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Abstract 

In this thesis we examine various aspects of the Hamiltonian cycle problem. Our central 

thesis is to study the interaction between the algorit hm, the graph and the observed perfor- 

mance. Our survey of Hamiltonian cycle algorithms summarizes and classifies the differen t 

techniques and heuristics used in  the literature. We discuss various design issues concerning 

these different algorit hms and introduce some new algorit hrnic techniques. Our investiga- 

tion of hard graphs for the Hamiltonian cycle problem obtains new results on random graph 

classes which show them to be easy for a backtrack Hamiltonian cycle algorithm. We in- 

troduce and obtain proofs for a generalization of the knight's tour problem which we show 

produces hard graphs for Hamiltonian cycle algorithms. Throughout the thesis, we pr* 

vide theoretical and experimental evidence identifying and characterizing the interaction 

between algorith m. graph and performance. 



Acknowledgement s 

First and foremoat 1 would like to acknowledge the work that my supervisor Joe Culberson 
has performed. His advice. guidance and motivation were much appreciated and neeàed 
throughout my research. Thanks also go to Lorna Stewart and Maziar Shirvani, the other 
members of my examining cornmittee. 

1 would like to thank my mother Corry Vandegriend for the support she provided 
throughout my education in so many different ways. 

1 also would like to acknowledge those who in some way were of some assistance. whether 
by proofreading my thesis, contributing ideas, or by just listening. Thanks to Jonathan 
Lichtner, Michelle Strychar, Brian Vandegriend, Dave Bullas and any others I may have 
forgotten. 

I would like to acknowledge the University of Alberta and the National Sciences and 
Engineering Research Council for their financial support. Thanks also to the Depart ment 
of Computing Science and the Computer Operations Group for their administrative and 
technical assistance. Finaljy, 1 would like to acknowledge the use of the Lw.' document 
preparation software in publishing this t hesis. 



Contents 

1 Introduction 1 

2 Survey of Work on Hamiltonian Cycles 3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Introduction 3 

. . . . . . . . . . . . . . . . . . .  2.4 Hamiltonian Cycles and Random Graphs 3 
. . . . . . . . . . . . . . . . . . . . .  2.2.1 General Randorn Graph Models 4 

. . . . . . . . . . . . . .  2.2.2 Sparse and Regular Random Graph Models 5 
2.2.3 POsa'sProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

. . . . . . . . . . . . . . . . . .  2.3 Theorems Concerning Hamiltonian Cycles 8 
. . . . . . . . . . . . . . . .  2.4 .4 n Overview of Hamiltonian Cycle .4 lgorithms 10 
. . . . . . . . . . . . . . . .  2.4.1 Heuristic Hamihonian Cycle Algorithms 10 
. . . . . . . . . . . . . . .  2.4.2 Backt rack Hamiltonian Cycle Algorithrns 12 

. . . . . . . . . . . . . . . . . . .  2.4.3 Summary of Algorithm Techniques 12 
. . . . . . . . . . . . . . . . . .  2.5 A Survey of Hamiltonian Cycle Algorithms 15 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.1 PckaSAIgorithm 16 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5.2 UHC Algorithm 17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.3 DHC Algorithm 17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.4 HAM Algorithm 19 
. . . . . . . . . . . . . . . . . . . . . . . . . .  2.55 SparseHam Algorithm 21 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5.6 HideHam Algorithm 41 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.7 DB2 Algorithm 25 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.8 DB2A Algorithm 46 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.9 LongPath Algorithm 27 
. . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.10 LinearHam Algorithm 31 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.11 MultiPath Algorithm 33 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.12 S9SHam Algorithm 37 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.13 KTC Algorithm 37 

3 The Design of Hamiltonian Cycle Algorithms 40 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Introduction 40 

. . . . . . . . . . . . . . . . . . . . . . .  3.4 Met hodology for Algorit hm Design 41 
. . . . . . . . . . . . .  3.3 Design of a Backtrack Hamiltonian Cycle Algonthm $2 

. . . . . . . . . . . . . . . . . . . .  3.3.1 Pruning in Backtrack Algorithrns 43 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3.'2 TheSearchMethod 46 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3.3 VertexSelection 47 
. . . . . . . . . . . . . . . . . . . . .  3.3.4 TheGraphCoUapseTechnique 48 

. . . . . . . . . . . . . .  3.1 Design of a Heuristic Harniitonian Cycle Aigorithm 52 



. . . . . . . . . . . . . . . . . . . . .  3.4.1 HeuristicAlgorithmTechniques 63 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4.2 Search Termination .fi4 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4.3 Initial Pruning 55 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4.4 The Search Method 56 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4.5 Vertex Selection 58 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Conclusions 62 

4 Generalized Knight's Tours 64 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Introduction 64 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 PreviousWork 65 
. . . . . . . . . . . . . . . . . . .  4.3 The Generalized Knight's Circuit Problem 65 

4.4 Non-Existence Proofs for the Generalized Knight's Circuit Problem . . . . .  68 
. . . . . . . . . . . . . . . . . . . . . . . . .  4.5 ThePartitionProofTechnique 70 

4.6 An Empirical Investigation of the Generalizeâ Knight's Circuit Problem . . 75 
4.7 Proofs Concerning the (1. 4) - 5 x m Instance Class . . . . . . . . . . . . .  P l  

. . . . . . . . . . . . . . . . . . . . . . .  4.7.1 Circuit Non-Existence Proof 81 
. . . . . . . . . . . . . . . . . . . . . . . . .  4.7.2 Circuit ExistenceProof 83 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.8 Conclusions 86 

5 Hard Hadtonian Cycle Graphs 87 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 Introduction 87 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 Phase Transitions 90 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Experimental Met hodology 91 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.4 G,,., Random Graphs 92 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.5 Degreebound Grap hs 96 

. . . . . . . . . . . . . .  5.5.1 Phase Transitions on Degreebound Graphs 97 
5.5.2 Hardness of Degreebound Graphs for Backtrack Algorithrns . . . . .  98 
5.5.3 Hardness of Degreebound Graphs for Heuristic Algorithms . . . . .  107 

. . . . . . . . . . . . . . . . . . . . . .  5.6 Generalized Knight's Circuit Graphs 110 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.7 Hard Cbnstructed Graphs 115 

. . . . . . . . . . . . . . . . . . . . . . . . . .  5.7.1 The Crossroads Graph 116 
5.7.2 The Interconnected-Cutset Graph . . . . . . . .  .. . . . . . . . . .  121 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.8 Conclusions 124 

6 Conclusions and Future Work 126 



bist of Figures 

2 . 1 The rotational transformation . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.2 Outline of a heuristic Harniltonian cycle algorithm . . . . . . . . . . . . . . .  
2.3 Outline of a backtrack Hamiltonian cycle algorithm . . . . . . . . . . . . . .  
2.4 P6sa'salgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.5 The DHC-A and DHC-B transformations . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.6 The DHC algorithrn 
. . . . . . . . . . . . . . . . . . . . . . . . . .  2.7 The cycle extension technique 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.8 The HAM algorithm 
2.9 The main function of the SparseHam algorithm . . . . . . . . . . . . . . . .  
2.10 The TryExtend(1 function of the SparseHam algorithm . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  2.1 1 The transformation used by the DB2 algorithni 
2.12 Conversion of a directed graph to an undirected graph . . . . . . . . . . . . .  
2.13 Path with order 2 crDsoover transforrned into a cycle using two rotational 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  transformations 
. . . . . . . . . .  2.14 The FindCrossover() function of the LongPat h algorithm 

. . . . . . . . . . . . . . . . . .  4.15 An example of the chain extension technique 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.16 The LongPath algorithni 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.17 The MultiPath algorithm 

2.18 The Cornputesegments function of the MultiPath algorithm . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.19 The 595Ham algorithm 

3.1 Example of a non-Hamiltonian graph with a corresponding Hamiltonian eol- 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  lapsed graph 

3.2 Sample graph for which the full doublepath search rnethod is required . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 The vertex selection dgorithm 

The partition of a chesboard into sets X and Y; a knight on a square in set 
. . . . . . . . . . . . . . . . . . . . . .  X can only reach a square in set 1'. 

For -4 + B > n. square (A. 1) has a maximum degree of 1 . . . . . . . . . . .  
Square (1 + A. 1 + B )  has 3 neighbours of degree 2 . . . . . . . . . . . . . . .  
The two contraction graphs for the two partitions for Theorem 13 . . . . . .  
The contraction graph for the merged partition for Theorem 13 . . . . . . .  
The first partition of the board for Theorem 18 . . . . . . . . . . . . . . . .  
The partition of the board for Theorem 19 . . . . . . . . . . . . . . . . . . .  
A labeiied 5 x 8 board . The labels correspond to the elements of the partition 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i i k  used for the proof 
The contraction graph Tc based on the 40 element partition Uk . . . . . . .  



4.10 The 5 x 8 section of board used to extend existing cycles . Note that 3 
paths cover this board . with endpoints (Ai .  A& (Bi.  B2) and (Cl. Cz) . The 
labelled vertices and emphasized edges on the left side are necessary to allow 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  additional extensions 
4.1 1 The construction to connect the 5 x 8 board section with an existing cycle 

that has vertices VI. V2. .... Vs properly connected . Dashed lines indicate 
edges that are removed from the original cycle . . . . . . . . . . . . . . . . .  

4.12 The original sequence and the modified sequence including the 5 x 8 board 
section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  4.13 .4 solution to the (1. 4) - 5 x 24 instance 

. . . . . . . . . . . . . . . . . . . .  4.14 A solution to the (1. 4) - 5 x 34 instance 
4.15 .4 solution to the (1.4) - 5 x 38 instance . . . . . . . . . . . . . . . . . . . .  
4.16 A solution to the (1.4 ) - 5  x 44 instance . . . . . . . . . . . . . . . . . . . .  

% of Hamiltonian graphs as a function of graph size and mean degree for 
Degreebound graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Expected time (s) and % of Hamiltonian graphs for our heuristic algorithm 
venus mean degree for 200 vertex Degreebound graphs . . . . . . . . . . . .  
A portion of a graph with a non-Hamiltonian edge . . . . . . . . . . . . . . .  
A sample crossroads graph made of 9 crossroads subgraphs . . . . . . . . . .  
The crossroads su bgraph CRs . . . . . . . . . . . . . . . . . . . . . . . . . .  
Experimental and theoretical times to solve Crossroads graphs . . . . . . . .  
A sample ICCS graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A sample iCCS subgraph ICCSs . . . . . . . . . . . . . . . . . . . . . . . . .  



List of Tables 

Sum mary of techniques for Hamiltonian cycle algorit hms . . . . . . . . . . .  
Arbitrary graph Hamiltonian cycle algorit hms . . . . . . . . . . . . . . . . .  
Instance classes of the generalized knight's circuit problem for which no cir- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  cuit exists 
Empirical results concerning the existence of circuits for various instance 
classes of the generalized knight's circuit problem . . . . . . . . . . . . . . .  
CIassification of instance classes . . . + . . . . . . . . . . . . . . . . . . . . .  
Mean degree of G',,.. graphs for k (degree parameter) = 1 . . . . . . . . . . .  
Percentage of Hamiltonian graphs of Gnvm graphs as a function of graph size 
and degree parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tirne in seconds required by our backtrack algorithm on Hamiltonian C;,.. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  graphs 
Location of the center of the phase transition for different graph sizes . . .  
Time in seconds required by backtrack algorit hm on 'LOO vertex Degreebound 
graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Time in seconds required by backtrack algorithm on 500 vertex Degreebound 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  graphs 
Histogram of tirne required by our backtrack algorithm on 200 and $00 vertex 
Hamiltonian Degreebound graphs . . . . . . . . . . . . . . . . . . . . . . . .  
Histogram of the percentage of trials within a specific time interval (using 
our backtrack algorithm) on 500 vertex Hamiltonian Degreebound graphs of 
varying ranges of rnean degree . . . . . . . . . . . . . . . . . . . . . . . . . .  
Performance of our backtrack algorithm on 500 vertex incornplete. ultrahard 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Degreebound graphs 
5.10 Results for our heuristîc algorithm on 200 vertex Hamiltonian Degreebound 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  graphs 
5.11 List of instance classes examined . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1% Generalized tnight's circuit instances for which our backtrack algorithm 

never succeeded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.13 Histogram of the expected time required by our backtrack algorîthm on 221 

. . . . . . . . . . . . .  non-Hamihonian generaüzed knight's circuit instances 
5.14 Backt rack algorit hm results on hard non-Hamiltonian generalized knight 's 

circuit graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.15 Histogram of the expected time required by our backtrack algorithm on 123 

. . . . . . . . . . . . . . .  Hamiitonian generalized knight's circuit instances 



5.16 Backtrack algorit hm results on 24 ult rahard Hamiltonian generalized knight's 
circuit graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

5.17 Tirne in seconds required by different algorit hms on Crossroads graphs of 
varying size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 



List of Symbols 

G' = (V, EE), IV[ = n, IEl = rn: Specifies a graph G' with vertex set V and edge set ET 
with size n and m respectively. 

V(GJ: The set of vertices of graph G. 

E(G): The set of edges of graph G. 

4G): The minimum degree of the vertices of graph G. 

d(G): The mean degree of the vertices of graph G. 

c(C): The number of components of graph G'. 

d ( x ) :  The degree of vertex x. 

d*(x]: The outbound degreeof'vertex x in adirected graph. 

d :  The inbound degree of vertex x in a directed graph. 

Q(x): The degree of vertex + with respect to subgraph Q (i.e. the number of edges 
incident on x and another vertex in Q). 

N ( x ) ?  N(X): The set of neighbours of a single vertex x or a set of vertices X. A vertex 
a is a neighbour of vertex b if (b ,a)  E E. N ( S )  is delîned to be open: it does not 
include vertices in ,Y. 

N+(x), N-(x): The set of outbound and inbound neighbours, respectively, of a vertex x 
in a directed graph. Nf(x) = {y[(x, y) E E )  and N-(x) = {tl (z,  x) E E } .  

s ( P ) ,  e(PE): The starting and ending vertices of a path P. 

P-(XE), P ( x ) :  The vertex before and after x in the path P. respectively. Note that before 
and after are with respect to the start and end vertices in the path. P = { s ( P J .  . . , 
P-(+),x, W x ) ,  . ,e(P)} 

+: The exclusive-or operation on sets. C' = A a B means that an element is in C only if 
it is A or B but not in both A and B. 

GntP, Gn,rn, Mn,, , Rntd: Vanous random graph models. See Sections 4.2.1 and 2.2.2. 

forced edge: An edge incident on a degree 2 vertex in a graph. Any Hamiftonian cycle 
must contain d l  forced edges (see Theorem 1). 



forced path: A path made of forced edges. Formally a pat h P = {pi, p l , .  . . . p k }  with 
(pi, P i + * )  a forced edge For 1 < i < k. 

non-Hamiltonian edge: An edge which cannot be in any possible Hamiltonian cycle. 

bipartite graph: A graph in which the vertices can be partitioned into two sets, with no 
edges existing between vertices in the sarne set. 

whp: The terrn whp (with high probability) rneans that a graph C h a s  property Q with 
probability p = 1 - o(1) as n -+ m. 

O(J(n) ) :  Big-Oh notation: * O ( / )  is the set of functions g : N + 'Ra such that for some 
c E a+. no E Af. g ( n )  < c / ( n )  for al1 n 2 no." [2. page 291. 



Chapter 1 

Introduction 

The Hamiltonian cycle problem is a NP-C problem which involves finding for a graph a 

cycle that contains al1 the vertices of the graph. In everyday terms. imagine a salesperson' 

who must visit every city within her sales area. She only wants to visit each city once, and 

wants to finish back at the city she started at because that is where she lives. Unfortunately 

for her, she must fly between the different cities (to Save tirne), and not ail the cities have 

flights connecting each other. Thus, she must devise a route that visits al1 the cities once and 

returns to her home city using the Bights that are available. This is the Harniltonian cycle 

problern. Formally for a graph G = (V, E ) ,  [VI = n, the Hamiltonian cycle problern is to 

find a cycle C = (v i ,  v2, . . . . un) such that 6 # vj for i # j, (Q, u ~ + ~ )  E E and (v,, vil  E E. 

The Hamiltonicity of a graph (whether or not it has a Hamiltonian cycle) is an important 

property often used by graph theorists. Much work has been done on the Hamiltonicity 

of random graphs and specific graph classes. The knight's tour problem, a subset of the 

Hamiltonian cycle problem, has received considerable attention from rnathematicians as 

well. However, in general it seems that researchers in Computing Science have neglected 

the development of practical, experimentally verifid algorit hms for the Hamiltonian cycle 

problem and focused instead on other NP-C problems such as SAT, graph coloring and the 

travelling salesmen problem (which the Hamiltonian cycle problem is a su bset of). We are 

not denying that many good reasons exist for studyîng these other problems. iiowever, we 

believe that the Hamiltonian cycle problem is corn plex and hard (it is NP-C) and worthy 

of study by itself. 

Therefore in this thesis we examine the Hamiltonian cycle problem. There are two main 

components to any such examination: the algorithms used to solve the problem and the 

characteristics of the different problem instances, We will examine a variety of Hamiltonian 

' Without loss of g e n d t y ,  we assume the salesperson is femaie. 



cycle algorithms and will also investigate the existence of hard graphs For which it is difficult 

to detcrmine Hamiltonicity. In our research. our prirnary thesis is that for the Hamiltonian 

cycle pro blem there exists a corn plex interaction between the algorit hms being used. the 

properties of the graphs being solved, and the performance of t hase algorit hms. Throughout 

t his t hesis we investigate and characterize t his interaction. The major ramification of out 

thesis is that the two topics of algorithms and hard graphs cannot be effectively studied 

in isolation. Our exploration of design issues for Hamiltonian cycle algorithms will neeù 

to consider the nature of the graphs the algorithms will be used on. Our investigation of 

graphs that are difficult to solve will need to account for the algorithms used to solve them. 

We begin in Chapter 2 with an in-depth survey of the previous work done on the 

Hamiltonian cycle problern. In particular. we focus on the different Hamiltonian cycle 

algorithms that have been devised by different researchers and distill out the different 

techniques and heuristics t hat have been em ployed. 

In Chapter 3 we continue our investigation of Hamiltonian cycle algorithms by exploring 

the design issues involved. In particular, we examine and critique the various techniques 

and heuristics surveyed in Chapter 2, and devise a few new techniques and heuristics. We 

show how many design decisions are contingent upon the type of graph (or properties of 

the graph) that the algorithm will be run on. 

Chapter 4 is a bit of a detour as we explore generalizations to the knight's tour problem. 

Our goal is to devise graphs which will be difiicult for our Hamiltonian cycle algorithms to 

solve. We first review the literature addressing this problem. We then devise a new general- 

ization, the generalized. knight's circuit problem. and present theoretical and experimental 

results concerning the Hamiltonicity of instances of this problem. 

Chapter S is the capstone of the thesis. In this chapter we search for hard Hamiltonian 

cycle graphs. We examine different graph models and sets including the generalized knight's 

circuit graphs devised in the previous chapter. Phase transitions for the Hamiltonian cycle 

problem can help identify hard instances. We perform a short review of some of the previous 

work in this area. We obtain new results concerning phase transitions and a particular 

random graph mode1 C,,,, that refine the findings of previous researchers. Throughout 

the chapter, we explore how the determination of which graphs are hard is effected by the 

algorithm being used. We present experimental evidence that clearly identifies graphs that 

are hard for one algorithm and easy for anot her. 

We present our conclusions and a discussion of future work in Chapter 6. 



Chapter 2 

Survey of Work on Hamiltonian 
Cycles 

2.1 Introduction 

The literature contains many references that refer to Hamiltonian cycles. The purpose of 

this chapter is to give an organized overview of this work and then review in more detail 

the work most relevant to this thesis. 

Since the Hamiltonicity of a graph is an important property utilized often by graph 

theorists, much research has been done on the Hamiltonicity of various restricted graph 

classes, and algorithms for finding Hamiltonian cycles for these graphs. Random graphs in 

particular have received much attention from researchers. Section 2.2 describes the work 

done on determining the Hamiltonicity of random graphs. Also of interest to us from 

graph theory are the theorems which describe necessary conditions for the existence (or 

non-existence) of Hamiltonian cycles. These theorems are presented in Section 2.3. 

The Hamiltonian cycle algorit hms developed for arbitrary graphs are of particular inter- 

est to u s  because they tend not to make any assumptions about the structure of the graph 

and thus are applicable to any graph, unlike most of the algorithms developed for particular 

graph classes. An overview of these Hamiltonian cycle algorithms is given in Section 2.4, 

and specific algocithms are presented in Section 2.5. 

2.2 Hamiltonian Cycles and Random Graphs 

in this section we examine the work of researchers concerning the Hamiitonicity of random 

graphs. In Section 22.1 we refer to two general, random, undirected graph modeis. In 

Section 2.2.2 we examine other random graph models, including sparse (Iow edge density) 

random graphs and regular random graphs. 



2.2.1 General Random Graph Models 

In this section we examine previous work on two random graph models, Ci',, and G,.,. 

Basically, these models define a probability distribution over a11 possible graphs. The Ci'.,, 

model defines a distribution for a sample space of graphs with n vertices. Each of the (2) 
possible edges has an independent probability p of existing. In other words, the probability 

of a particular graph G with n vertiees and g edges = 7( 1 - p)(;)-q. [23. pp. 6-71 The 

G',,, mode1 defines a distribution for a sarnple space consisting of graphs with n vertices 
-1  

and m edges. The probability of a particular graph G = (m) . [23. pp. 8-91 

P6sa was one of the first to consider the Hamiltonicity of random graphs. In [24] he 

proved t hat a random graph G' E G,,, with m = cn log n whp ' contains a Hamiltonian 

circuit (if c is sufficiently large). Due to the foundational nature of Pbak work. we examine 

his proof in detail in Section 2.2.3. 

Kornl6s and Szemerédi in [21] extended this result as follows. For m = $(logn + 
log log n + cn ) , t hey proved t hat 

if Cn + c lim P(Gn,, has a Hamiltonian cycle) = 
n+os if en + o~ 

Bollobéis in [5] uses a random graph process in whicli a graph of n vertices (that starts 

with no edges) has edges between random vertices added one at a time. He proves that whp 

the first edge added which increases the minimum degree of the grapli to 2 also makes the 

graph Hamiltonian. 

Later work by other researchers focused more on proving the performance of algorithms 

for finding Hamiltonian cycles on graphs with a sufficiently large edge density. In this 

section we will only summarize the various results; Section 2.5 will describe the algorithms 

in detail. 

Shamir [2q proved that for G E G,,, p = .(log n + c log log n), c > 3 his algorithm whp 

finds a Hamiltonian path in 0 ( n 2 )  time. 

Angluin and Valiant [l] provide algonthms UHC and DHC, which find Hamiltonian 

cycles in undirected and directeci graphs respectively. These aigorithms find a solution whp 

for GnVm, m 2 m logn. A transformation between the G n ,  and G., graph models h also 

given to show that the results dso apply to the Gn,, model. Both the UHC and DUC 

algorithms have run times of O(n(log n12). 

' W e  define the term whp (with high probability) to mean that a graph G has property Q witb pmbabilitp 
p =  I -o(I) as n +oc. 



Bollob&, Fenner and Frieze in [a] present a polynomial algorithm called HAM. On 

graphs in Gn,rnT m = :(log n + log log n + c ) ,  the algorithm whp will And a Hamiltonian 

cycle if one exists. HAM runs in 0 ( n 4 )  tirne. As  a corollary. they show that the probability 

of failure of this algorithm is so mal1 that if such instances are solved by a standard 

backtrack algorithm t hen the Hamiltonian cycle problern for this class of graphs can be 

solved in polynomial expected running the .  In [ly. Frieze presents his DHALI algorithm. 

which is an extension of the results of [.Il to directed graphs. DHAM has a running time of 

0 ( n t * 5 ) .  

Thornason [30] presents a linear time algorithm for finding a Hamiltonian cycle of a 

graph in G',,, p 2 n- f . The expected running time is O(n/p ) .  and the storage required 

is O ( n ) .  The computational model used assumes the existence of an oracle which can 

determine whether any two specified vertices are adjacent in O(1). An extension to this 

algorithrn for directed graphs is also given which requires O (n2-5p -L*5)  running tirne. 

2.2.2 Sparse and Regular Random Graph Models 

In this section we examine the work done on more speciaiized random graph models. 

The graph class (referred to as the m-out model) establishes a distribution over 

undirected niultigraphs of n vertices. Basically, for each of the n vertices. m edges are 

added to randomly selected vertices. More Formally. for each L, E Li = ( 1 . 2 , .  . ., n )  

rnake m random choices c(v ,  i )  E t",, i  = 1.2, . . ., m. Then hln,, = (I.',, E(n, m ) ) ,  where 

E(n, m)  = ((L?.c(u, i ) )  : u E Vn, 1 2 i 2 m. v  # C ( U ,  i)) [16]. The Rn,d graph class specifies a 

distribution over graphs of n vertices f ~ r  which each regular graph of degree d has an equal 

probability of king selected. 

Frieze in [16] presents Hamiltonian cycle algorithms for these constant average degree 

graph models. He produces an 0 ( n 3  log n) time algorithm which whp finds a Hamiltonian 

cycle in MnV5 and anot her O (n3 log n) time algorit hm which whp Ends a Hamiltonian cycle 

in Rn*BS. Robinson and Wormald improve this second result in [26] to show that whp d- 

regular graphs have Hamiltonian cycles for any fixed d 2 3. In [17] this non-constructive 

proof h extended to an algorithmic version, in which kieze, et al. show that for fixed d 2 3 

and G E Rnd? then exists a polynomial time algorithm which constructs a Harniltonian 

cycle whp. 

Cooper and Frieze [Il] prove that the graph model is Hamiltonian whp. They dso 

examine a Dcin,cout graph model for digaphs, similar to the bIn.I,, model. They prove 

that D2-in is Hamiltonian whp. 



Figure 2.1 : The rotational transformation. 

In r24] Posa proves that a random graph G E G,,, with rn = n log n whp contains a 

Hamiltonian cycIe. In this section we examine his proof in detail. 

A key concept introduced by Posa is the rotational transformation. which is defineû 

as follows. Let G' be an arbitrary graph, and U(xl, 2 2 , .  . ., xk) a path in G. If there is 

an edge (z1, 2;). 1 < j < k then the path U can be transformed to I" (x~-~ ,  x j -2 .  . . ., 
xi, x,, xj+i, . . . , xkJ (see Figure 4.1) w here the order of the first j - L vertices is reverseci. 

In Lemma 1 of his proof. P6sa defines the path U to be of maximum length in G'. By 

applying the rotational transformation to ( 7  multiple times. we obtain transformed paths 

I V ,  I:", etc.. for which xk ahays rernains an endpoint. P b a  defines the set of vertices H to 

contain al1 the other endpoints of t hese pat hs. So xi is in H, while XC, is not. P6sa defines 

another set .Y which consists of those vertices which are: 

0 not XC, 

0 not a member of H 

0 on the path Li and not adjacent to a vertex in H 

Note that all vertices of G' not in U are in ,Y. 

tking these definitions of the sets H and S, P6sa proves that a vertex of H and a vertex 

of S cannot be joined by an  edge. In Lemma 2 of his proof, P&a considers a random graph 

G E GnVp. p = clogn/n and two disjoint subsets of particular (bounded) size. He proves 

that the probabiiity of the existence of an edge joining the two subsets approaches O as 

n + CCJ (for e 2 30). 

Theorem 1 states that for a random graph G as defined above. G whp contains a Hamil- 

tonian path. The proof of this theorem is as foiiows. 



Consider the graph G(xJ, which denotes the graph with n - 1 vertices obtained from 

G by erasing x. We want to calculate the estimation of the probability of L(xJ. a path of 

maximum length in G' which passes through x. 

Choosing a particular. arbitrary path U of maximum length in C'(XI, we define the 

subsets H and X (from Lernma 1) for this graph. There are two possible cases. In the 

first case. H is small enough that Lemma 2 can be used. The second case involves larger 

sizes of H. If s is adjacent to any element of H then the path Ir  can be transformed to a 

path Cr' (using the rotational transformation) with an endpoint adjacent to x. This would 

dlow the path Cr to be extended to include x .  However. the set H is large enough that the 

probability of a vertex x existing not adjacent to H approaches O. 

Thus, there are two possible events that prohibit the formation of a Harniltonian path. 

The probability of the first event is calculated in Lemma 2. The second event's probability 

is calculated in the proof for Theorem 1. and is also shown to approach zero as n increases 

to infinity. 

Thus from [24, -with pmbability tending to 1, every path of maximum length in C 

passes through all points of G". 

Theorem 1 states that for a random graph G E p = cl log R/R. CI sufficiently large. 

G h a s  u,np a Hamiltonian cycle. The proof is as  follows. 

Let u s  construct two random graphs Gi and G2 on the sarne set of n vertices. with edge 

probability (clog n ) / n  and (logn)/n respectively. Let G' be the union of the two sets of 

edges. Thus C; is also a random graph. with edge probability ((log n)/n)(c+ 1 - (clog n)/n). 

By Theorem 1. Gi contains a Hamiltonian path Cr with probability approaching 1. We 

define the sets H and S as  per Lemma 1. If G contains no Hamiltonian cycle, then one of 

the following three events of small probability must occur. 

There is no Hamiltonian path in Ci. (Small probability by Theorem 1.) 

0 H is srnall enough that Lemma 2 holds, and the probability of this event tends to O. 

H is too large for Lemma 4. In this case x, (the end point of the Hamiltonian path on 

Gi) cannot be joined by edges in C;2 to elements of H (since any edge from Zn to an 

h E H woutd allow the construction of a Harniltonian cycle, by transforming the path 

U to a path Ut with endpoints x, and h, which along with the edge (xn, h)  makes a 

cycle). The probability of the event t hat there is no edge in G2 between x, and the 

elements of H tends to O. 



Thus the overall probability of no Hamiltonian cycle existing tends to O. 

Theorem 3 states the final proof: a random graph G E G,,, with m = cnlogn whp 

contains a Hamiltonian cycle. This theorem is proven by constructing a graph using an 

edge probability of (cl log n ) / n  (so that Theorem 2 holds). The graph is modified to get 

the correct nurnber of vertices as stated in Theorem 3, and it is shown that the results of 

Theorem 2 (probability of a Hamiltonian cycle existing approaches one) still holds for those 

rnodi fica tions. 

2.3 Theorerns Concerning Hamiitonian Cycles 

This section presents various theorerns from graph t heory which descri be necessary condi- 

tions for the existence (or non-existence) of Hamiltonian cycles. All of the theorerns are 

accornpanied with either proofs, or references to proofs. Unfortunately, due to the obvious 

nature of some of the theorerns, the originator of each theorern is not always known, and 

rnost likely is not unique. For additional information on this subject. see various gaph 

theory texts such as [6] or [31]. 

Theorem 1 In a gmph with a Humiltonian cycle the d e g m  of each certer must be 2 2.  

If a certex har exactly degree 2. then both the edges incident to thnt certex must be in any 

cyck . 
Proof. The statements in the theorem foilow directly from the definition of a Hamiltonian 

cycle. O 

Theorem 2 if u cetier has Y neighbours of degme 2, that gmph cannot contain a Hamil- 

ton ian cyck . 
Proof. From Theorem 1, the two edges incident on a degree 2 vertex must both be in any 

cycle. Assurne a cycle exists. Then for the vertex with 3 degree 4 neighbours, each of its 

edges is incident on a degree 2 vertex, so each of these edges must be in the cycle. With 3 

edges in the cycle incident to this vertex, it must occur more t han once in the cycle. This 

is a contradiction, so no Harniltonian cycle is possible. O 

Theorem 3 If cerfex v has ? neighbours a and 6 which are both of degree 2, then ail edges 

(v,  x), x # {a.  61, are not in any possible Hamiltonian qcle.  

Proof. Edges (v,  a) and (v, 6) must be in any Hamiltonian cycle by Theorem 1. Since any 

vertex only appears once in a Hamiltonian cycle, no other edge in the cycle can have v as 

an endpoint. Thus other edges from v cannot be part of any cycle. See [19]. a 



Theorem 4 if a path Li = ui, ul,. . ., uk exists imth h < n and d(uz), . . ., d ( ~ & - ~ )  = 2 

then the edge ( u i ,  uk) cannot h in any Hamiltonian cycle. 

Proof. We cal1 path U a forced path. since every Hamiltonian cycle rnust follow the path 

from ul to uk since each intermediate vertex is of degree 1 (see Theorem 1). Since adding 

edge (ul, u r )  makes a cycle shorter than a Hamiltonian cycle (k  < n) ,  such an edge cannot 

be part of any Hamiltonian cycle. O 

Theorem 5 ifs is a cutset of gmph G' = (V, E), S E Y then no Hamiltonian cycle can 

exist when c(G \ S )  > ISI and no Hamiltonian path can exist when c(G \ S) > ISI + 1. 

Proof. Let C be a Hamiltonian cycle in G. For any cutset S, C \ S must have at  m a t  

/SI cornponents. Thus, G \ S must have at most ISI components when a Hamiltonian cycle 

exists. The proof is similar for Hamiltonian paths. See [6]. O 

Note tliat this t heorem is very similar to the property of toughness in graph t heory. A 

graph is t-tough if 1st 2 tc(C \ S), for every cutset S C C'. The toughness of G' is the 

maximum t such that G' is t-tough [31, page 2201. Theorem 5 proves that a toughness of at 

least 1 is necessary for a graph to be Hamiltonian. 

