
Dimitra Vista

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toront O

@ Copyright by Dimitra Vista 1997

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395, rue Wellington
OttawaON KlAON4 Ottawa ON K I A ON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts f h m it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

Op timizing Incremental View Maintenance Expressions in Relat ional Dat abases

Dimitra Vista

Doctor of Philosophy

Graduate Department of Cornputer Science

University of Toronto

1997

In the last few years, there has been significant interest in the design of incremental

methods to improve the performance of view maintenance. Despite that, very little

analysis or experimentation supports the predominant view that incremental methods are

more efficient t han t heir non-increment al counterparts. We argue t hat the performance

of incremental view maintenance depends on system aspects of the database, such as the

availability of indices, the sizes of the relations involved, and the sizes of the database

updates. CVe also argue that the database query optimizer is a reasonable component of

the database system to decide, at the time of view maintenance, wliether a view is to

be maintained incrementally or not, because the query optimizer has knowledge of, and

access to, al1 of the parameters that may affect this choice.

To support this argument, we have built the RHODES database query optimizer

that supports change propagation and view maintenance for relational queries. In addi-

tion to traditional optimizations, RHODES is also responsible for the generation of the

queries to be executed in order to support view maintenance. As there may be many

different ways to maintain a view incrementally, the choice of which one to use may af-

fect the ~erformance of incremental view maintenance. Moreover, different maintenance

queries are amenable to different optimizations. In this thesis, ive present a repertoire

of maintenance-specific optimizations, especially in the presence of key constraints and

foreign key references. The underlying data mode1 we use is relational algebra wit h mul-

tiset semantics. Experimental validation of the above claims has been conducted using

the TPC-D benchmark database on the DB2 Parallel Edition.

This thesis is dedicated to Spiros!

Acknowledgment s

With the confidence that this will probably be the only part of my thesis read by people

other than my cornmittee, 1 start my acknowledgments. (Don't tell me that you are

actually going to read the t hesis!)

First, I would like to Say a big thanks to Alberto Ivlendelzon: my graduate supervisor.

for being a great advisor and friend. Alberto was always very respectful of each of his

student's individuali ty in approaching a research problem but, a t the same time, always

offered Iiis suggestions and opinions generously.

1 would like to thank the rnembers of my graduate committee: Tony Bonner, Ken

Sevcik and John Mylopoulos, for carefully reading the thesis and for their comments and

suggestions to improve it. I want to thank especially Ken Sevcik for providing me with

an account on the parallel machines for my experiments. I a m grateful to my external

examiner, Inderpal Singh Mumick, for carefully reading t he thesis and making insightful

comments and suggestions. Finally, special thanks to Tony Bonner for serving as my

interna1 examiner.

Who said that you don't need a good irnplementation when the theory is sound?

And, who said that you can't hide the lack of soundness in a theory with a good im-

plementation? People that helped me with gory technical details in the implementation

supporting this thesis are: Danny Zilio, whom 1 thank for helping me set up DB2: Manny

Noik, for al1 the help on the visual browser (but, of course, for the coffees across the street

too) and Bill McKenna, for his help with the Volcano tool. DB2, Volcano and the coffee

across the street are al1 trademarks of sornething 1 now forget.

Financial assistance from the University of Toronto, the Department of Cornputer

Science of the University of Toronto, the Centre for Advanced Studies of IBM Canada,

the Cornputer Systems Research Inst it ute and Alberto Mendelzon is greatly appreciated.

Special thanks must go to Joan Allen, Liz May, and Kathy Yen, who were al1 very

nice to me throughout my years in Toronto. Thanks girls!

And, 1 thank rny closest friends, my beautiful friends! Each of them contributed,

in their own unique way, in making my years in Toronto so very special. 1 thank: Bi1

Tzerpos, for being so close to me and for being my regular bridge partner and making

my first bridge master-points a reality (it was just 0.35 master-points but they al1 meant

a lot to me); Nikos Koudas, for dropping by my office every two hours for a cigarette

(but not for al1 the lies he is saying about me); Michalis and Petros Faloutsos, for being

my favorite roommates; Michalis, in particular, for his gigantic pan-gargalactic field that

made me laugh stupidly; and Petros, for introducing me to the double "gang gang" 1 was

so scared of at first: Panagiotis Tsaparas, for fantasizing with me that one day we will

be happy in Greece running our "Utopia7' cinema; Theo Garefalakis, for al1 the tequila

nights on Baldwin; Gary Hardock, who is not with us anymore, for being such a nice

person: Dimitris Nastos, for being cool; Jorge Nanez, for teaching me spanish without

making me work too hard; Athanasia Voudouri, for her nice letters from Greece, and Marc

Langkamp for his nice letters from the Netherlands. Also thanks to S. Anastasiadis, M.

