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ABSTRACT 

In this thesis. we present several approximations applicable to a uniform tvcak1~- 

interacting Bose gas a t  fini t e  temperature. and investigate t h e  excitations ancl ot her 

propert ies by means of thermal Green's function techniques. 

\Ve give a detai led discussion of the first-orcler Popov approximation. rv tiicli es- 

tends the T = O Bogoliubov approximation by including the Hartree-Fock self-energics 

of the excited atoms. It leads to  a single-particle excitation which is phonon-like i r i  

the long iravelength limit. with a velocity which goes as \ l n o ( ~ ) .  This phorion rc- 

giori collapses as  the  BEC transition point is approaches. We next discuss the Popoi. 

approxiination using a 1-matrix calculatcd with self-consistent ladder diagrariis. 0 i i r  

analysis shows tha t  t his t-matrix beconies rery teniperature dependerit as one ap- 

proaches the transition point. vanishing at Tc. This is in agreement wi th  t h e  niinicr- 

ical work of Bijlsma and Stoof ( 1995). who first pointed out tha t  this rcmoi-es the 

discontinuous jump in the  condensate density nt the transition point. 

CVe present a cietailed s tudp of the Beliaev-Popov ( B-P ) approximation for a dilutr 

Bose gas. based on t h e  self-energy diagrarns which are second order in the f-riiatris. 

We work out the contribution frorn each individual diagram and give formal es- 

pressions for the self-energiec and the excitation energy spectrum \:aiid at arbit rary 

temperatures. We rederive the  well-known results of Beliaev a t  T = O. The long 

wavelength excitations in the Beliaev approximation are phonons wi t h finite lifetinies 

(damping). We also give the analogous evaluation of the finite temperatiire B-P self- 

energies in the low frequency and long wavelength limit. The excitations are still 

phonon-like. The  corrections near Tc to the chernical potential. excitation energy a n d  



darnping are al1 lound to be proportional to the temperature. .As at zero tempera- 

t ure. the finite temperat ure self-energies contain infrared di vergent terms. bu t  t hese 

are shown to cancel ou t  in physical quantities in the long wavelengtli limit. 



ACKNOWLEDGEMENTS 

I thank rny supervisor Prof. Allan Griffin for his guidance throoghout this work. 

for his patience with details which often led t o  better understanding and  comp1etel~- 

new ideas. for his encouragement dur ing my difficult transition year  with rny bah'. 

girl. for his prompt. careful readings and  corrections of al1 versions of this thesis. antl 

finally for financiai support from his research grant.  

1 have enjoyed discussions tvith. as well as man- courses taught by. various lacult>. 

members  in this department.  I thank  in particular Profs. Michael Walker. Rashmi 

Desai. Bryan S ta t t .  Allan Jacobs. .John Sipe. Aephraim Steinberg. a n d  Sajeev .John. I 

also rvish to  express my deep grat i tude towards Dr. H.T.C. Stoof from the  Universitl- 

of Ctrecht for his valuable comments  and suggestions related to  this t hesis. 

hlany other people in this depar tment  have lielped me directly o r  indirectlx. Ancl 

many of them have enriched my life as a gracluate student by their  friendship antl 

inspiring discussions. I thank in particular GVen-Chin Wu. ka-LVei Hslieli. \Vasantlia 

Wijesunclera. J u t t a  Luettrner-Strathrnan. Daniel Agterberg, Mesfin Woldeyohannes. 

Puangratana Pairor. Celeste Sagui a n d  Bruce Elrick. i would also likc t o  tliank 

.\.larianne Iiliurana and Jennifer Tarn for their  friendly assistance on  many gencral 

aspects of' mu gradtiate studies. .A special thanks goes to the 10th Roor coffec clul). 

which lias h e m  an cnjoyable place to cliscttss pliysics and non-physics riiatters. 

1 thank rny husband Eric C. Xiao for his everlasting confidence a n d  pricle in me 

as a physicist, for al1 the  happiness he has brouglit nie througli t he  years. Despite 

of his own challenging job. he  has always been very supportive t o  me.  I thank hirn 

for taking u p  a fine fatlier's job with .Jasmine when 1 was occupied. giving me a piisli 

when 1 was down. and cheering with m e  whcn I made a little progress. I t hank ni!. 

daiighter Jasniine Hongdi and my coming baby for providing a constant soiircc of 

joy for me. Also, my father and mo the r  have always encouraged a n d  supported me 

in various ways since my high school years. Their  high expectation \vas part of the  

power tha t  led to  t he  completion of th i s  work. 

My studies have been supported by Sir Run  Run Shaw, ü of T open  and depart-  

mental  feilowships, as well as by research g a n t s  from NSERC of Canada. 



Contents 

1 Introduction 1 

1.1 History of BEC stiidies -1 . . . . . . . . . . . . . . . . . . . . . . . . . .  
- 1 Theories of weakly-interacting Bose gases . . . . . . . . . . . . . . . .  I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 Summary of thesis LO 

2 Green's function forrnalism for a Bose-condensed gas 13 

. . . . . . . . . . . . . . . . .  2 . I Iniaginary frequency C;reeri's functions 1-1 

. . . . . . . . .  2.2 Bogoliubov prescription for a Bose-condensed system 17 

. . . . . . . . . . . . . . . . . . . . . . . . .  2.3  Dyson- Beliaev eqiiations 'Il 

. . . . . . . . . . . . . . . . . . . . . . .  4 Real- t ime  Green's funct ions 2-1 

2.5 The Bogoliubov approximation . . . . . . . . . . . . . . . . . . . . .  26 

3 The first-order Popov approximation 31 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 The HFR sel f-energies :I2 

3.2 The Popov self-energies in terms of the t-rnatris . . . . . . . . . . . .  :13 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Yormal  phase (T  > Tc) 40 

. . . . . . . . . . . . . . . . . . . . .  3.4 Bose-condensed phase ( T  < Tc) -41 

4 The many-body t-matrix approximation 50 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.1 The many-body t-matrix 3 1  

. . . . . . . . . . . . . . . . . . . .  4.2 hnalytical results for the t-rnatris 56 

. . . . . . . . . . . . . . . . . . . .  1.i) Numerical results for the t-matrix 3 

. . . . . . . . .  4.4 Assessrnent of the many-body t-matrix approximation 61 



5 The second-order Beliaev-Popov (B-P) approximation 63 

. . . . . . . . . . . . . . . . .  5.1 Diagrams and t heir forma1 expressions 63 
- . . . . . . . . . . . . . . . . . . .  5.2 Evaluation of the B- P self-energies r 3 

5 . 3  Energy of excitations in t h e  B-P approximation . . . . .  T S  

6 Calculations at T = O using the B-P approximation 83 

6.1 The B-P self-energies at T = O . . . . . . . . . . . . . . . . . . . . . .  d-l 

. . . . . . . . . . . . . . . . . . . . . . . . . .  6.2 Quasiparticle spectrum d7 

7 Discussion of the T # O B-P approximation 93 
- r . 1  Thek=Oi imi t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CI*? 

. . . . . . . . . . . . . .  7.2 Expansions of ST(k. Y. = E~ + 6) for small k SS 
- 
i . 3  Damping of phonons a t  high temperature . . . . . . . . . . . . . . . .  10-1 

8 Concluding rernarks 107 

Appendices 

A Scattering theory and the t-matrix for Bose systems 110 

A. 1 Miiltiple scattering in vacouni . . . . . . . . . . . . . . . . . . . . . .  1 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -4.2 Ladder ciiagrams 1 12 

. . . . . . . . . . . . . . . . . . . . . .  A . 3  Connections between j and r 1 16 

References 120 



List of Figures 

2.1 Eight distinct processes involved in the interaction . .A solid line 

denotes o r  at. a wiggly line corresponds to a condensate atom or a 

factor n;'*. and a dashed line denotes the  interaction ( 1 .  . . . . . . .  

2.2 Proper self-energies for a Bose-condensed system . . . . . . . . . . . .  

2.3 Green's functions for a Bose-condensecl systern. . . . . . . . . . . . .  

2.4 Dyson-Beliaev equations for a Bose-condensed system. . . . . . . . .  

2.5 Self-energy diagrams in the Bogoliubov approsimatiori. . . . . . . . .  

3.1 Self-encrgy diagrarns in t he  Popov approximation involving the bare 

potential o. .A solid line with arroiv denotes an  ideal gns propagator 

<;(O). a wiggly line denotes a condensate atom. and  a clash lint. denotes 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  the interaction cl 

2 Tl-pical inter-atornic poteritial . . . . . . . . . . . . . . . . . . . . . .  

3 . 3  Diagrammatic definition of t,he t-rnatris . . . . . . . . . . . . . . .  

3 . -  SelCenergy diagrarns in the Popov approximation involving !-matrix . 

3 .  C'rossover between n o ( T )  of an interacting gas (solid line) and n F ' ( 7 ' )  

of an ideal Bose gas (dashed line). The changes are exaggerated for 

clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.1 Self-energy diagrams in the many-body t-matrix approximation. . . .  

4 .  Integral equation for the rnany-body t-rnatrix i'. ( A  grey-filled square 

wi th  four -'legs" represents F. a solid line with two arrows represents a 

''dresseci?' particle o r  GI1, and a dashed line represents the interaction 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  potential.) 

vii 



. . . . . . . . . . . . . . . .  self-consistent t-mat rix vs. temperat u re  

Condensate density vs. temperature in the many-body t-matris ap- 

proximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Diagrams for the diagonal self-energy SII in the  B-P approsimation. 

An interaction vertex involvins a t-rnatrix . . . . . . . . . . . . . . .  

Diagrams for the  off-diagonal self-energy 5 12 in the B- P approximation 

Overlap and difference bet ween t h e  many-body t-matrix and the B- P 

approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Estra diagrams includcd in the manu-body t-matrix approximation. . 

Ladder diagrams that are equally important in the Hartree-Fock ap- 

proximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  Diagrammatic definition of the t-mat ris 

Hart ree- Fock self-energy diagrams in t h e  t-mat rix approsiniat ion . . .  

... 
V l l l  



Chapter 1 

Introduction 

The firial acliievenient of Bose-Einsteiri condensation (BEC) in a trappecl gas of Rb  

atorns in 199.5 [ l ]  was t h e  result of several decades  of research. It also marks  t l i r  

beginning O F  a mhole new a r e a  of research in to  t h e  propert ies of a tomic  Bose conclen- 

sates. Th i s  sobject  is present ly unclergoing a world-wide explosion of research ac t  i1-i tj-. 

hot h experimental  a n d  t heoretical. As a resiilt. t h e  t heory of a weakly-intcracting 

Bose-condensecl gas  has  suddenly berorne tlie sub jec t  of intensc researcli iritercst. 

The present t liesis is riiotivatecl by t hese exci t ing new developments.  cveri t lioiigli 

it deals entireiy wit h uniform iveakly-interacting Bose gases while al1 t h e  recent a p c r -  

imental  stuclies a r e  concerned witli Bose gases in a n  anisot  ropic parabolic potrrit ial 

well ( o r  t r ap ) .  i.e. a non-uniform Bose condensate  (For  reviews. see Rds.  [2] ancl [:1]) .  

Oitr ernphasis is o n  developing an  ind der standing of t h e  elernentarj- excitat ions of a 

unljorm Bose-condensed gas  at finite ternperatures.  where a substant ia l  fraction of t h e  

atonis a r e  no  longer in t h e  lowvest cnergy single-part  icle s t a t e  ( t he  Bose condensate) .  

In c o n t r a t  t o  t h e  well-understood si tuation a t  T = 0. wheie  al1 b u t  a few percent 

of t h e  a toms  a r e  in t h e  condensate. very few theoret ica l  s tudies  have  been concerned 

mith weakly-interacting gas with a strongly-depleted condensate.  We believe our  re- 

sul ts  in this  thesis a r e  t h e  first s tep  t o  unders tanding t h e  analogous questions in  t h e  

t r apped  a tomic  gases of current  interest. 
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1.1 History of BEC studies 

It is useful t o  first give a brief history of BEC studies. starting wi th  t h e  initial pre- 

diction of Einstein in 1925 (41 for t he  case of a non-interacting gas of Bose a t o m s  ( A 

Bose atom has a net integer spin. .A11 atoms with a n  even number of neutrons satisfy 

Bose statistics. which accounts for about 7.5% of t he  atonis in the perioclic table). 

Bose-Einstein condensation in a n  ideal gas is a s tandard topic in al1 tes tbooks  on 

statistical mechanics [ 5 ] .  

The momenturn distribution of a n  ideal uniform Bose gas is given by 

where ck = h2k"lrn. 3 = L/ksT. and  p is t he  chernical potential tleterrnined by tl ir  

condition tliat thc sum over al1 possible states equals the total riumhcr O C  particles 

. .  In a system of rnacroscopic size. the stim can be converted into an integral 

where the density of states D(c) goes as .- fi. If t he  volume 1- and the  p a r t i c k  

niimber .\: are fised. t h e  (negatikpe) chernical potential p increases as the  te rnpr ra tur r  

T tlecreases. A t  a certain temperature  Tc. {i reaches zero. the  niasimuni valut i t cari 

reach in an ideal Bose gas. and  thiis the integral in ( 1.2) gives 

where the thermal d e  Broglie wavelength A(T) is 

One may view Tc defined by (1.3) as equivalent t o  t h e  condition that t h e  t h e r n d  d e  

Broglie wavelength X(T) becomes comparable t o  t.he average separation cl between 
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particles (d -- ne ' /" ) .  In this case. the quantum mechanical rirave nature of the 

part ides leads to al1 atoms hecoming increasingly correlated. This is t lie essent ial 

physics behind BEC' in an ideal Bose gas. 

.As T goes lower than Tc. p is "pinned" a t  zero. and the right hand side of (1.3) 

hecomes smaller than X .  As Einstein [-LI first pointed out. the additional particles 

enter the ground state to form what is non- called the Bose-Einstein condensate. Thc 

number of particles in this lowest state is given by 

From ( 1.3) and ( 1.5). one obtains the temperature-dependent condensate Fraction 

I t  is immediately seen that .Vo = .\' nt T = O. that is. al1 the atonis are iii  the lowest 

single-particle state ( k  = 0).  

To sunimarize. Bose-Einstein statistics described by (1.1) predicts t hat at a finit(: 

temperat ure given by ( 1.3). the lowest state becomes macroscopicall~ occiipied ancl n 

transition occurs to a new phase of matter characterized by the condensate fraction. 

It is the only phase transition in condensecl matter phpsics that can occur in tlir 

absence of interactions. being entirely due to quantum mecliaiiical effects relatecl to 

Bose statistics. 

At the time of Einstein's prediction. the nature of second-order phase transit ions 

\vas not yet understood. and Uhlenbeck criticized Einstein's analysis in his t hesis i r i  

1927. It was only in 1937 that  it was generally agreed that Uhlenbeck's objections 

to a phase transition in an ideal Bose gas were incorrect. Around the same time. 

superfluidity had been just discovered in liquid *'He below 2-17 K. Fritz Londoii 

[61 immediately made the  bold conjecture that this superfluidity was related to the 

form of Bose-Einstein condensation. suitably generalized to a liquid. The  basis of 

London's argument was that  "He was a Bose atom (S = 0) and moreover i f  liquid 
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" H e  was treated as an ideal gas. with the density 2.20 x 1 0 ' ~  atoms/cm? its BEC' 

transition temperature given by ( 1.3) would be 3.15 I i .  This is remarkably close to 

the observed superfluid transit ion temperature. Essent ially London and Tisza arguecl 

that the superfluid characteristics were related to the  motion of the Bose coridensate. 

moving as a whole. The  developrnent and confirmation of these ideas about sriperfliiid 

' H e  took man' years. Indeed. it has been controversial since the ver! successfiil 

Landau theory [Tl of the low temperature properties of superfluid "He  (based on 

a phenomenological niodel of a iveakly-interacting gas of phonon-rotori esci tat ions) 

made no explicit reference to an- role of the Bose condensate. 

Our current understanding of superfluid "He as a Bose-conclensecl liqiiid has I~eeii 

estensively reviewed in a monograph by Criffin [Y]. to wliich we refer the readrr. 

Some key theoretical papers (al1 at  T = 0 )  are: 

(a)  The work of Bogoliubov 19;. wlio showed the connection between a Bose con- 

densate and a phonon-like dispersion relation for long wavelengtli elementary 

excitations. This paper was restricted to a weakl-  interacting Bose gas but later 

it [vas realized that it already captured many general features of Bose-condensecl 

systems. 

( h) The work of Penrose and Onsager [lO]. rvho sliowed how to forniulate i r i  a precisr 

ivay the concept of Bose-condensatiori in any interacting Bose system (gas or 

licliiid). even when the condensate fraction was small (strongly depletecl). 

( c )  The general field-theoretical formulation of Beliaev [1 11 of hoiv to work out  t lie 

properties of a Rose-condensed system in the  presence of a Bose condensatr. 

Beliaev's work also first ernpliasized the key role of the phase of the Bose orcler 

parameter and its relation to the superfliiid velocity. 

These papers laid the  foundation for intensive theoretical work on the general theory 

of interacting Bose-condensed system in the period 1958- 1965. The motivation was 

always to understand the excitations and other properties of superfluid "He [SI. but the 

hypothetical case of a dilute weakly-interacting Bose gas was often considered as an 
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illust rat ive example of the ver- complex calculations. Since t hat period. the Green's 

function t reat ment of a weakly-interact ing Bose-condensed gas a t  T = O has becorne 

one of the standard topics in textbooks on many-body theory [12. 13. 1.11. Horrewr. 

to a large extent. this topic has only been of research interest to  a small niimher of 

many-body theorists. One of the reasons is that. apart from sorne general relations. 

it is very difficult to c a r y  out quantitative calculations for superfluid 'He. In a sense. 

the characteristic features of the Bose condensate and Bose hroken symmetry u-ere 

hard to extract from the complicated dynamics which arise in a n -  liquid. 

In view of the difficulties in dealing with a strongly interacting. dense systcni likc 

superfluid 'He. it is not surprising that since 1960's. there has been an iricreasing 

esperimental effort to achieve BEC in a dilute Bose gas. At the low temperatiire 

needed for BEC. most systems will form condensed phases (liquicl or solid) due to  

the attractive inter-atomic interactions. Thus one reqiiires conditions that allow Bose 

condensation to occur rapidly. relative to t h e  longer time scales neecled for the corn- 

pet ing phase changes. 

One of the most extensively studicd candidates for BEC has bwn spin-alijnetl 

hydrogen (For an aut horitat ive revierv. see Greytak in [3] ). By magnet ically a ligning 

the spins of the hydrogen atorns. one obtains a systern that  remains a gas at e\-en 

T = O. hIoreover. its density can be variccl over several orders of rnagnitiicle. raiiging 

from a weakly to strongly interacting Bose gas. and with the possihility of BEC'. So 

far (1990, espcriments have not producecl a Bose condensate in this systeni. duc 

to the increasing tendency towards recombination to molecular hydrogen A2 (diie to 

three-body collisions involving spin flips) as the density needed for BEC is approachecl. 

However. in the last decade or so. the study of ~ ~ i n - ~ o l a r i z e d  hydrogen stimulated 

rnucli theoretical and experimental interest in achieving BEC in an atomic gas. 

Another system as a candidate for BEC has been excitons in optically p~imped 

semiconductors (For a review. see Wolfe et al in [ 3 ] ) .  Excitons (a bourid statc of an 

electron and a hole) move like a weakly-interacting gas in the crystal. Becausc of 

the small exciton mass (on the order of the mass of an electron). the BEC transition 

temperature of exciton systems can be as high as -- 100 K if t h e  density of the exciton 
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gas is 10'' (easily achievable with laser pulses). Excitons have a finite lifetime 

due  to  recombination. but  in high puritp CuzO crystals. these lifetirnes can be a s  long 

as I O - ~ S .  which a re  enorrnous compared to  o ther  relaxation t imes ( -  10-%s) irivolved. 

GVhile this finite exciton lifetime is a complication. t he  resulting clecq- luminescence 

turns  out  t o  be a ver- direct rneasure of the  kinetic energy of t he  decaying exciton 

and hence can Iie used t o  detect t he  presence of a n  exciton Bose coridensate (exci- 

tons with zero kinetic energy). The theory of this decay spectrum has been workecl 

out by Shi. Verechaka and Griffin [15]. In 1993. Lin a n d  Wolfe [16] annoonced thc  

first corivincing evidence of BEC transit ion of paraexcitons (5' = O )  in a stressed 

high quality C1i20 crystal. Horvever. d u e  to  t he  current poor knowleclge of esciton- 

csciton interactions. and the  complications dile t o  various recornbination processes 

and exciton-phonon interactions. t h e  t heoret ical analysis of t h e  d e c q  luminescriice 

data  is qiiite complicated and  much work remains t o  be done [15. 171. In passing. 

we note tha t  the work of Shi et  n i  [l5] sliows tha t  t he  decay luminescence is a direct 

probe of t he  single-particle Green's function of a Bose gas. Ver!. few eerpeririicn~ai 

tcchniqties d o  this. 

