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FINITE-TEMPERATURE EXCITATIONS IN A DILUTE
BOSE-CONDENSED GAS
by Hua Shi
Doctor of Philosophy. 1997
Graduate Department of Physics

University of Toronto

ABSTRACT

[n this thesis. we present several approximations applicable to a uniform weakly-
interacting Bose gas at finite temperature. and investigate the excitations and other
properties by means of thermal Green's function techniques.

We give a detailed discussion of the first-order Popov approximation. which ex-
tends the 7 = 0 Bogoliubov approximation by inciuding the Hartree-Fock self-energies
of the excited atoms. It leads to a single-particle excitation which is phonon-like in
the long wavelength limit. with a velocity which goes as \/nqo(7"). This phonon re-
gion collapses as the BEC transition point is approaches. We next discuss the Popov
approxiination using a ¢-matrix calculated with self-consistent ladder diagrams. Our
analysis shows that this f-matrix becomes very temperature dependent as one ap-
proaches the transition point. vanishing at 7.. This is in agreement with the numer-
ical work of Bijlsma and Stoof (1995). who first pointed out that this removes the
discontinuous jump in the condensate density at the transition point.

We present a detailed study of the Beliaev-Popov (B-P) approximation for a dilute
Bose gas. based on the self-energy diagrams which are second order in the t-matrix.
We work out the contribution from each individual diagram and give formal ex-
pressions for the self-energies and the excitation energy spectrum valid at arbitrary
temperatures. We rederive the well-known results of Beliaev at T = 0. The long
wavelength excitations in the Beliaev approximation are phonons with finite lifetimes
(damping). We also give the analogous evaluation of the finite temperature B-P self-
energies in the low frequency and long wavelength limit. The excitations are still

phonon-like. The corrections near T, to the chemical potential, excitation energy and



damping are all found to be proportional to the temperature. As at zero tempera-
ture. the finite temperature self-energies contain infrared divergent terms. but these

are shown to cancel out in physical quantities in the long wavelength limit.
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Chapter 1

Introduction

The final achievement of Bose-Einstein condensation (BEC) in a trapped gas of Rb
atoms in 1995 [1] was the result of several decades of research. It also marks the
beginning of a whole new area of research into the properties of atomic Bose conden-
sates. This subject is presently undergoing a world-wide explosion of research activity.
both experimental and theoretical. As a result. the theory of a weakly-interacting
Bose-condensed gas has suddenly become the subject of intense research interest.
The present thesis is motivated by these exciting new developments. even though
it deals entirely with uniform weakly-interacting Bose gases while all the recent exper-
imental studies are concerned with Bose gases in an anisotropic parabolic potential
well (or trap). i.e. a non-uniform Bose condensate (For reviews, see Refs. [2] and [3]).
Our emphasis is on developing an understanding of the elementary excitations of a
uniform Bose-condensed gas at finite temperatures. where a substantial fraction of the
atoms are no longer in the lowest energy single-particle state (the Bose condensate).
In contrast to the well-understood situation at 7 = 0. where all but a few percent
of the atoms are in the condensate, very few theoretical studies have been concerned
with weakly-interacting gas with a strongly-depleted condensate. We believe our re-
sults in this thesis are the first step to understanding the analogous questions in the

trapped atomic gases of current interest.
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Ch.1 Introduction

1.1 History of BEC studies

It is useful to first give a brief history of BEC studies. starting with the initial pre-
diction of Einstein in 1925 [4] for the case of a non-interacting gas of Bose atoms (A
Bose atom has a net integer spin. All atoms with an even number of neutrons satisfy
Bose statistics. which accounts for about 75% of the atoms in the periodic table).
Bose-Einstein condensation in an ideal gas is a standard topic in all textbooks on
statistical mechanics [3].

The momentum distribution of an ideal uniform Bose gas is given by

l

folex) = S —5 - (L.1)

where e = h*k?/2m. 3 = 1/kgT. and p is the chemical potential determined by the
condition that the sum over all possible states equals the total number of particles

V. In a system of macroscopic size. the sum can be converted into an integral
N =3 J(a) = [ Die)fle)de. (1.2)
k

where the density of states D(¢) goes as ~ /e. [f the volume 1" and the particle
number .V are fixed. the (negative) chemical potential x increases as the temperature
T decreases. At a certain temperature T.. u reaches zero. the maximum value it can

reach in an ideal Bose gas. and thus the integral in (1.2) gives

Vv
N =2612 , 1.3
RSETRE )
where the thermal de Broglie wavelength A(T) is
2arh? \ 2
MT) = . 1.4
(T) (kaT) (1-4)

One may view T, defined by (1.3) as equivalent to the condition that the thermal de

Broglie wavelength A(T") becomes comparable to the average separation ¢ between



Ch.l Introduction 3

particles (d ~ n~'?). In this case. the quantum mechanical wave nature of the
particles leads to all atoms becoming increasingly correlated. This is the essential
physics behind BEC in an ideal Bose gas.

As T goes lower than T.. p is “pinned” at zero. and the right hand side of (1.3)
becomes smaller than V. As Einstein [4] first pointed out, the additional particles
enter the ground state to form what is now called the Bose-Einstein condensate. The
number of particles in this lowest state is given by

v
AT

Ny =V —-2.612 > 0. if T<T.. (1.5)

From (1.3) and (1.3). one obtains the temperature-dependent condensate fraction

No(T) -1 - (2)3/2 (1.6)
A" T. ' '
[t is immediately seen that .Ng = .V at T = 0. that is. all the atoms are in the lowest
single-particle state (k = 0).

To summarize. Bose-Einstein statistics described by (1.1) predicts that at a finite
temperature given by (1.3). the lowest state becomes macroscopically occupied and a
transition occurs to a new phase of matter characterized by the condensate fraction.
It 1s the only phase transition in condensed matter physics that can occur in the
absence of interactions. being entirely due to quantum mechanical effects related to

Bose statistics.

At the time of Einstein’s prediction. the nature of second-order phase transitions
was not yet understood, and Uhlenbeck criticized Einstein’'s analysis in his thesis in
1927. It was only in 1937 that it was generally agreed that Uhlenbeck’s objections
to a phase transition in an ideal Bose gas were incorrect. Around the same time.
superfluidity had been just discovered in liquid *He below 2.17 K. Fritz London
(6] immediately made the bold conjecture that this superfluidity was related to the
form of Bose-Einstein condensation, suitably generalized to a liquid. The basis of

London’s argument was that *He was a Bose atom (S = 0) and moreover if liquid
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‘He was treated as an ideal gas. with the density 2.20 x 10?2 atoms/cm?. its BEC
transition temperature given by (1.3) would be 3.15 K. This 1s remarkably close to
the observed superfluid transition temperature. Essentially London and Tisza argued
that the superfluid characteristics were related to the motion of the Bose condensate.
moving as a whole. The development and confirmation of these ideas about superfluid
'He took many years. Indeed. it has been controversial since the very successful
Landau theory [7] of the low temperature properties of superfluid *He (based on
a phenomenological model of a weakly-interacting gas of phonon-roton excitations)
made no explicit reference to any role of the Bose condensate.

Our current understanding of superfluid *He as a Bose-condensed liquid has been
extensively reviewed in a monograph by Griffin [8]. to which we refer the reader.

Some key theoretical papers (all at T = 0) are:

(a) The work of Bogoliubov {9]. who showed the connection between a Bose con-
densate and a phonon-like dispersion relation for long wavelength elementary
excitations. This paper was restricted to a weakly interacting Bose gas but later
it was realized that it already captured many general features of Bose-condensed

svstems.

(b) The work of Penrose and Onsager [10]. who showed how to formulate in a precise
way the concept of Bose-condensation in any interacting Bose system (gas or

liquid). even when the condensate fraction was small (strongly depleted).

(c) The general field-theoretical formulation of Beliaev [11] of how to work out the
properties of a Bose-condensed system in the presence of a Bose condensate.
Beliaev’s work also first emphasized the key role of the phase of the Bose order

parameter and its relation to the superfluid velocity.

These papers laid the foundation for intensive theoretical work on the general theory
of interacting Bose-condensed system in the period 1958-1965. The motivation was
always to understand the excitations and other properties of superfluid *He [3]. but the

hypothetical case of a dilute weakly-interacting Bose gas was often considered as an
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illustrative example of the very complex calculations. Since that period. the Green’s
function treatment of a weakly-interacting Bose-condensed gas at 7' = 0 has become
one of the standard topics in textbooks on many-body theory [12. 13. 14]. However.
to a large extent. this topic has only been of research interest to a small number of
many-body theorists. One of the reasons is that. apart from some general relations.
it is very difficult to carry out quantitative calculations for superfluid *He. In a sense.
the characteristic features of the Bose condensate and Bose broken symmetry were
hard to extract from the complicated dynamics which arise in any liquid.

In view of the difficulties in dealing with a strongly interacting. dense system like
superfluid *He. it is not surprising that since 1960°s. there has been an increasing
experimental effort to achieve BEC in a dilute Bose gas. At the low temperature
needed for BEC. most systems will form condensed phases (liquid or solid) due to
the attractive inter-atomic interactions. Thus one requires conditions that allow Bose
condensation to occur rapidly. relative to the longer time scales needed for the com-
peting phase changes.

One of the most extensively studied candidates for BEC' has been spin-aligned
hydrogen (For an authoritative review. see Greytak in [3]). By magnetically aligning
the spins of the hydrogen atoms. one obtains a system that remains a gas at even
T = 0. Moreover. its density can be varied over several orders of magnitude. ranging
from a weakly to strongly interacting Bose gas. and with the possibility of BEC. So
far (1997), experiments have not produced a Bose condensate in this system. duc
to the increasing tendency towards recombination to molecular hydrogen H, (due to
three-body collisions involving spin flips) as the density needed for BEC is approached.
However. in the last decade or so, the study of spin-polarized hydrogen stimulated
much theoretical and experimental interest in achieving BEC in an atomic gas.

Another system as a candidate for BEC has been excitons in optically pumped
semiconductors (For a review. see Wolfe et alin [3]). Excitons {a bound state of an
electron and a hole) move like a weakly-interacting gas in the crystal. Because of
the small exciton mass (on the order of the mass of an electron), the BEC transition

temperature of exciton systems can be as high as ~ 100 K if the density of the exciton
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gas is 10'° cm™3 (easily achievable with laser pulses). Excitons have a finite lifetime
due to recombination. but in high purity Cu20 crystals. these lifetimes can be as long
as 1073s. which are enormous compared to other relaxation times (~ 1073 s) involved.
While this finite exciton lifetime is a complication. the resulting decay luminescence
turns out to be a very direct measure of the kinetic energy of the decaying exciton
and hence can be used to detect the presence of an exciton Bose condensate (exci-
tons with zero kinetic energy). The theory of this decay spectrum has been worked
out by Shi. Verechaka and Griffin [13]. In 1993. Lin and Wolfe [16] announced the
first convincing evidence of BEC transition of paraexcitons (§ = 0) in a stressed
high quality Cu,O crystal. However. due to the current poor knowledge of exciton-
exciton interactions. and the complications due to various recombination processes
and exciton-phonon interactions. the theoretical analysis of the decay luminescence
data is quite complicated and much work remains to be done [15. 17]. In passing.
we note that the work of Shi et al [15] shows that the decay luminescence is a direct
probe of the single-particle Green's function of a Bose gas. Very few experimental
techniques do this.

The search for BEC in a dilute gas of alkali atoms has also been actively pursued
for about a decade [2]. In these experiments. alkali atoms are first cooled and trapped
by laser beams. then loaded into a magnetic trap. where a selection of hyperfine spin
state is made so that all the atoms in the trap have the same spin. The gas is then
further cooled by an evaporation technique. involving selective rf pulses which flip
the spins of atoms with relatively high kinetic energy. which are then expelled from
the trap. Due to a large scattering cross section. the remaining atoms quickly re-
thermalize at a lower temperature. populating the lower levels of the parabolic well.
Therefore, one obtains a lower temperature and higher density (i.e. at the center of the
trap) at the same time. The first successful observation of BEC was made with 3°Rb
atoms [1] (which have 87 nucleons and 37 electrons. and thus obey Bose statistics)
at temperatures of the order of 10~" K. Shortly after, BEC condensates were also
produced using **Na atoms [18] with much larger numbers of atoms {(~ 10%) and

hence a higher transition temperature (~ 107° K). This field of research is expanding
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very rapidly at the present time.

1.2 Theories of weakly-interacting Bose gases

With this brief history in mind. one can understand the special excitement among
theorists when BEC was finally achieved in a gas of atoms. Suddenly all the theoret-
ical calculations on dilute Bose gases over the last 10 years had a direct significance.
rather than as tentative steps to understanding liquid *He. Moreover. the exper-
iments involve lowering the temperature of the trapped atomic gases through the
BEC transition to well below T.. As a result. these new experimental studies have
also emphasized the need to understand the finite temperature properties of Bose-
condensed systems. With few exceptions. most of the available theoretical literature
on Bose gases is restricted to T = 0.

As we have noted earlier. the theory of excitations at T = 0 i1s simple because
one can assume that all atoms are in the condensate and hence the single-particle
excitations only involve atoms going in and out of this condensate. This problem
was first solved by Bogoliubov [9] for a uniform gas (It is straightforward to extend
this theory to a trapped Bose gas [19]. The latter is usually referred to as the time-
dependent Gross-Pitaevskii theory [20. 21]). [In his classic paper. Bogoliubov [9]
presented a theory of a dilute weakly interacting Bose gas at temperatures far below
the transition temperature.

A major result of Bogoliubov's calculation was that only a small fraction of the
atoms were removed from the condensate at T = 0 due to interactions. Specifically.

the number of particle in the condensate, Ng. is given b
p g y

Q 3 1/2
Nog= N [1 - % (3:—) ] : (1.7)

where n = N/V is the density and a is the s-wave scattering length. For a dilute
Bose gas, we have a < n™'/% or na® <« 1. In spite of this small interaction-induced

“depletion”, the Bogoliubov model shows the interactions in the presence of a conden-
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sate lead to an acoustic {or phonon) excitation spectrum at long wavelengths. More

precisely, Bogoliubov found that for wavevector ¥ « mc/h. the excitation energy is

given by
E. >~ hck. (1.3)
with the phonon velocity
irha n )"
c= —— . (1.9)

Obviously, this phonon spectrum collapses if a = 0. All of the low-temperature ther-
modynamics of a Bose-condensed system follow from this phonon dispersion relation.
Gavoret and Nozieres [22]| were the first to show at T = 0 that to all orders in per-
turbation theory. a Bose-condensed system always exhibited such a phonon spectrum
with a speed given by usual thermodynamic derivative.

Bogoliubov's calculation also introduced the seminal idea of treating the atoms
in the condensate classically. He noted that for atoms in the k = 0 state. the Bose
commutation relation gave

dodd ~ alag = 1. (1.10)

However, since the expectation values of the two terms on the left hand side are each
of the order of .Vp. which is a very large number. Thus to an extremely good ap-
proximation, the operators of the k = 0 state commute with each other (as well as
with all other k # 0 operators). Therefore they can be treated as c-numbers. with
Go = ay = /No. In this Bogoliubov prescription, the condensate acts like a classical
particle reservoir, which non-condensate atoms can enter and leave via scattering [L1].
Thus the number of atoms is no longer a constant of motion. As an immediate conse-
quence, one needs to include anomalous propagators (Green’s functions) representing
two particles going into or out of the condensate. This approach forms the basis of
the systematic application of quantum field theory to an interacting system of bosons
due to Beliaev [11] in 1958, which was developed further by Hugenholtz and Pines
[23], and by Gavoret and Nozieres {22]. This led to a generalized Green's function

formalism which built in the crucial role of the Bose condensate, and allowed one to



Ch.1 Introduction 9

determine the general characteristics of the system, such as the excitation spectrum.
the momentum distribution of atoms. etc. After these pioneer work. this field of studyv
has been extensively developed and extended [8].

The first finite temperature calculations for an interacting Bose gas were made by
Lee. Huang and Yang [24]. by means of a pseudopotential method for a gas of hard
spheres. For the low energy scattering. the details of the potential are not important
and can be shown to be described by s-wave. The potential can be treated as an

effective zero-range interaction

17h?
Ls(x — x'). (1.11)
m

v(ix —x') =

In a hard-sphere gas. the scattering length a equals to the diameter of the atoms.
Lee. Huang and Yang carried out calculations near T to first order in the interaction
assuming

a< MT). a<n™ /3 (1.12)

where A(T') is the thermal de Broglie wavelength given by (1.1). For a review of the
thermodynamic properties of a Bose gas near T. to first order in a. see Ref.[23].

Following the work at 7 = 0. many people also developed the analogous field-
theoretic approach applicable at finite temperatures. We mention here specifically
the papers of Hohenberg and Martin [26]. Popov and Faddeev [27]. Singh [28]. and
Cheung and Griffin [29]. In principle. these allow one to calculate the properties
of an interacting Bose system. such as the thermodynamic potential. specific heat.
condensate density. etc. As at T = 0, such finite T calculations are complicated by
the subtle role of correlations induced by the Bose-broken symmetry. Moreover. even
in a dilute gas. the finite T case is difficult because the thermally-induced depletion
fraction is now large. One has to be careful in treating the condensate and excited
atoms in a consistent fashion.

Another well-known difficulty is the fact that even for regular repulsive interac-
tions, perturbation theory for Bose-condensed systems diverges at small momenta

[22, 30]. That is to say, certain terms in the perturbation series are singular for
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k.o — 0. a result which can be traced back to the fact that the single-particle ex-
citations are phonon-like. These singularities have to be handled with care in order
to obtain correct final results. Fortunately. the infrared divergences appear to cancel
out in all physical quantities [22. 30].

One major omission of the present thesis is any discussion of the relation between
the single-particle excitations (which we calculate) and the density fluctuation spec-
trum. The Bose broken symmetry is known (see Chapter 5 of Ref. [3]) to lead 1o the
equivalence of these two kinds of excitations and this imposes a very strong constraint

on approximations [26].

1.3 Summary of thesis

The present thesis is devoted to a systematic study of the finite temperature exci-
tations. using the Beliaev Green's function formalism. Our empbhasis is on how to
include the effects of the non-condensate atoms and is based on the second-order
Beliaev-Popov self-energy diagrams. For clarity. we should note that while our cal-
culations are based on second-order Dyson-Beliaev self-energies. we use renormalized
propagators, and thus these self-energies really involve terms to all orders in the in-
teraction. As with any many body calculation based on a selection of self-energy
diagrams which involve self-consistent propagators. it is sometimes difficult to give
convincing arguments about their relative importance. We have tried to do this as
best as we are able to at the present time. following mainly the arguments given by
Popov [31].

The thermal Green's function method is briefly reviewed in Chapter 2. where we
give the Dyson-Beliaev equations expressing the 2 x 2 matrix Green’s function in
terms of the two kinds of self-energies. For illustration, we use this formalism to
discuss the simple 7' = 0 Bogoliubov model (this was first done by Beliaev [11] and
is discussed in most many-body textbooks [12, 13]).

These techniques are then applied to a dilute Bose gas at finite temperature in

Chapter 3, using the first-order Hartree-Fock approximation to deal with the inter-
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actions between the excited atoms plus the Bogoliubov approximation to account
for interactions with the condensate. as first suggested by Popov [32]. Calculating
the poles of the single-particle diagonal and off-diagonal Green's functions. we find
the quasiparticle energy spectrum has a structure similar to that of the 7 = 0 Bo-
goliubov model. but now with a temperature-dependent condensate. This leads to
the collapse of the low & phonon-spectrum to free particles as T — T.. Like many
other non-self-consistent first-order calculations. the Popov approximation leads to a
jump in the condensate density at the transition point. and thus predicts a first-order
phase transition. Following recent work of Bijlsma and Stoof [33]. in Chapter 1 we
modify the Popov approximation by using a self-consistent f-matrix. rather than the
ordinary one using unperturbed propagators. This self-consistent f-matrix is found
to be very temperature-dependent. and vanishes at T.. It leads to a smooth change
of the condensate density at the BEC transition point.

In Chapter 5. we discuss the more complicated second-order Beliaev-Popov ap-
proximation. and work out the formal expressions of the self-energies and their rela-
tions to the single-particle excitation energy. Using these results. Beliaev's second-
order calculations at 7" = 0 are re-derived in Chapter 6. We evaluate the self-cnergies
near the poles w ~ E, (where £ is the Bogoliubov excitation energy of Chapter
2) and expand our results in powers of & in the long wavelength limit. Our explicit
expressions of the self-energies involve infrared divergent terms. We show that these
divergent terms cancel out exactly (as expected), leading to well-defined physical
quantities. such as the quasiparticle energy and the single-particle spectral density.
As expected. the energy spectrum of excitations in the Beliaev approximation is
phonon-like in the long wavelength limit. It also contains an imaginary part (damp-
ing) which goes as ~ k% These second-order Beliaev self-energies arc the lowest
approximation which involves damping of excitations. While all the final results of
Chapter 6 are known. we hope our very detailed analysis will make Beliaev's work
[34] more accessible.