Baljko? A. Byers, M. Consens, G. Drettakis, F. Eigler, M. Godfrey, M. Groot, M. Hasan,

D. McClurkin, D. Plexousakis, D. Pnevmatikatos, D. Srivastava, and J. Veeramony.

1 also want to thank my parents EIeni and Charalambo, my sister Athanasia and my

brother Kosta whom I love a lot. Also, thanks to Spiros' family, Sotiris, Vasso and Alex,

for being very very nice to me.

Finally, thanks to the two men in my life: Spiro and Erroll! 1 want to thank Spiro

for so much, that 1 think 1 need another dissertation to say it all! Spiros was always

very compassionate, caring, and loving. His love and affection over the years meant a

lot to me. And, Erroll, the famous dog, was dog enough to keep my life in perspective ...

(although 1 still don't like dog cookies like he does!)

Contents

I Introduction 1

. 1.1 View Maintenance 1

1 . 2 Incrernental View Maintenance . 3 .d

1.3 Example . 5

1.4 Problems . 7

. 1.5 Our Approach 8

. 1.6 Thesis Outline 9

2 A Survey on View Maintenance: Applications and Techniques 11

. 2.1 Strategies for View Maintenance 11

. 2.2 Implementation of Materiaiized Views 13

. 2.3 Deltas 14

. 2.4 Applications 14

. 2.5 Algorit hms for Incremental View Maintenance 17

. 2.5.1 Non-Recursive Views 1'1

. 2.5.2 Recursive Views 20

2.6 Other View-Related Work . 21

. 2.7 Previous Work on Performance Evaluation 23

. 2.8 Relationship to our work 24

3 Change Propagation Expressions 25

3.1 Data Mode1 . 25

. 3.2 Example 29

vii

. 3.3 Formal Definitions 30

. 3.4 The Change Propagation Problem 33

. 3.4.1 Change Propagation Expressions 35

4 Optimizations 46

. 4.1 The Incremental Maintenance Problem 46

. 4.2 Optimization in the Absence of Duplicates 50

. 4.2.1 Generating Keys for Query Expressions 51

. 4.2.2 Simplifications 54

. 4.3 Optimization due to Foreign Keys 55

. 4.4 Example .57

5 The RHODES Database Optimizer 59

. 5 . 1 Query Optimization 59

. 5.2 The Volcano Optimizer Generator 61

. 5.3 The Catalog 62

. 5.4 Model S~ecification 63

. .5 .5 Logical Operators 65

. 5.6 Logical Properties and Logical Property Derivation 66

. .5 .7 Algebraic Transformation Rules 67

. 5.8 Physical Operators, Enforcers and Implementation Rules 69

. 5.9 Physical Pcoperties and Physical Property Derivat ion 70

. 5.10 Applicability Functions and Input Requirements 'il
C . 5.11 Cost Mode1 and Cost Estimation 1 2