T h e  search for BEC' in a dilute gas of alkali atonis has also been ac t i i d j -  purstietl 

foi about a clecade [2]. In these csperimerits. alliali a toms a re  first cooled ancl t rappcd 

hy laser beams. then loaded into a rnagrietic trap. wliere a selection of Iiyperlirie spiri 

state is made so tha t  al1 t he  atoms in t h e  t rap  have the  sarne spin. Tlie gas is tlien 

forther cooled by a n  evaporation technique. involving selective i f  ptilses which flip 

the spins of a toms with relatively high kinetic energy. which a re  tlien cspellcd frorii 

the trap. Due to  a large scattering cross section. t he  remaining atorns cpickly re- 

tliermalize a t  a loiver ternperature. populating the  lower levels of t lie parabolic ivell. 

Tliercfore. one obtains a lower temperature  and higher density (i-e. a t  tlie center of t he  

t rap)  a t  the  s ame  time. T h e  first successful observation of BEC mas niade with "'Rb 

atorns [l] (which have S i  nucleons a n d  37 electrons. a n d  thiis obey Bose statist ics) 

at temperatures of t he  order of IO-' K. Shortly alter,  BEC condensates were also 

produced using 23Na atoms [lS] with much larger numbers  of a toms ( -  10") ancl 

hence a higher transition temperature  (- 1W6 I i ) .  This  field of research is expanding 
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ver- rapidly at t h e  present t ime. 

1.2 Theories of weakly-interacting Bose gases 

\Vith this brief history in mind. one can understand the special excitement among 

theorists when BEC was finally achieved in a gas of atoms. Suddenly al1 t h e  theorct- 

ical calculations on  dilute Bose gases over t he  last 40 years had a direct significance. 

rat  lier t ilan as tentative steps t o  understanding licluid 'l He. Moreoi-er. t he  esper-  

iments involve lowering the  temperature  of t he  trapped atomic gases through the 

BEC transition t o  well below Tc. As a result. these new experimental studies have 

also emphwized the  need to  understand the  finite temperature properties of Bose- 

condensed systems. Wi t h few exceptions. most of t he  available t heoret ical li terat  ure 

on Rose gases is restricted t o  T = 0. 

As ive have noteci earlier. t he  theory of excitations a t  T = O is simple becausc 

one can assume tha t  a11 a toms are  in t he  conclensate and hence t h e  single-particle 

excitations only involve atoms going in and  out of this condensate. This problcni 

\vas first solved by Bogoliubov [9] for a uniforrn gas ( I t  is straightforwarcl t o  cstcrid 

t his t heory t o  a trapped Bose gas [19]. The lat ter  is usually referred t o  as  t lie t irne- 

depenclent Gross- Pitaevskii t heorx ['LO. 211). In his classic paper. Bogoliubov [9] 

presentecl a theory of a dilute ivealily intcracting Bose gas nt temperatures  lar Iicloir. 

t he  transition temperat  ure. 

A major result of Bogoliubov's calculation was tha t  only a small  fraction of tlie 

atorns were removed from the  condensate a t  T = O due  to interactions. Specifically. 

t he  number of particle in the  condensate. rVo. is given by 

where n = NIV is the  density and  a is t h e  s-wave scattering length. For a dilute 

Bose gas, we have a « n-'l3 or  na3 < 1. In spite of this small interaction-induced 

"depletion", t he  Bogoliubov mode1 shows the  interactions in the  presence of a conden- 
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sate lead to an acoustic (or phonon) excitation spectrum at long wavelengths. !dore 

precisely. Bogoliubov found that for rvavevector k < rnc/A. the  excitation energy is 

with the phonon velocity 

Obviously, this phooun spectrum collapses if a = 0. .\Il of the low-temperature ther- 

modynamics of a Bose-condensed system follocv €rom this phonon dispersion relation. 

Gavoret and Nozières [Z] were the first to show at T = O that to a11 orders in per- 

turbation theory. a Bose-condensed system always exhibited such a phonon spectrum 

with a speed @en by usual thermodynamic derivative. 

Bogoliubov's calculation also introduced the seminal idea of treating the atoms 

in the condensate c la~sical l~.  He noted that for atorns in the k = O state. the Bose 

comrnutat ion relation gave 

- t  - t e  &ao - aoao = 1. (1.10) 

However, since the expectation values of the two terms on the left hand side are each 

of the order of .Vo. which is a very large number. Thus to an extremely good ap- 

proximation. the operators of the k = O state commute with each other (as ive11 as 

with al1 other k # O operators). Therefore the? can be treated as c-numbers. with 

âo = 2; = a. In this Bogoliubov prescription. the condensate acts like a classical 

particle reservoir, which non-condensate atoms can enter and leave via scattering [Il]. 

Thus the number of atoms is no longer a constant of motion. .As an immediate conse- 

quence. one needs to include anomalous propagators (Green's functions) representing 

two particles going into or out of the condensate. This approach forrns the basis of 

the systematic application of quantum field theory to an interacting system of bosons 

due to Beliaev [ I l ]  in 1955, which was developed further by Hugenholtz and Pines 

[23], and by Gavoret and Nozières [22]. This led to a generalized Green's function 

formalism which built in the crucial role of the Bose condensate. and allowed one to 
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determine the general characteristics of the system. such as the  excitation spectrum. 

the momentum distribution of atoms. etc. After these pioneer work. t his field of stiid!. 

has been extensively deïeloped and extendeci [SI. 

The first finite temperature calculations for an interacting Bose gas were macle by 

Lee. Huang and Yang [-JIt by means of a pseudopotent,ial method for a gas of harcl 

splieres. For the low energy scattering. the details of the potent ial are not important 

and can be shown to be described by s-mave. The potential can he treated as a n  

effective zero-range interaction 

- l i ï t i2n  
V ( X  - XI) = - 6(x - x'). 

rn 

In a hard-sphere gas. the scattering length a equals to t he  diarnetcr of t h e  atoms. 

Lee. Huang and Yang carried out calculations near Tc to first order in the interaction 

assuming 

a < A ( T ) .  a « n-I l3 .  (1.12) 

wliere A(T)  is the thermal dc Broglie wavelength given by ( 1.-I). For a review of t l i ~  

thermodynamic properties of a Bose gas near Tc to first order in a. see Ref.[25]. 

Following the work at  T = 0. many people also tlevelopecl the analogoiis lirlcl- 

t lieoret ic approacli applicable at fini te tcmperat ures. GVe nient ion liere spcci fically 

the papers of Hohenherg and Martin [26]. Popov and Faddeer [?Tl.  Singh [?SI. and 

Cheung and Griffin [29]. In principle. these allorv one to calculatc the propcrties 

of an interacting Bose system. such as the thermodynamic potential. specific heat. 

condensate density. etc. As at  T = O, such finite T calculations are complicated h~ 

the subtle role of correlations indiiced by the Bose-broken syrnmet ru. Moreover. even 

in a dilute gas. the finite T case is difficult because the thermally-induced deplction 

fraction is now large. One has to be careful in treating the  condensate and escited 

atoms in a consistent fashion. 

Another well-kiiown difficulty is the fact that even for regular repiilsive iriterac- 

tions; perturbation t heory for Bose-condensed systems diverges at  srnall momenta 

[22, 301. That is to say, certain terms in the perturbation series are singular for 
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k . d  -+ O. a result which can be t raced back t o  t he  fact t ha t  t he  single-particle es- 

citations a re  phonon-like. These singularities have to  be handled wit h care  in order 

t o  obtain correct final results. Fortunately. the  infrared divergences appear  t o  cancel 

out  in al1 physical quantit ies [22. 301. 

One major  omission of t h e  present t hesis is any discussion of the relation hetwecri 

t h e  single-particle excitations (which we calculate) and the density fluctuation spec- 

trum. The Bose broken symmetry  is known (sec Cliapter 5 of Ref. 

equivaIence of thesc two kinds of excitations and  this imposes a v e r .  

on approximations [26]. 

[SI) to lead ro th<* 

st rong const raint 

1.3 Summary of thesis 

The present thesis is devoted t o  a systematic  s tudy of the finite t,einperat.ure esci-  

tations. iising t h e  Beliaev Green's function formalism. Our  eniphasis is o n  how tu  

incliide the  effects of the  non-condensate a toms and  is based on the second-order 

Beliaev-Popov self-energy diagrams. For c h r i  ty. we should note t hat while Our cal- 

culations a re  b a s d  o n  second-order Dyson-Beliaev self-energies. we lise renormalized 

propagators. a n d  thiis these self-energies really involve terms t o  al1 orders in t h e  in-  

teraction. As with any many body calculation based on a selection of self-eriergy 

diagrams which involve self-consistent propagators. it is sometimes difficiilt to g i v ~  

convincirig arguments  about  t heir relative importance. ?Ve have tricd to  clo t liis as 

best as ive are  able  t o  a t  t he  present tirne. following mainly t he  arguments given II!- 

Popov [:31]. 

T h e  thermal  Green's function method  is briefly reviewed in Chapter 2. where we 

give the  Dyson-Beliaev equations expressing the 2 x 2 matrix  Cireen's function in 

terms of t he  two kinds of self-energies. For illustration. we Lise this formalisni t o  

discuss t he  simple T = O Bogoliubov mode1 ( this  was first done by Beliaev [11] and  

is discussed in most many-body textbooks (12, 131) .  

These techniques are  then applied to a dilute Bose gas a t  finite temperature  in 

Chapter  3, using t h e  first-order Hartree- Fock approximation t o  deal wit h t h e  inter- 



actions between the excited atoms plus the Bogoliubov approximation to  accoiint 

for interactions with the condensate. as first suggested by Popov [32 ] .  Calciilating 

the poles of the single-particle diagonal and off-diagonal Creen's f~inct  ions. ive find 

the quasiparticle energy spectruni h w  a structure similar to  that  of the T = O Bo- 

goliubov model. but noiv with a temperature-dependent condensate. This leads to 

the collapse of the low k phonon-spectrurn to  free particles as T -, Tc- Like  niari?. 

ot her non-self-consistent first-order calculations. the Popov approximation leacls to a 

jump in the condensate density a t  the  transition point. and t hus predicts a first-order 

phase transition. Following recent work of Bijlsma and Stoof [ 3 3 ] .  in Cliapter -1 LW 

r i i o c l i ~  the Popov approsirnation by using a self-consistent t-matris. rather than t h e  

orclinary one iising unperturbed propagators. This self-consistent t-matrix is found 

to  be ver- temperature-dependent. and vanishes at Tc. It leads to  a sniooth change 

of the condensate density at  t h e  B E C  transition point. 

In Chapter 5 .  ive discuss the  more cornplicated second-orcler Bcliaev-Popov ap- 

proximation. and work out the Forma1 expressions of the self-energies and thcir rrla- 

t ions to  t h e  single-particle excitation energy. Csing these results. Bcliarr's sccond- 

orcler calcu1ations at T = O are re-derirerl in C'hapter 6. WC evaluate t lie self-ciicrgics 

near the  poles - El. (where Ek is the Bogoli~ibov excitation energ? of Chapter 

2 )  and expand oor results in powers of k in the long wavelength liniit. Our csplicit 

expressions of the self-energies involve infrared divergent terrns. L\;e sliow thar t ticsc 

divergent terrns cancel out exact ly ( as expected), leading t O well-tlefinccl pli~+sical 

quanti t ies. such as the quasiparticle energy and t lie single-particle spectral dcnsity. 

.As expected. the cnergy spectrum of escitations in the Beliaev approximation is 

phonon-like in the long wavelength Iimit. It also contains an  imaginary part (claitip- 

ing) which goes as - k5. These second-order Beliaev self-energies arc the lowest 

approximation which involves damping of excitations. While al1 the final results of 

Chapter 6 are known. we hope our very detailed analysis will make Beliaev's ~vor l i  

[34]  more accessible. 

The  analogous evaluation of ottr expressions for the finite-temperature Bcliaev- 

Popov self-energies at  small k and is much more difficult than in the T = O case. 
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By expanding t he  self-energies in powers of k a t  w -- Ek (where Er. is now the Popov 

excitation energy of Chapte r  3) as in t h e  zero-temperature case. rve are  taking the 

limit J c. O a n d  k + O a t  t h e  same time. This  is not appropriate a t  finite temperature 

because t he  addi tional thermal  scat tering terms involvecl in t he  self-energies reqtiire 

tha t  one take  t he  limit k + O first. To overcorne this difficulty. in C'hapter 7 r w  

introduce a srnall gap between the  frequency and the Popov quasiparticle energy and 

espand  t he  self-energy a t  Y. = Ek + 6. rather than a t  = Ek. This  gap  O is kept 

finite until t he  expansion in powers of h is done. We thus obtain  the  expansion for 

t he  self-energies in powers of k a t  finite T .  These results allow us to  calculate the 

si ngle-part icle excitation energy and  damping. as rvell as the  chernical potent in1 by 

means of t he  Hugenholtz-Pines t heorern [-31. 

GVe believe t he  results will be of considerable interest to t he  groming BEC' comniii- 

nity. who a re  interested in the  analogous problerns for t rapped Bose gases. \%;e ha1.t. 

made  an at tenipt .  in an  admit tedly highly ma t  hernatical development. t o  discuss t h c  

physics involved in the diagrammatic  analysis as well as t o  describe the  intermediate 

steps in some detail. Wit  hout denying t he  brilliance of the papers by Beliacv a t  T = O 

[34] and  Popov a t  finite temperatures  close t o  the transition [ 3 1 .  321. t heir accoiints 

a re  rvritten in a very terse  style with man'. important features left t'or t he  reader to 

figure out .  The present t hesis is also a s ta tus  report of our  ciirrent unclerstancling of 

excitations in uniform Bose gases at finite temperature.  We Iiope tha t  it will proviclr 

t h e  basis for future theoretical studies which will clarify several questions raisecl in 

t he  thesis, a s  rvell as in generalizations t o  deal with excitations in trapped Bose gases. 



Chapter 2 

Green's funct ion formalisrn for a 

Bose-condensed gas 

In this chapter. ive hriefly revietr t he  firiite-teniperat~ire (or  t he rma l )  Green's fiinc- 

tiori Fornialism. This technique is t he  niost effective way of calculating t he  equilihriiini 

t l i e rmod~namic  propert ies. as well as single-part icle excitations of t he  systcni. .Al- 

thoiigh tliis chapter does not contain anything new. i t  is included for t he  conveniericc 

of t hc reader and t o  int roduce iiotat ion. In t he  Bose-condensed pliase cliaracterizrd 

II!- a rnacro~copic number of a toms in t he  zero-momentom single-particlc state.  i t  

is conveiiient t o  regard t h e  operators ûo and il: for this s ta te  as c-niirnbers. This 

procedure. called Bogoliubov prescription. is clisc~~ssccl in Section 2.2. Mï t  h in  t his 

hrokeri syrnmetry phase. one  deals witli anonialous averages and it is also neccssary 

t o  introduce (Section 2.3) a 2 x 2 matr ix  Green's fiinction or  propagator.  Its diago- 

nal elements are  t he  normal Green's Functions, and off-diagonal elernents are  called 

the anornalous Green's functions. \Ve write down the  Dyson-Beliaev eqiiations for 

a Bose-condensed system [ I l .  231.  which give different kinds of Green's function i r i  

terms of the 2 x 2 matrix  self-energy. In Section 2.4. we review hoiv t h e  thermal 

Green's function a t  irnaginary frequencies are related t o  t he  real t inie Green's fiinc- 

tion by a simple analytic continuation, in which the single-particle spectral  clensity 

function plays a central  role. Finally? in Section 2.5, we il lustrate t his formalism by 

considering the Bogoliubov mode1 approximation at T = 0. 
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2.1 Imaginary frequency Green's functions 

The sustem ive are concerned rvith consists of .Y atoms o b e ~ i n g  Bose statistics. eri- 

closed in a box of volume I.' and interacting through the two-body potential r ( x  - x'). 

For simplicity, the atoms are assumecl to have zero net spin. For a Bose-condensecl 

system. it is particularly convenient to use the grand canonical ensemble. which al- 

lows for the possibility of a variable number of particles. In the second qtiantizetl 

formalism. the grand canonical -Hamiltonian" of t h e  system is given by 

FIere il(x). L-t(x) are  the boson field operators. satisfyinp the usual Bose conimii ta t  ion 

relations 

IC(X). i-+')] = S(X - XI). [S<(X).  i * ( x ~ ) ]  = O.  (2.2 ) 

The chernical potential p is chosen so that (:+) = .V. With the  grand canorii- 

cal Hamiltonian I;'. rve int roduce t h e  modified r-dependent Heisenberg pict lire for 

any Schrodinger operator O(x) (see standard texts on man--body systerns siicli as 

Refs.[l?. 13. 351): 

Ek7ô(X)E-A-r. (2.3) 

In particular. the field operators have a r-dependence given by 

Comparing this representation wit h the  standard real-time representation. the vari- 

able T can be viewed as an "irnaginarg' time T = i t l h .  
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The single-part icle thermal (or imaginary t ime) Green's funct ion is defined as 

where 3 = l / k B T  and TT is a T ordering operator. which arranges the smallest Ï to 

the right. The  grand canonical ensemble average is denoted by 

where R is the thermodynamic potential. defined as 

e-JR = - T ~ ( ~ - ' ' "  - 

For most purposes. i t  is more convenient to work wit h the  single-part icle niomeri 

t iim representation. Assuming periodic boundary conditions. t he  operators c*(  x).  

e*t(x) can be tvri t ten in t he  single-particle moment~irn representat ion as 

~ r h e r o  ùk. ùk are the Bose annihilation and creation operators. respectively. for tlic 

single-particle s ta te  of moment~i rn  k. From (2.2) follows the Bose comniotation rules 

for ûk and âk: 

[âk, Ûkl] = O. [âk? Û:,] = bkTk1. (2.10) 

In t he  single- part icle momentuni representat ion. ive ma? wri te G(xr. x'r') in (. 2.6) as: 

In t he  case of a uniform system governed by a time-independent Hamiltoniari. Ci 

depends only on the differences x - x' and r - r' (see s tandard many-body tes t s  such 



Ch. 2 Green 's Fun ct ion Form alisrn . . . 

as Ref. [LI]). wi t h 

where 

It is easy to  verify tha t  for bosons. C;(k. T )  satisfies the famous periodic condition 

for -3 < Ï < O. where the  right-hand side of the equation gives the  Green's iunctioti 

for O < T + 3 < 3.  This periodicity of C( k. T )  in the variable T wit h period 3 leads 

immediately to  the  following Fourier expansion: 

Mere dn is a Bose Matsubara frequency (ivhich has the  dimension of energy in oiir 

notation). and because of Bose statistics. the integer n is restricted to everi values. 

The Fourier component G(k. id,) is a functioii of t h e  discrete Matsiihara freqiirncies 

that  are evenly distributed on the iniaginary freqtiency axis. A t  T + O. tve n0t.c t Iiat 

t he  spacing between t h e  discrete Matsubara frecluencies goes t o  zero. 

The thermal Green's function defined in (2.6) can be used to  evaliiate the  cquilih- 

ritim thermodynamic properties of the  systern. socli as the number of particles with 

a certain momentum. By definition (see. for example, p.229 of [13]). 

mhere T +  denotes the  limiting value T + q as rl approaches zero from positive values. 
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The mean nimber of particles in t h e  system is then given by 

The ensemble average of any single-particle operator. as well as the mean potential 

ene rg -  is expressible in terms of G. Moreover. one can also relate the thermodj-- 

narnic potential O(T. 1;) to t h e  single-particle thermal Green's function C; [13. 281. 

which enables us  to calculate the  general eqiiilibrium t hermodynarnic propert ies of 

the system. 

The excited states of the system containing -1- f 1 particles arc relateci to t h e  

poles of the real-time Green's function (19. 361. At finite temperature. however. t h e  

real- t ime Green's funct ion involves a very complicated perturbation expansion. Ir1 

contrast. the thermal Green's function as  defined here has a simpler perturbation 

expansion. similar to that for the  T = O Green's function. Fortunately. as wr shall 

discuss in Section '2.4. the Fourier transforrns of the thermal Green's f~iriction and t h e  

real-time Green's f~inction can h e  ~iniqiiely related to each other through a simple 

analytic continuation. Thus t h e  irnaginary freqiiency (or t hernial) Green 's fiirict ioii 

can be iised to calculate the single-part icle excitations of t h e  systcrri. 

