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Novel methods for event detection and signal compression are presented for the 
electrocardiogram (ECG) . The event detection method uses a simple and fast alg* 
rithm which is highly effective. The method is based on the local and fuzzy evaluation 
of the size of Haar wavelet transform coefficients of the signai. The average error rate 
of the method was 0.68 % over the entire MIT-BIH database which is of the same 
order as previously published results. The method achieves this level of performance 
without operator interference, and with globally kd parameters which is unique in 
the Literature. The compression method is based on active error control, and is the 
fkst method which has successfully applied a local error measure to the electrocar- 
diogram compression problem. A resarnpling strategy based on the physiology of the 
signal is used to achieve performance improvement and computationally feasible ac- 
cess to singular d u e  decornposition. The method is simultaneously capable of higher 
compression and higher fidelity of the reconstructed approximation than previously 
reported results. The average compression rates achieved by the method are 27.1: 1, 
and 15.4:l for the 100 and 200 series of the MIT-BIH database respectively. 



Chapter 1 

Introduction 

The action of the heart is associated with an electric field. An electrocarrdiogram 

(ECG) is a recording of the potential between two points within this field measured 
as a function of tirne, usually, fiom the surface of the body. Scalar values of voltage 
are generally recorded from several different positions on the surface of the body 

simultaneously. The points on the body where the measurements are taken from have 
been standardized and are referred to as lead placements [6]. Since the placements 
of the electrodes are known and k e d ,  the directional vectors associated with the 
voltages axe also known. Using this recording, a great deal of information can be 
inferred about the cardiovascular health of a patient. 

Electrocardiograms are measured in a vâriety of ways in order to evaluate difXerent 
aspects of a patients cardio~scular health. Since the early 1960s ambulatory ECGs 
(or Holter recordings) have been used to measure two or three lead ECGs over a penod 
of about 24 hours, and it is this type of ECG with which we are prhcipally concerned. 
The use of a Holter monitor is the only method which allows the measurernent of the 
ECG while a patient carries on with their normal daily activities and it has therefore 
become a widely used and important diagnostic tool [4]. A Holter monitor records 
the measured ECG signal on a tape or other storage medium. The interpretation 
of the recorded ECG typicaily requires that the signal be quantized and discretely 
sampled. The digital version of the signal can be displayed on a computer monitor, 
transmitted for remote interpretation, stored for future reference, or subjected to 

fur ther processing using a multitude of digital signal processing techniques. A Holter 
monitor typically has other capabilities, such as a clock to add a time stamp to the 
recording and an event maxker which allows a patient to record a flag at the onset 

of any perceived symptoms. Ambulatory ECGs remain relatively expensive and time 
consuming due to the dependence on skilled technicians for the interpretation of the 



Figure 1.1: An example of the normal ECG extracted from record 103 of the MIT-BIH 
database showing important features and intervals with standard labels. 

recordings and the unreliability of automated methods [4]. 

This study and O thers, including [2], [15], [7], and [9], have employed the MIT-BIH 
Arrhythmia database [14]. The MIT-BIH database is a collection of digitized Holter 
recordings which were produced for developing and testing automated techniques for 
ECG analysis. The ECG recording has been anmtated with markers that describe 

the position and type of each beat, important changes in signal quality, changes in 

the prevailing heart rhythm, and comments. The recordings were initially annotated 

by two cardiologists independently. Discrepancies were subsequently resolved by con- 
sensus [12]. In figure 1.1 an excerpt from charme1 1 of record 103 of the MIT-BIH 
database is shown. For reference, each visible feature in the cardiac cycle is shown 
with its standard clinicd label. The time intervals of particular interest to this study 
are also displayed with their standard labels [16]. The cardiac cycle has three main 
constituents, atrial activation, ventricular activation and ventriculm repolarization 
which are associated with the P-wave, QRS complex aad the T-wave respectively. 
The time evolution of these signal features is, under normal circumstances, approxi- 
mately fixed with respect to the QRS complex. That is, the order, the shape and the 
relative positions of these events are approximately constant within a normal beat 's 

ECG. 



1.1 Compression of the ECG 

Our immediate concern is to determine an estirnate for the amount of information 
that requires storage. In order to maintain the fidelity of the signal, it should be 
quantized with a t  least 10 bit precision and sampled at a rate on the order of 500 Hz 
[8]. This yields a minimum storage requirement of about 50 Mb for each lead per day 
of ECG recording. The large amount of data inherent in this kind of recording has 
generated a great deal of interest in means of compressing the signal. If a suitable 
compression technique could be developed, a great savings in storage costs could 
be realized. In addition, the potential convenience of storing the digitized signal 
directly in the Holter recorder presents many diEculties with respect to weight, size, 
s torage capacity, and power consumption which could be reduced through effective 
compression. 

The topic of ECG compression has been actively pursued for 40 years [8] and has 
generated a large literature. Of particular interest is irreversible or "lossy" compres- 
sion due to the potential for much higher compression rates. The cost of a higher 
compression rate is the loss of some information in the signal. If this loss were re- 
stricted to noise and artifact, the cost would obviously be acceptable. Quantitative 
evaluation of the quality of reconstructed ECG signals has been almost exclusively 
based on ensemble averages of the mean squared error and related measures [2] [8] 
[19]. Ensemble averages obviously do not ensure clinically adequate, beat-by-beat re- 

construction since a number of beats must exceed the error criterion. The persistence 
of this kind of evaluation is quite remarkable given the following: 

1. An ECG is interpreted based on the relative character of features which are 
localized in time and which make widely differing contributions to the variance 
of the signal. Disturbances of these features which may have small influence on 

signal variance can be of clinicd significance. 

2. The localization of ECG features in time has lead to the application of localized 
bases such as wavelets to the ECG compression problem [19] [2]. 

Thus, research has been actively pursued in compressing a signal which is interpreted 
based on the relative changes of temporally localized features with a basis which, 
when truncated, generates compactly supported errors. However , the quality of t be 
reconstruc ted approximation to the signal, md,  therefore , the effectiveness of the 
algorith,  are evaluated using a globally averaged error measure. The use of such 

error measures for evaluating the quality of compressed ECG signals has previously 



been recognized as being of no practical value [8]. 
Algorithm such as AZTEC, CORTES, Fan/SAPA, and lbning Point have been 

studied in [8] and [5] and have been shown to provide compression ratios of between 
2:l and 8:l on data from the MIT-BIH database while fâ'iling to provide a clinically 
adequate representation of the signal. The wavelet based algorithm MULTI WAVE, 
introduced in [20], generated highly localized, and oscillatory errors in the ST-segment 
of a normal ECG. In addition, the QRS complex was visibly broadened and phase 

distortion was introduced in the signal through the use of a non-linear phase filter 
bank. These characteristics were expressed at  a compression ratio of 16: 1. A greater 
degree of success has been achieved using a combination of wavelets and a Karhunen- 
Loeve transform (KLT) [2], where the author reports errors based on a fraction of the 
original signals variance which was captured by the reconstruction. A compression 
rate of 21.4:l is achieved on a subset of the MIT-BIH database and visually better 
reconstructions are claimed, however, the miriimiim amount of the vâriance captured 
by the reconstruction was only 96.5 % and intervention was frequently required by 
the author, in the form of threshold adjustments, in order to maintain an acceptable 
result [2]. 

1.2 Event Detection in ECG 

In order to take advantage of transform based compression methods, the detection of 
individual beats is desirable. Great gains in compression cas be obtained by taking 
advantage of beat to beat correlations [l] [2]. Detection of beats generally implies 
detection of the QRS complex. The QRS complex is the highest energy event in 
the cardiac cycle, and therefore is the easiest feature to detect. QRS detection is a 
fundament al step towards transform based compression methods, and also pattern 
recognition methods for automated ECG interpretation, because other events in the 
ECG are relatively fixed with respect to the QRS complex. As such, a large literature 
has been generated in this field. 

Three key papers which have appeared in the literature concerned with the topic 
of QRS detection are [15], (71, and [9]. The authors report success rates of 99.33%, 
99.46% and 99.85% respectively using the MIT-BIH database. At a fundamental level 
the algorithms in these papers are closely related. In [15] an algorithm is presented 
which uses a band-pas flter to improve the signal to noise ratio, followed by difFer- 
entiating and squaring of the signal to enhance regions of relatively high slope. QRS 
complexes are then detected based on an adaptive threshold. In their algorithm a 



strategy c d e d  tefmctory blonking is employed, where detections that occur during 

a h e d  interval after a previously detected beat are ignored. This fak t  of the algo- 
rithm was justified based on the refkactory period that the heart muscle experiences, 
after ventricular depolarization, during which no activation pulse can be conducted 
[16]. In addition, if no beat is detected for a length of tirne greater than a constant 
tirnes the local average RR interval, a search back technique is used where a Iower 
threshold is reapplied to the same interval in order that a supposedly missed beat 
cas be discovered. If an event is detected between the end of the refkactory blanking 
interval and 360 ms &er a previously detected beat it is assumed to be a T-wave, 
unless a criterion is met with respect to its slope. In [7] a virtually identical algorithm 
is applied, however parameter optimization is performed to reduce the error rate. 