. 5.12 Extensions to RHODES 72
c.. 5.12.1 View Maintenance Support r2

. 5.12.2 View Maintenance Specific Opt imization 76

. 5.12.3 Query Rewriting using Views 77

. 5.13 The Browser 78

. 5.13.1 Visual Explain Facilit); of DB2 80

5.13.2 Examples of Plans Generated by RHODES 81

...
Vl l l

6 Experiments 89

. 6.1 StatingtheQuestions $9

. 6.2 Collecting Data: the Database 90

. 6.3 Collecting Data: The Experiments 92

. 6.3.1 Using Different Incremental Queries 92

. 6.32 Using the Key Coostraint Optimizations 95

. 6.3.3 Using the Foreign Key Constraint Optimizations 97

. 6.4 Other Experiments 101

. 6.4.1 Project Distinct 101

. 6.4.2 Set Difference 102

. 6.5 Making Inferences 103

. 6.6 VaIidation of RHODES 104

. 6.6.1 Execution Plans for J I 105

. 6.6.2 Execution Plans for 32 106

. 6.6.3 Execution Plans for 3 3 106

7 Conclusions 111

. 7.1 Research Contributions 111

. 2 Limitations 114

. '7.3 Discussion and Open Problems 115

A Cardinality Estimation 130

. .4 .1 Cardinality Estimation 130

. A.2 Selectivi ty Estimation 132

. A.3 Join Selectivity Estimation 134

B Cost Estimation 135

List of Tables

3.1 Properties of Multisets . 35

4.1 Equations for computing 6- . -18

4.2 Equations for computing bf . 18

4.3 Equations for computing A- . 49

4.4 Equations for computing A+ . 49

5.1 Logical Operators . 66

5.2 Physical Operators and Implementation Rules 70

6.1 Information about the TPC-D relations 90

6.2 Logical and physical I/O . 107

List of Figures

5.1 The different phases in executing a high level query 60

5.2 Using the Volcano optimizcr generator 6 1

3.3 The icons of the browser . 7s

.5.4 Choosing indices and join algorithms . Y5

5.5 Choosing join orderings . Y6

6 Reasoning with keys and duplicates . S i

5.7 Maintaining a view .- . . 88

Experiment 1.1: Incremental deletions to 53 with the index on PSPARTKEY 93

Experiment 1.2: Incremental deletions to 53 without the index on PSJARTKEY 9 3

Experiment 1.3: Incremerital insertions to J3 (due lo insertions only) . . 94

Experiment 1.4: Incrernental insertions to J3 (due to insertions and dele-

t ions). . 94

Experiment 2.1: Incrernental insertions to 53 with and without key opti-

m i z a t i o n . . . 96

Experiment 2.2: Incremental deletions to 53 with and without key opti-

mization . 96

Experiment 3.1: Incremental deletions to J 1 with and without foreign key

optimization. 97

Experiment 3.2: Incremental deletions to 52 with and without foreign key

optimization. 98

Experiment 3.3: Incremental deletions to 33 with and without foreign key

optimization . 99

6.10 Experiment 3.4: Incremental insertions to Ji when both P and PS get

insertions. with and wit hout foreign key opt imization

6.11 Experiment 3.5: Incremental insertions to J1 when both P and PS get

insertions and deletions . with and without foreign key optimization . . .

. 6.12 Incremental changes to V1 and V2

6.13 Incremental changes to V3 due to deletions from P (first figure) and due

. to insertions to P (second figure)

6.14 Incremental changes to V3 due to deletions from PS (first figure) and due

. to insertions to PS (second figure)

6.15 Incremental changes to V3 due to deletions from both P and PS (first figure)

. and due to updates to both P and PS (second figure)

. 6.16 Execution plans for J i chosen by RHODES and DB2

. 6 . 17 Execution plan for 52 chosen by RHODES and DB2

. 6.18 Execution plan for 53 chosen by RHODES and DB2

Chapter 1

Introduction

1.1 View Maintenance

Traditionally, a database view is a query on a database that computes a relation whose

value is not stored eaplicitly in the database, but to the query users of the database

it appears as if it were. Database views are useful for a number of reasons. They can

be used to provide conceptual subsets of the datalase to different users. They can be

used as mechanisms to enforce security by allowing parts of the data to be seen only

by users with the appropriate access privileges. Tliey provide a convenient shorthand

notation to facilitate query specification. They can be used to replicate data, possibly in

geographically remote data sources. Finally, they can be used in que- optimization t.o

speed-up query evaluation.

There are two different ways to implement views. The traditional, and still most

popular approach, is the query modification approach [Sto75]. The definition of each

view is stored in the dictionary of the system. Queries referring to the view are answered

by substituting the view definition into the body of the queries. Since only the definition

is kept, query evaluation of a query involving a view results in re-ewluating (part of) the

view. The advantage of this method is that it requires practically no extra disk storage

or maintenance. However, it might have poor performance if the queries to the views

are more frequent than the updates to the database, because frequently accessed views

result in repetitive view construction.

The second method to implement views is the view rnateriaiization approach where

the view is explicitly maintained as a stored relation [GM95]. This method requires more

storage than the query modification approach but its performance might be significantly

better, especially if updates are less frequent than queries referring to the views. A

database system should provide the option of materializing views. The choice of which

views to materialize should be guided by the actual or anticipated query load so that

frequent ly occurring queries can be evaluat ed quickly.

The view materialization approach, thus, has the potential of significantly improving

the time to access a view. However, it does have some effect on the overall performance

of the database system. Next, we describe the major problem associated with vietv

maintenance and its solutions.