The analogous evaluation of our expressions for the finite-temperature Beliaev-

Popov self-energies at small k and w is much more difficult than in the 7 = 0 case.
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By expanding the self-energies in powers of k at w ~ Ej (where E} is now the Popov
excitation energy of Chapter 3) as in the zero-temperature case. we are taking the
limitw — 0and k — 0 at the same time. This is not appropriate at finite temperature
because the additional thermal scattering terms involved in the self-energies require
that one take the limit k — 0 first. To overcome this difficulty. in Chapter 7 we
introduce a small gap between the frequency and the Popov quasiparticle energy and
expand the self-energy at w = Ej + 6. rather than at w = Ej. This gap ¢ is kept
finite until the expansion in powers of k is done. We thus obtain the expansion for
the self-energies in powers of k at finite T. These results allow us to calculate the
single-particle excitation energy and damping, as well as the chemical potential by
means of the Hugenholtz-Pines theorem [23].

We believe the results will be of considerable interest to the growing BEC' commu-
nity. who are interested in the analogous problems for trapped Bose gases. We have
made an attempt. in an admittedly highly mathematical development. to discuss the
physics involved in the diagrammatic analysis as well as to describe the intermediate
steps in some detail. Without denying the brilliance of the papers by Beliaev at T = 0
[34] and Popov at finite temperatures close to the transition [31. 32]. their accounts
are written in a very terse style with many important features left for the reader to
figure out. The present thesis is also a status report of our current understanding of
excitations in uniform Bose gases at finite temperature. We hope that it will provide
the basis for future theoretical studies which will clarify several questions raised in

the thesis, as well as in generalizations to deal with excitations in trapped Bose gases.



Chapter 2

Green’s function formalism for a

Bose-condensed gas

[n this chapter. we briefly review the finite-temperature (or thermal) Green’s func-
tion formalism. This technique is the most effective way of calculating the equilibrium
thermodynamic properties. as well as single-particle excitations of the system. Al-
though this chapter does not contain anything new, it is included for the convenience
of the reader and to introduce notation. In the Bose-condensed phase characterized
by a macroscopic number of atoms in the zero-momentum single-particle state. it
is convenient to regard the operators do and &) for this state as c-numbers. This
procedure. called Bogoliubov prescription. is discussed in Section 2.2. Within this
broken symmetry phase. one deals with anomalous averages and it is also necessary
to introduce (Section 2.3) a 2 x 2 matrix Green's function or propagator. Its diago-
nal elements are the normal Green’s functions, and off-diagonal elements are called
the anomalous Green’s functions. We write down the Dyson-Beliaev equations for
a Bose-condensed system [11, 28], which give different kinds of Green's function in
terms of the 2 x 2 matrix self-energy. In Section 2.4, we review how the thermal
Green's function at imaginary frequencies are related to the real time Green’s func-
tion by a simple analytic continuation, in which the single-particle spectral density
function plays a central role. Finally, in Section 2.5, we illustrate this formalism by

considering the Bogoliubov model approximation at T = 0.

13
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2.1 Imaginary frequency Green’s functions

The system we are concerned with consists of .\ atoms obeying Bose statistics. en-
closed in a box of volume V" and interacting through the two-body potential v(x — x’).
For simplicity. the atoms are assumed to have zero net spin. For a Bose-condensed
system. it is particularly convenient to use the grand canonical ensemble. which al-
lows for the possibility of a variable number of particles. In the second quantized

formalism. the grand canonical “Hamiltonian™ of the system is given by

H- ,u./\A/'

-y h2 5 .
- /dxw (%) |=5=V* = 4 é(x)

K

-~

! B o "
+§/([X/dx’u.f(x)uﬁ(x’)v(x_xl)u'(x/)u‘(x). (2.1)

Here u(x). ©(x) are the boson field operators. satisfying the usual Bose commutation

relations

(200, e(x)] =0, [e(x). 0f(x)] = 8(x — x'). (2.2)

The chemical potential u is chosen so that (V) = V. With the grand canoni-
cal Hamiltonian A. we introduce the modified T-dependent Heisenberg picture for
any Schrodinger operator O(x) (see standard texts on many-body svstems such as
Refs.[12. 13. 35]):

O(xr) = eFO(x)e 7. (2.3)

[n particular. the field operators have a 7-dependence given by

Q]
-
S

w(xT) = eNTd(x)ehT, (:

N
(1
St

d(xr) = efTit(x)e R, (2.

Comparing this representation with the standard real-time representation. the vari-

able T can be viewed as an “imaginary” time r = it/h.
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The single-particle thermal (or imaginary time) Green'’s function is defined as

Glxr.x'') = ~Tr [P p(xr)el(x'r)]

= —(Tao(xm)el(x't") (2.6)

where 3 = 1/kgT and T- is a 7 ordering operator. which arranges the smallest 7 to

the right. The grand canonical ensemble average is denoted by

(--)y=Tr [eam—li') ) ] (2.

I~
-1
—

where () is the thermodynamic potential. defined as

e—dﬂ = TI‘(E_BR). (.

I~
(v/4}
—

For most purposes. it is more convenient to work with the single-particle momen-
tum representation. Assuming periodic boundary conditions. the operators u(x).

vT(x) can be written in the single-particle momentum representation as

. 1 . ke - 1 -t —ik.
e(x) = —= > ae®* ohix) = —= Y alekx (2.9)
V'V k
where ay. &L are the Bose annihilation and creation operators. respectively. for the
single-particle state of momentum k. From (2.2) follows the Bose commutation rules
for ax and EL{(I

[ak, aw] = 0. [&k,&{g] = Ok k- (2.10)

In the single-particle momentum representation, we may write (/(x7.x'r') in (2.6) as:

1 . 7 ’
G(xr, x't") = —= Y e&x-K XN &y (r)al (r). (2.11)
k.k’

[n the case of a uniform system governed by a time-independent Hamiltonian. &

depends only on the differences x — x’ and 7 — 7’ (see standard many-body texts such
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as Ref.[13]). with

G(x.7) = %Zeikxf(k ) (2.12)
k
where
G(k.7) = —(T-ax(7)ak(0)). (2.13)

[t is easv to verify that for bosons, Gi(k. ) satisfies the famous periodic condition

G(k.7) = Glk.7 + 3) (2.14)

for —3 < 7 < 0. where the right-hand side of the equation gives the Green’s function
for 0 < 7+ 3 < 3. This periodicity of G(k.7) in the variable 7 with period 3 leads

immediately to the following Fourier expansion:

! .

Glk.r) = §Ze"“’"’G(k. iwn). (2.15)
G(k. iwn ) / dre™nm (k. 7). (2.16)
mn -

“n 7 n=0.+2.£4.- (2.17)

Here w, is a Bose Matsubara frequency (which has the dimension of energy in our
notation). and because of Bose statistics. the integer n is restricted to even values.
The Fourier component G(k. iw,) is a function of the discrete Matsubara frequencies
that are evenly distributed on the imaginary frequency axis. At T — 0. we note that
the spacing between the discrete Matsubara frequencies goes to zero.

The thermal Green's function defined in (2.6} can be used to evaluate the equilib-
rium thermodynamic properties of the system, such as the number of particles with

a certain momentum. By definition (see. for example, p.229 of [13]).

() = (afax) = (Trag(r)af(r))

= ——chu"n(—' k lu.n) ( :

wn

[ S
p—
(@ 4]
~

where 7t denotes the limiting value 7 4 5 as n approaches zero from positive values.
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The mean number of particles in the system is then given by
N(T.V.p) = No — 3/ = Zcunvc(k i) (2.19)

The ensemble average of any single-particle operator. as well as the mean potential
energy is expressible in terms of (. Moreover. one can also relate the thermody-
namic potential Q(T. V) to the single-particle thermal Green’s function ¢ [13. 28].
which enables us to calculate the general equilibrium thermodynamic properties of
the system.

The excited states of the system containing .\ + | particles are related to the
poles of the real-time Green's function [13. 36]. At finite temperature. however. the
real-time Green's function involves a very complicated perturbation expansion. In
contrast. the thermal Green's function as defined here has a simpler perturbation
expansion. similar to that for the T = 0 Green’s function. Fortunately. as we shall
discuss in Section 2.1. the Fourier transforms of the thermal Green's function and the
real-time Green's function can be uniquely related to each other through a simple
analytic continuation. Thus the imaginary frequency (or thermal) Green’s function

can be used to calculate the single-particle excitations of the system.

2.2 Bogoliubov prescription for a Bose-condensed
system

In the preceding section. we have defined the single-particle temperature Green's func-
tion. The remaining task is to calculate the Green's function (. For a Bose system.
this task is complicated by the possible phase transition to a Bose-condensed state.
in other words, by the spontaneous symmetry-breaking below a certain temperature
T.. A more rigorous way of dealing with the new phase is to explicitly include a

symmetry-breaking term in the Hamiltonian (2.1),

- é/dx [u‘;f'(x) + wl»f(x)] (2.20)
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where v is the Bose symmetry breaking field. The spontaneous symmetry breaking

and a new condensed phase is signaled by the non-vanishing of the average [11. 26]
(w(x)) = ®o(x) # 0. (2.21)

even in the limit of a zero off-diagonal field (v — 0). We refer to the thesis of Talbot
[37] for a detailed discussion of Green's function in a Bose system where the symmetry
breaking field is kept throughout. In this thesis. however. we will assume the limit of
v — 0 and leave this term implicit.

Po(x) in (2.21) is often referred to as the macroscopic wavefunction of the con-
densate and in general has an amplitude and a phase. In a uniform system and in
the absence of any supercurrent. we can take ®43(x) to be real and independent of
position. In this case. ¥y equals to square root of the condensate density ng. We are

then led to separate the boson field operator into two parts:

Gx) = g+ ex). (2.22)
A ab ~t
ei(x) = g w0, (2.23)

Since the commutator of &g and &) is unity. and is small compared with their proditct
which is of order .V. we can replace operators dg and &} by the c-number .\'J/'“’ in(2.22)
and (2.23). This procedure. known as the Bogoliubov prescription. is appropriate
when the number of particles in the zero-momentum state is a finite fraction of V.
The error introduced is of the order O(V"~!). and thus vanishes in the thermodyvnamic
limit (V — o0 and V — oo, with fixed density n = NV/V ). Clearly. the new
field operators (‘L:;(x), af(x) describe the non-condensate atoms. and satisfyv the Bose
commutation relations (2.2) in the thermodynamic limit. The average of ¢ and o'

now vanishes as in the usual case of a normal system. namely
(¢(x)) = (v'(x)) = 0. (2.24)

With the above Bogoliubov broken-symmetry prescription. the thermal Green's
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function defined in (2.6) now separates into two parts:
G(x7.X'7') = —ng + G(x7.x'7')
with the non-condensate Green's function defined by
Gixr.x'7") = = (T (x7)uw'(x'7").
In momentum representation for k # 0. we have

G(k.7) = —(Tréax(7)al(0)).

19

(2.25)
(2.26)
(2.27)

The separation of the condensate using (2.22) and (2.23) and the Bogoliubov

prescription modify the Hamiltonian in a fundamental way.

Hamiltonian is now given by

. . 1 it
N = Ey—pNg+ FZ(ek—u)aI{ak+
’ k0 =

= Ko+ 7
J=1

where the interaction Hamiltonian | separates into eight distinct parts:

Ey = §né¥"'v(0)
- !
‘/1 = 31’10 Z U(k)(lk(l_k
- k
- 1 t .
Vo = sn0d v(k)agal,
- k
Va = no Y. v(k)afax
k
Vi = noY_ v(0)afax
k
R pl/2
Vs = T 2 0(Q)dqixiq

The grand canonical
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4

¥4
SRER
SRR

\A

Figure 2.1: Eight distinct processes involved in the interaction . A solid line denotes
@ or a'. a wiggly line corresponds to a condensate atom or a factor n(l,/z. and a dashed
line denotes the interaction v.

..................................................................................

1/2
~ n N “ R R
Ve = “‘,i/ZZLr(q)a{(aIlak+q (2.36)
k.q
-, 1 . R A on -
- = ST Z v(q)a{wqai,_qak:ak (2.37)
=" kk'.q
with
2(q) s/dxe"‘l'xu(x). (2.38)

These parts are represented by the vertex diagrams in Fig.2.1. In a normal system
(ng = 0). onlv V- is present. We also note that A has no term containing a single
EzL or ax because these would violate momentum conservation. This is in agreement

with (2.24), which gives in momentum representation

(ak) =(al) =0  (k#0). (2.39)
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le (p) z[z (P) 221 (p)

Figure 2.2: Proper self-energies for a Bose-condensed system

..................................................................................

2.3 Dyson-Beliaev equations

The fact that there exist interaction terms such as V) in Fig.2.1 implies the non-
conservation of particles in the system described by non-condensate operators ay and
&{(, due to exchanges between non-condensate atoms and the condensate atoms. Nev-
ertheless. if a proper self-energy is defined as a part of a Feynman diagram connected
to the rest of the diagram by two non-condensate particle lines. then it is still possi-
ble to analvze the contributions to the Green’s function in a form similar to Dvson’s

equation for interacting fermions. However. there are now three distinct proper self-

in and one coming out {X;;), similar to that for fermions. The other ones have two
particle lines either coming out (X;2) or going in (£,;). and reflect the new features
associated with the existence of a Bose condensate reservoir. Correspondingly. we

must also introduce two new Green's functions.

Gu(k,7) = —(Tra_k(7)ak(0)), (2.40)
Gu(k.7) = —(T.af(r)al,(0)). (2.41)

[l

G112 and Gy, are usually called the anomalous Green's functions, representing the dis-
appearance and appearance of two non-condensate particles, respectively. The normal
Green's function G defined in (2.26) is denoted as G, representing the propagation

of a single particle
Gu(k, ) = —(T.ax(r)al(0)). (2.42)
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P -P P p -P
Gy () G2 (P) G, (P)

Figure 2.3: Green’s functions for a Bose-condensed system.

..................................................................................

These three Green's functions are shown in Fig.2.3. where the arrows indicate the
direction of momentum of the atoms involved.
The Dyson equations for this system were first derived by Beliaev [11]. which in

frequency-momentum space are given by:

Gulp) = G(o)(P) + G(O’(P'J-\:u(P)Gu(P) + GO%y(p)Gar(p). (2.43)
Gulp) = GOP)Zi2p)Gii(=p) + GV (p)S11(p)Gra(p). (2.44)

Gau(p) = GO=p)Sa(p)Gui(p) + GO =piTi1(—p)Gaulp). (2.45)

For simplicity. we use the letter p to represent the four-dimensional vector (K. iw,).
Unless otherwise noted. we follow this convention in the rest of the thesis. The Dyson-
Beliaev equations (2.43)-(2.45) are illusirated diagrammatically in Fig.2.4. The struc-

ture of these equations can be simplified by introducing a matrix operator {38]

. dg
A= |- (2.46)
Ay

and. correspondingly, a 2 x 2 matrix Green's function
G(k,7) = —(T-Ak(r)AL(0)). (2.47)

A single matrix equation can represent the three Dyson's equations of (2.43)-(2.43).

namely

[S™)
oo

G(p) = GOp) + GO(p)Z(p)G(p), (2.43)
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|

|

Figure 2.4: Dyson-Beliaev equations for a Bose-condensed system.

.............................................................................

with
Ke: G2
G(p) = 1(p) 1-(P)}|
| Ga1(p)  Ga2(p)
[ GO 0
GO(p) = p) .
L0 G9—p)

—Su(P) sz(P)
X(p) = .
P S0 (p) Zzz(P)J

Here the unperturbed Green's function is given by

1
() = (9) ' (st —_
G (p) = Gk, wy) A ——

The matrix elements are not independent, with the following useful identities:

Ga2(p) = Gu(-=p), Gup) = Gu(-p);

En(p) = Zul(-p), ZILip) =Zal(-p).
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Eq.(2.43) can be solved to give

lwn + € — p + Sy (—p)
liwn + & — g+ Si(—p)liwn — & + p — Sup)] + [S12(p)]*
-Zi2(p) (-
[iu.‘n + e — p+ S (—p))[twn — e+ — Sulp)] + [312(19)]2-

Gulp) = (2.53)

>
Ut
T
-—
—_

Gra(p) =

These last two equations express the normal and anomalous Green’s functions in terms
of the exact proper self-energies. and therefore are entirely general. They apply to
any uniform Bose-condensed fluid. liquid or gas.

We see that in (2.53) and (2.54). both Green’s functions share the same poles.

Moreover it is easy to check that in the k — 0 limit. this pole occurs at w, =0 if

[ 8%
ot
ot

jy =S“(0.0)“S[3(OO) (

In fact. (2.55) can be shown to be true to all orders in perturbation theory and is
known as the Hugenholtz-Pines theorem [23]. It was first derived by Hugenholtz and
Pines for the T = 0 case by a direct diagrammatic analysis. and generalized to finite
temperature by Hohenberg and Martin [26]. This theorem is very important because
it shows. quite generally. the energy E(k) of single particle excitations (which are
related to the poles of G, 3) vanishes at k = 0: in other words. the excitations have no
energy gap in the long wavelength limit. The Hugenholtz-Pine theorem thus provides

a criterion for ensuring such a gapless approximation [26].

2.4 Real-time Green’s functions

In Section 2.2, we pointed out that the thermal Green's functions ¢ can be used to
calculate thermodynamic properties. Through its relation to the real-time Green's
function. it also can be used to determine the energy and lifetime of the states of a
system when one adds or subtracts a single atom.

As usual, we restrict ourselves to the case of a homogeneous system with a time-

independent Hamiltonian. Then the eigenstates |m) of the grand canonical Hamilto-
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nian A" and the momentum operator P are the same, with

Kim) = Enplm). (2.56)

Plm) = P,|m). (2.57)

[n such a basis. the imaginary-frequency Green'’s function G/(k. (w,) can be written
in a Lehmann representation (see. for example. Chapter 9 of [13]), which vields the

following exact spectral representation

~ dw' A(k.'
G(k.iu;n)zf = -ﬂk—),

~ 2T iu.'-,l -

(2.58)
where A(k.w) is the single-particle spectral density function defined by

Alk.w) = JQZ{ 3 (21)% [k — A~ (P, — Py)]

X268 [w = (En — En)] (1 = e72)[(mle(x = 0)[n)]?} (259

Following directly from its definition. one can show quite generally that for a Bose

svstem. A(k.w) has the following properties (see. for example. Chapter 9 of [13]}:

sgn(w)A(k.w) < 0. (2.60)
[T LA =1, (2.61)
|7 fate i) = . (2.62)
—c LT

where fg(w) is the Bose distribution function and rn, i1s the momentum distribution
of atoms. In (2.60), the equality holds if w = 0. Equation (2.61) is an example of
a frequency-moment sum rule which is useful as a check on specific approximations
for A(k,w). For other frequency-moment sum rule see Chapter 8 of [8]. The spectral
density function A(k,w) and its relation to GG in (2.58) plays a central role in the finite-
temperature formalism. since one can show that the same A(k.w) also determines the

various real-time Green’s functions.
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At finite temperature. the retarded and advanced Green’s functions involving real

time t are defined as

Gret(xt.X't) = —if(t — t){[e(xt)et(x't) — (XY (xt)]) (2.63)
G (xt. x't") = —if(t' — t){[e(xt) et (xt') — et (X )e(xt)]) . (2.64)

Here (---) denotes the grand canonical ensemble average: and the real time Heisenberg

operator v(xt) are defined by
b(xt) = R/ (x)em KA, (2.65)

et and G24¥ may be also written in the Lehmann representation. and expressed in

terms of the spectral density function A(k.w«) defined in (2.59) as [13]

et = dw'  A(k.w) 5 e
G (k.u.‘) = '/;‘x 27:_ u_‘_u.,v’_{_]r] N ().()6)

. ~ do'  Ak.o .
ey = [ S EEE =00

Equation (2.38). (2.66) and (2.67) show that the function A(k.«) determines the

adv

thermal Green's function as well as ("' and G*?. suggesting the following analytic

continuation:

Glkiiw, »w +ig) = G*(k.w). (2.68)

Gkyiwn — w —ip) = GC*(k.w). (2.69)

Although G'(k,iw,) is a function only at the discrete set of points iw, along the
imaginary frequency axis, it can give " and G4 through the analytic continuation
to the real axis by using (2.68) and (2.69). Since the sum rule (2.61) requires that
both G™'(k.w) and G*¥¥(k.w) ~ w~! as |w| — oo, the above analytic continuation is

guaranteed to be unique [39]. Using these results, A(k,w) can be also written as

Ak,w) = —2ImG™(k,w)
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[
-1
]

= =2ImG(k,iw, — « + 7). (2.

Therefore. any approximation for the thermal Green's function immediately vields a
corresponding A(k.«). as well as an approximation for G™* and G>4.

For completeness. we discuss the relation between the thermal Green’s function
and the real-time Green's function used at T = 0. For this purpose. we define the
following real-time Green's function at finite temperature. in direct analogy to that
at T =0:

G(xt.x't") = (—i)Tr{c‘im‘R)Tt [:ﬁ(xz)-év*(x'z')] } (2.71)

Here Ty is the real-time order operator. Again. by means of a Lehmann representation.

the Fourier transform of G can be shown to be related to G™* and G by [13]

Glk.w) = /m dt e Ci(k. 1)

= [l + fa(w)] G™(k.w) — fo(w)G*(k.w). (2.72)
In the limit of 7' — 0. the last equation reduces to
GT%k.w) = 0(w)G™(k.w) + 0(—)G*T (ko)
_ Glk.iw, =« +177) «w >0 2.73)
G(k.iw, — w —17) w <0

Eq.(2.73) shows explicitly how one obtains the T = 0 Green's function from the

imaginary frequency thermal Green's function using the analytical continuation.

2.5 The Bogoliubov approximation

To illustrate the formalism we have briefly reviewed in this chapter. we use it to solve
for G'1; and G2 in the famous Bogoliubov approximation [9].

