
fatal arrhythmia [4] [16].

3. Records 214 and 215, representing 5% of the MIT-BIH database, are excluded
from the analysis in [9] without explanation.



1.3 Goals of this research

The purpose of this research was to develop a QRS detector and a ECG compression
algorithm. Since a transform based method was adopted for compression, a reliable
QRS detector would be needed, if the compression algorithm was to be implemented
in a practical setting.

In order to address some of the issues raised with respect to the prior art, the
following constraints were imposed:

1. The QRS detection strategy was to be physiologically based, and autonomous
with a high detection rate.

2. The ECG compression algorithm was to use a physiologically based error mea-
sure that forced the reconstructed signal to maintain its clinical usefulness while
providing a high rate of compression.

Using an error measure which has clinical significance allows the use of active error
management. That is, the error in the reconstruction is measured locally as the sig-
nal is compressed and is controlled so that a clinically acceptable representation is
achieved. In [1] the use of such a measure is investigated. This work is extended
to include the case of high fidelity reconstructions, which in many cases are indis-
tinguishable from the original signal, while maintaining low bit rates over the MIT
database.

The QRS detection and ECG compression algorithms discussed hereafter are both
highly effective. Many of the capabilities of the algorithms had previously not ap-
peared in the literature. For example, the compression algorithm uses an error mea-
sure which is capable of detecting localized departures from typical signal behavior
and the QRS detector uses only 6 globally fixed parameters which were deduced from
a small sampling of the database. Despite the radical departure from the prior art
that is represented by these algorithms, they remain quite simple. For example, the
QRS detection algorithm has only five steps.

The most critical aspect of this work is that together the two algorithms represent
the first step to the solution of the much larger ECG pattern recognition problem.
That is, the development of an algorithm capable of detecting pathological beats in
an ECG automatically. Consider that the output of the ECG compression algorithm
contains information related to localized departures from typical signal behavior. By
definition, many pathological ECG signals fall into this category. Therefore, the
algorithm provides critical information for the classification of each beat.



Chapter 2

Event Detection

The event we are interested in detecting during the cardiac cycle is the QRS complex.
This problem is difficult because a number of confounding influences exist in the
signal:

1. QRS complexes, although normally constrained within an individual, are real-
ized in a extraordinary variety of shapes globally [see [16] for examples]. When
pathological beats are considered it becomes clear that no precise general state-
ments can be made with respect to the shape of QRS complexes.

2. Due to the variability in QRS complex shape, its spectral content can not be
precisely specified.

3. When considering a single lead of the ECG, it should be remembered that the
ECG is a result of a three-dimensional electric field projected on the axis of
the ECG electrodes. The resulting null space of this projection means some
pathological beats may not be well represented in a single lead recording.

4. Motion artifact and muscle noise can not be removed from the ECG by filtering
because these constituents of the signal occupy the same regions of the spectrum
as the features of interest — that is, QRS complexes, P-waves and T-waves [9].

2.1 Detection system

A method of detecting singularities has been developed based on a local rescaling of
wavelet coefficients and a voting strategy that employs a fuzzy logic system. The
envelopes of various events in the signal are detected, and the average behavior of

9
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Figure 2.1: Block diagram of QRS detection system.

the event over the envelope is used to exclude artifact. Tracing through the block
diagram in figure 2.1 we see the various operations that together constitute the QRS
detection system. The signal is processed in segments of about 3s in duration. The
input to the system is the raw ECG data extracted from the MIT-BIH CD-ROM,
and the output is a list of integer addresses of the QRS complexes.

2.1.1 Digital Smoothing Polynomial filters

We will adopt two noise models for the ECG signal. First we use a white noise model
for which we assume stationarity over a short time scale, and second is a correlated
noise model for events such as rapid base line shifts. In this section we will restrict
our attention to white noise. The purpose of this processing stage is to reduce the
noise intensity so as to improve event resolution in the wavelet coefficients.

In order to reduce the influence of white noise on future processing, the ECG signal
is convolved with a digital smoothing polynomial (DISPO) filter. This particular type
of filter is equivalent to performing a least—squares fit of a polynomial of any desired
order, say 2M, to the data. The impulse and frequency responses of the fourth order
29 tap filter applied in this analysis are shown in figure 2.2. The filter has a symmetric,
and finite, impulse response and therefore has zero phase. A DISPO filter has the
following properties [3]:

1. A filter of degree 2M, conserves every polynomial up to degree 2M + 1.

2. For general filters of a given length satisfying item 1, the DISPO filter is optimal
with respect to noise reduction, if the noise is stationary and white.
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3. A DISPO filter of degree 2M will exactly conserve all existing moments in a
signal up to 2M + 1.

Let m; be the kth moment of a signal z(n) of length N. We can compute m, using;

N-1
me = Y z(n)n* 2.1)
n=0
By inspection we see that the preservation of mg requires the integrated area of the
signal to be conserved, and therefore, a peak may be shortened if it is concurrently
broadened. Similarly, we see that the preservation of m; requires the centroid of the
signal to remain unchanged, which implies the filter must have zero phase. However,
in order to preserve m, the width of features must also be preserved in the signal, and
thus, the time scale of features must be conserved. Since it is our object to discover
singular features in the signal, this characteristic is an enormous benefit. The key to
the filtering operation is the reduction of noise while preserving the majority of signal
information. In order to accomplish this result, the length and the order of the DISPO
filter must be tuned to the underlying signal’s features. In [17] it is recommended
that for a filter of degree 4, the number of coefficients in the filter should be within
1 to 2 times the width of the features that are to be preserved at half the feature’s
maximum height. In this application the features to be preserved are QRS complexes
which have a mean duration of about 80 ms [4] for normal beats. If we assume that
the shape of a QRS complex can be grossly approximated with a triangle, a filter
width of 360Hz x 0.080s = 29 samples. The normal QRS complex is at the lower
bound of duration of these events, and the DISPO filter will have a smaller influence,
that is, produce less of a smoothing effect, on broader features in the signal [17].
The effect of filtering record 108 of the database is shown in figure 2.3. This
record is difficult for QRS detection due to the low amplitude of the R-waves, and
the approximately 250 ms PR interval. An annotation is provided in figure 2.3 to allow
distinguishing between the P-waves and R-waves. Inspection of the residuals in figure
2.3 shows the signal has been well preserved, while the high frequency noise has been
attenuated. The widths of the QRS complexes and P-waves have also been preserved
as expected. Given the initially low energy of the QRS complexes, preservation of
the signal was particularly important in this case in order to avoid rendering them
undetectable. In figure 2.4 the effect of the filter on the reconstructed level 1 detail
subband of the signal’s Haar wavelet transform is shown. This subband is sensitive
to high frequency noise due to the small scale over which it operates, as shown in the
lower left plot in the figure. In the lower right plot, the resolution of features in the



12

:i [
: N1 T

-18 -10 -5 [ [ 10 16 -3 -2 -f [} 1 2 3
A (samples) Frequency (radisnere)

Figure 2.2: Impulse and frequency responses of the fourth order 29 tap DISPO filter.

signal is dramatically improved because of the action of the filter. The Haar wavelet
transform is discussed further in section 2.1.2.