1.2 Increment al View Maintenance

One problem with the view materialization approach is that every tirne a base relation

changes, the views that depend on it may need to be re-computed. One approach to this

problem is to re-compute al1 related views. This soiut ion may be acceptable for relatively

stat ic databases, but rnay be prohibitively expensive when updates are frequent . When

the views are frequently updated and expensive to cornpute, the cost of re-computation

may not be affordable. The alternative to re-computation is to identify which part of

the old materialized view is affected by the database update and to re-compute only the

affected part. An algorithm that carries out such a computation is called an incremental

view maintenance or incremental query evaluationl algorithm.

The idea of incremental view maintenance can be surnmarized as follows. Suppose V

is the query expression corresponding to a view definition and V[D] is the materialized

value of V consistent with database D, i.e., V[D] is the value of V on database D.

Suppose that the database changes from D to Du by some update 6 (0) . In order to

find the new value of V, we evaluate two query expressions, P (V) and bf (V) , on the

database D and the database update 40). These query expressions define the change

'Although the two terrns mean slightly different things, we choose to use them interchangeably in
this thesis, because each view is specified by some query expression.

on V[D] , i.e., 6+ (V)[D, b(D)] are the tuples to be inserted into V [D] and 6-(v)[D. 6(D)]

are the tuples to be deleted from V[D], in order to make V consistent with the updated

database Du. In other words2,

CVe cal1 6-(V) and 6+(V) the change propagation expressions of V. Their values under

database D, along with the database updates, represent the incremental changes to V

when D is updated to the next database state.

There are two main issues related to incremental view maintenance:

1. The choice of which change propagation expressions to use: How do we choose the

two query expressions 6 3 V) and 6+ (V)? Do these expressions depend only on the

view definition? Do they depend on the database update? Do they depend on the

old database? Do they depend on the old value of the view? For some views. there

is a choice amongst multiple possible change propagation expressions. How do we

chose between t hem?

2. The choice of the alternakives to "bring V up-to-date witli the database": If Our

objective is to find the new value of the view V under the updated database.

should we use the incremental method and compute (V[D] - 6 - (V) [D , 6 (D)]) U

6+ (l/)[D, 6(D)], or should we use the re-evaluation metliod and compute V [D U]

from scratch?

Recently, many approaches have been proposed to specify how the change propagation

expressions of a given view are formed in terms of the query expression corresponding to

the view, the old value of the database, the update, and, perhaps, the old value of the

view. Chapter 2 discusses many of them.

As we see in Chapter 2, a significant amount of research addresses the first is-

sue of incremental view maintenance. However, the second issue lias not yet received

much attention. Very little analysis or experimentation supports the predorninant view

'The operands of - and U, here, are multisets, i.e. sets with duplicatm. The data mode1 assunled in
this thesis is relational algebra with multiset semantics (bag algebra).

that incremental methods are more efficient than their non-incremental counterparts

[Han85, BM90, SR88, Rougl]. In Lct, the consensus seems to be that, for small up-

dates, evaluating the change propagation expressions of a view is more beneficial than

re-evaluating the view. When one relation is completely deleted from the database, it is

almost always better to re-evaluate any join involving that relation. On the other hand.

when the updates to the database are small, compared to the database itself, the *prin-

czple of inertia" [GM95], that small changes propagate small changes, seems to favor

incremental evaluation of the join. However, we found that the cost of propagating small

changes could be about the same as (or more than) the cost of evaluating the view again.

-41~0, when the updates to the database are neither very small nor very big3: compared

to the database, it is not at al1 clear which of the two alternatives is likely to provide a

bet ter solut ion. Consequently, the choice of whet her to perform incremental view main-

tenance or not cannot be made a priori without first examining al1 factors affecting this

choice.

The performance of incremental view maintenance depends on system aspects of the

database, such as availability of indices, sizes of the database relations involved, sizes of

the database updates? and so on. There are two justifications for the above statement.

The statement is true because incremental view maintenance requires evaluation of the

change propagation expressions, which are queries whose performance in general. like

that of many queries, depends an the physical design of the database system. However,

the statement is also true because the choice of which change propagation expressions to

use (and there may be many for the sarne view) depends both on the system aspects of

the database and on the specific database update. In this thesis we claim that we should

not commit to incremental view maintenance a priori, but, rather, we should let the

database query optimizer decide, at the time of view maintenance, if incremental view

maintenance is better than re-evaluation. Mie also claim that we should let the query

optimizer decide which change propagation expressions to use as well as how to execute

t hese change propagation expressions best .
We see the incremental view maintenance problem as an optimization problern. The

3Note that smoll and b ig are rather Ioosely used here.

objective of the optimization is to minimize the number of logical 110 operations neces-

sary to perform incremental view maintenance. The decision involves which maintenance

st rategy to choose, among incremental maintenance and re-computat ion, for each mate-

rialized view? and each possible update and, if choosing incremental view maintenance

which change propagation expressions to chose. The knowledge available in this opti-

rnization problern is the schema of the database, the definition of views, the update, the

cardinalities of the relations in the database and their updates, the distribution of data

values, and the physical design of the database system.