Corollary 5.1 I/ the gmph G' is bipartite upith bipartition (X, Y) and ]?il # IY 1 then no 

Hamiltonian cyck erists. 

Proof. Assume 1x1 < IY 1 without loss of generality. Then S is a cutset. The removal of 

X leaves IY 1 components. Since IYI > IXI no Hamiltonian cycle exists by Theorem 5. O 

Corolkry 5.2 For any indepndent set S of gmph G = (V, E J  with neighbourhoad N(S). 

V \ S u N ( S )  # 0. no Harniltonian cycle can ezist when 1 N (S)I 5 (SI. 

Proof. The neighbourhood N ( S )  is a cutset. The removal of the cutset will produce at 

least ISI + 1 components (the members of the independent set, plus the remainder of t h e  

gaph, which is specified to be non-ernpty). Frorn Theorem 5. no Hamiltonian cycle can 

exist if (SI + 1 > IN(S)I. O 

Theorem 6 îfC = (V, E) is simple and IV1 > 3 and b(G) 2 IV112 then G is Hamiltonian. 

Proof. See [6, pp. 54-55]. O 

Theorem 7 IfG = (V, E) is simple and a, 6 E V and (a, 6 )  $! E and d(a) + d(b) 2 n then 

G is Harniitmian i8G' = (V,Eq is Hamiitonian, wherr E' = E U  {(a,  b)}. 



Proof. See [31, page 2221. 

Theorem 8 -4 simple gmph is Hamiltonian i n  its clasure is Hamiltonian. 

Proof. See [6. pp. 55-5q. CI 

Corollary 8.1 rl simple gmph G with n 2 3 is Hamiltonian ifthe closure ofG is complete. 

Proof. See [6. page 571 O 

Theorem 8 A simple gmph G has a non-decreasing degree scquence {di, d2. . . . . dn ) urith 

n 2 3. If there is no m < n / 2  for which dm 5 m and dn-, < n - rn then G' is Hamiltonian. 

Proof. See [6, pp. 57-58]. O 

2.4 An Overview of Hamiltonian Cycle Algorithms 

In this section we present an overview of the work done on Hamiltonian cycle algorithrns. 

There are two major classes of algorithrns: polynomial time heuristic algorithrns and back- 

tracli algorit hms. Section 1.4.1 and Section 2.4.2 respectively present an overview of t hese 

classes of algorithrns. Section 2.1.3 presents a summary of the different algorithm techniques 

that have been utilized in the literature. Note that the actual algorithms are discussed in 

Section 2.5. 

2.4.1 Heuristic Hamiltonian Cycle Algorithms 

One common appmach to tackling NP-C problems is to use some kind of heuristic algo- 

cithrn. These algorithms are fast, running in linear or low-order polynomial tirne. They 

work by using heuristics - general rules of thumb - to guide their search for a solution. 

These heuristics may be simplifying assumptions about the problem, or may be restric- 

tions on how to search (i.e. perform only local search). Randomization of the algorithm 

is another cornmonly-employed heuristic. While these heuristics permit the algorithm to 

execute quickly, the algorithm (usually) loses the ability to guarantee to find a solution, or 

determine if a sotution exists. 

Heuristic Hamiltonian cycle algorithms tend to have a similar structure. Figure 23 is 

an overview of the most common components of any heuristic Hamiltonian cycle dgorithm. 

The various heuristic dgorithms in the literature are doEerentiated by how they accompiish 

the tasks describeci in each of these components. 

'The dosure of G "is the graph obtained h m  G by d v d y  joining pairs of noaadjacent vertices 
whose degree sum is at least n until no such pair cemains. " [6, page 561 



InitCraph: Perform initial analysis and pruning of the graph. 
Init Path: Select an initial vertex to start the path representing a 

potential solution, 

GetNewNode: Find a new vertex that can be added to the path. 
If such a vertex is found ( 

ExpandPath: Add the chosen vertex to the path and perform 
analysis and pruning on the graph. If this choice does not 
permit a Harniltonian cycle to form. then remove the vertex 
from the path. 

1 
eise { 

TransforrnPath: Transform the path so that a different node 
becomes the endpoint. If the current pat h cannot be 
successfully t ransformed, t hen ret urn failure. If the pat h 
h a s  beeii transformed too many tirnes without being 
expanded, t hen ret urn failure. 

1 
ForrnC'ycle: If the path being formed contains ail the vertices in t he  

graph then try to form a cycle. If a Hamiltonian cycle is formed, 
then return success. if no Hamiltonian cycle is formed. then 
optionally return failure. 

) (end of do loop) 

Figure 2.2: Outline of a heuristic Hamiltonian cycle algorithm. 



2.4.2 Backtrack Harniltonian Cycle Algorithms 

One standard approach to solving NP-C problems such as  Harniltonian cycle is to use a 

backtrack algorithm. which evaluates (searches) al1 the potential solutions of the problern, 

looking for a valid solution. These algorithms typically employ pruning of some kind to 

restrict the amount of searching they need to do. However. in the worst case exponential 

work must be done. While these algorithms will always find a solution (if one exists), or 

will determine that no solution is possible, they usually take a long (sometirnes intractable) 

amount of time to execute. 

Backtrack Hamiltonian cycle algorithms share a similar recursive structure. Figure 2.3 

is an overview of the essential components of any Harniltonian cycle backtrack algorithm. 

The ~ r i o u s  backtrack algorithms we survey are differentiated by how they accomplish the 

tasks described in each of t hese components. 

2.4.3 Summary of Algorithm Techniques 

In this section we summarize the techniques used by the various Hamiltonian cycle al- 

gorithms describeci in Section 2.5. Table 2.1 lists each of the techniques along with the 

algorithm name and section in this chapter where WC introduce and describe the technique. 

The following list briefly describes each algorit hni technique. 

rotational transformation: This technique is used by heuristic algorithms to modify a 

path (same vertex set, different edge set) to change one of the endpoints. 

directed rotational transformation: This technique is useâ by heuristic algorithms on 

directed graphs, and consists of two different transformations. The first t ransforms a 

pat h into a path plus a separate cycle, and the second transforms a path and separate 

cycle into a single path. For both transformations, the endpoint of the path changes. 

cycle extension: This technique is used by heuristic algorithms to extend the Iength of a 

path. First, the path must also be a cycle (endpoints connected by an edge). Then, 

in a connected graph, one of the vertices a of this cycle must be joined to a vertex t 

outside the cycle. This vertex v becornes one of the endpoints of the path (by deleting 

an edge), and the path can then be extended to vertex x. This technique works on 

bot h directed and undirecteci graphs. 

backtrack rotational transformation: This technique is used by heuristic algorithms when 

t rying to modify a pat h's end points to obtain a vertex that is adjacent to an unvisiteci 



BacktrackAIg() { 
InitCraph: Perforrn initial analysis and pruning of the graph. 
InitPath: Select an initial vertex v to start the path P 

representing a potential solution. 
Recurse( P, v )  
If Recurse returns success, then return P else return failure. 

1 
Recurse(Path P, endpoint vertex e) { 

While e has unvisited neighbours do { 
GetNewNode: Choose the next vertex x which is an unvisited 

neighbour of e. Add x to P. 
PruneGraph: Perform pruning on G. If the resulting graph does 

not permit a Hamiltonian cycle to form, then rernove r 
îrom P and continue (at the start of the while staternent). 

ForrnCycle: If P contains al1 the vertices in the graph then { 
Try to form a cycle. 
If a Haniiltonian cycle 4s formed then return success 
else remove x from P and continue (at the start of 
the while statement). 

1 
Backtrack: Recurse(P, z) 

If Recurse ret urns success, t hen return success 
else remove x from P. 

} (end of while) 
Return failure. 

} (end of Recurse) 

Figure 2.3: Outline of a backtrack Hamiltonian cycle algorithm. 



vertex. The backtrack rotational transformation invoIves searching the possible paths 

in some systematic manner. The technique is essentially backtracking through the 

possible sets of rotational transformation that can be applied to the initial partial 

path. A dead end in one particular path no longer means the search will stop: instead 

the search will begin again from a different path. This technique is used until the 

current pat h is extended, or until some search termination criteria is reached. 

crossover extension: This heuristic algorit h rn technique can be considered eit her an exten- 

sion of the backtrack rotational transformation technique. or a formalized version of 

it. This technique tries to obtain a new ordering of the vertices in a path P that is 

also a cycle (endpoints connecteci by an edge). so that the cycle extension technique 

can be applied. The new ordering is obtained using a crossover. For a path P with 

endpoints u. u a crossover Q is a ut? trail with V ( Q )  V (  P) that produces a cycle C' 

with E(Cr) = E ( P )  + E(Q) 3. 

bypass extension: This heuristic algorithm technique is used when a path P cannot be 

extended by the previous techniques. It consists of finding a path using vertices not 

in P which can replace a section of P which is shorter than it, thus making P longer. 

To be more specific, the technique involves searching the su bgraph G - V(P) for a 

patli R with endpoints a, b that are adjacent to vertices in P ( x  E N ( a ) .  y E N(6)). 

Let S be that portion of P between x and y. If IR1 > [SI then R can replace S in P 

and extend P. 

chain extension: This'heuristic algorithm technique is a combination of the bypass exten- 

sion and crossover extension techniques. It consists of finding a path using vertices 

not in P and merging it with P to make P longer. First ive search for a path R with 

endpoints a, 6 in the subgraph G - V ( P )  and for which 3x, y E P, r E N ( a ) ,  y E N ( b ) .  

Then we search for an xy tail  Q which allows u s  to form a new path P = PdQ .6 R 

(the merger of paths P and R). 

low degree paths: This heuristic algorithm technique involves forming a set X of low degree 

vertices, and t hen embedding these vertices in paths, with endpoints that are not low 

degree. The idea L that the resulting graph contains mainly high degree vertices, 

making it rnuch more likely to find a Hamiltonian cycle. 

3The 6 symbol represents the exdusive-or operation on sets. C = A@ B means that an element i .  in C 
oniy if it is -9 or B but not in both A and B. 



TabIe 2.1: Sumrnary of techniques for Hamiltonian cycle algorithms. 
II 1 I Section 

Technique Name 
rotationai transformation 
directed rotational transformation 
cycle extension 
backtrack rotationai transformation 
crossover extension 
bypass extension 
chain extension 
low degree paths 
low degree first 
multipath search 
pruning 

Algorit hm 
Pba's ['24] 
DHC [Il 
HAM [;Il 
HAM [.LI 
LongPat h [20] 
LongPat h ['JO] 
LongPat h ['JO] 
HideHam ['il 
DB2 [8] 
MultiPat h [19] 

low degree first: This heu ristic technique involves simply selecting the lower degree vertices 

first when forrniiig a cycle. 

multipath search: This technique for backtrack algorithrns involves maintaining a list of 

segments (paths) which are initially fonned from forced edges. At each point in the 

search a random endpoint from the segments is selected for expanding the paths. 

Segments are rnerged together when t hey share a common endpoint. 

pruning: This general technique involves reducing the size of the search space. given a 

current graph and a partial solution. Many different types of pruning can be employed. 

One pruning rnethod is to delete unneeded edges. Another type of pruning is to find 

forced edges and include them in the solution. A third form of pruning is to detect 

when no Hamiltonian cycle is possible for the current graph. 

2.5 A Survey of Hamiltonian Cycle Algorit hms 

This section is a review of Hamiltonian cycle algorithms that have been developed in the 

literat ure for arbitrary graphs. The focus of this section is to examine the algorithms to see 

what techniques and heuristics have been considered and utilized. Since we are interested 

in algorithms that can be applied to arbitrary graphs, we tend not to diiuss techniques and 

dgorithms that are either applicable only tu a particular graph mode1 or that are extremely 

corn plicated to implement . 
Table 2.2 lists the algorithms we examine. Fur each dgorithm we k t  the name, the 

authors, the literature reference, the type of algorithm (heuristic or baektrack) and the 



ithms. Table 2:2: Arbitrary graph Hamiltonian cycle algo! 

DB2A 
LongPat h 
LinearHam 
h-IultiPat h 
595Ham 
KTC 

Algorithm 
Posa 

Angluin and Valiant [l] 
Angluin and Valiant (11 
Bollob&, Fenner and Frieze [4] 
Frieze [16] 
Broder. Frieze and Shamir [il 
Brunacci [Pl 

Authors 1 TY ~e 
PQa r24] 1 heuristic 

Brunacci [8] 
Kocay and Li [20] 
Thomason [30] 
Kocay [19] 
Martello [22] 
Shufelt and Berliner [29] 

heu rist ic 
heurist ic 
heurist ic 
heuristic 
heu rist ic 
heurist ic 
heurist ic 
heuristic 
heu ristic 
backt rack 
backt rack 
back t rack 

Graph Type 
undirected 
undirecteâ 
directed 
undirec ted 
undirected 
undirected 
undirected 
directed 
undirected 
u ndirected 
undirected 
directed 
undirected 

type of graph it operates on (undirected or directed). Most of the names for the algorithms 

corne from the papers where t hey are introduced. W here names were not given, or were not 

unique, we created names related to the techniques used by each particular algorithm. The 

algorithms are listeâ in the table in the same order as  they are presented in the remainder 

of this section. 

2.5.1 PBsa's Algorithm 

P6sa's algorithm is a heuristic algorithm based on the work done by Pka in ['24] (see 

Section 2.2.3). P6sa's work has served as the basis for much of the later Hamiltonian cycle 

algorithm development, and thus is presented as an algorithm here. Since Posa does not 

provide an explicit algorithm in his paper, some portions of the algorit hm are open to various 

irnplementations. For the purposes of this section. one particular set of design choices is 

presented. Note that others before P&a had sirnilar ideas concerning finding Hamiltonian 

cycles. In particular, Euler in 1759 [13] -me up with a method of constructing knight's 

tours of chesboards which is very similar to a randomized heuristic algorithm employing 

techniques such as  the rotational transformation. (See [3, pp. L E -  1791.) 

The idea behind Posa's algorithm is to attempt to extend the length of a partial pat h 

until a Hamiltonian cycle is formed. No backtracking is ever done: the length of the partial 

path is non-decreasing. If the current path endpoint has no non-path neighbours then the 

rotational transformation is used to obtain a different endpoint, which allows additional 

expansion of the path. See Section 2.2.3 and Figure 2.1 for a description of the rotational 

transformation. The algorithm quits when it has trieci al1 the neighbours of the current 



Select an initial vertex at random and make it the start of a partial path P. 
Do { 

Select a randorn neighbour vertex x of the current endpoint e that has 
not been processecl yet. If no such vertex is found, then return failure. 

if x is not in P, then add x to P 
eise { 

Apply the rotational transformation to P using the edge to x from e 
to obtain a new path Pt and a new endpoint u. If u has not 
been an endpoint for this path length before, then set P to P. 

1 
If P contains al1 the vertices in the graph, t hen check if the end points 

of P are connected by an edge. If so, a Hamiltonian cycle exists 
so return success. 

1 

Figure 2.4: P6sa.s algorit hm. 

endpoint as endpoints. Posa's algorithm is specified in Figure 2.4. 

2.5.2 UHC Algorithm 

The UHC algorithni of Angluin and Valiant [Il is similar to Posa's algorithm: the main 

difference is that as edges are selected to be traversed. they are removed from the graph. 

Note t hat t here is no explicit termination mechanism in the algorithm to prevent it from 

endlessly repeating. Instead, by deleting each edge from the graph as it is traversed, the 

algorithm is preventeû from choosing that edge again in the future, Clearly the number 

of selections the algorithm can make is limited to the nurnber of edges that exist in the 

gaph. While no experimental results are presented in the pper, the authors state in the 

conclusion that %orne preliminary experiments suggest that it might be better not to delete 

edges as they are explored." [l]. 

2.5.3 DHC Algorithm 

In [l] Angluin and Valiant present another heuristic alprithm, DHC, for solving the 

directed-graph Hamiltonian cycle problem. The DUC algorithm is similar to the UHC 

undirected graph algorithm presented in the same paper (see Section 2.52). The major 

difference is in how the path is transformed when it can not be extended from the current 

endpoint. The rotational transformation cannot be used on directeci p p h s  (since a di- 

rected path cannot be traversed in the reverse direction), hstead, the DHC algorithm uses 
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Figure 2.5: The DHC-A and DHC-B transformations. 

a more complicated transformation, the directed rotational transformation, which perforrns 

the same function as the rotational transformation: if the next vertex to be visited is in the 

path, then change the path to get a new end point. The basic heu ristic underlying this idea 

is to try to rnaximize the amount of exploration of the search space, rather than to try to 

exhaustively t ry every possibility. 

The direeted rotational transformation used by the DHC algorithm actually consists of 

two different transformations we will refer to as DHC-A and DHC-B (see Figure 2.5). The 

DHC-A transformation requires that the following preconditions are satisfied. Starting with 

a partial path P. the new vertex r? to be visited (a neighbour of the current endpoint e) 

must be in P. and there must be at Ieast n/2 nodes in P between c and e (inclusive). If u is 

the predecessor of r> in P, then edge (u, v )  is deleted from the path and edge (E. c) is added. 

The endpoint is changed to u. This produces a partial path (from the starting vertex s to 

the endpoint u) ,  and a cycle (of at least n/2 vertices, with i) being one of them). 

While the rationale for requiring at least 742 nodes was never made clear in the paper, 

having this condition prevents the algorithm from forrning multiple cycles. A maximum of 

one cycle can exist along with a partial path. 

The second DHC-B transformation is applied when the algorithm has a partial path 

and a cycle. The new vertex v to be visited (a neighbour of the endpoint u) is a member 

of the cycle, and we will designate the predeeessor of v in the cycle as e. The edge (e, v )  

is deleted, the edge (u, v )  is added and the endpoint is changed to e. This transformation 

converts the path and cycle to a single path. 

Since each transformation t ransforrns the current partial sohtion into the format re- 

quired for the other transformation, it b obvious t hat the algorit hm must alternately apply 

the two transformations. The DHC algorithm avoids alternating between two partial d u -  

tions by deleting each edge from the graph as it is traverseci. 



Select an initial vertex s at random and make it the start of a partial 
path P. Set the algorithm mode to -4. 

Do ( 
Select a randorn neigh bour vertex v of the current end point e. If no 

such vertex is found, then return failure. 
Delete edge (e, UJ from the graph. 
If u is not in P, then add u to P 
else { 

If the algorithm mode = A and D # s and there are at least n / 2  
vertices between u and e inclusive along P, then { 

Apply the D H C A  transformation. Set the algorithm mode to B. 
(The partial solution now consists of a partial path P and a 
cycle C with at least 4'2 vertices in it.) 

1 
else if the algorithm mode = B and r? E C then { 

Appiy the D H C B  transformation. Set the algorithm mode to A. 
(The partial solution now consists solely of a partial path P.) 

1 
1 
If P contains al1 the vertices in the graph. then check if the original 

graph has an edge from the current endpoint of P to S. If so, a 
Hamiltonian cycle exists so return success. 

} (end of do loop) 

Figure 2.6: The DHC algorithm. 

The DHC aigorithm is specified below in Figure 2.6. 

2.5.4 HAM Algorithm 

In [4] Bollobh, Fenner and Frieze present an heuristic algorithm HAM. The HAM algorithm 

uses the rotational transformation just like the previously discussed algorit hms, but it also 

contains some new techniques. The most important of these is cycle extension. As discussed 

in Section 2.5.1, the goal of al1 of these heuristic algorithms is to extend a partial path, until 

a Hamiltonian pat h is obtained. If t here is no edge from the current end point to a neighbour 

not in the path, then previous algorithms use the rotational transformation to help avoid 

hitting a dead-end, and be forced to quit. The HAM algorithm instead first tries to apply 

the cycle extension technique, by checking if the partial path forms a cycle (is there an edge 

between the two end points?). 

If the cycle exists, then the cycle extension technique can be applied. The basic idea 
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Figure 2.7: The cycle extension technique. 

is that any vertex in the cycle can be made an endpoint of a path by deleting the edge 

between that vertex and one of its neighbours. So the algorithm scans through the vertices 

of the cycle. looking for a vertex wit h a neigh bour not in the cycle. This vertex is made the 

endpoint of a new path. and one of its neighbours is made the other endpoint. Assuming the 

graph is connected. such a vertex is guaranteed to be found. (If the graph is not connected, 

no Hamiltonian cycle exists.) And with such a vertex as the endpoint, the algorithm can 

add at least one new vertex to the path. So the conversion of the partial path into a cycle 

guarantees that the path can be extended. See Figure 2.7. 

The other new technique employed by the HAM algorithm is to emphasize extending 

the pat h over algorit hm performance. The previous algorit hms check only one neighbour 

of the current endpoint: if it is not a new vertex (not on the current path). then the rota- 

tional transformation is applied immediately. While this is a quick and easily implemented 

approach, it ignores t lie possi bility t hat examination of a different neigh bour would allow 

the path to be extended. 

The HAM algorithm instead uses a form of barktrack search to search for an extension 

to the current path. Basically, the HAM algont hm tries each neighbour of both end points of 

the current path. If any neighbour is an unvisited vertex, or is the other endpoint (implying 

that the partial pat h forms a cycle), t hen the pat h can be extended, and the algorit hm stops 

the search. If a neighbour vertex does not permit this, then a rotational transformation is 

applied and the new path is added to a list of pat h s  to check. Once al1 the neighbours of the 

initial partial pat h are checked (with no path extension possible) then the algorithm starts 

checking the other paths (one path at a time). Note that the search is done breadt h-first, 

rat her than depth first. The algorithm is essentially backtracking through the possible sets 

of rotational transformations that can be applied to the initiai partial path. Thus we refer 



to this technique as backtrack rotational transformation. 

This backtrack path extension search is terrninated (in failure) by setting an upper 

lirnit to the search depth. Note that the search depth is equal to the number of rotational 

transformations that were applied to the original partial path. However, the algorit hm does 

not restrict instances of partial paths lrorn repeating in  the pat h array. 

The H A M  algorithm is specified in Figure 2.8. Note that the algorithm is determinis- 

tic and does not ernploy any randomized decision-making as do the algorithms previously 

discussed. However, a stochastic version could be easily implemented. 

2.5.5 SparseHam Algorithm 

In [16] Frieze presents SparseHam. a variation of the HAM algorithm given in [4] (see 

Section 2.5.4). Frieze proves that this algorithm can find whp a Hamiltonian cycle in two 

classes of random graphs with constant average degree. While SparseHam employs the same 

techniques - cycle extension and backtrack path extension search - as the HAM algorithm, 

there are three differences in implementation. First, SparseHam employs depth-first search 

for the backtracking pat h extension, rat her than breadth-first search. 

The second difference is in the criteria used to iirnit which paths are searchecl. The HAM 

aigorithm had no such criteria, allowing paths to be repeatedly tried. The SparseHam 

dgorithm instead stores the edge from the current endpoint to the selecteù vertex (the 

rotation edge) for each rotational transformation. While the path has not been extended 

(in length), future rotational transformations cannot use that edge (as a rotation edge). 

This prevents partial pat hs from being repeated while backtracking. 

The third difference between the two algorithrns is that SparseHarn only considers ex- 

tending the path from one of its endpoints. (HAM considers both endpoints). If SparseHam 

cannot find a path extension, it will then search back through its list of paths (obtained 

during the backtrack search), looking for an extension from the other endpoint. 

The SpamHam algorithm is specified in two parts, the main function (Figure 2.9) and 

the TryExtend() function (Figure 2.10) which does the actual work of extending a path. 

The HideHam algorithm by Broder, Frieze and Shamir [il was designed to find whp HamiC 

tonian cycles in graphs where a Hamiltonian cycle is hidden within a random graph. More 

formally, the graph G = (V9 E) has an edgeset which is the union of a random graph G,,p 

with p = d / n  and a Hamiltonian cycle. 



Start with the first vertex in the graph, and select the first 
neighbouring vertex. Set the current partial path P, to 
contain these two vertices. 

Do t 
Initialize the partial pat h array, and set the first element 

of this array qua1 to the current partial path Pc. 
Set OldPathLength = If,(. 
While 1 P,I =OldPat hLengt h { 

P, = p l ,  . . . , pk.  Create a list L of each neighbour of 
vertex pl and A. Do not include pz as  a neighbour 
of p l ,  nor pk-1 as a neighbour of pk.  

For each u E L do { 
If a # P, then add v to P, and break (out of the for loop). 
else if o is the ot her endpoint of P, then { 

Form a cycle using P, and the edp between Pi and Pk. 
If the cycle is Hamiltonian. then terminate with succes. 
else perform cycle extension (as described above) to 

add a vertex to Pc and break (out of the for loop). 
1 
else apply the rotational transformation to P, using ct to 

get a new path P. Add P' to the partial path array. 
(P, is not changed.) 

} (end of for Ioop) 
If 1 Pcl =OldPathLength then { 

If the nurnber of partial paths examined is qua1 to the 
maximum search depth, then return failure. 

else set Pc to point to the next member of the partial 
path array. ( 1  Pcl is still the same as  OldPathLength.) 

l 
} (end of while loop) 

) (end of do loop) 

Figure 4.8: The HAM algorit hm. 



SparseHarnAlg() ( 
Set the partial path P to contain the first vertex in the graph. 
Do ( 

Do 
Set OldPathLength = IPI. 
Clear path array. 
Try Extend (P) 
If Try Extend() returns success. t hen ret urn P. 

} while IPI fOldPathLength 
For each P in the path array do { 

Reverse path P (to use the other endpoint). 
TryExtend( P) 
If TryExtend() returns success, t hen return P. 
If 1 Pl #OldPathLength then break (out of for loop). 

} (end of for loop) 
} while 1 PI ZOldPathLength 
Return failure. 

} (end of SparseHarnAlgO ) 

Figure 2.9: The main function of the SparseHam algorithm. 

The HideHam algorithm consists of three major phases4 which in general do the follow- 

ing. First, the algorit hm builds a set S of the low degree vertices. Then HideHam builds a 

set of paths P = { P l . .  . ., Pk} which each contain at least one vertex s E X (where x is not 

an endpoint of Pi). In the final phase, the algorithm uses previously d i s c u d  techniques 

(rotational transformation, cycle extension) (with some minor modifications) to join the 

paths together into a single cycle. 

The HideHam algorithm contains some artificial elements which were added for the 

proofs to work, and dso seems to be tightly coupled to the specified graph model. Therefore 

we will only discuss the first two phases in limited detail. 

The basic idea underlying the first two phases is that graphs with large minimum degree 

have Hamiltonian cycles which are eagy to find. It is the presence of low degree vertices 

which makes it harder for cycles to exist and for cycles to be found. Thus, by embedding the 

low degree vertices into disjoint paths. the graph is (conceptually, at least) reduced to one 

with large degree vertices only. Each path is formed as follows: X is the set of low degree 

vertices. The endpoints of each path are not in X, and for any two consecutive vertices on 

'The algorithm presented in [q actualty has 4 phases, but we omit phase 3 since it exists oniy because 
it is needed for the pmofs developed in the paper. 



TryExtend(P) { 
Let active end point of P be e and let the ot her (fixed) endpoint be S. 

Ife has a neighbour x not in P then add x to P. 
else if e has an edge to s then { 

If P contains al1 the vertices of the graph then return success. 
else perform cycle extension to add a vertex to P. 

1 
else { 

Let X = the set of neighbours of e. 
For each x E .Y do { 

If edge (e, XJ has not ben  used in  the current execution 
of Try Extend(} then { 
Set OldPath = P. 
Modify P using the rotational transformation and vertex 

x to get a new endpoint y. 
If y is not an endpoint for any path in the path array then 

add P to the path array. 
TryExtend( P) 
If Try Extend ( j returns success, t hen ret urn success. 
If lPl fOldPathLength then set P = OldPath. 

1 
) (end of for loop) 

} 
} (end of Try Extend() ) 

Figure 2.10: The TryExtendO function of the SparseHam algorithm. 



a path, at least one is in .Y. Each vertex of ,Y is contained in one of the paths. We refer to 

this procgs as the low degree paths technique, which has some lirnited similarities to the 

multipath search technique of IiocayS LIultiPath algorithm [19] (see Section 2.5.11). 

Note that in forrning the paths, for each vertex v in a path and not an endpoint, the 

edges to neighbours of v not on the path are deleted from the graph. This reduces the 

degree of other vertices. which may not be in X, and thus might produce additional low 

degree vertices. The HideHam algorit hm uses an impractical modification to constructing 

S before making the paths to avoid this problem. Another alternative which seems more 

reasonable from an algorithmic standpoint is to add vertices which become low degree to 

the set X, as paths are created and edges removed. 

2.5.7 DB2 Algorithm 

The DB2 algorithm described by Brunacci in [8] is presented quite differently frorn the other 

algorit hrns in this survey. The DB2 algorit hm considers the Hamiltonian cycle problem as 

a version of the travelling salesmen problem (TSP). In the TSP, graph edges are given 

weights, and the goal is to find a Hamiltonian cycle whose sumrnation of edge weights 

is a minimum. The DB2 algorithm therefore establishes three categories of edges (with 

increasing weights): forced edges (an incident vertex is of degree two). normal edges. and 

non-edges (vertex pairs not in the graph). Edge selection is prioritized by the type of edge. 

So initially when forrning a cycle. the DB2 algorithm may use non-edge vertex pairs (with 

large weights). The goal for DBS is to find a Hamiltonian cycle that does not use any 

non-edges. 

Anot her innovation used by Brunacci is to use vertex degree to prioritize vertex and 

edge selections. We cal1 this the low degree first technique because low degree vertices are 

selected first by the algorithm. Edges are sorted according to the degree of the incident 

vertices. An edge (x. y) is specified by d(x) 5 d(y) and is sorted first by d ( x ) ,  and then by 

4~). 
The rationale behind this technique is simple. By first using the lower degree vertices, 

this leaves the higher degree vertices for later, when there are fewer choices, and more 

iikelihood of dead-ends in the search. But since these latter vertices have higher degrees, 

there are more available options for searching, thus improving the chances of the search 

succeeding. This is the same reasoning as that used by HideHam in its low degree paths 

technique. 

We now describe the DB2 aigorithm. The Rrst step is to sort the vertices by degree, 



Figure 2.1 1: The transformation used by the DB2 algorit hm. 

and then form a priority List of the vertex pairs (edges), organized by category and by 

vertex degree within each category, as  specified above. Next. the algorithm starts to form 

a cycle C' by adding edges one by one starting from the top of the priority list. No vertex 

degree is allowed to exceed 2; edges which would break this limit are not added. If such a 

conflicting edge is a forced edge, then no Hamiltonian cycle is possible and the algorithm 

quits. If after adding al1 the forced edges a cycle exists, no Hamiltonian cycle is possible 

either (see Theorem 4) so the algorithm quits. When n - 1 edges have been added, this 

stage is finished. The graph C is not yet a cycle, but in general will consist of zero or more 

cycles and a path P. The next step is to convert C into a cycle by deleting an edge in each 

cycle, and merging the new path to P, and t hen joining the endpoints of P when P becomes 

Hamiltonian. The paper [8] gives no detaifs of this step. The final stage is to eliminate al1 

non-edges in C using the following transformation. For a non-edgr ( x ,  y), consider al1 edges 

(a. b )  where these vertices are in the following order within the cycle: . . . . x ,  y, . . . , a, 6, . . .. 
Sum the weights of the edges (a,  x )  and (b, y). Select the (a.  b )  edge which giva the lowest 

sum. and replace edges ( x ,  y) and (a, b) wit h (a. x) and (b, y). See Figure 2.1 1. Note t hat 

the transformation is epentially the same as performing a rotational transformation on a 

path without edge (x, y) to obtain a cycle. Eaeh non-edge is only replaced once. If that 

edge Iater must be reintroduced into the cycle (to eliminate another non-edge) then the 

algorithm returns failure. 

2.5*8 DBZA Algorithm 

The DE2A algorithm by Brunacci [8] to find Hamiltonian cycles on directed graphs is 

extremely simple: it simply converts a directed graph to an undirected graph, executes an 

algorithm (such as DB2) to find an undirected Hamiltonian cycle and then converts the 

solution back to the directed graph. The conversion from a directed to an undirected graph 

is a standard technique used, for example, to reduce the directed Hamiltonian cycle problem 

to the undirected Hamiltonian cycle problem to prove NP-completeness. A directed graph 

D is converted into an undirected graph G as follows: Each vertex u E V(D) is mapped 



Figure 2.12: Conversion of a directed graph to an undirected graph. 

into three vertices ci, vm, v, of V(GJ and two undirected edges (v i ,  0,) and (u,. u,). Each 

directed edge ( x ,  y) is translated into an undirected edge (r,, yi). See Figure 2.12. It is 

simple to prove that D has a directed Hamiltonian cycle iff G has a undirected Harniltonian 

cycle [2, pp. 331-3321. 

Note that if IC'(D)I = n.lE(D)I = rn then V(G) = 3n and E(G) = 2n + m. The 

undirected graph is much larger than the directed graph, and thus this technique seerns 

to be much Iess efficient than using a directed Hamiltonian cycle algorithm. However, the 

2n new edges in G are al! forced edges and therefore are guickly traversecl by Hamiltonian 

cycle algorithms. as are n of the new vertices. In addition. this conversion might be usehl 

for graphs that are mostly undirected, but have a few directed edges. 