2.1.2 Haar wavelet transform

The DISPO filtered ECG signal is subjected to a 3-level Haar discrete wavelet trans-
form (DWT). The transform is implemented as a filter bank and uses a downsampling
operator at each level — that is, the odd numbered coefficients are discarded, reduc-
ing the total number of coefficients in each channel by a factor of 2. Tracing through
the filter bank arrangement shown in figure 2.6, we see the filters are applied at each
stage followed by downsampling. If the filters are chosen correctly the signal can be
exactly recovered from these coefficients [19]. Each stage of decomposition involves
the computation of two sets of coefficients, which are simply the output of the fil-
tering operation. One set of coefficients represents the high frequency information in
the signal at the scale being considered, and is associated with the high pass filter
g(k). These coefficients are referred to as the detail coefficients. The other channel
is associated with the low pass filter ~(k) and produces a set of approximation coeffi-
cients related to the low frequency signal behavior at the scale being considered. We
can see that these operations are applied to the approximation coefficients from the
previous level, where at level 1, the sampled signal is assumed to be equivalent to the
approximation coefficients at level 0. The action of the filter bank is equivalent to
projecting the signal on the scaling function and wavelet at dyadic time scales [19].
The scaling function and wavelet from the Haar filter bank are shown in figure 2.5.
This implementation is different from that expressed in equations 1.3 and 1.4 where
no downsampling is used [10]. Let the transform coefficients for an n level transform
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Figure 2.4: The effect of DISPO filtering on the reconstructed level 1 detail subband
of record 108 of the MIT-BIH database.
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be {an,d;}, where j = 1,2,... ,n, as shown in figure 2.6. In the Haar case g(k) is
orthogonal to h(k) and simply represent the normalized averages and differences of
adjacent points, specifically, the filter coefficients are:

h(k) = {\/ii -\}—5} (2.2)
o0 ={ 5.~} (2.3)

The accuracy to which the signal can be recovered from the approximation coeffi-
cients, a;, is dependent on the smoothness of the signal and the approximation order,
typically denoted p in the literature, of the scaling function [19]. That is, a high
approximation order and a smooth signal leads to an accurate approximation and
rapidly decreasing transform coefficients. Around singular points in the signal we ex-
pect the detail coefficients to play a greater role. For the Haar scaling function p = 1
[19] and we expect the accuracy of the approximation to be poor. More precisely, the
approximation order is the lowest order polynomial which cannot be exactly repre-
sented by the scaling function [19]. Thus, the Haar scaling function cannot exactly
represent a linear function, but it can represent a constant over any interval.

A numerical example of the properties of the Haar wavelet transform is displayed
in figure 2.7. In the figure, the subbands for each level have been reconstructed by first
zeroing all coefficients except those of the subband in question and then inverting the
transform. Inspection of each subband shows how the energy in the detail subbands
is related to the slope of the signal. In this example, normal and pathological beat
types are present which allows demonstration that the detail coefficients of a QRS
complex generally stand out against the local background at these scales, and how
this fact must be evaluated locally due to non-stationarity in the signal.

In figure 2.8 a similar analysis is performed using a Daubechies 10 wavelet. The
scaling function of this wavelet has an approximation order of p = 10. The figure
shows that the accuracy of a3, the approximation at level 3, is quite irregular due to
its dependence on the smoothness of the signal through the QRS complex. Hence,
in order to detect QRS complexes using a wavelet which is a good approximator
of the signal being considered, we must include higher levels of decomposition in
the analysis to ensure that representation of each QRS event exists in the detail
coefficients. In figure 2.8 we see that where this representation occurs will remain
uncertain due to changes in signal regularity. In figures 2.8 and 2.7 we see that up to
level 3 the details are free of information from P-waves or T-waves. At higher levels of
decomposition these features will begin to influence the detail coefficients. Therefore,
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Figure 2.7: Three level Haar wavelet decomposition of an ECG signal from record
106 of the MIT-BIH database.

in order to employ higher levels of decomposition, the detection strategy must be able
to'distinguish between various types of deterministic information in order to correctly
identify the QRS complexes. By reducing the accuracy of the approximation we
force more signal information into the small scale detail coefficients around singular
points, while maintaining insensitivity to P-waves and T-waves. This decoupling of
the signals information allows the use of a simple detection strategy.

The representation of noise in the detail coefficients is of great importance. It was
recognized in [9] that the use of level 4 detail coefficients provided a degree of isolation
of the features from white noise. Inspection of the frequency response of the Haar
filters in figure 2.9 reveals that the small scales cover the majority of the the spectrum,
and therefore contain the majority of the white noise power. If we assume the detail
coefficients collect half of the white noise power at each level of decomposition, then
the details from levels 1 through 3 contain '—; of the white noise power of the raw
signal. We can retain the attractive capability of the small scale details to decouple
the signals features and decrease the influence of white noise through the use of a
prefilter as discussed in section 2.1.1.

2.1.3 Local Rescaling of the Wavelet Coefficients

In the previous section we identified that it is the local size of the coefficients which is
of interest due to noise and signal non-stationarity. Consider the detail coefficients as
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Figure 2.8: Three level wavelet decomposition of an ECG signal from record 106 of
the MIT-BIH database. Here a Daubechies 10 wavelet has been applied. The scaling
function associated with this wavelet has an approximation order of 10. That is, the
scaling function can exactly represent a polynomial of order less than 10.

a set of rectangular coordinates. Let E, be the resultant vector of these coordinates,
that is:

Ey(n) = (da(3): da(3), di(3)) (24)

The time series B, (n) can now be considered a trajectory through a three dimensional
space. Given a white noise input, the trajectory will be confined to a zero mean ellip-
soid with major axis lengths and orientation determined by the statistical properties
of the data. For a correlated disturbance, such as a QRS complex, relatively large
coefficients occur across the subbands, as seen in figure 2.7. In order to simplify the
analysis of this ellipsoid, the coordinates of the vector Ew (n) are rescaled by their
local mean absolute deviation (MAD), given by:

5—1 -
MAD; = =— > _ ld;(m) — dj| (2.5)
m
where: m € Z, 0 < m < %, (_l,- is the sample mean, and k is the length of the

original signal vector, we have,

d3m) = Sap ), § € (1,2,3) (2.6)
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Figure 2.9: Frequency response of the filters g(k) and h(k), which are applied at each
level of decomposition. If we assume the white noise power is split evenly between each
subband at each level of decomposition, then the majority of white noise power can be
seen to be captured in the small scale subbands, d; j = 1,2, 3, because these subbands
span the majority of the spectrum. This characteristic imposes the requirement of
prefiltering in order to increase the resolution of signal features as discussed in section
2.1.1.
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Figure 2.10: The trajectory of Ew(n) projected on the dy—d, plane for a 1024 point
segment of record 106 of the MIT-BIH database before and after rescaling of each
coordinate by its local mean absolute deviation.