Most proposals for incremental view maintenance assume that for each view V , the

change propagation expressions 6 3 V) and 6+(V) are generated by a special software

component of the DBMS, most likely at view compile time but possibly at view main-

tenance time. Apart from the fact that the above approach requires a special software

component to be developed just for the purpose of generating the change propagation

expressions, t here are other disadvantages wit h it. Before presenting t hese disadvantages,

however, let us see an example that demonstrates some of them.

1.3 Example

Let V = A w B w C, and suppose that each of the A, B and C relations lose a number

of tuples specified by 6-;, 6g and 6;, respectively4. As we see in the next chapters, there

exists an algebraic equation that defioes the deletions from a join expression given the

tables being joined and the deletions from these tables. Let 6 s be the deletions from

the join A w B (as if this join were materialized); 6EC the deletions from the join B C

(as if this join were rnaterialized); and, 6-iBc the deletions from V. There are a number

of different ways to compute the deletions from V.

1. One alternative is to find the delet ions from A ixî B and propagate these to V:

4For simplicity of the presentation, we ignore the arguments of the join and we assume that al1 join
orderings are possible.

The justification for the correctness of t hese equations is as follows5. Consider the

deletions from the join .4 B. Tuples deleted from A that join with tuples in B.

generate deletions from A B. Also, tuples deleted from B that Join with tuples

in A, generate deletions t o A B. However, if a deleted tuple from A matches

a deleted tuple in B? each tuple to be deleted from A B is generated twice:

once because of 6 - CU B and once because of A N 68. Since we support duplicate

semantics, each tuple must be deleted once and, therefore, we must subtract 6;

ag .

2. Another alternative is to find the deletions from B C and propagate these to V:

Note that a number of other alternatives are also possible. Our objective with this

example is not to list them all. The point that we are trying t o make is that there rnay

be more than one alternative equivalent change propagation expression to compute the

deletions from a view V . The choice of the alternative may affect bot h the performance of

incremental view maintenance and the optimizations that are possible in the optimizer.

Even if we knew that V is t o be maintained incrementally, it is not clear which of the

two alternatives listed here offers a better way to maintain V. If a database optimizer is

given one of the alternatives to optimize, most likely it will not be able to transform it

into the other alternative and may, thus, miss a better execution plan.

Also, although seemingly very alike, the two alternatives are arnenable to different

optimizations. Suppose, for example. that there is a foreign key reference from A to B.

Then? tuples that are deleted from B can only join with tuples deleted from '4 because,

otherwise, the foreign key reference would not be satisfied after the database update 6 .

Thus, we can use the following equivalence

A LM 6 i = 6, ûû 6g

5 ~ o t e that these equations are not correct, if A, B and C also have tuples inserted into them at the
time of view maintenance.

6The join argument must be in conjunctive form and it must include a conjunct equating the attribute
of -4 with the foreign key reference with the key attribute of B, for al1 this to make sense.

and, we can rewrite the first alternative as

while the second alternative cannot be rewritten.

Thus, by adopting the fist alternative, we were able to reduce access to the database

relations and the total number of joins, and, therefore, increase the likelihood that the

performance of the incremental approach be better than re-evaluation.

It is not clear that a database optimizer could easily have incorporated that kind of

optimization if it was given the second alternative rather than the first'.

1.4 Problems

.4fter the example, we are ready to list some of the disadvantages of using a special

component in the DBMS to generate the change propagation expressions for each view.

1. Using the special software cornponent, we commit to incremental view maintenance.

even in cases where re-evaluating the view is likely to be more efficient (such as,

for exarnple, when deleting entirely a database relation). There is no choice of

performing or not performing incremental view maintenance. even though the size

of the database update clearly should affect this choice.

2. Even if the optimization of the change propagation expressions occurs when the

maintenance is performed, the choices of the query optimizer to generate an efficient

execution plan may be restricted. The reason for this is that the generation of

change propagation expressions is independent of the database and its updates.

The optimizer rnay not be able to "transform" the change propagation expressions

that it is given into equivalent forms that may be more efficient to evaluate (see

the example above).