In [9] a strategy based on adaptive thesholding of the d e t d  coefficients of the 
signal's wavelet transform was introduced which is a modied version of the adaptive 
technique used in [15]. In this approach maximum-minimum pairs within a short 
window at each level of the decomposition were found. The existence of a zero 
crossing in the detail coefficients of the wavelet transform implies that there was 

a slope change in the event being examined, as would be expected of a QRS cornplex, 
and as would likely be absent fiom a rapid base line shift. In addition, an attempt was 
made to estimate the singular degree of the signal so as to exclude noise and artifact. 
The refractory blanking and search back techniques optimized in [7] for the MIT-BIH 
database were retained. Let W, be a continuous wavelet transform operator at scale 
S. Let our wavelet hnction, 1/i (2) , be the first derivative of a smoot hing function 0 (x) , 
that is: 

Let f (x) represent a function in the L2 space. In [IO] it was shown how if 1.1 holds 

that the zero crmings of the wavelet transform, W, f (x), correspond to the extrema 
in f (x). The decay of the wavelet coefficients across small scales is a function of the 
Lipschitz regularity of the signal. Given the wavelet transform of f (x) , the following 

remarks are made: 

1. When the scale s is s m d  enough, the maxima of 1 W, f (x) 1 indicate the location 
of sharp variation signal points. 

2. The function f (x) is Lipschitz a E (O, 1) over [a, b] iff there exists a constant A 
such that Vx E [a, b], 



In addition, these notions were recast in a discrete framework and a fast transform 
algorithm was provided [IO]. 

Let Wu be a dyadic wavelet transform operator at male 22, such that the wavelet 
transform of a signal, Say f (n), c m  be written in the following manner: 

The wavelet coefficients were computed in [QI using equations 1.3 and 1.4 at levels j = 

1,2,3,4. The magnitude of the wavelet coefficients in each subband were evaluated 
using four separate adaptive thresholds. A list of modulus maxima which exceeded the 
threshold was generated for each subband and was denoted ni for ievels j = 1,2,3,4 
where nk is the index of the kth event in the ECG signal. The R-waveç in the ECG 
signal were then identified by searching through these Iists of detected singular events, 
ni, and finding points where local modulus maxima occurred in different subbands at  
approximately the same tirne. In p] an estimate of the upper bound on the Lipschitz 
exponent, a', was then computed based on the decay of the modulus maxima of 
the wavelet coefficients, 1 W~ f (x) 1, across subbands. Let aj (nr) = 1 Wv f (nk) 1. The 
estirnate of a' was computed in [9] using: 

where, 

A sharp reduction in a' from a singularity at nk to the next, at nk+i, was used as 
evidence that the event at n k + l  was noise or artifact. The mechanism by which a 
"sharp reduction" is evaluated is not specXed in [9], and therefore the algorithm 
cannot be reproduced. In addition, because the wavelet coefficients are primarily 
dependent on the slope of the signal due to nature of the wavelet basis, the decay 
of the wavelet coefficients is dependent on signd regularity and is insensitive to its 
magnitude. Thus, in order to apply the Lipschitz analysis signijicant singularities 
must be preselected based on the size of the coefficients, which can be seen to be a 

source of a great deal of complexity. 
Several serious flaws exist in the three methods. Most importantly, in each of 

the methods the operator initializes the thresholds, and the RR interval based on 



data extracted form each record masually before asaipis is commenced. Given that 
the ECG is only constrained within an individual, this intervention applies a critical 
constraint on the range of parameters to apply during the detection. In essence, each 
of the algorithm must be supplied with a local definition of a normaI beat by a human 
interpreter in order to function. The use of this initialkation procedure implies that 
these techniques axe unstable and cannot maintain their reported accuracies in the 
presence of sudden changes in signal character. Because changes in signal character 
are common in ECG recordings [4] the requirement of this kind of manipulation is 
inappropriate. 

Al1 three methods employ search back techniques which are a fundamentally flawed 

approach to QRS detection. A search back technique can only be applied to improve 
the detection rate in a situation where the investigator lcnows a priori that each beat 
is closely followed by another, such as for example, in a fixed database. Obviously, in 
practice no such constraint exists. 

In [15] and [7] the strategy of rejecting T-waves based on the occurrence of a 
detected event a t  a fixed interval beyond a detected beat has no basis in physiology. 
These algoritbms used values of 200 rns and 360 ms for this strategy. Since the QT 
interval is a function of heart rate [4] a h e d  interval can only be used on a restricted 
set of data. 

In addition to fundamental 3aws in the algorithms, the following specific points 

should be considered: 

1. The parameters for search back and refractory blanking used in [9] and [7] were 
optimized over the entire MIT-BIH database. The database was subsequently 

used as the testing set. 

2. Two minutes and 24 seconds of data were censored fkom record 207 of the MIT- 
BIH database in [?] in order to reduce the error rate of the method. During 
this time ventricular flutter waves were recorded on the ECG, which are not 
associated with a distinct QRS cornplex [4]. Ventricular flutter is considered a 

fatal arrhythmia [4] [16]. 

3. Records 214 and 215, representing 5% of the MIT-BIH database, are excluded 
from the analysis in [9] without explanation. 



1.3 Goals of this research 

The purpose of this research was to develop a QRS detector and a ECG compression 
algorithm. Since a transform based method was adopted for compression, a reliable 
QRS detector would be needed, if the compression algorithm was to be implemented 
in a practical setting. 

In order to address some of the issues raised with respect to the prior art, the 
following constraints were imposed: 

1. The QRS detection strategy was to be physiologically based, and autonomous 

with a high detection rate. 

2. The ECG compression algorithm was to use a physio~ogically based error mea- 
sure that forced the reconstructed signal to maintain its clinical usefulness while 
providing a high rate of compression. 

Using an error measure which has clinical significance aiiows the use of active error 
management. That is, the error in the reconstruction is measured locally as the sig- 

nal is compressed and is controlled so that a clinically acceptable representation is 
achieved. In [l] the use of such a measure is investigated. This work is extended 

to include the case of high fidelity reconstructions, which in many cases are indis- 
tinguishable from the original signal, whire maintaining low bit rates over the MIT 
database. 

The QEES detection and ECG compression algorithms discussed hereafter are both 
highly effective. Many of the capabilities of the algorithms had previously not ap 
peared in the literature. For example, the compression algorithm uses an error mea- 
sure which is capable of detecting Iocalized departures from typical signal behavior 
and the QRS detector uses only 6 globally fixed parameters which were deduced from 
a small samphg of the database. Despite the radical departure from the pnor art 
that is represented by these algorithms, they remain quite simple. For example, the 
QRS detection algorithm has only five steps. 

The most critical aspect of this work is that together the two algorithrns represent 
the first step to the solution of the much larger ECG pattern recognition problem. 
That is, the development of as algorithm capable of detecting pathological beats in 
an ECG automatically. Consider that the output of the ECG compression algorithm 
contaias information related to localized departures from typical signal behavior. By 
definition, many pathological ECG signals fd into this category. Therefore, the 
algorithm provides critical information for the classification of each beat. 



Chapter 2 

Event Detection 

The event we are interested in detecting during the cardiac cycle is the QRS complex. 
This problem is difEcult because a number of confounding influences exist in the 
signal: 

1. QRS complexes, although normally constrained within an individual, are real- 
ized in a extraordinary variety of shapes globdy [see [16] for examples]. When 
pathological beats are considered it becornes clear that no precise general state- 
ments cm be made with respect to the shape of QRS complexes. 

2. Due to the variability in QRS complex shape, its spectral content can not be 
preciseiy specified. 

3. When considering a single lead of the ECG, it should be remembered that the 
ECG is a result of a three-dimemional electric field projected on the axis of 
the ECG electrodes. The resdting null space of this projection means some 
pathological beats may not be well represented in a single lead recording. 

4. Motion artifact and muscle noise can not be removed from the ECG by filtering 
because these constituents of the signal occupy the same regions of the spectrum 
as the features of interest - that is, QRS complexes, P-waves and T-waves [9]. 