Because the majority of data points in the signal are not in QRS complexes, and due
to the relative insensitivity of the MAD to outliers, the noise ellipsoid is made more
spherical, and the axes of the entire distribution are scaled to lines of unity slope. An
example of this process is shown in figure 2.10 where d;(%) is plotted against dz(%)
before and after rescaling. This plot represents the projection of the trajectory E,(n)
on the d;—d; plane. Before rescaling we see that the coefficients from the d; subband
are smaller than the coefficients from the d, subband by a factor of about 3. In order
to distinguish between signal and noise in this situation, each subband would have to
be evaluated with separate adaptive thresholds, as has been proposed in [9]. Rescaling
permits treating the magnitude of coefficients from different subbands uniformly and
eliminates the need for adaptive thresholding.

2.1.4 Fuzzy Mapping

The persistence of physiological features over time is a critical piece of evidence which
will allow us to separate these features from noise. If the signal is white noise then
each sampled point will be a statistically independent event. Because the filters are of
length 2 and are succeeded by a downsampling operator, and the filters are orthogonal,
the transform coefficients will remain uncorrelated in this sitvation. Therefore an
event which produces locally large coefficients ( that is, outliers ) across more than



20

Figure 2.11: The global fuzzy set large used to measure coefficient relative sizes.

one subband and which furthermore is of long duration would have a vanishingly
small probability of being associated with white noise.

Given our previous arguments, we will accept a coefficient as being of interest if
it is concurrent with at least one other large coefficient in a different subband. We
do not specify which, of the three subbands, these coefficients need be in. Since the
coefficients are previously rescaled by their local mean absolute deviation, we can
evaluate how big they are by fuzzifying them with a single fuzzy set large. Inspection
of figure 2.11 shows that coefficients larger than twice the MAD of the sample being
considered are to some degree large. Coefficients above 10 x MAD are considered
large to degree 1.0. The fuzzifying operation will return a degree of membership
in the fuzzy set on the interval [0,1]. Let u* be the degree of membership of a
coefficient from the subband at level j. Let m = 31 where n € Z is a sample index
over the segment of the ECG signal being considered and j € 1,2,3. Using fuzzy
logic operations, we can express our rule as:

IF the median coefficient is large THEN the singular point is of interest

Let the degree of membership in the fuzzy set interest be piyns, then:
Hint(n) = median(uy’, p3°, p3°) (2.7)

The median operator itself is not a fuzzy operator, but it can be shown to be con-
structible from a combination of min and maz operators, which in the case of three
numbers reduces to the minimum of the two largest coefficient membership values.
In this context the median is a fuzzy voting strategy. Each coefficient gets one “vote”.
A single large coefficient is insufficient evidence to show interest in a region, and at
the same time a single zero coefficient is insufficient evidence to show disinterest.
The results of applying this measure to the first two seconds of records 103 and
203 are shown in figure 2.12. The segments of both records shown in figure 2.12
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Figure 2.12: Magnitude of E,(n) or, equivalently, the degree of interest pn:(m),
measured using the fuzzy voting strategy is shown for the first two seconds of records
103 and 203 of the MIT-BIH database with the corresponding ECGs.

have QRS complexes with physiologically normal duration. The segment of record
203 is noisy which results in a lower degree of interest in the QRS complexes. This
phenomenon is an expression of the uncertainty that has been created by inferring
our interest in a region contaminated with noise. Inspection of figure 2.12 reveals
that the response of the measure pin:(n) is zero for all features unrelated to QRS
complexes in these examples.

2.1.5 Membership Envelope Analysis

The membership time series pi,(n) generated by equation 2.7 tends towards unity
around singular regions in the ECG signal. The kinds of singularities that cause this
behavior are context dependent due to the local rescaling and can include determin-
istic information from the ECG signal such as P-waves and T-waves, or artifacts such
as rapid baseline shifts. Hence, it is not possible to pick a threshold which will allow
the global discrimination of these events due to the variable nature of the ECG sig-
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nal. Our approach is to use a low threshold (typically 0.05) and to use the following
algorithm to mark out the envelope of each singular region in the signal.

1

2.

8.

9.

Search forward through the signal until the threshold is exceeded.
Set marker el at the beginning of the singular region of event j.

Evaluate the length of the interval over which the time series p;n:(n) exceeds
the threshold. Because the envelopes can be notched due to the slope change
of a QRS complex (see figure 2.12). Therefore, based on the visual inspection
of a few seconds each of data from several records of the MIT-BIH database we
will accept a brief gap in the envelope of 30 ms during this evaluation.

Set marker €} at the end of the singular region.

. If the region is less than 3 samples in length (about 8 ms) it is rejected as not

being of significance. This constraint is imposed by the use of a linear model of
the data in future processing (see section 2.1.6).

Compute the centroid of the event’s envelope, thus for event j we have:

e
o ! Nfting(n)
T =l + —% :
En!:e; Mine (1)

(2.8)

Test the distance between the current event’s centroid and that of the previous
event’s. If the distance falls below 200 ms, join the two envelopes and recompute
the centroid. That is, set eJ = eJ~! and repeat step 6. This approach is justified
by the absolute refractory period that the heart experiences after a beat. We
accept that by definition this threshold rejects any heart rate above 300 beats
per minute.

Store the final values of the centroid € and of the envelope brackets e and e}

If not at end of signal return to step 1.

In figure 2.13 the analysis of a challenging section of record 105 of the MIT-BIH
database is shown. This section was chosen in order to display the behavior of the

fuzzy voting strategy in the presence of simultaneous artifact, variable QRS complex
amplitude and duration, noise, and baseline drift. The labeled artifact at t = 1202.5
s is conspicuously difficult and is eventually declared a QRS complex resulting in a
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Figure 2.13: The top graph shows record 105 ECG, with the envelope markers e = 2.0

and e-} = 1.0, and R-peak markers generated using the MIT-BIH database annota-

tions. The lower graph shows the associated measure p;ne(n2)-

false positive error. The envelope of each singular region of interest has been detected
successfully in these examples.

2.1.6 The Detection of Rapid Baseline Shifts

Rapid baseline shifts are a frequent artifact in ambulatory ECG signals. The difficulty
with these artifacts is that their representation in the time series uin:(n) can easily
equal that of a QRS complex. If we consider the wide variation in magnitude of event
envelopes, particularly if pathological beats are included, which may not be well
represented in the studied lead, it becomes clear that more information is required to
reject these artifacts.