' ~ o t e that it does not suffice that the database optimizer be given the unfolded expressions, instead of
the ones presented here. Simple unfolding is common in DBMS's but different propagation expressions
result in different unfoldcd expressions. The reason is that the set difference operation is not distributive.

3. The generation of change propagation expressions occurs independently of the op-

timization process. Thus, the generatioa phase may produce change propagation

expressions for which certain opt imizat ions, perhaps possible in ot her (equivalent)

change propagation expressions, are rat her difficult to incorporate by an opt irnizer

(see the example above).

1.5 Our Approach

W e have built the RHODES database query optimizer that addresses al1 of the above

problems. [n particular:

At the time of view maintenance, RHODES determines, for each view, whether

the view is a candidate to be maintained incrementally or not, by examining both

alternatives and choosing the one with the lowest cost estimate. The cost that is

being minimized is the est imated I/O necessary during view maintenance.

For each view that should be maintained incrementally, RHODES finds the best

change propagation expressions that define the changes to the view. Each change

propagation expression is optimized using traditionai optimization techniques, such

as relation indices, join orderings, sort orders, query transformations, and so on.

RHODES incorporates optimizations specific to increment.al view maintenance, and

optimizations specific to change propagation expressions, especialiy in the presence

of key constraints and foreign key references.

For any query that contains a subexpression corresponding to a view, RHODES

examines the alternative to use the view in the place of the subquery. Using views

to improve the performance of ordinary queries has been recognized recently as a

potential for query optimization [LMSS95, FRV961.

The query language of RHODES is relational algebra extended to be consistent with

SQL semantics (bag algebra). Most research in incremental view maintenance assumes

that relations are sets and do not have duplicates [BCL89, BLT86, BC79, CW90? CW91,

DT92, Küc91, QW91, SI84, UO92, WDSYSl]. However, most database systerns use

rnultisets (sets with d u p l i ~ a t e s) ~ because many database applications require aggregation

and duplicates are very convenient for correctly computing aggregate functions. Another

reason for t.he use of duplicate semantics is that duplicate elimination is an expensive

operation and, for efficiency, is not enforced, unless specifically requested by the user. In

addition, having duplicates can increase the expressive power of query languages with

recursion [MÇ95]. There is some work related to multisets for the Datalog model [GKM92,

GMS93, Ana96, AV95] and the relational model [GL95, GMS931. In this thesis, we use.

and build on, the change propagation expressions proposed by Griffin and Libkin [GL95]

for a multiset algebra.

1.6 Thesis Outline

Here is the outline of the rest of t his thesis:

Chapter 2: We present a detailed discussion of previous work on incremental view main-

tenance and related research. We concent rate on incremental algori t hms for view

maintenance as well as applications of incremental view maintenance teclmiquea.

Chapter 3: LVe present our mathematical framework for incremental computation. FVe

present the change propagation expressions for relational algebra with duplicate

semantics and prove their correctness.

Chapter 4: We present a repertoire of optimizations specific to change propagation

expressions and incremental view maintenance, especially in the presence of key

constraints and foreign key references.

Chapter 5: We present an overview of the database query optimizrr RHODES and its

extensions to support incremental view maintenance. We aIso discuss the visual

browser that accompanies RHODES.

Chapter 6: We present our experimental validation of the claims of this dissertation,

some obtained by estimat ing change propagation queries using RHODES, and others

by actually running change propagation queries on the DB2 PE (ParaIlel Edition)

for a number of updates and queries frorn the TPC-D benchmark.

Chapter 7: We conclude the thesis by presenting the list of its contributions and a

discussion of open problems.

Chapter 2

A Survey on View Maintenance:
Applications and Techniques

This chapter surveys work related to incremental view maintenance with an emphasis on

the development and application of techniques for view implementation and maintenance.

2.1 Strat egies for View Maintenance

When updates occur to a database, there are two distinct esecution strategies to update

al1 affected materialized views, w het her increment ally or not :

a Immediate update: Al1 affected views are irnmediately updated. This strategy

creates an overhead for the processing of the updates but minimizes the query

response time for queries accessing the view. This is the strategy assumed in this

t hesis.

0 Deferred update: Al1 affected views stay outdated until an access to them is made.

This strategy avoids the systern overhead associated with irnmediate update prop-

agation, but slows down query evaluation for queries accessing outdated views.

Both immediate and deferred maintenance guarantee that the view is consistent with

the underlying database at the time the view is accessed. In contrast, periodic updates

where al1 affected views are periodically updated is used to perform updates during

periods of low system use or at pre-specified times. Such views are sometimes called

snapshots and do not guarantee the consistency with the underlying database. Most

CHAPTER 3. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 12

work in view maintenance assumes the immediate update strategy. Deferred updates

have been studied only recently [HanU, Rou91, CG96. CM96, CGL+96, ZH961.