2.1 Detection system 

A method of detecting sirigularities has been developed based on a local rescaling of 
wavelet coefficients and a voting strategy that employs a fuzzy logic system. The 

envelopes of various events in the signal are detected, and the average behavior of 



Figure 2.1: Block diagram of QRS detection system. 

the event over the envelope is used to exclude artifact. Tkacing through the block 
diagram in figure 2.1 we see the various operations that together constitute the QRS 
detection system. The signal is processed in segments of about 3s in duration. The 
input to the system is the raw ECG data extracted from the MIT-BIH CD-ROM, 
and the output is a list of integer addresses of the QRS complexes. 
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2.1.1 Digital Smoothing Polynomial filters 
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We wil l  adopt two noise models for the ECG signal. First we use a white noise modd 
for which we assume stationarity over a short tirne scale, and second is a correlated 
noise mode1 for events such as rapid base line shifts. In this section we will restrict 

our attention to white noise. The purpose of this processing stage is to reduce the 
noise intensity so as to improve event resolution in the wavelet coefficients. 

In order to reduce the influence of white noise on future processing, the ECG signal 
is convolved with a digital srnoothing polynomial (DISPO) filter. This particular type 
of filter is equivalent to performing a leastsquares fit of a polynomial of any desired 
order, Say 2M, to the data. The impulse and frequency responses of the fourth order 
29 tap filter applied in this andysis are shown in figure 2.2. The filter has a syrnmetric, 
and frite, impulse response and therefore has zero phase. A DISPO filter has the 
following properties [3]: 
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3. A DISPO filter of degree 2M will exactly conserve dl existing moments in a 
signal up to 2M + 1. 

Let m k  be the kth moment of a signal x(n) of length N. We can compute m k  using: 

By inspection we see that the preservation of mo requires the integrated area of the 
signal to be conserved, and therefore, a peak may be shortened if it is concurrently 
broadened. Similarly, we see that the preservation of ml requires the centroid of the 
signal to rernain unchanged, which implies the iilter must have zero phase. However, 
in order to preserve % the width of features must also be preserved in the signal, and 
thus, the time scde of features must be conserved. Since it is our object to discover 
singular features in the signal, this characteristic is an enormous benefit. The key to 
the filtering operation is the reduction of noise while preserving the majority of signal 
information. In order to accomplish this result, the length and the order of the DISPO 
filter must be tuned to the underlying signal's features. In [17] it is recommended 
that for a filter of degree 4, the number of coefficients in the filter shouid be within 
I to 2 times the width of the features that are to be preserved a t  half the feature's 
maximum height. In this application the features to be preserved are QRS complexes 
which have a mean duration of about 80 ms [4] for normal beats. If we assume that 
the shape of a QRS cornplex can be grossly approximated with a triangle, a fdter 
width of 360Hz x 0.080s x 29 saniples. The nomal QRS cornplex is at the lower 
bound of duration of these events, and the DISPO filter will have a smder  Suence,  
that is, produce less of a smoothing effect, on broader features in the signal [l?']. 

The effect of filtering record 108 of the database is shown in figure 2.3. This 
record is dBcult for QRS detection due to the low amplitude of the R-waves, and 
the approximately 250 ms PR interval. An annotation is provided in figure 2.3 to d o w  
distinguishing between the P-waves and R-waves. Inspection of the residuals in figure 
2.3 shows the signal has been weU preserved, while the high frequency noise has been 
attenuated. The widths of the QRS complexes and P-waves have also been preserved 
as expected. Given the initially low energy of the QRS complexes, preservation of 
the signal was particularly important in this case in order to avoid rendering them 
undetectable. In figure 2.4 the eEect of the filter on the reconstructed level 1 detail 
subband of the signal's Haar wavelet transform is shown. This subband is sensitive 
to high frequency noise due to the small scale over which it operates, as shown in the 
lower left plot in the figure. ln the lower right plot, the resolution of features in the 



Figure 2.2: Impulse and frequency responses of the fourth order 29 tap DISPO filter. 

signal is dramatically improved because of the action of the filter. The Haar wavelet 
transfonn is discussed fùrther in section 2.1.2. 

2.1.2 Haar wavelet transform 

The DISPO filtered ECG signal is subjected to a 3-level Haar discrete wavelet tram- 
form (DWT) . The transform is implemented as a filter bank and uses a downsampling 
operator at each level - that is, the odd numbered coefficients are discarded, reduc- 
ing the total number of coefficients in each chamel by a factor of 2. 'Ikacing through 
the filter bank arrangement shown in figure 2.6, we see the filters are applied at each 
stage followed by downsampling. If the filters are chosen correctly the signal cas be 
exactly recovered fiom these coefficients [19]. Each stage of decomposition involves 

the computation of two sets of coefficients, which are simply the output of the fil- 
tering operation. One set of coefficients represents the high fiequency information in 
the signal at the scale being considered, and is associated with the high pass flter 
g (k) . These coefficients are referred to as the detail coefficients. The other channel 
is associated with the low pass filter h(k)  and produces a set of approximation coeffi- 
cients related to the low fkequency signal behavior at the scde being considered. We 
can see that these operations are applied to the approximation coefficients from the 
previous level, where a t  level 1, the sampled signal is assumed to be equivalent to the 
approximation coefficients at  level O. The action of the filter bank is equivalent to 
projecting the signal on the scaling function and wavelet at dyadic time scales [19]. 
The scaling function and wavelet from the Haar filter bank are shown in figure 2.5. 

This implementation is different from that expressed in equations 1.3 and 1.4 where 
no downsampling is used [IO]. Let the transform coefficients for an n level transform 



Figure 2.3: The effect of the fourth order, 29 tap, DISPO £ilter on record 108 of the 
MIT-BIH database. 

Figure 2.4: The efFect of DISPO filtering on the reconstructed level 1 detail subband 
of record 108 of the MIT-BIH database. 
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Figure 2.5: The Ham wavelet and scaling function are shown at unity scale. For 
the first level of decomposition in the filter bank, this scale is simpiy the sampling 
rate of the function. The scale increases in a dyadic fashion as higher levels of the 
decomposition are considered as a result of the downsampling operators. 

Figure 2.6: Three level acausal filter bank representation of the DWT. 



be (h, di}, where j = 1,2,. . . ,n, as shown in figure 2.6. In the Haar case g(k)  is 
orthogonal to h(k) and simplly represent the normalized averages and clifferences of 
adjacent points, specifically, the filter coefficients are: 

The accuracy to which the signal can be recovered £rom the approximation coeffi- 
cients, aj, is dependent on the smoothness of the signal and the approximation order, 
typically denoted p in the literature, of the scaling function [19]. That is, a high 
approximation order and a smooth signal leads to an accurate approximation and 
rapidly decreasing transform coefficients. Around singular points in the signal we ex- 

pect the detail coefficients to play a greater role. For the Haar scaling function p = 1 

[19] and we expect the accuracy of the approximation to be poor. More precisely, the 
approximation order is the lowest order polynomial which cannot be exactly repre- 
sented by the scaling function [19]. Thus, the Haar scaling function cannot exactly 
represent a linear function, but it can represent a constant over any interval. 

A numerical example of the properties of the Haar wavelet transform is displayed 
in figure 2.7. In the figure, the subbands for each level have been reconstructed by fint 
zeroing all coefficients except those of the subband in question and then inverting the 
tramform. Inspection of each subband shows how the energy in the detail subbands 
is related to the slope of the signal. In this exarnple, normal and pathologieal beat 
types are present which allows demonstration that the detail coefficients of a QRS 
complex generally stand out against the local background at  these scdes, and how 
this fact must be evaluated locally due to non-stationarity in the signal. 

In figure 2.8 a sirnilar analysis is performed using a Daubechies 10 wavelet. The 
scaling function of this wavelet has an approximation order of p = 10. The figure 
shows that the accuracy of aa, the approximation at  level3, is quite irregulaz due to 
its dependence on the smoothness of the signal through the QRS complex. Hence, 
in order to detect QRS complexes using a wavelet which is a good approxirnator 
of the signal being considered, we must include higher Ievels of decomposition in 

the analysis to ensure that representation of each QRS event exists in the detail 
coefficients. In figure 2.8 we see that where this representation occurs will remain 
uncertain due to changes in signal regularity. In figures 2.8 and 2.7 we see that up to 
level3 the details are free of information from P-waves or T-waves. At  higher levels of 
decomposition these features will begin to influence the det ail coefficients. Therefore, 



Figure 2.7: Three level Haar wavelet decomposition of an ECG signal from record 
106 of the MIT-BIH database. 

in order to  employ higher levels of decomposition, the detection strategy must be able 
to distinguish between various types of deterministic information in order to correctly 
i d e n t e  the QRS complexes. By reducing the accuracy of the approximation we 
force more signal information into the small scale detail coefficients around singdar 
points, while maintaining insensitivity to P-waves and T-waves. This decoupling of 
the signals information allows the use of a simple detection strategy. 