One expects that in a weakly-interacting Bose gas at low temperatures. most of
the atoms will still remain in the k = 0 state, only a few of them being “kicked”

out of the condensate by the interactions. The number of non-condensate atoms
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\
’

..................................................................................

is usually called the “depletion™. If the depletion is small. the interaction between
two non-condensate atoms will not be important. This is the basic assumption that
leads to the so-called Bogoliubov model. in which the terms Vi. Vi and V- in (2.29)
are neglected. The remaining terms are quadratic. diagonalizable by a canonical
transformation (see. for example. Chapter 25 of [36]). This Bogoliubov model can
be described in terms of Green's function language. as first discussed by Beliaev [11].
In Green's function language. the Bogoliubov approximation consists of keeping the

lowest-order self-energy diagrams that contain condensate lines. as shown in Fig.2.5.

These can be written as

[
-1
H—
~—

Sulp) = nofv(0) + v(k)], (2.

Li2(p) = nov(k), (2.

(S
~1
Ut
~—

where ng = Ny /V is called the condensate density. An important feature of these self-
energies is that they are frequency independent. With the Hugenholtz-Pines theorem

(23], the lowest-order contribution to the chemical potential is given by

¢ = ngv(0). (2.76)
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Using these results in (2.33) and (2.54). we obtain

] - l.u'yfl + €k + nOU(k) _) ——
Gulp) = (ion)? — € — 2ngv(K)ex” (2.77)

N —npo(k) -
Gu{p) = (iwn)? — €& — 2ngv(k)er (2.18)

One most striking feature of the Bogoliubov model is the form of the excitation

spectrum Ey. given by the poles of (7}, and G,.

Ex = /e + 2nov(k)ey . (2.79)

which agrees with the result from a direct canonical diagonalization. In the long

wavelength limit (k — 0), £} reduces to the phonon-like dispersion relation

Ey ~ hek k| — 0

with the characteristic velocity

. 1/2
c = ["”;fo)] . (2.31)

A detailed calculation shows that the ground-state energy (see section 22 of [13])

is given by
1.v?
Fy = ETU(O] . (2.32)
which vields the pressure
dE, 1,
= — [ — = — > 2.8
<3V)N 5" v(0). (2.83)
and hence the macroscopic speed of sound
1 aP]'?  [nv(0)]"?
§=|——=— = |— . (2.84)
m dn m

Comparison of (2.81}) and (2.84) shows that ¢ equals the macroscopic speed of sound
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s given by the usual thermodynamic derivative. Indeed. it has been proved to all
orders in perturbation theory [22. 26] for the T = 0 case that the single-particle
excitation spectrum vanishes linearly as [k| — 0. with a slope equal to the macroscopic
speed of sound. This linear dependence of excitation spectrum at long wavelengths
is the essential piece of physics that already emerges from the simple Bogoliubov
approximation. At low temperatures. the phonon spectrum will make the dominant
contribution to thermodynamic properties and thus the Bogoliubov results gives the

low-temperature behavior characteristic of Bose-condensed fluids.

In this chapter. we have given a brief review of the finite-temperature Green’s
function formalism for a Bose-condensed system. Due to the macroscopic occupation
of the lowest energy state. one must introduce the anomalous Green’s functions (>
and (75 in addition to the normal Green's function (7. and correspondingly. the self-
energies ¥,. ¥, and ¥,,. Approximate solutions are determined by our choice of self-
energies. In the succeeding chapters. we discuss finite temperature approximations
for a Bose condensed system. namely. the first-order Popov approximation and the
second-order Beliaev-Popov approximation (in which the self-energies are explicitly

first order and second order in the interaction. respectively).



Chapter 3

The first-order Popov

approximation

[n this chapter. we discuss a first-order self-energy approximation for a weakly-
interacting Bose gas at finite temperatures. [t was first discussed in 1965 by Popov
[32]. and thus we call it the Popov approximation [13]. The well-known Bogoli-
ubov approximation discussed in Section 2.5 only describes the physics of a low-
temperature Bose gas. Clearly. as the number .V of excited atoms (those not in the
zero-momentum state) increases with temperature. the Bogoliubov approximation
becomes inappropriate since it assumes V = .V — Ny < .V and consequently ignores
the effect of interactions between the excited atoms. At finite temperature when
Y is not small compared to :V. the interactions between the excited atoms must be
taken into account. This is done in the Popov approximation by treating the excited
atoms in the Hartree-Fock approximation. Apart from Popov’s work. most theories
of temperature-dependent properties (for example. Ref.[40]) of a weakly-interacting
Bose gas have been based on the Bogoliubov model. which means they are limited
to the low temperature (T < T.) region. The Popov approximation. as noted in
Refs.[13, 41], gives a reasonable first approximation for a weakly-interacting Bose gas
at much higher temperatures.

In the present chapter, we will give explicit expressions of the self-energies in

the Popov approximation, and calculate the Green’s functions and some physical

31
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quantities at finite temperatures. We will also discuss the reason why the Popov

approximation is not valid in the very small temperature interval near 7.
T =T.| £ (n*'Pa)T- . (3.1)

The Popov approximation was largely unknown until very recently. when it was
first applied to discuss the BEC of paraexcitons in Cu;O by Shi. Verechaka and Griffin
[15]. In this work. a general expression for decay luminescence spectrum from a gas
of excitons was derived. This was evaluated at finite temperatures using the Popov
approximation as a simple first-order theory of the effects of interaction in a dilute

weakly-interacting gas of excitons.

3.1 The HFB self-energies

In his original paper. Popov [32] expressed the self-energies in terms of the f-matrix
{more precisely. the ladder approximation of the f-matrix). instead of the bare po-
tential v(r). The fmatrix is a more effective description of the effective interactions
between the atoms than the interatomic potential itself. However. in order to empha-
size the physics instead of going into the details of many-body scattering theory. we
shall first proceed assuming that the bare potential v(r) and its Fouricr component
v(k) is weak and well-defined. After we have discussed the basic physics of the Popov
approximation. we will incorporate the f-matrix into our results.

The self-energy diagrams in the Popov approximation include all possible first-
order diagrams of a Bose-condensed system. Among the diagrams in Fig.3.1. only
those (a. b. e) containing two condensate lines are included in the Bogoliubov ap-
proximation of Section 2.5. The new ones (¢ and d) are the Hartree-Fock diagrams
including excited atoms. The self-energy ¥,; and ¥, of Fig.3.1 can be explicitly

written as

Ti(k) = ng [v(0) + v(k)] 3T GO(q,iwn) [v(0) + v(k—q)] . (3.2)

q.‘-Wn

__37
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Figure 3.1: Self-energy diagrams in the Popov approximation involving the bare po-
tential v. A solid line with arrow denotes an ideal gas propagator G'%. a wiggly line
denotes a condensate atom. and a dash line denotes the interaction v

.................................................................................

Here G®)(q, iwy) is the unperturbed Green's function of non-interacting atoms. given

by
1

iu.'[ — € + #(0) )

G'9q, iwr) = (3.4)

with z© denoting the chemical potential of an ideal Bose gas.
Since v(k) does not depend on the Matsubara frequency iw,, one sees that neither

do Ti;(k) and £,2(k). One can then perform the frequency sum in (3.2} to obtain

dq v(0) + v(k ~
Su(k) = no [v(0) + v(k)] +/ (27?)3 Uiﬂ()tv(n - ?)‘

Ti2(k) = nov(k). (3.6)

(3.5)

For T — 0, the Bose distribution function [exp 3(e; — p®) —1]~! becomes very small,

and thus the contribution due to interactions between two excited atoms (the second
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term in ¥,;) is negligible compared to that due to interactions between one excited
atom and one condensate atomn (the first term in Y;;). In this limit. the Popov
approximation reduces to the Bogoliubov approximation [see (2.71) and (2.75)]. as
expected.

On the other hand. the condensate density ng(7") vanishes when T > 7. (normal
phase). In this case. we are only left with diagrams (c) and (d) in Fig.3.1. i.e. the
usual Hartree [(c)] and Fock [(d)] diagrams of a normal system. The Hartree-Fock
approximation is basically a static mean-field theory. which treats the motion of
single particles in an average static field generated by all the other particles. In the
Popov approximation. the average Hartree-Fock field is determined by non-interacting
particles as represented by the ideal gas propagator G;® in diagrams (c) and (d).
Taking into account the fact that the background particles also move in the average
field coming from the presence of all the other particles. one can improve the Hartree-
Fock theory by replacing the free propagator G® by the full renormalized propagator
(;. This is the well-known self-consistent Hartree-Fock (SCHF) approximation [13.
39].

For a Bose-condensed system. the analogue of this self-consistent approach is
called the self-consistent Hartree-Fock-Bogoliubov (HFB) approximation (for further
discussion and earlier references. see Ref.[41}). In this self-consistent HFB approxi-
mation. one replaces the free propagator G'© in Fig.3.1 by the matrix propagator G
given by (2.47). which includes both the diagonal (normal) Green's functions (G,
and (i5;) and the off-diagonal (anomalous) Green's functions (G, and Gy;). The
self-consistent HFB approximation. however. has well-known problems in the Bose-
condensed phase. such as the violation of various conservation laws and the presence
of an energy gap in the excitation spectrum(26. 41]. As Griffin [41. 42] has pointed
out, these problems with the self-consistent HFB approximation arise because the
condensate atoms and excited atoms are not treated in an equal manner: the con-
densate atoms are treated in a collective way while the excited atoms are only treated
as renormalized single particles. The Popov approximation corresponds to a simpli-

fied version of the HFB which does not introduce an energy gap in the excitation
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Figure 3.2: Typical inter-atomic potential
spectrum. as will be discussed shortly.

With the self-energies given by (3.5) and (3.6). one can. in principle. calculate the
single-particle properties related to single-particle Green's function (i, for a given
interparticle potential v(r), assuming the interparticle potential has a well-defined
Fourier transform v(k). However. the tyvpical inter-atomic potential has a weak long-
range attractive tail and a strong short-range repulsive core. as sketched in Fig.3.2.
The hard core means that the Fourier transform v(k) in (3.3) and (3.6) is not well-

defined; indeed. it is singular. We now discuss how this problem can be solved.

3.2 The Popov self-energies in terms of the t-
matrix

Fortunately, for a low-density or dilute gas of atoms, one can make use of the lad-
der approximation. The word “dilute” has the meaning that the average interatomic

1/3 is much larger than the s-wave scattering length a. which is the

distance, d ~ n~
characteristic length representing the influence of the interatomic potential (see Ap-

pendix A, where the basic elements of scattering theory are reviewed). This condition
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Figure 3.3: Diagrammatic definition of the ¢t-matrix [’
implies that
a/d ~n'?a < 1. (3.7)

As discussed by Beliaev {34]. in a dilute gas. the ladder diagrams are all of equal
importance. This sum over all the ladder diagrams vields the so-called many-body
matrix [, as illustrated by the hatched square in Fig.3.3. The diagrammatic definition

of I' in Fig.3.3 can be written explicitly as

: 1 . }
['(p1, p2; p3. ps) = v(ky ~ ks) — 3V > v(q)GPk, - q,iwy — iwy)
Qriwl

xG% (ks + q, iw, + iw)l(p1 — ¢, p2 + ¢:p3, pa), (3.8)

where the four-dimensional vector p; = (k;.iw;) represents the momentum k; and
Matsubara frequency ww; of a particle before (j = 1,2) or after (j = 3.4) scatter-

ing; similarly, ¢ = (q,iw;). It is often more convenient to write I' in the center-of-
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momentum frame of the scattering pair of atoms (see Appendix A)

[(k.k'.K:z) = [(p1.p2: p3-ps)
, d F.(K.k—-q)
:u(k—k)-%—/(zﬁq)av(q) +

Nk -q.kK.K:z). (3.9)
2 — 2(eg—q — K)

where we have introduced the center-of-mass variables

ksk‘,_kz. k’sz__k*. (3.10)

2 2
K_—':k1+k2=k3+k4. (3“.)
Wy =W twr =@y owy. (3.12)

h‘z["z
s =iy = fx = ey — ———. (3.13)

im
F+(K‘k - q) =1+ fB(€%K+k—q) + fB(Cé—K-k.i.q)' (‘1’1]

Here the factor FL(K.k —q)(z— 2ex_q +2p)~! comes from the frequency sum of the
product GG over iw;. The function F,(K.k — q) incorporates the effect of the
Bose statistics obeved by the atoms involved in the intermediate scattering states.
With this definition of I'. the lowest-order diagrams for a dilute Bose-condensed
gas in the ladder approximation are shown in Fig.3.-t. which are precisely the diagrams
that Popov included in his original paper[32]. The self-energies represented by the

diagrams in Fig.3.4 can be written explicitly as

) k k . k k
Silkoiw,) = ng [F(;. ;:k. lwn, — &) + F(“T)‘- 5 k.iw, — 5k)]
1 . . k-q k- , )
—j—vqu GONq. iw) {F( 3 9, 5 q: k + q.iw, + twr = €kiq)
k—-q k- . _
+[(~ 5 q.- 5 q;k+q.zwn + w — '£k+q)} . (3.13)
S[z(k. lu)n) = TloF(k,O;O, iu.‘n). (-316)

In comparing this with the self-consistent HFB discussed in Section 3.1. we note there

are two differences:

(a) The ladder diagrams are included, replacing the bare interatomic potential v
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by the many-body t-matrix I':

(b) Ideal Bose gas propagators are used in the self-energies. rather than the renor-

malized ones.

As shown in Appendix A. the many-body matrix [ can be expressed in terms of

the vacuum scattering amplitude f defined by

Flk, k') = v(k - k') + 1](dq vk=a) zq 1. (3.17)

2 2r)3 e —€q + 17

We note that our definition of f differs from the ordinary definition of the vacuum

scattering amplitude f by a factor of —47h?*/m, that is

o k) = =2 pe 1), (3.18)

m
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In the long wavelength limit (|k| = |k’| — 0). f can be shown to reduce to

N Irhla

flk.K)= + O(ka?). (3.19)

where a is the s-wave scattering length. The vacuum scattering amplitude f describes
the effect of the potential on the wavefunction of two atoms in free space. while the
many-body f-matrix I' describes the similar effect in a medium. that is. in the presence
of other atoms in an ideal Bose gas.

[t is shown in Appendix A that the momentum dependence of ['(k.k’: K.z} in
(3.9) is at least the order of f2: in terms of a. this means of order a? [see (3.19)].
[n the first order approximation we are discussing in this chapter. it thus seems
reasonable to neglect the momentum dependence of I' in (3.15) and (3.16). and keep

the self-energies only to first order in a. Thus we arrive at

Sn = 2(".0 + fl(o))fg

) (3.20)
12 = nofo.
where [ has been replaced by its value in the limit of |k| = |k’| — 0. that is
, . irh’a - .
Mk.k:K.z) ~T(0.0:0.0) = f(0.0) = - = fo. (3.21)
1

The quantity 7{® in (3.20) is the (temperature-dependent) density of excited atoms
in a non-interacting Bose gas, given by

. l . _ dk 1

02—l Y 0 ) :/( (3.22)

WV o 27 )3 eBlex—u®) _ | °

Here. and in the rest of this thesis, we use the superscript “(0)" as a reminder that
the quantity is for a non-interacting Bose gas.

In (3.20), we have dropped the (k.iw,) arguments of £,;, and ¥,, because they
are now both frequency and momentum-independent. The self-energies in (3.20) will

be referred to as the Popov first-order approximation. With it. one can calculate the
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normal and anomalous Green's functions through (2.53) and (2.54) and use these to
evaluate various physical quantities. We now discuss the normal phase (T > T.) and

the condensed phase (T' < T.) separately.

3.3 Normal phase (T > T.)

In the normal phase. we have ng = 0 and then (3.20) reduces to

(3.23)
212 =0
Using (3.23) in (2.53) and (2.54). the single-particle Green's functions are
Gulp) = : (3.24)
ntip i»’-«-'n—(ék—,u+2ﬁ(°)j:0) . 3.2
Gr2(p) = 0. (3.253)

With (3.24). the density of the excited atoms as a function of ¢ and T is given by

, 1 : , :
e T) = v Z "G (k. iwy)

k.iu}n

dk 1 q -
= / (27!')3 ed(ik-u-é-ﬁf‘”fol — i (3.26)

[f the total density n and the temperature T are given, the chemical potential is

determined by the usual condition
(g, T)=n (normal system). (3.27)

Similarly, the chemical potential u(®) of a non-interacting Bose gas at T > T. is

determined by

2@, Ty =n. (3.28)
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Comparing (3.22) and (3.26). one sees that for a given n and T. we have
p=u®+2nfy (T>T.). (3.29)

L.e.. the chemical potential is increased by ‘ano due to the effectively repulsive in-
teraction (a > 0) between the atoms. Equation (3.29) was derived in Ref.[l3] in a
discussion of BEC in an exciton gas.

The energy spectrum Ejy of single-particle excitations (or quasiparticles) in the

normal phase is determined by the poles of the Green's function. that is.
Ex = e —p+2nfy = € — p'9. (3.30)

This shows that in the present first-order approximation. the quasiparticles above T.
act just like free particles in a non-interacting Bose gas. Because the quasiparticles
determine the thermodynamic properties of a system. we conclude that in Popov
approximation. the normal properties of a dilute Bose gas are unchanged compared to
that of a non-interacting Bose gas and in particular. the BEC transition temperature

T. is the same.

3.4 Bose-condensed phase (T < T)

[n the Bose condensed phase. (1) and (', are obtained by substituting the self

energies (3.20) into the Dyson-Beliaev expressions in (2.53) and (2.5-):

twn + e+ A o
Gu(p) = o) = —3ne (3.31)
A
Giz(p) = — (3.32)

(twn)? — €2 — 2A¢,

Here the quantity A is defined by

A=y =204, (3.33)
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where the chemical potential u has been shown by Popov [31] to satisfv the finite-
temperature version of Hugenholtz-Pines theorem given by Hohenberg and Martin
[26]

$11(0.0) — £45(0.0) = p. (3.34)

We find using (3.20) and (3.34) that
p=20f +nofo (T<T.). (3.35)

Combining the last equation with the definition of \ in (3.33). we arrive at

A(T) = no(T) fo- (3.36)

Here A\ is written as an explicit function of T to emphasize the dependence of ny on
T. We note that A\ is positive (for « > 0) and approaches zero as ng — 0 (T — T.).

Both G| and Gy in (3.31) and (3.32) have identical poles at «w = £ E. where

Ev =/ +2a\T) = \/ef + 2exno(T) fo. (3.37)

This gives the energy spectrum of elementary excitations for T < 7T.. This spectrum
is formally identical to that of the 77 = 0 Bogoliubov approximation in (2.79) if
one replaces v by fo (the t-matrix). In contrast to the Bogoliubov model. where
ng >~ n. the condensate density no(7) in the Popov model is strongly dependent on
temperature and becomes very small (ng(T) < n) in the vicinity of the BEC' phase
transition.

On the other hand. one should not over-interpret the formal similarity between
the excitation spectrum in the Popov and Bogoliubov models. At the first glance. it
seems to imply that one can generalize the Bogoliubov model to finite temperatures
simply by taking into account the temperature dependence of ng of an ideal gas.
Although this gives the correct excitation spectrum, it gives an incorrect expression
for chemical potential, namely g = no(T)fo instead of the correct result in (3.35).

This difference was missed in many early attempts to generalize the Bogoliubov theory
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to finite temperatures.

We see that the Popov-Bogoliubov spectra in (3.37) has quite different limits:

Ei ~ e+ NT) k> h='vVmA. (3.38)
E. ~ hck k< h™'vVmA. (3.39)

E is free-particle like in the short-wavelength limit. and phonon-like in the long-
wavelength limit. the phonon velocity ¢ being given by
A(T T) f;

(T) _  [rol )fo’ (3.40)

m m

o
Hl

The single-particle excitation spectrum in (3.39) is proportional to & in the long-
wavelength limit. As we noted earlier. this linear dependence is expected to be true
in any Bose-condensed fluid to all orders in perturbation theory [22. 26]. Although
the Popov approximation is only the lowest-order approximation. we see that it gives
gapless phonon excitations in the low-energy limit in a Bose gas at finite tempera-
tures. Moreover. ¢(T) — 0 as T" - T.. i.e.. the phonons in the Popov theory are
the “broken-symmetryv” soft modes of the Bose-condensed phase. However. unlike at
T = 0. there is no established correspondence between the excitation phonon velocity
and the compressional speed of sound at finite temperature. As a side remark. we
note that the finite temperature behavior of a Bose liquid like superfluid *He is quite
different from that of a Bose gas (for a review, see Chapter 7 of Ref.[8]). In partic-
ular. the observed excitation phonon velocity in liquid *He is found to be essentially
temperature-independent right through the superfluid transition.

With the Green's function (3.31). one can now calculate the density of particles

in the condensate. For a given total density n, we have

n =ng+n, (3.41)
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with

4

0]

l iomn twy €+ A
3V = [(en — Ex)(iwn + Ex)

dk c+ A JE, 1 ;
= / e [q')EA coth —)‘l - —] (T < T.). (3.42)

)

The two equations (3.41) and (3.42) are coupled equations for ng. since i depends on
Er and A. which are themselves functions of ng [see (3.37) and (3.36)]. In general.
such non-linear equations must be solved for numerically. However. in two important
special cases. analytical results can be obtained. as we now discuss.