Examination of the rapid base line shifts shown in figure 2.14 at t = 1205.0 s and
t = 1204.4 s over their event envelopes suggests a feature which distinguishes them
from a QRS complex. Specifically, a rapid base line shift has a linear character over its
event envelope. In contrast a QRS complex has a grossly triangular structure. We are,
therefore, concerned with the average behavior of the signal over an event envelope.
Previously, we wished to detect the singular regions using the detail coefficients. This
allowed the algorithm to operate in an environment that was independent of the
local mean signal intensity, that is, the strategy was insensitive to whether a QRS
complex occurred at a baseline of -2 mV or 3 mV. Once the singular regions have been
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isolated, more information is required to evaluate the character of each singularity.
We assert that this characterization should be accomplished by the use of a model of
the singularity. In the case of a QRS complex, the model cannot be fixed, however,
it is possible to model what is not a QRS complex in the important case of rapid
baseline shift. Consideration of this discussion yields the following heuristics:

1. In order for a region to correspond to a detectable event envelope it must to
some extent be singular.

2. If a region is singular and is not linear over its event envelope, it cannot be
rejected as artifact or noise due to the wide variety of morphologies of QRS
complexes.

In order to incur a tremendous computational convenience we simply assume that
a rapid baseline shift will be very near a straight line that passes through the two
points where the event brackets intersect the filtered ECG signal. Such an event
occurs at ¢ =1205.25 s in figure 2.14. We evaluate the validity of the model by
measuring the fraction of the variance of the data that it explains using the coefficient
of determination, R? [21)]. It should be remembered that the model applied here does
not minimize the L?-norm of the residuals, which would be typical if a least squares
model was fit to each envelope. Let y(r) be the measured ECG signal, and §?(n) be
the linear base line shift model through the event envelope j which is defined over
the domain e < n < e} Specifically, we compute:

¢
RSS; = (y(n) — #(n))? (2.9)
e
<
SYY; =Y (y(n) - %)* (2.10)
e

where 77 is the sample mean over event envelope j, then:

RSS;
Ri=1- '.5‘_}"'17; (2.11)

If over any event envelope R? exceeds the threshold of 0.9, we say the event is a rapid
linear base line shift and exclude that event from the analysis.

The result of applying the discussed QRS detection strategy is shown in figure 2.15
for a short segment of record 105 of the MIT-BIH database. This segment has a small
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Figure 2.14: The top graph shows record 105 ECG, with the envelope markers eJ = 2.0

and e} = 1.0, and R-peak markers generated using the MIT-BIH database annota-

tions. The lower graph shows the associated measure p;ni(n). Of particular interest

is the influence of rapid base line shifts in the analysis.

amount of noise and an irregular baseline. The top most trace of the figure shows a
marker at each R-wave location taken from the database annotation. The lower most
trace shows the R-wave locations computed using the QRS detection algorithm. Of
interest is the extremely accurate localization of the R-waves.

2.2 Results

The algorithm used a total of 6 globally fixed parameters for the study performed on
the MIT-BIH database. These parameters are summarized in the table 2.1. Because
the algorithm is highly effective at separating regions of the signal associated with
QRS complexes from those that are not, it was possible to deduce the values of the
parameters based on the performance of the algorithm over several short segments of
data extracted from the data base. The segments of data were either two or three
minutes long and were extracted from records 103, 105, 108, 113, 201, 203, 232, and
234 of the MIT-BIH database and had a total length of less than 20 minutes. These
examples represent less than 1.5 % of the total amount of data in the database.

The MIT-BIH database contains 109986 annotated QRS complexes. Channel 1 of
all 48 records of the MIT-BIH database were analyzed. The annotations associated



26

-2

:15280 128;0.5 12'81 128:1.5 12’32 12;.2.5 12“83 128;3.5 1284 120;4.5 1285
Time (8)

Figure 2.15: An excerpt from record 105 of the MIT-BIH database is shown. The

trace labeled ‘Anrnotation’ was constructed from the R-wave locations supplied with

the database. The lower trace represents the R-wave locations generated using the

discussed QRS detection algorithm and is labeled 'Computed’.

Table 2.1: Summary of the parameters used in the QRS detection algorithm.

Parameter Name Value
Joining Interval 200 ms
Maximum notch width 30 ms

Low saturation for fuzzy set 2 x MAD
High saturation for fuzzy set 10 x MAD
Global threshold 0.05

Minimum R? for linear
baseline shift rejection 0.90
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with non-conducted P-waves, and ventricular flutter waves were not counted as beats,
because no QRS complex is associated with these events. That is, if the algorithm
detected one of these excluded events, that detection would be counted as a false
positive error.

The program was executed in approximately 27 minutes on a DEC Alpha 3000
computer. This time includes all file handling overhead. Each record contains 650000
samples for each lead quantized at 11b precision. The total size of the database can
be seen to be 48 records x 650000 samples x 11 bits / 8 bits/byte / 1024 bytes/kbyte
or about 42000 kbytes of data per lead. The file handling overhead for this amount of
data is obviously non-trivial. The time required to load the data from the CD-ROM
was measured for the first 10 records of the database. The mean loading time for
the records was about 17 s with the minimum time at about 15 s and the maximum
about 18 s. The value of 17 s for each record translates to about 13.5 minutes, or
half, of processing time spent on loading data. In addition, optimizing the program
for speed remains possible. For example, the prefiltering stage is implemented as a
time domain couvolution, rather than the potentially faster FF'T based overlap and
save strategy [18].

The evaluation of errors was based on the annotated QRS positions supplied with
the data. Each detected beat was assigned to the closest neighboring beat in the
annotated list. A false positive was said to have occurred in the event that more than
one beat was assigned to an annotation. The number of false positives is equal to the
total number of beats assigned to an annotated position less 1. A false negative was
said to have occurred in the event that no detected beat was assigned to an annotated
position. The total number of false positives recorded was 528, and the total number
of false negatives was 224. This yields an average success rate of 99.32%.

Comparison of the artifact in figure 2.14 at ¢ = 1204.5 s and the ventricular con-
tractions present in the top trace of figure 2.7 at samples 500 and 1300 demonstrates
why the error rate using the MIT-BIH database, and in general, cannot be zero using
a single lead ECG. The artifact which is not an annotated beat in the database is
virtually identical in shape, amplitude, and duration to the annotated ventricular
contractions in figure 2.7 (note, for convenience 100 samples at 360 Hz is about 275
ms). It can be seen in figure 2.14 that no evidence is present in the single lead ECG
which would allow the rejection of this artifact.



Table 2.2: Results of the QRS detection study on the MIT-BIH database.