The representation of noise in the detail coefficients is of great importance. It was 

recognized in [9] that the use of level4 detail coefficients provided a degree of isolation 
of the features £rom white noise. Inspection of the frequency response of the Haar 
filters in figure 2.9 reveals that the small scales cover the majority of the the spectrum, 
and therefore contain the majority of the white noise power. If we assume the detail 
coefficients collect half of the white noise power at each level of decomposition, then 
the details from levels 1 through 3 contain of the white noise power of the raw 
signal. We can retain the attractive capability of the s m d  scale details to decouple 
the signals features and decrease the infiuence of white noise through the use of a 

preflter as discussed in section 2.1.1. 

2.1.3 Local Rescaling of the Wavelet Coefficients 

In the previous section we identifid that it is the local size of the coefficients which is 

of interest due to noise and signal non-stationarity. Consider the detail coefficients as 



Figure 2.8: Three level wavelet decomposition of an ECG signal from record 106 of 
the MIT-BIH database. Here a Daubechies 10 wavelet has been applied. The scaling 
funetion associated with this wavelet has an approximation order of 10. That is, the 

scaling funetion can exactly represent a polynomial of order less than 10. 

a set of rectangular coordinates. Let Ë, be the resultant vector of these coordinates, 
that is: 

The time series 3, (n) can now be considered a trajectory thmugh a t hree dimensional 
space. Given a white noise input, the trajectory will be confmed to a zero mean ellip 
soid with major axis lengths and orientation determined by the statistical properties 
of the data. For a correlated disturbance, such as a QRS complex, relatively large 
coefficients 

analysis of 
local mean 

occur across the subbands, as seen in figure 2.7. In order to simpiify the 
this ellipsoid, the coordinates of the vector Ë,(n) are rescaled by their 
absolute deviation (MAD), given by: 

where: m E Z, O 5 na < &, & is the sample mean, and k is the length of the 
original signal vector, we have, 



Figure 2.9: Fkaquency response of the flters g(k) and h(k), which are applied at each 
Ievel of decomposition. If we assume the white noise power is split evenly between each 
subband at each level of decomposition, then the majority of white noise power can be 

seen to be captured in the small scale subbands, dj  j = 1,2,3, because these subbands 
span the majority of the spectrum. This characteristic imposes the requirement of 
prefiltering in order to increase the resolution of signal features as discussed in section 
2.1.1. 



Original Trajectory Rescaled Trajectory 

Figure 2.10: The trajectory of E,(n) projected on the dl-& plane for a 1024 point 
segment of record 106 of the MIT-BIH database before and after rescaling of each 
coordinate by its locai mean absolute deviation. 

Because the majority of data points in the signal are not in QRS complexes, and due 
to the relative insensitivity of the MAD to outliers, the noise ellipsoid is made more 
spherical, and the axes of the entire distribution are scaled to lines of unity slope. An 
example of this process is shom in figure 2.10 where dl ( Z )  is plotted against dz (l) 
before and after rescaling. This plot represents the projection of the trajectory Ëw (n) 

on the dl-dz plane. Before rescaling we see that the coefficients from the dl subband 
are smaller than the coefficients from the subband by a factor of about 3. In order 

to distinguish between signal and noise in this situation, each subband would have to 
be evaluated with separate adaptive thresholds, as has been proposed in [9]. Rescaling 
permits treating the magnitude of coefficients from different subbands uniformly and 
eliminates the need for adaptive thresholding. 

2.1.4 Fuzzy Mapping 

The persistence of physiologicd features over time is a critical piece of evidence which 
will allow us to separate these features from noise. If the signal is white noise then 
each sampled point will be a statistically independent event. Because the flters are of 
length 2 and are succeeded by a downsampling operator, and the filters are orthogonal, 
the transform coefficients will remain uncorrelated in this situation. Therefore an 
event which produces locally large coefficients ( that is, outlien ) across more than 



Figure 2.11: The global fuzzy set large used to mesure coefficient relative sizes. 

one subband and which furthermore is of long duration would have a vanishingly 
small probability of being associated with white noise. 

Given our previous arguments, we will accept a coefficient as being of interest if 

it is concurrent with at least one other large coefficient in a different subband. We 
do not specify which, of the three subbands, these coefficients need be in. Since the 
coefficients are previously rescaled by their local mean absolute deviation, we can 
evaluate how big they are by fuzzifying them with a single fuzzy set large. Inspection 
of figure 2.11 shows that coefficients larger than twice the MAD of the sample being 
considered are to some degree large. Coefficients above 10 x MAD are considered 
large to degree 1.0. The fuzzifying operation WU return a degree of membership 
in the fuzzy set on the interval [O, 11. Let @ be the degree of membership of a 
coefficient from the subband at  level j .  Let m = + where n E Z is a sample index 
over the segment of the ECG signal being considered and j E 1,2,3. Using fuzzy 
logic operations, we c m  express our rule as: 

IF the median coefficient is large THEN the singular point is of interest 

Let the degree of membership in the fuzzy set interest be pint, then: 

The median operator itself is not a fuzzy operator, but i t  can be shown to be con- 
structible from a combination of min and max operators, which in the case of three 
numbers reduces to the minimum of the two largest coefficient membership values. 
In this context the median is a fuzzy voting strategy. Each coefficient gets one "vote". 
A single large coefficient is insufficient evidence to show interest in a region, and at 
the same time a single zero coefficient is insufficient evidence to show disinterest. 

The results of applying this measure to the first two seconds of records 103 and 
203 are shown in figure 2.12- The segments of both records shown in figure 2.12 
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Figure 2.12: Magnitude of Ë&) or, equivalently, the degree of interest pint(n), 

measured using the fuzzy voting strategy is shown for the b t  two seconds of records 
103 and 203 of the MIT-BIH database with the corresponding ECGs. 

have QRS complexes with physiologically normal duration. The segment of record 
203 is noisy which results in a lower degree of interest in the QRS complexes. This 
phenomenon is an expression of the uncertainty that has been created by inferring 
our interest in a region contaminated with noise. Inspection of figure 2.12 reveals 

that the response of the measure pint(n) is zero for all features unrelated to QRS 
complexes in these examples. 

2.1.5 Membership Envelope Analysis 

The membership time series pht(n) generated by equation 2.7 tends towards unity 
around singular regions in the ECG signal. The kinds of singularities that cause this 
behavior are coatext dependent due to the local rescaling and c m  include determin- 
istic information from the ECG signal such as P-waves and T-waves, or artifacts such 
as rapid baseline shifts. Hence, it is not possible to pick a threshold which will allow 
the global discrimination of these events due to the variable nature of the ECG sig- 



nal. Our approach is to use a low threshold (typically 0.05) and to use the following 
algorithm to mark out the envelope of each singular region in the signal. 

1. Search forward through the signal until the threshold is exceeded. 

2. Set marker 4 at  the beginning of the singular region of event j. 

3. Evaluate the length of the interval over which the time series fint(n) exceeds 
the threshold. Because the envelopes can be notched due to the slope change 
of a QRS complex (see figure 2.12). Therefore, based on the visual inspection 
of a few seconds each of data from several records of the MIT-BIH database we 
wiIl accept a brief gap in the envelope of 30 ms during this evaluation. 

4. Set marker $ at the end of the singular region. 

5. If the region is l e s  than 3 samples in length (about 8 ms) it is rejected as not 
being of signïficance. This constraint is imposed by the use of a linear mode1 of 
the data in future processing (see section 2.1.6). 

6. Compute the centroid of the event's envelope, thus for event j we have: 

7. Test the distance between the current event's centroid and that of the previous 
event's. If the distance falls below 200 ms, join the two envelopes and recompute 
the centroid. That is, set 4 = 4-' and repeat step 6. This approach is justified 
by the absolute refractory period that the heart experiences after a beat. We 
accept that by definition this threshold rejects any heart rate above 300 beats 
per minute. 

8. Store the final values of the centroid 3 and of the envelope brackets 4 and 4. 
9. If not at  end of signal return to step 1. 