2.5.9 LongPath Aigorithm 

The LongPath algorithm by Iiocay and Li [2q was designed to produce long paths rather 

than specifically tiamiltonian cycles. W hile the aut hors make virt ually no references to 

the Hamiltonian cycle problem, this algorithm represents an interesting alternate approach. 

Virtually al1 of the Hamiltonian cycle algorithms reviewed in this section have a binary solu- 

tion set: either they find a Hamiltonian cycle or they report failure. However, for heuristic 

algorithms, an acceptable approximate solution for certain applications may involve a l e s  

than maximum length cycle or path. As well, reporting the maximum path (or cycle) 

length found provides an additional metric b r  evaiuating an algorithm's performance. The 

LongPath algorithm is also of interest because of three new techniques that the authors 

introduce: crossover extension, chah extension and bypass extension. These techniques are 

discussed in detail below. followed by a description of the actual algorithm. 

The crossover extension technique can be considered either an extension or a forrnalized 

version of the backtrack rotationd transformation technique. The basic idea is to form 

a cycle so that the cycle extension technique can be used. Starting with a path P (with 
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Figure 2.13: Path with order 2 crossover transforrned into a cycle using two rotational 
transformations. 

endpoints adjacent only to vertices of P )  we want to find a new ordering of the vertices 

in P (using other edges) so that a cycle can be constructed. and the pat h t hen extended 

(assuming connectivity). The new ordering is obtained using a crossover. 

We start with some definitions. A trail in a graph C is a path in which vertices may be 

repeated, but not edges. A crosover Q for a path P = {u, . . . , r )  is a uv-trail (a trail from u 

to U) such that V(Q) C V ( P )  and C'is acycle witb V(C') = V ( P )  and E(C') = E ( P ) @ E ( Q ) .  

The order of a crosover Q is equsl to IE(P) n E(Q) 1. For an arbitrary vertex x in a path P 

with endpoints u, u, we denote the vertex before x (towards u) by x- and the vertex after 

x (towards v )  by x+ . A cr-edge is any edge (x, y) E E(Q) - E ( P ] .  

So a crosgover of order O is the edge (u,  v )  connecting the endpoints of the path. A 

crossover of order I is the same as a rotational transformation followed by a O order crossover. 

I t  appears that higher level croasovecs can similarly be decornposecl into a sequence of 

rotational transformations applied at one or both ends of the path. The exact sequence of 

rotational transformations needed is not always easy to determine for a particular crogwver 

on a pat h. However, the cycle can easily be found by following the path while avoiding pat h 

edges that are dso in the crossover. Figure 2.13 shows the transformation of a path with a 

second order crossover into a cycle, using two rotational transformations. 

Once a c r m v e r  is found on a pat h, the sequence of rotational transformations corre 



FindCrossover(vertex tu, integer k) ( 
( w  is the current endpoint of Q. k is the current search depth / order) 
Set CrossOver = False. 
[f k > !LI then return. 
If U E  N ( w )  then { 

If Q plus edge (ut, u )  is a crossover then 
1 
For each x E N ( w )  such that x E P - Q, x 

Add edge ( w , x j  toQ, 
if t # u and (x,x-) 4 E(Q)  then { 

.4dd edge (x. x - )  to Q. 
FindCrossover(x', k+l ). 
If CrossOver = True then return. 
Remove edge ( x ,  x - )  from Q. 

Set CrossOver = True and return, 

# UT* and d&) 1 2 { do 

1 
if x # v and (x. x+) 4 E(Q) then { 

Add edge ( x ,  x+) to Q. 
FindCrossover(x+, k+l). 
If CrossOver = True then return. 
Remove edgc (x, tf) from Q. 

} 
Rernove edge ( UT, x) €'rom Q . 

} (end of for loop) 
} (end of FindCrossover() ) 

Figure 2.14: The FindCrossover() function of the LongPath algorithm. 

sponding to the crossover can be applied. producing a cycle. Use of the cycle extension 

technique will then allow the path to be extended in length. So the remaining question is 

how to find crctwiovers. The basic idea is to have a recursive algorithm that constructs a 

trail from u to o. and t hen checks if the t rail is a valid crossover. The order of the crossover 

corresponds to the depth of recursion. Since the number of trails is expected to be expo- 

nential in the length of the path, the search is Iimited to a maximum order hl '. Iioeay 

and Li prove that this dgorithm will find a croesover iff a crossover of order & 5 hl exists. 

Figure 2.14 presents the FindCrosmver() algorithm. Some global ~ r h b k s  are used. P is 

a path with end points u, u. Q is a u, ut trail with vertices in P. M is the maximum order 

allowed. CrossOver is a boolean indicating if a c r m v e r  was found. 

'Eliminating this restriction could lead to a new type of backtrack dgorithm for Hamiltonkm cycles. I t  
wouid be înteresting to investigate such an algorithm to see if it is guaranteed to h d  a cycle, if one ehts ,  



The most complicated part of the FindCrossover() function is the if statement which 

determines if Q plus edge ( w ,  v)  is a crossover. The most straight-forward way of determin- 

ing this is to check if C = P 8 Q  is a cycle. While the conditions imposed on Q ensure that 

Vx '2 P, d c ( x )  = 2, C wi11 usually consist of several cycles rather than just one. Checking if 

C is a cycle by traversing al1 the edges would take too long. Thus. Kocay and Li introduce 

the concept of a segment graph. 

A segment of P is defined with respect to Q (a um trail) as a connected component of 

P- E(Q). The set of segments of P with respect to Q is S(Q} .  The segment graph SC(Q) 

has vertices corresponding to the segments S(Q).  Two vertices are joined by an edge if 

the corresponding segments are joined by a cross-edge connecting an end point of one of the 

segments to an endpoint of the other. Kocay and Li prove that the components of SG(Q) 

are equivalent to the cornponents of P + Q. So by tracking the components of SG(Q), 

one can easily determine if P + Q  is a circuit by checking if there is only one component of 

SG(Q). There are some extra coding details involved in tracking the number of components 

of SG(Q) which we do not cover here. 

The chain extension and bypass extension techniques corne into use when one has con- 

structed a path P which dom not include al1 the vertices in the graph G', and cannot 

be extended using other techniques. Kocay and Li refer to the vertices of the subgraph 

H = C; - Y ( P )  as inner vertices of G' with respect to P. Subgraph H can be decomposed 

into a set of connected components Hi. .  . . . Hk. P 2 1. The bypass extension technique 

involves finding a path R with endpoints a,b in some component of H. If 3x, y E V(PJ 

such that x E N(a)  and y E N(6) and IR1 + 2 > IP(x, y)l then path P can be extended 

by replacing P(x, y} with the path {a. a , .  . . , 6 ,  y}. (Note that P(x, y) is the portion of the 

path P from vertex x to vertex y inclusive.) See [20] for implementation details. 

The chain extension technique is a combination of bypass extension and crossover ex- 

tension. As before, we have a path R with endpoints a, b in some component of H and 

vertices x, y E P wit h z E N(a) and y E N (6). Lioeay and Li define a bypass crossover Q 

to be an xy trail with Y(Q)  C V(P) and P$ R $ Q is a UV path. The algorithm to find a 

bypass crossover is very similar to FindCrosover ( ) , wit h the only important change being 

the number of components of the segment graph SC(QJ (whose vertices are components of 

P e Q ) .  See [20] For the detaüs. Using the bypass crossover, path R can then be merged 

wit h path P, thus extending P. See Figure 2.15 for an example of this. 

Successful use of the bypass extension or chiain extension techniques will change a portion 

or t he path and thus will potentially introduce a crossover that can be used to further extend 



Figure 2.15: An example oî the chain extension technique. 

the path. Thus. after extending the path with either of these techniques. the crossover 

extension technique can be retried. 

The complete LongPath algorithm is listed below in Figure 2.16. Kocay and Li tested 

their algorithm on a number ofgraphs, using crogsovers of order < 6 and bypass crossovers 

of order < 2. They found that the use of the bypass and chain extension techniques made 

a measurable improvement in performance over just the crossover extension technique. 

Note that the LongPath algorithm only Ends paths: to make it find Hamiltonian cycles, 

one only needs to perform an additional execution of the FindCrosover() function after a 

Hamiltonian path has been found. 

2.5.10 LinearHam Algorithm 

The LinearHam algorithm presented by Thomason in [30] is a linear expected t h e  algorithm 

for finding a Hamiltonian path between two specified vertices. LinearHam is designed 

specifically for the randorn graph mode1 GnqP; it uses the edge probability p explicitly in 

the algorit hm. Furt hermore, LinearHam consists of t hree separate algorit hms: A 1, A2 

and 43 that are applied sequentially with increasing time requirements but also increasing 

probabilities of success. The third algorithm (not specified in the paper since a standard 

backtrack algorithm could be used) requires exponential time but guarantees to find a 

Hamiltonian cycle or determine that one does not exist. Since the probabiIity of the (rst 

two aigorithms failing is exponentiaiiy low, the o v e d  expected running time works out to 



LongPat hAlg() { 
Select an initial vertex x .  Set u = x, u = x. P = {x}. 
While P is not a Harniltonian path do { 

While (32 E N(u) and x g! P or 3x E W ( v )  and x $?- P )  Add x to P. 
Set OldPat hLength = 1 PI. Set Q = { u } .  FindCrossover( u, O). 
If a crossover Q was found then ( 

Convert P into a cycle C = P $ Q. Extend P using cycle extension. 
} 

else { 
Construct the components Hl,. . .. Hk of H = G' - V ( P ) .  
For each x E P do { 

For each a E N ( x ) ,  a fi! P do { 
Find the component Hi such that a E H i .  
Construct a linked list .4i of al1 vertices y E P for which 

36 f Hi S U C ~  that y E N ( b ) .  
For each E Ai do { 

Find path R(n,b) .  
If IR(a, b) + 2 > IP(x, y) then reroute P via R(a, 6 ) .  
else { 

Set Q = { x } .  FindBypas~Crossover(x, O). 
if a crossover Q was found t hen Set P = P + Q 6 R(a, 6). 

1 
If 1 PI > OldPat hLength t hen break out of for loop. 

} (end of for each y) 
If IPI > OldPathLength then break out of for loop. 

} (end of for each a) 
If IPI > OldPathLength then break out of for loop. 

) (end of for each t) 
} (end of else) 
If OldPathLength = 1 Pl then P cannot be further extended so return. 

) (end of while) 
} (end of LongPathAIgO ) 

Figure 2.16: The LongPath algorit hm. 



0 (WP) 
Due to these factors, the LinearHam algorithm does not appear to be easily or usefully 

applied to arbitrary graphs. One of the techniques used by LinearHam, however, is a 

simpiified version of the chain extension technique, which is utilized in both the A l  and 

A2 algorit hms. In algorit hm A l ,  after finding a pat h P, LinearHam searches for a vertex 

ut E G - V ( P )  which is adjacent to two adjacent vertices x, y in P. (So r E N(y), w E N ( x )  

and w E N(y) .) If such a vertex w is found, then P can be extended by inserting w between 

x and y. In algorithm A2, LinearHam uses a slightly different version of chain extension, in 

which paths from a vertex w E G'- V ( P )  to vertices of P  are constructed. If the appropriate 

edge exists between the predecessors of two of t hese vertices. t hen the pat h can be extended 

to include u? and the two paths leading to it. Figure 2.15 illustrates the configuration that 

LinearHam is looking for. assuming that vertex w lies within path R. LinearHam is only 

searching for one particular crossover and thus ignores the other possibilities. Thus, while 

LinearHam's versions of the chain extension technique would be easier to implement than 

the full version, one would expect LinearHam's versions to be less successful at extending 

paths, and thus l e s  successful at finding Hamiltonian paths (or Hamiltonian cycles). 

2.5.1 1 MultiPath Algorit hm 

KocayS MuItiPath algorithm [19] is an extended version of Christofides algorithm [IO. 

Chapter 101. Both are backtracking algorithms, using exhaustive search to find a Hamilto- 

nian cycle. A key feature of these algorithms is the pruning techniques used to d u c e  the 

size of the search space. The MultiPath algorithm aIso uses an unique technique (which we 

cal1 the rnultipat h search technique) for perforrning the search which differentiates i t  from 

most of the heuristic algorithms that we have surveyed. We will examine both of these 

techniques. 

The partial solution for most Hamiltonian cycle algorithms is a pat h that the algorithm 

tries to make longer. In the MultiPath algorithrn, the multipath search technique is used as 

a different method of organizing the search. Instead of only one pat h, t his technique involves 

maintaining a set of paths (called segments by Kocay). The Crst segment is a randomly 

selected edge. Whenever the aigorithm detects a forceci edge (an edge that must be in any 

Hamiltonian cycle) then this edge becomes a new segment. At each stage of the search, the 

aigorit hm selects a random endpoint of a random segment from which to extend the partial 

solution. .As segments are added or extended, the aigorithm checks whether segments can 

be merged together. If tbere are two segments with endpoints (a, b)  and (6, x) then the two 



are merged into one segment (a, z) . 
There are several different ways in which pruning can be employed in a backtrack algo- 

rithm. One can detect edges of the graph which cannot be part of any Hamiltonian cycle 

and delete them. One can detect edges which rnust be in any Hamiltonian cycle (forced 

edges) and include them in the partial solution. One can check if the current graph (with 

various edges deleted) perrnits a Hamiltonian cycle to exist. These pruning techniques are 

al1 perforrned relative to the current partial solution. An edge rnay be unusable and deleted 

in one part of the search, and be forced in another. 

The MultiPath algorit hm uses al1 of these different rnethods of pruning. The first pruning 

operation the algorithm perfonns is based upon Theorem 3. If a vertex x is incident on two 

forced edges, then al1 other edges incident on x are deleted. The second pruning operation 

occurs after an edge is deleted. The algorithm chech if either of the endpoint vertices have 

a new degree of 2. If this is true. then there is a new forced edge to be added to the set of 

segments. When merging the segments, if the algorithni detects a forced cycle of edges (a 

segment wit h the endpoints the same, after merging) then no Harniltonian cycle can exist 

so the algorithm must backtrack (see Theoreni 4). Kocay also mentions another possible 

pruning operation: checking if the graph is connected. 

Note that these operations can interact: one deleteû edge can create a new forced edge. 

which can cause other edges to be deleted, and so on. The pruning is done repeatedly until 

no further changes take place, or until a vertex degree is reduced to i (no Hamiltonian cycle 

possible), or until n forced edges are found (implying that a Harniltonian cycle exists). 

Kocay's extension of Christofides' MultiPath alprithm is based upon the introduction 

of two additional pruning operations. The first involves Iooking for small cutsets which 

when removed produce more components then the size of the cutset (see Theorem 5). If 

such a cutset is found, then no Hamiltonian cycle exists. A cutset of size one corresponds 

to an articulation point (or cutpoint), which can be searched for by using a standard depth- 

first search algorithm. The second operation involves detecting a bipartition (X, Y) where 

1x1 # [YI. If such a bipartition is found, then no Harniltonian cycle exists (see CoroIIary 

5.1). Kocay shows how to detect this  condition as part of the depth-first search for a 

cutpoint. 

Figure 2-17 shows the MultiPath algorithm without the cutpoint or bipartition pruning 

(see [19] for the detaüs of implementing these techniques). The ComputeSegments() hnc- 

tion, which handles the merging of segments and the basic pruning, is presented in Figure 

2.18. 



MultiPath..\lg() { 
For each vertex x of degree 2. wit h (a, b )  E N ( x )  do { 

Let P = (a ,  b) be a segment. Add P to the set of segments S 
1 
Select a randorn endpoint u of one of the paths P in S. 
MainSearch (G', S, PT u). 
If LIainSearch ( ) f i  nds a Hamiltonian cycle t hen ret u rn success. 
eise return failure. 

} (end of MultiPathAlg() ) 

MainSearch(graph G, segment set S. segment P. vertex u) ( 
For each lu E X ( u )  do ( 

Add w to P. 
C'omputeSegrnents(G, S, u ) .  
If C'omputeSegrnents() finds a Hamiltonian cycle t hen ret urn. 
if ComputeSegrnents() detects that no Harniltonian cycle is possible then { 

Continue (with the next neighbour of u). 

1 
(Cutpoint and bipartition pruning would occur here.) 
MainSearch(G, S, P, u). 
If MainSearch(1 finds a Hamiltonian cycle then return. 

} (end of for loopj 
} (end of MainSearchO ) 

Figure 2.17: The MultiPath algorithm. 



ComputeSegments(graph C;, segment set S, vertex u) ( 
Let ProcessQueue = { u) (vertices to proces) 
While ProcessQueue is not empty do { 

Let x = next elenient of ProcessQueue. 
Obtain P for x E segment P. 
If x is in more than one segment then { 

(x must be an endpoint of two segments (a ,  x) and (x. y).) 
Merge the two segments into segment P. 

1 
Obtain (a,  6) as  the endpoints of P. 
If a = 6 then no Hamiltonian cycle is possible. Return. 
If r # (a ,  b )  (not an endpoint) then ( 

For w E N(x) ,  ui$! P d o  { 
Delete edge (x, w )  . 
If d ( w )  = 2 witli ( j , k )  E N ( w )  then { 

Add P' = ( j ,  k) to S. Add u? to ProcessQueue. 
If j or k are in S \ P then add j or k to ProcessQueue. 

1 
If d(wJ = 1 then no Harniltonian cycle is possible. Return. 

) (end of for do loop) 
) (end of if statement) 

) (end of while do loop) 
} (end of ComputeSegments() ) 

Figure 2.18: The Cornputesegments function of the MultiPath algorithm. 



2.5.12 595Harn Algorithm 

The 595Harn Algorithm specified by Martel10 [22] is an efficient Fortran implementation 

designed for directed graphs. It is a backtrack algorithm, although the implernentation is 

non-recursive. 595Ham utilizes various pruning operations, many of which are simiIar to 

those used by the MultiPath algorithm. 

The first pruning operation we wil1 discuss is based upon Theorem 3. For directed 

graphs, the equivalent theorem is presented below. 595Ham searches for al1 forced edges 

(due to indegree or outdegree of 1). and deletes extra edges according to this theorem. 

Theorem 10 I n  a dimcted gmph D roith edge (3, y), i / d + ( x )  = 1 or &(y) = 1 then al1 

edges ( v ,  y). v # x and al1 edges (x, .-), : # y am not in any possible Harniltonian cycle. 

Proof. The edge (x, y) must be in any Hamiltonian cycle since eit her the outdegree of x or 

the indegree of y is the minimum possible for a Harniltonian cycle to exist. Thus, al1 edges 

leaving x or arriving at y (except for (2,  y)) cannot be in the cycle. O 

For each forced edge ( x ,  y), 59SHam extends the edge into a path of forced edges 

{u, . . ., t, y,. . ., v )  and then deletes the edge ( v ,  u) if it exists. Each forced edge is stored in 

a list, and is used by the algorithrn when extending the patli. For detecting if a Hamiltonian 

cycle is possible on the current graph. 595Ham checks only if any vertex degree (inbound or 

outbound) has been reduced to O. For a partial solution P = {Pl . .  . . , Pk} which is being 

extended to vertex x, 595Ham deletes al1 edges (Pk, v ) ,  o # r .  (c ,  x ) ,  D # Pk and edge (x, Pl) 

if IPI < n -  1. 

The 59SHam algorithm also uses the low degree fint heuristic to guide its selection of 

the next vertex to extend the path. The vertex x with rnin(d+(x), dw(x)) a minimum is 

selected. Figure 2.19 shows the 595Ham algorithm. 

2.5.13 KTC Algorithm 

Shufelt and Berliner in [29] developed the KTC algorithm with the goal o l  developing a 

backtrack algorithm which never backtracks. They used the knight's tour problem (on 

various-sized rectangular chessboards) as a generating set of test graphs. Their approach 

was to devise as many pruning operations as possible, with the end goal to be so effec- 

tive at pruning that the algorithm never needs to back up. While their approach seems 

questionable, t heir pruning operations are applicable to general graphs, at least in t heory. 

In practise, it seems that the graph configurations necessary for the use of these pruning 

operations will rarely occur and thecefore it seems uniikely that using al1 of these pruning 



595HarnAlg() { 
Select an initial vertex r with d - ( r )  a maximum. Set P = {r}. 
While P = { r .  . . . , e} is not a Hamiltonian cycle do { 

For each vertex v  in the graph with d+(t?} = 1 or d - ( v )  = l do { 
( v  is part of a forced edge we will denote as (x, y).) 
Set F = {x, y}. (F wil1 be a pat h of forced edges wit h end points Fi, F2.) 
While Fl or Fz are part of a forced edge not in F, extend F. 
If F is a Hamiltonian cycle then return, 
If F is a Hamiltonian path then return failure. 
Add edge (x, y) to the list of forced edges. 
Remove al1 edgen (2, y), r # x and ( x ,  t) , t # y and edge ( F2, F i } .  
If a vertex indegree or outdegree becomes O then return failure. 

1 
While e is the start of a forced edge (e, x }  do { 

If E = r and [PI < n then goto Backtrack. 
If x = r and \PI = n then have a Hamiltonian cycle so return. 
Add x to P. x becomes the new endpoint e. 

1 
BackStart: Select a vertex v E N + ( e }  such that edge (e, o) is untried 

according to the low degree first heuristic. 
If no such vertex is found then goto Backtrack. 
Remove al1 edges ( E .  x ) , x  # u and ( x ,  o ) , x  # e and edge (u ,  r). 
If d+(x) = O or d - ( x )  = O for any vertex incident on a removed edge then 

goto Backtrack. 
Continue (with main while statement}. 
Backtrack: While previous vertex selection was due to a forced edge { 

Undo al1 changes of previous vertex selection. 
1 
Undo al1 changes of previous vertex selection. 
If try to undo selection of root vertex r then 

no Hamiltonian cycle is possible so return failure. 
else goto BackStart. 

} (end of 59SHamAlg(] j 

Figure 2.19: The 595Ham algorithm. 



operations in a Hamiltonian cycle algorithm will ever be efficient time-wise. Shufelt and 

Berliner discovered that only the first five or so of their pruning operations resulted in a 

reduction in the time required on knight's tour graphs. The other pruning operations either 

increased or did not change the arnount of time required on knight's tour graphs. Thus, the 

usefulnes of the pruning operations for the most part seems dubious. 

Shufelt and Berliner developed 26 rules for pruning the search. W e  will mention only the 

first four rules which were shown to reduce the time required to find Harniltonian cycles. See 

[29] for details on the other rules. Note the similarities between t hese pruning operations and 

those used by the MultiPath algorithm and the 595Ham algorithm. The first rule prohibits 

a move if it leads to a degree 1 vertex. Rule two is based upon Theorem 3: a move to a 

new square r is prohibited if it would result in u having at least two neighbours of degree 2. 

The third rule is called backplanning. From the initial vertex starting the partial solution. 

the KTC algorithm searches for any forced edges and follows them, building what Shufelt 

and Berliner describe as  an endpath. In essence, the algorithm expands only one end of the 

path. but adds forced edges to the other end as they appear. Rule three prohibits rnoves 

to vertices in  the endpath. While a redundant rule, we mention it because the inclusion 

of backplanning in  the algorithm seemed to improve its performance. Rule four is nearly 

identical to rule two. If a vertex has two degree 2 neighbours, then al1 the additional edges 

incident on this vertes can be deleted. 



Chapter 3 

The Design of Hamiltonian Cycle 
Algorit hms 

3.1 Introduction 

Most of the work on Hamiltonian cycle algorithnis (see Chapter 2) has focused on either 

using them for proofs, or for proving probabilistic bounds on their performance (given a 

certain random graph model). There are only a few references that focus on designing 

efficient Hamiltonian cycle algorit hrns. Kocay's MultiPat h algorit hm [19] and Kocay's and 

Li's LongPat h algorithm [JO] contain many innovative algorit hmic techniques. However. 

there is limited t heoretical and experirnental validation t hat t hese techniques make t heir 

algorithms more efficient. The DB2 and DB2A algorithms of Brunacci [8] and the 595Haa 

algorithni of Martello [22] are presented as being efficient algorithms, but no evidence of this 

assertion is provided. S hufelt and Berliner in [29] did investigate the effectiveness of various 

pruning operations as part of their KTC algorithm. Lhfortunately, they only use graphs 

based on instances of the rectangular knight's tour problem. And their goal - a backtracking 

aigorithm which never backtrecks - conflicts with our idea of an efficient algorithm, as we 

discuss below. 

Clearly the literature on the Hamiltonian cycle problem has somewhat neglected the area 

of algorithm design. This may be due to a perception that the Hamiltonian cycle problem is 

easy compared to other NP-hard problems. In any case, we feel that a clear discussion and 

investigation of the design of Hamiltonian cycle algorithms is not only usefui, but needed. 

For example, ment papers [9,I4] investigating phase transitions for the Hamiltonian cycle 

problem only reporteci results on graphs of up to 24 vertices, most likely because they used 

primitive backtrack algorithms. Our goal is that this chapter may serve as a reference for 

those who need good algorithm to find Hamiltonian cycles (or prove non-Hamütonicity) in 



pract ice. 

We start by discussing various general aspects of algorithm design in Section 3.2. We 

explain how we will judge the performance of algorithms. In Section 3.3 we investigate the 

design of a backtrack Hamiltonian cycle aigorithm and in Section 3.4 we explore heuristic 

Hamiltonian cycle algorithms. We present our concluding remarks in Section 3.5. 

3.2 Met hodology for Algorithm Design 

Before we can start designing a specific Harniltonian cycle algorithrn, we need to discuss the 

methodology we plan to use. Our goal is to obtain efficient algorithms. What do we mean 

by that? From an algorithmic complexity point of view, an afgorithm*~ eficiency depends 

upon the amount of time (or storage) required for it to execute. However, we prefer more 

of an operationai point of view. A more efficient algorit hm is one t hat is more capable of 

solving the problem at hand. For the Hamittonian cycle problem, this can mean several 

things. Let us consider algorithm .4 and an algorithm A+ which is always more efficient 

(this might not be realistic). For a single grapli, il+ would find a Hamiltonian cycle in l e s  

tirne than .4 algorithm. For a set ofgraphs, A+ would find Harniltonian cycb  for a higher 

percentage of the graphs than the A algorit hm. For a graph with no Harniltonian cycle, the 

A+ algorithm might either report that no Hamiltonian cycle exists in less tirne than -4 (if 

both a n  bactt rack algorithrns), or might fiiid a longer pat h than .J in the same amount of 

time (if both are heuristic algorithms). 

So oui. definition of an efficient Hamiltonian cycle algorithm is an algorithm which 

minirnizes the tirne required to End a Harniltonian cycle and which maxirnizes the percentage 

of Harniltonian cycles found over arbitrary sets of graphs. For graphs with no Hamiltonian 

cycle an efficient backtrack algorit hm minirnizes the time spent proving no Harniltonian 

cycle exists and an efficient heuristic algorithm maxirnizes the length of the longest path 

found (in a certain period of time). This definition is the basis for how we will compare the 

performance of different algorithrns. 

Our definition of efficiency ignores storage requirements for the simple reason that with 

modern technology storage is never a problem for the Hamiltonian cycle problem. Though 

the search space is exponential in the size of the problem, the storage space is onIy polyn* 

mial. In lact. the most space-inefficient data structures of the Hamiltonian cycle algorithms 

we examined do not require more than 0(n2) space. 

When defining eficiency, we only consider searching for a single Hamiltonian cycle on 

a particular gaph. Some cesearchers have considered the problem of finding aii possible 



Hamiltonian cycles (usually in relation to the knight's tour problern; see [29] for example), 

but we do not consider this extension of the basic Harniltonian cycle problem. 

Our definition of efficiency uses the phrase -arbitrary sets of graphs". We mean two 

different things with this phrase. Firstly, we want our algorithms to work on al1 possible 

graphs. Secondly, we are acknowledging that testing algorit hms  wit h respect to a benchrnark 

set of problerns is frequently unproductive (see [18] for a discussion of t his). The problem 

with benchmarks is that they are always open to the criticism of being unrepresentative. 

Even a general randorn class of graphs such as  Gnvp> which is able to generate al1 possible 

graphs, is vulnerable to this accusation, since the probability distribution is such that 

Harniltonian cycles are easily found in a majority of these graphs. And even if a benchrnark 

of hard problems is available, the difficulty of a particular problem can Vary according to 

the algorithm used, as we discuss in Clhapter 5. 

However, this does not mean that the efficiency of different techniques cannot be eval- 

uated. In this chapter we present arguments that give reasons for the usefulness (or not) 

ol a particular technique, or that show why one technique often will outperforrn another 

technique. We also consider how the efficiency of the various techniques is afkcted by the 

characteristics of the graphs being solved. For instance, if we were evaluating the addi- 

tion of bipartite checking to a backtracli algorithm on graphs based on generalized knight's 

tours, we woulcl consider the fact that al1 of these graphs a n  bipartite (with equally sized 

sets). We could hypothesize that bipartite checking would never prune the search, and thus 

increase the time reyuired in al1 instances. Thus, we would conclude that bipartite checking 

would not increase eficiency on these types of graphs. 

Note that in this chapter, we discuss design with respect to undirected graphs only. 

3.3 Design of a Backtrack Hamiltonian Cycle Algorithm 

In t his section we discuss the design of backtrack Hamiltonian cycle algorit hms. There are 

three major components of a backtrack algorithm that we will examine: 

0 Pruning: What kind of initial pruning (and graph analysis) should be done? What 

kind of pruning and analysis should be done during the search? 

0 Search Method: Should a multipath approach be used, or is a singlepath approach 

just as effective? 

a Vertex Selection: How shouId vertex seIection, bot h initidy and during the search, 

be handled? 1s the Iow degree first heuristic effktive? 



In the following sections we will examine these questions. 

In Section 3.3.4 we present a new technique, graph collapsing, which tries to reduce the 

search space by more quickly proving that a graph is not Hamiltonian. 

3.3.1 Pruning in Backtrack Algorithms 

In this section WC examine the issue of pruning in backtrack Hamiltonian cycle alprithms. 

We have already discussed pruning in Our review of the MultiPath algorithm (see 2.5.1 1), 

but will repeat that information here. 

We define pruning to be an operation which reduces the size of the search space. Note 

that we do not include heuristic techniques (such as vertex seleetion ordering) which can 

reduce the search space for some techniques and increase it for ot hers. By search space, we 

mean the number of vertices (or edges) exploreci while looking for a Harniltonian cycle. 

Pruning can be done at two different stages in the algorithm. First, initial pruning is 

corn pleted before the algorit hm's search has started. Second, search pruning is performed 

at each stage of the search. 

The basic design issue we consider here is for each pruning operation; does its inclusion in 

a backtrack Hamiltonian cycle algorithm irnprove its efficiency? In this context. according 

to our definitions in Section 3.2, an efficient pruning operation is one that reduces the 

time required to find a Hamiltonian cycle. The more tirne requirecî to execute a pruning 

operation, the greater the accompanying reduction in the search space must be for the 

pruning operation to be worth doing. When we refer to a successful pruning operation we 

refer to one that obtains a reduction in the search space. Note that successful pruning 

is not necessarily efficient pruning. Initial pruning for this reason can be potentiaily more 

complex than -ch pruning, since initial pruning is only done once, and will tend to involve 

Iimited resources wit h respect to the rest of the search. This point has not received much 

attention in the backtrack algorithms we surveyed: they use the same pruning both initially 

and during the search. For this reason, we look at initiai pruning separately from search 

pruning. 

There are several different ways in which pruning can be employed in a backtrack Hamil- 

tonian cycle algorithm. One can detect edges of the graph which cannot be part of any 

Harniltonian cycle and delete them. One can detect edges which rnust be in any Hamiltu- 

nian cycle (forced edges) and include them in the partial solution. One can check if the 

graph permits a Hamiltonian cycle to exist. The pruning operations that we surveyed in 

Chapter 2 can be divided into two general categories. Globol decking evaluates the entire 



graph to see if it possesses some property that makes the existence of a Hamiltonian cycle 

impossible. The global checking operations we have seen are: 

If the graph is not connected, no circuit is possible. 

0 If the graph has a cutpoint, no circuit is possible. 

If the graph is bipartite with unequally sized partition sets, no circuit is possible. 

Gmph reduction searches only part of the graph (usually only a few vertices or edgesj 

to determine if an edge can be deleted or is forced. The list of graph reduction operations 

is as follows. 

a Delete other edges of a vertex incident to two forced edges. 

0 Make an edge forced that is incident on a degree 2 vertex. 

Delete the edge connecting the endpoints of a forced pat h. (This includes the partial 

solution, if it is not Harniltonian.) 

There is one remaining pruning operation we have not Iisted above. If a degree 1 vertex 

exists in the grapli, no circuit is possible. We assume that al1 Hamiltonian cycle algorithms 

make use of this. and thus do not include it in the list of pruning operations. 

Note that since graph reduction can involve modifications to a graph (by deleting certain 

edges). global checking should not be performed until al1 the graph reduction operations 

are finished. We will examine the efficiency of these operations both during initial pruning 
, 

and search pruning. 

Additional graph reduction and global checking operations exist that we do not discuss 

here. Shufelt and Berliner [29] developed many graph reduction operations for their KTC 

aigorithm, some of which were quite complex. Kocay [19] discussed searching for small 

cutsets which prove that no Hamiltonian cycle is possible (using Theorem 51. This is an 

extension of global checking using cutpoints. One possible (but untestecl) source of tech- 

niques for global checking is to use graph classes such as interval gaphs '. If a graph c las  

has a low-order polynomial detection algorithm and a low-order polynomid Hamiltonian 

cycle algorithm then we could try to detect if the graph is a member of that graph class. 

and if so find the Hamihonian cycle. Alternatively, we could try to show that the graph is 

a member of a graph class that has no Hamiltonian cycle. 