We first consider the low temperature limit (kg7 < A = nofo). In this case. the

integral in (3.42) can be approximated as

o () e

2B\ 2EL 2 (27)3
I mA\?3/? 1 rm\3/?2 ' .
Lo ma R Rlid ~U2( T2, 3.43
372 ( PE ) e (fﬁ) ()7 (ks 1) (3-43)

where in the second step. we have approximated fg(Ex) ~ e ?&x. With (3.41) and

s gy /2
e~ n dng (noa“’) /
o~ n— — -

(3.43). we obtain

| ~

;TC(’CBT)Z (3.41)

[EV]

3 7 1

where ¢ is the phonon velocity defined in (3.40).
For a low density gas at low temperatures. the second and third terms in (3.-14)

are small. implying no ~ n. Therefore, when calculating the depletion #» = n — ng

at T = 0. we can drop the third term and replace ny by n on the right hand side of

(3.44) to obtain

. _ 3 3y 1/2
gzz_gﬂzg(fﬁ_) <l (3.15)

The error introduced by the replacement of ng by n in obtaining (3.45) is of higher
order in «. Eq.(3.45) is the well-known result for the fractional depletion of the con-
densate in a dilute gas at absolute zero, as first obtained by Bogoliubov [9] in 1947. As

a result of interparticle interactions, a small number of particles are exited out of the
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condensate even at T" = 0. For a weakly interacting Bose gas. the fractional depletion
is proportional to (na®)'/2, showing that the number of excited atoms increases with
density. One expects that a large fraction of the total atoms would occupy the excited
states in a strongly interacting Bose system such as liquid *He. In fact. more than
90% of the atoms in *He are in excited states at T = 0. as shown by inelastic neutron
scattering experiments and by direct computer simulation studies (for a review. see
Chapter 4 of Ret.[8]).

The T? term in (3.44) was first exhibited by Glassgold et al [40] in 1960. Their
calculation of finite temperature corrections was based on the use of the 77 = 0
Bogoliubov spectrum. and thus is clearly limited to the region T ~ 0. Kehr [13] has

also derived this T correction. with an extra factor no(7 = 0)/n:

L no(0) m.

kgT)>. 3.16
12 n l’lac( 51 ( )

no(T) = no(0) -

Kehr’s rigorous derivation was based on the structure of the low-lying single-particle
excitations of a Bose-condensed system. which are known in all orders of perturbation
theory at 7" = 0 [22]. Therefore. the result (3.46) was not limited to low density or
weakly interacting Bose gas. but valid for any Bose fluid at low temperatures. even
for liquid *He where ng(0) & 0.ln. In a dilute Bose gas. we have ng(0) ~ n. and
then (3.46) reduces to (3.44). We should emphasize that in the limit of vanishing
interaction (fy — 0). the results in (3.44) and (3.46) are limited to T = 0 because
these results are derived under the condition kg7 < ngfg.

The T2 law for an interacting Bose gas is quite different from the T%/2 law of an

no(T) = n [1 - (%)m] . (3.47)

This reminds us that the introduction of even a small interaction between the particles

ideal gas as given by [3]

can drastically change the properties of a Bose gas at low temperatures. where the
phonon part of the spectrum [see (3.39)] completely determines the thermodynamics.
As seen from (3.43), the T-dependent part of ©i tends to decrease with increasing

value of A given by (3.36), in contrast to the T = 0 part, which increases with A. As
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Figure 3.5: Crossover between ngo(7T) of an interacting gas (solid line) and né,O)(T'; of
an ideal Bose gas (dashed line). The changes are exaggerated for clarity.

..................................................................................

a result. one expects a “crossover~ between no(T) of an interacting gas and ngo'( T) of
a non-interacting gas. as sketched in Fig.3.5. This crossover means that at sufficiently
high temperature. the effect of repulsive interactions between the atoms in a dilute
weakly-interacting Bose gas is to put more atoms in the condensate. in contrast to
the T = 0 case. It seems to imply that the thermal effect is not as significant in a
dilute Bose gas as in an ideal gas. This “crossover” temperature Ty can be estimated
by comparing 1 for a weakly-interacting gas in (3.43) with A® for an ideal gas {the

second term at the right hand side of (3.47)], yielding

7h?
kg Te ~ 0462 ~ 0.462722 (3.43)
m
or
T /T. ~ 1.74(n'?a) <« 1, (3.49)

where the last step follows from (3.7). For example, for n = 2.6 x 10'* cm™ and
@ = 53A (taken from Ref.[1] for 8Rb atoms), we estimate that n'/3a = 0.0073 and
thus T) ~ 0.0137, < T..
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We next discuss the region close to the transition. T’ < T.. It is convenient to
calculate the difference 72 — n.,. where n. is defined by

dk 1 mkgT\*?
= —_— = 9 35
Ner = (.)...)3 6:315‘ 1 2.612 ( 27:_&2 ) . (3’)0)

i

This is the density of excited atoms (or critical density for the BEC phase transition)
of an ideal gas at a given temperature T [3]. The dominant contribution to the
difference n — n., comes from the energy region where the excitation spectrum £
differs significantly from the free-particle energy €x. which is the region ex ~ \ in our

case [see (3.37)]. We note that \ = nofo 1s very small near T.. namely
A/kgT ~ A/kgT. < 1. (3.51)

Therefore. we can approximate coth(.3£;/2) by (2/3EL) in (3.42). and carry out the

integral analyvtically to obtain

Combining this result with (3.41). we find

L /2m\3?2 -
n~ng+n, — ST (I‘z—z) kBT(?.nO_/‘O]l/z. {3.33)

[or given n and T'. (3.53) is a quadratic equation for ny which has two solutions:

/Aot = % [\/ng(T) +\/ny(T) + 4(n — nﬂ)} ) (3.54)

Here /n,(T) is the coefficient of ,/ng in the third term of (3.53),

1 /2m\3/? [
= | = , 9 1/2 1.53
ng(T) = 57 <h2 ) kT (2fo) (3.55)
or
47 1/3

(n'3a)n. (3.56)

na() = 5 eram
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Since n > n. below the phase transition temperature. the solution ,/ng_ in (3.34)
is negative. and thus unphysical. Therefore the condensate density is given by the

. R . . ]
other solution ng .. which vields a finite value at T — T, namely

ng(T:) Tr—T:. .
ng = (3.57)
0 T—-Tr.

This clearly indicates a finite jump in the condensate density ng at the transition
point [44]. This jump is small compared to the total density n in a dilute Bose gas
(n'Pa < 1). and can be estimated for the 3" Rb experiment in Ref.[1] as 6.6 x 10° cm™
(compared to n=2.6 x 10'2 cm™3). Nevertheless. the finite jump in the order param-
eter (\/no. in a Bose fluid with no supercurrent) is the characteristic of a first-order
phase transition. Earlier work by Lee. Huang and Yang [24] using a pseudopotential
approach led to the same conclusion. This. however. is in contradiction to the fact

that BEC in an interacting Bose system involves a second-order phase transition.
This unphysical behavior near the phase transition point implies that the Popov
approximation breaks down in this region. As emphasized by Popov [31]. the sell-
energies in (3.20) are linear in A = ngfo. while the largest diagrams dropped in the
Popov approximation are of the order (m//i'“))3/2/»';371150A1/2 (see Chapter 6). As T
approaches T, from below, the neglected diagrams become larger than the first-order

diagrams. since the former (proportional to A'?) decrease at a slower rate than \.

Therefore, the Popov approximation is valid if

m\ 372 12 )
(ﬁ—s) kT fodV? < A (3.53)

or equivalently.
T. - T > (n'Pa)T.. (3.59)

The temperature region defined by (n!/2a)7. is very small in a dilute Bose gas. For
example. for the case of 3’'Rb atoms using densities at the center of the trap given in
Ref.[1], the Popov approximation should be applicable when (7. — T') > 0.00737..

The properties of a physical system in the neighborhood of the phase transition
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point is always an interesting (and complicated!) problem. However. our major in-
terest in this thesis is not the critical region but the finite-temperature properties of
a weakly interacting Bose gas in general. The critical region requires the renomaliza-
tion group (RG) techniques developed to study the behavior of second-order phase
transitions. In their recent work. Bijlsma and Stoof [45] have presented a detailed
study of a uniform Bose gas using the ingenious application of the RG approach. Us-
ing the knowledge of the microscopic details of the interatomic interaction. they were
able to calculate the non-universal properties of a dilute Bose gas. In particular. they
found that due to interaction effects. the BEC critical temperature could be raised as
much as 10% compared to the ideal gas value for the Rb and Na gases used in recent

experimental studies 1. 18].



Chapter 4

The many-body t-matrix

approximation

[n Chapter 3. we discussed the Popov approximation as the basis of a simple theory
which included the thermally-induced depletion of the condensate. The self-energy
diagrams which are included in the Popov approximation (see Fig.3.4) were built out
of the unperturbed propagator :{°! for a non-interacting Bose gas. As we noted in
Chapter 3. the Popov approximation is not valid very close to the phase transition.
where it leads to an unphysical discontinuity in the condensate density ng. In an
attempt to solve this well-known problem. Bijlsma and Stoof [33] used a many-body
{-matrix approximation. based on the use of the self-consistent propagator (/i in
the Popov self-energy diagrams. I[n the present chapter. we examine this many-body
f-matrix approximation. In agreement with Bijlsma and Stoof. we show that this -
matrix becomes very temperature-dependent and, as one approaches T.. it vanishes at
the transition point. This leads to a smooth change of ng at 7, and thus to the correct
order of the phase transition. However, it also shows that 7. of an ideal Bose gas is
unchanged in the many-body t-matrix approximation. The required Green'’s function
formalism for this analysis is the same as we used in Chapter 3. We emphasize only

the features that are different from those in the simpler Popov approximation.
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4.1 The many-body t-matrix

The gelf—energy diagrams in the many-body #matrix approximation are shown in
Fig.4.1. They look the same as those in Fig.3.4. However. the grey-filled square
now represents the multiple scattering of two “dressed” particles, whose propagators
G11 are to be self-consistently determined. The modified #matrix. denoted as [
to distinguish it from the original T', is defined by the following integral equation

[compare with (3.8)]:

P 1 r
Kp1,p2ip3.ps) = v(ki—ks) - % v(q)Gul(p1 — q)
! q,iuiq
xGui(p2 + ¢)T'(p1 — ¢, p2 + ¢; p3, pa)- (+.1)

This equation is illustrated by the ladder diagrams in Fig.4.2. In the center-of-mass

frame, the many-body #matrix can be written as
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_Ex Ps; Pi Ps Pr Pi-9 P3
> > e e >—
-
> - S e 5
P2 T Ps P2 P P. pP-+q Ps

Figure 1.2: Integral equation for the many-body ¢matrix L. (A grey-filled square
with four “legs” represents I'. a solid line with two arrows represents a ~dressed”
particle or G1;. and a dashed line represents the interaction potential.)

..................................................................................

- 1
Nk.K.Kitwy —€r) = vik=k) ——“Z q)Gl P*P"CI)

XGU( P p""”r(k q. k. K: ey —s!\')- (4.2)

Here k. k'. K. and wy have the same meaning as in the definition of [ in (3.3).
We recall that 5 = A?K?/4m represents the center-of-mass kinetic energy of the

scattering pair whose center-of-mass momentum is K.

With the expression of [ in (4.2). the self-energies in the many-body t-matrix

approximation take the following form [compare with (3.13) and (3.16)]:

)

e
lu|7¢'

k
2"

lle'

k Lu.n—&)+r(— k;iwn"fk)}
{(k kl k - kl

Su(k.iwn) = ng [f(

J+ kyitwn + e = ey )

+ Z Gk, twr)

92
k;.iw =
~ k-k k-~-k
+F( 5 1 - 1 Jk+kyiwn 4+t — £k+kl )] (43)
Tialk,iwn) = nof(k,0,0;iwn). (4.4)

We are interested in the temperature range where T is not too high compared to T;
in other words, we do not consider the case of T > T.. As is well-known, the energies

of important excitations are of the order kg7, which is of the order kg7, or smaller
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in the system of interest. We recall that

27h? U3 pt
boT. = ".) ~ S, (1.5)

which means that the momenta of important excitations are of the order

2mkgT. 1/2
kd = (——hf—) ~ Tll/S. lif))

One sees that k3 is roughly the order of d='. where d is the average distance betwecn
the atoms. For a low density gas such as we are interested in. the average distance
between the atoms are much greater than the s-wave scattering length a. which implies
that k3 € «~!': in other words. only the low momentum region is important.

Under the above condition, we can neglect the energy and momentum dependence

of T in (4+.3) and (4.4). arriving at

i = 2(ng + ATy,

- (4+.7)
glz = noro.
Here 1:0 is defined as
[, = [(0.0.0:0)
l y . y . ~ )
= v(0) - v > o(q)Gulq, iwn)Gr(—q, —iw)[(—q.0.0:0):  (+3)
‘ q.wn
and 7" is the density of non-condensate atoms.
fl(l) = —--i" €iw""G1[(k. lu)n) (49)
v k#0.tun

Comparing (4.7) with (3.20). one sees that the many-body fmatrix o now replaces
the free-space scattering amplitude fo = 4xh%a/m in the Popov approximation in
Chapter 3. While fo is a constant. [o depends on the temperature through the

many-body propagator 1, as shown by (4.8).
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Using (4.7) in the Dyson’s equation (2.53) and (2.54) for (1, and (4. we obtain

for T >T..

l
Gy=—. G = 0. 4.10
11 ot X 12 ( )
For T < T.. we have

w, . _1
Gy = —Sntet- (411}

w? + € +22¢;

, A
G =

w2+ e +23¢;
In both cases. the quantity A is defined by

A=p-20T. (4.12)

Using the Hugenholtz-Pines theorem which is valid for T < T.. the chemical potential

and the quantity \ are given by

o= '21'1(”1_;0 + nofo.

. (T <T,). (4.1}
A= nor()

The quasiparticle excitation energies are determined by the poles of Green’s functions

given by (4.10) and (4.11). We find

— A T>T.).
E, = { c‘ ( ) (4.14)

€7 + 2 e (T < T.).

The density of non-condensate atoms is given by

dk 1
=(1) e
" - / (27)3 eBlex=3) _ | (T > T.) (+4.13)
~ dk €k + -1 ’3Ek ]
(1 _ 1 ‘
S / (27)3 ( 2E, coth 5 2) (T <T,). (£.16)

With the structure of G; known, we can now examine Lo in more detail. Eq.(1.3)

implies that to find ['g requires the knowledge of ['(—q, 0, 0; 0) for all ¢ > 0. not just



o
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for ¢ = 0. Since we are interested in a low density Bose gas at temperature ~ T,
or lower. the main contribution to the sum over q in (4.8) comes from the region
q < a~! [see discussion following (4.4)]. In this case. v(q) and [(—q.0.0:0) can be

approximated by constants v(0) and [o. respectively. We thus arrive at

[:0 ~ (0} — %v(O)foE'Gu(q, twn )G(—q. —iwy) (4.17)

Here the prime means that the summation is performed only up to a cut-off momen-
tum to avoid the divergence at large q.

The ultraviolet divergence in (4.17) is artificially caused by assurmning that r(q)

and F(-—q. 0.0;0) are constant for all g in (4.8). while in fact these quantities vanish

at large q. The uncertainty of the cut-off momentum can be removed by expressing

o in terms of f(0.0) given by (3.17). A similar procedure leads to

-

£(0.0) ~ v(0) — Lv(O)f"(o.O)Z —. (1.18)

2V €

where the sum over q is also divergent if performed over the entire g-space.
Fortunately. the underlying source of the divergence at large q is the same in both
(4.17) and (4.18). and thus the g-cutoffs are expected to be the same. Using this and

fo = f(0.0). we combine (4.17) and (.18) to find

Fo = fo — a(T. p) folo (4.19)
or N
1 +a(T)fo
where we have defined the function
T) = l 1 G O . I 91
Q( ) = ‘,—/' - Eg t“(q. lw[) r“(—q. —zw,) - Z—Eq- . (!... )

Using (4.10) for T' > T. and (4.11) for T < T, in (4.21), we can perform the frequency
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sum to obtain

(T) = Ie ‘2*’“ (2-‘% coth 7+ — 5:) T
[6 4 t.l2
& (2= )3 2Ek + 7) coth _53135 - 5;} (T' < T,)

where £y is given by (4.14). The function « is now free of the large-q divergence if the
integration is taken over the entire q-space. This justifies our removal of the cutoff
n (4.21). The term of order A% in the integrand of (4.22) for the case of T < T is
higher order in [y. This term is omitted (see further remarks at end of Section 1.1).

Eq.(4.20) is still a rather complicated integral equation of To. since a depends on
Ei. which in turn involves [o. To solve for ['o. we also need to know \. which involves
the unknown g (at T > T.) or ng (at T < T.). Therefore (4.20) must be solved in

conjunction with

nMw. TY + no = n. (4.23)

Of course. for T > T., ng in (4.23) vanishes.

4.2 Analytical results for the t-matrix

We next consider cases where analvtical results for the function a in (4.22) can be
obtained. We first consider the low temperature limit. At 77 — 0. the function
coth(3E:/2) ~ 1 + 2 exp(—.3Er). The integral in (4.22) can be carried out to the

lowest order in A (= nol:o) and T:

(4.24)
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Using this expression for a in (4.19). the low-temperature limit of [ is given by

= 32 .o kT \*
[o = fo+ l (E) fo(nurg)l/z l:l — 1 ( Br) :l . (-+.25)

—_ > -
72 \h nolo

The solution of (-£.25) requires knowledge of no(7T'). Using (4.23) and (1.16). we obtain

L (m\*? . I 1 (kT
~ng+ — (= vz |2 4 — = ) 4.26)
"= no w2 ()32) no(nol) [23 + 12 (noro) } ( |

which is valid at low temperature kgT < nolo.

For a low density gas at low temperature. the second term in both (4.25) and
(1.26) is a small correction to the first term. Therefore. to first order we obtain
[y ~ fo and ng ~ n. At the next level of approximation. the quantity nolo in the
higher order terms of (4.25) and (4.26) can be approximated by nf,. Within this
approximation. the depletion given by the second term in {4.26) equals that given by

(3.44): and (1.25) becomes

~ ~ . Il(13 1/2 l 3.1/2 kBT : .

Eq.(4.27) shows that in the low density and low temperature limit [(ne®}'/? < | and

.,..
[§V
~1

kT < nfo]. the t-matrix [ differs very little from fg. [n this limit. the many-body
t-matrix approximation reduces to the simpler Popov approximation in Chapter 3.
We next turn to the finite-temperature region just below T.. For T £ T.. the

function coth(3E%/2) in (4.22) can be approximated as 2kgT/E\. vielding

=~ = 1 m\3/2 ].:0
= l -_ sy —_—N . - .2.‘
o f°[ 2 (fﬁ) (noro)U?LBT (+28)

If we multiply both sides by ng, (4.28) becomes an equation of nolg. which vields the

following solution just below T, (where ng is small)

. B2\ no(T)
— 4qx2f 2 s A Sl
fo = dm (m) TSAE



i
074}

Ch.4 The many-body t-matrix approximation

h? 3 ix3n T\3/?
- (’m‘) (kaTe)? [l_(i) ]

0.286 - T\%?
fd _ —_ —_ 1 2Q)
(n73a) 0 [1 (T) ] ' (429

where the coefficient 0.286 comes from (2.612)*3/4x. In the second line of (4.29). we
have made use of the ideal gas condensate density value. ng(7T) = nfl — (T/T.)*?].
Eq.(4.29) shows that the t-matrix Lo goes to zero In the same way as ng does. This
result is confirmed by numerical calculations. in which the self-consistent condensate
density ng(7) is used (see Section +.3).

Finally. we consider the region just above T.. In this case. we can approximate

(4.15) and (4.22) by taking coth 3E/2 ~ 2kgT/E\. arriving at

1 /2m\3/? ~
n = ncr(T)—Jt—_(;r.?) ksT|A|'Y? (£.30)
~ : ~ 2m\*? kT ‘
Iy = fo [1—Fo (h_2> M—SPE} . (4.31)

Here ng = 2.612(mkgT/2xh*)*? is the critical density of an ideal Bose gas at a given

T. Using n = 2.612(mkgT./27h*)*/?. we can rewrite (-£.30) in the form
- (.) 61-))2 T 3/2 2
= - kgT. || — —-1] . 4.32
> P [(T) ] ( )

We see that A goes to zero as T — T, from above. Using this result for Ain (-+.31).

we obtain

. ( B )3’2 Sx| X[/

Lo 2m kT
0.286 : [/ T\>?
= =27 ) —1f. 1.33
(n'/3a)f0 [(Tc) } (1.33)

Combining this with (4.29), we see that [y vanishes as T approaches T. from above
or below in a systematic way. How fast To approaches zero depends on the value of

(n'/3a)~": the higher the density, the slower it goes to zero. This result is in agreement
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with that obtained by numerical calculations (see Section +.3 and Ref. [33]). We
should note that (4.29) as well as (4.33) are only valid in a small temperature region
near 1. given by

IT -~ T.] < (n'Pa)T.. (4.34)

4.3 Numerical results for the t-matrix

At intermediate temperatures, we must solve the coupled equation for [o and £
numerically, using (4.13)-(4.16) and (4.19)-(4.21).