2.2 Bogoliubov prescription for a Bose-condensed 

system 

In the preceding section. we have defined the  single-particle teniperature Green's func- 

tion. The  remaining task is to calculate the Green's fiinction G. For a Bose susteni. 

t his task is complicated by the possible phase transition to  a Bose-coiidensecl state. 

in other words, by the spontaneous symrnetry-breaking below a certain temperature 

Tc. -A more rigorous way of dealing with the new phase is t o  explicitly include a 

symmetry-breaking term in the  Hamiltonian (2. L): 
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u-here v is the Bose symmetry breaking field. The spontaneous symmetry brcaking 

ancl a new condensed phase is signaled by the non-vanishing of the average (1 1. 261 

e ~ - e n  in the limit of a zero off-diagonal field ( u - O ) .  W e  refer t o  the tliesis of Tall~or 

[37] for a detailed discussion of Green's function in a Bose systzm where the eymlnctrx 

breaking field is kept t hroughout. In t his t hesis. however. Ive will assunie t he  limit of 

u + O and leave this term implicit. 

aO(x) in (2.21) is often referred to as the rnacroscopic wavefunction of the con- 

densate and in general has an  amplitude and a phase. In a uniforrn system antl in 

the absence of any supercurrent. we can take Oo(x) to be ieal and independent of 

position. In t his case. equals to square root of t h e  condensate tlensitj- no. \Ve are 

t h e n  led to separate t h e  boson field operator into two parts: 

- t  
(10 C;t(X) E - 

\ , - l / ?  + li.t(X). 

Since the commutator of âo antl 6: is iinity. and is sniall comparecl wit h t heir protliict 

wtiich is of order .V. ive can rcplace operators no and R A  by t lie c-n~inihcr .\:/' i n  ( - 1  -.-- .).)) 

and (2.233 j. This procedure. known as the Bogoliubo~ prescription. is appropriatc 

when the  number of particles in tlic zero-momentum state is a finite fraction of .\.. 

The error introdiiced is of the order O( b'-' ). and t hus vanishes in the t hermodynaniic 

limit (3' + xi and Cr -+ m. with fixed density n = .V/I/- ). Clearly. the neiv 

field operators J(x), 6t(x) deçcri be  the non-condensate atorns. antl satisfy t lie Bose 

commutation relations (2.2) in the therrnodynamic limit. The average of ancl c+ 
now vanishes as in the usual case of a normal system. namely 

With the above Bogoliubov broken-symmetry prescription. the thermal Greeri's 
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Function defined in (2.6) now separates into  two parts: 

wi t h t h e  non-condensate Green's hnction defined by 

In momentiim representation for k f O. ive have 

The  separation of the  condensate using ('2.22) and  (2.23) and  t he  Bogoliiibov 

prescription rnodify the  Hamiltonian in a fiindamental way. The grand canortical 

Hamiltonian is now givcn by 

wliere the interaction 1-Iamiltonian C* separates into eight distinct parts: 
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Figure 2.1: Eight distinct processes involveci in the interaction CF. A solid line tlenotes 
r i  or ât. a wiggly line corresponds to a condensate a tom or  a factor ni / ' .  and a ciaslied 
line denotes the interaction t.. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

These parts are represented by the vertex diagrams in Fig.Z.1. In a normal SJ-stem 

( n o  = O ) .  only V7 is present. W e  also note that Ii has no term containing a single 

tf, or âk because these would violate momentiim conservation. This is in agreement 

with ( 2 . 9 4 .  which gives in momentum representation 
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Figure 2.2: Proper self-energies for a Bose-condensed system 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2.3 Dyson-Beliaev equations 

The fact that there exist interaction terms such as I.I in Fig.2.l implies the non- 

conservation of particles in the system described by non-condensate operators f ik and 

â;. due to exchanges between non-condensate atoms and the condensate atorns. Nev- 

ertheless. if a proper self-energy is defined as a part of a Feynman diagrarn connected 

to the rest of the diagram by two non-condensate particle lines. then it is still possi- 

ble to anaij-ze the contributions to the Green's function in a form similac to Dyson's 

equation for interacting fermions. However. t here are now t hree distinct proper self- 

energies. as indicated in Fig.2.Z. One type of self-energy has one particle line gooing 

in and one coming out (Sl1). similar to that for fermions. The other ones have two 

part icle lines either coming out ( X12 ) or going in (LI ). and reflect the new feat ures 

associated wit h the existence of a Bose condensate reservoir. Correspondingly. we 

must also introduce two new Green's functions. 

GI2 and Gzi are usually called the anomalous Green's functions, representing the dis- 

appearance and appearance of two non-condensate particles. respectivel.  The normal 

Green's function defined in ( 2 . 2 6 )  is denoted as Gl t ,  representing the propagation 

of a single particle 
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Figure 2.3: Green's functions for a Bose-condensed system. 
. . . . . . . . . . . . . .* . . . . . . . . . . . . . . . . . . . . . . . . . . . . -* . . . - . .* . . . . . .* . . . . . . . . .**. .* . . . . . . . , .  

These three Green's functions are shown in Fig.Z.:l. where the  arrows indicate the 

direction of momentum of the atoms involved. 

The Dyson equations for this spstem were first derived by Beliaev [ I  11- which in 

frequency-momentum space are given by: 

For simplicit~. we use the letter p to represent the four-dimensional vector (k. iiz, 1. 

Unless ot herwise noted. we foilow t his convention in the  rest of the  t hesis. The Dyson- 

Beliaev equations (2.43)-(2.45) are illustrated diagramrnatically in Fig.Z.4. The struc- 

ture of these equations can be simplified by introducing a matrix operator [3S] 

and. correspondingly, a 2 x 2 matrix Green's function 

A single matrix equation can represent the three Dyson's equations of (7.43)-(2.45). 

namely 

G(P)  = G(O)(P) f G(O)(P)C(P)G(P). (2.48) 
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Figure 2.4: Dyson-Beliaev equations for a Bose-condensed system. 
. . . . . . . . . . . . . . . . . . . . .*.*..... . . . . . . . . . . . .-...**..... . . . . . . . . . . . . . . . . . . . . . . . . . . . .-. 

with 

Here the unperturbed Green's function is given by 

The matrix elements are not independent. with the following useful identit ies: 
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Eq.( 2.-LY) can be solved to give 

These last tmo ecluat ions express the normal and anornaIous Green's funct ions in tcrms 

of the  exact proper self-energies. and therefore are entirely general. The>- apply to 

any uniform Bose-condensed fluid. liqiiid or gas. 

We see that in (2..33) and (2..j4). both Checn's functions share the sanie poles. 

Moreover it is easy to check that  in the k -t O limit. this pole occiirs at id, = O i f  

In fact. (2.Z.5) can bc shown to be  true to al1 orders in perturbation ttieorj- a n d  is 

known as the Hiigenholtz-Pines theorem [23]. It was first derivecl by Hugenholtz and 

Pines for the  T = O case by a direct diagrammatic analusis. ancl generalizecl to finite 

temperaturc by Hohenberg and Martin [26]. This theorem is very important hecaiisc 

it shows. quite generally. the energy E(k)  of single particle escitations (u-hicli arr 

related to the poles of Coi?) vanishes nt k = O: in otlier words. the excitations ha1.e no 

energy gap in t h e  long wavelengt h lirni t. The Hugenholtz- Pine t lieorcni t liiis proviclc*~ 

a criterion for ensuring such a gapless approximation (261. 

2.4 Real- t ime Green's functions 

In Section 2.2. we pointed out t hat the thermal Green's fiinctions C: can be iised to 

calculate tliermodynarnic properties. Through i ts relation to the r d - t i m e  C;reen's 

function. it also can be used to determine the energy and lifetime of t lie states of a 

system when one adds or subtracts a single atorn. 

As usual. we restrict ourselves to the case of a homogeneous system with a time- 

independent Hamiltonian. Then the eigenstates Inz) of the grand canonical Hamil to- 
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nian k and the  momenturn operator P are the  sarne. ivith 

In such a basis. the imaginary-frequency Green's function G(k. iu,) can be written 

in a Lehmann representation (see. for example. Chapter 9 of [13]) .  which vields the 

folloiving exact spect r d  representat ion 

where .-L(k.d) is the single-particle spectral density function defined b ~ .  

Following directly frorn its definition. one can show quite generally tliat for a Bose 

systern. .-l(k.d) lias the following properties (sec. for esaniple. C'hapter 9 of [13]j: 

ivhere f e ( i z )  is the Bose distribution fuiiction and r i k  is the momenturn distribution 

of atoms. In (2.60). the equality holds i f  = O. Equation (2.61) is a n  example of 

a frequency-moment surn rule which is useful as a check on specific approsiniations 

for .4(k.w). For other frequency-moment surn rule see Chapter S of [SI. The  spectral 

density function A(k, d) and its relation to  C in (2.58) plays a central role in the  finite- 

temperature formalism. since one can show that  the same A(k. w j also determines the 

various real- t irne Green's funct ions. 
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At finite t empera tu re .  the retardecl and advanced Green's  funct ions involving real 

time t are defined as 

Gre'(xt .  x't') -iO( t - t ')  ([(.(xt ) kt (x ' t t )  - Ct(x't t)C(xt  ) ] )  . (2.63) 

P d ' ( x t .  ~ ' 1 ' )  - i O ( t f  - t )  ( [ i ? ( x t  )Gt(x' t f )  - &t(xf t f  ) ( - (x t  ) ] )  . (2.64) 

Here ( S . - )  deno tes  t h e  grand canonical ensemble  average:  a n d  t h r  real t ime I-Ieisenhcrg 

operator lLz(xt ) are defined by 

Cirer a n d  Ciad' may be also written in t h e  L e h m a n n  representation. and exprcssed in 

terms of t h e  spec t ra l  densi ty  furiction .-l(k.d) defined in (2.59) as  1131 

.x du' . 4 ( k . d f )  
C ire t (k . s )  = lOx- 2 a s - J + i r l '  

Equat,ion (2.58). (2.66) and  (2.67) show t h a t  t h e  function .-l(k.d) cletrrniincs tlir 

t, hernial Cireen's function a s  well as  C F L  ancl G"'. siiggest ing the  following arialut ic 

continuation: 

Although G(k. id,) is a function only at the  discre te  set of points iu, d o n g  the 

irnaginary f requency axis, it can give GWt and Gadv th rough  the analytic cont inuat ion 

to the real axis by using (2.6s) and  (2.69). S ince  t h e  s u m  rule (2.61 ) reqiiires t h a t  

botli P t ( k . i r . )  and Gad'*(k.w) -- w.-l as  Iwl -r m, t h e  above analytic continuatiori is 

guaranteed t o  h e  un ique  [39]. Iising these results, A(k, u)  can  be also wri t ten  as 
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Therefore. an- approximation for the thermal Green's function inimetliately yields a 

corresponding .-I(k. d). as well as an approximation for Gret and Gad'. 

For cornpleteness. ive discuss t h e  relation between the thermal Green's funct ion 

and the real-time Green's function used at T = O. For this purpose. we define the 

following real-time Green's function at finite temperature. in direct analogy ro t,liat 

at T = 0: 

Mere Tt is the real-tirne order operator. Again. by ineans of a Lehmann represent,atiori. 

the Fourier transform of G' can be shown to he related to  Gret and C;aciv bj- [13] 

In  the liniit of T 4 0. t h e  last eqiiation reduces to 

p o  ( k . )  = O(;)Gmt(k.s) + ~ ( - d ) ~ " ~ ' ( k . d )  

Eq.(2.73) shows explicitly how one obtains the T = O Green's ftinction frorii tlic 

imagi nary frequenc- thermal Green's funct ion usirig the analytical cont iniiat ion. 

2.5 The Bogoliubov approximation 

To illustrate the formalism we have briefly reviewved in this chapter. we use it to solvc 

for GI I  and Giz in the famous Bogoliubov approximation [9]. 

One expects that in a weakly-interacting Bose gas at low temperatures. most of 

tlie atoms will still remain in the k = O state, only a few of theni being "kicked" 

out of the condensate by the interactions. The nurnber of non-condensate atoms 
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Figure 2.5: Self-energy diagrarns in the Bogoliubov approximation. 

is usually called the "depletion". If the depletion is small. the interaction between 

two non-condensate atoms will not be important. This is the basic wsumption that 

Ieads to the so-called Bogoliubov model. in which the terms i.',. t e  and in (2.29' 

are neglected. The remaining terms are quadratic. diagonalizable by a canonical 

transformation (see. for example. Chapter '25 of [ 36 ] ) .  This Bogoliubov model can 

be described in terrns of Green's function language. as first discussed by Beliaev 11 11. 

In Green's function language. the Bogoliubov approximation consists of keeping the 

loivest-order self-energy diagrams t bat contain condensate lines. as shown in Fig.2.5. 

These can be written as 

where no &/V is called the  condensate density. An important feature of these self- 

energies is that they are frequency independent. With the Hugenholtz-Pines theorem 

[23], the lowest-order contribution to the chernical potential is given by 
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Using these results in (2.5:3) and (2..54). we obtain 

One most striking feature of the Bogoliubov mode1 is the form of the esci~ation 

spectriim Ek. given by the poles of and Gi2.  

which agrees with t he  result from a direct canonical cliagonalization. In the  long 

wavelength limit (k O ) ,  Ek reduces to the phonon-like dispersion relation 

wit h t he  characterist ic velocity 

cletaileci calculation shows that the groiind-state energy (sre scct ion 22 of [ 1 : 1 ]  ) 

is given by 

which yields the pressure 

and hence the  macroscopic speed of sound 

C'ornparison of (2.81) and (2.Y4) shows that  c equals the  macroscopic speed of souncl 
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s given by t he  usual thermodynarnic derivative. Indeed. it has been proved to  al1 

orders in perturbation theory [-2. 261 for t he  T = O case that  the  single-particlc 

excitation spectrum vanishes linearly as Ikl + O. with a dope  equal t o  t he  niacroscopic 

speecl of sound. This lincar dependence of excitation spect rum at iong wavelengt h s  

is t h e  essent in1 picce of physics t hat already emerges from the simple Bogoliubol- 

approsimation. .At low temperatirres. the  phonon spectrurn wvill make the  dominant  

coritribution to t hermodynamic properties and  t hus t he  Bogoliubov results gives tlir 

low-temperat ure behavior characterist ic of Bose-condensed fluicls. 

In this chapter.  we have given a brief review of the  finit.e-temperatiire Green-s 

function formalism for a Bose-conderised system. Diie t o  the macroscopic occupatiori 

of the lowvest energy state.  one must introduce the  anomalous Green's fiinctions Gi2  

ancl C;21 in addition t o  t h e  riormal Green's function Gi  i. and corresponclingly. the sclf- 

energies X 1 2 .  X21 and  X l  l .  Approximate solutions a re  determineci hy our  clioicr of sclf- 

eriergies. In the  succeeding chapters. we discuss finite ternperature approximations 

for a Bose condensed system. namely. the first-order Popov approsimation ancl t l ir  

second-orcler Beliaev- Popov approximation ( in which t h e  self-eriergies arc e s  plici t 1- 

first order and second order i r i  the interaction. respect ively ). 



Chapter 3 

The first-order Popov 

approxirnat ion 

In this cliapter. we discuss a first-order self-energy approximation for a iveakly- 

interacting Bose gas a t  finite ternperatures. I t  ivas first discussed in 1965 hy Popov 

[32] .  and tlitis Ive cal1 it t h e  Popov approximation [1.5]. The weil-known Bogoli- 

ubov approsimation discussed in Section 2.5 only describes tlie pliysics of a low- 

temperature Bose gas. Clearlx. as the number .i- of excited atorns (tliosc not in thc 

zero-niomentum state)  increases with tempcrature. the Bogoli~it>o~- approsiniatioii 

becomes inappropriate since it assumes .Y = .V - .Vo < .V and conscqiierit ly igiiorcs 

tlie effect of interactions between the excited atoms. At finite temperatiirr wlicri 

.\rv is not small compared to :V. the interactions bel ween thc cscitcd atorris mi is t  he  

taken into accoiint. This is done in the Popov approximation by treating the escitetl 

atoms in the Hart ree-Fock approsimat ion. Apart from Popov's work. most t lieorics 

of temperatiire-dependent properties (for example. Ref.[-LO]) of a weakly-interacting 

Bose gas have been bwed on the Bogoliubov model. which means they are limitecl 

to the low temperature ( T  < Tc)  region. The Popov approximation. as noted in 

Refs.[l5, - I l ] ?  gives a reasonable first approsimation for a rveakly-interacting Bose gas 

at much higher ternperatures. 

In the present chapter, we will give explicit expressions of t h e  self-energies in 

the Popov approximation, and calculate the Green's functions and some physical 



cpantities a t  finite temperatures. LVe twill also discuss the reason why the Popov 

approximation is not valid in the \-ery small temperature interval near Tc. 

The Popov approximation was largely unknown until w r y  

first applied to  discuss the BEC of paraexcitons in C u 2 0  by Shi. 

recently. when i t was 

Verechaka and CZ riffin 

[l.i]. In  this work. a general expression for decay luminescence speîtrom from a gas 

of excitons was derived. This was evaluated at  finite temperatures ~ising the Pope\- 

approximation as a simple first-order theory of t h e  effects of interaction in a diliite 

weakly-i nteract ing gas of excitons. 

3.1 The HFB self-energies 

In  his original paper. Popov [$2] expressed the self-energies in terms of the  t-mat r is  

(more precisely. the ladder approximation of the t-matris).  insteacl of the barr po- 

tential c*(r). The t-inatris is a more effective cclescription o l  t h r  effective interactions 

I~etweeii the atoins than the interatomic potential i tself. Horvever. in order to m i  plia- 

size the physics insteacl of going into the details of many- body scat tering t lieory. wcx 

shall first proceed assuming that the bare potential o ( r )  and its Foiiricr coniponent 

~ ( k )  is weak a n d  well-ciefined. /Ifter Ive have discussed the basic physics of t h e  Popov 

approsimat ion. we will incorporate t lie t-mat rix into our results. 

The self-energy diagrarns in the Popov approximation inclucle al1 possible first - 

order diagrams of a Bose-condensed systeni. Among the diagrams i n  Fig.3.1. orily 

those (a. b. e) containing two coridensate lines are inclucled in the Bogoliubov ap-  

proximation of Section 2.5.  The new ones ( c  and c i )  are the Hartree- Fock diagrams 

including excited atoms. The  self-energy rll  and Y l z  of Fig.3.1 can be  esplicitly 

written as 

1 
El  (k) = no [v(O) + ~(k)] - - C ~ ( ' ) ( q ,  iw,) [ L ~ ( o )  + [ ~ ( k  - q)] . ( W 

:3If q , , ~ , ,  
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Figure 3.1: Self-energy diagrams in the Popov approximation involving the bare po- 
tential u .  .A solid line with arrow denotes an ideal gas propagator @O).  a wiggly line 
denotes a condensate atom. and a dash line denotes the  interaction c 

Here G(O)(q. Lw[) is the unperturbed Green's function of non-interact ing atoms. given 

by 

with ,u(O) denoting the chemical potential of an ideal Bose gas. 

Since v(k)  does not depend on the Matsubara frequency iw,, one sees tha t  neither 

do Zll(k) and E12(k). One can then perform the frequency sum in (3.2) to obtain 

For T + 0, the Bose distribution function [exp B(E, - Cc(o ) )  - 11-' becomes very small, 

and thus the contribution due to interactions between two excited atoms (the second 
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term in Y I  1 ) is negligible compared to t hat due to interactions between one excitecl 

atoni and one condensate atom ( the  first term in Z r l ) .  ln this limit. the Popov 

approximation reduces to the Bogoliubov approximation [see (2.74) and (2.75 )]. as 

expected. 

011 the otlier Iiand. tlie condensate density n o ( T )  vanishes when T > Tc (normal 

phase). In this case. we are only left with diagrams ( c )  and ( d )  in Fig.:3.l. i.e. the 

usual Hartree [(c)] and Fock [(d)] diagrams of a normal system. Tlie Hartree-Fock 

approximation is basically a static mean-field theory. which treats the motion of 

single particles in an average static field generated al1 the other particles. In t tir 

Popov approximation. the average Hart ree- Fock field is determined by non-interact ing 

particles as represented by the ideal gas propagator G(O) in diagrams ( c )  and (ci) .  