A nurnber of more refined strategies for view maintenance are available in active

database management systems [WCSG], where so called active rules are used for the

maintenance of views. Active systems can be used to support view maintenance quite

naturally. In fact , some active systems support incremental view maintenance. In con-

trast. passive database management systems require significant changes in their software

to support either materialized views or their incremental maintenance.

Active rules have the general form

if El check C and execute A

where E is an euent that causes the rule to be triggered, C is a condition that is

checked when the rule is triggered, and A is an action that is performed when the con-

dition of the triggered rule is true. The events of active rules are database access events

(such as updates or retrievals), transaction events (such as transaction commit), time

events (such as midnight), or combinations of the above [Has95, Has96. GJS931. The

conditions of active rules are either predicates (whose d u e is true or false) or query

expressions (whose value is an empty or a non-empty relation) specified in the system's

query language [B W93, HBHf 951. Finally, the actions of active rules are sequences of

database manipulation commands (such as insertions and deletions). When active rules

are used for (incremental) view maintenance the events of the corresponding active rules

are the insertions and deletions to the database relations; the conditions are used to

determine if any updates must be made to the view; and, the actions are statements to

update the view.

The notion of coupling modes between the triggering event (which usually occurs in a

transaction) and the execution of the associated action (which may or may not occur in

the same transaction as the triggering event) yields a number of alternative strategies for

view maintenance. The immediate coupling mode signifies that maintenance is performed

within the same transaction, as soon as the triggering event occurs. The defeerred coupling

mode signifies that the maintenance is performed at the commit point of the transaction

CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 13

with the triggering event (but within the same transaction). Finally, the decoupled mode

signifies that the maintenance is done independently of the triggering transaction. Within

the decoupled mode, only the dependent decovpled mode is relevant, which spawns a

different transaction for the maintenance only if the triggering transaction commits.

The independent decoupled spawns another transaction independently of whether the

triggering transaction commi ts '.

2.2 Implementat ion of Materialized Views

The are a number of different ways to store views:

1. Using Relations: This is the most popular approach and the one used in this thesis.

The view relation is stored in a database Iike any other relation. Index structures

may be built to facilitate fast access to the view's data. Accessing the entire view

results in scanning the view relation.

3. Using alternative data structures, for example:

0 k i n g View-Caches: A Gew-cache is an index-like structure t hat holds pointers

to tuples of the database relations (or pointers to tuples in other view-caches)

that are used to derive the view data [RouSl, RCK951. Accessing the view

results in reading the index-like structure (which rnight be small enough to be

in main-memory) and then retrieving al1 related tuples from the underlying

database to compute the actual view data. View-caches have been impie-

mented and validated in the ADMS project [Rougl, RCK95].

0 Using Discrimination Networks: A discrimination network is a persistent data

structure in the form of a tree or a directed acyclic graph. Each node in the

network has a persistent relation associated with it. The immediate cliildren

of the (artificial) root correspond to the database relations while the leaf nodes

correspond to the view relations. Intermediate nodes correspond to interme-

diate relations (usually selected portions of base relations) which are material-

'The decoupled modes cannot be used for immediate v i e ~ maintenance.

CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: .~PPLICATIONS AND TECHNIQUES 14

ized (replicated). A discrimination network called Gator is implemented and

used in the ARIEL active database system [HBH+95, Han96j.

The view maintenance problem takes a slightly different Ravor depending on how

views are stored.

2.3 Deltas

Systems that support incremental maintenance need a structure that holds ddtas: the

tuples to be inserted, deleted or modified in one database transition. A database transi-

tion is a transformation of the database from one state to another through a sequence

of data manipulation commands. .4 transaction for instance may be used to define a

database transition. A delta is defined as a data structure that holds (the net effect of)

the insertions and deletions to the database during one transition. Deltas are available

t hrough systern-defined transition tables [Wid96, SK96], or update logs. The Heraclit us

Project [GHJSS. GHJ+93, ZHKF951 elevates deltas into first class citizens of the database

management system and. in particular, of its query language. Deltas in Heraclitus are

available as system relations.

2.4 Applications

Apart from view maintenance, incremental view maintenance algorithms can be used in a

number of other application areas. This section discusses a few of these applications. The

presented list of applications is not intended to be complete, but, rather, indicative of the

use of incremental algorithms for both database management systems and application

programs that make use of database systems. Some additional applications can be found

elsewhere [Mum95].