In Fig.4.3, we plot fo(T) as a function of temperature for a given n. It goes to
zero at the transition temperature and approaches the constant fy at temperatures
far away from T,. This is in agreement with the analysis given in Section 4.2. To/fo
also is seen to be slightly greater than unity near 7 = 0, due to the correction term

8(na®/7)'/? in (4.29).
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d= o,
3§ =0.026

—

————— 4 =0.0073
—— 4 =0.0005
---—-— & =0 (ideal gas)

Figure 4.4: Condensate density vs. temperature in the many-body ¢matrix approxi-
mation

We also plot ng(T) in Fig.4.4 for different gases. including a comparison with
result for an ideal Bose-condensed gas. We find. at a given temperature. that the
condensate fraction is higher in a dilute gas with repulsive interactions than in an
ideal Bose gas. However, the situation is opposite near T = 0. where an ideal Bose
gas has a higher condensate fraction. The crossover happens at T, as discussed at
the end of Chapter 3. As expected, the corrections due to interactions are very small.
It can be also seen from Fig.4.4 that in the present approximation, no(7T) goes to zero

at the BEC transition temperature of an ideal gas.
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4.4 Assessment of the many-body ¢matrix ap-
proximation

In this chapter. we have presented a detailed investigation of a dilute Bose gas using
the many-body f-matrix approximation. We solved the problem analvtically at low
temperatures as well as near the phase transition point. As far as we know. it is the
first time that these analytical results have been obtained. In the limit of 7' — 0. the
results of the simpler Popov approximation were obtained. In contrast. as T — T..
the t-matrix o goes to zero. as explicitly shown by (+.29) and (+4.33).

Our numerical results for the many-body t-matrix approximation shown in Fig.1.3
and 4.4 are in agreement with those recently obtained by Bijlsma and Stoof [33]. Their
work was part of a detailed study of thermodynamic properties of a dilute Bose gas.
within the framework of a many-body variational approach. Our present calculation
expressed in terms of the Popov approximation with a many-body #matrix is less
ambitious but perhaps more direct.

In a separate investigation. Bijlsma and Stoof [45] have reported a detailed study
of how T. of a dilute Bose gas is affected by interactions using a renormalization group
(RG) approach. This is based on RG recursion relations resulting from a systematic
integration over the large k (short distance) correlations. which removes the infrared
divergent terms in a systematic way. This more general analysis shows that many-
body fmatrix approximation is not sufficient near T,. This is not unexpected since in
using the many-body t-matrix in the Popov approximation. one is clearly including
a class of higher order self-energy diagrams built out of the normal propagator Gy;.
but still omitting any contribution of other higher order diagrams. especially those
built out of the anomalous propagators Gy, and Go;.

[n the succeeding chapters, we shall give a systematic study of the second-order
self-energy diagrams first studied by Beliaev [34] at T = 0 and later by Popov [31] at
T ~ T.. In particular, we show that these second-order diagrams have contributions
which are infrared divergent due to the phonon region of the first-order Popov prop-

agators, as given in Chapter 3. It turns out that the second-order ladder diagram
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is one of these divergent terms and this is associated with a(T) defined in (4.21).
It turns out that the term involving ‘_~\.2/E2 in the integrand of (4.22) for T < T..
which we have neglected in Section 4.2 and 4.3. is one such infrared-divergent con-
tribution. Our neglect of this is partially justified by the results of Chapter 6 and 7.
where we show that all such divergent terms cancel out in physical quantities. Still.
it is worrisome that the remaining contribution to a(7T) is divergent at T = T.. One
might wonder if this divergent term is also canceled out in a more complete theory.
[n fact. the RG analysis of Bijlsma and Stoof [45] shows that results such as shown
in Fig.4.3 based on the many-body f-matrix approximation are qualitatively similar

to what one obtains in a more complete study.



Chapter 5

The second-order Beliaev-Popov

(B-P) approximation

The Beliaev-Popov approximation is the next step bevond the first-order Popov ap-
proximation discussed in Chapter 3. Beliaev [34] first studied the higher-order effects
of interactions on the properties of a weakly-interacting Bose gas at T = 0. In his
analysis of the same system at finite temperature. Popov [32] argued that Beliaev's
second-order self-energy diagrams were still the dominant ones. We call this class of
diagrams the Beliaev-Popov (B-P) approximation. This second order approximation
treats the coupling between the condensate and non-condensate atoms in an improved
fashion and gives rise to a gapless excitation spectrum. It is also the lowest order
self-energy approximation which exhibits infrared-divergent contributions.

In this chapter. we give a detailed study of the self-energy diagrams in the B-
P approximation, and derive formal temperature-dependent expressions for ¥, and
Yi2. In Chapter 6 and 7, we then use these results to consider various properties in

the low frequency, long wavelength limit.

5.1 Diagrams and their formal expressions

The diagrams for the diagonal self-energy ¥, in the B-P approximation are shown in

Fig.5.1. The basic “building block” of these diagrams is the hatched line. representing

63
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Figure 5.1: Diagrams for the diagonal self-energy ¥, in the B-P approximation.

64
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NN

Figure 3.2: An interaction vertex involving a f-matrix

the many-body t-matrix I defined in Eq.(3.8). In order to make it easier to compare
with conventional diagrams. we draw [' (represented by a hatched square in Chapter
3) in a way that it resembles an ordinary interaction “line”. Each diagram in Fig.3.1
contains at most two [''s, connected to to each other by elements of the 2 x 2 matrix
propagator G. which includes the normal diagonal propagators G; and G, and the
anomalous off-diagonal propagators G2 and (. This B-P approximation involves
terms explicitly to second-order in [, but it contains the first-order propagators. which
are also functions of I', and which can be expanded to arbitrary order in I'. In fact. as
we shall discuss in Chapter 6, the physical quantities such as the quasiparticle energyv
in the B-P approximation contain corrections that are the order of (na®)'/? (or [*/?).
relative to those in the Popov approximation of Chapter 3.

Following Popov's notation. we divide the diagrams of £, in Fig.5.1 into 7 groups:
dg, @y, @2, ... ag. Lhe first diagram in each group is the "main” diagram: others in
the same group are exchange diagrams that can be generated from the main one by
exchanging two outgoing arrows or two ingoing arrows (but not both!) associated
with interaction vertices. An interaction vertex, shown in Fig.5.2. consists of four
“arrows” connecting to an interaction “line” (actually a hatched square representing
'), two of the four “arrows” going in and the other two going out. We now examine

each group in ¥y, in turn:

(1) ao: the diagrams in this group are exactly the Bogoliubov diagrams included in

Fig.3.4.

(2) ai: these are the Hartree-Fock diagrams, but now the free propagator G©) used
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in the first-order Popov approximation has been replaced by the first-order

propagator (.

The diagrams in the other groups (a;. ... ag) all involve two [''s and one pair of

condensate lines (represented by a wavy line).

(3) a,: these are built out of two Gy, ’s. both propagating forward. We note that if
both of the G;’s are replaced by the lowest-order approximation G°), then a,
reduces to ag. because by definition, two G©’s connecting two [s is included
in [ itself already. To avoid this double-counting. we must subtract the con-
tribution of G© from a,. This deduction is represented in Fig.5.1 for a; by a

stroke across the (1) line (following Beliaev's notation [34]).
(4) aa: these are built out of a Gy, and a Gy;.

(3) ay: these are built out of a G; and a Gyy.

(6) as: these are built out of two (7|;’s, one propagating forward. the other propa-

gating backward.
(7) ae: these are bhuilt out of a (¢, and a (9.

The diagrams for £,, in the B-P approximation are shown in Fig.5.3. Again
following Popov's notation. we have divided these diagrams into seven groups: bg. b;.
bz, ... bg. For simplicity. only the main diagram (as defined above) in each group
is shown in Fig.5.3. One can easily work out the exchange diagrams in each group.
analogous to those shown in Fig.5.1. The total number of diagrams (main one +
exchange ones) in each group is denoted by the number in the bracket. Unlike the
diagonal self-energy T,,, the off-diagonal self-energy diagrams for £,, always contain
at least one pair of condensate lines, even though this is implicit in 6;. As a result, all
these diagrams vanish in the normal phase when the condensate density ng vanishes.

We list some features of each group in ¥,; in Fig.5.3:

(1) bo: the diagrams in this group are simply the Bogoliubov diagrams included in

the first approximation (see Fig.3.4).
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by (4) b, (4)

Figure 5.3: Diagrams for the off-diagonal self-energy ¥,, in the B-P approximation
(2) b;: this involves the anomalous propagator (rj,. As before. the contributions
from the lowest-order term of Gia, given by ngfoG@G® must be subtracted.
for these are already included in by. This deduction is represented by a bold

stroke across the GGy, line.

(3) bog: these are built out of two G;'s. and there is one exchange diagram in this

group.

(44) ba: these are built out of a G5 and a Gy, which is propagating forward. and

there are three exchange diagrams in this group.

(3) by: these are built out of a G2 and a Gy which is propagating backward. and

there are three exchange diagrams in this group.

(6) bs: these are built out of two Gy;'s. one propagating forward and the other

propagating backward, and there are three exchange diagrams in this group.

(7) be: these are built out of a G2 and a G5, and there are three exchange diagrams

in this group.
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It should be noted that Beliaev [34] and Popov [31] draw their self-energy diagrams
using a different definition of vertex functions. Figs.3.1 and 5.3 give the self-energy
diagrams in a more conventional. direct manner.

We now work out the explicit mathematical expressions for each of the diagrams
in Fig.5.1 and 5.3. For convenience, we call the diagrams built with a single I type-I
diagrams (aq. a;. bo, b1), and denote their contributions to the self-energies as S{l
and T!,. Similarly, the diagrams built with two [’s are called type-II diagrams (as....
ae. bs.... bg) and their contributions are denoted as Ti} and TiY.

We first examine the type-II diagrams a,. ... as. and bs. ... bs. From Appendix A.
we recall that the many-body t-matrix ['(k,k’, K: =) in the limit |k|=|k’| — 0 takes

the following value:

k.kK.K:z) = fo_i( ) f0+ fo/ dk, 1

270)3 €x, — € — I
o / dk, 1+ fglek,) + flek-k,)
0 27 )3 - _ZC%K_kl + 2u

+0(f3).  (5.1)

The integral in the last term in (5.1) comes from the frequency sum over the product

of a pair of free propagators, which we define as .J( P). namely

J(P) = /(‘““ (——)ZG“” (PGP = p1)

/ dky 1+ fe(ex, + fo(ck-k,) (5.2)
(27)3 Z-ZC%K—RI +2u o
Here P = (K. iwy) represents the total four-dimensional “momentum™ of the two

propagators. The terms that are order of f3 or higher are neglected in the B-P
self-energies. Therefore, in all type-II diagrams which involve the factor [ x [. we
set [' = fo, neglecting the other terms of order foz or higher in (5.1). Within this
approximation. the contribution of each exchange diagram equals that of the main
diagrams in the same group. Therefore we can simply evaluate the main diagram and

multiply the result by the total number of diagrams in each group. The contributions
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of a;. ... ag in Fig.5.1 are given by

ax(p) = 2nof:g/d‘lpl[Gu(Pl)Gu(P“Pl)

-GOp)Gp - p1)]

= 202 [ d'pGulp)Gulp = pr) = 200 fEJ () (5.3)
az(p) = 4”0fgfd“P1G12(Pl)Gu(P—PL)I (5.4)
ap) = dnoff [d'piGua(p)Gulp = po) (5.3)
as(p) = 4nof [ dmGup)Gulp - p); (5.6)
ag(p) = 4"0);3/(1"!31012(1’1)(;12(!’—Pl)l (3.7)

and those of b,. ... bg in Fig.5.3 are given by

bo(p) = 2nofcf/d-HPlGlz(lh]ze(P—121)2 (5.3)
ba(p) = 4n0f§/d.'P1G12(P1)Gu(P — ) (3.9)
bi(p) = ‘1n0f3/([1[’16'12([)1)011([71 - p) (5.10)
bs(p) = Jf"Of(f/dJPlGn(Pl)Gu(Pl - p): (5.11)
bs(p) = -lnofg/d"PIGlz(Pl)Glz(Pl - p). (5.12)

Here the integral over the four-dimensional momentum p; is defined as usual.

[an=3% [ G

1wy

We next turn to the type-I diagrams containing a single ' The contribution
from the momentum-dependent part of [ is of order fZ, as shown in (5.1). Thus we
must take into account the momentum-dependence of I' in the type-I diagrams. The

contributions of the type-I diagrams are given by

ao(p) = no[l'(p,0;p.0) + [(p,0;0.p)], (5.13)

a(p) = [d'mGu(p) [L(p.piip.p1) + Llppiipr.pll. (5.14)
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bo{p) = nol'(p.~p;0.0). (5.15)
b(p) = /d4P1 [Gl2(pl) - nofoG(O)(Pl)G(o)(—Pl)] C(p.—p:pr. —p1)
= /d4P1012F(Pf —pipi-—p1) — nof{fJ(O)- (5.16)

Egs.(5.3)-(5.12) plus {5.13)-(5.16) include explicit expressions of all the contribu-
tions to the self-energies in the B-P approximation. These expressions arc slightly
different in form from those given by Popov in Chapter 6 of Ref.[31]. although the
sum of the various diagrams yields the same self-energy in the end. The first-order
contributions considered in the Popov approximation [see Eqs.(3.15) and (3.16)] are
included in the lowest-order part of ao, by and a;. The other diagrams. a,.... as.
by. ... bg and the higher-order contributicns (proportional to f:g) of ag. bp and a;.
are the new ones. not included in the first-order Popov approximation of Chapter 3.
When comparing these higher-order diagrams with those considered by Beliaev [34]
at T = 0. we find that thev are exactly the same. except for the finite-temperature
formalism being used.

We note that at above T.. only the Hartree-Fock diagrams «; survive in the B-P
approximation. Since the “bubble” in a, involves (¢;;. the non-condensate atoms are
actually treated in a “dressed” mean-field manner. Moreover. the condensate atoms
are treated in an improved manner compared to the simple Popov approximation.
as shown by all the extra terms involving the condensate density nqo in Fig.5.1 and
5.3. This leads to a gapless approximation. as proved by the fact that the chemical
potential satisfies the Hugenholtz-Pines theorem [34].

It is worthwhile to compare the present B-P approximation with the many-body
t-matrix approximation discussed in Chapter 4. The similarities and differences be-
tween these two approaches are schematically shown in Fig.3.4. To the first order in
[". the self-energy diagrams included in these two approaches are exactly the same.
However, the higher order self-energy diagrams are different. For ¥;,. the many-body
t-matrix approximation includes only aq. @y and a,, but not a3, a4, as. and ag: and
for £;5, the many-body ¢-matrix approximation include only by and by, but not b,,

b3, ..., bg. On the other hand, the many-body ¢t-matrix approximation also includes
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B - P approximation SC t-matrix approximation

Figure 5.4: Overlap and difference between the many-body ¢matrix and the B-P
approximations.
a set of diagrams. shown in Fig.5.5. that are not included in the B-P approximation.
Among these extra diagrams in Fig.5.3. only a- and b; are of order I'*.

[t is clear that a- is built out of three (5, ’s, two of them propagating forward. the

other propagating backward. The explicit expression for a; is

az(p) = l- 2f02 Y Gulg)y. [Gll(Pl)Gu(P +q—p) = GOP)Gp+4q- P1)] .
(ﬂV) q P1
(5.17)

where to avoid double counting, one has to subtract the contribution of G'®G® from

a;(p). Using the definition

1 - }
™Y(p,¢;p,q) = —chf S Gu(p)Gulp + 9 —m), (5.18)
’ 4!
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4 ‘
0 N + S +
a, (2) Higher order terms
\d.f\ LN : \do\ L LR W >

\ 4
)
)
i

b, Higher order terms

Figure 5.5: Extra diagrams included in the many-body ¢-matrix approximation.

..................................................................................

as is given by
1 new -
a-(p) = —WZGII(Q) (C*"(p.q;p.9¢) = L(p.q: p-9)] - (5.19)
q

Comparing (5.19) with (5.14). we find that the structure of ar is similar to that of
a;. with only ' replacing I'. The frequency sum in (3.18) cuts off the momentum
integral at k3 < a~!', where the difference between ["*¥ and [ is expected to be
small. This is why a; is not important in the B-P approximation. A similar analysis
applies to b7 for ¥;,.

It is always difficult to justify why one includes a certain set of higher order dia-
grams but not the other, and especially so in Bose-condensed systems. We concentrate
here on what is done in the B-P approximation, without going into a thorough analy-
sis as whether it is justifiable or not. With a clear understanding of what is included

and the consequences, it is then possible to examine such questions.
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5.2 Evaluation of the B-P self-energies

In Section 5.1, we have given formal expressions for all the self-energy diagrams in
the B-P approximation. We now use these results to obtain more explicit expressions
for the self-energies.

[t is convenient to write the Green’s functions G, and (7(;. given by (3.31) and

(3.32). in the following form:

Ak Bx
; _ . . 5.20
Gu(p) i, — Er dw, + Ex o

Cx Ci
. _ . . 3.21
12(p) tiwn — Ex dwn + Eg o

where
E. SR AY
k=uf = ﬂ—?% o
; _ “Eiteat+

By =vi = A:EG:JF ' =

A ‘
(k= -y ABx = —;—EZ (5.2:4)

With these expressions. we perform the Matsubara frequency sums in (5.3)-(3.7) and

add a, to ag to obtain

S1(p)! = aa(p) + aa(p) + as(p) + as(p) + as(p)
= nof{f/d*‘pl [QGlt(Pl)Gn(P —p1) +8G12(p)Giilp — p1)

+4G 1 (p1)Gdpr — p) + 4G10(p1)Gra(p — p1)] — 2n0fEJ(p).  (5.25)

dk, {[2A142 +8C1 Ay + 1A B +4C, (s
(27\')2 iu.’n - El ha E2
_23132 + SC[Bg +4B1A; + 4y Ca
iw'ﬂ. + EI + E2
[‘ZBIAZ +8C1Ay + 4B, By +4C,Cy
+ -
wy + E) - F,
2A1 Bg + 8C1 B'z + 4AlA2 + 4C102
iwn - El + E'2

= =2n0f3J(p) + nof} [

| ot B2

] F_(E.. Eg)} : (5.26)
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where the two F thermal functions are defined as

1)
(8]
-~1
~——

Fi(E\. Ey) = fe(Ey) + fB(Ey) + L. (3.
F_(E\. Ey) = fe(EL) — fB(E>). (3.

I
(™)
oL

fB(E) is the Bose distribution function. Here the subscript “1” denotes k; and =2~
denotes k; = k — k;. On the right hand side of (5.26), a variable change of k; to k.
interchanges =17 and “2” only. but has no effect on the integral. Taking advantage

of this. we can use (5.22)-(5.21) to further simplify (3.26) to

L ., dky 1 (Ei. Ey) (—Ey. —F3)
v m _ Z 2 1 gl L _ 9
=n(p) 3700 (27 )3 ELE, [iwn —E\-E, iw,t+E +E,
- f'Z/ dk, l g(E. E5) _ g(— L. — E))
TR0 R PEE, iw, — Ey — B2 iwn + E, + E
g(—=FE . E,) gl Ey. —E3)

—_ AT ‘2' 5.9¢
Tt Ei—E  iwa—Ei EJ fB(Er) = 2no fo J(p)- (5.29)

The function g(E\. E3) is defined as
G(ELEy)) =3€162 — E\Ey+ Aey + €2) + A — A(Ey 4+ Es) + e Ey + ,E. (5.30)

We emphasize that in (3.26). the terms involving F, and F_ contain different
physics. The F, terms involve creation or destruction of two quasiparticles [poles at
+( £ + E,)] while the F_ terms involve scattering of a quasiparticle from another
quasiparticle [poles at £(£; — E;)]. The latter thermal scattering terms vanish at
T = 0. This distinction between these two kinds of terms is less obvious in the
expression (5.29).

Similarly. the type-II diagrams of £, can be added up to give

S12(p)!" = bo(p) + ba(p) + bs(p) + bs(p) + be(p)
= noﬂ?/d"px 4G2(p)Gulp ~ p1) + 4G 2(p)Gu(pr — p)
+4G1(p1)Gri(pr — p) + 6Gr2(p1)Gra(p — ;)] (5.31)
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dk; { [4C'1 B, +4C 14, +4A,B; + 6CC,

= nofg (27)3 i — E1 — F

4C'[ Bz -+ 4C'1 Ag + -lB[.*lz + 6C1 Cz] “
— F (E\. E,
iwn + E1 + Eg +( ! ‘)
+ [4C1 By +1C1 Ay + 4B By + 6CC2
éwn + E[ - E?

-461.42 + 4?182 + 44,4, + 6C1C2] F_(E,. Eg)} . (5.32)
Wwn — El + E:_)

A further simplification [compare with (5.29)] leads to

L - dk 1 h(E., E,) h(—Ey, —E))
< It _ L 2 1 Ly £2 _
Z12(p) 5700 / (27 ) L E; [iwn —E\—-E; iw.+ E+ Ez]
. dk 1 h(E,, E7) h(—E). —E,)
2 1 1 2 _
+nof0 / (27‘_)3 E‘{E‘2 [iw‘n — El — Eg f(-u’n + E1 + E-z

h(—El-. E2) h(El,—Eg) .
Ty ey N L0 533

where the function h(FE,. E;) is defined as
R(E;. Ea) = 2616, — 2E E, + A% (5.34)

The contributions of type-II diagrams are given by (5.29)-(5.30) and (5.33)-(5.34)

We next calculate the contribution of the type-I diagrams. Using (5.1). ao(p) in (5.13)

can be expressed in terms of fg as

k :
A k: iy — 6/»)

lvl?\"
o
NI?\'

K dwn — &) + T(5

i dk, !
= an _— (ﬁz) knofu +n0f0 / (27T) €k, — €kj2 — m

+'2nofo (p)-

I\)

ao(p) ao(k. iwn) = no [F(

(5.35)
[t is easy to check that the imaginary part of the integral in (5.35) is given by

- dk . ;
nOfoz_/Wmé(fq—Ck/z) L (ﬁz) knﬂfo (5.36)
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and it exactly cancels the second term of (5.35). We are thus left with

+ 2n0 f21(p). (5.37)

N d P
ao(p) = n0f0+"0f0/ : a

(27 ) eq — €k/2

where P means the principle value of the integral in (5.37). We note that the term
containing .J(p) in (5.37) cancels the last term in (5.29). Clearly. the integral in (5.37)
is divergent at large q. However. this does not cause any trouble because. as we shall
see shortly. this term is canceled by another divergent contribution to T,,(p)!' in
(3.29).