In figure 2.13 the analysis of a challenging section of record 105 of the MIT-BIH 
database is shown. This section was chosen in order to display the behavior of the 
fuzzy voting strategy in the presence of simultaneous artifact, variable QRS complex 
amplitude and duration, noise, and baseline drift. The labeled artifact at t = 1202.5 

s is conspicuously dificult and is eventually declared a QRS compiex resulting in a 



Figure 2.13: The top graph shows record 105 ECG, with the envelope markers 4 = 2.0 
and 4 = 1.0, and R-peak markers generated h g  the MIT-BIH database annota- 
tions. The lower graph shows the associated measure pht (n) . 

false positive error. The envelope of each singular region of interest has been detected 
successfully in these examples. 

2.1.6 The Detection of Rapid Baseline Shifts 

Rapid baseline shifts are a frequent artifact in ambulatory ECG signals. The difficulty 
with these artifacts is that their representation in the time series bnt(n) can easily 
equal that of a QRS complex. If we consider the wide variation in magnitude of event 
envelopes, particularly if pathological beats are included, which may not be well 
represented in the studied lead, it becomes clear that more information is required to 
reject these artifacts. 

Examination of the rapid base line shifts shown in figure 2.14 at t = 1205.0 s and 
t = 1204.4 s over their event envelopes suggests a feature which distinguishes them 
from a QRS complex. Specifically, a rapid base line shift has a linear character over its 
event envelope. In contrast a QRS complex has a grossly triangular structure. We are, 
therefore, concerned with the average behavior of the signal over an event envelope. 
Previously, we wished to detect the singular regions using the detail coefficients. This 
allowed the algorithm to operate in an environment that was independent of the 
local mean signal intensity, that is, the strategy was insensitive to whether a QRS 
complex occurred at a baseline of -2 mV or 3 mV. Once the singular regions have been 



isolated, more information is required to evaluate the character of each singdarity. 
We assert that this Characterization should be accomplished by the use of a model of 
the singularity. In the case of a QRS complex, the model cannot be k e d ,  however, 
it is possible to model what is not a QRS complex in the important case of rapid 
baseline shift. Consideration of this discussion yields the following heuristics 

1. In order for a region to correspond to a detectable event envelope it must to 
some extent be singular. 

2. If a region is singular and is not linear over its event envelope, it cannot be 
rejected as artifact or noise due to the wide variety of morphologies of QRS 
complexes. 

In order to incur a trernendous computational convenience we simply assume that 
a rapid baseline shift will be very near a straight line that passes through the two 
points where the event brackets intersect the filtered ECG signal. Such an event 
occurs at t =1205.25 s in figure 2.14. We evaluate the validity of the model by 

measuring the fraction of the variance of the data that i t  explains using the coelpicient 
of determination, R2 [21]. It  should be remembered that the model applied here does 
not minimisrie the L2-norm of the residuals, which would be typicd if a l e s t  squares 
model was fit to each envelope. Let y (n) be the measured ECG signal, and gj(n) be 
the linear base line shift mode1 through the event envelope j which is defined over 
the domain 4 5 n 5 4. Specifidly, we cornpute: 

4 
SY% = C(y (n) - q)' 

where 3 is the sample mean over event envelope j, then: 

If over any event envelope 22; exceeds the threshold of 0.9, we say the event is a rapid 
linear base line shift and exclude that event from the andysis. 

The result of applying the diicussed QRS detection strategy is shown in figure 2.15 
for a short segment of record 105 of the MIT-BIH database. This segment has a small 
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Figure 2.14: The top graph shows record 105 ECG, with the envelope markers e); = 2.0 

and e$ = 1.0, and R-peak markers generated using the MIT-BIH database annota- 
tions. The lower graph shows the associated measure pht(n). Of particular interest 
is the infiuence of rapid base line shifts in the analpis. 

amount of noise and an irregular baseline. The top most trace of the figure shows a 
mârker at each R-wave location taken from the database annotation. The lower most 
trace shows the R-wave locations computed using the QRS detection algorithm. Of 
interest is the extremely accurate localization of the R-waves. 

2.2 Results 

T h e  algorithm used a total of 6 globally fixed parameters for the study performed on 
the MIT-BIH database. These parameters are s u m m h e d  in the table 2.1. Because 
the algorithm is highly effective at separating regions of the signal associated with 
QRS complexes from those that are not, it was possible to deduce the values of the 
parameters based on the performance of the algorithm over several short segments of 
data extracted fiom the data base. The segments of data were either two or three 
minutes long and were extracted fiom records 103, 105, 108, 113, 201, 203, 232, and 
234 of the MIT-BIH database and had a total length of less than 20 minutes. These 
examples represent less than 1.5 % of the total amount of data in the database. 

The MIT-BIH database contains 109986 annotated QRS complexes. Channel i of 

all 48 records of the MIT-BIH database were analyzed. The annotations associated 



Figure 2.15: An excerpt fkom record 105 of the MIT-BIH database is shown. The 
trace labeled 'Annotation' was constructecl fiom the R-wave locations supplied with 
the database. The lower trace represents the R-wave locations generated using the 
discussed QRS detection algorithm and is labeled 'Computed'. 

Table 2.1: Sumrnary of the parameters used in the QRS detection algorithm. 

1 Parameter Name Value 

Maximum notch width 30 ms 

Low saturation for h z y  set 2 x MAD 

I High saturation for fuzzy set 10 x MAD 

1 Global threshald 0.05 

Minimum R2 for h e m  
baseline shift rejection 0.90 



with non-conducted P-waves, and ventricular flutter waves were not counted as beats, 
because no QRS complex is associated with these events. That is, if the algorithm 
detected one of these excluded events, that detection would be counted as a false 
positive error. 

The program was executed in approximately 27 minutes on a DEC Alpha 3000 
computer. This time includes aLl file handling overhead. Each record contains 650000 
samples for each lead quantized at llb precision. The total size of the database can 
be seen to be 48 records x 650000 sarnples x Il bits / 8 bits/byte / 1024 bytes/kbyte 
or about 42000 kbytes of data per lead. The file handling overhead for this amount of 
data is obviously non-trivial. The time required to load the data from the CD-ROM 
was measured for the first 10 records of the database. The mean loading time for 
the records was about 17 s with the minimum time at about 15 s and the maximum 
about 18 S. The value of 17 s for each record tramlates to about 13.5 minutes, or 
half, of processing t h e  spent on loading data. In addition, optimizing the program 
for speed remains possible. For example, the prefltering stage is implemented as a 
time dornain cor.dution, rather than the potentially faster FFT based overlap and 
Save strategy [18]. 

The evaluation of errors was based on the annotated QRS positions supplied with 
the data. Each detected beat was assigned to the closest neighboring beat in the 
asnotated list. A false positive was said to have occurred in the event that more than 
one beat was assigned to an annotation. The -ber of false positives is equal to the 
total number of beats assigned to an annotated position less 1. A false negative was 
said to have occurred in the event that no detected beat was assigned to an annotated 

position. The total number of false positives recorded was 528, and the total number 
of false negatives was 224. This yields an average success rate of 99.32%. 

Comparison of the artifact in figure 2.14 at  t = 1204.5 s and the ventricular con- 
tractions present in the top trace of figure 2.7 at samples 500 and 1300 demonstrates 

why the error rate using the MIT-BIH database, and in general, cannat be zero using 
a single lead ECG. The artifact which is not an anxiotated beat in the database is 
virtually identical in shape, amplitude, and duration to the ânnotated ventricular 

contractions in figure 2.7 (note, for convenience 100 samples at 360 Hz is about 275 
ms). It can be seen in figure 2.14 that no evidence is present in the single lead ECG 
which would allow the rejection of this artifact. 
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Table 2.2: Results of the QRS detection study on the MIT-BIH database. 

Record 

1IH) 
101 
102 
103 
104 
105 
106 
107 
108 
109 
111 
112 
113 
114 
115 
116 
117 
118 
119 
121 
122 
123 
124 
200 
201 
202 
203 
205 
207 
208 
209 
210 
212 
213 
214 
215 
21 7 
219 
220 
22 1 
222 
223 
228 
230 
231 
232 
233 
234 
TotaLs: 

4 
O 
O 
15 
13 
8 
O 
58 
O 
2 
O 
2 
8 
O 
1 
O 
2 
76 
2 
O 
O 
1 
8 
136 
4 
5 
O 
68 
5 
5 
4 
2 
O 
4 
O 
1 
O 
O 
O 
6 
O 
23 
2 
1 
62 
O 
O 

TB- 



Chapter 3 

Signal Compression 

An ECG is generally sampled at a uniform rate. The ECG sampling frequency must 
be high enough to resolve the QRS complex and is set to 360 Hz in the MIT-BIH 
database. However, since the QRS complex operates at a comparatively short time 
scale, the majority of each beat tends to be oversampled. This situation allows the 
application of a variable rate sampling strategy to reduce the bit rate of the signal, 
and reduce the computational burden of future processing. To assess an appropriate 
sampling rate within a beat, the frequency content of each phase of the cardiac cycle 
must be understood. Each beat is therefore partitioned into three consecutive, non- 

A n  

overlapping time windows, or blocks. These blocks are labeled PQ, QRS, and s, 
and approximate the standard clinically defhed intervals. The function of the blocks 
is to divide a beat into the three distinct phases of the cardiac cycle, specifically, 
atrial activation, ventricular activation and vent ricular repolarization. 