' W e  credit Jot Culberson for this idea 



Initial Pruning 

As we rnentioned above. initiai pruning is only performed once. at the start of a search. 

and thus can be more cornplex while remaining as efficient as search pruning. There is 

another use for initial pruning. During the search, it may be convenient to the algorithm 

for the graph to poses certain properties such as biconnectivity. Verifying that the graph 

possesses such properties in the initial pruning may increasc the overall efficiency of such 

an algorithrn, without a measurable increase in efficiency from just the initial pruning. 

The success of the various pruning operations depends upon the existence of graph 

structures that the operations are searching for. For example, most OF the graph reduction 

operations require the existence of degree 2 vertices. Al1 generalized knight's circuit graphs 

have such vertices (in the corners, and perhaps along the edges) and thus would be good 

candidates. However, graph reduction fails on graphs with a minimum degree of 3. Simi- 

iarly. using global checking to find a cutpoint is only useful if sorne of the graphs are not 

biconnected. For reasonsble parameter values, al1 generalized knight's circuit graphs are 

initially biconnected, and alter graph reduction, which will occur mostly around the edges 

of the graph, we expect thern to rernain biconnected. So testing for biconnectivity would 

not seem useful on generalized knight's circuit graphs. 

To contrast. in (141 Frank and Martel found that for srna11 instances of Ci',., of particular 

edge densities. there are very few biconnected graphs that are not Hamiltonian. Thus, 

testing for biconnectivity is a good way of eliminating most of the non-Hamihonian graphs. 

We would thus expect biconnectivity pruning to be efficient in this case. since the tirne 

required to find a cutpoint should be much less than the tirne required to backtrack through 

the entire search tree and demonstrate that no Hamiltonian cycle exists. 

From this discussion, we see that the use of the various pruning operations will depend 

upon our knowledge of the properties of the graph set we are using. 

Search Pruning 

At first glance, it appears that efficient search pruning must always be a subset of initial 

pruning. This is not necessarily true. For example, graph reduction requires degree 2 

vertices, which may not exist in the initial graph. But as vertices are traversed during the 

search and extra edges are deleted, degree 2 vertices can appear, justifying the use of graph 

reduction. 

The success and efficiency of initiai pruning is mostly determined by the structure and 

properties of the original graph. Search pruning is different, however. Its success depends 



upon the structure and properties of the current graph being searched, and this graph is 

modified at each stage of the search. While the original structure of the graph stiIl affects 

search pruning. it is not as important as it was for initial pruning. For example, it is easy 

to imagine a backtrack search of a generalized knight's circuit graph that starts at one end, 

goes halfway down the board. and then comes back. leaving a cutpoint to the other half 

. of the board. In this case, biconnectivity checking would detect this situation and force 

the algorit hm to backtrack, rather t han evaluate every possible pat h i n  the first half of the 

board. 

Despite this, we can still generate good hypotheses about the performance of different 

pruning operations on certain types of graphs. On graphs of mostly low degree vertices 

(degrees 5 41, we would expect graph reduction to work well because the deletion of edges 

quickly leads to the creation of new degree 2 vertices, which produces new forced edges 

and perhaps more edge deletions. In Section 5.7.1 we discuss a constructed graph which is 

designed so that the algorithm tends to follow a certain path, leaving behind an unvisited 

component. If component checking was performed during the search. the algorit h m  would 

not follow these 'faIse' paths and the graphs would become much easier to solve. 

3.3.2 The Search Method 

In this section we examine how the search should be performed. The typical approach is to 

maintain a single pat h as the partial solution, and extend the path from one endpoint. We 

cal1 this the singlepith method. The rnultipath method used by Kocay [19] and Christofides 

[IO] maintains a list of paths (including al1 forced edges), and expands a random endpoint 

of a random path at each stage of the search. We also propose! a compromise between these 

two methods, the doublepath method, which uses a single path, but extends the path from 

eit her endpoint. 

Let us assume that the backtrack operation does search pruning using graph reduction. 

In particular, let the algorit hm delete any edge connecting the end points of a forced pat h. 

This will include the endpoints of the current partial solution (or solutions, t'or the multipath 

method). Rom an examination of its operation, we have no reason to expect a difference 

in performance between the singlepat h and doublepat h met hods. Any pat h the algorit hm 

forms must eventually be closed into a cycle, regardles of which side of the path was 

extended (or both). The only difference in performance of choosing one endpoint over the 

other (or extending both) is in the pruning that occurs as the paths are extended. Without 

knowledge of the entire graph structure, there seems to be no way of correctIy deciding 



every time which to use. 

An examination of the multipath method is even more difficult. There does not seem to 

be any clear benefit of the multipath method over the singlepath and doublepath methods 

and the multipath method requires a more complex implementation. We do foresee one 

possible (but smal t) benefit . In Section 5.7. I we discuss a specially const ructed hard graph 

which is designeci so that the algorithm tends to follorv a certain path, leaving behind 

an unvisited component. If there is a forced edge in this component, then the multipath 

algorithm would extend a path within this component, and might sooner reach a dead-end 

than before. However, the rate of expansion of any path is inversely proportional to the 

total number of paths. Thus, it is uncertain whether the multipath rnethod would actually 

perform better in even this contrived case. 

3.3.3 Vertex Selection 

In this section we examine the process of vertex selection: how the backtrack algorithm 

selects the next vertex to visit. As we discuss below, the search method that is used 

(singlepath, doublepath or rnultipath) affects how we evaluate the vertex selection process. 

For the doubkpath and multipath search met hods, one must select the vertex to use as 

an endpoint to extend the path from. In the previous section, we assurned this was done 

randomly. If we instead select the endpoint with the largest degree, then we will maximize 

the number of edges pruned. Alternatively, we can use the low degree first heuristic and 

select the endpoint with the neighbour of smallest degree (this would take more work to 

calculate for the rnultipath rnethod). Note that these two approaches would not work overly 

well together: if we always extend the pat h to the smallest degree vertices we can find, then 

the endpoints will tend to be of small degree, and thus we will be wasting our tirne looking 

for a large degree vertex. For the remainder of this discussion, we assume that the endpoint 

to extend the path from has been selected. 

Clearly, if the endpoint is incident on a forced edge, that edge must be fol1owed. If there 

is no forced edge, then the standard approach is to randomly try the neighbours of the 

endpoint. The other approach is to use the low degree first heuristic. which we saw used by 

Brunacci [Rj and Martello [22], and has also been called Warnsdorff's Rule with respect to 

solving knight's tours [3, pg 1811. The reasoning behind why this heuristic could improve 

an dgorithm's performance is as follows. By first using the lower degree vertices, this leaves 

the higher degree vertices for later, when there are fewer choices, and more Iikelihood of the 

algorithm needing to backtrack. But since these latter vertices have larger degrees, there are 



more available options for forming a Hamiltonian cycle, thus improving the chances of the 

search succeeding. An alternate explanation cornes from taking the constraint satisfaction 

viewpoint. The lower degree vertices are more highly constrained. and thus should be 

satisfied (fit into t h e  solution) first [;?5. pg 911. 

We could also consider a high degree first heuristic. which selects the highest degree 

vertex at each step of the search (this heuristic was used in [9]). The justification for this 

heuristic is that it maximizes the amount of pruning being done. First, as we leave each 

vertex (w hich will be the largest degree possible), we will delete al1 edges except the one we 

are following. Second, since we are using up the larger degree vertices first. the remaining 

vertices will tend to be of lower degree. The edges we delete will be incident on these lower 

degree vertices, which means further reductions in vertex degrees. possibly leading to the 

creation of forced edges and further pruning. This pruning means that the algorithm will 

sooner backtrack out of deadsnds then before. This would seem to improve the algorithni's 

eficiency on graphs with no Hamiltonian cycle. However, on graphs with a Hamiltonian 

cycle this may mean that the algorithm has a harder time actually constructing a circuit, 

because of the increased backtracking, even if the backtracks happen sooner. 

From this informal analysis. we might expect the low degree first heuristic to outper- 

form the high degree first heuristic on graphs with Hamiltonian cycles, and the reverse 

performance on graphs with no Hamiltonian cycle. 

Certain backtrack algorithms must aiso select a vertex to start the search from. The 

choice of an initial vertex can have a major effect on the performance of a baektrack al- 

gorithm. One simple rnethod is to randomly select an initial vertex. One heuristic is to 

select the largest degree vertex to start from. with the justification being that this provides 

the most edges to use to complete the cycle. While this appears to be a trivial issue, ex- 

periments we have performed (see Section 4.7) indicate that on certain graphs, choosing 

different starting vertices results in orders of magnitude difference in the t h e  required to 

find a Hamiltonian cycle. 

3.3.4 The Graph Collapse Technique 

A major benefit to using a barktrack Hamiltonian cycle algorithm over a heuristic algorithm 

is that the backtrack algorithm is able to prove that a given graph has no Hamihonian 

cycle. This may be important for certain graph sets, such as  our genedized iinight's circuit 

problem, in which we want to determine which instances have a circuit. Unfortunately, for 

a backtrack algorit hm to prove t hat no Hamiltonian cycle exists, it must examine the entire 



search space. The pruning operations discussed above are able to reduce t his search space, 

but the time required quickly becomes intractable as the graphs become larger. 

We propose the graph collapse technique to help further reduce the search space for 

large. low degree graphs such as generalized knightTs circuit graphs. This technique was 

us4 by Schwen k [27] to prove (on paper) t hat a chessboard of size 3 x 8 has no knight's 

circuit. The basic idea is to transform the graph G' into a collapsed (smaller) graph Gc on 

which it should be easier to show that no cycle is possible. 

We form the collapsed graph Gc = ( V,, Ec) froni graph G = ( C', El as follows. Let G' 

have a set of Ç distinct forced paths Pf = {h,. . ., Pk}. We replace each forced path 9 
in G with a vertex xi in Cc. (Note that IV,I > 2 must hold.) For each vertex y incident 

on one or both of the endpoints of P;:, the edge ( r i ,  y) is added to Cc. (This includes 

endpoints of other forced paths, so edges (xi, xj) could be added to G,. Duplicate edges are 

avoided.) Formally, Vc = V + { x l ,  ..., ti}\V(Pf). Er = E+{(x~,Y) 1 3zT2 E C:(P;:), (y,:) E 

E} + {(xiTxj) 1 3y E C:(P;:), 2 E V,(P'), (y, r )  E E }  \ {(i. j) 1 i E V(Pj), (iJ) E E }  where 

V(Pf) is the set of vertices comprising the forced paths and Fe ( P i )  is the set of end point 

vertices of forced path Pt (so lK(Pi)l = 4). 

We prove the following general theorem. 

Theorem 11 If G', is a collnpsed gmph of C und C, has no Hamiltonian cyrk then C; 

has no Hamiltonian cyck. 

Proof. We prove the contrapositive. Assume G has a Hamiltonian cycle. Any Hamiltonian 

cycle must include the forced pat hs PI. Any other edges forming the cycle are in C;,, with 

the exception of edges that become duplkates in G,, since al1 but one edge of s duplicate 

set is deleted from G,. We prove that of any set of duplicate edges in GcT no more than one 

of the corresponding edges in G can be in any possible Hamiltonian cycle. There are two 

kinds of duplicate edge sets. For an arbitrary forced pat h P;: = {a,. . . , 6) and an arbitrary 

vertex ; al1 in Gy the edges (a,  t) and (6. t) would form a duplicate set in G,. Assume 

edges (a,:) and (6, t) are both in a Hamiltonian cycle. Forced path Pi plus t h e  edges 

and vertex r forms a cycle. But since IVc[ > 2, < n - 1 (since z and at least one other 

vertex or forced path must be in G'). Thus the cycle is non-Harniltonian, and we have a 

contradiction. The second kind of duplicate edge set occurs when we have two arbitrary 

forced pat hs P;. = {a, . . . , b} and Pj = {c, . . . , d )  wit h edges (a,  c) and (6,d) forming a 

duplicate set in Gco Assume both these edges are in a Hamiltonian cycle. This means 

both forced paths form a cycle. But since > 2, there must be an additional vertex 



or forced path not included in the cycle, so the cycle is non-Hamihonian, and we have a 

contradiction. Thus, no more than one edge of a duplicate set is in any Harniltonian cycle, 

and therefore al1 the (non-forced) edges of the Harniltonian cycle in G are also in G,. Thus 

for any Hamiltonian cycIe in G an equivalent Hamiltonian cycle can be constructed in Gc. 

O 

There are several general observations we can rnake about the graph collapse technique. 

First, the process olconverting a graph to a collapsed graph seerns identical to the process of 

converting a directed graph to an undirected graph by making al1 the edges non-directiond. 

An informa1 proof of this is as follows. Using the conversion process described in Section 

2.5.8. a directed graph D has each of its vertices replaced with three vertices comprising a 

forced path in the new graph G. If the new graph G' is collapsed using a set of forced pat h s  

corresponding to the sets of three vertices used in the conversion process, then the graph 

D' will be obtained, identical in structure to graph D, but undirected. 

A second observation involves the reasoning behind why the technique could improve a 

backtrack algorithm's efficiency. The idea is thai the construction of a collapsed graph will 

offer the opportunity for additional pruning, which could in turn lead to the construction of 

a new collapsed graph. As the graph quickly gets reduced in size. we should quickly reach 

a point in  which the Hamiltonicity of the graph can be determined. Note that to use the 

technique requires a graph with forced pat hs (degree 2 vertices). The technique would seem 

to work the best on graphs with forced paths scattered evenly throughout the graph. 

If the original graph is Hamiltonian, then the algorithm will eventually find a Hamilte 

nian cycle on the collapsed graph (due to Theorern 11). This rnay or may not be useful to 

the algorit hm. Non-Hamiltonian graphs wit h Hamiltonian coiiapsed graphs do exist. Figure 

3.1 contains one such example. Note that edges (.41, A3) and (Bi, B3) can be removed (they 

connect endpoints of a t'orced path), leading to vertices Al and B3 being incident on 2 ver- 

tices OC degree 2. The edges from bath these vertices to vertices Ci and C3 can be deleted. 

which causes degree I vertices to be produced. Therefore graph G is non-Hamiltonian. 

The collapsed graph G', is obtained by replacing each set of vertices XI, ;Y2, .Y3 with a 

corresponding vertex ,Y, and is Hamiltonian. 

In practise, it seems difficult to construct a non-Hamiltonian graph that has undergone 

graph reduction and for which global checking fails, which has a corresponding collapsed 

graph that is Hamiltonian. * Thus, the graph collapse technique could take the Hamiltonian 
-- - 

'We mnjkture that for a -ph G that has undergone graph reduction and for vhich giobal chCCking fs5. 
with correspondmg coiiapsed graptr Ge, G is H d t o n i a n  iff Ge is Hamiltonian. A proof or countefexampte 
of this conjecture wouid be usefiil. Note that in Figure 3.1, graph reduction can stiU be apptied to graph 



Gnph G Collapsed Graph G , 

Figure 3.1: Example of a non-Harniltonian graph with a corresponding Hamiltonian COL 
lapsed grap h . 

cycle obtained on the collapsed graph and try to form a Harniltonian cycle on the original 

graph. with sorne probability of success. However. if the original graph is not found to 

be Harniltonian, then the algorithm must abandon the collapsed graph (and the search 

perforrned on it) and search the original graph. 

Note that the graph collapse technique is untesteci, and we suspect it will seldom (if ever) 

improve a backtrack algorithm's efficiency. We feel it is worthy of mention because of the 

additional insights it offers concerning how Hamiltonian graphs difer from non-Hamihonian 

graphs. 

The graph collapse technique can be irnplernented as foliows. At each stage of the 

backtrack search, after pruning, check the number of forced paths. If a certain minimum 

number of forced paths exist, tlien construct the collapsed graph and perform pruning. 

This step can be repeated as many times as possible, until either no Hamiltonian cycle is 

found to exist, and the algorithm returns to the original graph and backtracks, or until a 

Hamiltonian cycle is found, in which case the algorithm must backtrack to the previous 

collapsed graph (or back to the original graph). The algorithm can then try to use the cycle 

in the collapsed graph to form a cycle in the current graph (collapseà or original). If a cycle 

cannot be formed, we must continue wit h the search using the current graph. IF a collapsed 

graph is formed with few or no forced paths, then we continue with the backtrack search. 

Note that after a few iterations of the search, we may have enough forced edges to collapse 

the graph again. 

G. After graph reduction, G is obviously non-Hamiltonian, If the graph coüapse tethnique is applied, the 
resdtiag graph wiii be non-Hamihonian as w e L  Thus gmph G is not a counterexarnpte, 

51 



3.4 Design of a Heuristic Hamiltonian Cycle Algorit hm 

In this section we discuss the design of heuristic Hamiltonian cycle algorithms. Most of 

the heuristic algorit hrns we surveyed in Chapter 2 followed the same basic concept. They 

start building a path, keep trying to extend it until they get a Hamiltonian path, and then 

form a Hamiltonian cycle. No backtracking is ever done: the length of the partial path 

is non-decreasing. The algorithm quits when it cannot find a way to extend the length 

of the path. Thus, the major limitation of these algorithms is the techniques they use in  

extending the pat h. Poor techniques lead to an inability to extend the pat h, which causes 

the algorit hm to fail. 

Therefore. when considering heuristic design issues. the main focus should be on whet her 

techniques improve the ability of the algorithm in extending the path and finding cycles. 

While our end goal is still better efficiency, the structure of heuristic algorithms rnakes 

the time required by a particular technique less important than how successful it is. Note 

how this is different from the backtrack algorithm. The reason for this difference is due 

to the different structure of a heuristic Hamiltonian cycle algorithm. Heuristic techniques 

for extending the path are usually executed a constant number of times per vertex. and a 

maximum of n vertices are exploreci. Backtrack techniques may end up being performed an 

exponential nurnber of times (due to backt racking). 

Most of the search pruning performed by backtrack Hamiltonian cycle algorithms will 

not work wit h heuristic algorithms. The various heuristic algorithrns avoid dead-ends in the 

searcli by modifying the existing path to obtain a new endpoint or a cycle. This requires 

that the non-path edges incident to vertices in the path are not deleted (as they are in 

backtrack algorithms). Thus, since edges are not being deieted during the search, there is 

no point to performing search pruning, since the graph is not changing during the search. 

Initial pruning, however, may still be of use. 

We examine the following issues of heuristic Hamiltonian cycle algorithms in the follow- 

ing sections. 

Algorithm Techniques: Which heuristic algorithm techniques do we have to choose 

from? Which techniques must we choose between? 

0 Search Termination: How does the aigorithm determine when to quit searching? 

0 Initial Pruning: Can the initial pruning done by backtrack aigorithrns be useful for 

heu ristic algorit hms? 



a Search Method: Should the pat h be expanded from one end or bot h ends: a singlepat h 

versus a dou blepat h approach? 

a Vertex Selection: How should vertex selection, both initially and during the search, 

be handled? 1s the low degree first heuristic effective? We intmduce a new heuristic 

technique - the non-path neighbours technique - which provides us with additional 

options for ordering the search. 

3.4.1 Heuristic Algorithm Techniques 

In this section we review the various heuristic algorithm techniques that have been utilized 

in the literature. We discuss how the different techniques can be combined, or if t hey are 

cornpeting techniques that we must choose between. 

To aid our discussion of the various techniques. we divide the actions of a heuristic 

algorithm into three stages. At each stage. the algorithm has a path P which it is trying 

to extend into a Hamiltonian cycle. 

1. The endpoints of the path are adjacent to vertices not in the path. The path can be 

extended immediately (possibly with the use of heuristic techniques to choose between 

different non-pat h vertices). 

2. The endpoints of the path are only adjacent to other vertices in the path. The 

rotational transformation, cycle extension. backt rack mtational transformation and 

crossover extension techniques can al1 be used to extend the path. 

3. The techniques of the previous stage have failed in their search (reached a dead-end). 

The bypass extension and chain extension techniques can be used to extend the path. 

The second stage of search is wliere we have the most choices in terms of heuristic tech- 

niques. The two basic choices are either to perform one or more rotational transformations, 

or to try to form a cycle and use cycle extension. These options are not exclusive. For 

example, when we are considering which rotational transformation to apply, we may want 

to search for one that will lead to a cycle. Order zero and order one crossovers (as per 

the crossover extension technique) are easy to find in this case. If we can not construct 

such a cycle, then we could eit her use the backtrack rotational transformation technique 

or the full crogsover extension technique. Note that these two techniques are not intended 

to be used together. A crossover is esentially a sequence of rotational transformations. 

So if we cannot form a cycle using the backtrack rotational transformation technique, thb 



implies that we will most likely not find a crossover either. One advantage of the backtrack 

rotational transformation technique over the crossover extension technique is that it is con- 

stantly trying to modify the path's endpoints. New endpoints may allow for imrnediate 

extension of the path. The crossover extension technique however is only trying to form a 

cycle so that cycle extension can be perforrned. The backtrack rotational transformation 

technique is also perhaps easier to implernent. 

Another issue relevant to the second stage of the search and the techniques being used 

is when to terminate the search, or in other words, when to give up. This is easiest if the 

crossover extension technique is being used: a maximum crossover order is specified, and 

the search is terminated if no crossover with order l e s  than or equal the maximum is found. 

Otherwise. the algorithm is performing a sequence of rotational transformations. There are 

several search termination rnethods that can be employed, which we discuss in Section 3.4.2. 

In the third stage, the bypass and chain extension techniques are cornplimentary, and can 

both be utilized in a single algorithm. The basic idea of both these techniques is to extend 

the path by modifying an interna1 segment of the path. Note that successful extension of 

the path will dlow us to return to stage two of the search (but not stage one, since the 

endpoints will not have changed). While these techniques can clearly be used to extend an 

existing pat h. their usefulness for a Hamiltonian cycle algorit hm can be questioned. The 

problem is that t hese techniques are only executed when the other techniques are unable to 

extend the pat h, and t hus are unable to form a cycle. Thus the bypass or chain extension 

techniques not only ne& to increase the path length, but also need to permit the other 

techniques to form a cycle. In theory, this is possible (especially if the crossover extension 

technique is used). However, in practise it is unclear if this extra work would result in 

corresponding increase in the success rate of the algorit hm. 

3.4.2 Search Termination 

The issue of search termination is the question of how (or when) to stop the search. In 

this section we examine three digerent rnethods for terminating the search. These meth- 

ods assume the aigorit hm is performing a sequence of rotational transformations. W hen 

evaluating these methods, we look at three diflerent criteria. The first is how well does the 

met hod avoid repetition in the search. When using rotational transformations to rnodify 

the path, it is easy &ter a few transformations to obtain a previously-seen path. Since 

searching a path more than once wül not produce any new results, we want to avoid repe- 

tition. The second criteria is how weii does the algorithm avoid ignoting unexploreci paths. 



If' the met hod is too strict in terminating the search (to avoid repetition). t hen unexploreci 

paths will not be tried. Thus, we want an optimal balance between these two criteria. The 

third criteria is ease of implementation and efficiency of execution. 

We now present and evaluate the three search termination methods. 

certezonce: Permit each vertex to occur as an endpoint of t he pat h only once. If t his leaves 

no choices for performing a rotational transformation t hen terminate the search. This 

met hod from P6sa's algorithrn is easy to implement and helps avoid repeating paths 

we have considered before. However, occasionally repeating an endpoint via a different 

transformation may help u s  form a cycle. 

mtationlimit : Limit the nurnber of rotational transformations applied. If the backtrack 

rotational transformation technique is being used, then this is equivalent to limiting 

the search depth. This method from the HAM algorithm is easy to implement but 

allows for paths to be repeated in the search, and thus we do not prefer it. 

edgeonce: Permit each rotation edge used in a rotational transformation to be only used 

once. (If the endpoint vertex is e and the neighbouring vertex in the path that the 

transformation uses is v then the rotation eâge is (e, v ) . )  This method from the 

SparseHam algorithm is less restrictive than the vertexonce rnethod. but will still 

prevent paths from being repeated in the search. For this reason. we prefer this 

search termination method. However, the edgeonce method is l e s  efficient (requiring 

more time and perhaps space) compared to the vertexonce method. 

3.4.3 Initial Pruning 

We discussed initial pruning in Section 3.3.1 with respect to backtrack algorithms. Much 

of that discussion also applies to initial pruning and heuristic algorithms. However, it 

is possible that initial pruning can impede the performance of a heuristic algorit hm. The 

deletion of unnecessary edges (when pruning) may restrict the heu ristic algorit hm's options, 

and cause it to hit a dead-end and quit rather than be able to extend the path. The 

dgonthm rnay temporarily need to use edges that ean't be in any Hamiltonian cycle in 

order to rearrange the path and further extend it, replacing those edges later on. 

Note that initial pruning can detect that no Hamiltonian cycle is possible on a given 

graph. By including such pruning in a heuristic algorithrn, it gives the algorithrn the ability 

to determine and report that certain graphs are non-Uamiltonian, rather than always faîi 

in such cases- 



3.4.4 The Search Method 

In t his section we examine how the search should be performed. .As the heuristic algorithms 

extend the path, whet her by normal extension or by the rotational transformation technique, 

the issue of which endpoint to use arises. As we discuss in Section 3.3.2 for backtrack 

aigorithm design, we have two options: the singlepath met hod (use only one endpoint) and 

the dou blepath met hod (use both end points). Heu ristic algorit hms using the dou blepat h 

method have implemented this type of search using two different approaches. The partial 

approach is to start with the singlepat h met hod and only switch to searching frorn the ot her 

endpoint if the algorithrn reaches a dead end. The full doublepath approach is to consider 

expanding from either endpoint of the path at each stage of the search. 

Using an exarnple of second-order crossover from Kocay and Li (201. we can show that 

certain graphs require the full doublepath approach in order for a Harniltonian cycle to be 

round. See Figure 3.2 for our exarnple. The initia path P could either be Hamiltonian or 

could represent a stage in the search where cycle extension is needed to extend the path. 

Our goal is to forni a cycle to allow the use of cycle extension. We first must perform a 

mtational transformation on the W endpoint (to obtain path P'J and then perform two 

rotational transformations on the other endpoint before obtaining cycle C'. Inspection of 

the initial path P shows that if we only perform rotational transformation on one endpoint 

there is no way to form the cycle. 

Frorn t his example, we expect that the full doublepat h method will be the most successful 

of the different search met hods. And since it does not involve much additional computation, 

it will rnost likely be efficient. 

There is another possible benefit to using the doublepath approach. By expanding 

the path from both endpoints, the final path (even if not Hamiltonian) will tend to be 

longer than the paths obtained using the singlepath approach. So if obtaining long non- 

Hamiltonian paths is an acceptable approximation to finding a Hamiltonian cycle, then the 

dou blepat h search met hod is clearly s u  perior. 

Note that the search method is not relevant if the crossover extension technique is used, 

since this replaces the rotational transformation technique and always tries to extend the 

path using cycle extension. in this case, we can not consider the path as king extended 

from a single endpoint. However, the algorithm's actions are similar to one that uses the 

dou blepath method wit h the backtrack rotational transformation technique. 



Path P 

romtional transformation 
using venices U and W 

Path P' 

rotationai transformation 
using venices V and X + 

rotationai transformation 
using venices X and W + 

Figure 3.2: Sample graph for which the full doublepath search method is required. 



3.4.5 Vertex Seiection 

In t his section we examine the process of vertex selection. At each stage of the search. 

a heuristic Hamiltonian cycle algorithm has choices to make depending on the techniques 

it is using. We assume that the algorithm is using the singlepat h search met hod, so the 

aigorithm is trying to expand the path from a particular endpoint vertex. (Our discussion 

is easily generalized for the dou blepat h search met hod.) 

With each neighbour of the endpoint. there are several possibilities. First, the neighbour 

is not in the path. Second, the neighbour is the other endpoint of the path. (A cycle 

exists which means that the cycle extension technique can be used.) Third. the neighbour 

is in the path, and the rotational transformation technique can be applied. The naive 

approach is to randomly select a neigh bour of the endpoint, and perform the corresponding 

action. A more intelligent approach is to use heuristics to guide our selection. In the next 

section we discuss some of the basic heuristics that corne to mind. including ones we have 

examined for the backtrack aigorithm (see Section 3.3.3). In the subsequent section we 

introduce two heuristics based on a new technique of our devising whicli we cal1 the non- 

pat h neigh bours technique. Finally, we corn bine the differen t heu ristics into a single vertex 

selection algorithm. 

Another aspect to vertex seiection is choosing the initial vertex to start a search with. 

One method is to choose a vertex at random. One heuristic is to choose the vertex of Iargest 

degree, to provide the most edges for forming the cycle at the end of the search. However, 

this is of questionable use if the cycle extension technique or the dou blepath search met hod 

are used. since both these techniques can modify the starting vertex. Another approach 

is to try each vertex as the initial vertex by executing the algorithm n times (or until a 

Hamiltonian cycle is found) . 

Basic Heuristics 

The first obvious heuristic used by many of the Harniltonian cycle algorithms we surveyed 

is to always select a neighbour (of the endpoint) not part of the current path if one exists. 

since this will immediately increase the Iength of the path. 

If more than one neighbour is not in the current path, then we again have a choice 

to make. The obvious heuristic (which amazingly is not used by many of the heuristic 

algorithms we surveyed) is to foUow a forced edge in preference to any other. Note that 

there cannot be more than one forced edge if initial pruniq using graph reduction was 

performed. If there is no forced edge? then we can use the low degree first heuristic to 



choose between non-pat h vertices. 

If al1 the neighbours of the endpoint are part of the current path, t hen we will be using 

the mtational transformation technique to modify the path. Our goal i î  still to extend the 

path, so we should first select a neighbour that will allow u s  to forrn a cycle. If a neighbour 

of the end point corresponds to vertex vi in the path. then we want vertex ui+i to be adjacent 

to the starting vertex s( Pl.  After forming a cycle. we can use the cycle extension technique 

to expand the pat h. 

The Non-Path Neighbours Technique 

In this section we introduce two new heuristics based on a new technique we devised called 

the non-path neighbours (NPN) technique. The technique is simple and easy to implement. 

We denote the number of non-path neighbours of a vertex v by NPN(u). Initially, for each 

vertex o, we set NPN(u) = d(aJ .  Whes a vertex x is added to the path. then for each 

w E N ( x )  we decrease NP.V(wJ by one. Basically, the technique tracks the number of 

neighbours of each vertex that are not mernbers of the current path. 

We can now use the NP.! values to guide our search in two different ways. The first way 

we cal1 the NPN path extension heuristir. Let us assume that the current endpoint of the 

path is e, and NPN(e) > 1, which means that e is adjacent to multiple vertices {tri, v*, . . .} 
not in the patli. Instead of just choosing a random vertex ui as we would normally do, we 

fiat check i l  any u, has NP!V(q) > O. If so. this means that the vertex v; is adjacent to 

another vertex not in the path. Thus we select t>j as the next vertex in the path, knowing 

that we will be able to expand the path again. This heuristic thus help delay that point 

in time when the algorit hm must use the rotational transformation or cycle extension to 

further extend the path. 

The second way of using the NPN values to guide the search is in selecting a vertex 

on which to perform the mtational transformation. This NPN rotational transformation 

heuristic is a bit more complicated to compute, but has  the same end result as the prior 

heuristic: we want the new endpoint of the path to have at least one neighbour not in the 

path, because this will aIlow u s  to easily expand the path. W e  start with the endpoint 

e of the path P having neighbours {vi, v2, . . .) which are al1 mernbers of the path. (We 

exclude the vertex prior to e in the path - P- (e) - from this list.) The new endpoint after 

a rotational transformation using neighbour ni wiIl be the next vertex in the path after ni, 

P c ( n i ) .  Thus the heuristic is to select a neighbour nj for which N P N ( p f ( n j ) )  > 0. 

It is unclear how useful the NPN path extension heuristic wiU be. By prefering vertices 



adjacent to ot hcr non-pat h vertices, the algorit hm avoids selecting vertices adjacent only 

to path vertices. These isolated vertices may be difficult to introduce into the path at a 

later point in time. and cause the algorithm to fail. So it is possible that this heuristic will 

tend to produce longer paths, but be l es  likely to form Hamiltonian cycles. Secondly, this 

heuristic only gets used when there are multiple non-path vertices adjacent to the current 

endpoint. Such situations would seern to occur more at the beginning of the search. rather 

than near the end, w hen the choices are much more const rained. Since the algorit hms tend 

to fail only near the end. when their choices are exhausted. the heuristic's abiiity to improve 

an algorit h m's performance is questionable. 

The NPN rotational transformation heuristic on the other hand seerns rnuch more useful, 

especially if the backtrack rotational transformation technique is not being used. Basically, 

if one of the possible rotational transformations will lead to a path extension, this heu ristic 

will find it. So the heuristic causes the backtrack rotational transformation technique to 

require one less level of search (approximatelyj. Without the backtrack rotational transfor- 

mation technique, the algorithm can easily become stuck after perforrning a few rotational 

transformations, selected at random. With the heuristic, it seerns that the algorithm has a 

much bet ter chance of event ually extending the path again. 