COT" No. QRS FP FN FP+FN Total
complexes | (beats) | (beats) | (beats) | Errors (%)

100 2273 0 0 0 0
101 1865 4 0 4 0.21
102 2187 0 0 0 0
103 2084 0 0 0 0
104 2230 15 5 20 0.90
105 2572 13 13 26 1.01
106 2027 8 1 9 0.44
107 2137 0 8 8 0.37
108 1763 58 3 61 3.46
109 2532 0 5 5 0.20
111 2124 2 1 3 0.14
112 2539 0 0 0 0
113 1795 2 1 3 0.18
114 1879 8 2 10 0.53
115 1953 0 0 0 0
116 2412 1 16 17 0.70
117 1535 0 0 0 0
118 2275 2 0 2 0.09
119 1987 76 0 76 3.82
121 1863 2 2 4 0.21
122 2476 0 0 0 0
123 1518 0 0 0 0
124 1619 1 0 1 0.06
200 2601 8 3 11 0.42
201 1963 136 2 138 7.03
202 2136 4 2 6 0.28
203 2980 5 69 74 2.48
205 2656 0 22 22 0.83
207 1860 68 5 73 3.92
208 2955 5 13 18 0.61
209 3004 5 0 5 0.17
210 2650 4 10 14 0.53
212 2748 2 0 2 0.07
213 3251 0 5 5 0.15
214 2261 4 3 7 0.31
215 3363 0 0 0 0
217 2208 1 7 8 0.36
219 2154 0 0 0 0
220 2048 0 0 0 0
221 2427 0 4 4 0.16
222 2483 6 1 7 0.28
223 2605 0 13 13 0.50
228 2053 23 4 27 1.32
230 2256 2 0 2 0.89
231 1571 1 0 1 0.06
232 1780 62 1 63 3.60
233 3079 0 3 3 0.10
234 2753 0 0 0 0
Totals: 109986 028 224 752 0.68




Chapter 3
Signal Compression

An ECG is generally sampled at a uniform rate. The ECG sampling frequency must
be high enough to resolve the QRS complex and is set to 360 Hz in the MIT-BIH
database. However, since the QRS complex operates at a comparatively short time
scale, the majority of each beat tends to be oversampled. This situation allows the
application of a variable rate sampling strategy to reduce the bit rate of the signal,
and reduce the computational burden of future processing. To assess an appropriate
sampling rate within a beat, the frequency content of each phase of the cardiac cycle
must be understood. Each beat is therefore partitioned into three consecutive, non-
overlapping time windows, or blocks. These blocks are labeled T’a, QES' , and §T,
and approximate the standard clinically defined intervals. The function of the blocks
is to divide a beat into the three distinct phases of the cardiac cycle, specifically,
atrial activation, ventricular activation and ventricular repolarization.

3.1 Block definitions

For convenience, and in order to avoid biasing the results due to interaction with the
QRS detector, the MIT-BIH database annotations were used to locate the R-peak
of each beat. Let y be a column vector holding the ECG signal loaded from the
CD-ROM, and let R(k) be a list of R-peak addresses in y, numbered £ =0,2,..., K.
Each R-peak is centered in a é'R\S block, denoted bm, and the block’s duration is
set to 1/4 second, or 90 samples at 360 Hz (where the typical normal QRS complex
is 50-110 ms [6]), that isfor 0 < k < K:

b3 = 3T R(k) - 45 < m < R(k) + 45 (3.1)

29
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where T represents the transpose operation, and m is an index over partition k in the
measured signal. The PR interval is generally less than 40 percent of its corresponding
RR interval [6]. The duration of the PQ block is therefore set to 40 percent of its
corresponding RR-interval less one-half of the duration of the @5‘ block, that is:

bfa =47, Q(4R(k) +6R(k - 1)

10
where Q(-) indicates that the quotient is retained and the remainder is discarded.
Similarly, the duration of the ST block is set to 60 percent of its corresponding
RR-interval less one-half the QRS block, that is:
4R(k) +6R(k + 1))
10

This partitioning strategy generally results in each phase of the cardiac cycle being
associated with its correct block, that is, QRS complexes are contained in the 61-2.\5’
blocks, P-waves in the ﬁa block and T-waves in the ST block. Let the beat vector
associated with R(k) be Bx. Each beat vector can be assembled from its constituent
blocks according to the following relationship:

B.=[bf?| ™| bfT] (3.4)

) <m< R(k)-45 (3.2)

bfT =yT, R(k) +45 <m < Q( (3.3)

Furthermore, the signal vector y, less the first and last beat, denoted y* can be
constructed from:

y=[B | B | - | BK_I]T (3.5)

Due to variability in the RR interval, the dimension of each beat vector B(k) is not
the same. Special consideration must be made for the end effects if the first and last
beats are of importance. In this study these end effects were ignored as a matter of
convenience, however, the difficulty could be resolved by simply padding the blocks
to an appropriate length with the first or last recorded sample as required.

The physiology of the ECG restricts the bandwidth of the signal because of the
specialized conduction tissues which carry the heart’s activation pulse. That is, the
frequency content of the signal is a function of the conduction rate in the heart. Nor-
mally, each QRS complex is preceded by a P-wave, and followed by a T-wave. Thus,
given the known relationships between RR interval and the P-R and S-T intervals, the
normal time evolution of the cardiac cycle can be considered approximately constant
with respect to the QRS complex. Because the QRS complex has been shown to be
detectable in the majority of cases, it can be used as a robust datum for partitioning
and resampling the signal, greatly simplifying any variable rate sampling scheme.
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3.2 Specification of the Sampling Strategy

An appropriate sampling rate for each block can be determined from its spectral
density function (SDF). The SDF was estimated by randomly sampling 200 normal
beats from the MIT-BIH population, computing the SDF within each block of each
beat using a zero-padded fast Fourier transform, and averaging across the ensemble.
This approach is conservative because normal beats exist at the lower bound of QRS
complex duration [16], and therefore operate at higher frequencies than pathologically
conducted beats.

In [1] it was shown that the T’a and ST blocks have negligible power over about 10
Hz, while the Q’I—ETS' block operates at up to about 30 Hz. The Q’R\S block can thus be
conservatively resampled at a rate of 180 Hz, which yields a Nyquist frequency of 90
Hz. The average SDF's for the 13?2 and ST blocks indicate that these regions can be
resampled at a rate of 72 Hz (every fifth point), yielding a Nyquist frequency of 36 Hz.
These sampling rates were considered adequate to preserve details of clinical interest
in the original signal. To minimize aliasing and noise effects, a computationally simple
9-point centered local average is computed in the original signal around each retained
sample point in the T’C\Q and ST blocks and a 3 point centered local average is similarly
found around each retained sample point in the Q‘R\S block. The centered average
acts as a zero-phase, low-pass filter which attenuates noise (10 dB attenuation or
better) above about Z in the m and ST blocks and above Z in the @' block, as
shown by figure 3.1. Since both of these values approximate the Nyquist frequencies
corresponding to the resampling rates there will be negligible aliasing taking place
nor is the signal of interest compromised due to its band limited nature.

The positions of the retained points in B; must be chosen carefully in order to
avoid difficulty in the region of a sampling rate shift. Let J n represent a downsample
by n operator and let Bf be a resampled beat. The sampling scheme is defined as:

1. For beat B; we begin in the QRS block, bkqfﬁ. The total number of points in
12 b7 is 45, and the R-peak, R(k), is fixed at {2 bZ™ (23).