'Taking into account the fact that the background particles also movr in tlie average 

field coming frorn the presence of al1 the other particles. one can improvc the Hartrce- 

Fock t heory by replacing the free propagator G(O) bu the full renormalizecl propagator 

Ci. This is the well-known sel/-consistent Hartree-Fock (SC'HF) approsirnation (13. 

:KI]. 

For a Bose-condensed systern. the analogue of this self-consistent approacli is 

called t lie self-consistent tlartree-Fock- Bogoliuhov (MFB) approximation (for fiirt hcr 

discussion and earlier references. see Ref.[-! 11). tn this self-consistent M FB approsi- 

mat ion. one replaces t h e  free propagator G(O) in Fig.3.1 hy the matris propagator G 

given by (2.47). which includes bot h the diagonal (normal) Green's funct ions (Cii 1 

and C;22) and tlie off-diagonal (anornalous) Green's fiinctions ( Giz  and Ci2, ). Ttir 

self-consistent HF B approxiniat ion. however. has wll-known problenis i t i  t lie Bose- 

condensed phase. such as the violation of various conservation la~vs and the presence 

of an energy gap in the excitation spectrurn[%G. 411. As Griffin [-Il. 421 has poiritetl 

out ,  these problems with the self-consistent HFB approximation arise because thc 

condensate atorns and escited atoms are not treated in an equal manner: tlie con- 

densate atorns are treated in a collectiue way while the excited atoms are only treated 

as renormalized single particles. The Popov approximation corresponds to a simpli- 

fied version of the HFB which does not introduce an energy gap in the excitation 
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Figure 3.2: Typical inter-atoniic potential 
. . . . . . . . . . . . . . . . . . . . . .~ . - . . . . . . . . . .~ . . * . . . . . . . . . . . . . . . - . . * . . . .~ . . . . . . . . . . . . . .~ . . . .  

spectrurn. as will be disciissed shortly. 

Wit h the self-energies given by (,3.5) and (3.6). one can. in principle. calculate t h e  

si ngle-part icle propert ies relatecl to single-part icle Green's funct ion CioJ for a given 

interparticle potential v ( r ) .  assuniirig the interparticle potential has a well-definecl 

Fourier trarisform v ( k ) .  However. the typical inter-atomic potential has a iveak long- 

range attractive tail arid a strong short-range repulsive core. as sketclied in Fig.3.2. 

The hard core means that the Fourier transform u(k) in ( 3 . 5 )  and (3 .6)  is not well- 

defineci: indced. it is singular. CVe now discuss how t his probleni can be solved. 

3.2 The Popov self-energies in terms of the t- 

matrix 

Fortunately. for a low-density or dilute gas of atoms, one can rnake use of the lad- 

der approximation. The word "dilute" has the meaning that the average interatomic 

distance, d -- n - 1 / 3 ,  is much larger t han the s-wave scat tering lengt h a. which is the  

characteristic lengt h representing the influence of the interatomic potential (see Ap- 

pendix A. where the  basic elements of scattering theory are reviewed). This condi t ion 
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Lowest order Second order 

Figure :3.3: Diagrammatic definition of the t-matrix r 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .~ . . . . . . . . - . - . . . . - . - - * - . - . . . . . . . . . . * . . . . .~ . . . . . . . .  

iniplies that 

As discussed by Beliaev [XI .  in a dilute gw. the  ladder diagrams are al1 of equal 

importance. This sum over al1 the ladder diagrarns yields the so-called niany-body t- 

matrix r' as illustrated by the hatched square in Fig.3.3. The diagrammatic definition 

of ï in Fig.3.3 can be written explicitly as 

where the four-dimensional vector pj = (k,. i w j )  represents the momentum k, and 

Matsubara fiequency iwj of a particle before ( j  = 1,2) or after ( j  = 3.4)  scatter- 

ing; similady, q = (q, hi). It is often more convenient to write r in the center-of- 
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momentum frame of the scattering pair of atoms (see Appendix .l) 

where wc have  introdticed t h e  center-of-mass variables 

Here the factor F+(K. k - q ) ( z  - Itk-q + '>p)-i cornes from the frequency s o r n  of the 

prod~ict G(O)C;(O) over  Li. The function I;;(K. k - q) incorporates the effect of the 

Bose statistics oheyed by the atoms involved in the  int,ermediate scattering states. 

\Vit h t his clefini tion of l'. t h e  lowest-ortler diagrains for a di lute  Bose-conclensed 

pas in the ladder approximation a r e  showii in Fig.3.-L. which are precisely the cliagranis 

t hat Popov i ncliided in Iiis origirial paper[32]. The  self-energies reprcsentetl hy t lic 

cliagrams in Fig.3.4 can be written explicitly as 

k k  . 
( k .  i n  = O - + - -  -. k . ~ ,  - E x ) ]  

2 -  '2 '  

k - q  k - q  -- , k + q. id,, + i;i - <k+Ci) 
' 

G ( O ) ( ~ .  i d / )  r(-7i-. -' 

J',,' q,iul - *? - 
k - q  k - q  +r(---..-- 3 - . - . k + ~ - i ~ n + ~ i - ( k + q ) ] . ( : ~ . l i )  

In comparing this wit  h the self-consistent HFB discussed in Section 3 . 1 .  we riote there 

are two differences: 

(a)  The ladder diagrams are included. replacing the bare interatomic poteiitial t: 
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Figure 3.4: Self-energy diagrams in the Popov approximation involving t-matris 

by the many-body t-matrix T: 

(b)-  Ideal Bose gas propagators are used in the self-energies. rather than the renor- 

rnalized ones. 

.As shown in Appendix .A. the many-body t-rnatrix r can be expressed in terms of 

the vacuum scattering amplitude f defined by 

We note that our definition 

scattering amplitude f by a 

of f differs from the ordinary definition of the vacuum 

factor of -4ah2/m, that is 
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In the long wavelength limit ( (kl = / k f (  + O ) .  f can be çhomn to reduce to 

where a is the s-wave scattering length. The vacuum scattering amplitude f describes 

the effect of the potential on the wavefunction of two atoms in free space. wliile tlic 

rnany-body t-matrix l? describes the  similar effect in a medium. that is. in the presence 

of other atoms in an  ideal Bose gas. 

I t  is shown in Appendix ;\ that the momentum dependence of T(k. k': K. z )  in 

(3 .9)  is at least the order of j2 : in terms of a.  this rneans of order a' [see (3.19 )]. 

In the first ortler approximation we are cliscussing in this chapter. it thus seems 

reasonable to neglect the momentom dependence of i' in (3.15) and (3.L6). and keep 

the  self-energies only to first ordcr in a. Thiis we arrive at 

where r has k e n  rcplaced bu its value i t i  the limit of IkJ = Ikfl -r 0 .  tliat is 

The quantity do) in (3 .20)  is the (temperature-dependent ) density of rscited atoriis 

in a non-interacting Bose gas, given by 

Here. and in the rest of this thesis. we Lise the superscript ;(O)" a s  a reminder that 

the quantity is for a non-interacting Bose gas. 

ln (3.20). we have dropped the (k. iu,) arguments of X I I  and XI, because the- 

are now bot h frequency and moment um-independent. The self-energies in (3.20) will 

be referred to as the Popov first-order approximation. With it. one can calculate the 
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normal and anomalous Green's functions through (2.33) and  (2.54) and use these to  

cvaluate variotis physical quantities. CVe now discuss the  normal phase ( T  > Tc) and 

the  condensed phase ( T  < Tc) separately. 

3.3 Normal phase (T > Tc) 

In  the  normal phase. Ive have no = O and then (3.20) rediices t o  

Csing (3.23) in (2.53) and (2.54). the  single-particle Green's functions are 

. With (3.2-1). the density of the excited atoms as a function of p and T is gii-en 11y 

1 
" p . T )  -- e'dn'G'l (k. iun ) 

3 b'- . 

If the total dens i t -  n and t h e  temperature T are given. the chemical potential is 

determined by the usual condition 

R(p, T) = n (normal systern). (13.27) 

Siniilarly. the chemical potential C1(0) of a non-interacting Bose gas at T > Tc is 

determined by 

~ ( 0 )  JO) T )  = n. (1  . (32s) 
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Comparing (3.22) and (3.26). one sees t ha t  for a given n and T .  we have 

i-e.. the  chernical potential is increased by 2nfo due to t he  effectively repiilsive in- 

teraction (a  > O )  between t h e  atoms. Equation (3.29) was derived in Ref.[l5] in a 

discussion of BEC in a n  exciton gas. 

The energy spectrum Ek of single-particle excitations ( o r  qiiasiparticles) in tlic 

normal phase is determined by the poles of the Green's luiiction. t h n t  is. 

This shows that in t he  present first-order approximation. t he  qziasipnrticles ahovt. T .  

act just l ike lree particles in a non-interacting Bose gas. Because t h e  cluasiparticles 

determine the  tliermodynamic properties of a systern. we conclude that  in Popoi- 

approximation. the  normal properties of a diliite Bose gas are uncliangetl coniparecl to 

tha t  of a non-interacting Bose gas and in particular. t he  BEC transition teniperattiri3 

is t h e  same. 

3.4 Bose-condensed phase (T < Tc) 

In t he  Bose condensed phase. G i i  and G12 arc o h t a i ~ ~ e d  by suhstitiiting the solf 

energies (3.20) into the  Dyson- Beliaev expressions in (2.53) and  (2.54): 

Here the quantity A is deJined by 

A - 2#) j0 ,  
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wliere the chemical potential p has been shown by Popov [RI] to satisly the finite- 

temperature version of Hugenholtz-Pines theorem given by Hohenherg and Martin 

[zs] 
Si1 ( O .  O )  - Yl2(O.  O )  = 11. 

\Ve find using (3.20) and (3 .34)  that 

C'omhining the last equation ivith the definition of A in ( : 3 . : 3 3 ) .  we arrive at  

CIere A is written as an explicit function of 7' to ernphasize the drpenclence ol ri, or1 

T .  WC note that 1 is positive (for a > 0)  and approaches zero as no + O ( T  -+ T i ) .  

Both G I I  and GI2 in (3.31) and (:3.32) have identical poles at = f EL. whrre 

This gives the energy spectrum of elenientary escitations for T < K .  This sprctruni 

is formally iclentical to that of t h e  T = O Bogoliubov approsiriiatioii i r i  (2.79) i f  

one replaces tv by jo ( the t-rnatriu). In contrast to the Bogoliubov niodel. wlierc 

no 2 n. the condensate density n o ( T )  in the Popov mode1 is stronglx dependent un 

temperature and becornes very srnall ( n o ( T )  « n )  in the vicinity of the BEC' phase 

transition. 

On the other hand. one shoiild not over-interpret the formal similarit'; h ~ t w e e n  

the escitation spectriim in the Popov and Bogoliubov models. A t  tlic first glance. it 

seeins to  imply t hat one can generalize the Bogoliubov mode1 to finite temperatlires 

simply by taking into account the temperature dependence of no of an ideal gas. 

Although this gives the correct excitation spectrum, it gives an incorrect expression 

for chernical potential. narnely p = n o ( ~ ) f a  instead of the  correct result in  (3 .35)-  

This difference was rnissed in many early at tempts to generalize the Bogoli~ibov theory 



Ch.3 The first-order Popov approximation 

to finite temperatiires. 

We see that the Popov-Bogoliubov spectra in ( 3 . 3 7 )  has quite different limits: 

Ek is free-particle like in the short-wavelength limit. and phonon-like in the long- 

wavelength limit. the phonon velocitu c being given by 

Thr single-particle excitation spectrum in (3.:39) is proportional to k in the long- 

wavelength limit. .As we noted earlier. this linear dependence is espected to be triie 

in an- Bose-condensed fluid to a11 orders in perturbation theory [Z. 261. :\lthoiigh 

the Popov approsiniation is only the lowest-order approximation. we  see tliat it givrs 

gapless phonon excitations in the low-energy limit in a Bose gas at finite tempera- 

tures. 'iloreover. c ( T )  -+ O as T -+ Tc. i-e. .  the phonons in the Popov theory arc 

the **broken-syrnmetry" soft modes of the Bose-condensed phase. However. iinli kc at 

7' = 0. tliere is no established correspondence between the  excitation phonon i-clocit!. 

and the cornpressional speed of sound at finite t empera ture .  As a side reniark. w r  

note that the finitc tcniperat~irc behavior of a Bose liquicl like siiperfliiicl "Hc is qiiitr 

different iroin that of a Bose gas (for a review. sce Chapter T of Ref.[S] ). In partic- 

ular. the observecl excitation phonon velocity in liquid "He is found to be essentially 

temperatureindependent right througli the superfluid transition. 

With the Green's lunction (3 .31 ) .  one can now calciilate t he  density of particles 

in t hc condensate. For a given total density nl we have 
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with 

The t m o  equations (3.41) and (3.42) are coupled eqiiations for no. since R depencis on 

Es and 1. which are themselves functions of no [see (3 .37 )  and (:3.:36)]. In general. 

sucli non-linear equations mtist be solved for numerically. However. in two important 

special cases. analytical results c m  be obtained. as ive now discuss. 

LVe first consider the low temperature limit (heT < 1 = nojo) .  In tliis case. the 

integral in (3.42) can be approximatecl as 

rvliere in t h e  second step. we have approximated fs(Ea) - E - ~ ~ ~  . LL-ith (:3.-11 ) alid 

(3.-1:3). ive obtain 

where c is the phonon velocity defineci in (3.40). 

For a low density gas at low temperatures. the second and third terms in (3.-4-1) 

are small. implying no -. n. Therefore. when calctilating the depletion i> E n - no 

at T = O. we can drop the third term and replace no by n on the right hand side of 

(3.4-1) to obtain 

The error introduced by the replacement of no by n in obtaining (:l.4.i) is of higlier 

order in a. Eq.(3.45) is the well-knorvn result for the fractional depletion of the con- 

densate in a dilute gas at absolute zero. as first obtained by Bogoliii bov [9] in 1947. A s  

a result of interparticle interactions, a small number of particles are exited out of the 
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conderisate ei-en a t  T = O. For a weakly interacting Bose gas. the fractional deplet ion 

is proport ional to  ( n a 3 )  Il2. showing t hat the number of excited atoms increases ivi t li 

density. One expects that  a large fraction of the  total atorns rvould occiip~- the  esc i t~~cl  

states in a strongly interacting Bose system such as liquid "He. In fact. more than 

90% of the atoms in "He are in excited states at T = O. as shown by inelastic neutron 

scattering experirnents and by direct computer simuiation studies (for a revieiv. s w  

Cliapter 4 of Ref.[S]). 

The T' term in (3.44) was first exhibited by Glassgold et al [JO] in 1960. Their 

calculation of finite temperature corrections was based on the lise of t h e  T = O 

Bogoliiibov spectrum. and thus is clearly limited to  the  region T - O. Iiehr [43] has 

also deriwd t his T' correction. wit h an extra factor no(T  = O ) / n :  

Iiehr's rigorous derivat ion was based on the s tructure of the low-lying single- part iclc 

excitations of a Bose-condensed system, which are known in al1 orders of perturbation 

theory at T = O [2]. Tlierefore. the  resiilt (3.46) was not limited to loir clensity or 

weakly interactirig Bose gas. but valid for any Bose fluid at low temperatures. e\-cri 

for liquid 'He where no(0)  O.Ln. In a dilute Bose gas. we have n o ( 0 )  2 n. aiid 

then (3 .46 )  reduces to  (:3.-14). We shoiild emphasize that in  the liniit of vaniskiing 

interaction ( f o  + O ) .  t he  results in (3.44) and (:3.-16) are liniited to T = O becaiisc 

tliese results are derived under the condition kBT < nofo.  

The  712 law for an  interacting Bose gas is quite different from the T"' law of a n  

ideal gas a.s given by [SI 

This reminds us that  the  introdiiction of even a srna11 interaction between the part icles 

can drastically change the  properties of a Bose gas a t  low temperatures. ivhere the 

phonon part of the spectrum [see (3.39)] completely determines the thermodyrianiics. 

As seen from (3.43)? the T-dependent part of 6 tends to decrease with increasing 

value of A given by (3.36), in contrast to the T = O part, which increases wi th  1. .As 
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Figure 3.5: Crossover between no(T)  of an interacting gas (solid line) and n r ' ( T ,  of 
an ideal Bose gas (dashed line). The chanjes are exaggerated for clarity. 

a result. one etxpects a *-crossover" between n o ( T )  of an interacting gas and .O)( T )  of 

a non-interacting gas. as sketched in Fig.3.5. This crossover means that  at sufficiently 

high temperature. the effect of repuisive interactions between the atoms in a dilute 

weakly-interacting Bose gas is to put more atoms in t h e  condensate. in contrast to 

the T = O case. It seems to irnply that the thermal effect is not as significant in a 

dilute Bose gas as in an ideal gas. This "crossovery temperature TK can be estimated 

by comparing f i  for a weakly-interacting gas in (3.43) with f i ( 0 )  for an ideal gas [the 

second term at the right hand side of (3 .431:  yielding 

where the last step follows from (3.7). For example, for n = 2.6 x 10" cm-3 and 

a = 53n (taken frorn Ref. [1] for "Rb atoms), we estimate that n1I3a = 0.0073 and 

thus Tx 0.013Tc < Tc. 
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We next discuss the  region close t o  the transition. T 5 Tc. It is convenient to 

calculate the difference f i  - n,. where n, is defined by 

This is the clensity of excited atorns (or  critical clensity for the  BEC phase transition) 

of an  ideal gas at  a given temperature T [5]. The dominant contribution t.o tlir 

difference R - n ,  cornes from the energy region where the excitation spectriirn Ek 

differs significantly from the  free-particle energy c k .  which is the  region ea - 1 in oiir 

case [see (3.37)]. We note that  = no& is very small near Tc. narnely 

Tlierefore. ive can approximate cot h( .3Ek/2) b -  ( ? / J E ç )  i r i  (:la-12). and  carru o u t  t l i c  

integral analytically to obtain 

1 3/2 

- n -- ( )  nBrplp2. s r  

Cornbining this result with (3.41 ). we fintl 

1 2m 3/' 

T Z  rl~ no + n,, - 7 k B ~ ( 2 n o j O ) ' l 2 .  
Sx 

For given n and T. ( 3 . 5 3 )  is a quadratic equat,ion for nu whicli has two  solutions: 

JG = - [J% Jn,(7.) + 4(n - n,)] .- ( :3 .5-k)  

Here ,/= is the coefficient of fi in the third term of ( 3 . 5 3 ) .  

1 3/2 = ($) k B ~ ( z j o ) 1 / 2  
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Since n > n,, below the phase transition temperature. the solution JK in (3 .54)  

is negative. arid thus unphysical. Therefore the conclensate density is given by t,lie 
8 

other solution no.,. which yields a finite value at T -+ - .  namely 

This clearly indicates a finite jump in t h e  condensate density no a t  the  transition 

point [-Hl. This jump is small compared to  the total densitv t2 in a diliite Bose gas 

< 1).  and can be estimateci for tlie "Rb experirnent in Ref.[L] as 6.6 x 10' cm-:' 

(coniparecl to n=2.6 x 101* cmA3). Xevertheless. the finite jiimp in the  order param- 

eter  (fi. in a Bose fluid with no siipercurrent) is the characterist ic of a first-order 

phase transition. Earlier work by Lee. Huang and Yang ['>-LI iising a pseudopotential 

approach led to the same concl~ision. This. however. is in contradiction t o  the  fact 

that  BEC in an interacting Bose s - s t e m  involves a second-order phase transition. 

This unphysical behavior near t h e  pliase transition point iniplies tliat tlie Popot. 

approsimation breaks clown in this region. As empliasized by Popot- [31]. t h e  self- 

energies in (3.20) are linear in A = n o f o  while the Iargest diagrams droppecl in  th^ 

Popov approximation are of the order ( r n / ~ ' ) ~ / ~ k ~ ~ ~ ~ l ~ / ~  (see C'hapter 6 ) .  -As T' 

approachcs Tc from below. the neglected diagrams become larger t han  the  first-orcler 

cliagrams. since the former (proportional t o  A'/') decrease at  a slower rate  tlian 1. 

Therefoce. the Popov approximation is valid i f  

The temperature region defincd by ( n ' l 3 a ) ~ ,  is very small in a dilute Bose gas. For 

example. for t h e  case of $'Rb atoms iising densities at tlie center of the t r ap  given in 

Ref.[& the Popov approximation should be applicable when (Tc - T )  > 0.00i3Tc. 