A Combined Vertex Selection Algorithm 

Using the different heuristics described above we are able to construct a cornbined algorithm 

for vertex selection. Figure 3.3 contains the vertex selection algorithni. It is executed at 

each stage of the search on a current path P and on a graph G'. Note that this algorithm 

combined with the various heuristic algorithmic techniques forms a nearly complete heuristic 

Hamiltonian cycle algorit hm. 

The only part of the algorithm that requires some additional work is the last line, 

the point at which the algorithm is unable to immediately extend the path. We had the 

algorithm randomly select a neighbour which it could use to perform the rotational trans- 

formation. If we were using the backtrack rotational transformation technique, then we 

would want to add the different possible pat hs (after the transformations using the differ- 

ent neighboursj to the list of paths to explore. Additionally, we need to avoid repeating 

parts of the search that we have already done, and we need to terminate the search if we 

cannot avoid repetition, which indicates the search has reached a dead-end. 



VertSelectAlg(graph G, pat h P) { 
Let N = N(e(P)) 
If 3v 1 v E iV ,vg  P then { 

Let W = { X ~ X E N , X $ P } .  
If 3v 1 L? E W and d ( v )  = 2 then 

Choose v (edge (e( P), v )  is forced) 
Else if 30 1 v E W and NPN(u) > O then 

Choose v  (the NPN rotational transformation technique) 
Else choose u E W such that d ( v )  is a minimum 

(the low degree first heuristic) 

1 
Else { (we must select a vertex already in the pat h )  

If 3r 1 v E V and NPN(P(v) )  > O then 
Choose o (the NPN rotational transformation heuristic) 

Else if 3v 1 v E C' and ( P ( u ) , s ( P ) )  E E(C) or t* = s ( P )  then 
Choose v (form a cycle for the cycle extension technique) 

Else (we are unable to immediately expand the path) 
Choose a random a E V (to apply the rotational transformation) 

1 
1 

Figure 3.3: The vertex selection algorit hm. 



3.5 Conclusions 

in this chapter we have examined issues involved with the design of Hamiltonian cycle back- 

track and heu ristic algorit hms. We first discussed some general aspects of algorit hm design, 

and introduced our definition of an efficient algorithm as an algorithm which minirnizes 

the tirne required to soIve the problem. We then used this definition as the basis for our 

analysis of t hc different algorit h mic techniques and heuristics available for the two different 

types of algorithms. 

Our examination of backt rac k Hamiltonian cycle algorit h ms involved th ree areas: prun- 

ing, the search method, and vertex selection. Our most important work involved pruning. 

We consolidated and organized the different pruning techniques taken from the algorithms 

and theorerns reviewed in Chapter 2 by establishing two sets of categories of pruning. We 

defined initial pruning and search pruning as one set of categories and graph reduction 

and global checking as the other set of categories. We also introduced the graph collapse 

technique, which may be of possible use when trying to solve hard non-Hamiltonian graphs. 

Our discussion of heuristic Hamiltonian cycle algorithm design dealt with rnany differ- 

ent issues: algorithm techniques, search termination methods, initial pruning, the search 

method and vertex selection. Our analysis indicates that there exist strong reasons to ex- 

pert certain methods to perforni (in general) better than others. In particular. we expect 

the edgeonce search termination met hod is the best choice of the t hree we examined and 

the full doublepath search method is the best choice of the three search methods available 

to heuristic algorit hms. Our discussion of the issue of vertex selection (in Sectio~i 1.4.5) 

is where we introduce several new improvements. We develop new heuristics based on a 

new technique we cal1 the non-path neighbours technique. We also develop a new vertex 

selection algorithm incorporating these heuristics and others which is expected to increase 

an heu ristic algorit hm's efficiency as compared to previous strategies for vertex setection. 

Throughout our discussion on algorithm design we observed cases where the use of a 

particular technique or heuristic depended upon the nature of the graph the algorithm 

would be used on. For example, the use of graph reduction in initial pruning is useleas 

if no degree 4 vertices exist in the graph. The use of global checking, and in particular 

detection of cutpoints, is extremely useful for random graph classes such as G,,, for which 

a high proportion of the non-Hamiltonian graphs are not biconnected. Other examples 

wist. The point is that dgorithrnic design should not be done in a vacuum: any knowledge 

about the types or properties of graphs that one is trying to solve can be important for the 



design process. This applies even to algorithms solving arbitrary random graphs. for the 

probability distribution used in generating these graphs will affect the probabilities of the 

graphs have different properties. which will affect the design. 



Chapter 4 

Generalized Knight 's Tours 

4.1 Introduction 

The knight's path problem (also referred to as the knight's tour problem) ' is based upon 

the game of chess *. It involves rnoving a knight from square to square on the chessboard, 

visiting each square only once. until al1 the squares have been visited. The knight's circuit 

problem is an extended version of t he knight's path in which the knight is required to return 

to its starting square after visiting al1 the other squares. Various solutions to both of these 

problerns have been devised over the years. See [3] for a discussioii. 

The knight's circuit problem is of interest to u s  because it is a subset of the Hamiltonian 

cycle problem. As such. it can serve as a method of generating problem instances to test 

Hamiltonian cycle algorithms. In particular, we would like to find hard instances (or hard 

sets of instances) that our algorithms do poorly on (see Chapter 5). In addition, insights 

we gain into the knight's tour problem may be of interest to mathernaticians. 

The knight's circuit problern can be easily translated into a specific instance of the 

Hamiltonian cycle problem if we consider each square on the board to be a vertex v in V ,  

and add an edge (v i ,  vj) to E if a knight can move from square vi to square vj.  Note that the 

basic knight's circuit problem is only one instance of the Hamiltonian cycle probfern, and 

thus of limited use for testing Hamiltonian cycle algorithms. Furthermore, various solutions 

to the knight's path and knight's circuit problems have been presented over the years. (See 

[3] for a discussion.) The Iogical next step is to generalize the knight's circuit problem in 

some fashion, to get a set of relateci problems. Such a set could be used as a testbed of 

'The Iiterature is not consistent in its terminoiogy for distinguishing between knight's tours and knight's 
Qrcuits. Some authors use the term "knight's tour" to refer to both paths and cycles (Le. [Z]). Our 
terminology cornes h m  [il]. 

'The game of chess involves movîng pieces on au 8 x 8 board, with alternathg squares colored biack and 
white. The knight moves în an Lshaped pattern, 1 square horizontaily or vertically, and 2 squares in the 
perpendicuiar direct ion. 



Hamiltonian cycle instances for testing Hamiltonian cycle algorithms. 

In this chapter we investigate generalizations of the knight's circuit problem. In Sec- 

tion 4.2 we examine previous work. which has mainly dealt with varying the size of the 

chessboard. We refer to this as the rectangular knight's circuit problem. In Section 4.3 we 

introduce the generalized knight's circuit problem, where the rnove of the knight is allowed 

to Vary along with the size of the chessboard. In the remainder of the chapter we present 

various proofs. experimental results and observations on the existence and non-existence of 

knight's circuits for this generalized probleni. We present our conclusions in Section 4.8. 

4.2 Previous Work 

The majority of the work done on generalized knight's tour problems has been on arbitrarily- 

sized rectangular chessboards. The rectangular knight 's circuit problem is formulated as 

follows: find a circuit of knight's moves on a n x na chessboard (where n 5 m by convention). 

Of interest is the set of values of n and m for which circuits exist (or do not exist). 

Schwenk ['Li] deterniines for which values of n and rn circuits cannot exist, and proves 

that circuits exist for al1 other values. Cul1 and De Curtins [l'LI provide a similar proof to 

show the existence of circuits and tours for most values of n and m. Their results can be 

summarized as  folbws. A n  n x nt board, with n ( m. has a knight's circuit unless one or 

more of tlirec conditions hold [Z]: 

n = 3 and m = -L,6,8 

A knight's path exists for n x rn boards where m 2 n 2 5 [12]. 

The arguments and proof techniques used in these papers will be briefly reviewed here. 

The proofs presented in the latter part of this paper are in part extensions of these tech- 

niques. 

The proofs for the existence of tours or cycles presented in [12] and ['L'il are inductive 

construction prmfs. The aut hors presented a set of tours or cycles for specific, small boards, 

and then showed how these solutions could be connected together to solve larger boards. 

An inductive argument was used to conclude the proof. 

3The authors do not discuss the existence of knight's path on boards where one of n, m is less than 5. 
Obviousiy, those boards with cydes (such as 3 x 10) will also have knight's paths, boards with no circuit 
(such as any of size 4 x m) m-ght have a knight's path as w d .  



More specific proofs were used to determine the conditions for which a knightk circuit 

could not exist (see [2'7]). Some of these proofs utilized various conditions from graph 

theory about the existence of Hamiltonian cycles, which wiIl not be discussed here. The 

more significant of these proofs are presented below. 

Lemma 1 il high t  's moues on a chessbwrd mus; alternate b tween &la& and white squams. 

Proof. Let u s  represent an arbitrary square on the chessboard as  ( i .  j ) ,  with 1 5 i n 

and 1 < j 5 m. We define the parity of the square as even if (i + j) mod 2 = O and odd if 

(i + j) mod 2 = 1. By this definition, al1 squares of a single color are a single parity (if al1 

even parity squares are white, then al1 black squares are odd parity). If the knight starts 

at locatioii (i. j )  with parity p = ( i  + j) mod 4, then its location after one move will be 

(if { l ,  21, j f {2, l}), and its new parity will be q = ( i  + j f {l, 3)) mod 2. Clearly, q # p, 

which demonstrates that the knight will switch parity with each move. and thus will switch 

colors. D 

Theorem 12 lf the n x rn board of a rectangulnr h i g h t  's circuit problem contains an odd 

number O/ squares. no c i m i t  exists. 

Proof. The proof follows directly frorn Lemma 1. Since in a circuit the knight rnust end 

on a color opposite froni its starting color in order to return to the start, the knight must 

traverse an qua1 number of black and white squares, which means that the total number 

of squares on the board must be even. O 

Theorem 13 -4 4 x rn h n i  cannot hace a circuit for any mlue o j  nz. 

Proof. "sume rhat a circuit C exists for the 4 x m board. Let us  partition the squares 

of the board into two sets (or colors), X and Y. The top and bottom row of the board is 

in set S, and the middle two rows of the board are in set Y .  Note that from a square in 

set X, a knight can only reach a square in set Y (see Figure 4.1). In circuit C, any move 

to a square in  set X must therefore mean the knight came from a set Y square, and will 

next move to a set Y square. Since 1x1 = IYI, circuit C must therefore alternate between 

squares of set X and set Y. By Lemma 1 we know that any circuit must alternate between 

black and white squares. This implies that al1 the squares of set S must be just one color. 

But from the partition of the board, it is char that both sets contain both black and white 

squares. So there is a contradiction, and therefore no circuit C exists for the 4 x m board. 

O 

'Schwenk [273 credits Louis Ptha for disrovering this proof. 
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Figure 4.1: The partition of a chessboard into sets X and Y: a knight on a square in set ;Y 
can only reach a square in set Y. 

4.3 The Generalized Knight >s Circuit Problem 

Initial experiments on the rectangular knight's circuit problem using bot h backtrack and 

heuristic Hamiltonian cycle algorit hms revealed t hat circuits were easily found, and t hat 

the difficulty (of finding circuits) increased only slowly as the probiem size grew larger. In 

our search for harder problems, a natural step was to further generalize the knight's circuit 

problem by allowing the size of the knight's rnove to vary. We specify a generalized knight S 

rnove by a pair (-4, B) ,  .4 B. which signifies that a move can be made from a square ( i ,  j )  

to any square ( i f  {A, B}, j f (B ,  A } ) .  As an example. the standard knight's rnove is (1,2). 

We allow the board size n x m to vary as  well. W e  cal1 this problem the generalized knight's 

circuit problem, and any instance is specified by the 4tuple ( A ,  B) - n x m. 

As has been done for the rectangular knight's circuit problem, wt? would like to determine 

for the generalized knight's circuit problem which instances or sets of instances have a circuit 

and which do not. We ignore certain trivial cases: il = O (piece moves in a straight line) 

and n B (piece forced to rnove in a straight line). We also ignore ( 1.2) - n x rn since it 

has been previously discussd. 

To begin our investigation of the generalized knight's circuit we obtained empirical 

results using a backtrack Hamiltonian cycle algorithm 5. To help organize our results, we 

define an instance class of the generatized knight's circuit problem to be a set of instances 

(A, B) - n x m with A, B, and n fixed, and with m allowed to vary '. 
Our initial experiments on different instance classes produced a variety of results. For 

some classes, we easily found circuits for many values of m. For other classest our algorithm 

quickly indicated that no circuits existed for al1 values of rn that we tested for. A few instance 

classes only seemed to have circuits for particular values of m. These preliminary results 

indicate that the question of a circuit existing for a particular instance (or instance classj of 

'Our backtrack Hamiltonian cyde algorithm uses the singlepath search method, full initial pruning (graph 
reduction and global checkîng), bcd pruning using graph reduction. Vertex selection is done using the Iow 
degree first heuristic, and the initial vertex is selected randomiy. 

'A sample instance dass is (1-4) - 5 x m. 



the generalized knight's circuit problem is non-trivial and therefore worthy of investigation. 

In Section 4.4 we develop proofs for the non-existence of circuits for particular instance 

classes, using the work of Schwen k and ot hers (as discussed in Section 4.2) for inspiration. 

Based on Theorem 13, we develop a more cornplex proof technique we cal1 the partilion 

proof technique. This technique and the proofs resulting from it are presented in Section 

4.5. In Section -4.6 we perform an empirical investigation of the existence (or non-existence) 

of cycles on instance classes of the generalized knight's circuit problern. The results display 

interesting patterns in the existence of circuits for various sets of instances which we make 

observations and conjectures about. In Section 4.7 we apply these resuIts to a specific 

instance class (1,4)  - 5 x m and develop some proofs concerning the existence and non- 

existence of circuits wit hin t his instance class. 

4.4 Non-Existence Proofs for the Generalized Knight9s Cir- 
cuit Problem 

We consider a n x m board with the upper left corner labelled (1.1), and the bottom right 

corner labelled (n, m). 

Theorem 14 If .4 + B mod 2 = O, then the ( A .  B )  - n x rn instance of the g e n e m k e d  

Lnight B cimuif pmbkm has no circuit. 

Proof. Consider the parity of the squares the piece can move between. If the piece starts 

in an arbitrary square ( i ,  jJ with parity p = ( i  + j) mod 2. it will move to a square ( i  * 
{A, BI, jf {B,A} ) ,  wfth parity g = (i+ jIAf B) mod 4. Thus, p = q, and the piece ean 

never reach a square of opposite parity. 0 

If -4 = B, t hen no circuit is possible by t his t heorem. Therefore we only need to consider 

instances where -4 < B. 

Coroiiary 14.1 An (.4, B)  - n x m instance of the genemked  Anight 's cim~it problern has 

no eiiruit if nm mod 2 = 1. 

Proof- Since a piece's moves must change parity, the piece must alternate between black 

and white squares, just l i b  a Lnight. This means that Theorem 12 holds for the generalized 

knight's circuit problem, independent of the values of A and 8, and therefore for a circuit 

to exist the number of squares comprising the board must be even. O 

'An alternate way to start the proof is to cealize that a piece with an even sum of A and B cau never 
rnove from square (1, 1) to square (t,2). 



Figure 4.2: For .4 + B > n, square (A, 1) has a maximum degree of 1. 

Theonm 15 A n  (A, B )  - n x rn instance has no circuit i /  B = kA. -4 > 1. k 2 1 

Proof. Consider a piece with a move of the form (.4, k-4) on square (i. j), that ends up on 

square (i + r ,  j + y) after an arbitrary number of moves. The displacements in position, x 

and y, must each be a linear combination of A and k.4. So x = SA + tk.4 = A(s + t k ) .  If 

A > I, t hen x # 1 for al1 values of s, t. 8. Therefore, the piece can never reach a square 

adjacent to (i. j), and thus no circuit (or path) is possible for such a piece. on any sized 

board. 0 

Theorem 16 .in (A.  B) - n x m instance has no h u i t  i / A  + B > n. 

Proof. (bnsider the square (.4.1) of an arbitrary (.4, B) -n  x rn instance. The only possible 

destinations of this square are (-4 + A, + B) and ( A  + B. 1 + A). (Square (A - A, 1 + B) 

is not on the board.) If A + B > n, then the second square (A  + B, 1 + A) is not on the 

board, and the maximum passible degree of square (.4,1) is 1. From basic graph theory, 

euh vertex in a graph must be adjacent to at least two other vertices for a Hamiltonian 

cycle to exist. Thus no circuit is possible. See Figure 4.2. O 

Theorem 17 An (-4, B) - n x rn instance has no cimit i /  A + B < n 3A. 

Proof. Consider the square S = (1 + A, 1 + B).  We show t hat the square has 3 neighbours 

of degree 2 if the conditions hold. The 3 neighbours of S are Ni = (1,1), N2 = (1 + 2A, 1) 

and N3 = (1 + -4 + B. 1 + B - A). Note that for N3 to be on the board, n 2 1 + -4 + B. 

if this holds, then N2 is dso on the board since A < B. So if n > -4 + B, then S has 3 

neighbours. See Figure 4.3. 



Figure 4.3: Square (1 + A, 1 + B )  has 3 neigh bours of degree 2. 

We now show that each of .Ni, &, & has a maximum degree of 2. Square Nt has only 

two neighbours, S and (1 + B, 1 + .4) since any subtraction would leave one coordinate < 0. 

Square & has neighbours S, ( l + ? A - B ,  1+A), (1+?.4+.4,1+B) and (1+24+B, l+A) .  IF 

we set the condition n < 1+2A+A, which simplifies to n 3.4, t hen the last two neighbours 

will not be on the board, and N2 will be of degree 2. 

If we let square N3 = (J ,  h'), so J = 1+A+ B and Iï = l +  B-.4, then the neighbours of' 

N3 are Xi = (J+A, KfB) ,  .Y2 = (Jf.4, K-B), .Y3 = ( J -A,  I\'+BJ, S4 = (J-A, K - B I .  

& =  ( J+B,K+A),&= ( J + B , K - A ) , . X ï = ( J - B , I î + A )  and&=(J-B,K-A).  

.Y3 = (1 + B, 1 + 48 - .4) is on the board. X; = (1 + A, 1 + B) is square S ,  which is on the 

board. 

SI, .Y2 = (1 + 2.4 + B. 1 + B - .4 * B)  are not on the board, since n 5 3.4 and B > .4. 

.Y4 = (1 + B,  1 - A) is not on the board for ,4 2 1, and we are ignoring the .4 = O case as 

trivial. Xs, .&3 = (1 + A + ?B, 1 + B - A f A) are not on the board because A + 2 B > 3.4 

and n < 3.4. = (1 + A, 1 + B - 2A), which is not on the board if 1 + B - 2.4 5 O. 

Rearranging we get the condition B < 2.4. If this holds, then N3 is of degree 2. However, 

combining the conditions A + B < n and n 3A gives us -4 + B < 3A, or B c 2.4, so this 

t hird condition is already included in the prior conditions 

Square S therefore has 3 neighbours which are each (at most) of degree 4 if A + B < 
n 5 3.4. By Theorem 2 no circuit is possible in such a graph, and the t h e o w  is proven. a 

4.5 The Partition Proof Technique 

The proofs in this section utilize a proof technique we generdized from Theorem 13, which 

we refer to as the partition proof technique. We first explain this technique, then proceed 

with the proofs that are based on this technique. 

The proof technique consists of three steps. We start with a graph G = (V, E )  for which 



we wish to prove that no Hamiltonian cycle exists . The first step is to form a partition 

n(V)  = { P l ,  P2 ,.... f k }  with = { v ~ ~ ~ u ~ ~ ~ . .  .,vjk,) where W Pz U ... U Pk = b' and 

V i #  j . R n f ,  = a .  
The second step is to construct what we refer to as the contraction graph. We define the 

contraction graph of graph G = (V, E )  as the graph T = ( i i(Y), En} satisfying Vi ,  j 1 1 

i .  j < k. (R .  5)  6 En * Va-b 1 L 5 R 5 Ei, L 5 b < k,. (cia+ Ujb) 4 E. (This last constraint 

can be restated as VL < i. j < k. ( P , ,  P,) E En if 3 x  E Pi ,  y E P; 1 (x,y) E E } .  Note that 

a contraction grapli may have an edge between two vertices whoae corresponding partition 

elements are not joined by an edge. although we never actually construct a partition in 

which this occurs. The condition is set up in this way to allow the composition of two 

contraction graphs to itself be a contraction grapli (see Lenima 2 below) . Since vertices can 

have edges to themselves, the graph can be non-simple. 

The third step is to prove that the contraction graph T of step two combined with the 

properties of the partition iI obtained in step one make it impossible for a circuit to exist. 

This is done by selecting a particular element of the partition as a cutset and then showing 

that the resulting number of components (alter the cutset is removed) is greater than the 

size of the cutset. By Theorern 5 ,  no Hamiltonian cycle can exist in such a graph. 

We now prove two lemmas concerning partitions and contraction graphs that will be 

needed for our proofs. First. we consider two different partitions Ili(Cr) = {Pli, . . . , &, } 
and nj(CI) = {Pji,.. . , Pl&,} with corresponding contraction graphs Ti(G') = (LIi(V)? Ei) 

and T,(C;) = (iI,(C'), E,) on the graph G = (La', EE). We define a refined partition nij(Cr) = 

{Pi.. . . , Pk, .k, } such that each element of ni, is formed by the intersection of an element 

from ni and one from ii j. We refer to the formation of a refined partition in t his manner 

as  the merger of the two original partitions. 

We define the refined contraction graph T(G) = Ti(G) O Tj(G) = (nij(V), Eij) where 

a is the cross product operator. liij(V} is the refined partition of LTi(V) and IIj(V}. If 

we consider two arbitrary elements of nij(V), A = Ai n -4; and B = Bi n B,, where 

Ai+ Bi E ni(V) and .4,? B; E n,(V) then (A, B) E EG iff (Ai, Bi) E Ei and (Aj,Bj) E Ejo 

Lemma 2 The d n e d  grBph T = (ii, Er) is a contraction gmph. 

Proof. To show t hat gaph  T is a contraction graph we must prove that (A, BJ Er =+ 

Vx E -4, y E B; (xT y) # E where A, B represent both vertices of T and elements of the 

partition Ii, and x, y represent vertices of the original graph alth edgeset E o  

"WhiIe the technique works for al1 graphs in generai, we apply it only to graphs constructed h m  a piece 
moving over a rectaugular grid. 



To prove the implication we assume an arbitrary (A. B} $ Er. From the definition of 

the formation of T above, this implies that (Al, &) 4 El or (A2? B2) 4 E2. Without Ioss 

of generality. we assume that (Al ,  BI) 4 El. By definition of a contraction graph. we have 

V x  .Ai. y E Bi. ( x .  y) 4 E. Since -4 = Al n Az, .4 C At and similarly B C B I .  Thus 

Qx .A, y E B. (x, y} 4 E. which concludes the proof. O 

Lemma 3 the partition n of n gmph C induces a conlrnction gmph T with u degme 1 

certez x with neigh6our y (comsponding to elements X and Y ) .  then Y is a cutset of Ci 

whose dektion will creat~ 1x1 components !rom the eiement S .  

Proof. By our definition of a contraction graph, a vertex in eiement X has no edges to 

any vertices other than those in element Y. When Y is removed, each of those edges is 

removed. isolating each vertex in X and making each an individual component. thus creating 

1x1 cornponents. a 
.As an example of t he partition p m /  technique, we reprove Theorem 13 (which states that 

a 4 x rn board cannot have a circuit for any value of m)  using this technique. We partition 

the board as before: the top and bottom rows are in set X' and the rniddle two rows are in set 

Y. We now consider a second partition 112 of the board into sets B and W corresponding to 

the black and white squares respectively. By Lemnia 1 we know the knight must alternate 

between black and white squares. which restricts the the corresponding contraction graph 

Ta to a single edge connecting the two vertices B and W. The contraction graphs Tl and 

T2 for partitions ni and il2 respectively are displayed in Figure 4.4. 

We rnerge the two partitions to get a new partition iI with elenients -YB? X w ,  YB, Yb<' 

and a new contraction graph T according to Lemma 2 (see Figure 4.5). Since edge (S. S )  

does not exist in contraction graph Tl, there is no edge between S g  and Xw in the refined 

contraction graph even though edge (B. W }  exists in graph T2. 

From inspection of the board (see Figure L I ) ,  it is clear that the size of each element 

of II equals $ V I .  Deleting Yw, a cutset, produces : [ V I  components from element S g  by 

Lemma 3, plus one extra component (at least) from the remainder of the graph (elements 

Xw and b). Since IYw[ = alt'l, by Theorern 6 no circuit exists. and the proof is complete. 

Theorem 18 An (-4, B )  - n x rn instance has no cinruit g2.4 + B n -4.4. 

Proof. This proof is an extension of Theorem 13 for the generalized knight's circuit 

problem, and 'w very sirniiar to our new version of the proof presented above. We partition 

an arbitrary board into 2 partitions S and Y, where X contains the top and bottom A 



Figure 1.4: The two contraction graphs for the two partitions for Theorem 13. 

Figure 4.5: The contraction graph for the merged partition for Theorem 13. 

rows, and >* contains the ot her n - 2.4 rows in the middle. (See Figure 4.6.) If n - 2.4 2 B 

then squares in S can only reach squares in Y, and the resulting contraction graph is the 

sarne as the left one in  Figure 4.4. 

We make a second partition o l  the board into sets B and W containing the black and 

white squares respectively. The merger of these two partitions creates a contraction graph 

identical to that of Figure 1.5. Since the original X and tg partitions contain an equal 

number of black and white squares. lxB( = .4m and IYvl = ( n  - 2A)m/2. Using Lernrna 

3 with element Yw as the cutset produces Am + 1 cornponents at least. By Theoren, 

5 no circuit can exist if Am + 1 > (n  - 2A}rn/2. Rearranging gives us  the condition 

n 5 4.4. Combining this with the condition n - 2.4 2 B results in the final condition 

2.4+ B n 5 4.4. O 

Theorem 18 An ( A ,  B) - n x m instance has no cimit i /  for some k 2 1. B > A(% - 1) 
a n d n = B + A ( 2 k -  1)+1. 

Proof. The general idea behind this proof is to specify a partition n = (S,Y,Z) that 

creates a contraction graph with (X, Y) E E, X degree 1, and IXI = [YI. This will satisfy 

the requirements for Lemma 3. The structure necessary for this partition allows u s  to derive 

the conditions stated in the theorem. 

Note that n must be even if n = B + A(2k - 1) + 1. 2k - 1 Ïs always odd, which means 

the product A(2k - 1) mod 2 = A mod 2. Since we want (A + B)  mod 2 = 1 by Theorem 

'For k = 1, this reduces to B > A and n = B+ ,4+ 1. Shce B > -4 is r e q W  by Theorem 14, t b  

means that for any instance ( A ,  B )  - n x m, if n = A +  B + L no circuit exists. 



Figure 4.6: The first partition of the 

14. n must be even. 

EZI Set X 

0 Set Y 

board for Theorern 18. 

Therefore the board can be divided into two halves: the top 5 rows and the bottom q 
rows. The partition is arranged as follows. For the top 3 rows, every .lth row alternates 

between being in X and 1'. with a11 other rows being in 2. So set X contains rows 1 + 
2.4.1 f4.4,. . . ,1+ 2.4(k - 1). Set k' contains rows 1.1 + AT 1 + 3.4.. . . , 1 + .4 + 2A(k - 1). 

Note that k equals the number of .Y and Y rows in the top half of the board. The partition 

of the bottom half is a mirror image of the top half. Rows n, n - 2.4.. . . , n - 4A(k - 1) are 

in S. rows n - -4. n - 3.4.. . .. n - .4 - SA(k - 1) are in Y and the rest are in 2. See Figure 

4.7. 

Vertex ;Y in the contraction graph is degree 1 if the only valid move From a vertex in 

element X is to a vertex in Y. On the board, any move from a square in X by a distance A 

in the vertical direction wilI end up on a square in Y since in the construction the rows in 

X and Y are separated by a distance of .4. What about moves with a verticai displacement 

of B? We want the construction so that for each X row q, row q * B corresponds to a row 

in Y. So for row 1 (in X), row I + B must be in Y. Similarly for the other rows in X in 

the top half of the board. The easiest way to FuIfilI this condition is for the set of rows in X 

in the top half of the board to be a distance B away from the corresponding Y rows in the 

bottom haif of the board. So row n - A - 2A(k - l), the topmost row in Y in the bottom 

half of the board, must actually be row number 1 + B to be a distance B frorn the top row 

in X in the  top half (row 1). Since each row in K in the top haif of the board is separated 



by a distance of 2.4 as  is each row in Y in the bottom half. this means that each of the rows 

in ;Y in the top half of the board are separated by a distance B from a corresponding row in 

Y in the bottom half of the board. (So the last row in X in the top half. row 1 +2A(k- 1) 

is a distance B from the bottommost row in Y in the bottom half, row n). See Figure 4.7. 

By symrnetry. the satne argument holds for the rows in X in the bot tom half, and the rows 

iii t' in the upper half. Therefore squares in partition X can only reach squares in partition 

Y. and therefore vertex X in the contraction graph is degree 1. 

In addition. there are 26 rows in X and 26 rows in k' so 1x1 = IY 1. lking Lemma 3 

with elernent Y as the cutset gives u s  1x1 components from element S and at least one 

component from element 2. IX 1 + 1 > )Y 1 so by Theorem 5 no circuit is possible. 

We musc now simply derive the equations defining the relationship between A, B, n and 

k which allow this partition of the board to exist. First. we know that the kth row in kp 

must remain in one half of the board. The kth row in Y in  the upper half corresponds to 

row 1 +.4+2A(k - 1). This gives us the condition 1 + A + f  .4(C - 1) 5 4. We have the other 

restriction that the n - .4 - 24(k - 1) row in Y in the bottom half miist be row number 

B + 1. This gives u s  the condition B + 1 = n - -4 - 2A(k - 1). Rearranging this second 

equation gives u s  n = B + A(2k - 1) + 1. Plugging this into the first and manipulating 

gives u s  B > .4(2P - 1). These are the two equations specified in the t heorem. so the proof 

is complete. O 

4.6 An Empirical Investigation of the Generaiized Knight9s 
Circuit Problem 

The various theorems that were proven about the generalized knightTs circuit have shown 

that no circuit exists for certain instance classes. A list of these classes for small values of 

-4 and B is presented in Table 4.1, along with the relevant theorem for that instance. Note 

that possible d u e s  for the piece moves and smallest value for n are restricted aeeording to 

Theorem 14 and the trivial cases d i s c u d  in Section 4.3. Also, for several instance classes 

more than one theorem can be applied; only one is listed in the table. 

To determine for which instances (and instance classes) circuits do exist, we turn to 

empirical rnethods. The proof techniques of the previous sections, culminating in Table 

4.1, are a starting point but are not enough. We thecefore generated and tested specific 

instances of the generalized knight's circuit problem using out backtrack Hamiltonian cycle 

algorithm with the goal of determining for what values of A, B, n and m circuits do or do 

not exist, We avoided values of A, B and n corresponding to TabIe 4.1, and cestrictecl our 
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Figure 4.7: The partition of the board for Theorern 19. 

Table 4.1: lnstance classes of the generalized knight's circuit problem for which n o  circuit 
exists. - - -  - 

Instance Class 
(1.4)-6x m 
(l,.L) - 8  x  m 
(1 ,6 ) -8xm 
(1,6)- 10 x rn 
(1,6) - 12 x m 
(1,8) - 10 x VTZ 
( 1 3 )  - 12 x m 
(1,8) - 14 x rn 
(1,8) - 16 x m 
(2,3)-4 x m  
(2,3) - 6  x nt 
(2,3) - 6 x m 
(2,3) - 8  x m  
(2,s) - 6  x m 
(2,s)-8x m 
( 2 , i )  - 8  x m 
(2J) - 10 x m 
(2,7) - 14 x n~ 

Relevant 
Theorem Instance CIass 

( 3 4  - 5 x rn 
(3,J)-6 x rn 
(3,4)-8x m 
( 3 4  - 9  x m 
(3,4) - 10 x m 
(3,4) - Il x m 
( 3 4 )  - 12 x  m 
(3,6) - n x na 
(4.5) - 6  x m 
( 4 3 ) - i x  m 
(4.5) - 8  x m 
(4.5) - 10 x  m 
(4.5) - 11 x m 
(4,5) - 12 x m 
(43 )  - 13 x m 
( 4 5 )  - 14 x rn 
( 4 5 ) -  1 5 x  m 
(4,.?) - 16 x n~ 

Relevant 
Theorern 
16 
16 
Ir 
17 
18 
18 
18 
15 
16 
16 
16 
If 
17 
17 
18 
18 
18 
18 



examination to smaI1 values of A, B and n. For each instance ctass, m was tested from 

a+ 1 to a reasonably large value. (m was restricted to even values if n wasodd.) For some 

instance classes. positive results were obtained for large values of rn while negative results 

cauld only be obtained for much srnaller values of m due to computationd intractability. 

For certain instance classes with larger values of n, the algorithm ran to cornpletion for only 

a few values of m before the tirne required became intractable. 

Note that our backtrack algorithm was developed to solve Hamiltonian cycle problems 

in general. and was not optimized for the generalized knight's circuit problem. A more 

efficient algorithm utilizing syrnmetry considerations and other techniques might be able to 

extend these results. 