2. The QRS block is resampled and concurrently filtered moving outward until 22
samples have been extracted from each side of R(k) in y.

3. The sampling rate is shifted to |5.

4. The }35 block is resampled in time reversed order, that is every fifth point
starting at the boundary with the QRS block and moving backward until 40 %
of its corresponding RR interval is sampled.



32

5. The 5T block is resampled starting at the QRS block boundary and moving
forward until 60 % of its corresponding RR interval is accounted for.

By adopting this method the fact that the number of points in the PQ and 5T blocks
will not generally have an integer multiple of 5 samples in them is recognized. Because
the R-peaks are at known locations, the RR-intervals are also known, and the signal
can be reconstructed by letting the interval separating each beat vary. In this way,
the temporal alignment of all features in the signal is preserved while minimizing
overhead storage cost. The filtered and resampled signal can now be constructed
using:

Bi=[15bf7) J2b7®| 5 bi?| (36)
and the signal vector becomes:

y=[Br | B5 | - | Bio] 3.7

Due to the finite impulse response of the filters, and the fact that the filters are low
pass, no discontinuity can be introduced at the block boundaries, that is, an average
value used as the resampled data point is bounded by the maximum and minimum
values used in its computation. Therefore, a discontinuity can only be attenuated by
the filtering and resampling process.

3.3 Quality Controlled Compression

The aim of quality controlled compression is to ensure clinically adequate recon-
struction on a beat-by-beat basis, preserving relevant features within each beat. To
implement quality controlled compression, a criterion is proposed herein in which the
number of retained transform coefficients is such that the relative mean __absolute __Sif'
viation, €], for each block j = 1,2, or 3, corresponding to blocks |5 bL?, 12 b2R,
and 5 bf—'i' respectively, and for each beat 0 < k£ < K is less than or equal to a pre-
specified tolerance. Specifically, the relative error over block j for beat % is defined
as

gl An b~ 4n bl

Il {nIbil

where || +||; is the 1-norm, and | n ibj is the reconstruction approximation of block
lni b';’; from the retained transform coefficients. The number of retained coefficients

» J=123 (3.8)
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Figure 3.1: Frequency response of the 3-point and 9-point averaging filters. The
original sampling frequency of the MIT-BIH database, and therefore the sampling
rate which the filters operate at in the algorithm, is 360 Hz.

for the entire beat, B is determined to be the minimum integer such that max; ¢ < b
for some tolerance b. This criterion is iterative since ¢, depends on the number of
retained coefficients. However, because of the orthogonality of the KLT basis, ,Ln-"'gi
is easily constructed incrementally and the minimum number of retained coefficients
is found efficiently. For example, assuming that the eigenvalues have been sorted
in descending order, if €}, for a particular beat k, was found to be in excess of
the relative error tolerance b, the reconstruction would be improved by additionally
retaining the transform coefficient associated with the next largest unused eigenvalue,
and its eigenvector. Due to orthogonality of the KLT basis, the residual vector can
be modified directly, thus avoiding reconstructing | n jS{; at each iteration.

3.4 Implementation Details

Each of the 48 records of the MIT-BIH database are analyzed in three segments of
approximately 10 minutes of data. Let ST be such a segment where j = 1,2,3 and
n=1,2,...,48 is an integer counter which represents each record of the database
in sequential order. Baseline drift in each segment is removed by subtracting a one
second wide centered moving average. Each segment is then separated into N beats
based on the supplied database annotations. Each beat is then partitioned into blocks
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and resampled. The beats are loaded sequentially as a row vectors of dimension M
into a beat matriz, denoted A. The details of the blocking of a segment are defined
as follows:

1. The maximum RR-interval R,,,. is identified.

2. The number of data points in the FZ), QRS, and ST blocks, Npq, Ngrs, and N,
respectively, are computed using the following expressions:

04 N
Ny = _Ii"‘_ﬁ_ﬁ, (3.9)
TPQ
Npps = 4; , (3.10)
grs
R -1
Na = &6—-——‘1. (3.11)
Tst

Where T, Tyrs and Ty, are the sampling periods in the I”TQ, Q@RS and 5T
blocks respectively after each block has been resampled.

3. The row dimension, M of the beat matrix is set to M = Npg + Ngrs + Nyt

4. Since all beats have RR-intervals less than or equal to Rj.z, they must be
aligned within the matrix. To do this, the R-peak for each beat vector is placed
at the index Npg + (Ngs — 1)/2 (for N, odd) and the vector is padded to
dimension M using the first sample in the PQ block at the beginning of the
vector and the last sample in the ST block at the end.

5. The beat vectors are then loaded into the N x M beat matrix A.

The KLT is a linear transformation of a matrix A. The basis vectors used for
the transformation are the eigenvectors of the covariance matrix of A. The KLT is
computed by finding the singular value decomposition (SVD) of A. It can be shown
that any N x M matrix A where N > M, can be described as a product of an N x M
column orthogonal matrix U, an M x M diagonal matrix £ and the transpose of an
M x M orthogonal matrix V [17], that is:

A =UzVT (3.12)

Multiplying 3.12 through by A7, and recalling the properties of orthogonal and di-
agonal matrices, yields:

ATAV = Vg2 (3.13)
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Immediately we recognize equation 3.13 as the eigenvalue problem. Thus the SVD
of A yields the KLT basis vectors in the matrix V7 and the transform coefficients in
the matrix U.

3.5 Results

The following results are based on the channel 1 lead of the MIT-BIH database.
To obtain meaningful compression measures, the total storage consumed by all of
the information required to reconstruct the approximation to the signal must be
considered. We will assume that the precision with which the required coefficients
are stored is the same as that for the original signal. If the dimension of the beat
matrix is N > M (true if no beat lasts more than about 5 seconds throughout the
10-minute segment), then the KLT produces an M x M matrix of eigenvectors, an
N x M matrix of transform coefficients, and the M eigenvalues 6%,0%,... ,0%;.

Some rudimentary analysis is useful for estimating the order of the compression
rate. For the variance criterion, m eigenvalues (arranged in descending order of
magnitude) and eigenvectors, along with m transform coefficients for each of IV beats
are retained with m chosen so that 37, 02/3°M o? > §,,. Including the N RR-
interval values needed to reconstruct each beat, the variance control criterion requires
the storage of m{M + 1) + N(m+1) values in total. A 10 minute recording originally
containing (10)(60)(360) = 216, 000 data values typically has IV = 750 (corresponding
to a heart rate of 75 beats per minute) and M = 100 after downsampling. For m = 3
retained transform coefficients, the storage requirement totals 3(100+1)+750(3+1) =
3303 values yielding a compression ratio C = 65:1. If m = 10, C drops to about 23:1.

In contrast to the variance criterion, quality controlled compression, requires the
storage of:

1. A variable number of transform coefficients m;, i C {1,... ,N}.
2. Mpax = max m;, eigenvalues and eigenvectors.
3. The RR-interval for each of the N beats.