For the evaluation of ay(p) in (5.14). we use (5.1) to obtain

k-k k- k
ai(p) =/d“plcu(m)[r( S 5kt Kiien + = G

k — klk k,
2 2

+I'(—

K+ kyptiwn + iwr — Ekvk, ) (5.33)

The main contribution from the four-dimensional momentum integral comes from the
region

|ky| ~ kg = (2mkgT/RH)V2 (5.39)

Since we are only interested in the temperature region that are not too high compared

with 7. we have [31]

YmkgT.\'/?
m‘“(%‘) ~ ' <atl (5.10)

In the small momentum region given by (5.40). the t-matrix can be treated as the
constant fo. The integral of G1(p1) over p, gives the density n!!) of excited atoms in

the Popov approximation [see (3.42)}, namely

dk
A ]d“p;G“(pl): (271_;3[1 ) — Bif(—E))

dk1

dkl 61+A 3El 1 -
= /(2#)3[ SE, coth 5 —5] (5.41)
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With (5.41) in (5.38). a; reduces to

ar(p) = 220 fy = 2, dk Ay + B)fs(Ey) + Bi). (5.42)
(2

Adding ag and a; to give the contribution from type-I diagrams of ¥;,. (5.37) and

S, = aolp) + ailp)
= 2(llg+fl([))fu+llofg/ _dkl p

9 r2 Pt
(27)3 €x, — €x/2 + 2no fo J{p). (5.43)

The two anomalous type-I diagrams are by and b;. With (5.1) and (5.13). b is

given by

bo(p) = nel'(k.0.0:0)
. dk P ..
= nofs+ nofo/ ‘ + nof2J(0). (5.44)

27 )3 €k — Ex/2

In evaluating b,. we recall the fact that the lowest-order of (1, is proportional to
nongm]G(o'. From (3.16). it is clear that b; is at least the order of f(f therefore we
can neglect the momentumn dependence of ' in (5.1) and set it equal to fo. Within

this approximation. b; is given by

b(p) = Jo [d'pi [Gualpy) = nofoGO(p)G(~py)]

_ dk, (1 nofo — a2
= b [ G ( 3)§(iwl—El)(iwl+El) oo /10)

: dk; 1 3E, =
= —;nofg () ;,;E—C th— nong(O) ( :
< 1

ot
o—
it

Using (3.44) and (5.43). the sum of by and b; gives the type-l diagram contribution

to S[gZ

Y2 = balp) + bu(p)
= n0f0+ nOfo/

€k — €k/2 El 2

(;ﬂ;;s[ P Lo 2E, (5.46)
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We note that the terms involving J(0) in (5.44) and (5.15) do not show up in bg + b,
because they cancel each other exactly.

This completes our evaluation of type-I and type-II diagrams. Now we combine
the contributions of the two types to find ¥;; and &;;. By combining (5.29) and

(5.43). we obtain the following expression for Y;;.

Culp) =% u+ﬂu)
. dk P
— * 2 l
_{_ln j2 dkl 1 g(E1~E2) _ g(—E[—El)
5700 (2B E\E3 |twn — Ey — Ey e, + EL+ B

tn f2/ d, 1 g(Ey. E3) _ g(—E . —E3) g(—E . E)
000 | xR E\E; liwn — Ey — By iwn+ Ey 4+ Ea  dwn+ Ey — E,
g(E . —Es)

dk,
(27 )3

——5 (A1 + B1) fe(Ey). (5.47)

where the function g is defined in (5.30). Similarly. combining (5.33) and (5.46). we

obtain

Smm=vwwimn
. d P
= !lof0+ nofo/( d [ : l

27 € — ey By
L/ dk, 1 h(E,y. Ey) 3 h(—E,.~E,)
2 (217)3 E1E2 iwn - El et E2 Z.Lb'n + El + E2
- dk 1 h(E\., Ey) h(—F,.—FE,) h(=E\. E,)
2 1 1 2 _ 1 2
+rofo / (27 ) E\Ey [iw,, —EL—-FE, .+ FE+F + g + By — B,
hE-E) ], o [_da [(E,) -
3%_&+&hda>oh/“m . (5.43)

where the function 4 is defined in (5.34).

In (5.47) and (5.48), we have deliberately separated out the part that does not
involve the Bose factor and the part that is explicitly temperature-dependent. The

first two lines in each expression gives the former contribution. which we define as
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vo
. . ik - dk P
20.(p) =2 2fy [ =B : ‘
1(p) no fo + fo/ (27 P 1+ nofy (27 )3 €1 — €/
1 '2/ dk, 1 g(EL. Es) g(—Li. - E,) -
ot — . (949
3l | Grp B, [i.un BB it Bt By
A B dq P 1
vo = hl 2 - —
Zulp) = nofot QnOfO (27)3 Lq — €x/2 EJ
L/ (lkl l /l(E[.Ez) _ ’L(—E[.—Eg) (_ 30)
2) QAP EE i B~ B2 wn+ Bt E2]
These expressions correspond to Beliaev's results at T = 0. as given in Eq.(5.9)

and (5.10) of Ref.[34]. However. when used at finite temperatures. £° is implicitly

temperature-dependent through its dependence on the condensate density no(7T).

5.3 Energy of excitations in the B-P approxima-
tion

Once we have obtained a specific approximation for ¥;; and Y;,. we can substitute

these into (2.53) and (2.54) to calculate the Green's functions at finite temperatures.
Due to the lengthy expressions in (3.47) and (5.48). the results for (1, and G, are
very complicated. However, there is a way [31] to simplifv such results so that the
poles (and their residues) of (¢;; and G, are more clearly exhibited. and the second-
order corrections to the energy of excitations are shown in an explicit manner. To
do so. it is convenient to separate out contributions which are explicitly linear and

quadratic in fg,

Sulp) = Si'(p)+ S0 (). (5.51)
Sup) = () +S30). (5.52)

po= pM 4@ (5.53)
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Here the linear expressions S{}. £} and 1" have been given earlier in Chapter 3
p 11 12 g P

[see (3.20) and (3.33)]. while the quadratic contributions 3(121) and S(u) can be deduced

from (5.47) and (5.438) in the Section 5.2. The “second-order™” correction to p. denoted

by (2. can be obtained using Hugenholtz-Pines theorem [23. 26]. namely
p® =x® ) - 3(12;)((])_ (3.5:1)

With a little algebra. one can show. after dropping all terms of the order O( !}
and higher. that the denominator of G(,(p) and G2(p) in (2.533) and (2.34) is given

by

D =~ (iwa)? = iwn(SF, = S0) = EZ + (e + A)(2p® = SH — 1) + 22800 (5.55)
where

o= =i (5.56)

= S@¥(-p) (5.57)

Solving D(k. tw,) = 0 for iw, (which will be analytically continued to real frequencies

« *in). we obtain

: 1 — .
N (e VEE = (e + 2)(2u? — T, - S5) — 2250
~ . L o 1 -
=~ +{E +,—&(q+A)< + 50 -2 - E—kAS&? £5(Eh - S}
= +(Ep + AL). (5.38)

Here iw, = £ Ej are the two poles of the Green’s functions in the first-order Popov
approximation [see (3.37)] and the new term in (5.58) is the correction from the

second-order B-P approximation,

€k - A - 2 1 - - =
AE = m(Sf]+Sn —>y(21)+ﬁ(s;‘,+s L —2u(® ~ 2% ’):l:i(Sfl—S“) (5.39)
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Using (5.58), the denominator D(k. iw,) of G, and G, is given by

D(k.iw,) = (iwn — Ex — A\ )iwn + Ex + A7) (5.60)

Consequently. the diagonal Green's function in the B-P approximation can be rewrit-

ten in the form

. : ), e=

. . bn + e — ptt — u® 4+ T+ S5 =
Gk, twy,) = — - . 3.61
n ) (iwn, — £ — .\Z)(lu:n + Er + \p) ( )

This can be expressed as the sum of two poles.

A Bl
w—Ek—;\z.' »«1+Ek+.’\;.

Gulp) =
where 4} and Bj satisfy
Afiwng + Ex + \]) = Biliwn — Ex = \{) = iwn + e + A —pP + S0 (5.63)

Since (3.63) must hold for arbitrary values of iw,. we can solve (5.63) for A} and B;

to give

:12. = A;+ . {5.6-1)

Bl = B+ o (5.65)

Here A, and By. defined in (5.22) and (5.23). are the corresponding weights for the
two poles +F). of (71 in the first-order Popov approximation: and ay is the “second-

order” correction defined by

_ : 2) - . He(2 = en
a = 2685 — A(SH + 57, — 2 — 28] (5.66)

15 |
Using (5.64) and (5.63) in (5.62), we finally arrive at

: A + oy By + a; R
(K. dwn) = - — - . 5.6
Gtk ten) = o AT Tl + Er 4 AL (5.67)
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This type of expression was first derived by Beliaev [34] at T = 0 and the above
analysis formally extends his approach to finite temperature.
Following the analysis in obtaining (3.67). it is straightforward to also express the

anomalous Green's function G, in a similar way. namely

Cr + 7 Ci + 7
Ghra(k. twy) = - — - . 5.68
t2( ) iwy, — Ex =\ dw, + Er+ [ ( )
Here the “second-order™ correction to (' is given by
A (2) \“‘li)
— - 9,2 - 9 : —~i2 -
= SE3 [Ck(gﬁ + 57— 27 + ASH+E5 - 22 — 285 — SE. (5.69)
L ST Z .

We can use (5.67) and (5.68) to calculate the properties of the Green's function
within the B-P approximation. This will be done in Chapter 6 and 7. The energy of

single-particle excitations (poles of (;; and G ,) are given by
EBF = +(E, + \F) (5.70)

which may contain a finite imaginary part. describing the damping of the single-
particle excitations. We emphasis that these approximate expressions for (7y,. (7|2
and EP? are only valid within the B-P approximation. They can not used in other

approximations without further discussion.



Chapter 6

Calculations at 7" =0 using the

B-P approximation

[n Chapter 3. we worked out the single-particle Green's functions in the B-P approx-
imation for a weakly-interacting Bose gas. The formalism developed was valid for
arbitrary temperature. In this chapter. we use the results obtained in Chapter 5 to
study the special case of T = 0. reproducing the famous “second-order™ calculations
worked out by Beliaev [34] some forty years ago. We have tried to give a more de-
tailed treatment of some of the intermediate steps and hope that our discussion will
be useful to many readers who have become interested in Beliaev's work in connection
with calculating the properties of the recently discovered trapped atomic Bose gases.
I[n particular, we give. for the first time. explicit expressions for the self-energies in the
B-P approximation which contain infrered divergent terms. As well-known [22. 30].
these divergent contributions cancel out in the final expressions for physical quanti-
ties. such as the long-wavelength excitation spectrum. However, they have a physical

basis in the Bose broken symmetry and are of interest in this more general context.
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6.1 The B-P self-energies at 7' =0

At zero temperature. the diagonal Green’s function Gy, in (5.67) is given by

Ax + ax Bi + ax )
Gulk.w) = - . 6.1
ul ) w—Ec—-\N+in o+ Ec+AN -y (6.1

where Af and a, are defined in (3.39) and (5.66). The functions a; and \} are
combinations of S(lzl)(:f:p) (or £f). T} (2) and u‘?. which are “second-order™ corrections
o the corresponding quantity ¥;,(£p). £12(p). and u respectively. Using (5.49) and
(5.30). leaving out the first-order terms and carrving out the following integrals.

dkl dkiy —FEi+a 4+ 2 rm\32 >
)fo/ i fo/ w3 2E, T 3x2 (5_2) nofo

. dk, P ] 2 rmAN? -
Of(]/ 2x )3 (61 - Ck/z - E_l) - ( hz ) nOng.

(6.2)
we obtain the T = 0 “second-order™ terms
«(2) oL pdk g(E. Ey) g(—=Ey. - Ey)
Elp) = znofg 53 — = :
2 (27?) E[Eg w—El—EQ-f-lT] w‘+E1+E2—H}
. S /m\¥? = o
+E1+E;]+F(h—2> nofo . (6.3)
@) = l 72 / dk, 1 h{E\. Ey) __h(=E£1.—Ey)
12 2090 J OFVPEE, |e—EL - Ea+in  w+t Ei+ Bz — iy
I /m\3/? -
+= () Vi, (6.4)

Here the functions g and & are defined by (3.30) and (5.34). respectively:and A = nofo
[see (3.36)]. The resultsin (6.3) and (6.4) agree precisely with those given by Eqs.(5.9)
and (5.10) of Beliaev [34].

The form of (6.1) makes it convenient to study the behavior of the Green’s function
near the poles at w ~ +FEj;. For this purpose, we first do a Taylor expansion of

TP (k,w) and £{3(k,w) about the pole w = E,
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Shikew) = Sk E) + 0 (k. Ex)(w — Ex) + 0 [(w — Ex)?]. (6.5)
Shkw) = Tk —w)

= Sk —E) + o7 (k. Ex)(w — Ex) + O [(w=E]. (6.6)
2(kw) = SOk Ex) + @k E)(w - E) + 0 [(w = E?]. (67)

where the first-order coefficients are defined by

A1} (k. )

ot (k. Ey) = 5 : (6.3)
d w=FE;
/JAMV _
o7 (k. Ey) = 9 (k. —w) . (6.9)
A B
95y (k.w)
O,k E) = =22/ ) (6.10)
Ow weE,

In this Taylor expansion. both the zeroth and the first-order coefficients are complex
quantities. The real and imaginary parts of these quantities are denoted by “Re” and
“Im”. respectively. in the following discussion.

[n the limit of small momentum (compared with a\s. the integrals involved
in (6.5)-(6.7) can be worked out to give explicit expressions for ;. £7, and {3 in
powers of E. The expansion. which is extremely tedious. is conveniently done using
MAPLE (a computer software that can do symbolic computations). However. one

has to separate out the divergent terms from well-behaved terms before carrying out

the final integration. Our final results for the zeroth-order terms in (6.5)-(6.7) are:

(23 N QOQG 12 14 . . l
ReX 1 :A.nWm»v = O A - — Nb~ + Nb_ - = | Vi
1 T 3 2
161 1 3 2
+Ttonm9|MPV i. (6-11)
w ALNV 2 ﬁoau 2 ‘
eXio(k,Er) = 8 . Al3-2D))+
-79
+ A:E ke ﬂbuv g (6-12)
MBMA_N_V:? TE) = —ymngaPA |l Fuy — = u_u E
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13} _ 193¢ , 3070}
1920 © 1920 ' 33810/ °

. 1302 293,% 125508
ImSZ (k. Ex) = —y/7nea®A (1— ol Yk ””‘). (6.11)

31 T 1920 T 21504

Here a (from fo = 4wh®a/m) is the s-wave scattering length: the quantity (nga®)'/? is
a small dimensionless parameter in a low density gas [see (3.7)]. The dimensionless
ratio v defined as

E,

v = =, (6.15)

A
is also a small quantity in the limit of & < vmA/h. The other two quantities D,

and Dj are dimensionless integrals:

* dr o
Dl = ./[; W (6.16)
o dr o

One sees that as £ — 0. both integrals D, and Dj are divergent: D, goes to infinity as
Inr and Dy as r~2. which shows the infrared divergence inherent in the quantum field
analysis of a Bose-condensed system [22. 30]. As far as we know. this is the first time
that infrared divergence associated with these higher-order self-energy expressions
have been written down explicitly. Comparing (6.11) and (6.12) for the real parts
Ret?) and ReS{? with those given by Cheung and Griffin [29]. we note that our
coefficient of the v? term is different. and furthermore the infrared divergent terms
were left out of their results.

Similarly. coefficients of the linear terms in the Taylor expansion of S (k.«) and
Sg)(k.w‘) in (6.5)-(6.7) can be obtained by (a) taking their derivatives with respect to
w. (b) evaluating the derivatives at w = Ej. and (c) in the limit of small k. expanding

the integrands in powers of Ej. This procedure gives (again with the aid of MAPLE)

T 2 15

-~

. nea®\'*1_ /1 11
Re®3 (k. Ex) = 8 [:F (,— - 301) - (— + IDI + 1603) uk]
(6.13)
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a\ 1/2 -
]
Re®y(k. Ex) = 8(”"") (101—1603——:) v (6.19)
'y 1 15
- 2502 L3R L1330t 9T
+ —_ 3 _ﬂ 2V pe _ %
me (k. o) = =y/mnoa (;El > T Y T o 768)
(6.20)
Jue 1302 61313
Im®,5(k. Ex) = —y/mnga® (_%-; [gk _ 108‘3)' (6.21)

Here the imaginary terms have to be evaluated up to order £7 because the lower-order

terms all cancel out when we calculate the quasiparticle energyv spectrum.

6.2 Quasiparticle spectrum

[n the previous section. we have obtained all the zero-order and first-order terms in
the Taylor expansion of $F and S(li) around the pole w = Ej. The “second-order”
correction to the chemical potential at T = 0 can now be casily calculated using

(5.54) and (6.11)-(6.11). to give

3\ /2
(2 = -4-;9 ("0“ ) A (6.22)

s

With these results for ©F. 2. and x@. it is straightforward to calculate oy and

A{. defined by (5.66) and (5.59). We obtain

I

=k — Me(w — Er), (6.24)

where (6.24) also defines the new functions =; and ..

. - . . 2 .
The calculation of AT requires expansions of $% and £{) near the negative fre-
k q 11 12 8
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quency pole w = —FE;. Using the following equality for any differentiable function
y(r) of x:
dy(—2) dy(z) -
I o - o (6.23)
we have
o (k.—E;) = -7 (k. Ex). (6.26)
O (k.—FEr) = -0t (k. Ey), (6.27)
Da(k. —Er) = —dpa(k. Ey). (6.28)

With these last three equalities. we can calculate the quantity \; near the negative

pole w = —E} to obtain

Af

Il

noa®\'/? §E _,E_Ei
- 37T 780 A

1/2 2
noa’ 7w Ef ‘
() o i)

= =+ /\k(w’ + £ (6.29)

The results of (6.23). (6.24) and (6.29) were first obtained by Beliaev in [34]. if we
recall that in his notation ¢ = fo/4x. and A = ngfy. However, as we have noted
earlier. Beliaev did not write down the equivalent of (6.11)-(6.11) and (6.13)-(6.21).
nor did he mention the infrared divergent terms.

With (6.24). (6.29) and (6.1). the Green's function near to the poles at small

momenta may be written in the form

(6.30)

Ap + o B + ax ]

Gulk.w) = (1 = A) [w—Ek":k —w+EL-+Ek

Comparison with the first-order diagonal Green's function given by (3.31). one sees
that the quantities Ay, oy and =, are “second-order™ corrections. These corrections
are small for a low-density gas, since they are all proportional to Vnga® < vVna® <« 1

under the condition (3.7).
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The quasiparticle energy is determined by the pole of GG;(k.w). In the momentum

range |k| <« vVmA/h. (6.1) and (6.24) together vield

E;(cz) = FE.+ =

(6.31)

— t—+/7Tnga’

nga’ 1z 3 E?
30 AY

We recall that £, = hck for small momenta & € vVmA/h. where ¢ = \/N/m =
h\/trnga/m is the sound velocity in the first-order approximation. Eq.(6.31) shows
that for small momentum. the quasiparticles are phonon-like. The “second-order”

approximation gives a small correction to the sound velocity

25 (nga®\ '
NI [1 +35 (”":‘ ) . (6.32)

[n addition. Ef) contains an imaginary part proportional to E} or &°. This corre-

sponds to a finite lifetime for the phonons. This 7" = 0 long wavelength damping
is due to the decay of a phonon into two single excitations. This is clear from the
structure of the self-energies in (6.3) and (6.4) with poles at w = (£, + E;).

The mean number of the atoms .V, with a given momentum & at T = 0 can be

calculated directly from the Green's function. using

_ ) +oc du,‘ .
-\‘k = ¢ lim “"‘6“’"(1’11(1(.\0')
n—0+ J-oxc 27
dz . Ak + ar Bi + ar
= - —e! (] — A [ —_ — — ] 6.33
C‘.erz6 ( £) s=—FEr—-= =+ E.+=x ( )

Here the path of integration C is a contour consisting of the real axis from —ac to
+oc. together with a semicircle in the upper half plane. We emphasize that .V is
the momentum distribution of atoms. not the quasiparticle momentum distribution.
Because the imaginary part of =, is negative [see(6.24)]. the only contribution is from

the negative energy pole of Gy, at w = —FE; — =;. Therefore using (5.23) and (6.33).
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we obtain
Ne = (L= M) Be + )

A 20 3\ 12
= E[HT(”‘;“) . (6.34)

The imaginary parts of ax and A cancel in (6.34). and thus Ny is real. as it should

be. To calculate the total number of particles with non-zero momentum. we need to
know .V} for all momenta. Unfortunately. no general analytic form is available for
arbitrary momentum. Numerical methods are required to calculate the number of
particles ¥V with non-zero momentum. from which. one can find the number .V of
atoms in the condensate. for a fixed total number of atoms .V.