3.1 Block definitions 

For convenience, and in order to avoid biasing the results due to interaction with the 
QRS detector, the MIT-BIH database annotations were used to locate the R-peak 
of each beat. Let y be a column vector holding the ECG signal loaded fkom the 
CD-ROM, and let R(k) be a list of R-peak addresses in y, numbered k = 0,2, . . . , K .  

A 

Each R-peak is centered in a QRS block, denoted bm, and the blockys duration is 
set to  1/4 second, or 90 sarnples at 360 Hz (where the typicd normal QRS complex 
is 50-110 ms [6]), that is for O < k < K: 



where T represents the transpose operation, and m is an index over partition k in the 
measured signal. The PR interval is generally leas than 40 percent of its eorresponding 
RR interval [6]. The duration of the block is therefore set to 40 percent of its - 
corresponding RR-interval l e s  one-half of the duration of the QRS block, that is: 

where Q(*) indicates that the quotient is retained and the remainder is dixarded. 
Similady, the duration of the fi block is set to 60 percent of its corresponding 

a 
RR-interval less one-half the QRS block, that is: 

This partitioning strategy generally results in each phase of the cardiac cycle being - 
associated with its correct block, that is, QRS complexes are contained in the QRS 
bloclcs, P-waves in the @ block and T-waves in the block. Let the beat vector 
associated with R(k )  be Bk. Each beat vector can be assembled fiom its constituent 
blocks according to the following relationship: 

Furthemore, the signal vector y, less the first 
constructed from: 

and last beat, denoted y* can be 

Due to variability in the RR interval, the dimension of each beat vector B(k)  is not 
the same. Special consideration must be made for the end effects if the fbst and 1 s t  
beats are of importance. In this study these end effects were ignored as a rnatter of 
convenience, however, the difficulty could be resolved by simply padding the blocks 
to an appropriate length with the first or last recorded sample as required. 

The physiology of the ECG restricts the bandwidth of the signal because of the 
specialized conduction tissues which carry the heart's activation pulse. That is, the 
frequency content of the signal is a function of the conduction rate in the heart. Nor- 
mally, each QRS complex is preceded by a P-wave, and followed by a T-wave. Thus, 
given the known relationships between RR interval and the P-R and S-T intervals, the 
normal time evolution of the cardiac cycle can be considered approximately constant 
with respect to the QRS complex. Because the QRS cornplex has been shown to be 
detectable in the majority of cases, it can be used as a robust daturn for partitioning 
and resampling the signal, greatly simplifying any variable rate sampling scheme. 



3.2 Specification of the Sampling Strategy 

An appropriate sampliig rate for each block can be determined h m  its spectral 
density function (SDF) . The SDF was estimated by randornly samplbg 200 normal 
beats fiom the MIT-BIH population, computing the SDF within each block of each 
beat using a zero-padded fast Fourier transform, and averaging across the ensemble. 
This approach is conservative because normal beats exist at the lower bound of QRS 
complex duration [16], and therefore operate at higher fiequencies than pathologically 
conducted beats. - 

In [l] it was shown that the PQ and fi blocks have negligible power over about 10 - - 
Hz, while the QRS block operates at up to about 30 Hz. The QRS block can thus be 
conservatively resampled at a rate of 180 Hz, which yiel& a Nyquist fkequency of 90 
Hz. The average SDFs for the 8 and bloclcs indicate that these regions can be 
resampled at a rate of 72 Hz (every fifth point), yielding a Nyquist frequency of 36 Hi. 

These sampling rates were considered adequate to preserve details of clinical interest 
in the original signal. To minimize aliasing and noise effects, a computationally simple 
Spoint centered local average is computed in the original signal around each retained - 
sample point in the PQ and blocks and a 3 point centered local average is similarly 
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found around each retahed sample point in the QRS block. The centered average 
acts as a zerephase, low-pass filter which attenuates noise (10 dB attenuation or 
better) above about 2 in the P& and ,!?? blocks and above 2 in the QRS block, as  

shown by figure 3.1. Since both of these values approxhnate the Nyquist frequencies 
corresponding to the resampling rates there will be negligible aliasing taking place 
nor is the signal of interest compromised due to its band limited nature. 

The positions of the retained points in Bk m u t  be chosen carefdly in order to 
avoid difEculty in the region of a sampling rate shift. Let J.n represent a downsample 
by n operator and let Bi be a resampled beat. The sampling scheme is defined as: 

n 
1. For beat Bk we begin in the QRS block, bfm. The total number of points in 

42 b p  is 45, and the R-peak, R(k)  , is fked at J. 2 b p ( 2 3 ) .  - 
2. The QRS block is resampled and concurrently filtered moving outward until22 

samples have been extracted from each side of R(k) in y. 

3. The sampling rate is shifted to 4.5 . 
4. The block is resampled in tirne reversed order, that is every fifth point 

starting at the boundary with the QRS block and moving backward until40 % 
of its corresponding RR interval is sarmpled. 



- 
5. The fi block is resampled starting at the QRS block boundary and moving 

fonvard until60 % of its corresponding RR interval is accounted for. - 
By adopting this rnethod the fact that the number of points in the P Q  and 3 blocks 
will not generally have an integer multiple of 5 samples in them is recognized. Because 
the R-peaks are at known locations, the M-intervals are ais0 known, and the signal 
can be reeonstructed by letting the i n t e d  separating each beat vary. In this way, 

the temporal alignment of all features in the signal is presemed while minimizing 
overhead storage coût. The fltered and resampled signal can now be constructed 

using : 

and the signal vector becomes: 

Due to the finite impulse response of the Hters, and the fact that the filters are low 
pas ,  no discontinuity can be introduced at the block boundaries, that is, an average 
value used as the resampled data point is bounded by the maximum and minimum 
values used in its computation. Therefore, a discontinuity can only be attenuated by 

the filtering and resampling process. 

3.3 Quality Controlled Compression 

The aim of quality controlled compression is to ensure cluiically adequate recon- 
struction on a beat-by-beat basis, preserving relevant features within each beat. To 
implernent quality controlled compression, a criterion is proposed herein in which the 
number of retained transform coefficients is such that the relative mean - absolute - de- 

viation, 4, for each block j = 1,2, or 3, corresponding to blocks 45 b,PQ, 4.2 bfRS, 
and $5 b k  respectively, and for each beat O < k < K is less than or qua1 to a pre- 
specified tolerance. Specifically, the relative error over block j for beat k is defined 
as 

where (1 II is the 1-norrn, and J. n jbi is the reconstruction approximation of block 
J. n jbjk from the retained transform coefficients. The nurnber of retained coefficients 



Figure 3.1: hquency  response of the 3-point and 9-point averaging filters. The 

original sampling fiequency of the MIT-BIH database, and therefore the sampling 
rate which the filters operate at in the algorithm, is 360 Hz. 

for the entire beat, BL is determined to be the minimum integer such that mâxj $ 5 b 
for some tolerance b. This criterion is iterative since $ depends on the number of 
retained coefficients. However, because of the orthogonality of the KLT basis, J.nj6i 
is easily constructed incrementally and the minimum nwnber of retained coefficients 
is found efficiently. For example, assuming that the eigenvalues have been sorted 
in descending order, if a i ,  for a particular beat k, was found to be in excess of 

the relative error tolerance b, the reconstruction would be improved by additionally 
ret aining the transforrn coefficient associated with the next largest unused eigenvalue, 
and its eigenvector. Due to orthogonality of the KLT basis, the residual vector can 
be modined directly, thus avoiding reconstructing $ n f R  at each iteration. 

3.4 Implement ation Det ails 

Each of the 48 records of the MIT-BIH database are analyzed in three segments of 
approxirnately 10 minutes of data. Let S '  be such a segment where j = 1,2,3 and 
n = 1,2,. . . ,48 is an integer counter which represents each record of the database 
in sequential order. Baseliine drift in each segment is removed by subtracting a one 
second wide centered moving average. Each segment is then separated into N beats 
based on the supplied database annotations. Each beat is then partitioned into blocks 



and resampled. The beats are loaded sequentially as a row vectors of dimension M 
into a beat matriz, denoted A. The details of the blocking of a segment are defined 
as follows: 

1. The maximum RR-interval & is identified. 
- A  

2. The number of data points in the PQ, QRS, and blocks, Np,, N,,,, and 
respec tivel y, are computed using the following expressions: 

C 4 -  

Where Tm, TV, and Tst are the sampling periods in the PQ, QRS and 
blocks respectively after each block has been resampled. 