T h e  properties of a physical system in the neighborhood of' the  phase transition 
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point is always an interesting (and complicated!) problem. However. our major in- 

terest in this thesis is not the critical region but the finite-temperatiire properties of 

a weakly interacting Bose gas in general. The critical region requires the renornaliza- 

t ion group ( RG ) techniques dereloped to st udy the beliavior of secontl-order phase 

transitions. In their recent work. Bijlsma and Stoof [G] have presented a cletailecl 

study of a uniform Bose gas using the ingenious application of the  RC; approach. 1.-s- 

ing the knowledge of t he  rnicroscopic details of the interatornic interaction. they werr 

able to calculate the non-universal properties of a dilute Bose gas. In particiilar. t tiey 

found t hat due to interaction effeccs. t h e  BEC critical temperature could bc raised as 

miich as 10% corn pared to t he  ideal gas value for t lie Rb and Na gases iised in recerit 

esperimental s t  iidies [ l .  181. 



Chapter 4 

The many-body t-matrix 

approximation 

In Çhapter 3. ive cliscussed the Popov approximation as the basis of a simple t heor?- 

which included the t herrnaily-induced deplet ion of the condensate. The self-energ)- 

diagrarns which are included in the Popov approximation (sce Fig.:3.4) were built out 

of the unperturbeci propagator CI0) for a non-interacting Bose gas. .As ive noteci in 

Chapter 3 .  the Popov approximation is not valid very close to the phase transition. 

where it leads to an unphysical discontiriuity in the condensate clcnsitv rio. In ari 

attenipt to solve tliis well-known problern. Bijlsma and Stoof [33] i ised a rnanj--l)od>. 

f-matrix approximation. based on the ilse of the self-consistent propagator C;, , i r i  

the Popov self-energy diagrams. In the  present chapter. we esamine t liis man>--body 

t-matris approximation. In agreement wi th  Bijlsma and Stoof. rve show that this 1- 

rnatrix becornes very temperature-dependent and, as one approaches Tc. it  vanishcs at 

the transition point. This leads to a smooth change of no at Tc and thus to the correct 

order of the phase transition. However, it also shows that Tc of an  ideal Bose gas is 

unchanged in the many- body t-matrix approximation. The required Green's furict ion 

fornialism for t his analysis is the  same as we used in Chapter 3 .  We emphasize only 

the features that are different from those in the simpler Popov approximation. 
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Figure 4.1: Self-energy diagrams in the many-body t-matrix approximation. 
. .  -......................*.............................-..*....*.*................ 

4.1 The many-body t-matrix 

The self-energy diagrams in the many-body t-matrix approximation are shown in 

Fig.4.i. They look the same as those in Fig.J.4. However. the grey-filled square 

now represents the multiple scattering of two "dressed" particles. whose propagators 

Gli are to be self-consistently deterrnined. The modified t-rnatrix. denoted as T 
to distinguish it from the original r 1  is defined by the following integral equation 

[compare with (3.8)) 

This equation is illustrated by the ladder diagrams in Fig.4.2. In the center-of-mass 

frarne. the many-body t-matrix can be written as 
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Figure 4.2: Integral equation - for the ma--body t-rnatrix r. (-4 grey-filled square 
with four *legso' represents r. a solid line with two arrows represents a -dressed" 
particle or Gil. and a dashed line represents the interaction potential. ) 

1 1 
K :  - )  = ~ ( k -  k') - - ~ c ( ~ ) G , , ( , P  + p  q )  

31.' , -. 

Here k. k'. K. and JY have the same meaning as in the definition of r in (3.8). 

We recall that ch. = ii2K2/4m represents the center-of-rnass kinetic energy of the 

scattering pair whose center-of-mass momentuni is K. 

With the expression of in f 4.2). the self-energies in the  manu-body t-matrix 

approximation take the following form [compare with (3.15) and (3.16)]: 

We are interested in the temperature range where T is not too high compared to Tc; 

in other words, we do not consider the case of T » Tc. As is well-known. the energies 

of important excitations are of the order ksT, which is of the order kBTc or smaller 
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i r i  the system of interest. We recali t hat 

which means that the momenta of important excitations are of the  order 

One sees that kJ is roughly the order of d-' .  wtiere d is the average distance het1m.11 

t h e  atoms. For a low density gas such as we are interested in. the  average ciistançe 

between the atorns are rnuch greater than the s-ivave scattering length a. which irnplies 

ttiat kù < a - ' :  in other worcls. only the low momentum 

Ynder the above condition. we can neglect the energy 

of T in (4 .3 )  and (4.4). arriving a t  

region is important. 

and mornentum dependenctx 

I - 
= ~ ( 0 )  - - x c ( q ) G l l ( q ,  i*~r)C1l(-q,  -&)r(-q. O. 0: 0): (-!.SI 

dLr 
qJy1 

and il1) is the density of non-condensate atoms. 

Coniparing (4.7) rvith (3.20). one  sees that  

e ' w n q ~ i  (k. i d n ) .  (4.9 1 

- 
the many-body t-matrix ro now replaces 

the free-space scattering ampli tude fo = - h h 2 a / n i  in the Popov approsirnation in 

Cliapter 3 .  While fo is a constant. Fo depends on the temperature throiigh the 

rnany-body propagator Gi as shown by (4.8). 
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Csing (4.7) in t he  Dyson's equation (2..53) and (2.54) for Cit1 and  Ciiz. we obtnin 

for T > Tc. 

For T < Ti7. we have 

In both cases. the qiianti ty X is defined by 

Csing t h e  Hogenholtz-Pines theorein which is valicl for T < Tc. t h e  chcmical potcritia 

and the  qiiantity 1 are given by 

The quasi part icle esci tat ion energies are  determincd by t h e  poles of Greeri's fiirict ions 

given by (-4.10) and (-4.1 1). We find 

The density of non-condensate a toms  is given by 

With t he  s t ructure  of GII  known, ive c m  now examine Fo in more detail. Eq(4.S)  

irnplies that  to find Fo requires t.he knowledge of P ( - q ,  O, 0; 0) for ail y2 > 0. not just 
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for q = O. Since we are interested in a low density Bose gas a t  temperature - T, 

or lower. the  main contribution to  the  sum over q in (4.8) cornes from the region 

q < a-' [sec discussion following (.L.J)]. In this case. c ( q )  and T(-q. O. O: O )  can be 

approximated by constants u(O)  and To. respectively. CVe thus arrive a t  

Here the prime means that t h e  summation is performed only up to a cut-off momeri- 

tum to avoid the divergence at large q. 

The ultraviolet divergence in (-4.17) is artificially caused hy assurning tha t  ~ ( q )  

and F(-q .  O. 0; 0 )  are constant for al1 q in (4.d). while in fact these quantitics i-anisti 

at large q. The uncertainty of the cut-off momentum can be removed bu expressing 
- 
To in terrns of j ( 0 . 0 )  given by (3.17). .A sirnilar procedurc leacls to 

where the surn over q is also divergent i f  performed over the entire q-space. 

Fortiinately. the underlying source of the divergence at large q is the same in hoth 

(4.17) and (-1.18). and thiis the q-cutoffs are expected to be the sanie. 1'sing tliis and 

fo j ( 0 .  O). we combine (-1.17) and (-1.18) t a  find 

wliere we have defined the function 

Using (4.10) for T > Tc and (4.11) for T < Tc in (4.21)? we can perform the frequency 
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suni t o  obtain 

wliere EL is given by (4.14). T h e  function a is now free of t he  large-q divergence if  the  

integration is taken over the ent i re  q-space. This justifies our removal of t h e  ctttoff 

in ( 4 . 1  ) T h e  terrn of order i2 in t h e  integrand of (4.22) for the case of T < Tc is 

higher order  in Po. This terrn is omitted (sec h r t h e r  remarks a t  end of Section 4.4). 
- 

Eq.(4.20) is still a rather complicated integral equation of To. since n depends on 
- 

El- wliich in turn involves To. To solve for Fo. we also need to  knorv 1. which involves 

t h e  iinknown p ( a t  T > Tc)  or no (at T < 7;). Therefore (4.20) must b e  solved in 

conjunction witli 

n ( ' ) ( p .  T )  + no = n. 

Of course. for T > Tc, no in ( - 1 . 2 3 )  variishes. 

4.2 Analytical results for the t-matrix 

\Ve next. consider cases wtiere analytical results for the furiction n in (1.22) can lx 

obtained. W e  first consider the  low ternperature limit. At T -+ 0. t h e  Itinction 

coth(,3Ek/Z) - L + 2 e x p ( - : 3 E k ) .  The integral in (4.22) c m  be carried ou t  to iIic 
- - 

Iowest order in (= n o f o )  and T :  
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l s ing  this expression for a in (4.L9). the  low-temperature limit of To is given by 

The solution of (4.25) reqüires knowledge of n o ( T ) .  k i n g  (-1.23) and (4.16). w e  obtain 

- 
which is valid at low temperature ~ B T  < nJo .  

For a low derlsity gas at low temperature. the  second term in both (-l.23) and 

(-1.26) is a small correction to the first terrn. Therefore. to first order we obtain 
- - 
Tu 2 fo and no 2 12. .\t the neat levcl of approsimation. the qiiantity noro in  th^ 

liigher order terms of (4.25) and (-1.26) can be approximated by n fo. Witliin tliis 

approximation. t h e  clepletion given by the seconcl ierrii in (4.26) squals that. i 1 . m  I>y 

(:3.-L-k): and (4.2.5) becomes 

Eq.(-L.27) shows that  in t he  low clensity ancl Iow temperat ure limit [(r2~19)'/' « 1 nrid 

bsT « n h ] .  the i-niatrix F0 differs ver>- littie from 6. In this linlit. the nianj.-body 

t-matrix approximation rediices to thc simples Popov approximation in C'hapter 3. 

We next turn to the finite-temperature region just 6 d 0 ~  Tc. For T 5 Tc. tlir 

function coth(,dEp/2) in (4.22) can be approximated as 2 k s T / E k .  yielcling 

If we rnultiply both sides by no? (42S)  becornes an equation of noTo. whicli yields the 

following solution just below Tc (where no is small) 
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where the  coefficient 0.236 cornes from (~ .612) ' /~ / - l a .  In t h e  second line of (4.29). ivc  

have made use of t h e  ideal gas condensate density value. no(T )  = n [ l  - ( T / T C ) w 2 ] .  
- 

Eq.(4.20) shows t h a t  t h e  t -ma t r ix  To goes t o  zero in t h e  s a m e  w q  as rio does. This 

resiilt is confirmccl by numerical  calculations. in which the self-consistent condensate  

density no (T )  is used (see  Section 4.3). 

Finally. we consider t h e  region just  n 6 o o ~  Tc. In th i s  case. ive can a p p r o s i m a t r  

(4.1.5) and (4.22) by taking c o t h  U)Ek/:! - 2ksT /  Ek. arr iv ing a t  

I lere  r ~ , ,  2.6 I-L( m k s  T/~TA')"/ '  is t h e  crit.ica1 density of an ideal Bose gas nt a giveii 

T .  1.-sirig n = 2.6 12(rnks T , / ~ x ~ ' ) ~ I ~ .  ive can rewrite (-1.:30) in the  forni 

C V e  see that 5 goes to zero as T 4 T, [rom above. Csing th is  resiilt for 3 in (-1.31). 

ive obta in  

Cornbining this  with (4.29), we see tha t  ro vanishes as T approaches Tc from above  

or below in a systernatic w q .  How fast Fo approaches zero deperids on t h e  value of 

( ~ 2 ' / ~ a ) - '  : the  liigher the density,  t h e  slower it goes to zero. This result is in agreement  
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Figure 4.3: Self-consistent t-mat rix vs. ternperature 
.................................................................................. 

with that obtained by numerical calculations (see Section 4.3 and Ref. ] C k  

should note that (4.29) as well as (4.33) are only valid in a small ternperature region 

near Tc piven by 

4.3 Numerical results for the t-matrix 

At intermediate ternperatures, we m u t  solve the coupled equation for r o  and Ek 

numerically. using (4.13)-(4.16) and (4.19)-(4.21). 

In Fig.4.3, we plot F o ( ~ )  as a function of temperature for a given n. It goes to 

zero at the transition temperature and approaches the constant fo at temperatures 

far away from Tc. This is in agreement with the anâlysis given in Section 4.2. Fol&, 
also is seen to be slightly greater than unity near T = 0, due to the correction term 

8(r1a~/a)'/~ in (4.29). 
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Figure 4.4: Condensate density vs. temperature in the many-body t-matrix approsi- 
mat ion 
. . . . . . . . . . .*. . . . . .*. . . . . . . . . . . . . . . . . . . . . .*. . . . . . . . . . . . . . . . . . . . .- .---. . .- . . . . . . . . . .  

We &O plot no(T)  in Fig.4.4 for different gases. including a cornparison with 

result for an ideal Bose-condensed gas. We find. at a given temperature. that the 

condensate fraction is higher in a dilute gas with repulsive interactions than in an 

ideal Bose gas. However, the situation is opposite near T = O. where an ideal Bose 

gas has a higher condensate fraction. The crossover happens at Txt as discussed at 

the end of Chapter 3. As expected, the corrections due to interactions are very small. 

It can be also seen from Fig.4.4 that in the present approximation. no(T) goes to zero 

at the BEC transition temperature of an ideal gas. 
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proximat ion 

In this chapter. we have presentecl a detailed investigation of a dilute Bose gas iising- 

the rnany- body t-mat rix approximation. CVe solved the problem analyt icallp nt low 

temperattires as well as near the phase transition point. As  far as we know. it is the 

first time t hat these analytical results have been obtained. In the limit of ï' -+ 0. the 

results of the simpler Popov approximation were obtainecl. In contrast. as T -+ Tc. 

the t-rnatris To goes to zero. as explicitly shomn by (4.29) and (4 .33) .  

Our numerical results for the many-body t-niatrix approximation shown in Fige-l.3 

and 4.4 are in agreement wit h t hose recently obtained by Bijlsma and Stoof[:33]. T k i r  

work was part of a detailed study of thermodynamic properties of a diliite Bose gas. 

within the framework of a many-body variational approach. Our present calculation 

expressed in terms of the Popov approximation with a many-body t-matris is less 

ambitious but perhaps more direct. 

In a separate investigation. Bijlsma and Stoof [-La] have reported a detailed s t  ilcl>- 

of how Tc of a dilute Bose gas is affected by interactions using a renormalization jroiip 

(RC;) approach. This is based on RC; recursion relations resulting frorn a systematic 

integration over the large k (short distance) correlations. ivhich reniot-es t h e  infrared 

divergent terms in a systematic ivay. This more general analysis shows that rnaiiy- 

body t-matrix approximation is not sufficient near Tc- This is not unexpected since in 

using the many-body t-matrix in the  Popov approximation. one is clearly iiicluding 

a class of higher order self-energy diagrams built out of the normal propagator Gi 1. 

but still omitting any contribution of ot her higher order diagrams. especially t hose 

built out of the anomalous propagators G I P  and GZ1. 

In the succeeding chapters. we shall give a systematic study of the second-order 

self-energy diagrams first studied by Beliaev [34] a t  T = O and later by Popov [:31] at 

T -- Tc. In particular, we show t hat these second-order diagrams have contributions 

which are infrared divergent due to the phonon region of the first-order Popov prop- 

agators, as given in Chapter 3. It turns out that the second-order Iadder diagram 
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is o n e  of these divergent terms and this is associated with a ( T )  defined in (4.21). 

It turns out that the terrn involving i2/ E: in t h e  integrand of (4.22) for T < Tc. 

which we have neglected in Section -4.2 and 4.3. is o n e  such infrared-divergent con- 

tribution. Our neglect of this is partially justified by the results of Chapter 6 and 7. 

where we show that al1 such divergent terms cancel out in physical quantities. St i l l .  

it is worrisome that the rernaining contribution t o  a ( T )  is divergent at T = Tc. One 

migtit wonder i f  this divergent term is also canceled o u t  in a more conrplete tlieory. 

In fact. the RG analysis of Bijlsma and Stoof [-La] shows that results such as showri 

i n  Fig.4.3 based on the many-body t-matriic approximation are cluali tatively sirnilai. 

to what  one obtains in a more complete study. 



Chapter 5 

The second-order Beliaev-Popov 

(B-P) approximation 

The Beliaev-Popov approximation is the nert step beyond t h e  first-order Popoi. ap- 

proximation discussed in Chapter 3 .  Beliaev [ 3 4 ]  first st udied the highcr-order effects 

of interactions on the properties of a weakly-interacting Bose gas at T = O. In his 

analvsis of the same system at finite temperature. Popov [:32] argiied that Beliaev's 

second-orcler self-energy diagrams were still the doniinant ones. WC cal1 this class of 

diagrams the Beliaev- Popov ( B-P ) approximation. This second order approsiniat ion 

treats the  coupling between the condensate and non-conclensate atoms in an improvecl 

fashion and gives rise to a gapless excitation spectruin. It is also the lowest order 

self-energy approximation w hich eshibi ts infrared-divergent contributions. 

In tliis chapter. we give a detailed stiidy of the self-energy cliagrams in the B- 

P approximation, and derive forma1 temperature-dependent expressions for Z l l  and 

Ei2.  In Chapter 6 and 7': we then use these results to consider various properties i n  

the low frequency, long wavelengt h limi t . 

5.1 Diagrams and t heir forma1 expressions 

The diagrams for the diagonal self-energy Cil in the B-P approximation are shown in 

Fig.5.l. The basic "building block" of these diagrams is the  hatched line. representing 



Ch. 3 The second order Beliaev- Popov approxirnat ion . . . 

Figure .5.1: Diagrams for the  diagonal self-energy Sii  in the B-P approximation. 
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Figure 5.2: An interaction vertex involving a t-rnatri'c 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

the  rnany-body t-matrir r defined in Eq.(S.S). In order to make it easier to compare 

with conventional diagrams. we draw r (represented by a hatched square in Chapter 

3) in a ivay that it resembles an ordinary interaction %ney. Each diagram in Fig.3.1 

contains at most two T's, connected to to each otlier by elements of the 2 x 2 rnatris 

propagator G. rvhich includes the normal diagonal propagators GiI and and the  

anomaloiis off-diagonal propagators G12 and G21. This B-P approximation involves 

terms explicitly to second-order in T. but it contains the first-order propagators. which 

are also functions of I'. and ivhich can be expanded to arbitrary order in T. In fact. as 

we shall discuss in Chapter 6. the physical quantities such as the quasiparticle energy 

in the B-P approximation contain corrections that are the order of (na3)'/ '  (or F3/' ) 

relative to those in the Popov approximation of Chapter 3. 

Following Popov's notation. we divide the  diagrams of SI1 in Fig.5.l into 7 groups: 

ao, a l .  a?, ... ae. The first diagram in each group is the "main" diagram: others in 

the same group are exchange diagrams that can be generated from the main one b5- 

exchanging two outgoing arrows or two ingoing arrows (but not both!) associated 

with interaction vertices. .4n interaction vertex, shown in Fig.5.2. consists of four 

"arrows" connecting to an interaction "line" (actually a hatched square represent ing 

r ) ,  two of the four "arrowsn going in and the other two going out. We now examine 

each group in XII  in turn: 

(1) ao: the diagrams in this group are exactly the Bogoliubov diagrams included in 

Fig.3.4. 

(2) ai:  these are the Hartree-Fock diagrams, but now the free propagator G(O) used 
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in the first-order Popov approximation has been replaced by the first-order 

propagator Gl 1 .  

The diagrams in the other groups ( a z  ... nô) al1 involve two T's and one pair of 

condensate lines ( represented by a wavy line) . 

( 3 )  uz: these are built out of two Cl 'S. bot ti propagating forward. \.Ve note tliat i f  

bot h of the Gii's are replaced by the lowest-order approximation Ci('). t tien 

reduces to ao. because by defini tion. two G(O)'s connecting two T's is included 

in r itself already. To avoid this double-counting. we must subtract t h e  con- 

tribution of C(O) from al. This tleduction is represented in Fig.5.l for a2 by a 

stroke across the G l  line (following Beliaev's notation [R-k]) .  

( 4 )  as: these are built out of a CIL and a Czl. 

( - 5 )  aLi: these are built out of a Gll and a G12.  

( 6 )  us: tliese are built ou t  of two Gl l's' one propagating forward. the ottier propa- 

gating hackwarcl. 

( 7 )  06:  thcse are hiiilt out of a Cil2 and a Gzi. 