We can also calculate the ground-state energy from the chemical potential z. The
first-order contribution to g is u*) = \ = ng fo given by (3.35) and the “second-order™

contribution () is given by (6.22). We add these two parts to obtain

1xh? 10 3\ /2
po= — !1 +5 (noa ) . (6.35)

m T

Here we may use the result for ngy obtained in the first-order Popov approximation.

as given by (3.44) of Chapter 3. Expressing ng in terms of n by means of (3.4:). we

3\ 1/2
(%‘_) } (6.36)

By definition, at T' = 0 we have y = J( Ey/V')/dn. Therefore. integrating (6.36) with

finally obtain
trh’na 32

+_3

B=
m

respect to n. one obtains the ground-state energy

2 hn? 128 (na®\'/?
@___ﬂ'na[l_*_ S(na) . (6.37)

V m 15 T

These result coincides with the result of Lee. Huang and Yang [24] for a hard-sphere

gas. and later re-derived by Beliaev {34] and by Hugenholtz and Pines [23].
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The pressure P is given by

E 2rhn? 64 (na®\'"?
p=—_(%%0) _Zminen, 22 (ne : (6.33)
av ¥ m ) T
The derivative of P with respect to n vields the usual compressional speed of sound
( 1 BP> 12 (Jcr.ﬁzna) 1z [ 5 (na:’) ]/2}
s=[=2C 1+8{—
m dn m s
2 1/2 o 3\ 1/2
(M) {1 42 (nOa ) } | (6.39)
m 3 T

Comparison of (6.39) with (6.32) shows that the phonon velocity ¢!® is equal to

the compressional speed of sound s in the second-order approximation. This is in

agreement with Gavoret and Nozieres's famous result that. to arbitrary order in the

perturbation. the phonon velocity equals the macroscopic speed of sound at T = 0.
We now turn to the calculation of the spectral density function A(k.w). which we

recall from Chapter 2 is given by
Alk.w) = =2ImG (k. w). (6.40)

At the end of the previous section. we obtained an expression for the Green's function
Gy (k.w). Using the results for ai. Ay and = in (6.23) and (6.24). we find after some
calculation that the spectral densitv function is given by {(vx = Er/N = fck/A:

A = nodrhla/m)

Ak.w) = ﬁ(noaa)l/zyz l:»d(‘zo + lOllk)‘— Ei(20 + Tw)
. S0 ‘ (w— Ex)? + 7§
-9 ) — Eo (20 — Tue
_w(=20+ 101/;\)~ E( 20 lllk)} (6.41)
(w+ Ex)? + i
- 9 3\ /2
B = e ll * 3-8 (n(;a ) ] (6.42)

_ 37 (ned® l”(ﬁc/‘t)s‘_ 3 ﬁ L (6.43)
T At T §80m m \no)’ N
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Somewhat surprisingly. v in (6.43) does not explicitly depend on the parameter «
(except for an implicit., weak dependence through ng. the condensate density). One
recalls that the collision rate goes as a? for a dilute classical gas. The result in (6.43).
therefore. is puzzling at first glance. It is a consequence of the fact that at T = 0. the
quasiparticles are phonons rather than free atoms. The excitation energy depends on
va in the long wavelength limit. and therefore the s-wave scattering length « enters
the calculation of one phonon decaying into two in a complicated way. The final
result is that @ cancels out in the expression for v, in (6.-13).

The explicit expression given in (6.41) has not been given in the previous literature.
We recall that in the Bogoliubov approximation. the spectral density function is given
by

Alk.w) = Apbd(w — Ey) — Bré(w + Ey), (6.-14)

which consists of two peaks at £ and — £} respectively. Associated with the damping
of the excitations. the peaks in (6.41) have a finite width.

[t is easy to check that at w = 0. (6.41) reduces to

2
Akiw=0)~ - (na3)‘/2§‘; (6.43)

for small & (F£, < A). By definition. A(k.w = 0) should vanish for any value of k
{sce Eq.{2.60)]. However. if we remember the Green's function Gy (k.«) in (6.30) is
only valid at near the poles w ~ £ F£). the small but finite zero frequency value in

(6.45) is not unexpected.



Chapter 7

Discussion of the 7 # 0 B-P

approximation

In this chapter, we use the self-energies obtained in (5.47) and (5.48) in Chapter 5
to consider the case of finite temperature. These self-energies can be separated into
two parts: one part denoted by ¥° which does not depend explicitly on the Bose
factor: and another temperature-dependent part denoted by ©7 which does depend
on the Bose factor. In Chapter 6. we worked out the expressions for £° near the poles
w ~ £ F; in the small momentum limit. Those expressions now have a new meaning.
since they involve the condensate density ng(7) which is temperature-dependent at
finite temperature.

We now turn our attention to the temperature dependent parts of the self-energies

associated with the Bose factors. namely

N dk l (£, E)) (—E\.—E))
T _ 2 1 g 1 2 _ g
~11(P) oo / (27 )3 E\E, I:u-' —Ey~Ey+ip wH+E+Ey+ip
g(—E. Ey) g(Ey, —Ey)
. - M E
w+ Ey— FEy 4+ w—E+ E;+n Ie(E)
dk, ¢ +A -
+2 fo/ >7r;3 lE, fB(EL) (v.1)
dk h(E\. E;) h(—Ey.—E3)
«T _ 1 1« 2 { 2
L12(p) ”0f0 (27)? 5'15‘2 [ - FE+ m w+ Ey+ By +in

93
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M-BLE) kBB ]
A E —Ey+in w—E + E+ip] %
. dk; | -
_nnfg/WEfB(El). (12)

Here we remind the reader that the functions g and h are as defined in (5.30) and

(5.34). respectively:

glE\.E)) = 3qea~ElEs+Nea+e)+ A —ANE + E)+ e Ey+ e2F,
h(E.Ey)) = 2e60-2EF, + A2

and the subscript 17 refers to k, and =2" refers to k — k;. We have made the
analytical continuation tw, — « + in in the expressions of ¥7, and ©7,. implying
that we are now dealing with the self-energies for the retarded Green’s function ;™
(see Section 2.3).

We recall that at T = 0. the self-energies in (6.3) and (6.4) involve poles at
« = *(E, + E3). which describes the decay of one phonon into two phonons. At
finite temperature, the self-energies in (7.1) and (7.2) involve additional poles at
« = £(FE, — E,). representing the process of a phonon scattering with a thermally-
excited phonon. Due to these additional thermal scattering processes (present only at
finite temperatures). it is difficult to carry out the equivalent calculations to those in
Chapter 6. One difficulty is associated with the fact that it now matters what order
one takes the limits w — 0 and k — 0. For example, if one takes the limit w — 0

first and then the himit k — 0. one immediately sees that the thermal terms of the

diagonal self-energy ©7, in (7.1) involving poles at w = £(E, — E) are singular:

lim { tim | 250 E2) _ 9(Er-—Eo)
k—0 |w—0|w+ FE| — F; w — FEy 4+ E,

= lim g(—Er. E2) + g(E,. — )

201 By - E,

. 6€1€2+2E1E2+2A(€[ +62)+2A2
= lim

2—1 Ey — E,

= (7.3)
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The limit of k — 0 means k; (= k ~ k;) — —k; [which is equivalent to k; because
the integrands of (7.1) and (7.2) depends only on |k;| and |ks|]. This is denoted by
“27 — 1”7, Since the numerator of (7.3) is finite. we see the expression is singular
for any value of k;. On the other hand. if we reverse the order of the two limits in

(7.3). we find

lim { lim | L =L E2) (B —Ea)
w—0 2—1 o + El - E2 ow — E[ + E‘Z

i g(—Ey. Ey) — g(Ey.—Ey)
= lim

w—0 @'

=0. (7.1)

The above limit vanishes because g(—F;. E:) = g(£;.—£E,). The similar kind of
analysis also applies to the thermal terms of ¥7, in (7.2). Due to this dependence
on the order of limits. we can not expand 7 (k. Ey) in the small momentum limit
following the procedure used in Chapter 6. which effectively took the limits « — 0.

k — 0 at the same time. This kind of dependence on the ratio &/« in the limit of

(k.w) — 0 is well-known in the theory of Fermi liquids (see, for example. [16]).

7.1 The k =0 limit

\We now take the limit k — 0 first and then the limit « — 0. In this case. the thermal
terms in &7, and T7, vanish. Using (5.47) and (5.48) for the expressions of the total
self-energies ¥, ,(p) and X,,(p) we find that in the above limit. these expressions can

be simplified to

dkl €1 +A BEI 1
._411(0 0 )n0f0+ )fO/( 71_)3 ( .).El cot 9 )

dk, 1 2Ae A? 3E | -
nOf"/(ZW;:"El [(1— Elzl-i-)—E?)c th—_—l——}. (7.3)

~ dk, 1 1 2Ae€ A? IE 1
£12(0.0) = nofo — nofd / (2r ;3 E [(; - E_‘zl + 755) Coth% - ——] .
—u < 1 -—
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The second term on the right hand side of (7.5) equals the density a‘Y) of non-
condensate atoms in the first approximation. given by (3.42). [t is very important to
note that ny which appears in these results is the temperature-dependent condensate
no(T). to be calculated self-consistently. We note that both ¥,,(0.0) and £,,(0.0)

contain the term

=1
-1
~—

dk, \? JF
Ofof 1)3 E3 COth —_— ) L . ( .
l -—

which is divergent at k; — 0. namely

v

dk
/dkl———-coth IE, x/(lkl L—fl (7.3)

The chemical potential for the condensed phase can be calculated using the

Hugenholtz-Pines theorem:

L = 211(0,0)“312(0.0)

. s Lo odk 1 JE 1
= nofo-f-?nmfo—;nofo'/( ; (EC th 21‘5)

. 3 3/2 S . . dk, 2¢, + A .
= nofot 325 (33) Vnofinofo+2fo [ 555 Sy 19)
vJ it KA l

[t is seen that the infrared-divergent term in (7.7) cancels out in the expressions of .

We next estimate g. The last term in (7.9) 1s temperature dependent. and can be

written as

. dk; 2+ A
,uTEZZfO/)iz,l fe(EY)

. dk, [2e +A - -
= 2% [ W;a[ = falE) = fale)] + 2TV o, (7.10)

Here n.(T) [= 2.612(mkgT/27h?)*?] is the critical density of an ideal Bose gas at
a given T. as given by the integral of fg(e) over k;. The main contribution to the
integral over k; in the first term of (7.10) comes from the region ¢, < A. where E,

differs significantly from ¢€,. For temperature T which satisfies

kT > A =nofo. (7.11)
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we can use the high temperature approximation of fg(¢) ~ kT /¢ to give

. . dk; [2¢;+2A 1
p,T anr(T)fO + QfOkBTf (.)7_‘_;3 [ 6-;E2 - _]
= “~1

€1
3

= ‘ZnCT(T)jF — ——(

2r

12

m

3/2 ~
Fﬁ) nof3 ksT

Q 2 3 /2
_ Sthan,(T) — 9r (noa ) kaT . 7

-}
—
18]
—

-
“

where in the last step. we have used fo = 4zh%a/m. The result in (7.12) is in
agreement with that of Popov (see equation (17.35) of Ref.[31]) if we remember that
he used the units A = 2m = kg = 1.

We now calculate the total chemical potential by inserting the above result for u?

into (7.9). and find

irh%nga 10 3\ /2
ur) = —;L[”?(no-a)
Sxh2an. (T 3\ /2
+——iz——(-)~127r(n°a) kgT . (7.13)
m T

The first term is the T = 0 result already derived in (6.35). except that ng(T) is now
temperature dependent. The new temperature-dependent parts consist of a Hartree-
Fock term [87h?an,.(T)/m] and another correction term which is linear in both T and
V1oa3. The second-order B-P approximation introduces a small correction (about 0.3
percent for * Rb atoms under the condition of Ref.[1]) to the chemical potential with
respect to that in the first-order Popov approximation. We emphasize that (7.13) has
been derived assuming noj:o & kT, which is valid as long as the temperature T is

not too low compared to T., namely
T > 3.793(n'a)T. . (7.14)

It can be estimated that for a = 53 A and n = 2.6 x 10'? cm™3 (taken from [1] for
87Rb in the center of the trap), n'/3a = 0.0073 and th= condition (7.14) implies that
T > 0.027T..
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7.2 Expansions of Y/ (k,w=FE) + §) for small k

We are most interested in the behavior of the Green's function near the single-particle
poles. However. as mentioned earlier. we cannot set w = E} and expand Y(k.Eq)in
the small momentum limit. due to the difficulty associated with the order of limits
taken. In an attempt to overcome this problem. we introduce a gap and expand the
self-energies around w = Ey + 8 instead of w = Fj. After this expansion is done. we
take the § — 0 limit. In this approach. we are not taking the limits k — 0.« — 0 at

the same time. but taking the limit k — 0 first. See the end of Section 7.2 for some

further comments on this.

Following this procedure. we arrive at the following results (again using MAPLE):

}iixg)Sf,(k.iEkid) = ag £ ark+[ar £ as(67) + ag(67)]K7. (7.15)

lim STk Ex +8) = bo+ bik + b+ ba(67") + ba(87%)}47. (7.16)
with
62+A2 < + A -
Y —‘Ea—fB(En f°/0 o 13 E= o By (17)
V2A
a = - A)rr;OfO ,__/ [1!» L )élA -{'-Aﬁl +€ ) fB E{) (TlL\)
h? - ‘
@ = _nofg / dhey k2 (=2 —2458A—475'A-+486?A3
12 2m
+156€2 At + 806/ A° + 3):3_\6)Ff3 1) (7.19)
n f K? 5 1 , -
“ = 228 )m/ ks k(2650 = €A = 106°%) 1= fo(E) (7.20)
h? - )
ay = 7;0f205_/ dky k? (12€] + S0eSA + 1T1e] A?
TS 2 JO
+135€¢1 A3 + :34@&)%@(&) . (7.21)
1
and
_ nofo , —dad + A2 nofd [ 2 L

by = -2 ;/ dbs K = Jo(E0) - 2:2/0 dky K} 5 a(E(T.22)
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bpb = 0 (7.23)
by = —%g‘lf—;/om dky k7 ( bel_\ — 11ef A% + 40eT A% + 4] N (7.24)

~ 1662 + 32¢;\°) E“ —fB(EY) (7.25)
by = 0 (7.26)
by = ay. (7.27)

We can approximate fg(£) for T ~ T, by kgT/E, for Ey < kgT. which limits the
following results to high temperatures. In this approximation. we can evaluate the «

and b's:

.V 2nef$ 342 32
ag = 2nefo— "_'lzofo <;:—:) kgT [—4-{-1)2} (7.28)

4 = —g( )fOABT[-%—Dg} (7.29)

V2 /2 /—ABT 103v2r  _ N -
@ = _Lm( ) [_ 1096 +°D'2+"')D“] (730)

) r3 3/2
:ffo (ﬂ) ksT [0+ Dy (7.31)

bo

ﬁ'l
/2 2 ——kpT [685\/ 2%
V2 /m B D] . -
bg = —T)—": (fz > o O _A [ 109() - D'_> + }..).D;J . (4;3]

where D, and D, denote two infrared-divergent dimensionless integrals:

~ ]' lndi> 1)
D'z = ‘/(; dx m ( 1.3.3)

f L -
D‘; = /0 dr m ( J..34)

We recall that in Chapter 5. the quantity A¥ near the poles w = +FE) can be
expressed in terms of SF (k. ££}) and Sy5(k. Ey) as
€k

2F,
- (2
(Sh+ S —20® - 257 (7.

.’\f = :t— (_111 +.._112 —'2[1(2})

l _
O(Sﬁ - Sl )+

-1
U&
(¥
~—

A
t3E,
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The Bose-factor-independent part has been already calculated in Chapter 6. where

we find [see Eqs.(6.24) and (6.29)]

238 (ngad\"/?
AYE = 2 ( oZ ) E. (7.36)
3 T
The temperature-dependent part (associated with the Bose factors) of .\Z‘t can be
calculated using the corresponding temperature-dependent self-energies ©7 (k. £ £y)
and ST,(k. £i) given by (7.15)-(7.32) and the chemical potential given by (7.12). To

first order in k. we obtain

AE = %(Qal)k + ﬁ (%;) " (2a0 — 2uT) k
+§ (;”—2)”2 [2as + 204(67%) = 26, — 2b,(67%)] k
= —3:83i7r %’) folkeT )k
_ —g—é(kBT)ak. (7.37)

We note that in .f\{'i. the infrared divergent terms Dy, Dy. O(67') and O(67*) all
cancel out exactly to lowest order in &. just as we showed in the T = 0 case in Chapter

6.

Combination of (7.36) and (7.37) vields the following result of \F:

AF = ADE4 0
28 [ noa® 12 31
= — c— —(k . 7.38
3 ( - ) hck 96( gl )ak (7.33)

This immediately leads to the following result for the energy spectrum of excitations

in the second-order B-P approximation:

EATy = EMNT)+ AF(T)

IR 3 1/2 i
= hd"WN(T)k 1+:E no(T)a” —ﬂ(ksT)ak. (7.39)
3 T 96
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Here

\/ + )qno ~ h™N(T (for small k) (7.40)

Ay = et ,/ L ‘”’0 (7.41)

are the first-order excitation energy and phonon velocity. respectively. obtained in

~L
=
|

the Popov approximation of Chapter 3. Equation (7.39) shows that for small &. the

quasiparticles are still phonons. with a velocity given by

) 2 T)a®\""? 31
NTY = N(T) + TS (M) AT - = kg (7.42)

The second term in (7.42) corresponds to the T = 0 result derived in Chapter 6. but
now is a temperature-dependent quantity through the condensate density ng(7). The
new correction term is proportional to kg7 . but independent of ng(T).

The relative importance of the correction terms can be estimated for * Rb atoms
(a =33 A and n = 2.6 x 10" cm™3 [1]) as follows. Denoting the second and third

terms in (7.42) as éc and éc’. respectively. we have

28 [ no(TYa*\""* [4rh%ane(T)
bc = — >~ = 2
3 T m?
T\ ..
~ 0.0033 {1—(—) ]c(l’(O). (7.13)
T.
and
. 3la
6(3 = _96}“[,/"3
T
~ o.ozsfc“’m), (7.44)

<

where ¢!')(0) is given by

hZ
dV0) = \/ 47rman ~ 0.031(cm/s). (7.4

-1
-
ot
~
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As seen from (7.43) and (7.44). the second-order corrections are very small for a dilute
%"Rb atomic gas.

Since ¢{(T) — 0 as T — T.. one sees that the phonon velocity takes a small
negative value near T.. This unphysical result is due to the fact that (7.42) is derived

assuming the correction terms are small. namely

drh*nga 2314
L - 16
( m? ) > ggrkeT (7-46)
This condition is equivalent to
T.— T > (ra)T.. (7.47)

The last inequality also defines the temperature range where the first-order Popov
approximation is valid [see (3.39)]. Such a coincidence is not unexpected because in
the second-order B-P approximation. we use the first-order Popov propagators. which
are valid only if (7.47) is true. Therefore the results in the B-P approximation are
subject to the same limitation near T.. We should also emphasize that in deriving
(7.42). we have used the high-temperature approximation. which really means that
it is subject to the condition (7.14). Together with (7.47). this limits the validity of
our results to temperatures which are not too close to either T =0 or T = T..

As far as we know. (7.42) is a new result. Moreover. we have shown for the
first time that the infrared-divergent terms cancel out in phyvsical quantities in the
long wavelength limit at finite temperature. just as in the case of zero temperature.
However. it is not clear at present whether these infrared-divergent terms cancel out
in physical quantities in general. /.e.. not just in the long wavelength limit. This
could be checked by using our method to calculate the self-energies to higher order
in k.

As pointed out by Stoof [47]. the infrared divergence we found in the second-
order approximation might be closely related to the vanishing of £)5(k — 0.w =
0). a rigorous result (i.e. to all order in perturbation expansion) first shown by

Nepomnyashchii et al in 1974 [48]. More precisely, one finds that £,(k.w = 0)
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approaches zero as

e at T =0. _
n (7.48)

k at T #0.

p—

Slz(k.u—‘ = 0) —

Eq.(7.48) suggests that in the long wavelength limit. the self-energies. in a rigorous

theory. take the following asymptotic form:

m at T =0.
Sk —-0.0=0)x ‘ (7.19)
L at T #0.

I+4

These contain the singular infrared-divergent part in the denominator.

What we found in this thesis. however. is that. if expanded to first order. the
self-energies ¥(k — 0. = 0) are finite. On the other hand. if we go to second order.
the self-energies ©(k — 0.w = 0) are infinite. due to divergent terms D) at T =0
[see Eq.(6.16)] and D2 at T # 0 [see Eq.(7.33)]. Eqs.(6.16) and (7.33) suggest that
the types of divergent terms we found in the self-energies are given by

Ink at T =0.

SOk 50w =10) — (7.
at T #0.

=1
U
o

L

k

A comparison of (7.18) and (7.49) suggests the origin of the divergent terms found in

our second-order calculations. In the perturbative calculation we have developed. one

may be effectively expanding Eq.(7.49) in powers of Ink or l/k. arriving at results

consistent with (7.50),

1+ O0(nk)+O(n*k)+--- at T =0.