3. The row dimension, M of the beat rnatrix is set to M = Npq + Nvs + Nst. 

4. Since al l  beats have RR-intervals less than or equal to a,, they must be 

aligned within the rnatrix. To do this, the R-peak for each beat vector is placed 
at the index N, + (NF, - 1)/2 (for N,, odd) and the vector is padded to 
dimension M using the h t  sample in the block at the beginning of the 

vector and the 1 s t  sample in the 5 block at the end. 

5. The beat vectors are then loaded into the N x M beat matrix A. 

The KLT is a linear transformation of a matrix A. The basis vectors used for 

the transformation are the eigenvectors of the covariance matrix of A. The KLT is 
computed by finding the singular value decomposition (SVD) of A. It can be shown 

that any N x M matrix A where N 2 M, can be described as a product of an N x M 
column orthogonal matrix U, an M x M diagonal matrix C and the transpose of an 
M x M orthogonal matrix V [l?], that is: 

Multiplying 3.12 through by A ~ ,  and recalling the properties of orthogonal and di- 

agonal matrices,, yields: 



Immediately we recognize equation 3.13 as the eigenvalue problem. Thus the SVD 
of A yielcls the KLT basis vectors in the mat& and the transform coefncients in 
the matrix U. 

3.5 Results 

The following results are based on the channel 1 lead of the MIT-BIH database. 
To obtain rneaningfd compression measures, the total storage consumed by all of 
the information required to reconstruct the approximation to the signal must be 
considered. We will assume t hat the precision with which the required coefficients 
are stored is the same as that for the original signal. If the dimension of the beat 
matrix is N > M (true if no beat lasts more than about 5 seconds throughout the 
10-minute segment), then the KLT produces an M x M matrix of eigenvectors, an 
N x M matrix of transform coefficients, and the M eigenvalues O;, 4, . . . ,os. 

Some rudimentary analysis is usefui for estimating the order of the compression 
rate. For the variance criterion, m eigendues (arranged in descending order of 
magnitude) and eigenvectors, dong with m transform coefficients for each of N beats 
are retained with rn chosen so that CEi cr;/~E~ - $ 2 CF,,,. Including the N RR- 
interval values needed to reconstruct each beat, the variance control criterion requires 
the storage of m(M + 1) + N (m + 1) values in total. A 10 minute recording originally 
containing (10) (60) (360) = 216,000 data values typically has N = 750 (corresponding 
to a heart rate of 75 beats per minute) and M = 100 after domampling. For m = 3 
retained transform coefficients, the storage requirement totals 3 (100+ 1) +75O(3 + 1) = 
3303 values yielding a compression ratio C = 65:l. If m = 10, C drops to about 23: 1. 

In contrast to the variance criterion, quality controlled compression, requires the 
storage of: 

1. A variable number of transform coefficients mi, i c (1,. . . , N). 
2. mm, = max mi, eigenvalues and eigenvectors. 

3. The RR-interval for each of the N beats. 

The total storage requirement for segment of N beats is then %=(M + 1) +N(m+ 1) 
where m is the average number of retained transform coefficients over the N beats. 
The compression ratio for a 10 minute segment (as above) with N = 750, M = 100, 
n~ = 3 and mm, = 20 is then C = 43:l. While most beats are stored using only 
2 or 3 transform coefficients this approach allows for the occasional (pathological) 



beat to be accurately represented using a larger number of transfonn coefficients, 
maintaining, overd, an excellent compression ratio. 

The MIT-BIH database is divided into t;wo series, the first wiU be denoted the 
100 series md the second the 200 series to reflet their labehg in the database. The 
first series contains 23 records which were randomly selected from a population of 

recordings, while the second series, which contains 25 records, waa hand picked to 

represent unwual recordings that would not be well represented in a random sample 

due to their bfiequency [14]. Because of this distinction, the average compression 
ratios will be reported separately. The compression ratio on the 100 series should re- 
flect an estimate of the algorithm global performance. The compression performance 
on the 200 series is not as important as the algorithm's ability to preserve rare events 
of clinical interest. Ideally, an algorithm will be capable of high compression and 

fidelity on the 100 series and as a minimum high fidelity on the 200 series, although 
rnaintaining a good compression rate is, of course, desirable. 

The average compression ratio over the 100 series of the MIT-BIH database for the 
variance criterion with 6, = 0.995 is Cv = 33 while the same for the quality control 
criterion with tolerance b = 0.25 is Cgc = 27. For the 200 series the compression 
rates are Cv = 21 and Coc c 15. These numbers for the variance and quality 
control criteria are base compression ratios. A complete compression system generally 
includes a stage of lossless compression which takes advantage of the fact that the 
coefficients of the transform are not uniforrnly distributed random Mnables [NI. For 
example, since normal beats closely resemble one another , the transform coefficients 

associated with each eigenvector should be close to the same size over a segment. Thus 
if the N transform coefficients associated with the k t  eigenvector were grouped, the 
magnitude of the &st transform coefficient could be stored followed by the differences 
between transform coefficients. If the coefficients are correlated, the differences can be 
stored at  a lower bit rate than the traasfoni coefficients without any loss of precision. 

In table 3.1, the average compression achieved on each of the 100 series records 
of the MIT-BIH database is reported. Both the compression ratio, and the average 
bit rate are shown. Typically, the quality control criterion provides a lower average 
compression ratio. This implies, however, that there are a signiiicant number of 

beats that meet the variance criterion but go on to fail the quality control criterion 
(so that rn must be increased). Due to the nature of the variance measure we expect 
these errors to appear in regions of of low amplitude, as these regions make smaller 
contributions to the signal's variance. 

Quality control does not exclude the possibility of a higher compression ratio than 



the variance based method. For example record 112 of the MIT-BIH database was 
compressed at C = 27.7:l using the variance method and C = 51.3:l using the quality 
control method. In the occurrence of a localized region in the signal which is difficult 
to represent and is also a significant disturbance of the residual vector, the higher 
number of transform coefficients required to represent this region are applied globally 
in the variance based method. Thus many beats wrll be over-represented, increasing 
the storage cost for the record. By varying the number of coefficients used to represent 
each beat , the quality controlled method can maintain a high fidelity representation 
which is uniform across the record. In the second 10 minute segment of record 213, 
see figures 3.4 and 3.5, the maximum number of retained transform coefficients was 
m,, = 30, however, the average number of coefficients was only TE = 3.1 in order 
to achieve b 0.25. For the variance based method m = 10 transform coefficients 
were retained to meet the S = 0.995 minimum. Clearly, 10 transform coefficients is 
insuEicient 10 cally while simult aneously being globally extravagant. 

Our h t  example is taken from record 103 of the MIT-BIH database. The initial 
few seconds of the record are shown in figure 3.2, with the quality controlled compres- 
sion and variance based compression plot t ed simult aneously in the top and bottom 
graphs respectively. These charts are intended to represent the average behavior of 
the compression methods. The quality controlled reconstruction was compressed at 
C = 30.7:l and the variance based method was compressed at C = 4831. Inspection 
of figure 3.2 shows that the quality controlled method's reconstruction is superior 
to tbat of the variance based method and except for a small departure fkom the T- 
wave at t x 3.25s the two representations are indistinguishable. The variance based 
method suffers from some localized departures fkom the signal, although they are not 
likely of clinical s iwcance .  In figure 3.3 several individual beats from various loca- 
tions in the record have been extracted from the reconstruction because the number of 
retained transform coefficients, mi, is greater than 15 in order that the quality control 
criterion is satisfied. We see that the use of a globally averaged error measure in the 
variance based reconstruction allows the existence of large localized errors, whereas 
the quality controlled compression is of unifody hi& fidelity. 

The second example is taken from record 213 of the MIT-BIH database. In this 
case the compression rate using the variance criterion was C = 17.4:l and the com- 
pression rate using the quality control method was C = 35.4~1 or approximately 
double that of the variance base method. Inspection of figure 3.4 shows the continu- 
ous reconstructions based on both the variance, and the quality controlled methods. 
We see that the quality controlled method makes errors of similar sizes to those in 



Figure 3.2: Continuous reconstmction of the ht few seconds of record 103 of the 
MIT-BIH database. The top graph shows the original signal and the quaIity con- 
trolled reconstruction (C = 30.7:1), and the bottom graph shows the original signal 
and the variance based reconstruction (C = 48.5:l). 