The diagrams for Z 1 2  in the B-P approximation are shown in Fig.5.3. Again 

lollowing Popov's notation. we have ciivided these diagrams into seven groups: bu. hl .  

b2.  ... b6. For simplicity. only the main diagram (as defined above) in each groiip 

is shoivn in Fig.5.3. One can ewily rvork out the exchange diagrams in eacli group. 

analogous to those sliown in Fig.5.1. The total nurnber of diagrams (main one + 
eschange ones) in each group is denoted by the number in the  bracket. I'nlike the 

diagonal self-energy Z, l ,  the off-diagonal self-energy diagrams for 5 i z  always contain 

at least one pair of condensate lines, even though this  is implicit in b l .  As a result. al1 

these diagrams vanish in the normal phase when the condensate density 720 vanishes. 

We list some features of each group in Si* in Fig.5.3: 

( 1 )  bO: the diagrams in this  groiip are simply the  Bogoliubov diagrams included in 

the first approximation (see Fig.3.4). 
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Figure 5.3: Diagrams For the  off-diagonal self-energy in t h e  B-P approximation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( 2 )  bl : t,his involves the anonialous propagator Glz. As before. t lie contributiotis 

frorn the  lowest-order terrn of GIZ,  given by r ~ O j o ~ ( 0 ) ~ ; ( o )  rniist he subtracted. 

for these are already incliided in bo. This deduction is represented by n I~olcl 

stroke across the Gl2 line. 

( 3 )  b2: these are built out of two GI2's.  and tliere is one escllange diagrani in tliis 

grou p. 

( 4 )  b3: tliese are built out of a GL2 and a G i i  whicli is propagating forwartl. ancl 

there are three exchange diagrams in tliis group. 

( 5 )  b4: these are built out of a G12 and a Gll  rvhich is propagating backward. and 

there are three exchange diagrarns in this group. 

(6)  b5: these are built out  of two Gll's. one propagating forward and the other 

propagating backivard, and there are three excliange diagrams in this groiip. 

( 7 )  b6: these are built out of a Glz and a GZI. and there are three  exchange diagrams 

in this group. 
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I t  should be  noted that Beliaev [34] and Popov [31] draw their self-energy diagrams 

using a different definition of vertex functions. Figs.5.l and 5.O give t lie self-energ- 

diagrams in a more conventional. direct rnanner. 

LVe now work out the explicit mathematicai expressions for each of the diagranis 

in Fig.5. l and 5.3. For convenience. we  cal1 the  diagrams built with a single r type-1 

diagrams (ao. a l .  bo, b l ) :  and denote their contributions to the self-energies as x:, 
and 51,. Similarly. the diagrarns built with two r's are calied type41 diagrams ( a  a . . . .  

as. bz.... bs)  and their contribiitions are denoted as 5:: and 2::. 

We first examine the  type-II diagrams a*. ... ac. and bz. ... b6. From Appendix A.  

we recall that t h e  many-body- t-matris T(k, kt. K: 2 )  in the liniit Ikl= lk'[ + O takcs 

the following value: 

Tlir integral in the last term in (5.1 ) cornes frorn the frequency siim orw t h e  prociiict 

of a pair of free propagators. which we tlefine as J (  P ) .  narnely 

Herc P (K. i w N )  represents the total four-dimensional g-moment~im" of t h e  two 

propagators. The terms that are order of ji or  higher are neglected in the B-P 

self-energies. Therefore. in al1 type-II diagrams which involve the factor r x T. we 

set r = fo, neglecting the other tetms of order or higher in (5.1). Within this 

approximation. the contri but  ion of each exchange diagram equals tliat of the main 

diagrarns in the same group. Therefore we can simply evaluate the main diagram and 

multiply the result by the total number of diagrams in each group. The contribut.ions 
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of (12. ... a6 in Fig.5.1 are given by 

= 2nojt / < i 1 p 1 ~ , ,  ( p l  ) c ; ~ ~  ( p  - pl ) - 2nojO ~ ( p )  

a 3 ( p )  = -1n0fO / d i p l ~ i u ( p l  ) ~ i i  ( p  - PL 1: 

o. , (p )  = -1n0jO ~ p l ~ ( p I  ) ~ i  (P - PL 11 

n 5 ( p )  = 4noj; d ' p i ~  1 (pi ) G i  (pi - PI: 

a 6 ( p )  = -inJ: J ~ l p i ~ z ( p i  ) ~ ( p  - pi ): 

ancl t hose of bZ ... b6 in Fig.5.3 are given by 

Here the integral over the four-dimensional momentum pi is defined as usual. 

We next turn to the type-1 diagrams containing a single T. The contribution 

froni the mornentum-dependent part of r is of order jz, as s h o s n  in (5.1). Thus w e  

must take into account the momentum-dependence of I' in the  type-l diagrams. The 

contributions of the type- I diagrams are given by 
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Eqs.(.i.3)-(5.12) plus (-5.13)-(5.16) include explicit expressions of al1 the contribu- 

tions to the self-energies in the B- P approximation. These expressions arc sliglit ly 

different in form [rom those given by Popov in Chapter 6 of Ref.[31]. although the  

suni of the various diagrarns yields the same self-energy in the  end. The  first-orcler 

contributions considered in the Popov approximation [see Eqs.(B. 15) and (3.16)j a re  

included in the lowest-order part of ao. bo and a l .  The  other  diagranis. a?.... a+ 

6,. ... b6 and t h e  higher-order contributions (proportional to  fi) of aa. bo and a l .  

are the new ones. not included in the first-order Popov approximation of C'liap~er 3. 

W h e n  comparing t hese higher-orcler diagrams ivi t h t hose considered bu Bel iaev [:%LI 

nt T = O. we find that  they are exactly the same. escept for the finitc-teniperatiire 

formalisni being used. 

\Ve note that  at above Tc. only the Hartree-Fock cliagrams al survive in the B-P 

approximation. Since the *'bubbleq. in a l  involves C-i l .  the non-condensate atoins are  

act~ial ly treated in a .-dressed" mean-field manner. Moreover. the condensate atorns 

are treated in aii irnproved manner compareci to  the  simple Popov approsimation. 

as shown by all t h e  ex t ra  terms involving the condensate clensitv no in Fig.5.1 and 

5.3 .  This leads to a gapless approximation. as proved by the fact tha t  t h e  chernical 

potent in1 satisfies t lie Hugenholtz- Pines t heorem [34]. 

It is worthwhiie to  compare the  present B-P approximation with the  inany-body 

t-matrix approximation discussed in Chapter 4. The similari ties and di Rerences be- 

twcen these tivo approaches are schematically shown in Fig.5.4. To the first orcler i r i  

T. the  self-energy diagrams included in these trvo approaches are exactly t lie same. 

Ilowever. the higher order self-energy diagrams are different. For X i  1. t h e  rnany-body 

t-matris approximation includes only ao. a ,  and a2- but not a ~ .  ad. as. and ao: and 

for S12? the many-body t-matrix approximation include only b0 and hl? but not b2. 

b3, ..., b6. On the other  hand, the  many-body t-matrix approximation also includes 
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B - P approximation SC t-rnauix approximation 

Figure -5.4: Overlap and difference between the many-body t-matrix and the B-P 
approximations. 
...................................................*....-........*...............* 

a set of diagrams. shown in Fig.5.5, that are not included in the B-P approximation. 

Among t hese extra diagrams in Fig.5.5. only a; and 6: are of order r'. 
It is clear that a: is built out of three Gtl's. two of them propagating forward. the 

other propagating backward. The explicit expression for a; is 

where to avoid double counting, one has to subtract the contribution of G(')G(') from 

a 7 ( p ) .  üsing the  definition 
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Higher order ternis 

Higher order terms 

Figure 5.5: Extra diagrams included in the many-body t-matris approximation. 
. . . . . . . . . . . . . . . . .*... . . . . . . . . .*... . . . . . . . . . . . . . .*... . . . . . .*... . . . . . . . . . . . . . . . . . . . .  

a: is given by 

Comparing (5.19) with  (-5.14). we find that the structure of a;. is similar to that of 

a,. wi th  only PeW replacing T. The frequency sum in (5.1s) cuts off the momentum 

integral at kg « a-', where the difference between Pw and ï is expected to be 

small. This is why a; is not important in the B-P approximation. X similar analysis 

applies to 6: for Cl> 

It is always difficult to justify why one includes a certain set of higher order dia- 

grams but not the other, and especially so in Bose-condensed systems. We concentrate 

here on what is done in the B-P approximation, without going into a thorough analy- 

sis as whether it is justifiable or not. With a clear understanding of what is included 

and the consequences, i t is t hen possible to examine such questions. 
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5.2 Evaluation of the B-P self-energies 

In Section 5.1. we have given formal expressions for a11 the self-energy diagrarns i n  

the B-P approximation. We now use tliese results to obtain more esplicit expressions 

for the sel f-enegies. 

It is convenient to write the Green's functions GIL and GL2. given by (:3.31) and 

(3.32). in the following form: 

= 
-4 k - Bk 

iun - El. iw, + Ek ' 

U:ith these expressions. we  perforni the Matsubara freq~iency surns iri ( 5 . 3 ) - ( 3 . 7 )  and 

acid (12 to a6 to obtain 
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where the two FI thermal functions are defined as 

fB( E) is t h e  Bose distribution function. Here the subscript T^ denotes kl and -2" 

clenotes k2 k - ki. O n  the right hanci side of (5.26), a variable change of kl  to k2 

interchanges -1" and "2" only. but has no effect on  the integral. Taking ad\!antage 

of this. we can use (5.2)-(5.2-L) to further simplify (5.26) to 

Ttic functiori g( E l .  E 2 )  is defined as 

LVe aeinpliasize tliat in (5.26). the tcrms involïing F+ and  FI;_ contain difFcrrnt 

phxsics. The F+ tcrms involve creation or destruction of two quasi pr t ic les  ['~oles at  

& ( E l  + E 2 ) ]  while the F- terms involve scattering of a quasiparticle froni anotlier 

quasiparticle lpoles at  &(El - E2)]. The latter thermal scattering terms vanish at 

T = O. This distinction between these two kinds of ternls is less obvious in the 

expression ( W 9 ) .  

Similarly. t he  type-II diagrams of can be added up to give 
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- 4C'lB.l + AC1 il2 + ABl + 6C1 C2 
iw, + El + E2 

.-\ furt her simplification [compare wit h (5.29)] leads to 

where t h e  furiction h( E l .  E 2 )  is defined as 

The contributions of type-  II diagrams are given 11y (5.29)-(.?.:IO) ancl (5.33)-(5.3-1). 

PVe next calculate t h e  contribution of t he  type-1 diagrams. Vsing (3.1). u u ( p )  in ( 3 . 1 : 3 )  

can be expressed in terms of /a as 

It  is easy to check t h a t  t h e  imaginary part of the  integral  in (5 .35)  is given 1)- 
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and it exactly cancels the  second term of ( 5 . 3 5 ) .  CVe are thus left ivit h 

where P means the principle value of the integral in ( 5 . 3 0 .  Vie note that  the terni 

containing J ( p )  in (8.37) cancels the last term in (5.29). Clearly. the integral in ( 5 . 3 7 )  

is divergent a t  large q. However. t his does not cause any trouble hecause. as ive sliall 

see shortly. this term is canceled by another divergent contribution to SII(P)l '  in 

(5.29)- 

For the evaluation of a l  (p)  in (.j.l-l). we use (.Y 1 ) to obtain 

k-k, k - k I  . k + kl:  id, + id1 - &+kt ) 

k - k l  k - k ,  
+l?(-_S-. -T;-. k + kl: iu, + iu1 - (k+k, ) . - L 1 

The main contri bution from the four-dimensional rnomentiim integral conies froni t lie 

region 

Ikll - kj z ( 2 m k s ~ / h 2 ) ?  (XI!)) 

Since we are only interested in the temperat lire regiori t hat are not  too Iiigli conipared 

wi th  T,. we have [31] 

In the smail momentum region given by (.5.40). the t-matris can be treated as the 

constant fa. The integral of G I l ( ~ L )  over pl gives the density i l ( ' )  of excitecl atorns iri  

t lie Popov approximation [see (3.;12)] narnely 
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With  (5.41) in ( 5 . 38 ) .  a l  reduces to 

Adding no and al to give the contribution frorn type4 diagrams of Z l l .  (5 .37)  ancl 

(.5.42) dive 

The tn-O anomaloiis type4  diagrams are 60 and b l .  With (5.1) and (5.15). bo is 

given bp 

In evaluating b l .  we recall t h e  fact t ha t  the lowest-order OF Glz is proportional to 

nojo~;(0)G'(O).  Frorn (3.16). it is clear tha t  hl is at least the oïder of fi. therefore i v e  

c m  neglect  t he  rnornenturn dependence of r in (5.1 ) and se t  it equal to fo. \Vit hin 

th is  approsimation. bl is given hy 

1 A l  1 3E1 
= --noie lm, coth - - n o . g ~ ( ~ ) .  2 '7 - 

k i n g  (-5.44) and (5.45). the sum of bo and bl gives the type-[ diagram contribution 

to 
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CVe note that the  terms involving .](O) in (5.44) and  (5.45) do not show up in  bo + hl  

because t hey cancel each o t  her exact ly. 

This completes our  evaluation of type-1 a n d  type-II diagrams. Now ive combine 

t h e  contributioriç of the two types t o  find E I I  ancl Y12.  By combining ( 5 . 2 )  ancl 

( 5 . 4 3 ) .  we obtain t he  following expression for III. 

wliere the  function g is definecl in (5.30). Siniilarly. combining (5.39) and (5.46). we 

obtain 

where the  function h is defined in (5.34). 

In (5.47) and (5.4S), we have deliberately separated ou t  the  part  tha t  does not 

involve t he  Bose factor and the  part  tha t  is explicitly ternperature-dependent. The 

first two Iines in each expression gives t he  former contribution. which we define as 
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SO. 

These expressions correspond to  Beliaev's resiilts at T = O. as given in  Ecl.(.5.!3) 

and (5.10) of Ref.[:34]. However. when  used a t  Finite teniperatures. LU is irnplicitl!. 

temperatlire-dependent t hroiiph its dcpenclencc on t lie condensatc derisit~- no( T).  

5.3 Energy of excitations in the B-P approxima- 

tion 

Once we have obtained a specific approximation for X i  and X I I .  i v e  can sobstitiite 

these into (?..YI) and (2..54) to calculate the Green's functions a t  finitc teniperatures. 

D u e  to tlie l e n g t h ~  expressions in (5.4;) and (5.4s). the  results for Cili and Gl2  a r r  

very complicatecl. Mowever. there is a ivay [:NI to simplify siich resiilts so tliat the  

poles (and their residues) of Gl1  and GIî are more clearly exhibitecl. ancl tlie seconcl- 

order corrections t o  the  energy of excitations are shown in a n  explicit nianner. To 

do so. it is convenient to separate out contributions which are esplicitl-  linear and 
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~ ( l '  and p ( l )  have been piven earlier in Chapter  3 Here the linear expressions ,,, . d12 . 
[sec (3.20) and (:3.3.j)]. while the  quaciratic contributions SI:) and 1:;' can be tlediiced 

from (5.-17) and (5 .4s)  in t h e  Section 5.2. T h e  %econd-orcler' correction t o  p. denotecl 

b ~ *  / L ( ~ ) .  can he obtained using Hugenholtz-Pines t heorem [23 .  261. namelj- 

/L2) = $:'(O> - $ 3 0 ) -  ( - 5 3 - 1 )  

With a little algebra. one  c m  show. after tiropping all terrns of the order ~ ( j ; ' )  
and higlier. that t,he denominator of C l l ( p )  and G12(p) in (2.53) ancl (23-1)  is given 

b'. 

Solving D(k. iu,) = O for iw, (which ivill be analytically continueci to real freqiiericirs 

k i r l ) .  we obtain 

Here iq = &El- are t h e  two poles of the Green's functions in the first-ordcr Popov 

approximation [see (:3.37)] and the new term in (5 .5 s )  is the  correction from tlic 

second-order B-P approximation? 
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Using (.5.JS). the denominator D(k. id,) of Gii and G I 2  is given bu 

C'onsequently. the diagonal Green's function in the B- P approxiniat ion can be rewrit - 

ten in the form 

This can be  expressed as the  sum of two poles. 

where .-IL and Bk satisfy 

Since (5.63) must hold for arbitraru values of id,. we can salve (5.63) for .-IL and  B; 

tu give 

Here Ar. and Bk. defined in (5.22) ancl ( 5 . 2 3 ) .  are t h e  corresponcling iireights For t hc 

two poles &Ek of C;li in the  first-order Popov approsirnation: and ar; is the **second- 

orcler" correction defined by 

Csing (-5.64) and (5.65) in (5.62). w e  finally arrive at 
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This tvpe of expression was first derived by Beliaev [NI a t  T = O and the ahovc 

analysis formallp extends his approach to finite temperature. 

Following t h e  analysis in obtaining (5 .67 ) .  it is straight forward to  also express t hr 

anomalous Green's function Gi2 in a similar way. namely 

Ck + -yk 
Cla(k. iu,) = . - CA: + î k  

+ -  , - E - - 1  rd, + Ek + :\; ' 

Here the **second-order" correction to Cfk  is gii-en b ~ -  

W e  can use (5 .67)  and  (5.68) to calculate the properties of t h e  C;reen's function 

within the B-P approximation. This will be done in Çhapter  6 and 7. Tlie energ!. of 

single-particle excitations ( poles of G'l and Ci2) are given by 

wliicli may contain a finite imaginary part .  describing t h e  damping of t h e  single- 

part icle excitations. \Ve empliasis that  t hese approximate expressions for C;, Cii2 

and E:' are only valid withiri the B-P approximation. They can not iisetl iri othcr 

approsimations wi tlioiit ftirt her discussion. 



Chapter 6 

Calculations at T = O using the 

B-P approximation 

In Chapter 5 .  we worked out the single-particle Green's functions in t h e  B-P appros-  

imation for a rveakly-interacting Bose gas. T h e  formalism developed was valid for 

arbitra- temperatlire. In this chapter. we use the resd ts  obtained in C'hapter 5 to 

stuclj- the  special case of T = O. reproducing the  famous --second-order" calculations 

workecl oiit by Beliaev [34] some fort- years ago. We have tried to give a more dc- 

taiied treatment of some of the intermediate steps and hope that oiir disciission will 

be useful t o  niany readers who have become interested in Beliaev's work in connection 

witli calculating the properties of t h e  recently discovered trapped atomic Bose gases. 

In particular. Ive give. for the first time. explicit  expressions for the self-energies in t lie 

B-P approximation which contain infrnred dipergent  terms. :\s well-known [Z. 301. 

these divergent contributions cancel out in the  final eupressioiis for physicai quanti-  

t ies. such as the  long- wavelengt h excitation spectrum. However, t hey have a physical 

basis in the  Bose broken symmetry and a re  of interest in this more general contest.  
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6.1 The B-P self-energies at T = O 

At zero temperature. t he  diagonal Green's function C;ll in (5 .67 )  is given hy 

where .\: and a i  are  defined in (5.59) and (5.66). The Fiinctions ancl .\; arp 

combinat ions of 5If'(f p )  (or  Y:, ). SI:) and which are *œsecond-order" correct ions 

to  the  corresponding quantity X i  i(f p). S iz (p) .  and  IL respectively. Csing (.i.-IR) a n d  

(.3.50). leaving out t h e  first-order trirrns ancl carrying out  the Following integrals. 

we  obtain the T = O "second-order- terms 

Here the functions g and h are defined by (5.30) and (5.34). respectivel-: and  1 r l o f o  

[sec ( 3 . 3 6 ) ] .  The results in (6.3) and (6.4) agree precisely with tliose given by Eqs.(5.9) 

and (5.10) of Beliaev [34]. 

The form of (6.1) makes it convenient to study the  behavior of the  Green's fiinctiori 

near the  poles at w 2 f Ek. For this purpose. we first do a Taylor expansion of 

rK)(k, s>) and ~ i i ' ( k ,  w )  about  the pole w = Ek. 
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Here n (frorn fo = -4nh2a/rn) is the s-wave scattering length: the  ciiiantitj. ( n , ~ "  )'/ ' is 

a small dimensionless parameter in a low density gas [see ( : 3 . i ) ] .  The dimensionless 

ratio uk defined as 

is also â srnall qiiantity in the  lirnit of k < J m Z / h .  The other tiïo quantitics Dl 

and D3 are dimensionless integrals: 

(S. 17) 

One sees that as x -+ O. both integrals Di and 4 are divergent: DI  goes to infinit?- as 

ln x and D3 as x - ~ .  which shows the infrared divergence inherent in t h e  quant i i r i i  f i c l c l  

analysis of a Bose-condenseci systerti [22. 301. As far as LW know. t his is t lie fi rst t itiie 

t hat infrared divergence associated wi t h t hese higher-order self-energy esprcssioris 

have been written clown explicitly. Comparing (6.1 1) and (6.12) for t h e  real parts 

R~S!?) and R ~ x K )  with those given by Cheung and Griffiri [?SI. me note that  oiir 

coefficient of the v: term is differerit. and furthermore the infrared divergent teriiis 

were left out of their results. 