The total storage requirement for segment of /N beats is then mpa. (M +1)+ N (h+1)
where m is the average number of retained transform coefficients over the IV beats.
The compression ratio for a 10 minute segment (as above) with N = 750, M = 100,
m = 3 and My, = 20 is then C = 43:1. While most beats are stored using only
2 or 3 transform coefficients this approach allows for the occasional (pathological)
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beat to be accurately represented using a larger number of transform coefficients,
maintaining, overall, an excellent compression ratio.

The MIT-BIH database is divided into two series, the first will be denoted the
100 series and the second the 200 series to reflect their labeling in the database. The
first series contains 23 records which were randomly selected from a population of
recordings, while the second series, which contains 25 records, was hand picked to
represent unusual recordings that would not be well represented in a random sample
due to their infrequency [14]. Because of this distinction, the average compression
ratios will be reported separately. The compression ratio on the 100 series should re-
flect an estimate of the algorithms global performance. The compression performance
on the 200 series is not as important as the algorithm’s ability to preserve rare events
of clinical interest. Ideally, an algorithm will be capable of high compression and
fidelity on the 100 series and as a minimum high fidelity on the 200 series, although
maintaining a good compression rate is, of course, desirable.

The average compression ratio over the 100 series of the MIT-BIH database for the
variance criterion with 4,, = 0.995 is Cy &~ 33 while the same for the quality control
criterion with tolerance b = 0.25 is Cgc =~ 27. For the 200 series the compression
rates are Cy = 21 and Cgc =~ 15. These numbers for the variance and quality
control criteria are base compression ratios. A complete compression system generally
includes a stage of lossless compression which takes advantage of the fact that the
coefficients of the transform are not uniformly distributed random variables [19]. For
example, since normal beats closely resemble one another, the transform coefficients
associated with each eigenvector should be close to the same size over a segment. Thus
if the N transform coefficients associated with the first eigenvector were grouped, the
magnitude of the first transform coefficient could be stored followed by the differences
between transform coefficients. If the coefficients are correlated, the differences can be
stored at a lower bit rate than the transform coefficients without any loss of precision.

In table 3.1, the average compression achieved on each of the 100 series records
of the MIT-BIH database is reported. Both the compression ratio, and the average
bit rate are shown. Typically, the quality control criterion provides a lower average
compression ratio. This implies, however, that there are a significant number of
beats that meet the variance criterion but go on to fail the quality control criterion
(so that m must be increased). Due to the nature of the variance measure we expect
these errors to appear in regions of of low amplitude, as these regions make smaller
contributions to the signal’s variance.

Quality control does not exclude the possibility of a higher compression ratio than
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the variance based method. For example record 112 of the MIT-BIH database was
compressed at C = 27.7:1 using the variance method and C = 51.3:1 using the quality
control method. In the occurrence of a localized region in the signal which is difficult
to represent and is also a significant disturbance of the residual vector, the higher
number of transform coefficients required to represent this region are applied globally
in the variance based method. Thus many beats will be over-represented, increasing
the storage cost for the record. By varying the number of coefficients used to represent
each beat, the quality controlled method can maintain a high fidelity representation
which is uniform across the record. In the second 10 minute segment of record 213,
see figures 3.4 and 3.5, the maximum number of retained transform coefficients was
Mmez = 30, however, the average number of coefficients was only 7 = 3.1 in order
to achieve b < 0.25. For the variance based method m = 10 transform coefficients
were retained to meet the § = 0.995 minimum. Clearly, 10 transform coefficients is
insufficient locally while simultaneously being globally extravagant.

Our first example is taken from record 103 of the MIT-BIH database. The initial
few seconds of the record are shown in figure 3.2, with the quality controlled compres-
sion and variance based compression plotted simultaneously in the top and bottom
graphs respectively. These charts are intended to represent the average behavior of
the compression methods. The quality controlled reconstruction was compressed at
C = 30.7:1 and the variance based method was compressed at C = 48.5:1. Inspection
of figure 3.2 shows that the quality controlled method’s reconstruction is superior
to that of the variance based method and except for a small departure from the T-
wave at £ = 3.25s the two representations are indistinguishable. The variance based
method suffers from some localized departures from the signal, although they are not
likely of clinical significance. In figure 3.3 several individual beats from various loca-
tions in the record have been extracted from the reconstruction because the number of
retained transform coefficients, m;, is greater than 15 in order that the quality control
criterion is satisfied. We see that the use of a globally averaged error measure in the
variance based reconstruction allows the existence of large localized errors, whereas
the quality controlled compression is of uniformly high fidelity.

The second example is taken from record 213 of the MIT-BIH database. In this
case the compression rate using the variance criterion was C = 17.4:1 and the com-
pression rate using the quality control method was C = 35.4:1 or approximately
double that of the variance base method. Inspection of figure 3.4 shows the continu-
ous reconstructions based on both the variance, and the quality controlled methods.
We see that the quality controlled method makes errors of similar sizes to those in
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Signal and Qualkty Controfied Reconstruction (b=0.25)

t 1.5 2

mz ® 35 4 4.5 5
Figure 3.2: Continuous reconstruction of the first few seconds of record 103 of the
MIT-BIH database. The top graph shows the original signal and the quality con-
trolled reconstruction (C = 30.7:1), and the bottom graph shows the original signal
and the variance based reconstruction (C = 48.5:1).
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Figure 3.3: Several individual beats from record 103 of the MIT-BIH database are
displayed where for the quality controlled method (C = 30.7:1), shown in the top
graph, m > 15. In the bottom graph, the variance based method (C = 48.5:1), where
m; = {3,6,6}, for 10 minute segments j = 1,2, 3, is a constant, allows localized
departures from the signal due to global averaging of the reconstruction error.
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the variance based method, however the errors are of a more uniform magnitude over
the reconstruction. In the variance based reconstruction the errors are much smaller
in some beats than in others resulting in increased storage costs. In figure 3.5 we see
that in spite of the much lower compression rate, the variance based reconstruction
is still subject to localized departures from the signal. We see, while maintaining two
times the compression rate, the quality controlled reconstruction remains remarkably
accurate. In summary, an algorithm employing KLT, along with its attractive prop-
erties relating to error measures and optimal bases, combined with resampling and a
quality control criterion has been found to lead to efficient and accurate compression
of ECG recordings. By careful consideration of the bandwidth containing the signal
of interest, resampling can be performed without loss of pertinent information. Re-
sampling, in turn, leads to efficient computation of the KLT, significant eigenvector
storage savings, and compression ratios which typically exceed those achieved via
wavelet packet-based algorithms [2]. The KLT also naturally lends itself to noise
model extensions relevant to signal identification. Finally, the quality control crite-
rion allows clinically acceptable reconstructions while maintaining high compression
ratios.
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Figure 3.4: Continuous reconstruction of the first few seconds of record 213 of the
MIT-BIH database. The top graph shows the original signal and the quality con-
trolled reconstruction (C = 35.4:1), and the bottom graph shows the original signal
and the variance based reconstruction (C = 17.4:1).
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Figure 3.5: Several individual beats from record 213 of the MIT-BIH database are
displayed where for the quality controlled method (C = 35.4:1), shown in the top
graph, m > 15. In the bottom graph, the variance based method (C = 17.4:1), where
m; = {9, 10, 10}, for 10 minute segments j = 1,2, 3, is a constant. Thus, with a lower
compression rate, the variance based reconstruction still suffers from localized errors.
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Table 3.1: Results of the ECG compression study using the 100 series of the MIT-BIH

database.