Figure 3.3: Several individual beats frorn record 103 of the MIT-BIH database are 

displayed where for the quality controlled method (C = 3O.7:1), shown in the top 

graph, m > 15. In the bottom graph, the variance based metLod (C = 48.5:1), where 
mj = (3,6,6}, for 10 minute segments j = 1,2,3,  is a constant, allows localized 
departures from the signal due to global averaging of the reconstruction error. 



the variance based method, however the errors are of a more uniforni magnitude over 
the reconstruction. In the variance based reconstruction the errors are much smaller 
in some beats than in others resulting in increased storage costs. In figure 3.5 we see 

that in spite of the much lower compression rate, the variance based reco~~~truction 
is stiil subject to Iocalized departues fiom the signal. We see, whiie maîntaining two 
times the compression rate, the qualiQ controiied reconstruction remains remarkably 
accurate. In surnmary, an algorithm employing KLT, dong with its attractive prop- 
erties relating to e r ra  measures and optimal bases, combined with resampling and a 
quality control criterion has been found to lead to efEcient and accurate compression 
of ECG recordings. By careful consideration of the bandwidth contnining the signal 
of interest, resampling can be performed without loss of pertinent information. Re- 
sampling, in turn, leads to efficient computation of the KLT, S i w c a n t  eigenvector 
storage savings, and compression ratios which typicdy exceed those achieved via 
wavelet packet-based algorithm [2]. The KLT &O naturally lends itself to noise 
mode1 extensions relevant to signal identification. Finally, the quality control crite- 

rion dows  clinically acceptable reconstructions while maintainhg high compression 
ratios. 



Figure 3.4: Continuous reconstmction of the first few seconds of record 213 of the 
MIT-BIH database. The top graph shows the original signal and the quaiity con- 
trolled reconstruction (C = 35.4:1), and the bottom graph shows the original signal 
and the vaxiance based reconstruction (C = 17.4: 1). 

Figure 3.5: Several individual beats fkom record 213 of the MIT-BIH database are 
displayed where for the quality controlled method (C = 35.4:1), shown in the top 
graph, rn > 15. In the bottom graph, the variance based method (C = 17.4:1), where 
mj = {9,10,10), for 10 minute segments j = 1,2,3, is a constant. Thus, with a lower 
compression rate, the variance based reconstruction still suffers from localized errors. 



Table 3.1: Results of the ECG compression study using the 100 series of the MIT-BIH 
database. 

Record 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
111 
112 
113 
114 
115 
116 
117 
118 
119 
121 
122 
123 
124 
Average 

Variance me thod 
(6, = 0.995) 

Ratio ~ P S  
33.0 120 

Quali 
metha 
Ratio 
26.6 
14.3 
17.3 
30.7 
9.3 
16.1 
17.1 
18.5 
11.2 
27.8 
21.5 
51.3 
52.0 
10.5 
40.1 
30.3 
39.9 
16.5 
25.9 
33.7 
54.9 
31.7 
25.3 
27.1 = 



Table 3.2: Results of the ECG compression study using the 200 series of the MIT-BIH 
database. 

Record 

200 
201 
202 
203 
205 
207 
208 
209 
210 
212 
21 3 
214 
215 
217 
219 
220 
221 
222 
223 
228 
230 
231 
232 
233 
234 
Average 

I 

bps 
299 
239 
131 
352 
150 
152 
270 
321 
237 
216 
228 
173 
285 
186 
171 
101 
176 
381 
167 
263 
151 
119 
226 
198 
89.7 
216 

Variance method 
- 
Qd 
met ho - 
Ratio 

6.8 
7.3 
18.3 
6.6 
23.0 
6.9 
11.4 
15.3 
8.3 
20.4 
35.4 
11.7 
19.9 
22.5 
8.3 
25.1 
10.9 
8.7 
19.1 
12.9 
19.4 
18.6 
5.3 
18.1 
25.1 - 
15.4 

(6, 
Ratio 
13.3 

controiled 
(ci 5 0.25) 

bps 
583 
541 
217 
603 
172 
575 
347 
260 
479 
194 
112 
338 
199 
176 
476 
157 
364 
456 
207 
307 
204 
213 
753 
21 8 
158 
332 

= 0.9951 

m. 

& - 



Chapter 

Conclusion 

The QRS detection, and ECG compression problems share the remarkable charac- 
teristics of having long histories and large literatures which serve as confounding 
influences in the solution of these problems. For example, despite the identification 
of the inadequacy of globally averaged error measures [8], these measures have con- 
tinued to be applied to ECG compression results. The significance of th& fact is that 
the use of such measures allows the compression algorithm to cause errors which may 
change a diagnosis, as was clearly pointed out in 111. 

IR the case of the QRS detection problem, extraordinarily higb success rates have 

been reported using algorithrm which are optimized over their entire testing data 
set, and require kequent intervention of the user. The dSculty with this appraach 
is that the requirement of this intervention implies that the algorithms cannot deal 
with changes in signal character, where in general, any change in signal may be of 
clinical interest. In addition, the recordings used as testing data are 30 minutes in 
length. This length excludes any of the daily variation in the ECG which is known 
to be extreme [4]. In addition, these algorithms inchde tactics based on constraints 
which are database dependent, solely to improve their performance over the testing 
set. 

In the case of QRS detection research an algorithm has been presented with the 
following properties: 

1. The algorithm is simple and executes rapidly enough for use in the analysis of 
Holter recordings. In addition, the algorithm is fully disclosed. 

2. The algorithm uses only fixed global parameters. 

3. There are only six parameters in the algorithrn. AU of these parameters were 



deduced from the performance of the algorithm over a small set of example 
recordings. 

4. The algorithm is free of database dependent tactics. 

5. The algorithm maintains an error rate of the same order as those presented in 
the previous literature. 

Alt hough the QRS detection algorit hm presented here is a radical departure from 
the previous literature, there still exists a significant amount of research to be done 

before this problem can be considered solved. Several questions of interest are, for 

exarmple: 

What is the sensitivity of the result to the parameters? 

Cm the error rate, and U1 particular the lower bound on the error rate, be 
improved by including information from other leads? 

What kind of strategies would be required in order that this information c m  

be included, realizing, that the signal quality changes between leads, and the 
representation of a QRS complex is different in each of the leads? 

What are the eifects of complex arrythmias such as ventricular flutter ( and 
others ) on the performance of the algorithm? Because the database is not 
exhaustive, these kinds of rhythms tend to be underrepresented. 

Considering the results of the compression work, we see that the quality control 

measure is the fkst meaningful local error measure to be applied to the ECG compres- 
sion problem. The success of the measure is directly linked to the use of resampling to 
make SVD computationally accessible. This compression technique has the following 

properties: 

1. The quality controlled compression method provides a higher average compres- 
sion rate than previously reported strategies. 

2. The method uses a physiologically based error measure. 

3. The method uses active error control. 

4. The method provides a reconstructed approximation of higher accuracy than 

previously reported methods. 



5. The method uses globally fixed parameters, and does not require intervention 
of a user, 

6. The method is not predisposed to making large localized errois. 

1. The interaction of the compression method with the automatic QRS detection 
strategy. 

2. A clinical study of the &ect of the method on the diagnostic quality of the 
signal. 

3. The relationship between the transform coefficients and pathology. That is, can 
the fa& that the quality control measure is capable of detecting localized depar- 
tures fiom typical signal behavior be used to advantage in the the automateà 
detection of pathological ECG signals. 

4. The inclusion of lossless coding strategies. 

This study represents the h t  step towards the solution of the ECG pattern 
recognition problem. That is, the identification of individual hearts beats mut ,  by 

definition, precede their c l d c a t i o n ,  and the quality control criterion, fhr beyond 
being a simple compression alternative, represents a significant step towards applying 
the SVD traasfonn coefficients to the pattern recognition problem. Consider that one 
approach to the automated diagnosis of ECG would be to express each beat as a small 
number of coefficients and identify patterns in these coefi3cients associated with the 
various types of beat which are known to exist. This action represents compression 
of the signal. If the compression does not preserve the local information in the signal, 
the pattern recognition problem cannot be solved due to the potential for projection 
of information associated with pathology into the nul1 space of the tramform. Thus, 
quality control transcends compression, and in turn is impossible without reliable 
QRS detection. The literature has failed to provide a suitable starting point for the 
pattern recognition problem. In the minimum, this study forces the reconsideration of 
these results. In another light, this study is a foundation on which to budd meaningful 
solutions. 
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