Similarly. coefficients of the  linear terms in t he  Taylor expansion of ~ : , ( k . d )  and 

~:Z)(k.w.) in (6.5)-(6.7) can he  obtained by (a)  taking their derivatives with respect to 

d. ( b )  evaluating the derivatives a t  U: = Ek. and ( c )  in the limit of srnall P. expanding 

the integrands in  powers of Ek. This procedure gives (again with the aid of hl.APLE) 
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Here the imaginary terms have to  be  evaluated up to order Ee becaiise the lower-ortlcr 

terms al1 cancel out when we calculate the quasi part icle energy spect riini. 

6.2 Quasipart icle spectrum 

in the previous section. we have obtained al1 the zero-order and first-orcler ternis iri 

t h e  Taylor espansion o f  Y:, and Y(,:' around the pole = Ek. The --second-order" 

correction to the chernical potential at T = O can now be easily calculateci iising 

(.5..54) and (6.11 )-(fi. 14). to give 

%-itli these results for \'FI. XI;). and it  is straightforward to  calcillate n k  and 

.Il. defined by (3.66) and (5.59). CCé ohtain 

- 
where (6.14) also defines t h e  new functions = k  and X k .  

The calculation of A; requires expansions of and E(,:) near the negative fre- 
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quency pole *: = - Ek. Using t h e  following equali ty for any differentiablc function 

ive have 

( k .  - E )  = -@,(k. Ek). 

( k .  E )  = -8:,(k. Ek). 

G12(k.  - E k )  = -Ql2(k, Ek). 

LLÏtli these last three  equalities. riTe can calculate t h e  quan t i ty  .\; 

pole = -Er; to ohta in  

+ ( n T 3 )  l i 2  ( -1 + 1 - -  . r E:) 
-1 Y 

(d + E k )  

ncar t h e  negat ire 

'The resiilts of (6.23). (6.24) a n d  (6.29) were first obta ined by Beliacl. in [:HI. if iw 

recall t h a t  in Iiis notation n = lo/-4n. a n d  1 = n o / o  However. as w r  Iiavc rioterl 

earlier. Beliaev did not w i t e  down t h e  equivalent of (6.11)-(6.14) a n d  (6.1s)-(0.71). 

nor d id  he mention t h e  infrared divergent ternis. 

W i t h  (6.24). (6.29) and (6.1). the Green's function near  to the poles at sniall 

rnornenta ma- be writ ten in t h e  form 

Cornparison with the first-order diagonal Green's function given by (3.3 1 ). one sees 

t h a t  the quanti  ties XI., ai, a n d  Ek a r e  "second-order" corrections. These corrections 

a r e  srnall for a low-density gas, since they are al1 proportional  to J;;o(;;j < Jnn5 « I 
under  t h e  condition (3 .7) .  
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The quasi particle energy is determined by the pole of Ci ( k. c.). In the moment uni 

range Ik/ « J x l h .  (6.1) and (6.24) together yield 

N e  recall that Er. = Ack for srnall rnornenta k < J Z l h .  where c = JG = 

h \/=lm is t lie sound veloci ty  in the first-order approximation. Eq. (6.3 1 ) shows 

tliat for small momentum. the quasi  articles are phonon-like. The .-second-ortler" 

approximation gi\.es a small correct ion to the sound velocity 

in addition. E?) contains an irnaginary part proportional to EL or Ii? This corre- 

sponds to a finite lifetime for t h e  phonons. This T = O long wavelengtli daniping 

is dile to the decay of a phonon into two single excitations. This is clear Ironi t he  

structure of the self-energies in (6.3) and (6.4) with poles at s = + ( E l  + E2). 
The niean number of the atoms .Vk with a given mornentum L at T = O can hr  

calculated direct 1'. from t lie Green's furict ion. usi ng 

- \  = i l i  e'""~', (k. d) 

Here the path of integration C is a contour consisting of the real axis 

+cc. together with a semicircle in  the uppcr lialf plane. \Ve emphasize t hat .\\ is 

the nionientum distribution of atoins. not the quasiparticle mornentiirn distribut ion. 

Because the imaginary part of Ek is negative [see(6.24)]. the only contribution is froni 
- 

the negative energg pole of Cil at u> = - Ek - =k. Therefore using ( 5 . 2 3 )  and (6.X3). 
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we obtain 

The  imagina- par ts  of a k  and X k  cancel in (6.:34). and tlius .Vk is real. as it shoultl 

be. To calculate t h e  total  number of particles with non-zero momentiim. we need t o  

knoiv .Vk for al1 momenta.  Cnfortunately. no general ana l - t i c  forrn is ai-ailablr for 

arbitrary momentuni.  Numerical methods are  required to  calculate t he  nurnher of 

particles -$ with non-zero rnornentum. froni which. one can find the  nurnber .Yo of 

atonis in the  condensate. for a fixed total niimber of a toms ,V. 

We can also calculate t he  ground-state energy from the  chemical potential  p.  T h c  

first-order contribution t o  IL is p ( ' )  = 1 = nojo given by (3.35) and the  .*second-order** 

contribution is given by (6.22). LVe add  these two parts to obtain 

Here we rnay use t h e  resiilt for n o  obtained in t h e  first-order Popov approsiriiat ion. 

as given by (3.4-L) of Chapter  3 .  Expressing no in terms of r i  bj. nieans of (3.4-L). w r  

finally obtain 

By definition. a t  T = O we have p = C)(Eo/V)/i)n. Therefore. integrating (6.:36) witli 

respect t o  n. one obtains t he  ground-state energy 

These result coincides ivith t he  resiilt of Lee. Huang and  Yang [2cI] for a liard-spliere 

gas. and Iater re-derived by Beliaev [34] and  by Hugenholtz and Pines [ 2 3 ] .  
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The pressure P is given by 

The derivative of P with respect to n yields the  usual compressional speecl of soiincl 

Cornparison of (6.39) with (6.:32) shows that t h e  phonon velocity c(') is equal to 

the compressional speed of sound s in the second-order approximation. This is in  

agreement with Gavoret and Xozi&res's famous result t hat. to  arbitrary order in tlic 

perturbation. the phonon velocity equals the macroscopic speed of soiind nt T = 0. 

LVe now turn  t o  t h e  calculation of the spectral density function A(k.c.).  whicli we 

recall from C'hapter 2 is given by 

.At the end of the  previous section. we  obtained a n  expression For the Green's functioii 
- .  

Gl (k. d). Cising t h e  resiilts for a k .  X I  and -1 in (6.23) and (6.24). w e  find after soriie 

calculation tha t  the  spectral density fiinction is given by (uk G E k / L  = hck/_ l :  

1 no-lrh2a/rn)  

[ ~ ( n - ~ ) ~ ' * ]  Ëk hch 1 + - - 
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Somewhat surprisingly. 7'1- in (6.43) does not esplicitly depend on the parameter (1 

(eiicept for an iniplicit. weak dependence through no. the condensate density). One 

recalls that the collision rate goes as a2 for a dilute classical gas. The result in (6.-43). 

therefore. is puzzling at first glance. It is a consequence of the fact that at T = O. t tir 

quasiparticles are phonons rat her t han Free atoms. The excitation energy depends on 

fi in the long wavelengt h limit. and t herefore t h e  s-rvave scattering lengt 

the calculation of one phonon decaying into tir0 in a cornplicatecl way. 

result is that u cancels out in the expression for y k  in (6.43) .  

11 n enters 

The tinal 

The explicit expression given in (6.41) has not been given in the previous literatiire. 

We recall t hat in the Bogoliubov approximation. the spectral density fiinction is given 

b y 

wliich consists of tivo peaks a t  Ek and - Ek respectivelx .Associateci mit h the dariipiiig 

of the  escitations. the peaks in (6.41) have a finite width. 

It is easy to check that  a t  LL: = O. (6.41) reduces to 

for srnall k ( E k  « A) .  Bu definition. : l (k . s  = 0 )  shoulcl vanish for an! value of k 

[sec Ecl.(2.60)]. Hoirever. i f  ive rerneniber tlic C;reeii's function Cil(k.;) i n  (6.:10) is 

only valid a t  near the poles - &fk. the small but finite zero freq~iericy value in 

(6.45) is not unexpected. 



Chapter 7 

Discussion of the T f O B-P 

approxirnat ion 

In tliis chapter, we use the self-energies obtainetl in (5.47) and (5.4s) in Cliapter .? 

to consider the  case of finite temperature. These self-energies can he separatecl into 

two parts: one part denoted by 9' which does not. depend csplicitly on the  Bosc 

factor: and another temperature-dependent part denoted hy S* which does depend 

on tlie Bose factor. In Chapter 6. we worked out tlie expressions for 5' near t h e  poles 

s - I Ek in t h e  sinall rnomentum limi t. Those expressions now have a new nieaning. 

since t hey involve the condensate density no (T)  rvhich is temperature-dependent at 

fini te temperature. 

W now turn  our attention to the teniperature dcpentlent parts of tlie self-energi~s 

associated wi t h the  Bose factors. iiamely 
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Here we remind t h e  reatler tha t  t h e  functions g a n d  h are as defincd i r i  (5.30) ancl 

(.5.:3-L ). respect i\-el?: 

and t h e  subscript  "L" refers t o  kl and  -2- refers t o  k - ki . \fi have macle t h e  

analytical  continuation hi., -+ + irl in t h e  expressions of Zrl ancl rf2 . i rnplr ing 

t hat  me a r e  now dealing with t h e  self-energies for t h e  retarded Green's  funct,ion Gr"' 

(çee Section 2.*5). 

We recall t h a t  a t  T = 0. t h e  seli-energies in (6.3) and (6.4) involve poles at 

= f (El + E2). which describes t he  decay  of o n e  ptionon into two  plioiions. A t  

f ini te  t empera tu re .  t h e  self-energies in (7. L ) and ( 7  involve acldit ional poles a t  

i = f( El - EL). representing t h e  process of a phonon scattering u-itli a thcrniall!.- 

rsci t ed  plionon. Duc  t o  t hese addi t ional t hermai  sca t  tering processes ( present oiily nt 

finite t empera tu ies ) .  it is difficult t o  ca r ry  oot t h e  eyuivalcnt calciilat.ioris t o  tliose i i i  

C'hapter 6. O n e  difficulty is associated wi th  t h e  fact t h a t  it noiv nia t ters  wha t  o rder  

o n e  takes  t h e  liniits ic! - O a n d  k - O. For esarnple .  i f  one takes t h e  lirnit -+ O 

first and then  t h e  l imit  k + O. one  immediate ly  sees t h a t  t h e  tliernial t e rn i s  of t h e  

diagonal self-energy z:, in (7.1) involving poles a t  U: = f ( E l  - E2)  are siiigular: 

= lim 9(-El. Ez) + d E l .  --EL) 
2-1 El - E2 

6 ~ 1 ~ 2  + LEl E2 + -A(€, + € 2 )  + 
= lim 

2- 1 El - E2 
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The limit of k - O rneans k2 (= k - kl) -t -kl [which is eqiiivalent t o  k l  because 

the integrands of (7.1) and  (7.2) clepends only o n  lkl 1 and  Ik21]. This is denoted hj- 

.. .-) " - - -'l". Since t h e  numerator of (7.3) is finite. ive see t h e  expression is singiilar 

for an!. value of kl. O n  the  other hand. i f  we reverse the  order of the two limits in 

(7.3). we find 

= lim 
g ( - E l -  El) - g(E1.  - - E l )  

The above limit vanishes because g( -  E l .  El) = g( E l .  - E l ) .  The similar kirid of 

analysis also applies t o  t h e  thermal terms of Y;, in (7.2) .  Due to this rlepenclence 

on tlic order of limits. we can not espand XT(k. E L )  in the  sniall moriientiirii liinit 

following the procedure used in Chapter 6. which effectively took the lirnits -+ O. 

k -+ O nt the same t ime. This kind of dependence on  the  ratio k / ~ .  in t h e  liniit of 

( k ~ )  + O is well-known in the  theory of Fermi liquids (see. for esample. [46]). 

7.1 The k = O limit 

LVe now take t h c  li~riit k + O first and then the  lirnit CL: -3 0. In this case. tlic thernial  

terms in zTi and ZL vanish. Using (5.-17) and  (5.48) for the  espressions of t h e  total  

self-energies S l l ( p )  and EI2(p) we fincl that  in t h e  above limit. these expressions cari 

be  simplified to 
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The second term on the right hand side of (7.5) equals the density RI') of non- 

condensate atoms in the first approximation. given by (3.42). It is ve r -  important to 

note that no which appears in these results is the temperature-dependent conclmsatc 

n o ( T ) .  to he caIciilatecl self-consiskntly. We note t hat b0t.h Si i(O.  O )  and T12(0.  0 )  

contain the term 
dkl A2 JE1 

coth - 
3 '  - 

which is divergent a t  kl + O. namely 

The chemical potential for the con< 

Hugenholtz-Pines theorem: 

iensed pliase can be calciilatecl iising the 

It is seeii ttiat t lie inirared-divergent terni in (7.7 j cancels out in t lie espressions of Ir. 

\Ve next estimate p .  The Iast terni in (7.9) is temperature dependent. and cari bc 

written as 

2 3 /2  Here n,(T) [= 2.612(mkBT/2xh ) ] is the  critical density of an ideal Bose gas nt 

a given T. as given by the  integral of f B j c l )  over kl. The main contrihutioii to the 

integral over kl in the  first term of (7.10) cornes from the region c l  2 1. rvhere El 

differs significantly from ci. For temperature T which satisfies 
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i ve  cari use the high temperature approximation of fB(c) zz k B T / c  to give 

(7. LI) 

where in the last step. we have usetl fo = -~i;h%/rn.  The  result in (7.12) is in 

agreement wi th  that of Popov (sec equation ( 17..3.5) of Ref.[:ll]) if  ive remember tha t  

he  used the units h = Zm = kB = 1. 

We now calculate the  total chemical potential by inserting the above resiilt for p' 

into (7.9). and find 

The first term is the T = O result already derivecl in ( 6 . 35 ) .  escept that n o ( T )  is noir 

temperature dependent. The new temperature-dependent parts consist of a Hart rce- 

Fock term [ ~ a h ' a n , , , ( ~ ) / r n ]  and another correction term wliicli is liriear in hotli T and  

JG. Thc second-order B-P approximation introduces a srnall correct iori (n l~o i i t  O.:{ 

percent for "Rb atonis under the cordition of Ref.[l]) to the chemical potential wi t  li 

respect to ttiat in the first-order Popov approximation. CVe emphasizc that (7.13) has 

been derived assuming nojo < ksT.  which is valid as long as the teiiiperature T is 

not too low compared to Tc, narnely 

I t  caii be cstimated that for a = 5 3  A and n = 2.6 x 1012 cm-3 (taken from [ I I  for 

"Rh in the center of the  trap),  nl /% = 0.0073 and th.? condition (7.14) iniplies tha t  

T » 0.027Tc. 
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7.2 Expansions of Y T ( k , w = ~ k + 6 )  for small k 

Lit-e are most interested in the  behavior of the Green's function near the  single-particle 

pales. However. as mentioned earlier. we cannot set U. = Ek and espancl X( k. EEc ) in  

the srna11 niomenturn limit. d u e  to  the  difficidty associated with the order of liniits 

taken. In a n  attempt to  overcome this problern. we introduce a gap and expancl t h e  

self-energies around = Ek + 6 instead of u: = Ek. After t his expansion is clone. ive 

take the 6 - O limit. In this approach. ive are not taking the Iimits k - O. s i O at 

the same tinie. but taking the  limit k 4 O first. See the end of Section 7.2 for sonie 

further comments on this. 

Following this procedure. ive arrive a t  the following results (again using SI;\PLE): 

and 
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WC can approximate j B ( E i  ) for T -- Tc by kBT/ El for El < k sT .  which limits the 

following results to high temperatures. In this  approsimation. ive can evaloate t lir o 

and b's: 

n- here D2 and D.I denote two infrarecl-divergent dirnensionless integrals: 

LVe recall that in  Chapter 5. the  quantity At near the poles s = f Ek cari be 
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The Bose-factor-independent part has been already calculated in C'hap ter 6. i v  here 

we fincl [see Eqs.(6.24) and (6.29)) 

The teniperature-dependent part (associated with the Bose factors) of -1;' can be 

calculateci using the corresponding temperature-clependent self-eriergies 5:, ( k. f Ek ) 

and 5 T 2 ( k .  E k )  given by (7.15)-(7.32) and the chernical potential given by (7.12). To 

first order in I I - .  we obtain 

L\:e note that in Al'*. the infrared divergent terms D2. D.I. O (b - ' )  and O(b- ')  al1 

cancel out exactly to lowest order in L. just as ive sliowed in t h e  T = O case i r i  C'liaprer 

6. 

Conibination of (7.36) and (7 .37)  yielcls the loliowing result of -1:: 

This immediately leads to t h e  following result for t h e  energy spectrum of excitations 

in the second-order B-P approsimation: 
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Here 

' ( T )  = + 2 c k n o ( ~ ) j o  = h d L ) ( T ) k  (for srnail k )  ( 7.40 ) 

are  the  first-order excitation energy and phonon velocity. respectively. ohtained in 

the  Popov approximation of Chapter  3. Equation (7.39) shows that  for small k. the 

quasi particles are still phonons. with a velocity given by 

The second term in (7.42) corresponds t o  the T = O result derived in Chapter  6. but 

norv is a temperat lire-dependent quant i  ty t hrough t h e  condensate tlensity rio(  T). The 

new correction term is proportional t o  k a S .  but independent of n o ( T ) .  

T h e  relatil-e importance of t h e  correction terms can be estimated for "Rb atonis 

( n  = 3 .-\ aritl 11 = 2.6 x 10'- cm-"11) as lollorvs. Denoting the second and thirrl 

ternis in (7.42) as 6c and bc'. respectively. we have 

rvhere dl)(0) is given by 
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As seen from (7.43) and (7.44). the second-order corrections are very small for a dilutr 

"Rb atomic gas. 

Since d i ) (T )  + O as T + Tc- one sees that the phonon velocity takes a sniall 

negative value near Tc. This iinphysical restilt is due to thc fact that (7.-I.') is clerived 

assuming the correction terms are small. narnely 

This condition is equivalent to 

The last ineqiiality also defines the temperature range w here the first-order Popoi. 

approximation is valid [see (3.59)]. Such a coincidence is not unespectecl because in  

the second-order B-P approximation. ive use the first-order Popov propagators. w hicti 

are valit1 only i f  (7.-Li) is triie. Thereîore the results in the B-P approximation arc 

siibject to the same limitation near Tc. We should also emphasize t hat in cleriving 

(7.42). we Iiavc iised the  high-temperature approximation. u-hich really nicaris tlint 

i t  is subject to the condition (7.1-1). Together rvith ('7.47). this liniits ttir validity of 

our results to tcriiperatures ivhich are not too close to either T = O or 7' = Tc. 

.As far as we know. (7.42) is a new resirlt. Moreover. we have showri for the 

first tirne t liat t lie infrared-divergent terms cancel out in pliysical quant it ies in  t lie 

long rvavelength lirnit at finite temperature. just as in the case of zero teniperaturc. 

Howerer. it is not clear a t  present whether these infrared-divergent terms cancel out 

in pliysical qiiantities in general. Le. .  not just in the long tvavelengtli lirnit. This 

could be cliecked by using our method to calculate the self-energies to higher order 

in k. 

-1s pointed out by Stoof [47]. the infrared divergence we found in the sccond- 

order approximation might be closely related to the vanishing of S12(k -, 0. i .  = 

O ) .  a rigorous result ( i . e .  to al1 order in perturbation expansion) first shown  b!- 

Nepomnyashchii e t  al in 1971 (481. More precisely, one finds that  S i z ( k . d  = 0 )  
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approaches zero as 

Eq.('i.-LS) suggests that in the long wavelength limit. the self-energies. in a rigorous 

theory. take the following asymptotic form: 

Ttiese coritain t lie singular infrared-divergent part in the denominator. 