Table 4.2 presents the results we obtained. For each instance class, the table lists the 

range of values of m for which circuits were found and for which no circuits exist. Missing 

values are unknown. 

Our discussion of these results will be organized around the patterns exhibited in our 

results for the different instance classes. We describe and discuss three different classifica- 

tions: min-ûounded. min-exist and periodic. While we define these categories based on the 

existence of circuits over al1 m, we refer to certain instance classes as being in a category 

based solely on our limited empirical results. Further empirical or theoretical work could 

change this. 

For some instance classes circuits were found for al1 values of m greater or equal to some 

value m,, which we define as the minimum board size for which no larger board length 

with no circuit exists. We cal1 these instance classes min-bounded. From Table 4.2 we 

can identify the following instance cIasses (1,4 - 5 x rn, (1,4 - 7 x rn, (1,4) - 9 x rn, 

( 1 , 4  - 10 x m, (2,3) - 5 x m, (2,3) - 10 x m, (2,s) - 7 x rn and ( 3 4  - 7 x m which 

seem to be min-ûounded. Note that for some of these instance classes, circuits were found 

for some values of na < rn,. 
The act ua1 existence of min-bounded instance classes is an open question. Constructive 

induction proofs showing solutions for al1 rn 2 na, would demonstrate their existence; 

proving that a particular instance class is not min-bunded (but does still have circuits for 

certain values of m) would seem to be much more difficult. In Section 4.7 we provide proob 

that answer some of these questions for the (1,4) - 5 x rn instance cIass. 

We define another category of instance classes as min-ezist if circuits exist only For some 

'*Or h m  n if n was even. Note that using m = n + 1 as a starting point was done for conv&eaceL For 
s e v d  instance c h ,  o u  proofs show that no circuits exist for certain d u e s  of rn > n. 



Table 4.2: Em pirical results concerning the existence of circuits for V ~ O U S  instance classes 
of the 

Instance Class 
f l , 4 )  -6 x rn 

~roblem. 
Values of m for which 

Circuits found 
24,32,3.1.38 - 60 
16 - 30 
10 - 20 
10 - 20 
36,48.60,72 
2-l,36,38,-!8 

No circuits exist 
6-22 ,24-30  
8 -  14 



m 2 me > n + 1. The value m. represents the smallest board length permitting a circuit 

for that instance class. bImt instance classes we examined f ' l  into this category, which is 

expected. The formulation of instance classes requires that rn > n (m > n if n is odd). 

The condition me > n + 1 basically means that additional constraints prevent circuits frorn 

existing for srnall m. These constraints are a function of the move parameten and board 

size. We conjecture that the minimum board lengt h me wiil increase as the panmeters A 

and B increase. Interestingly, as n increases for a fixed A and B. it seems easier For circuits 

to exist, thus irnplying a drop in me. 

Note that min-exist instance classes with high values of me might also be min-bounded. 

One example of this is the (2,3) - 9 x m instance class. Tests were executed for m = 

(10. . .20}. A circuit was found for the rn = ?O case only (so me = 20). 1s m, = 20 for 

this instance class? Or is there a periodic occurrence of circuits? These open questions 

can only be answered by theoretical investigation, since empirical calculations eventually 

become intractable as m grows large. 

Our third category of instance classes we cal1 peRalic if we observed a periodic occur- 

rence of circuits (wit h respect to m) . To be precise, we classify an instance class as perialic 

if circuits exist only for values of m = pk + m., where k = {O, 1,2.. ..}, p = the period 

of occurrence and m. = the minimum board length required for a circuit to exist. In our 

initial experiments, it appeared that rnany instance cladses were periodic since instances 

with rn # pk + me never completed (within a few days or so). We performed additional 

experiments that used a rnodified form of our backtrack algorithm. We added a 10 minute 

time limit on the length of the execution, and restarted the aigorithm if the time limit was 

reached. This allowed u s  to obtain circuits for instances with rn # pk + me. A deeper 

investigation of these results showed that the initial vertex selected by the alprithm (the 

choice was made randomly) has a major e f k t  upon the performance of the algorithm. 

Some choices for initial vertices make the algorithm finish quickly, while many other choices 

for rn # pk + me make the algorithm never finish. So for these non-periodic values, the 

resulting graphs are in general hard to solve for our algorithm (but did have circuits), while 

for the periodic values the graphs are easy to solve. 

After t hese additional experiments, the following instance classes remain which still seem 

to be periodir: (1,6) - 7 x m and (1,8) - 9 x m. We suspect t hese instance classes are like 

the others and have harder-to-find solutions For values of m # pk + me. When examining 

al1 these periodic and apparently-periodic instance classes, we made one highly unexpected 

observation. 



Observation 1 For instance clmzes exhibiiing periodir khariour. it u m  found without 

exception thnt the priodp = 5B. 

This seerns to show that the high regularity foutid in the generalized knightbs circuit 

probkm has some very subtle efïects upon when circuits appear for graphs. and how hard 

it is to find these circuits. 

Table -4.3 summarizes the discussion on t hese t hree categories. The table lists instance 

classes ancl their values for the parameters LU,, rn, and p. The presence of a nurnber for 

one of these paranietees indicates that the instance class appears to be a member of the 

corresponding category ( min-liounded. min-exist and periodir. respectively). An ent ry of 

"" indicates that the particular instance class does not appear to be a member of the 

corresponding category. and an entry of *?" indicates uncertainty. 

The various theorems presented in the previous sections never apply when n = .4 + B 

(except for Theorem 15, which we assume does not apply in this discussion). For instance, 

Theorem 19 proves that no circuit can exist for an instance class with n = -4 + B + 1. 
However as Table 4.2 shows, circuits were found for al1 instance classes when n = .4 + B. 

and in addition seem to occur periodically for many of these classes. This leads us to 

conjecture that there is something in the basic structure of these problems that always 

allows circuits to exïst when n = -4 + B. 



Figure 4.8: A labelled 5 x 8 board. The labels correspond to the elements of the partition 
i lk used for the proof. 

4.7 Proofs Concerning the ( l , 4 )  - 5 x ,m Instance Class 

in t his section, we consider just one instance class, ( 1! 4) -5 x m, one of the ( 1, B) - B+ 1 x m 
instance classes (wit h B = 4, for which we have the following empirical results: 

Observation 2 For the (lJ) - 5 x nt probkni, no circuil exists for ni < 32, m f 24. 

Observation 3 For the ( l,4) - 5 x m pmblem, c k u i t s  exist for nt 2 38, up to nt = 60. 

In this section we develop short pmofs addressing these observations. In Section 4.7.1 

we provide a proof addressing Observation 2 and in Section 4.7.2 we develop a proof t hat 

extends our results of Observation 3. 

4.7.1 Circuit Non-Existence Proof 

Our empirical results show that for the (l,-I) - Fj x m instance class no circuits exist for 

m < 32, m # 44. In this section we provide a short proof for a portion of these results. We 

prove that no circuit exists for rn = 8k+ r, r = {2.1,6), k < 3. This section not only shows 

the use of the partition pmf technique but also might provide some insight or hint into the 

periodic ievel of difficulty of the problem. 

We start by using the partition p m f  technique. The partition iik is defined as follows. 

The 40 elements of the partition correspond to the squares of a 5 x 8 section of board. We 

tile the actual board (5 x m} with this section k times, and use a portion of the section 

to tile the remainder (since rn = 8k + r). Figure 4.8 shows the labels we use for each of 

the elements of the partition. Figure 4.9 displays the resulting contraction graph T.. (for 

m > 8). 

When r = {?, 4,6), the size of the partition elements vary. Specifically, for a particular 

r, aU elements .4,, B,, Cc, D,, E,, x 5 r are of size k + 1, whiie the other elements are of 



Figure 4.9: The contraction graph Tk b a s 4  on the 40 elernent partition ni. 

size k. The structure of the contraction graph cornbined wit h t hese different sized elernents 

results in certain portions of each graph having very interesting properties that form the 

b a i s  of our proof. This interesting subgraph Ci consists of a five vertex path in which the 

size of the elernent corresponding to each vertex alternates between k and k + 1. Forrnally, 

we define the graph Ci to be a weighted graph of five vertices v i ,  . . . , us in a path, with odd 

vertices of weight k and even vertices of weight C + 1. (So w(vi) = C, w ( v 2 )  = A. + 1.) 

Lemma 4 Gmph Gi is a subgroph of the contmction graph Ti, /or nz = Pk + r.  C 2 1. 

r = {2,4.6}. 

Proof. Due to the definition of the partition nk, for a particular r al1 elernents {A - E},, 

t r are of size k + 1, while the other elernents are of size C. So for r = (2.  -I} the su  bgraph 

As, B2, a, Dz, Eg of T, corresponds to Ci. For r = 6 the subgraph .4t3, B4, G, DI,  E8 of Tk 
corresponds to Ci. 0 

Theorem 20 No circuit exists /or the 1,4 - 5 x m probiem. m = PC + r. r = {2,4,6), 

k < 3. 

Proof. From Lernma 4 we know that the graph G'; is a subgraph of Tk for r = {%,4,6) and 

k 2 1. If we take V I ,  usr us from Gi as a cutset of size 3k, then we get 2(k + 1) cornponents 

from 04 and us plus at Ieast 1 cornponent from the rest of the graph (since Gi is always 

smalIer than Tk). Thus no cyde exïsts for 2(k + 1) + l > 3k. Rearranging, we get k < 3. 

When k = O (m = r = {2,1,6)), Lemma 4 does not apply. However for these srna11 boards, 

by inspection at least one vertex in the middle row is of degree zero, which irnplies that no 

Hamîitonian cycle is possibIe. O 



Figure 4.10: The 5 x 8 section of board used to extend existing cycles. Note that 3 paths 
cover this board. with endpoints (Ai ,A2) ,  (Bi,  &) and (Ci,C2). The Iabelled vertices and 
emphasized edges on the left side are necessary to allow additional extensions. 

4.7.2 Circuit Existence Proof 

In this section we present an inductive proof that shows that the (1,4) - 5  x rn instance class 

h a s  a circuit for al1 m > 38 ( m  even). The inductive base cases for our proof are solutions 

to the problem for various values of m that were cornputer generated using our backtrack 

algorithm. A construction is presented which allows tliese circuits to be extended in lengt h 

by 8 squares. 

Lemma 5 rl circuit !or a (1,J) - 5 x rn instance unlh edges ( C i ,  tj) ,  (Va? I.é) and (Ci, VJ 
(uyhcre Li.. . ., am definecf as shoum in Figure 4.10 ") c m  be exptznded to a rimuit thnt 

so lws  a (1,J) - 5 x m + il instancr. 

Proof. The existing circuit contains the sequence of vertices (. . ., Vl, C J ,  V3, Vg.. . ., C i .  b, 
. . .}. The 5 x 8 board section used to extend the circuit consists of three paths ((AI,. . . , &); 

(BI,. . ., BzJ; (Cl,. . .,Ca) ) which must be included in the existing circuit. Figure 4.11 

shows the construction necessary to accomplish this. The three paths are linked into the ex- 

isting circuit to make the resulting sequence: {. . . , VI, A l , .  . ., &, Va,. . . V5, &,. . ., B2, &, 
, C l  . . . , C ' ,  , . . } Figure 4.12 illustrates this process. This modified sequence pre- 

serves the existing circuit while including the additional board section, thus pmducing a 

circuit for the (1,4) - 5 x rn + F instance. U 

Note that the newly extended circuit has the 3 edges necessary for the construction 

since they are a part of the 5 x 8 board section. Thus any circuit with those 3 edges can be 

extended by 8 squares an udimited number of times. 

Theorem 21 A soiution enkts/or ecery (1,4) - 5  x rn instancejbr rn 2 38 (na eeen). 



Figure 4.11: The construction to connect the 5 x 8 board section with an existing cycle 
th& has vertices VI, V2, . . . , v6 properly connected. Dashed lines indicate edges t hat are 
removed from the original cycle. 

Old Sequence: -- -V, - V,- - V,-V,---V, Il,--- 

Paths to include: AI--- A, BI---B2 CI---C2 

Figure 4.1%: The original sequence and the modified sequence including the 5 x 8 board 
section. 



Figure 4.13: A solution to the (1.4) - 5 x 24 instance. 

Figure 4.14: A solution to the (1,4) - 5 x 34 instance. 

Proof. The proof is done by induction. We have 4 solutions which will form our base 

cases for ni = 24, m = 34, m = 38 and rn = 41. These circuits are displayed respectively 

in Figures 4.13, 4.14, 4.15 and 4.16. Note that the edges necessary for the construction 

of Lemma 5 are emphasized in each figure. Lemma 5 proves the inductive step that if a 

circuit exists for a certain value of m = P K  + r with r = {O. 2,4,6}, then a circuit exists 

for m = 8(K + 1) + r. Our base cases are defined for f i  = 5 and r = {O, 2.4,6} as follows: 

m = 40(24 + 8 + P ) ,  -i2(3-l+ 81, 44 and 46(38 + 8). Note that we make use of Lemma 5 to 

extend some of our circuits to obtain these base cases. Since the circuits produced by the 

lemma can be extended in turn, we have solutions for rn = 8(K} + r, 1' 2 5,  r = {O, 2,4,6}. 

Thus we have solutions For nz 2 40. [ncluding the solution we have for the 5 x 38 instance 

means we have solutions for m 2 38 O 

Figure 4.15: ,4 solution to the (1,4) - 5 x 38 instance. 



Figure 4.16: A solution to the (1.4) - 5 x -W instance. 

4.8 Conclusions 

In this chapter we have proposed a new generalization to the standard knight's tour prob 

lem: the generalized knight's circuit problem. Our main fwus has been on deterrnining 

which instances of this problem are Hamiltonian (or which instances are not Hamiltonian). 

Given an arbitrary instance (A ,  B) - n x m of this problern, we have produced various 

theorerns showing for which values of -4, B, n, m circuits cannot exist. We developed the 

purtition p m f  technique to aid us in our developrnent of some of these theorems. Besides 

our theoretical work in determining the Hamiltonicity of this problem, we also undertook 

an empirical investigation. We classified instances into instance classes ( A .  B. n fixed. m 

allowed to vary) and found that the Hamiltonicity of an instance class could be classified 

according to three classifications: min-bounded, min-erist and perialir. We made several 

observations and conjectures that suggest that more future researcli is needed. In particu- 

lar, we observed a periodicity in many problems, either in the problem difficulty (periodic 

easy problenis) or in  terrns of the existence of circuits. These periods were always equal to 

28.  We conjectured that al1 instance classes with n = A + B (for which Theorem 15 does 

not apply) have circuits for one or more values of m. 

Our final results involved proofs for the (1.4) - 5 x rn instance class. In particular we 

proved that circuits exist for dl even m 2 38. One pogsibility for future research is to obtain 

more general proofs for the existence of circuits involving different instance classes (ideally 

involving arbitary instance classes). However, such proofs would most likely require new 

proof techniques different frorn the ones employed in t his chapter. 

Our empirical results concerning the periodicity of certain instance classes show how 

different algorithms can change the difficulty of the same graphs. Our original backtrack 

without the time limit was unable to produce results Mthin a few days for most of these 

graphs while our timdimited backtrack with random restart was able to produce results 

within an hour or two at most. 



Chapter 5 

Hard Hamiltonian Cycle Graphs 

5.1 Introduction 

The Harniltonian cycle problem can be considered a subset of the travelling salesmen prob 

lem (TSP) for which al1 edge weights arc equal. While bot h are NP-C problems, the TSP 

has received rnuch more attention as a problem worth solving, while Hamiltonicity has been 

considered more a property of use to mathematicians and graph theorists. In addition. 

the Hamiltonian cycle problem has been shown to be solvable in polynomial tirne whp for 

various random graph models. Thus, the perception rnay exist that the Hamiltonian cycle 

problem is easy. In this chapter our goal is to show that the Hamiltonian cycle problem 

can not be considered solved (or even easy): hard graphs and hard graph sets do exist. 

Furthermore, finding these hard instances can only lead to improvements in our Hamilto- 

nian cycle algorithms. Experiments using hard graph sets can help in determining which 

techniques and heuristics are superior in which circurnstances. As we discuss below, hard 

gaphs typically occur when our algorithms fail to perform well, which can often lead to 

insight into the design of better algorithms, or at the very least knowledge of which graph 

properties give our algorithms difficulties. In the literature, research into hard regions and 

hard graphs has seemed to neglect the important role the algorithm plays in determining 

hardness. The second goal of this chapter is to exp1ore and characterize this interaction 

between graph hardness and the algorit hms king used. We demonstrate repeatedly that a 

particular graph (or set of graphs) can be easy for one algorithm but difficult for another. 

First we need to define what we mean by hard graphs. In general, we refer to two 

different circumstances. In the first, we have a Hamiitonian graph for which our aIgoMthm 

has difficulty finding a circuit. In the second, we have a graph set for which our algorithm, 

in general, has difficulty determining if a graph in the set is Harniltonian or not. In either 

case, we evaluate how hard a graph is by how long it raks to find a Hamiltonian cycle 



or show that the graph is non-Hamiltonian (for backtrack algorithms). This leads us to 

a comparative definition of hardness on Hamiltonian graphs: Given a Harniltonian cycle 

algorithm A. Hamiltonian graphs Gi and G2 of equal order (so 1 V(Gi)I = IV(G2)1) and 

expected time to find a solution on graph G equal to Ea(GJ then graph G1 is harder than 

graph G2 if ES4(Gi > EW4 (Ga). We can extend this definition to non-Hamiltonian graphs 

if we assume a backtrack algorithm is being used. 

Frorn this comparative definition, we can try to form an objective definition of hardness. 

Unfortunately, this is not easy. We define a graph G to be objectively hard for an algorithm 

.4 if it t a k  an intractable period of time for .4 to find a Hamiltonian cycle (or to prove 

that one does not exist. if -4 is a backtrack algorithrn). The flaw with this definition is that 

the determination of an intractable period of tirne is subjective (do we need a solution in  

houa, days or weeks?) and varies according to a variety of fxtors (efficiency of algorithm 

irnplementation. corn puter hardware. etc.). 

Our definition of hardness was made relative to a single algorit hm. This was done b e  

cause hardnegs is a fu nct ion of bot h the type of graph being solved and the type of algorit h m 

king used. In ot her words, the hardness of a graph can depend upon the dgorit hm being 

useâ to solve the problem. A simple example provides evidence for this claim. We consider 

two graph sets. The first is the set of complete graphs (every vertex is connecteci to every 

other vertex) K ( n ) .  for which every vertex ordering is a Hamiltonian cycle. The second is 

the set of cycle graphs (the graph is a Hamiltonian cycle; no ot her edges exist except those 

forming the circuit) C(n).  We now present a new Hamiltonian cycle algorithm with very 

bad performance: the lottery algorithm. At each stage of the search, it generates a random 

vertex ordering, and then tests it to see if it is a Hamiltonian cycle or not. For a graph G 

with a number of Hamiltonian cycles qua1 to IHC(GJI, the probability of success after a 

single iteration is IHC(G)l/n!. In terms of our definition of hardness, the graph set K ( n )  is 

easy for the lottery algorit hm, while the graph set C ( n )  is hard. Most ot her graphs will also 

be hard for the lottery algorithm. However, most familiar Hamiltonian cycle algorithms 

(such as the ones we surveyed in Chapter 2) will find both the K ( n J  and C(n) graph sets 

easy. While t his is clearly an extreme example, it illustrates how one graph set can be easy 

(or hard) for two algorithms while another graph set k easy for the one, but hard for the 

ot her. Note that the more alilte two algorithm A and B are, the more likely graphs that 

are hard for algorithm -4 wi11 aiso be hard for algorithm B. Note as well that the hardness 

ofsome graphs sets is affmed more by the type of algorithm being used than other graph 

sets, 



Note that our definition of comparative hardness requires that the graphs have the sarne 

number of vertices. This is not necessary or accurate from an operational viewpoint: Iarger 

graphs tend to require more tirne to solve. and thus will tend to be harder. However. we are 

most interested in discovering hard graphs that will provide insight into the Hamiltonian 

cycle problem and the operation of our algorithms. Since most problems becorne harder 

(require more tinie to solve] as the graph size is increased, this relationship is of limited 

interest to us. 

Having defined hardness and examined some of the factors that affect it, we now con- 

sider the types of hard graphs we will explore. Due to the nature of the Hamiltonian cycle 

problem, it is not trivial to corne up with hard sets of graphs. Random graphs of high degree 

tend to be easy since many different Hamiltonian cycles exist, and the algorithms seldorn 

reach dead-ends in t heir search due to the  larger number of choices. Low degree graphs 

are also easy, particularly for backtrack algorithms. First, if the graph is not biconnected. 

it is easily determined to have no Harniltonian cycles. Secondly, search pruning performed 

by backtrack Harniltonian cycle algorithms is efficient at reducing the search space. The 

algorithm can often quickly determine when a particular choice leads to a dead-end. How- 

ever, the study of phase transitions can aid u s  in our search. We examine phase transitions 

in Section 5.2 and nview the literature on phase transitions and the Hamiltonian cycle 

probleni . 
Before presenting the experimental results in the remainder of the chapter, we first 

discuss the experirnental methodology we employ and describe the algorithms we use in 

Section 5.3. Since most work on hard graphs for various NP-C problems including the 

Hamiltonian cycle problem has involved standard random graph classes such as C;,,,, we 

examine the existence of phase transitions and hard graphs for this class in Section 5.4. In 

Section 5.5 we examine a low degree andom graph set we cal1 Degreebound graphs. We 

dernonstrate the existence of a phase transition and show that while these graphs are hard 

for heuristic algorithms, they are easy for backtrack algorithms. In Section 5.6 we examine 

generalized knight's circuit graphs. in Section 5.7 we construct two different types of graphs 

to take advantap of limitations in the various Hamiltonian cycle algorithms. We provide 

theoretical and experimental evidence t hat t hese graphs are hard for sorne algorit hms but 

not for others according to the properties given to these graphs. 



5.2 Phase Qansitions 

Problems that are NP-C are commonly perceived as  hard, yet many instances of various 

NP-C problems are easy. This is due to the fact that the NP-C cornplexity clas characterizes 

worst-case behaviour. This raises the question of how to identify the subset of a particular 

problem which is hard. Phase transitions are one means of accomplishing t his. In general. 

many NP-C problems can be characterized by a *constraint' parameter which measures how 

constrained an instance is. Evaluation ofa problern using this constraint parameter typically 

divides instances into two classes: those that are solvable, and those that are unsolvable. 

Between t hese two classes lies the phase transition. In t his region, the problem is considered 

critically constrained. and instances are usually hard. The standard explanation for this 

behaviour is as foollows. When the problem is highly constrained, it is easily determined t hat 

no solution exists. When the constraints are mwtly removed, t hen a solution is easily found. 

However, near the critical constraint region there tends to be many walmost' solutions. and 

very few (if any) true solutions. Thus, any algorithm must perform much work searching the 

greater nurnber of near solutions before finding an actual solution. Note that the constraint 

pararneter and hence the phase transition region are defined independent of the problem 

size. [9, 141 

While most researchers have studied phase transitions for problems such as graph col- 

oring or satisfiability, some have looked at the Hamiltonian cycle pmblem. Cheeseman et 

al. [9] and Frank and Martel [11] both examined phase transitions on random graphs for 

the Hamiltonian cycle problem. The obvious constraint parameter is the average degree 

(or average connectivity) of the graph. As the degree increases, the graph becomes less 

constrained: it becomes easier both for a Hamiltonian cycle to exist and for an algorithm 

to find one. Both sets of researchen examined how Hamiltonicity changes with respect to 

the average degree. Frank and Martel experimentally verified that the phase transition for 

Harniltonicity is very close to the phase transition for biconnectivity, which occurs when 

the average degree is log rz (or E = n log n / t )  '. Cheeseman et al. experimentally confirmed 

theoretical predictions by Koml6s and Szemerédi [21] that the phase transition (for the 

Hamiltonian cycle pro blern) occurs when the average degree is log n + log log rr.  Bot h pa- 

pers also provided empirical evidence that the time required by their backtrack algorithms 

increased in the region of the phase transition. W hile limited details (if any) were provided 

on these algorithms, from the comments made in the papers, it is likely that no pruning 

'Note that the average degree equals ?E/n. 



was performed by the algorithms. Perhaps for this reason their reported results were only 

for graphs of up  to 24 vertices. 

The lirnited graph size used by these researchers and the seemingly crude algorithms 

employed raises questions about the accuracy of their results. Therefore in Section 5.4 we 

examine randorn graphs: firstly to verify the presence of a phase transition and secondly to 

deterrnine if graphs in the phase transition region really are hard. 

5.3 Experiment al Met hodology 

In this section, we describe our experimental methodology and the algorithms that we will be 

using throughout this chapter. We use two different algorithms: one version of a backtrack 

Hamiltonian cycle algorithm. and one version of a heuristic Hamiltonian cycle algorithm 

(see Chapter 3 for detailed descriptions of the following techniques and heuristics). Our 

backtrack algorithrn uses the singlepath search method, full initial pruning (graph reduction 

and global checking) and local pruning using graph reduction. Vertex selection is done using 

the low degree first heuristic, and initial vertex selection is done by selecting a random 

vertex. We also use a time limit of 10 minutes (600 seconds) for our backtrack algorithm. 

If that time period is exceeded, the algorithm stops executing and returns an incomplete 

result for the current graph. This time lirnit is needed to avoid the case of the rare graph 

that takes hours or days. Note that the time limit of 10 minutes is at least two orders of 

magnitude greater than the typical running tinie. so the lirnit is rarely used. 

The heuristic Hamiltonian cycle algorit hm we use has  the following features. It uses the 

rotational transformation and cycle extension techniques. the vertexonce search termination 

met hod, full initial pruning (graph reduction and global checking) and the singlepat h search 

met hod. Vertex selection is done using the vertex selection algorit hm wit hout the low degree 

first heuristic and without the NPN heuristics. The algorithm executes n times, trying 

each vertex as the initial vertex, and stops when a Hamiltonian cycle is found. While most 

heuristic Hamiltonian cycle algorithms cannot determine that a graph has no Hamiltonian 

cycle, ours can because of the initial pruning king used. However. since we are interested in 

the ability of the heuristic algorithm to find Hamiltonian cycles, we will not test the heuristic 

algorithm on non-Hamütonian graphs. For random graph classes where Hamütonicity is not 

guaranteed, we generate Hamiitonian graphs as follows. We generate a graph and run our 

backtrack algorithm on it. If the graph is Hamiltonian, we keep the graph For our heuristic 

algorithm. Otherwise we repeat the process. 

Heuristic Hamiltonian cycle algorithm dm cannot yarantee to find a Hamiltonian cycle 



in an arbitrary graph. Typically, heu ristic algorit hms will only succeed a certain percentage 

of t hc t h e .  Furt hermore, since most heu ristic algorit hms  are fast (compared to backtrack), 

they can be run multiple times. These factors affect our testing of heuristic algorithms. 

Instead of just reporting the average time required, we compute the total expected time 

required for our heuristic algorithm to solve a particular graph (or set of graphs). For each 

graph or graph set. we run a number of trials. We cornpute the percentage of trials in which 

a solution was found ( Ps), the average time spent on trials where a solution was found (Ts).  

and the average time spent on trials where the algorithm failed (TF). The total expected 

time (TT) is calculated as 

This formula accounts for the time required to execute the expected number of unsuccessfu1 

attempts (at finding a Hamiltonian cycle) along with the t h e  required for the successful 

attempt. 

Note that our backtrack algorithm with the 10 minute time limit can function like a 

heuristic algorithm on very hard graphs. On such graphs we can cakulate the expected 

time for Our backtrack algorithm in the same way as for Our heuristic algorithm. 

Experiments were performed on a Sun SPARCstation 20 model 50 (50 MHz) (SPECint92 

= 76.9 and SPEC'fp92 = 80.1). Algorithms were not optimized for performance. 

5.4 G,,, Random Graphs 

In this section we examine G',,,, a standard random grapli model. to determine the difficulty 

of these graphs for our backtrack Hamiltonian cycle algorithm. One of our goals is to extend 

the research of Cheeseman et al. [9] and Frank and Martel [14], whose experiments were 

performed on small graph sizes (s 24 vertices) using primitive algorithms. 

Our experiments will be performed on graphs of 100 to 500 vertices. We use the G,,, - 
random graph model. with m = dn/2.  Rom previous work both theoretical [21] and 

experimental [9], we expect the phase transition to occur when d = log n + log log n. Thus 

we specify the constraint parameter (or degree parameter) k = d /(log n + log log n) . We 

use the degree parameter k to measure where a graph (or set of graphs) is with respect to 

the phase transition independent of its size. (Note that log is the natural logarithm.) Table 

5.1 shows the values of the mean degree for different graph sizes with k = 1. 

In our experiments we use our backtrack aigorithm as specified in Section 5.3. We 

generate 100 graphs for each data point, execute Our algorithm once on each graph and 



Table 5.1: Mean d ;ree of G,,, graphs for k (degree parameter) = 1. 
# of vertices 1 Mean Degree 1 

6.966 
7.445 

400 1.182 
500 8,042 

average the results. 

We first verify that a phase transition exists. For G,,, graphs of 100 to 500 vertices with 

the degree pararneter k ranging from 0.5 - 2.0 we determine the percentage of the graphs 

that are Hamiltonian, the percentage of the graphs that are biconnected and the percentage 

of the graphs for which 6(C) 2 1. From Cheesernan et al. [9] we expect the phase transition 

for biconnectivity to be very similar to the phase transition for Hamiltonicity, and from 

BolIobis [SI and Kornl6s and Szemerédi [JI] we expect the phase transition for minimum 

degree greater than 1 to be almost identical to the phase transition for Hamiltonicity. Our 

experirnental results matched these expectations very closely. Out of the 10,000 trials, only 

two non-Hamiltonian graphs were generated that were biconnected and had a minimum 

degree 2 2. (The first graph had 100 vertices with A. = 0.90 and the second had 400 vertices 

with X: = 1.05.) The remainder of the non-Hamiltonian graphs had one or more degree 1 

(or O) vertices and were not biconnected. Our results for the Hamiltonian phase transition 

are presented in Table 5.1. 

We define the center of the phase transition as the point at which 50% of the graphs 

are Hamiltonian. These resuIts show that the center of the phase transition occurs when 

the degree pararneter is in the range of 1 .Os - 1.15. While there is. home variation over 

the different graph sizes, the phase transition does not tend to become steeper (increase 

in slope) or shift in location as the graph size increases. This is due to the fact that the 

constraint parameter k automatically accounts for the graph size. This suggests that using 

the degree pararneter as  the constraint pararneter is superior to using the mean degree as 

was done by Cheeseman et al. in [9], which made comparisons aemss graphs of different 

sizes difficult. Our degree parameter is similsr to the E / ( n  log n) constraint parameter used 

by Frank and Martel [14]. 

Our next step is to investigate how our backtrack algorithm performs on the G.,, 

graphs as the degree parameter k varies acroas the phase transition. We measured the time 

required by our backtrack aigorithm in the evpeciments detded above, and present our 



Table 5.2: Percentage of Hamiltonian graphs of G,,, graphs as a function ofgraph size and 
degree parameter. 

Degree 
Parameter 
0.50 
0.60 
0.70 
0.80 
O .go 
O .9S 
1 .O0 
1 .OS 
1.10 
1.15 
1.20 * 

1 .% 
1.30 
1 .JO 
1 .SO 
1.60 
1 . î O  
1.80 
1 .go 
2.00 

Number of Vertices 



Table 5.3: Time in seconds required by our backtrack algorithm on Hamiltonian G,,, 
graphs. 

Degree 

O .Fi0 
O .60 
0.70 
0.80 
0.90 
O .95 
1 .O0 
1 .O5 
1 * 10 
1.15 
1 *a0 
1 .25 
1.30 
L 40  
1.50 
i .60 
1 .CO 
1.80 
1 .go 
2.00 

Number of Vertices 

results in Table 5.3. Since alniost al1 the non-Hamiltonian graphs had one or more vertices 

of degree less t han 2. our backtrack algorithm quickly detected all these non-Hamihonian 

graphs. Thus, our times are averaged over the Hamiltonian graphs only. 

Our results clearly show no increase in difficulty in the phase transition region. As the 

degree parameter (and thus the mean degree) increases in size, there is a slight increase in 

the tirne required by our backtrack algorithm. This seems to be due solely to the increased 

computational ccwt of handling higher degree vertices, since the algorithm performs oper- 

ations like the low degree Grst heuristic which requires processing al1 the neighbours of a 

vertex. Additional evidence that supports this view is that the number of nodes searched 

by our algorit hm does not increase as the degree parameter increases. The time required &y 

our backtrack aigorithm increases as the graph size increases, as one would expect. How- 

ever. the rate of increase seems to be quadratic (na)  rather than exponential. These results 

suggest that G,, graphs are easy for our backtrack algorithm. 

We performed additionai experiments using 750 and 1OûO vertex G,, graphs and a 

preliminary anaiysis of these results indicate that the prior observations stiii hold for these 



larger random graphs. 