Sk —-0w=0)x (In k) ( (7.51)
1+0(2)+0(F) +--- at T #0.

Here the first term corresponds to the first-order self-energy result and the second

term corresponds to the second-order self-energy result, and so on. This scenario gives

an explanation of why our second-order self-energies contain the types of divergence

shown in Eq.(7.30).
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The above analysis puts a question mark on the traditional perturbation approach
we have used. However, the fact that these divergent terms all cancel out in the
end seems to suggest that the singular parts of the self-energies do not contribute
to physical quantities. at least to second-order in f. and therefore. the results we
obtained in Chapter 6 and in the present chapter still remain meaningful. The exact
cancellation also implies that the problem associated with infrared divergence may be
solved by some kind of re-formulation. Recently. Bijlsma and Stoof [15] have studied
the problem using the renormalization group (RG) techniques, and shown how. in
principle. the infrared divergence problems can be solved using such techniques.

As we remarked at the beginning of this section, we changed the order of limits
k — 0 and «w — 0 by introducing a gap é with respect to the Popov quasiparticle
energy E in the frequency w. As one can easily see from (7.15) and (7.16). had we
taken the limit «w — 0 (or § — 0) together with & — 0. we would get singular results.
due to the presence of A?/& and A?/4? terms. The change of the order of limits might
have changed the physics contained in ag and bg (such as the type of contributions

that go like &/« etc). Further work or this topic is needed to clarify these questions.

7.3 Damping of phonons at high temperature

As first shown by Beliaev [34] and rederived in Chapter 6. at zero temperature. the
damping of low-momentum phonons is proportional to &° [see Eq.(6.31)]. We can
use the finite-temperature results of the present chapter to calculate the imaginary
part of the self-energies. From these, we can calculate the phonon damping at high
temperatures. close to T.. We briefly sketch these calculations. the details of which
will be reported elsewhere [49].

We first calculate the imaginary parts of £y, and £; at the pole w = E,. starting
from the results given in (7.1) and (7.2). The imaginary part of &7 (k. E; + in) is

given by

ImEH = ImSy(k. Ex + in)



Ch.7 Discussion of the T # 0 B-P approximation 105

., d E
= nofy q)3 ngE;)(—ﬂ') [g(Ev. E2)0(E — Ey — Es)
—g( —~Ey . —ER)0(Ex + Ey + E2) + g(—Ev ER)O(Er + By — Es)
—g(E1, —E3)6(Ex — Ey + Ey)] (7.52)
nof3 ('”)2l - 9(Er. Es)
- —\) = dE E
ar \A%/) &k /0 ‘(el+g)(eg+3)f3( ) P
— L)
dFE, E
+/ 61+A (62+A)f8( I)Ez=Ek+E1
>~ g(Er. —Ey) .
— dE E . .33
£ [(e,+_l)(<2+.l)f8( 1) EZ:El_EJ (1.53)

The function g( £\, E;) is defined in (3.30) as well as at the beginning of the present
chapter following (7.2). ImX{, in (7.53) consists of three parts. which involve different

lower and upper limits to ensure the positiveness of £,. In arriving at (7.53). we have

_.1jl
Ir=xg

where .ty 1s the solution of fa(x) = 0. In the high temperature limit. we approximatc

made use of the following property of the é-function:

dfa(r)

dr

[ dzfitzrelfale)) = {flu)

fe(E\) by kgT/E,. and after some manipulations (for details. see [19]) we finally

arrive at the following Taylor expansion of ImX{ (k. Ey) for small :

+ nojg m 2 LBf ( LY, éi £
st = - (f7) 200+ 3 2D) S+ -
757w — 400 E
et D) <k
+( 9% k A3+O(E)} (7.54)
Here Dy is a dimensionless divergent integral defined by
i, 1 [E A? S
Dy = ZB—T/ By g7y i /o B) (7.55)

Following a similar procedure, we can also work out the Taylor expansion of
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ImE(—k. —E%) and ImE (k. Ei) for small k. with the following results:

ImS,‘l = [m.‘:u(—k-—Ek_. )
- s (Rl T (_z 20,) s oo
= T\ T PPt Um gl oA
ir — 112 E -
.+_(‘ —DL)T } (l.-’)ﬁ)
Im¥,, = [m_qz(ﬂ:k +Er + )
_ "ofo m 2 ’LBT E) B _p EQ
T hz 2/ A b A2
[1lr — 256 E'3 -
g x5t O(Ek)J ) (7.57)

Using (7.54). (7.56) and (7.57) in (7.37). we find that the imaginary part of the
quantity \f as well as the imaginary part of the excitation energy Ej in the low-

momentum limit is given by the very simple expression

37.’

ImESP = ImA} = —

—_
=1
Wt
oL

We remark that. unlike the T = 0 case discussed in Chapter 6. the imaginary parts
of the self-energies exhibit divergent terms at finite temperature. This can be seen
from the quantity Dy which appears in various terms in the expressions for ImSE
and ImX,; given above. However. these divergent terms all cancel out exactly in the
final expression (7.58) for the damping. This shows. once again. that the singular
parts of the self-energies do not contribute to long-wavelength physical quantities in
the Beliaev-Popov approximation at finite temperatures.

The result in (7.58) shows that the damping of phonons is proportional to Tk in
the high temperature region near T,. We believe this result is new. We call attention
to the fact that temperature-dependent correction to the real part of the phonon
energy given by the last term in (7.39) is very similar to the damping given by {7.58).
The phonon width in the low temperature limit has been calculated by Popov {31]
using a hydrodynamical Hamiltonian approach. In this limit, the phonon width is

proportional to T4k.



Chapter 8

Concluding remarks

Most of this thesis has concentrated on the technical details of evaluating the diagonal
and off-diagonal Beliaev self-energies to second order in the interaction. In this brief
concluding chapter. we would like to put some of our results into a larger context by
discussing the connections to recent field-theoretic literature on uniform interacting
Bose-condensed gases.

The first-order Popov approximation worked out in detail in Chapter 3 is a sim-
plified version of the complete self-consistent Hartree-Fock-Bogoliubov (HFB) ap-
proximation for the single-particle self-energies. As we mentioned earlier. the latter
is known to give rise to an energy gap in the long wavelength excitation spectrum.
However. the HF B approximation is of special interest since it can be used to generate
a density-response function (by functional differentiation with respect to an auxiliary
field) which exhibits the same spectrum as the single-particle Green's function com-
puted in the Beliaev-Popov approximation. This is proven in detail by Cheung and
Griffin [29] at finite temperatures and has been recently reviewed by Griffin [11] in the
context of trapped atomic gases. We should also note that the Popov approximation
to the self-consistent HFB has been recently formulated for a Bose gas trapped in an
external potential well [50], extending the work in Chapter 3.

In Chapters 6 and 7. the second-order self-energies exhibited infrared-divergent
terms both at T = 0 (Beliaev) and T # 0 (Popov). We showed explicitly that

these divergent contributions cancel out in thermodynamic properties like the chem-
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ical potential. as well as in the low frequency excitation energy and damping. In
this thesis. we have not discussed the physics of such divergent terms (see Section
6.3 of Refs.[8] and [30]) or alternative formulations in which they do not explicitly
appear (see however the remarks at the end of Section 7.2). There is an extensive
literature on this topic. going back to the pioneer work of Gavoret and Nozieres [22]
at T = 0. We call attention to the renormalization group type of calculation given
by Popov [31] which derives a renormalized “quantum hydrodynamic™ description of
long wavelength modes which is free of such divergent terms. Related recent studies
using formal renormalization group (RG) techniques at T = 0 [51] and near 7, [43]
have addressed this problem in a systematic way.

As we noted in the introduction of this thesis. we have concentrated on calculating
the single-particle Green's functions at finite temperatures. However. it is known that
in the presetice of a Bose broken symmetry. the single-particle and density fluctuations
are hybridized. leading to the same poles for both single-particle Green’s functions
and the density response function. The so-called “dielectric formalism™ developed by
Ma and Woo [52] (for a review. see Chapter 3 of Rel.[8]) is a diagrammatic approach
which enables one to develop approximations for “regular™ functions (the “regular”
sclf-energy diagrams. by definition. can not be split into two by cutting a single
interaction line) which will lead to G 5(k.«) and \,..(k.«) having the same spectrum
(but with different weights) in a Bose-condensed system. This dielectric formalism
has been used in the so-called one-loop approximation to discuss the excitations of a
dilute Bose gas at T' = 0 by Wong and Gould [53] and at T # 0 by Talbot and Griffin
[54]. At T = 0. this one-loop approximation has been shown to give the second-order
Beliaev spectrum (see Chapter 6 of this thesis).

We hope that the explicit calculations given in this thesis (and especially Chap-
ters 6 and 7) will be useful in the on-going effort to provide a more complete and
satisfactory understanding of excitations in a Bose-condensed gas.

In principle, the thermal Green’s functions can be used to calculate the thermo-
dynamic quantities, such as the pressure, the specific heat etc. This was done for the

first-order Popov approximation (in connection with Chapter 3) by Popov [32]. We
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have not carried out these calculations for the second-order Beltaev-Popov approx-
imation at finite temperatures (in connection with Chapter 7) in this thesis. One
of the reasons is that to do this. one needs the Green's functions for all momenta
and frequencies. which is difficult to obtain in analytical form. In this thesis. we
have given analytical expressions for the Green's functions near the poles «w = £ Ey.
which allowed us to determine the explicit excitation energy spectrum. Nevertheless.
it would be interesting to calculate some thermodynamic quantities by numerical

methods. using the formalism developed in this thesis.



Appendix A

Scattering theory and the

t-matrix for Bose systems

The typical inter-atomic potential involves a hard core. This poses a problem for
the perturbation theory in terms of the bare potential v. Since v can be large. the
first few terms in such perturbation expansion are no longer sufficient. Indeed. one
has to sum over an infinite number of terms. This Appendix reviews the so-called
ladder approximation for the many-body scattering amplitude [ in a Bose gas. In this
approximation. [" involves the sum over all the ladder diagrams to infinite order in r.
taking into account the repeated scattering of two particles in a gas. To understand
this multiple scattering of two atoms in the presence of many other atoms. one has to
first understand the simpler problem of multiple scattering of two atoms in a vacuum.
since it can be shown that the many-body scattering amplitude I is related to the

free space or vacuum scattering amplitude (see Chapter 1 of Ref.[13]).

A.1 Multiple scattering in vacuum

We consider two particles of mass m interacting in vacuum via potential v(x). The

Schrédinger equation in the center-of-mass coordinate system is given by

h'l
2m’

(V2 + E)o(x) = v(x)p(x). (A.1)
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Here m’ = m/2 is the reduced mass and o(x) describes the wavefunction of the two
particles with a separation x between them. In scattering problems. it is generally
convenient to rewrite equation (A.l) as an integral equation representing an incident
plane wave with wavevector k plus an outgoing scattered wave:

m eMx¥lm

ox(x) = ek* — /61)’4—:577_?52‘0(}’)01:(}’)- (A.2)

At large r. i.e. far away from the influence of the potential. the scattered wave-

function take the following asymptotic form:

e:k’r

e + flk.K')

r — 2. (A.3)

»
L

This defines the scattering amplitude for a transition from an incident wave vector k

to a final wave vector k’. namely

Jlek) = -2 [dye Y o(y)ouly).
n { ,

where

on(k' —q) = / dye= K=Y o (y)

v(q) = /dyc"“”v(y)- (A.5)

The Schrodinger equation (A.2) may be rewritten in momentum space

1

or(K) = @r)8(k ~k) — g

d
| i@k ~a

f{K'. k)

'chr - '.).Ck - iT) ’

= (27)%8(k'— k) -

where we have defined the quantity f(k,k’)

Jiok) = =T fic k)
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- /dqv(q)ok(k’—q). (A.T)

We note that this definition of f differs from the usual definition of the free-space
scattering amplitude f by a factor of —4rh*/m. Combining (A.5) and (A.7). one
obtains

dq v(k'-q) .
57 26, — 9, + i ) (4-3)

Fk.K) = v(K — k) +/(

which is an integral equation for f in terms of the bare potential v. If the potential has
no bound states. as will be assumed throughout this section. then the exact scattering
solutions with a given boundary condition form a complete set of states and satisfy

the following completeness relation in momentum space [33]:

dk
/ G ortkioili) = 27 6(k: ~ k) (A.9)

The significance of (A.38) is that f(k.k') is well-defined even if v(r) has a haid core.
The solution of (A.3) is discussed in textbooks on scattering theory . In particular in

the long wavelength limit (|k| = |k’| — 0). the solution of (A.8) is given by

. ixh’a

flk.k) = + O(ka?). (A.10)

where a is the s-wave scattering length.

A.2 Ladder diagrams

The previous discussion has been restricted to the scattering of two atoms in vacuum.
We now turn to the much more complicated problem of two interacting atoms in a
gas. As discussed in [34, 56, 13]. in a dilute gas, the ladder diagrams are all of equal
importance. For example. there exists a set of ladder diagrams. shown in Fig.A.l .
all of which are the same order in the gas density as the lowest-order Hartree-Fock
diagrams are. Therefore, in a dilute gas, we need to sum over all the ladder diagrams,

vielding the so-called many-body scattering amplitude I', as illustrated by the hatched
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Figure A.1: Ladder diagrams that are equally important in the Hartree-Fock approx-
imation '

square in Fig.A.2. The diagrammatic definition of [ in Fig.A.2 which can be written

explicitly as

[(pi.p2ip3,ps) = U(kl ~ k3) - ETT v(q)G(O’(kl e twy)

xG O (ky + q, iws + iwe)L(pr — q.p2 + ¢: p3. ps)- (A.L1)

d
= v(ky — ko) + [ (‘):‘)3
. ]: +fB(Ek1—q)+fB(ek2+Q) . (‘_\.12)
twy + iwz — (€,-q = #) = (€kp+q — #)

v(q)T(p1 — q.p2 + ¢: p3. p4)

The four-dimensional vector p; = (k;,iw;) represents the momentum k, and Mat-
subara frequency iw; of a particle before (j=3,4) or after (j=1,2) scattering. similarly.
q = (q,wwg). Since the interatomic potential v(r) is not time-dependent. v(q) does

not depend on the fourth component iw, of ¢, and neither does I'(p1 — ¢, p2 +¢; p3, p4)-
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Figure A.2: Diagrammatic definition of the {-matrix

..................................................................................

One can thus perform the frequency sum

Z G(o)(kl - q,tw; — iw,,)G(o)(kz + q, w2 + wy) (A-13)

twq

in (A.11), yielding the last factor in (A.12). Eq.(A.11) is known as the Bethe-Salpeter
equation (more precisely, the ladder approximation to the Bethe-Salpeter equation).

[f (A.12) is iterated in powers of v (perturbation theory), we obtain the sum of all

ladder diagrams.

[t is often more convenient to write [ in the center-of-momentum frame of the scat-

tering pair of atoms. Defining the total momentum and total Matsubara frequency

of the scattering pair as

K =k, + k, = ks + ky, (A.14)

Wy = w) + iwy = twa + twy, (A.15)
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the denominator in the integral of {A.12) can rewritten as

2= 2e_q — K1) (A.16)

where the complex variable = is defined by

h*R?

T (A.1T)

TN —Ep S wy —

Writing [' in terms of variables in the center-of-mass frame. we have

[(k.K.K:z) = [(p1.p2: p3-p1)

dq F+(Kk_Q) ~ '
— . 7 , _ . - A ‘\
= uo(k k)+/(27‘_]31(q):_Q(Ek_q_‘u)[(k Q. K. K:z). (A.13)
where
kzk‘:kz. (A.19)
K = ks;k“. (A.20)
F+(Kk— Q) =1+ fB((%-K-{»k—q) T fB(C%K.-k-{.-q)- (A.21)

Here k' and k are the relative momenta of the scattering pair before and after the
scattering. respectively: and the function F,(k.q,K) incorporates the effect of the
Bose statistics obeyed by the atoms involved in the intermediate scattering states.
Eq.(A.18) can be compared with the integral equation for the free-space scattering
amplitude f given by (A.8). The free-space scattering amplitude f describes the effect
of the potential on the wavefunction of two atoms in a vacuum. while the many-body
T-matrix [ describes the similar effect in a medium. that is. in the presence of other
atoms in a Bose gas.

The diagrams in Fig.A.l1 are redrawn in Fig.A.3 in terms of the new quantity I’
defined in Fig.A.2. These diagrams in Fig.A.3 can be obtained by simply “replacing”
v (the dashed lines) in the Hartree-Fock diagrams (c and d in Fig.3.1) with [’ (the

hatched squares).
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Figure A.3: Hartree-Fock self-energy diagrams in the f-matrix approximation

..................................................................................

A.3 Connections between f and I

We next show the connection between the free-space scattering amplitude f defined
in (A.7) and the many-body scattering amplitude [. The following analysis at T £ 0
is a generalization of the T = 0 discussion given by Beliaev (for Bose systems) and
Fetter and Walecka (for Fermi systems) {34. 13]. Introducing the quantity y defined
by
; dq :
M(kK.Kiz) = [ Gopti@u(k - a K. K: ). (A.22)

one can verify that y satisfies the following integral equation

F (K.k)

2= 2e +2p

vk.K.K:z) = (2r)P8(k—-k)+

d
X / (_2:)3 v(qQ)x(k—q.k'.K:z). (A.23)

The equation for y may be compared with the similar equation (A.6) for oy(k’).
which suggests that y can be interpreted as an effective wavefunction of two particles
in the Bose gas medium.

The connection of y to f can be made by first considering the analogous function

x%k. k. K; z), which denotes the solution of (A.23) with F_ (K. k) replaced by unity:

1
T — 2 + 24

d
X / : 2:)3v(q)x°(k ~q, kK K;z). (A.24)

kK. K;z) = (27)%6(k - k') +
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The corresponding quantity I'? is defined through \° by {see (A.22)]

dq
-0 ’ - , 0 _ ! .- 25
r (k.k.K.-)_/(QTPL(q)\ (k- q.k.K:z). (A.25)
We now rewrite (A.24) for \° and (A.6) for oy, (k) as
. R 0 ’ d ?
(= — 2er + 2p) (k,k.K;:)-—/( ) Nk -q.k'.K:z)
= (27)3(z — 2ex +20)6(k — K') . (A.26)
d
(261, — 26 + in)org (k) — [ = v(q)ow,(k —q) =0. (A.27)
(2m)3

Muitiplying (A.26) by of (k) and integrating over k. we find that the second term

on the left hand side equals

dk dq
/(),—)3/( ) (k—q.k'.K::)Of(l(k)
c[k ' dq .
K K:2) [ S ozeiq)o, (k- q)

_/()T)s\ (k. k' K: 2)(2ex, = 2ex — in)og, (k). (A.28)

In the second line. we have used the variable change (k — q) — k. and in the third
line. we made use of the complex conjugate of (A.27). Using (A.28). (A.26) leads to

the desired result:
dk
/ 257 [ = 26, + 20 + in] (k. K" K: z)of, (k) = (2 — 2ex + 2p) 0, (K') . (A29)

Since the factor D = (z — 2¢;, + 2u + in) is independent of the integral variable
k. we can take it outside of the integral. We next multiply both side of (A.29) by
D! ok, (k2). and integrate over k;. Using the completeness relation (A.9). one arrives

at

dk, o (K')o, (kz)

. Al
(27)3 = — 2€, + 2 (A.30)

ks, K K;z2) = (z — 2 + '2;1)/
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Using the complex conjugate of (A.6) in (A.30). one finds

l

([kl .
0 ! .~ — —_ B —

1 F ’

5 5 . ] ik KD (A.31)
€L, T L€ — U}

We now multiply (A.31) by v(k — k;) and integrating over k,. The definition of \"

and I? in (A.24) and (A.25) plus (A.6) leads to

] Y-y — ! d_q' _—
Pk Kiz) = flok)+ [ 555 fkaq) L—L’fﬁ‘—’#

+ [ ] f(k'.q). (A.32)

26q — 2640 — 1:7]

This last expression has the important feature that it gives ['® completely in terms of
the free space {or vacuum) scattering amplitude f.
We are now in position to express the full scattering amplitude [ in the medium.

as given by (A.138). in terms of f. A slight rearrangement of (A.23) yields

L dq ' e -
z — 2€r + 2 (27r)3\(k—q‘k.K.~)

Fi(K.k)-1
2 — ¢, + 2

vk.kK.K:z) —

= (27 )8k - k') + Mk.k'.K:z). (A.33)

Comparing this with (A.26) divided by = — 2¢; + 2u shows that the operator on the
left side of (A.33) is just the inverse of \o. which means \ can be expressed in terms

of \g as follows:

d
vik. kK, K;z) = \o(k.k'.K;:)+/F:?\o(k.q,K::)

F+(K‘q)‘"l' 7 . \
g [2—26q+2ll [a, k'. K:z). (A3

Taking the convolution with v in (A.34), we find

P KK:s) = TKK) + [ Sk q K
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F (K,q)-1 -
X F(Kq) -1 MNq.kK'.K:z). (A.33)
= =2 +2u

Equation (A.35) expresses [ in term of the reduced scattering amplitude ['9. while
[ in turn can be expressed in terms of the free space scattering amplitude f using
(A.32). [n other words. through the intermediate function. ['°. we can relate " directly
to f. This result is important because it enables us to deal with an interatomic
potential with a hard core. In that case, the iteration of the integral equation (A.11)
for I in powers of ¢ makes only formal sense, since each term is large. [n contrast.

(A.32) and (A.35) show that T is well-defined as long as f is.
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