Variance method | Quality controlled

Record gb‘m = (0.995) method (¢; < 0.25)

tio bps Ratio bps
100 33.0 120 26.6 149
101 36.3 109 14.3 278
102 18.6 213 17.3 228
103 48.5 81.7 30.7 129
104 11.5 345 9.3 428
105 17.9 221 16.1 246
106 20.3 195 17.1 232
107 23.7 167 18.5 214
108 13.6 290 11.2 353
109 45.7 86.6 27.8 143
111 21.3 186 21.5 184
112 27.7 143 51.3 77.2
113 41.7 95.0 52.0 76.2
114 15.4 256 10.5 378
115 55.9 70.9 40.1 98.8
116 31.2 127 30.3 131
117 41.9 94.6 39.9 99.3
118 20.7 191 16.5 239
119 31.7 125 25.9 153
121 344 115 33.7 117
122 72.2 54.9 54.9 72.2
123 54.7 72.5 31.7 125
124 48.3 81.9 25.3 157
Average | 33.3 150 27.1 187
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Table 3.2: Results of the ECG compression study using the 200 series of the MIT-BIH

database.

Variance method | Quality controlled
Record (8, = 0.995) method (e; < 0.25)

Ratio bps Ratio bps
200 13.3 299 6.8 583
201 16.6 239 7.3 541
202 30.1 131 18.3 217
203 11.2 352 6.6 603
205 26.4 150 23.0 172
207 26.1 152 6.9 575
208 14.7 270 11.4 347
209 12.3 321 15.3 260
210 16.7 237 8.3 479
212 18.4 216 20.4 194
213 17.4 228 354 112
214 23.0 173 11.7 338
215 13.9 285 19.9 199
217 21.2 186 22.5 176
219 231 171 8.3 476
220 39.1 101 25.1 157
221 22.5 176 10.9 364
222 10.4 381 8.7 456
223 23.7 167 19.1 207
228 15.1 263 12.9 307
230 26.2 151 19.4 204
231 33.2 119 18.6 213
232 11.8 226 5.3 753
233 20.0 198 18.1 218
234 44.1 89.7 25.1 158
Average | 21.2 216 15.4 332




Chapter 4
Conclusion

The QRS detection, and ECG compression problems share the remarkable charac-
teristics of having long histories and large literatures which serve as confounding
influences in the solution of these problems. For example, despite the identification
of the inadequacy of globally averaged error measures [8)], these measures have con-
tinued to be applied to ECG compression results. The significance of this fact is that
the use of such measures allows the compression algorithm to cause errors which may
change a diagnosis, as was clearly pointed out in [1].

In the case of the QRS detection problem, extraordinarily high success rates have
been reported using algorithms which are optimized over their entire testing data
set, and require frequent intervention of the user. The difficulty with this approach
is that the requirement of this intervention implies that the algorithms cannot deal
with changes in signal character, where in general, any change in signal may be of
clinical interest. In addition, the recordings used as testing data are 30 minutes in
length. This length excludes any of the daily variation in the ECG which is known
to be extreme [4]. In addition, these algorithms include tactics based on constraints
which are database deperdent, solely to improve their performance over the testing
set.

In the case of QRS detection research an algorithm has been presented with the
following properties:

1. The algorithm is simple and executes rapidly enough for use in the analysis of
Holter recordings. In addition, the algorithm is fully disclosed.

2. The algorithm uses only fixed global parameters.

3. There are only six parameters in the algorithm. All of these parameters were
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deduced from the performance of the algorithm over a small set of example
recordings.

4. The algorithm is free of database dependent tactics.

5. The algorithm maintains an error rate of the same order as those presented in
the previous literature.

Although the QRS detection algorithm presented here is a radical departure from
the previous literature, there still exists a significant amount of research to be done
before this problem can be considered solved. Several questions of interest are, for
example:

1. What is the sensitivity of the result to the parameters?

2. Can the error rate, and in particular the lower bound on the error rate, be
improved by including information from other leads?

3. What kind of strategies would be required in order that this information can
be included, realizing, that the signal quality changes between leads, and the
representation of a QRS complex is different in each of the leads?

4, What are the effects of complex arrythmias such as ventricular flutter { and
others ) on the performance of the algorithm? Because the database is not
exhaustive, these kinds of rhythms tend to be underrepresented.

Considering the results of the compression work, we see that the quality control
measure is the first meaningful local error measure to be applied to the ECG compres-
sion problem. The success of the measure is directly linked to the use of resampling to
make SVD computationally accessible. This compression technique has the following
properties:

1. The quality controlled compression method provides a higher average compres-
sion rate than previously reported strategies.

2. The method uses a physiologically based error measure.
3. The method uses active error control.

4. The method provides a reconstructed approximation of higher accuracy than
previously reported methods.
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5. The method uses globally fixed parameters, and does not require intervention
of a user.

6. The method is not predisposed to making large localized errors.
Areas of further interest include:

1. The interaction of the compression method with the automatic QRS detection
strategy.

2. A clinical study of the effect of the method on the diagnostic quality of the
signal.

3. The relationship between the transform coefficients and pathology. That is, can
the fact that the quality control measure is capable of detecting localized depar-
tures from typical signal behavior be used to advantage in the the automated
detection of pathological ECG signals.

4. The inclusion of lossless coding strategies.

This study represents the first step towards the solution of the ECG pattern
recognition problem. That is, the identification of individual hearts beats must, by
definition, precede their classification, and the quality control criterion, far beyond
being a simple compression alternative, represents a significant step towards applying
the SVD transform coefficients to the pattern recognition problem. Consider that one
approach to the automated diagnosis of ECG would be to express each beat as a small
number of coefficients and identify patterns in these coefficients associated with the
various types of beat which are known to exist. This action represents compression
of the signal. If the compression does not preserve the local information in the signal,
the pattern recognition problem cannot be solved due to the potential for projection
of information associated with pathology into the null space of the transform. Thus,
quality control transcends compression, and in turn is impossible without reliable
QRS detection. The literature has failed to provide a suitable starting point for the
pattern recognition problem. In the minimum, this study forces the reconsideration of
these results. In another light, this study is a foundation on which to build meaningful
solutions.
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