Both Cheesernan et al. [9] and Frank and Martel [Id] found that the computational 

work performed by their backtrack algorithm (number of nodes searched) peaked to the 

right of the center of the phase transition and fell off at the extremes. Cheeseman et al. 

explained this increase in difficulty by stating that "On the border [between the regions of 

low and high connectivity] there are many almost Hamiltonian cycles that are quite different 

from each other . ,.and these numerous local minima make it hard to find a Harniltonian 

cycie (if there is one). Any search procedure based on local information will have the sarne 

difficulty." [9]. Our results clearly contradict this statement. While near the center of the 

phase transition many local minima may exist (further research is necessary to determine 

this), the search pruning used by our backtrack algorithm is too efficient to become trapped 

by these minima. In the majority of the time our algorithm determines immediately (using 

pruning) when a wrong edge leading to a dead-end hm been selected. and thus avoids ever 

following such an edge. 

This illustrates the large effect a particular algorithni can have on determining if a 

graph (or set of graphs) is hard. Researchers such as Cheeseman et al. and Frank and 

Martel found t hat these G,,, graphs were hard in  the phase transition region because they 

were using poor Hamiltonian cycle algorithms. Our algorithm. by using search pruning and 

other improvements, is much more efficient and thus finds these graphs to be easy. 

Of the 5516 Hamiltonian graphs we tested. only 1 graph took an order of magnitude 

more tirne to solve than the average. (The remainder of the graphs al1 took less than 1 

seconds to solve.) One 500 vertex random graph wit h a degree parameter of 1.30 took 14.3 

seconds to solve. When further trials were performed on this graph, we found that it took 

1.7 seconds to d v e  on average and took a maximum of 1 .P seconds to solve over 20 trials. 

This suggests that the 14.3 second result was a low probability event resulting from a poor 

choice for the initial vertex, and that this particular graph is not actually hard. 

The results in this section clearly indicate that random graphs generated under the Gnem 

graph mode1 are not hard in any way for our backtrark algorithm although there is a clear 

phase transition. 

5.5 Degreebound Graphs 

In this section we examine regular and almost regular graphs in which a11 vertices are oflow 

degree. We look for phase transitions on these graphs, and then examine the difficulty of 

these graphs (in the region of the phase transition) for backtrack and heuristic Hamiltonian 



cycle algo rit hms. 

We specify a new random graph mode1 Gn(d2 = pl,  d3 = m.. . .) for which n is the num- 

ber of vertices and di = pi is the percentage of vertices of degree i. Note t hat the percentages 

must sum to 100% and that the sum of the vertex degrees must be even. .4s an example 

Gn(d3 = 100%) represents the set of bregular graphs, and GIW(d2 = 50%,d3 = 50%) 

represents the set of graphs of LOO vertices in which 50 are of degree 2 and 50 are of de- 

gree 3. We refer to a graph generated under this mode1 as a Degreebound graph. Note 

that the average degree of a Degreebound graph is easily calculated as xi dipi .  We only 

consider graphs which have percentages defined for i 5 4. Formally, we should define 

Gn (d2 = pz, d3 = p3, . . .) as  a uniform distribution over the defined set of graphs. Unfor- 

tunately we cannot prove the uniformity of the distribution of the algorithm we use to 

generate Degreebound grap hs. 

We start our investigation in Section 5.5.1 by providing evidence that a phase transition 

exists for Degreebound graphs and by exploring how the transition region changes as the 

graph size increases. In Section 5.5.2 we present results that show that Degreebound graphs 

throughout the phase transition are easy for backt rack Hamiltonian cycle algorithms. In 

!Section 5.5.3 we show that the same graphs are hard for heuristic Hamiltonian cycle aigo- 

Rthms and t hat the hardness region corresponds to the region of the phase transition. 

In this section we restrict ourselves to Degreebound graphs of degree 2 and 3 vertices 

only. Such graphs can be specified solely by their mean degree. (The mean degree of such 

graphs equals 3 minus the percentage of degree 2 vertices.) One area of future work is 

to investigate how the .phase transition region changes when changing the distribution of 

vertices (by allowing degree 4 vertices) while keeping constant the mean degree. 

For our experiments we use our backtrack algorithm as specified in Section 5.3 except 

that initial vertex selection is done by selecting a random vertex of maximum degree (so a 

random degree 3 vertex is selected). We generate 100 graphs for each data point, execute 

our algorithm once on each graph, and average the results. In experiments involving our 

heuristic aigorithm (as specified in Section 5.31, we generate 25 graphs and run the algorithm 

25 times per graph for a total of 625 trials. 

5.5.1 Phase Transitions on Degreebound Graphs 

To perform our search for a phase transition, we use Our backtrack algorîthm to caiculate 

the percentage of graphs which are Hamütonian for Degreebound graphs ofdifferent mean 

degrees with 100 to 500 vertices. Figure 5.1 illustrates our results. if a phase transition 



Table 5.4: Location of the for different graph sizes. 

2.81 
2.83 

400 2.84 

exists, we would expert the percentage of Hamiltonian graphs to initially be 0%. and then 

sharply rise until it has reached 100%. We do observe this behaviour, although there is 

some question as to whether the slope of the curve is steep enough. Another property of 

phase transitions is that as the parameter (in this case the graph size) increses, the slope 

of the transition should become steeper, which means that the transition shouid become 

more abrupt. Figure 5.1 clearly shows this increase in steepness as the graph size increases. 

Also of interest is the 50% point for each graph size (the point at which 50% of the graphs 

a n  Hamiltonian). Table 5.4 lists the estimated mean degree corresponding to the 50% point 

for each graph size. Graphs that were incomplete (algorithm reached time lirnit) were not 

included in percentage calculations because we do not know if they were Hamiltonian or not. 

Of the 10,500 trials performed there were a total of 38 incomplete results: 2 for 200 vertex 

graphs. IO for 300 vertex graphs, I l  for 400 vertex graphs and IS for 500 vertex graphs. WC 

define t hese graphs as ultmhard because they take at least an order of magnitude longer 

to solve t han the average graph, and we discuss t hese graphs more in Section 5.5.2. Table 

5.4 shows that as the graph size increases the 50% point increases. However. the 50% point 

seems to be approaching an upper limit since the increases e t  srnaller as the vertex size 

gets larger. This upper limit seems to lie in the range of 2.86 - 2.89. The existence of 

this upper limit is more evidence for the existence of a phase transition, since the phase 

transition (for sufficiently large parameter values) must occur at a single point. We do not 

have a good argument for why the 50% point shifts upward as the graph size increases. We 

suspect that as the graph grows larger, the increased num ber of vertices (and edges) allows 

for a greater variety of graph structures that produce non-Harniltonian graphs. 

5.5.2 Hardness of Degreebound Graphs for Backtrack Algorit hms 

As we have discuased above, the main use of phase transitions is to help identify hard 

regions. According to the literat ure [9,11], we shouId expect the critical region of the phase 

transition to produce the hardest graphs. However, when we examine the time required 



Figure 5.1: % of Harniltonian graphs as a function of' graph size and mean degree For 
Degree bound grap hs. 

by our backtrack Harniltonian cycle algorithm on Degreebound graphs, we do not find 

this to be the case. Table 5.5 shows the average time (and standard deviation) required 

by the backtrack algorithm on 200 vertex Degreebound graphs of varying mean degree. 

The total time on a11 graphs is shown along with the average time required to solve the 

Hamiltonian graphs. and the average time required to solve the non-Hamiltonian graphs. 

Times for incomplete trials (ultrahard graphs) are not included in the Hamiltonian and 

non-Hamiltonian time averages, but are included in the column for average total time to 

give a lower bounds for this value. Out of the 2100 trials, only 2 graphs were incomplete (1 

at 2.86 and 1 at 2.87). 

The times for mean degrees of 2.85 and 2.95 seem to indicate an increase in difficulty. 

but an examination of the data indicates that the increase in time is due solely to four 

ultrahard graphs requiring 66.7 and 89.0 seconds for a mean degree of 2.85 and 33.4 and 

85.3 seconds for a mean degree of 2.95. When these ultrahard graphs are removed, the 

mean time on Hamiltonian graphs (and the mean tota tirne) drops back to the same range 

as the ot her mean degrees. 

The results in Table 5.5 show severaI things. First, that there is no significant increase 

in difficulty (time required) for the backtrack algorithm even though a phase transition 



Table 5.5: Time in seconds required by backtrack algorithm on 200 vertex Degreebound 
grap hs. 

mean 
degree 
2.60 
2 -65 
2.70 
2 -75 
2.76 
2 .fi' 
2 -78 
2 7 9  
2.80 
2.8 1 
2.82 
2.83 
2.84 
2.8-5 
2.86 
2-87 
'2.88 
2.89 
2.90 
2-95 
3-00 

time on Ham. 
stddev stddev 

total time 

0.0 
0.0 
0.0 
o. 1 
o. 1 
0.1 
0.1 
O* 1 
0.5 
O* 1 
0.3 
0.1 
0.3 
11.0 
- 

- 

o. 1 
0.4 



exists. Second, the backt rack algorit hm can almost always immediately identify the non- 

Hamiltonian graphs. Out of the 2100 graphs examined, of which 990 were non-Hamiltonian. 

only I l  non-Hamihonian graphs required searching by the backtrack algorithm and the max- 

imum time required to find a non-Hamiltonian graph was 1.3 seconds. All other graphs could 

be identified as non-Hamiltonian by the initial pruning (graph reduction and graph check- 

ing). This wouid seern to provide an explanation why no increase in difficulty was observed 

in the critical region. As the critical region is approached. the number of almoat-Hamiltonian 

graphs increases, and the theory is that the number of almost-Hamiltonian cycles to search 

increases as well, thus increasing the work required of the algorithm. However, the initial 

pruning of our backtrack algorit hm is too efficient at identifying non-Hamiltonian graphs 

and thus has no problem with the critical region. When searchiiig Hamiltonian graphs, the 

prior expectation was that in the critical region the algorit hm has many almost-Hamiltonian 

cycles to search before finding one of the few cycles. But Our algorithm quickly identifies 

when it has made a wrong decision Ieading to a dead-end, since such wrong decisions usually 

produce a non-Hamiltonian graph after graph reduction occurs. Thus almost no increase 

in difficulty occun anywhere dong the phase transition. 

The accuracy of the results in Table 5.5 can be questioned because of the very short time 

intervals (and because of the relatively large standard deviations). We therefore perform a 

similar experiment for Degreebound graphs of 500 vertices. The results are shown in Table 

.5.6. Times for incomplete trials (ultrahard graphs) are not included in the Hamiltonian and 

non-Hamiltonian time averages, but are included in column for average total time to give 

a lower bounds for t his value. Out of the 2100 trials, only 15 graphs were incomplete ( 1 at 

2.79, 4 at 2.83.3 at 2.86, 3 at 2.89, 2 at 2.95 and 2 at 3.00). 

From Table 5.4 the center of the phase transition for 500 vertex Degreebound graphs 

is at a mean degree of 2.85 (approxirnately). Looking at TabIe 5.6 we see that the time 

required (for Hamiltonian graphs) starts very low, and increases to a peak at 2.84 and 

2.85 before dropping again. While the standard deviations suggest t hat t hese results are 

unreliable, the fact that the standard deviations sharply increase near the 50% region (2.84 

- 2.85) suggests another look at the data. The majority of the graphs still take the same 

amount of time, but there is an increase in the (srnail) number of graphs (ultrahard, but 

not incomplete) that take an order of magnitude more tirne to solve, which brings up the 

average and rnakes the standard deviation jump. This same event occurs for mean degrees 

of 2.79,2.95 and 3.00. While we do not understand the nature of the dtrahard graphs, we 

might expect an increase in their number in the center of the phase transition. It is more 



Table 5.6: Time in seconds required by backtrack algorithm on 500 vertex Degreebound 
graphs. 

mean 
degree 
2.60 
2.65 
2.70 
2.75 
2.76 
2.77 
2.78 
2.19 
2.80 
2.8 1 
2.*2 
2.83 
2.84 
2.85 
2.86 
2.87 
2.88 
2.89 
2.90 
2.95 
3.00 

time on Ham. 
stddev 

time on non-Ham. 
stddev 

total ti 



unexpected that the same phenomena occurs at the extreme right of the phase transition. 

One possible expianation is that such graphs with few or no degree 2 vertices undergo no 

initial graph reduction. The amount of graph reduction during the search will likewise be 

reduced. Plus. the backtrack algorithm will have more choices to make due to the greater 

number of edges. Thus the algorit h m  is more likely to take a longer period of time. since the 

search space is larger and it is not being pruned as  effectively. This increase in time is not 

consistently observed because often the algorithm has no problem forming a Hamiltonian 

cycle. The increase in time required to solve Hamiltonian graphs For a mean degree of 2.79 

is harder to evaluate because of the low percentage of Harniltonian graphs (II  %). 

One observation in [9] was that "strictly Sconnected random graphs with at least one 

Hamiltonian cycle (guaranteed by construction) have a solution time that grows exponen- 

tially with the size of the graph (using the above backtrack algorithm)." Our re~ults offer 

an refinement of this observation and verify that the algorithm used plays an important role 

in determining hardness. By using search pruning, our barktrack algorithm is often able to 

greatly reduce the search space. Thus. for a majority of the 500 vertex Degreebound graphs 

of mean degree 3.00, Hamiltonian graphs were quickly solved, and our algorithm does not 

take an exponentially greater arnount of time (compared to 200 vertex graphs). However, 

we do observe an increase in  the number (and difficulty) of ultrahard graphs as the graph 

size increases. We investigate t hese ult rahard graphs below. 

Table 5.6 shows that no time was required to solve almost al1 the non-Harniltonian 

Degreebound graphs. We checked the data to verify this, and found that out of the 1359 

non-Hamiltonian Degrgebound graphs of ! N O  vertices, only 1 required searching. But the 

backtrack algorithm took 205.1 seconds to prove that this graph was non-Hamiltonian, mak- 

ing the graph ultrahard. The rest of the graphs were al1 determined to be non-Hamiltonian 

by initial pruning (graph reduction and global checking). This result is somewhat surprising. 

While it is similar to the results we obtained on non-Hamiltonian 200 vertex Degreebound 

graphs, one would expert that more non-Hamiltonian graphs would be generated that would 

require searching. However, due to the presence of a significant number of forced edges due 

to degree 2 vertices, t here are many opportunities for graph reduction to remove many edges 

through a cycle of removing edges, finding new forced edges and removing more edges. The 

initial pruning (and graph reduction in particular) thus appears to be much more efficient 

on Degreebound graphs than we expected. However another possibility is that the 15 in- 

complete graphs couid be non-Hamiitonian graphs that require extensive searching to prove 

their lack of a Hamiltonian cycle. 



Table 5.7: Histogram of time required by our backtrack algorit hm on 200 and 500 vertex 
Hamilton In Degreebound graphs. 

1 200 vertices 1 500 vertices 

We now examine the ultrahard graphs that we have occasionally found in our experi- 

ments. -4s we mentioned above, in our examination of the experirnental data we observed 

that as the graph size increased, the frequency of ultrahard graphs (requiring at least an 

order of magnitude more time) increased. In order to analyze this behaviour, we generate 

a frequency histogram of the number of trials for which the algorithm required tirne equal 

to a certain time interval. Since almost al1 non-Hamiltonian graphs took no time, we omit 

them from the analysis. Table 5.7 contains the histogram For 200 and 500 vertex Hamilt* 

nian Degreebound graphs. For each time interval and each graph size we list the number 

of triais and the corresponding percentage of the total this number represents. There were 

1110 trials for 200 vertex Hamiltonian Degreebound graphs and 7-11 trials for 500 vertex 

Hamiltonian Degreebound graphs. 

From these results we make two key observations. Firstly. the time required to solve 

the majority of the graphs increases from < 0.2 seconds to 5 1.0 seconds as  the graph size 

increases. Since the graph size increases by a factor of 2.5, we expect this  result. Secondly, 

we observe on the 500 vertex graphs a higher frequency of graphs that require more time, 

compared to the 200 vertex graphs. Bot h frequency distributions have a similar shape (like 

a decaying exponential), but the dope appears to be less steep for the 500 vertex graphs. 

This demonstrates t hat there is an increase in the frequency of harder graphs as the graph 

size increases. 

Note t hat the trials included in the above table came from points al1 dong the phase 

transition. We aiso want to determine if the frequency of harder graphs increases as we 

move towards the center of the phase transition. In Table 5.8 we examine the histogram of 

the trials of graphs for various ranges of mean degree: '2.60-3.00,Z.Pl-2.89, and 2.84-2.86 

(which have 741,418 and 146 triais each). Note that each range is centered on the center 

time interval (s) 

t 5 0.2 

# of trials 
1000 

# of trials 
1 

% of total 

90.1 

% of total 
0*1 



Table 5.8: Histogram of the percentage of trials within a specific time interval (using our 
backtrack algorithm) on 500 vertex Hamiltonian Degreebound graphs OF varying ranges of 

time interval (s) 
range of me 
2.60 - 3.00 
0.1 
73 .O 
19.0 
3.8 
1.3 
0 .s 
2 .O 

Ln degrees 
2.81 - 2.89 

O .O 
f 3.9 
28.2 
3.3 
1 .ï 
0.5 
2.4 

of the phase transition (mean degree 2.85), and the limits of the range approach the center 

point. We also look at another range, 2.75 - 2.80, which avoids the center of the phase 

transition entirely (this range has only 36 trials). For this histograni. only the percentages 

are given. 

The results of Table 5.8 show that the frequency of appearance of harder graphs is not 

affected by the phase transition. AI1 four ranges have similar distributions. (The distribution 

o l  the 2.75 - 2.80 range is of limited accuracy due to the low number of trials.) This is 

perhap the best evidence that despite the existence of a phase transition for Degreebound 

graphs, the graphs are not hard for our backtrack algorithm. Furthermore, the locations 

of the hard (or harder) graphs we do find do not correspond to the location of the phase 

transition. 

Our backtrack algorithm randomly selects a degree 3 vertex as the initial vertex to being 

the search. It is possible that on the ultrahard graphs. the selection of a different initial 

vertex would cause the algorithm to quickly solve the graph. Such graphs are of course not 

as hard as graphs which require much time given any starting vertex. Thus, we investigate 

the hardness of the incomplete ultrahard graphs by executing our backtrack algorithm 10 

times per graph (with the tirne limit of 10 minutes still in place). In this experiment, our 

backtrack algorithm is performing like a heuristic algorithm (success is not guaranteed and 

we have multiple trials) so we measure the probability of success (probability of finding a 

Hamiltonian cycle or proving none exist within the time limit) and calculate the expected 

time for the backtrack algorithm to find a solution. We examine the 15 incomplete 500 

vertex Degreebound graphs of various mean degrees. Table 5.9 contains our results, with 

the graphs sorted by increasing mean degree. (We do not list the failure times on the table 

because these times are always 600 seconds.) 



Table 5.9: Performance of our backtrack algorithm on 500 vertex incomplete, ultrahard 
hs. 
mean 
degree 
2.79 
2.83 
2.83 
2.83 
2.83 
2.86 
2.86 
2-86 
2.89 
2.89 
2.89 
2.95 
2.95 
3-00 
3.00 

Hamil- 
tonian? 
unknown 
unknown 
unknown 
unknown 
Y= 
Y= 
Yes 
Y= 
Yes 
Y= 
Yes 
Y- 
yes 
Y= 
Yes 

% solutions 
found 

success time (s) 
rnean 
- 
- 
- 
- 

12 1 .O 
1.2 
34.9 
1 .O 
1.2 
4.4 
0.8 
9 .O 
39.1 
O .7 
O .î 

stddev 
expected 
time (s) 

> 600.0 
> 600.0 
> 600.0 
> 600.0 
52 1 .O 
1 .2 
101.5 
151.0 
1.2 
4.4 
O .8 
9 .O 
39.1 
O -7 
O .ï 

The results of this experiment confirm that rnany of the graphs we thought to be ultra- 

hard are in fart easy. Of the 15 graphs, 7 have expected times of less than 10 seconds, 1 less 

than 40 seconds, 2 less than 3 minutes and 1 iess than 9 minutes. Only 4 were not solved in 

any of the 10 trials. Most of the graphs have high solution rates. which suggests the reason 

they were detected as ultrahard initially was due to the low probability event of choosing an 

initial vertex which was very bad for the search. In examining the data for the graphs that 

have large average success times, we observe that this result is due almost always to a single 

long time ( > 60 seconds) averaged with the other short times (< 3 seconds). This indicates 

that for these graphs t here is an approxirnate probability of 10% that a poor initial vertex 

will be chosen. For graph # 5 however most of the successful runs took over 10 seconds, 

and the success rate was only 60%. While good choices for initial vertices exist, there seem 

to be many more poor or bad choices. Thus these graphs (tend toJ remain hard despite 

the choice of initial vertex, and therefore these are the truly ultrahard graphs. Another 

observation from Table 5.9 is that the graphs tend to become easier as the mean degree 

increases. In particular, the unknown graphs are al1 located below the center of the phase 

transition. Unfortunately, our test size is too small to draw any firm conclusions about this. 

Note that it is a h  possible for graphs we found to be easy initiaily to actually require 

much tirne for most starting vertices, which would in actuality make them hard. However, 

it seems likely that the probability of this would be approximately equd to the probability 



of finding a graph hard initially. Since this probability is low, we do not investigate this 

p s i  bility. 

We conclude that Degreebound graphs in general are easy for our backtrack Hamilte 

nian cycle algorithm. However, rarely we do encounter harder graphs. and a few of these 

seern extremely hard (or ultrahard) for our backtrack algorithm. Future work could entail 

investigating t hese graphs. 

5.5.3 Hardness of Degreebound Graphs for Heuristic Algorithme 

We now examine how hard Degreebound graphs are for heuristic Hamiltonian cycle algo- 

rithms. Unlike backtrack Hamiltonian cycle algorithms, we expect heuristic algorit hms to 

have problems with these graphs. The reason for this is based on the difference in operation 

between the two types of algorithms. The Hamiltonian cycle heuristic algorithms extend 

a path to unvisited vertices until they reach a dead-end. At this point the algorithrns use 

non-path edges from the endpoint(@ to other vertices in the path to transform the path 

such that further extension of the path is possible. The more non-path edges that exist, 

the more possibilities are available to the algorit hm, and the l e s  likely it will becorne stuck 

and be forced to give up. 

Table 5.10 shows the resultr for our heuristic Hamiltonian cycle algorithm on Degree- 

bound graphs of 200 vertices that are guaranteed to be Hamiltonian. 4 s  was discussed in 

Section 5.3. we calculate the total expected tirne to account for the number of failed trials 

we expect the algorithm would have to execute before finding a Hamiltonian cycle in a 

successful trial. 

The results of Table 5.10 match Our expectations. Our first observation is that the 

average success time and average failure time remain almost constant acrogs the phase 

transition (with little variation). This is as expected. Initially, the heuristic algorithm has 

as many possible paths to follow as a backtrack algorithm. But since the heuristic algorithm 

does not back up, the addition of a vertex to the path eliminates (in a sense) the other 

choices, and reduces the space the algorithm could pwibly search. Furtherrnore, when the 

dgorithm starts applying rotational transformations, it can perform no more than n (and 

wiii usually apply only a few) before reaching a dead-end or further expanding the path. 

This represents a further constriction of the search space. (Contrast this wit h an heuristic 

algorithm using the crossover extension technique, which takes longer but explores more of 

the search space.) In essence, the heuristic ignores large (hopefuiiy unimportant) sections 

of the search space in order to improve its performance. Thus, there is less variation in the 



Table .;.IO: Results for our heuristic algorithm on 200 vertex Harniltonian Degreebound 
graphs. 

mean 
degree 
2.725 
2 3  
2.773 
2.80 
'2.8 L 
23'2 
2.83 
2.84 
2.85 
2 .PT5 
2 .go 
2.95 
3 .O0 

% solutions 
found 

success time (s) 
stddev 

failure time (s) 
stddev 

0 *O 
0.0 
0.0 
0.0 
O .O 
O .O 
O .O 
O .O 
0.0 
0 .O 
0 *O 
0 .O 
0 .O 

expect ed 
time (s) 

2.6 
2.4 
16.1 
36.5 
96.6 
13 .O 
61.6 
52 .6 
16'2 ..5 
31.1 
39.1 
4.1 
0.3 

execution tirnes of such a heuristic algorithm as compared to a backtrack algorithm. Note 

that there is a slight increase in success and failure time as the mean degree increases. The 

increase in mean degree means there are mon degree 3 vertices and therefore more extra 

edges that can be used by the heuristic algorithm. With these additional choices available, 

the algorithm will take longer before hitting a dead-end. And if it takes longer to fail, this 

gives it the opportunity to take a longer period of tirne before finding a Hamiltonian cycle. 

Our second observation is that the solution rate (Y6 of solutions found) varies greatly 

across the phase transition, and is near zero except at the extreme ends of' the transition. 

The solution rate only jumps over 50% when al1 the degree 2 vertices are gone (at a mean 

degree of 3.00). While we expected our heuristic algorithm to do better as the number of 

options (i.e. non-path edges) increased, this result seems to indicate that the algorithm has 

a possible weakness in dealing with degree 2 vertices. The rise of the algorithmes success 

rate at the lowest mean degrees is possibly due to the fart that there are fewer degree 

3 vertices for the algorithm to make a 'wrong' choice on compared to the center of the 

phase transition region. Since the success time and failure time experience iittle change, 

the change in sdution rate is what causes the sharp increase in expected time. Note that it 

is difficult to tell if the lowest solution rates correspond exactly to the center of the phase 

transition. The differences between the various low rates are of almost no significance, since 

a rate of 0.5% represents only 5 successes out of 625 trials. However, it is apparent that 

there is a strong correlation between hard Degreebound graphs and the phase transition. 



Figure 5.2: Expected tirne (s) and R of Hamiltonian graphs for our heuristic algorithni 
versus mean degree for 200 vertex Degreebound graphs. 

Figure 5.2 graphs both the expected time and the percentage of Hamiltonian graphs as 

a function of mean degree. This makes more apparent the strong correlation between the 

hard region and the phase transition. 

Since 200 vertex Degreebound graphs are clearly hard for our heuristic algorithm. we 

repeat the same experiment on 100 vertex Degreebound graphs. On these graphs the 

heuristic algorithm performs much better. The solution rate decreases only slightly as it 

approaches the center of the phase transition (mean degree of 2-79), falling from near 100% 

at both extremes (2.60 and 3.00 mean degree) to a low of 48.3%. Execution times drop 

by somewhat more than 50% compared to the times on 200 vertex Degreebound graphs, 

as we would expect. Due to the much higher solution rates. the expected tirne increases 

only marginally from the ext remes to the center of the phase transition. Thus, our heuristic 

algorithm does not find these 100 vertex graphs hard. 

The sharp increase in difficulty in going frorn 100 vertices to 200 is a strongindicator that 

Degreebound graphs are hard for our heuristic algorithm. Another point of evidence is the 

correlation between the drop in solution rate and the phase transition region for 200 vertex 

Degreebound graphs. Finally, the large expected times (of 30 seconds or more) on these 

200 vertex graphs demonstrates chat these graphs really are hard. Therefore we conclude 



that 200 vertex Degreebound graphs are hard for our heuristic algorithm. which contrasts 

greatly wit h the results we obtained using our backtrack algorithm. This demonstrates 

again that the algorithm used can have a large influence upon the difficulty of a graph or 

set of graphs. 

5.6 Generalized Knight >s Circuit Grap hs 

In Chapter 4 we examined the knight's tour problem as a source of hard Hamiltonian 

cycle graphs. In Section 4.3 we introduced the generalized knight's circuit problem as 

a generalized form of the knight0s tour problem. Instances of this problem are specified 

by the 4-tuple (.4, B )  - n x m. We defined instance classes to be sets of instances with 

pararneters A. B and n fixed. and with parameter rn aliowed to vary. In the following 

sections of Chapter 4 we presented our theoretical and experimental results showing which 

instance classes had no circuits (no Hamiltonian graphs) and which instance classes did. 

Table 4.1 in Section 4.6 lists the non-Hamiltonian instance classes we identified and Table 

4.2 shows Our experimental results in searching for circuits in other instance classes. in this 

section. our goal is to show that the generalized knight's circuit problem is a good source 

of hard graphs for our backtrack Harniltonian cycle algorithm. 

In the previous sections on G.., random graphs and Degreebound graphs, we were 

able to rnah use of phase transitions to lielp identify whether thwe graphs were hard 

or not for our algorithms. Chfortunately, there is no good way to use phase transitions 

with the generalized knight's circuit set of graphs. There is no clear constraint parameter 

which separates the Hamiltonian graphs frorn the non-Hamiltonian graphs. Instead, we will 

compare the expected time required by our algorithm to salve the different instances of the 

various instance classes. In our analysis of Degreebound graphs in  the previous section, we 

defined ultrahard graphs to be graphs that took an order of magnitude more tirne to solve 

than the average graph. Thus. we will define hard generalized knight's circuit graphs to be 

graphs of sirnilar size to the Degreebound graphs that take as long to solve as the hard or 

ultrahard graphs. To help avoid the problem of poor initial vertex selection, we perform IO 

trials for each graph (problem instance). We report the success rate (% of the graphs for 

which the algorithm found a circuit or proved no circuit was possible) and the expected time 

(as calculated using the formula described in Section 5.3). We use our backtrack algorithm 

as describeci in Section 5.3. (The IO minute time limit is in effect.) 

Thus, if we find generalized knight's circuit graphs of up to 500 vertices which have 

an expected time of more than 30.0 seconds, these would certainly quaüfy tu hard graphs 



4Dce chsses e w  
instance class 
(2,3) - 5x m 
(2,3) - 9  x m 
(2,3) - 10 x  m 
(2,s)  - 7 x  m 
(2,s)  - 9  x  n 
('2.5) - 10 x m 
(2.5) - 11 x  m 
(2 , ï )  - 9  x na 
(ZT7} - 11 x  
(2 , ï )  - 12 x  m 
(2,7) - 13 x m  
(3 ,4 ) -7  x m  
(3,4) - 13 x m 
(4.5) - 9 x  m 

Table 
instance class 
( 1 , 2 ) - 3 x m  
( 1 , 2 ) - 5 x m  
( 1 , c l f - 5 x m  
( 1 , 4 ) - 7 x m  
( 1 . 4 ) - 8 x  m  
(1 .4)-9  x  m 
( 4 )  - O x m 
( 1 , 6 ) - C x m  
( 1 . 6 ) - 9 x m  
( 1 , 6 ) - 1 1 x m  
( 1 , P ) - 9 x m .  
( 1 , 8 ) - 1 1 x m  
(1,B)- 13 x  m 
(1 , s ) -1 .5xm 
( l , 8 ) - 1 5 x m  

G 
range of m 
6 - 40 
10 - 20 
10 - 20 
8 - 40 
10 - 30 
10 - 20 
12 - 20 
10 - 30 
12 - 30 
12 - 30 
14 - 30 
8 - 40 
14 - 30 
10 - 30 

5 . 1 u i s t  of ins 
range of m 
1 0 - 4 0  
6 - 5 0  
8 - 6 0  
8 - 3 0  
8 -  10 
1 0 - 2 0  
10 - 20 
8 - 5 0  
1 0 - 4 0  
1 2 - 2 0  
1 0 - 5 0  
1 2 - 4 0  
14 -30  
1 6 - 3 0  
1 6 - 3 0  

as compareci to Degreebound and G.., random graphs. Note that most of the *hardW 

Degreebound graph results were merely artifacts of poor initial vertex selection. whereas this 

e f k t  is minimized in these experiments by perforrning multiple trials. Thus any generalized 

knight's circuit graphs of up to 500 vertices that had an expected time greater than 600.0 

seconds would definitely qualify as ultrahard. 

Table 5.1 1 shows a list of generalized knight's circuit problems we exaniined. It is 

organized by instance class, and gives the range of m exarnined for each instance clas. We 

examineci a total of 360 graphs. (Remember that for any (-4, B) - n x m instance, if n is 

odd m must be even.) The (1,4) - 8 x m instance ciass is the only instance class for which 

we know t hat al1 the instances are non-Hamiltonian (by Theorem 19). Some of the other 

instance classes we know to have many Hamiltonian instances ((1,2) - 3 x m, (1,2) - 5 x rn, 

( 1,4) - 5 x m) (see Chapter 4  for details) . 
Of the 360 instances exarnined, 123 graphs (34 %) were found to be Hamiltonian and 221 

graphs (61 %) were found to be non-Hamiltonian. For the rernaining 16 graphs (4.4 %) our 

backtrack algorithm failed (reached the 10 minute time Iirnit) every trial, thus making these 

graphs ultrahard (since the expected time to solve these instances is > 600 seconds). These 

instances are üsted in Table 5.12. The number of vertices for each instance is provided 

in the table. The (1,4) - P x 10 instance is particularly interesting. It is known to be 

non-Kamiltonian by Theorem 19. The graph contains only 80 vertices yet our aigorithm 

was never able to finish within 10 minutes. 



Table 5.12: Generalized knight's circuit instances for which our backtrack algorithm never 
succeeded . 

problem 
instance 
(2,s)- 1 0 ~  18 
(2,s) - 10 x 19 
(2-5) - 10 x 20 
('2.5) - 11 x 14 
( 2 3 )  - 13 x 28 
(2.7) - 13 x 30 
(3,4) - 7 x 32 
(3.4) - 7 x 34 

# of 
vert ices 
180 
190 
200 
154 
364 
390 
224 
238 

Table 5.13: Histogram of the expected time required by our backtrack algorithm on 221 
lized knight's circuit instances. 
tirne interval (s) 1 # of trials 

We now examine the generalized knight 's circuit instances which our backtrack algorithm 

found to be non-Hamihonian. Table 5.13 contains a histogram of the expected tirne required 

on these non-iiamiltonian instances. 