CVhat we found in this thesis. however. is that.  i f  expanded to first order. tlir 

self-energies X(k -t 0.; = 0) are finite. On the other hand. if  ive go to second order. 

t h e  self-energies S(k + O. = 0)  are infinite. due to divergent terms DI at T = O 

[see Ec1.(6.16)] and D2 at T # O [see E q . ( F . 3 3 ) ] .  Eqs.(6.16) and (7 .33)  sriggest tha t  

t h e  types of clivergent terms we found in the self-energies are given by 

.-\ comparison of (7.48) and (7.49) suggests the origin of the divergent ternis founcl i r i  

our second-order calculat ions. In the pert urbative calculation we have developed. one 

may be effectively expanding Eq.(F.-LS) in powers of ln li or l l k .  arriving at results 

consistent with (1.50). 

Here the first term corresponds to the  first-order self-energy result and the  seconcl 

term corresponds to the second-order self-energy result . and so on. This scenario giws 

an explanation of why our second-order self-energies contain the types of divergence 

show11 in Eq.( i .50) .  
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The above analysis pu ts  a question mark  on  the  traditional perturbation approacli 

ive have used. Hoivever. t he  fact that these divergent terms al1 cancel ou t  in the  

end seems to  suggest t h a t  the singular par t s  of the self-energies do not cont r ibutc  

t o  physical quantities. a t  least t o  second-order in j. and therefore. t h e  results ive  

obtained in Chapter  6 and in t he  present chapter  still rernain meaningful. T h e  exact 

cancellation also implies that  t h e  problexn associated with inirarecl divergence niay \le 

solved by some kind of re-formulation. Recently. Bijlsma and Stool  [45] have sttidietl 

the  probleni using t h e  renormalization group  (RG) techniques. and  shoivri liow. in 

principle. the  infrared divergence problems can be solved using such techniques. 

As ive remarked a t  t h e  beginning of this section. we changed the  order  of liniits 

k -+ O and w. + O by introducing a gap 6 with respect to  t h e  Popov quasiparticlc 

energ)- E in t h e  frequency d. .As one can easily see from (7.15) aiicl ( 7.l6).  harl ivcl 

taken the liniit L 4 O (o r  5 -+ 0)  together with k 4 0. rrre would get singular rcsiilts. 

due to  the presence of k2/6 and  k 2 / P  terrns. T h e  change of t he  order of lirnits niiglit 

I iaw clianged the  physics contained in no a n d  bo (such as the type of contributions 

tliat go like k / &  e tc ) .  Further work or. this topic is needetl to clari- tliese questions. 

7.3 Damping of phonons at high temperature 

As first shown by Beliaev [34] and rederived in Cliapter 6. a t  zero ternperaturc.  tlir 

clamping of low-momentum phonons is proportional to  k" [see Ec1.(6.3 1 ) ] .  lié cari 

iisr t h e  finite-temperature resitlts of the present cliapter to  calculate t h e  imaginary 

part of the self-energies. From these, we can calculate the  phonon damping a t  hi& 

temperatures. close t o  Tc. CVe briefly sketch these calculations. t h e  details of whicli 

wili be reported elservhere [49]. 

We first calculate t h e  imaginary parts of C t l  and S12 nt the  pole = El.. startirig 

from the  results gi\.en in (7.1) and (7.2). The imaginary part of ~:(k. Ek + iq) is 

given by 
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d q  M E l )  
= "ozlm ,rlE2 ( - T )  [g( El. &)6( El, - El - E2) 

T h e  function g ( E l .  &)  is defined in (5.30) as well as a t  t h e  beginning of t h e  present 

ctiapter following (7.2). IrnS:, in (7.53) consists of th ree  parts. which involve different 

lower and upper  limits t o  ensure  t h e  positiveness of E2. I n  arr iv ing at (7.53). we have 

macle use of t h e  following property of the  6-fiinction: 

where ru is t h e  solution of j 2 ( x )  = O. In ttie higti t empera t l i r e  limit. rve appros in ia tc  

f B ( E l )  by k B T / E l .  a n d  a l ter  some manipulations (for details .  sce [-!SI) w~ finallj- 

arrive a t  t h e  following Taylor expansion of ImZ:,(k. El.) for smal l  b: 

Here D~ is a dimensionless divergent integral defined by 

Following a similar procedure. ive can also work o u t  t h e  Taylor expansion of 
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ImSli(-k.  -&) a n d  ImE12(k. Ek) for srnall k. with t h e  following results: 

Lsing (7.5-1). (7..56) and  (7.57) in (7 .37) .  ive find tha t  the  imaginarj- part of tlic 

qiiantity .\: as well as  t h e  imaginary part of t he  escitation energy Ek iii the  loiv- 

monientuni limit is gi\-en by the  v e q  simple expression 

\)\é remark tliat. iinlike t h e  T = O case clisciissed in C'liapter 6. tlie imaginary parts 

of the  self-energies exhibit divergent ternis a t  finite temperature.  This  can h e  seen 

from the  qiiantity D k  which appears in mrious ternis in t he  expressions for ~rn\':~ 

and  ImSI2 given above. However. these divergent terms al1 cancel ou t  esactly i t i  t h r  

final expression (7.58) for the dampirig. This shows. once again. t ha t  t he  singiilar 

parts of the self-energies do not contribute t o  long-wavelengt h physical qiiantities in 

t h e  Beliaev-Popov approximation at finite temperatures. 

T h e  result in (7.5s) shows tha t  the  damping of phonons is proportional t o  TL: in 

t he  high temperature  region near Tc. We believe this result is new. We cal1 at,tentioti 

to t h e  fact tha t  temperature-dependent correction to t h e  real part of the phonon 

energy given by t h e  last t e rm in (7.39) is very similar t o  t h e  damping given by (T .5S) .  

T h e  phonon width in t h e  low temperature  limit has been  calculated by Popov [311 

iising a hydrodynamical Hamiltonian approach. In this limit, t h e  phonon widtli is 

proportional to T4L. 



Chapter 8 

Concluding remarks 

Most of this t hesis has concentrated on the technical details of evaluating the diagonal 

and off-diagonal Beliaev self-energies to second order in the  interaction. In t his bricf 

concluding chapter. we would like to put some of our results into a larger contest  hl- 

discussing the connections to recent field-theoretic literature on uniform interacting 

Bose-condensed gasps. 

Tlie first-order Popov approximation worked out in dctail in C'hapter :l is a sini- 

plified version of the complete self-consistent Hartree-Fock-Bogo,oliiibov (IIFB) ap- 

proxiniation for the single-particle self-eriergies. .As we mentioned earlier. the latt,er 

is known to give rise to an energy gap in the long wavelength escitation spectrurn. 

Hoivever. the HF% approximation is of special interest since it cari I x  iised to senerate 

a density-response function (by Iiinctional differentiation witli respect to ari ausiliary 

field) mhich eshibits t lie same spectrurn as t he  single-part icle Cireen 's fiiiict ion coin- 

puted i r i  the Beliaev-Popov approximation. This is proven in detail l ~ y  C'heiing and 

Chiffin [29] a t  finite temperatures and has been recently reviewed by Griffin [41] in t h e  

context of trapped atornic gases. We should also note that the Popov approximation 

to the self-consistent HFB has been recently formulated for a Bose gas trappecl in an 

external potential well [50], extending the work in Chapter 3 .  

In C hapters 6 and 7. the second-order self-energies exhi bi ted in frared-di vergen t 

terms both at  T = O (Beliaev) and T # O (Popov). We ssliowed explicitly that 

these divergent contributions cancel out in thermodynamic properties like the chem- 
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ical potential. as well as in the low frequency excitation energy and  damping. I r i  

this thesis. ive have not discussed the physics of such divergent t e rms  (sec Section 

6.3 of Refs.[S] and [30]) or  alternative formulations in wtiicli the' do  not explicitly 

appear (see however the  remarks a t  the  end of Section 7.2). T h e r e  is a n  extensive 

literattire on t his topic. going back to  the pioneer work of Gavoret antl Xozières [2] 

at T = O. CVe cal1 attention to the renornialization group tvpe of calclilation piveii 

tq Popov [:3 11 mhich derives a renormalized .'quant tim hydrodpnarnic" clescri pt ion of 

long wavelength modes which is free of such divergent terms. Related recent studies 

tising forma1 renorrnalization groiip (RG) techniques a t  T = O [.il] antl near Tc [-1-51 

have addrcssed this problem in a systematic way. 

As we noted in t h e  introduction of t his t hesis. ive have concentrated on calciilatirig 

t lie single-part icle Grceri's functions a t  finite temperatures. However. it is kriowri t.liat 

iri  t he  preseiice of a Bose broken symrnetry. t hc single-particle and clensity fltictixatioris 

are  hybridized. Ieading to  t he  same poles for both single-particle Green's ftinctions 

and the  density response function. The so-called -dielectric formalism" developecl b- 

Ma ancl CVoo [52] (for a review. see Chapter 5 of Rei.[S]) is a cliagraniniatic approacli 

which enables one t o  develop a p p r ~ s i m a t ~ i o n s  for "regtilar" Funct ions ( the  "regri lar" 

self-energy diagranis. hy ciefinition. can not hc split into two II? ciittirig a sii~gl<x 

interaction line) wliich wilI lead t o  C;,>(k. s) ancl ln, (k. having t lie samc spect rtini 

( bu t  with different tveights) in a Bose-condensed system. This tlielectric fornialisrti 

has been used in the so-called one-loop approsimatiori to  discuss t h e  excitations of a 

dilute Bose gas a t  T = O by Wong and Gould [ S I  and  a t  T # O by Talbot and  Griffin 

[54]. At T = O. t his one-loop approximation has been shown to  give t he  second-orcler 

Beliaev spectrum (sec Chapter  6 of this thesis). 

\+*e hope that t he  explicit calciilations given in this thesis (and especially C'hap- 

ters 6 and  7) wili be  useiul in the on-going effort t o  provide a more coiiiplete antl 

satisfactory understanding of excitations in a Bose-condensed gas. 

In principle, t he  thermal Green's functions can be used t,o calculate t he  thermo- 

dynarnic quantities, such as the  pressure. the  specific heat etc. T h i s  was done for t he  

first-order Popov approximation (in connection with Chapter  3)  by Popov [32]. ive 
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have not carried out t hese calcuiat ions for the second-order Beliaev- Popov appros- 

imation at finite temperatures (in connection with Chapter 7) in this thesis. One 

of the reasons is that to do this. one needs the Green's functions for ail rnomenta 

and frequencies. which is difficult to obtain in analytical form. In this thesis. ive 

have given analytical expressions for the Green's functions near the  poles L = f Ek. 

which allowed us to  determine the explicit excitation energy spectriim. Ne\.ertheless. 

it would be interesting to calculate some t hermodynamic quanti ties hy numerical 

niet hods. using the formalism developed in t his t hesis. 



Appendix A 

Scat t ering t heory and the 

t-matrix for Bose systems 

The typical inter-atomic potential irivolves a harcl core. This poses a probleni for 

the pert ~irbat ion theory in terrns of the bare potential r .  Since t7 can be large. t lie 

first fcw tcrms in such perturbation expansion are no longer sufficient. Indecti. orir 

has to sum over an infinite number of terms. This  Appendix reviews the  so-calied 

laclclcr approsimat ion for t h r  manu-body scat tering ampli tude r i r i  a Bose gas. 111 t liis 

approsimation. I' involves the sum over al1 the ladder diagrams to  infinite orcler in t g .  

taking into account t h e  repeated scattering of two particles i r i  a gas. To unndrstaritl 

this multiple scattering of two atoms in the presence of many other atoms. one  lias to  

first understancl the  simpler problern of multiple scattering of two atorns in a 1-acuuxn. 

since it can be shown tha t  the  many-body scattering amplitiidc r is relat ed to tllr 

Free space or vacuum scattering amplitude (see Chapter  -1 of Ref.[l3]). 

A. l  Multiple scattering in vacuum 

We consider two particies of mass m interacting in vacuum via potential u ( x ) .  'The 

Schrodinger equation in the center-of-mass coordinate system is given by 



Here m' = ml2 is the  reduced mass and o(x) describes t he  rvavefunction of t lie two 

particles with a separation x between them. In scattering problems. it is general1~- 

convenient to rewrite equation (r\ . l)  as an  integral equation representing an  incident 

plane ivave with mai-evector k plus an outgoing scattered wave: 

At large x. i.e. far air- from the influence of t h e  potential. the  scattered wave- 

function take the  following asymptotic form: 

This defines t he  scattering amplitude for a transition from an incident mave vector k 

to a final wave vector k'. namely 

- m - -- -.(q)ok(kr - q). 

c(y 1- 

The Schrodinger equation (A.2) may be reicritten in moment um space 

= (27r)%(kr - k) - f (k'. k) 
- Zri - iv ' 

where we have defined the  quantity j (k .  kt )  

4iïh2 j (k ,k f )  --f(k,k') 
rn 



CVe note that this definition of j differs from the iisiial definition of t,lie free-sparr 

scattering amplitude f by a factor of -4ah2/rn.  Combinin; (A.5) and (.A.:). o n e  

obtains 

tvhich is an integral equation for j in terms of the  bare potential c. If the potential has 

no boünd states. as will be assiimed throughout this section. then the exact scattering 

soliitions wi th  a given hoiindary condition iorm a complete set of states and satisb- 

the  following completeness relation in momentum space [Z]: 

The çignificance of (.AS) is that  j(k. k') is well-defined even i f  c ( r )  lias a llëird core. 

Thc solution of (.A.$) is discussed in testbooks on scattering t heory . In part icular in 

the long ~ravclength limit (Ikl = Ik'l - O ) .  t h e  solution of ( A S )  is givcn I>!* 

where a is the s-rvave scattering length. 

A.2 Ladder diagrams 

The previous discussion has been restric~ed to tlie scattering of two atoins in vacuum. 

GVe now turn to the rnuch more complicated problem of two interacting atoriis in a 

gas. As disciissed in [34, 56, 131 .  in a dilute gas, the ladder diagrams are al1 of eqiial 

importance. For example. there exists a set of ladder diagrams. shown in Fig..A.l . 
al1 of which are the same order in the gas density as the lowest-order Hartree- Fock 

diagrams are. Therefore. in a dilute gas, we need to  sum over al1 t h e  ladder diagrams. 

yieiding the so-called many-body scattering amplitude r, as illustrated by the  hatclied 



Lowest order Second order 

Figure -A. 1: Ladder diagrams that are equally important in the Hartree-Fock approx- 
imation 

square in Fig.;\.Z. The diagrammatic definition of I? in Fig.A.2 which can be mritten 

T h e  four-dimensional vector p, (k,, iwj) represents t h e  momentum k, and Mat-  

subara frequency iwj of a particle before (j=3'4) or after (j=l.2) scattering. similarly. 

q r (q, iw,). Since the interatomic potential v(r) is not time-dependent. a ( q )  does 

not depend on the fourth component iw, of q, and neither does I'(pl - q, pz + q ;  h, p4). 



Lowest order Second order 

Figure A.2: Diagrammatic definition of the t-matris 
....................................-.............-...........*.... 

One can thus perform the frequency sum 

in ( .A. l l ) :  yielding the last factor in (A.12).  Eq.( A. 11) is known as the Bethe-Salpeter 

equation (more precisely. the ladder approximation to the Bethe-Salpeter equation). 

If (A.12) is iterated in powers of u (perturbation theory), we obtain the sum of al1 

ladder diagrams. 

It is often more convenient to write l? in the center-of-momentum frame of the scat- 

tering pair of atoms. Defining the total momentum and total Matsubara frequency 

of the scattering pair as 
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the denominator in the integral of (A.12) can rervritten as 

where the complex variable 2 is clefïned by 

LVriting r in terms of variables in the center-of-mass frame. we have 

dq = V(k - k') + / Fi~iq) 
F+W. k - q) I - ( k - q . k ' . K : z ) .  (;US) 

.?A 2 - - i l )  

Here k' and k arc the relative riiomenta of the scattering pair belore and aftcr tlic 

scattering. respectively: and t h e  function F+(k. q, K )  incorporates the effeci of tlic 

Bose siatistics obeyed by the atoms invol\*ed in the intermediate scattering statrs. 

Eq. (LI. 18) can he compared wit  h the integral equation for the free-space scat tering 

amplitude fgiven by ( A S ) .  The free-space scattering amplitude j describes the effect 

of the  potential oii t lie mavefunction of two atoms in a uacuum. while the niany-body 

T-rnatrix l? describes t h e  sirnilar effect in a nrediurn. that is. in t h e  presence of ot tier 

atoms in a Bose gas. 

The diagrams in Fig.A.1 are redrawn in Fig.ii.3 in terms of the new quantit~. i' 

defined in Fig.A.2. These diagrams in Fig.A.3 can be obtained by simply -replacing" 

1. (the dashed lines) in the Hartree-Fock diagrams (c and d in Fi&]. 1) w i t h  r (tlir 

hat ched squares). 



Figure -4.3: Hartree- Fock self-energy diagrams in the t-rnatrix approximation 

A.3 Connections between $ and r 
We nest show the connection between the free-space scattering amplitude j defined 

in ( .A. i )  and the  many-body scat tering amplitude T. The following analysis at 7' f O 

is a generalization of t h e  T = O discussion given by Beliaev (for Bose systems) and 

Fetter and Walecka (for Fermi systems) [34. 131. Introducing the quantity defined 

bu 
d q  r(k.  k'. K: .-) - 1 ï c ( q J ~ ( k  - q; k'. K: z )  . 
lsr 13 

one can verify that y satisfies t he  following integral equation 

The equation for x may be compared with  the similar equation (A.6) for ak(kr). 

which suggests that y. can be interpreted as an effective wavefunction of two particles 

in the Bose gas medium. 

The connection of y to f can be made by first considering the analogous function 

yo(k' k': K; z), rvhich denotes the solution of (A.23) with F+(K, k) replaced by unity: 

1 
yo(k, kt, K; r )  ( 2 ~ ) ~ 6 ( k  - k') + 

z - 2€/ ,  + 2 p  
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The corresponding quantity r0 is defined through k0 by [see (A.22)] 

\Ve now rewrite (:1.2-1) for \ O  and (.A.6) for ~ k ,  ( k )  as 

blultiplying (-4.26) by okl ( k )  a n d  iritegrating over k. we find t h a t  t h e  second terni 

on the  left liancl sicle equals 

dk 
- v ( ~ ) \ O ( ~  - q. kt.  K :  z ) o i ,  (k) 

- clk - J O ~  
dk = J -  iO(k .  k'. K: =)(?ci, - ?cc - ir,)okl ( k )  . ( A . % )  

Ir1 t h e  second line. we have usecl the mriable  change (k  - q) + k. and in t h e  tliircl 

line. we macle use of the cornplex conjugate of (.-1.27). Csing (.-".2S). (-4.26) leads to 

t he  desired result: 

Since t he  factor D 5 ( 2  - Zck, + 211 + iq) is inciependent of t h e  integral variable 

k. we can take  it outside of t h e  integral. GVe next multiply bo th  s ide of (A.29) bu 

D-' ok, (k2) .  and  integrate over ki. Using the completeness relation (.-i.9). one  arrives 

a t  



Csing the complen conjugate of (A.6) in (.4.30). one finds 

LL-e noow rnultiply ( . \ .3 i )  by r(k - k2) and integrating over kz. T h e  definition of \' 

and r0 in (.4.24) and (X.25) plus (A.6) leads to 

This last expression has t he  important feature that it gives T0 completel'. in ternis of 

the  free space (or  vacuum) scattering amplitude f. 
LVe are now in position to espress the full scattering amplitude r i n  t lie nidiurii. 

as given by (-4.1s). i n  terrns of j. h slight rearrangernent of (X.23) yields 

Coniparing this with (.A.%) clivided by z - Zei + 2 p  shows that the  operator on tlic 

left side of (.A.3:3) is just t h e  inverse of 10. which means 1 c m  be expresscd in teritis 

of as follows: 

Taliing the convolution with u in ( A . 3 4 ) .  we find 



Equation (.-\.3.5) espresses i' in te rm of the reduced scattering ampli tude rO. wtlilc 

r0 in turn can be expressed in terms of the  free space scattering ampli tude f iisirig 

( A .  1. In ot her words. t hrough the  intermediate function. TO. ive can relate r direct 1- 

t o  f. This result is important because it enables us to deal w i t h  an  interatornic 

potential witti a liard core. In that  case, the  iteration of the  integral equation (.-\.Il 

for r in powers of L* makes only forma1 sense. since each term is large. In contrast 

(X.32) and ( ,\.3.5) show t hat r is well-defined as long as f is. 
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