These results support our previous findings on random Ck,, and Degreebound graphs: 

our backtrack algorithm is highly efficient at Anding non-iiamiltonian graphs. Despite 

the use of proofs to eliminate non-Hamiltonian instance classes, a majority of the non- 

Hamiltonian graphs were still easily solved by our algorithm. However. a few hard and 

ultrahard non-Hamiltonian graphs were found. Table 5.14 has a list of these. Note that the 

(1,4) -8 x 10 instance is included; while our algorit hm failed on al1 10 trials on t his instance, 

we know it to be non-Hamiltonian by Theorem 19 and thus include it here. Since only a 

few hard non-Hamiltonian graphs were found, we conclude that our generalized knight's 

circuit problem is not a good source of hard non-Hamiltonian graphs. However it L still 

much better than the Degreebound and G,, graphs. 

We now examine the generaiized knight's circuit instances for which our backtrack ai- 



Table 5.14: Backtrack algorithm results on hard non-Hamiltonian generalized knight's cir- 
cuit graphs. 

problem 1 #of  1 success 1 expected fl 

Table 5.15: Histogram of the expected time required by our backtrack algorithm on 123 

instance 1 vertices 
( 1 . 4 ) - P X  10 1 PO 

Hamiltonian generaliz knight's circuit i r  
tirne interval (s) 

t J 0.2 

rate 
O 

tances. 
# of trials 
37 
9 
6 
4 
8 
29 
6 
24 

time (s) 1 
> 600.0 1 

% of trials 
30.1 
7.3 
4.9 
3.3 
6.5 
'23.6 
4.9 
19.5 

gorithm found a Hamiltonian cycle. Table 5.15 contains a histogram of the expectd tirne 

required on t liese Hatniltonian instances. These results clearly indicate t hat the generalized 

knight's circuit probleni is a good source for hard (and ultraharci) Hamiltonian graphs. 

The histogram shows a much greater percentage of non-easy graphs as compared to D e  

greebound graphs (see Table 5.7). Of particular interest is the large number of ultrahard 

graphs (ones which had an expected tirne of more t han 600 seconds). Table 5.16 lists these 

24 ultrahard Hamiltonian generalized knight's circuit instances. Note that since we only 

perforrned 10 trials, we expect a high variance in the algorithm succes rate, which produces 

a correspondingly high variance in the expected tirne. 

The experiments performed in this section indicate that the generalized knight's circuit 

problem is a good source of hard graphs for the Hamiltonian cycle problern. A natural 

question to ask is why this is so. This is clearly an area for future research, but we have 

some preliminary comments and observations. First, we observe that the question of which 

instances are Hamiltonian or not is much harder to answer than for random G,,, or De- 

greebound graphs. The random non-Hamiltonian graphs were either not biconnected or 

couId be pruned to the point where non-Hamiltonicity was obvious. This still seems to 

be true for the majority of the non-Harniltonian generaüzed knight's circuit graphs, How- 

ever, for generalized knight's circuit graphs, only vertices near the corners (and sometimes 



Table 5.16: Backtrack algorithm results on 24 ultrahard Hamiltonian generalized knight's 
circuit graphs. 

problem 
instance 
(1,2) - 3 x 34 
(1,s)-3 x 38 
(1,2) - 3 x 40 
(1,4)-5 X U  
(l,4}-5 x 38 
(l,4) -Fi  x 42 
(1,4) - 5  x 44 
(1,4) - 5 ~ 4 6  
(1.4) - Fi x 52 
(1,4) - Fi x 54 
(1.41-5 x 60 
(1.4) -9 x 12 
(1?4) -9 x 16 
(l,-l) -9 x 18 
(1,4)-9 x 20 
(1,4) - 10 x 11 
(1.4) - 10 x 14 
(1.6) -9 x 38 
(2,3) - 9 x 20 
(2,s) - 7  x 36 
(2.5) - 7  x 38 
(2,s) - 11 x 18 
(2,s) - Il x 20 
(3,4) - 7 x 36 

# of 
vert ices 

SUCCeSS 

rate -- -- 
20 
40 
30 
20 
30 
JO 
30 
JO 
JO 
20 
50 
10 
50 
40 
10 
10 
50 
30 
50 
50 
20 
20 
50 
40 

expected 
time (s) 
2400 . 1 
900.1 
1400.1 
2583.5 
1405.0 
90 1.9 
1499.2 
900.9 
906 .O 
'2-1 18.4 
606.6 
*NO 1.3 
680.6 
900.3 
*5405.0 
5500.8 
600.9 
1400.5 
634 .2 
600.7 
2400.8 
24 12.6 
667.5 
98 1 .P 



both sides, if the board is narrow) are of degree 2. Thus, as m increases the number of 

forced edges remains constant. This means the amount of pruning that can be applied 

remains constant as the graph size increases. which means the graph difficulty will increase. 

Furthermore. for many instance classes (with large enough rn) we expect the graph to be 

biconnected (although we have no proofs concerning this). Thus. many graphs will have 

limited pruning and be biconnected. Some of these graphs however will be non-Hamiltonian 

due to ot her factors most likely due to the structure or regularity of t hese graphs. And t hese 

non-Hamiltonian graphs will most likely be hard for our backtrack algorithm. 

A high percentage of the Hamiltonian generalized knight's circuit instances were hard 

for our backtrack algorithm to solve. We feel that the reason for this is as follows. First, as 

we mentioned above, the forced edges are concentrated near the ends and sides of the graph, 

limiting the amount of pruning t hat cm be done. Second, there is a certain number of higher 

degree vertices (degree 4 and 8). As  we saw with the Degreebound graphs, degree 3 vertices 

are able to propagate edge deletions very well, since the deletion of one edge creates two 

new forced edges. Thus, the presence of higher degree vertices in the generalized knight's 

circuit graphs will reduce t his pruning propagation. Furt herrnore a higher average degree 

for these graphs means a higher branching factor and thus a larger search space for the 

backtrack algorit hm to explore. Normally, we would expect an increase in  mean degree to 

increase the number of solutions. therefore allowing the algorithni to take the sanie or l e s  

tirne even though the search space is larger. However, in the generalized knightk circuit 

graphs the structure and regularity of the problem seems to constrain the possible solutions. 

We suspect that the high level of regularity creates many local minima in the search tree 

that our backtrack algorithm must search through. 

5.7 Hard Constructed Graphs 

In t his section we const ruct special Hamiltonian graphs. By utilizing our knowledge of var- 

ious Harniltonian cycle algorithms, we can form graphs which produce a poor performance 

for a particular algorit hm. 

One basic concept we use in constructing these graphs is the non-Hamiltonian edge, 

which we define as an edge which cannot be in any possible Hamiltonian cycle. If we 

can construct a graph so that the algorithm chooses to lollow a non-Hamiltonian edge 

many times throughout the graph, then it will be very difficult for the aigorithm to form 

a Harniltonian cycle. Note that since the graphs are Hamltonian, each vertex must be 

incident on at least two edges which are not non-tiamütonian. 



Figure 5.3: A portion of a graph with a non-Hamiltonian edge. 

An  important issue when const ructing t hese graphs is the degrees of the vertices incident 

on the non-Hamiltonian edge. Let us consider a portion of a const ructed graph containing 

vertices .Y, Y and 2. Let us assume that the Harniltonian cycle algorithm A we are using 

has extended the path to vertex X, and can choose between the non-Hamiltonian edge 

(X, Y) and the other edge (;Y, 2). (See Figure 5.3.) If the algorithm uses a particular 

vertex selection heuristic, then we want to design the graph to exploit the heuristic and 

force the algorithm to follow edgc (X, Y). For example, if algorithm A uses the low degree 

first heuristic, then we want d ( Y )  < d(Z), which will guarantee that the algorithm will 

follow the non-Harniltonian edge. If we do not want to make any assumptions about the 

vertex selection heuristic used by the algorithm, then we want to balance the degrees to 

leave the choice a randoni one. With d(Y)  = d(Z), algorithm .4 (and most other algorithrns) 

will choose an edge at random. Thus, for many different choices, in approxirnately half of 

them the non-Haniiltonian edgc will still be selected. 

We explore several different graphs. which we label with specific names to differentiate 

between t heni. The following sections examine each of these graphs. 

5.7.1 The Crossroads Graph 

The crossroads graph was designed to produce extremely terrible performance for a back- 

track algorithm using the low degree first heuristic and standard local search pruning, but 

not using component checking in local pruning. The crossroads graph CR(k) is composed of 

k identical subgraphs (CtRs) arranged in a circle. If the subgraph has a Hamiltonian path, 

then the graph has a Hamiltonian cycle. Figure 5.4 contains a sample crossroads graph and 

Figure 5.5 contains the crossroad su bgrap h. 

The basic idea behind the design of the crossroads subgraph is to have a choice between 

two edges, one being a non-Hamiltonian edge and the other being a forced edge. Vertex A 

of one subgraph connects to vertex E of the previous subgraph in the circle, while vertex E 

connects to vertex A of the next subgraph in the circle. Edge (A, B)  is the non-Harniltonian 

edge and edges (A, C) and (B ,  D) are forced because of the crossroads component subgraph 



Figure 5.4: A sample crossroads graph made of 9 crossroads subgraphs. 

(vertices C', D, F,G), which can only be included in the cycle if both forced edges are 

followed. 

If the backtrack algorithm comes froni an E vertex to an A vertex. it must then choose 

between the non-Harniltonian edge to the degree 3 vertex B, or the other edge to the degree 

4 vertex C'. The Iow degree first heuristic will cause it to choose B. From B it will then 

choose to follow the forced edge to the degree 2 vertex E. and then on to the next crossroads 

su bgraph. The algorit hm will have left behind unvisitecl the crossroads component. The 

local search pruning ernployed by the algorithm will not change the component since its 

four vertices are al1 degree 3. Note that the crossroads subgraph is symmetric. and thus the 

backtrack algorithm will perform identically if it comes from an A vertex to an E vertex. 

The crossroads component we show in Figure 5.5 is of the srnallest possible size (since 

vertices C and D must have a degree 2 4.) There are two different valid (Hamiltonian) paths 

through this component (C, F.G, D and C,G, F, D).  The edge (C: D) is a non-Hamiltonian 

dge, but will not be selected due to the low degree first heuristic (local pruning would 

immediately detect a dead-end and backtrack anyways). We denote the crogsroads graph 

using k crossroads subgraphs each with this minimum sized component by CR, ( k ) .  We 

could instead use  a Iarger component that has more vertices, al1 connected, which will 

increase the number of possible (Hamütonian) paths through the component. As we discuss 

below, this can increase the amount of backtracking the algorithm must do. 

We now analyze the performance of the backtrack aigorithm on a crossroads graph. Our 
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Figure 5.5: The crossroads su bgraph CRr 

goal is to get an estimate on the amount of work performed by the algorithm. We observe 

that the algorithm only backtracks when the algorithm has gone through all the subgraphs 

and returned to the s u  bgraph it started in. When the next (adjacent J vertex is already in the 

path, it has reached a dead-end if the algorithm has  followed one or more non-Hamiltonian 

dges (otherwise we have a Hamiltonian cycle). The algorit hm will backtrack to the point 

at which it had anot her edge to choose from, and then start to extend along this new edge. 

We thus analpe the aniount of work done by the algorithm by calculating the number of 

paths N J n )  that the algorithm will generate while searching for a Hamiltonian cycle on the 

graph CR@). Note that if the algorithm's starting vertex is in the crassroads component. 

the algorithm will autornatically bypass one of the non-Hamiltonian edges (and follow both 

forced edges). For our analysis, we assume the worst case: the algorithm starts on an A, E 

or B vertex and thus follows dl the non-Hamiltonian edges. 

We start our analysis by ignoring the crossroads component and exarnining the alg* 

rithm's performance. It has n decision points, and at each it can choose from 2 different 

edges. Due to the low degree fim heuristic, it will always try the wrong edge first. Thus, 

the algorithm must explore al1 possible combinations of choices until the last combination, 

which produces a Hamiltonian cycle. The algorithm wi11 therefore generate 2" paths. 

We now consider the crossroads component in our analysis. We denote the number of 

paths through the component as k. (For the minimum sized component, k = 2.) For a 

particuiar subgraph i, if we take the forced edges (not the non-Hamiltonian edge) and are 

forced to backtrack, we will first try the k different paths of the component of i before 

baektracking to su  bgraph i - 1 (and promptly choosing the non-Hamiltonian edge). For a 



graph with n crossroad subgraphs, we denote the number of paths generated by taking the 

non-Hamiltonian edge of the first subgraph as W,, and the number of paths generated by 

taking the forced edges of the first subgraph as Rn. &(n) = W ,  + Rn. If the algorithm 

follows the forced edges of the first subgraph, it is essentially reducing the problem to n - 1 

subgraphs. Thus Rn = iVJn - 1). If the algorithm follows the non-Hamiltonian edge. then 

it will generate al1 possible paths. since no Hamiltonian cycle is possible without the first 

component. For each of the n - 1 subgraphs, it has 1 + k choices, the non-Hamiltonian 

edge or the forced edges and the b paths through the cornponent. Tlius W, = (1 + k)" - l .  

Np(n)  = N p ( n  - 1 )  + ( 1  f kJn-I  for R 2 2. For n = 1. N p ( n )  = 2. Solving this recurrence 

equation gives us: 

For the CR, ( n )  graph with the minimum sized component (k = 2) N p ( n )  = (3" + i)/2. 

Clearly, as n increases, the backtrack algorithm must perform an exponentially increasing 

amount of work. Increasing the nurnber of paths through the crossroads component will 

increase the rate of exponential increase. Note also that a croasroads component coulci 

be const ructed from another crossroads su bgraph (add two more vertices adjacent to bot h 

vertex F and G). In any case, from our analysis we see that the basic crossroads graph is 

hard for the backtrack algorithm. 

We now consider the performance of two other algotithms on the crossroads graph. We 

assume that both these algorithms use the low degree first heuristic, and thus always follow 

the non-Harniltonian edge first. A backtrack algorithm that uses component checking as part 

of its search pruning will find the graph easy. This is because instead of backtracking after 

proceeding through al1 the subgraphs, the algorithm will backtrack after following a non- 

Hamiltonian edge and proceeding to the next degree 2 vertex. This will cause a component 

to form (the crossroads component), and the dgorithm will backtrack. Since the algorithm 

backtracks before reaching the next subgraph, the number of paths t in the cornponent is 

irrelevant, and the total number of paths formed by this algorithm is Sn - 1. A heuristic 

Hamiltonian cycle algorithm that utilizes the cycle extension technique wül also find the 

graph easy. Like the first backtrack algorithm, it will follow al1 the non-Hamiltonian edges 

until it returns to the first subgraph. But instead of reaching a dead-end, the algorithm 

will be able to form a cycle. Cycle extension will cause the cycle to be bmken at one of 

the crossroads components not in the graph. The component wilI be added to the path, 

and a new cycle formed. This wiU be repeated until ail the components are in the path, 

at which point we have a Hamiltonian cycle. Thus, we expect the heuristic algorithm to 



Table 5.17: Time in seconds required by different algorithms on Crossroads graphs of varying 
size. 

su bgraphs 
basic 
backtrack 
O .9 
2.7 
8.6 
27.4 
88.5 
279.5 
705.1 . a- 22r r 

have a 100% success rate. Furtherrnore, its choices b r  performing the cycle extension and 

rotational transformation are relatively straight-forward, and thus we expect the amount of 

work performed by the algorithm to be directly proportional to the number of croasroads 

subgraphs making up the graph. 

We now present experimental results to confirm our analysis above. We use three 

Hamiltonian cycle algorithms: basic backtrack, component backtrack and heuristic. The 

basic backt rack and heuristic algorit hms correspond to the algorit hrns dixusseci in Section 

5.3. (Note that the heuristic algorithm we use does not use the low degree first heuristic 

and will instead choose randomly, so it will have a slightly easier tirne than it ot herwise 

wouid.) The component backtrack algorithm is the basic backtrack algorithrn with the 

difference that local pruning inchdes component checking as well as graph reduction. We 

modify the initial vertex selection of both backtrack algorithnis to choose a random vertex 

of maximum degree. This will cause the algorithms to always select either a B or A vertex. 

Due to symrnetry, there will be no difference in performance between these two selections, 

and therefore the backtrack algorithms will perform identically each time. Thus we only run 

each backtrack algorithm once per Crossroads graph. The heuristic algorithm is executed 

25 times per graph, and the average time is reporteci. In our experiment we examine the 

execution times of the three algorithms as the number of subgraphs in the Crossroads graph 

is increased. The results are presented in Table 5.17. 

As can be seen from the table, the results match our analysis. The component backtrack 

and heuristic dgorithms took very little tirne irrespective of the size of the Crossroads 

graph, while the basic backtrack dgorithm took an exponentially increasing amount of 

tirne. Assuming that the time required (T) is a constant (K) times the number of paths 

the algorithm must construct (N,(n)), we obtain the formula T = K(3" + 1)/2. Solving 

component 

0.1 O .O 
0.1 
O .O 
o. 1 
o. 1 
0.1 
0.1 
0.1 

O .O 
O .O 
0.0 
0.0 
0.0 
0.0 
0.0 
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Figure 5.6: Experimental and t heoretical times to solve Crossroads grap tis. 

for K given the initial result that 7 subgraphs takes about 1 second, we get K = 2/3', and 

simplify the equation to T = Y'. Figure 5.6 shows our experimental values and the line 

corresponding to our theoretical equation. While the fit is not perfect. the experirnental 

and theoretical rates of exponential increase are quite similar. 

On an absolute scale. compared to other graphs, the Crossroads graphs are very hard 

indeed. A crwroads ,graph with 14 subgraphs has 98 vertices, and it takes our basic 

backtrack algorithm 47 minutes to solve. No 100 vertex Degreebound graph we generated 

takes this long to solve. Even most 200 vertex Degreebound graphs (except for the 2 

incornpiete graphs) take much less time, even for the heuristic algorithm which Found 200 

vertex Degreebound graphs hard (expected times were l es  than 3 minutes). Only the 

hardest generaüzed knight's circuit instances take similar amounts of time (using expected 

tirne) or more (3 graph of 108 and 110 vertices had expected times of approximately 90 

minutes). However only on the Crossroads graphs do we observe an exponential increase in 

the time required with respect to the size of the graph. 

5.7.2 The Interconnected-Cutset Graph 

The crosroads graph of the previous section was only hard if a baektrack aigorîthm did not 

use component checking during the search. In this section, we present a constructeci graph, 



Figure 5.7: A sample ICCS graph. 

the in terconnected-cutset graph (or ICCS) which will not becorne easier when corn ponent 

checking search pruning is used. Due to space constraints. we only introduce the graph and 

provide a short discussion on it. 

We designed the ICCS graph for a backtrack algorithm using no degree selection heuris- 

tic (so the neighbours of the current endpoint are visited in a randorn order). Like the 

crossroads graph, the ICCS(k} graph is composed of k identical su bgraphs I C m  arranged 

in a circle. The subgraph h a s  a Hamiltonian path between the connecting vertices and 

therefore the ICCS graph is Hamiltonian. Due to the construction of the ICCS subgraph, 

extra non-Hamiltonian &es can be added between different su bgraphs. These edges help 

prevent cornponents from forming during the search, which greatly reduces the ektiveness 

of the component checking search pruning. See Figure 5.7. Heavy lines are forced edges 

that must be in any Hamiltonian cycle. 

The basic idea behind the design of the ICCS s u  bgraph is to have a connecting set of 

vertices Sc, which when removed as a cutset produces lScl - 1 isolated vertices from an 

independent set of vertices SI. ( O  S = S c  - 1 Note that according to Theorem 5 

a Hamiltonian cycle can still exist in such a graph. However, in any possible Hamiltonian 

cycie we must alternate between the vertices in Sc and the vertices in Sr. iffiom a vertex 



\ connecting edges to adjacent subgraphs 

Figure 5.8: A sample IC'CJ subgraph lCTSs. 

in Sc we visit a vertex not in SI then there is no way to visit al1 the remaining vertices in 

SI and form a cycld Thus, al1 edges leading from a vertex in Sc to a vertex not in Sr are 

non-Hamiltonian edges. This allows us to interconnect subgraphs by coniiecting vertices of 

Sc* of two different su bgraphs. Figure 5.8 contains a sample subgrapli. Non-Hamiltonian 

edges are denoted by dashed lines. and forced edges are denoted by heavy lines. While the 

size of the subgraph can be adjusted upwards, smaller subgraphs will quickly become easy 

due to the use of local search pruning by a backtrack algorithm. 

We now discuss why the ICCS subgraph is hard for an algorithm to traverse entirely 

without taking a non-Hamiltonian edge. Two of the vertices in Sc are designated as ter- 

minating vertices ST that are used to connect the subgraph to each of the two subgraphs 

adjacent to it. The ST vertices only have one edge to a (different) vertex in SI.  This is 

a forced edge. Thus the other edges from ST vertices to the other vertices in Sc are al1 

non-Hamiltonian edges. An algorit hm ernploying random vertex selection has a probability 

of l/lScl of choosing the right edge when entering a subgraph. Thus, the algorithm will 

most liliely choose a non-Hamiltonian edge. There are also two other ways the algorithm 

can go wrong. First, the algorithm can also follow a non-Hamiltonian edge from a Sc vertex 

in one subgraph to another subgraph. A second pmibility is that after entering a subgraph 

'We do not pmvide a proof, but one can be easiiy constructed. The idea behind the fCCS subgraph is 
very sllnilat in concept to our work on the geoeralized knight's cîrcuit probiem in Chapter 4. 



via one ST vertex, the algorithm reaches the other ST vertex and follows the forced edge to 

the next subgraph before having visited al1 the Sc and SI vertices in t his current su bgraph. 

The non-Hamiltonian edges connecting Sc vertices in different subgraphs help prevent a 

component from forming, and thus component checking will not be of assistance. 

h o t  her reason w hy the lCCS su bgraph is hard for a backtrack algorithm is that t here 

are many possible paths between the two ST vertices. .4 backtrack algorithm wiH generate 

many different paths trying al1 the different combinations before backing up to ST vertex 

and trying a different edge. As we saw in the crossroads grapli with respect to the crossroads 

component, t his large number of pat h s  will further increase the difficulty of t he ICCS graph. 

5.8 Conclusions 

In this chapter we have examined the graphs that are hard for various Hamiltonian cycle 

algorithms. One key issue we explored is the idea that hardness of a graph depends upon 

the algorithm being used. This was most obvious in the performance differences between 

backtrack and heuristic Haniiltonian cycle algorithms. By exarnining which graplis were 

hard for which algorithm. we have gained a better understanding of how the algorithms 

work, and when one niight be preferred over another. Our backtrack algorithm has  difficulty 

wit h highly struct ured graphs such as t hose of the generalized knight's circuit problem and 

the C'rossroads grapli. However niost randorn graphs are easy. Our backtrack algorithm 

had little or no problem with the G.,, and Degreebound graphs. The performance of our 

heu ristic Hamiltoniaii cycle algorit hm was considerably different . Since t hese algorit hms 

have as their goal to extencl the path. they require connecting vertices. Thus, the low degree 

Degreebound graphs are difficult for them because of the many dead-ends in the search. 

However, structured graphs such as the Crogsroads graph in which a cycle can always be 

easily formed are easy due to the use of the cycle extension technique. The importance of the 

agorithrn for hardness was also observed in work on andom C,,, graphs. The results for 

our barktrack algorithm were significantly different lrom the results of previous cesearchers 

who used primitive Hamiltonian cycle algorithms instead. Thus, what they concluded to be 

hard we concluded to be easy because of the vast improvement in performance we obtained 

through the use of pruning. 

Our search for hard graphs was successful. A smdl number of the Degreebound graphs 

proved to be very difficult for our backtrack algorithm. The generalized knight's circuit 

problern we deviseci in Chapter 4 proved to be an excellent source of hard graphs, especially 

hard Hamiltonian graphs. One area of future work is to investigate the reasons behind why 



these graphs are hard. We hope that new algorithm techniques (for the Hamiltonian cycle 

problem) can be developed from the findings of such research. 

As we mentioned in the introduction to this chapter, one reason for investigating hard 

Hamiltonian cycle graphs is to learn more about the algorithms we use. We have accom- 

plished this throughout the chapter. Our results with our heuristic algorithm show that it 

has difficulty with lower degree graphs due to fewer connecting edges. Future research could 

be perforrned investigating ways to improve the heuristic algorithms performance. Implc 

menting a more sophisticated algorithm using more of the heuristic algorithm techniques 

discussed in Chapter 3 would be a good first step. Our results with our backtrack algo- 

rithrn show that it is highly effective at identifying non-Hamiltonian graphs and also highly 

effective at searching low degree graphs. We have also identified some grapli constructions 

that will cause problerns for this algorithm. 

One surprising discovery we made was that the performance of our backtrack algorithm 

can widely Vary for a single grapli due to the selectioii of the initial vertex. This effect was 

noticed on both Degreebound and generalized knight's circuit graphs. Due to this effect, we 

observed that multiple restarts of our backtrack algorithm after a time lirnit was reached 

often resulted in better performance than a single unlimited exerution. This suggests a new 

algorithm technique for backtrack algorithms. which we cal1 the incrementat tirne restart 

technique. We define a maximum time limit t ,  for the algorithm and initially set t ,  to be 

small (a few seconds). Each time the backtrack algorithm reaches the time limit without 

finishing, we increase t ,  by some multiple (ir. double t,) and restart the algorithm. 

After a certain number of these increases, when t ,  starts becoming fairfy large (and the 

algorithm has never finished) then we restart one last time with no maximum time limit. 

Our experimental results in this chapter indicate that ma t  graphs are quickly solved at 

least a certain percentage of the time. Thus with this technique added to our backtrack 

aigorithm, we would quickly solve most graphs. If we double t, at each iteration, then 

the time wasted (the time spent on al1 the previous iterations in which the time ümit was 

reached) is no greater than the arnount of time amilable in the current iteration. Ultrahard 

graphs, particularly those that are non-Hamiltonian, would tend to not be solved within any 

of the time limits, and thus require that eventually the algorithm abandons the time limit 

and runs to completion, however long that takes. Future research can be done to investigate 

just how useful this technique is. In particular, we observe that it can be applied to any 

backtrack aigorit hm, and t h u s  may be of use for other NP-C problems such as  graph coloring 

where initial vertes selection also plays an important role. 



Chapter 6 

Conclusions and Future Work 

This thesis has been an investigation of the Harniltonian cycle problem, in which we have 

explored and characterized the interaction between the algorithms. the graphs, and the 

achieved pedormance. We have obtained and presented much evidence detailing this com- 

piex interaction. In  Chapter 3 we argued that some design decisions in the creation of an 

Hamiltonian cycle algorithm can be made only if we have some knowledge about the prop 

erties of the graphs we are trying to solve. However, we also did show t hat some algorithms 

(or algorithm techniques and heuristics) can be expected to obtain better performance in- 

dependent of the type of graph being solved. In Chapter 4 we briefly discussed the first 

experirnental evidence for the interaction between the algorithm used and the hardness of 

the graph. Using time limits on our backtrack algorithm with multiple restarts allowed u s  

to find cycles for many graphs that previously tended to take an intractable period of tirne. 

In Chapter 5 our research into hard Hamiltonian cycle graphs produced a much greater 

level of insight into how the apparent difficulty of particular graphs can change greatly 

depending upon the algorithm being used. In particular, we found important differences in 

the performance of our Harniltonian cycle backtrack and heuristic algorithms. Our exper- 

iments on Degreebound graphs clearly indicated that the rnajority of these alrnost-regular 

low degree graphs were easy for the backtrack algorithm. but starting at 'MO vertices be- 

came quite difficult for out heuristic algorithm. To contrast with these results we presented 

a graph construction we calleci Crossroad graphs. These graphs forced our standard back- 

track algorithm to take many non-Hamiltonian edges and thus required exponential time 

to solve. However because of the difference in its basic operation, our heuristic algorithm 

was able to solve the graphs eady (in linear time). By adding component checking to our 

backtrack aigorithm we were able to get the backtrack algorithm to take linear time as 

well. Our second construction, the  Interconnecteci-Cutset graph, was designeci to defeat 



our backtrack algorithm with component checking. This graph is interesting because there 

seems no easy way to modify our backtrack algorithm to quickly solve the graph. This 

shows that not al1 graphs must exhibit the easy - hard difficulty with different algorithrns. 

Just as some algorithms are always better than others. independent of the graph, some 

graphs are more difficult than others. independent of the algorithm (assuming a general al- 

gorit hm).  Another point of evidence for our t hesis arase from our work on phase transitions 

and random graphs. Our results on the C,,, graph class clearly indicated that almost a11 of 

these graphs are easy for our backtrack algorithm, which contrasteci greatly with the results 

of previous researchers. The reason for this variance in results was due to the difference 

in the backtrack algorithms being employed (the other researchers failed to use pruning). 

This clearly indicates the importance of our thesis: the interaction between algorithrn and 

graph cannot be ignored. 

Our researc h clearly supports our t hesis: t hat t here exists a corn plex interaction between 

the algorithms being used, the graphs iiring solved, and the performance obtained. Note 

that our research on this interaction dealt only with the Hamiltonian cycle problern, and 

our specific results of course only apply to that problem. However. we expect a similar kind 

of interaction to exist for many ot her NP-C problems. 

Besides supporting our primary thesis, we produced other important results. Our 

overview of Harniltonian cycle algorithms in Section 2.4 summarizes and classifies the dif- 

ferent Hamiltoaian cycle algorithrns, techniques and heuristics presented in the literature. 

Chapter 3 uses this classification surnrnary as a starting point for a diseusion on design 

issues of Hamiltonian cycle algorit hrns. We introduce a classification scheme for backt rack 

pruning operations. And it is the consolidation of the various pruning operations scattered 

throughout the literature that causes our backtrack algorithm to obtain the high level of 

performance we observed in Chapter 5. Our analysis of heuristic algorithm techniques, 

methods and heuristics shows which ones are to be preferred. In addition to the analy- 

sis of previously seen techniques and heuristics, we introduce some new ones. The graph 

collapse technique, a method of pruning the search space by shrinking the graph to prove 

non-Hamiltonicity, is presented for backtrack Hamiltonian cycle algorithms. The non-path 

neighbour technique for heuristic Hamiltonian cycle algorithms is a simple idea that led to 

the development of two new heuristics for vertex selection, one of which is ciearIy superior to 

some previously used heuristics. We also cornbineci the different vertex selection st rategies 

for heuristic algorithms into a singie vertex selection algorithm. 

In Chapter 4 we presented a new generdization of the standard knight's tour problem: 



the generalized knight's circuit problem. We presented various t heorems concerning the 

non-Hamiltonicity of instances of this problem, and in the process devised a new proof 

method: the partition p m f  technique. Our empirical investigation of the Hamiltonicity of 

instances of the generalized knight's circuit problem led to several interesting observations 

and conjectures, which in turn ied to additional proofs dealing with a specific instance class 

((1,4}. 5 x ml. 

In Chapter 5 we demonstrated that despite the sophisticated Hamiltonian cycle algo- 

rithms avaiiable. there remain sets of graplis which are difficult for these algorithms. In 

particular our experimental results revealed that Hamiltonian generalized knight's circuit 

graphs tend to be quite difficult for our backtrack Hamiltonian cycle algorithm. Another 

important finding in this chapter concerned Our investigation of phase transitions on random 

graphs. We found t hat the C,,, graph clas was ext remely easy for our backtrack algorit hm 

despite the existence of a phase transition. Similar results were obtained on Degreebound 

graphs. These findings are important because they differ from those of earlier researchers 

and because they show that finding phase transitions is not the 'holy grail' of hard graph 

researc h . 
Despite (or more realistically because of) the results presented in t his t hesis, there 

are many avenues for future research. In Chapter 3 we did not present any experimental 

evidence confirming Our analysis of various design issues: a Mi-scale experimental evaluation 

of the different techniques and heuristics is one possible line of work. In addition. the 

new techniques we introduced should be implemented and evaluated. Our work on the 

generalized knight's circuit graphs shows the potential benefit ola time limit restart scheme 

for backtrack algorithms (we discuss one such technique in Section 5.8). This is another 

technique that should undergo an experimental investigation. 

Our work on the generalized knight's circuit problem in Chapter 4 could be expanded 

in many directions. One possibility is to produce additional theoretical results concerning 

the Hamiltonicity of various instances classes of the problem. A second area of research is 

to investigate the structure hidden in these graphs to discover the reasons behind some of 

our observations (like the periodicity in certain instance classes). This research would most 

ükely combine with an investigation of why generalized knight's circuit problems are hard 

to solve. A third possibility is to further extend the generaiized knight's circuit problem, 

such as by adding a third dimension (or more) to the board, or by giving the piece multiple 

move steps rather than just one. 

Similarly in Chapter 5 there are rnany passibilities for future research. One straight- 



forward area of study is to implement a more sophisticated heuristic Hamiltonian cycle 

algorit hm and determine its performance on the various graphs we investigated, particularly 

on Degreebound graphs. Another area of study is to develop additional sets of graphs 

(whether randomly generated or constructed by hand) that produce hard graphs for our 

backtrack algorithm. A related topic of research is to investigate the hard graphs we did 

find to try and determine what exactly made theni hard. Hopefully this additional insight 

in the Hamiltonian cycle problem would lead to improved Hamiltonian cycle algorit hms. 
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