Integrity Constraints

Certain types of integrity constraints, including referential integrity and uniqueness of

key constraints, can be expressed as views over the database state [CW90, Sto751. If such

a view is non-empty in a particular state, then the constraint is violated and the state is

CHAPTER 3. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 15

inconsisfen,t. Symmetrically, a constraint may be violated when its view becomes empty.

The former constraints are negative constraints (nothing can be in the view at any time)

while the latter are positive constraints (something must be in the view at al1 times). If an

update operation has no effect on the view associated with an integrity constraint, then

the update does not result in a database instance violating the constraint. Incremental

evaluation can be used to detect violations of integrity [CW90, BC79, BW93. PleSS].

Instead of evaluating the new value of the view every time we check for the integrity

of the database, we can use the fact that the view is empty (or non-empty) before an

update, and only determine whether the update induces any change to this view. If

it does, corrective actions, such as, for example, rolling back and undoing the update

operations, are necessary to restore the integrity of the database.

Alerters

Alerters [BCTS] are programs mhich monitor a database and report to some user when

a specified condition occurs. An example of an alerter re-orders items for an inventory

control system when t hese items are in stock nt a quanti ty below a pre-specified t hreshold.

Alerters, like integrity constraints, can be associated wit h views. The t riggering events

are insertions andfor delet ions from the view predicate associated wit h the alerter. Again,

incremental evaluation may be a reasonable alternative to evaliiate the view associated

with the alerter.

Active Rules

The concept of a trigger is also central to active databases [WC96, GJSY2, BA93, BM91,

SPAM9 11 which monitor happenings of events for reasons such as authorization checking,

general integri ty maintenance, alert ing, real- time application support, workflow manage-

ment support and so on. Active rules are a very powerful modeling mechanism and, as

discussed above, active rules can be used to specify how view maintenance relates to

basic database manipulations. In general, one of the challenges that active rules pose is

the efficient evaluation of rule conditions for triggered rules. Conditions are query ex-

pressions in the query language of the system and their evaluation is considered to be the

CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 16

"bottle-neck" in the execution of active rules. Note that activation of a rule may trigger

other rules which may, in turn, trigger the initial rule again. One can use the fact that

the rule did or did not trigger the last time the rule was considered and incrernentally

determine if it needs to be re-triggered [BW93].

Real-Time Applications

In real-time applications, such as in communication network management [WDSYSl ,

Has961, the database rnay change independently of query processing. For exaniple, dur-

ing a network analysis process. certain connectivity data may change asynchronously-

New data rnay arrive after the query or analysis process has already begun, which may

invalidate the computed results. An alternative to starting the analysis process ogain

could be to log al1 new data that has arrived after the process has started and incremen-

tally correct the result based on t his information [WDSY 9 11.

Data Warehousing

A data warehouse is a repository of replicated or integrated information from a number of

possi bly heterogeneous and geographically distributed informat ion sources [HGM W+9.5:

ZHKF95. ZGMH W951. Data warehousing is being recognized as one of the promising new

database applications, towards which current research will likely bc directed in the next

few years [SSU95]. A data warehouse can be thought of as a view over the individual

information sources. Special software cornponents in the architecture of a data ware-

liouse, called mediators [ZHKF95, Wie92] or integrators [HGMW+95], are responsible for

updating the warehouse view in response to updates to the individual data sources. An

interest ing discussion on the architecture and formalization of mediators is presented by

Zhou and Hull in [ZH96].

Other

Incremental algorithms have also been studied in a nurnber of other areas. These in-

clude: reasoning about changes [KÜcSl , U0921; dist ributed computing [AISNSO, Itagl],

programming languages [SH91, TR811; maintenance of graph properties [BKVSO, CC%!];

CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 17

and maintenance of ot her da ta structures [CH91 . Jag90t KP81] or database snapshots

[LHMf 861. A study of methods for incremental database query computation is provided

elsewhere [Vis94].

2.5 Algorit hms for Incremental View Maint enance

In this thesis we concentrate solely on the problem of propagating updates from the

database to the view. The reverse problem of translating updates submitted to a view

into database updates is a complimentary problem, and is not iiicluded in the scope of

this thesis. For related work in this area, the reader is referred to [DB82, FSDS79, Kel85,

BSSl].

This section reviews proposals for incrernental que- evaluation for both relational

and deductive databases [AB W88, BR86, UllSS, GM951.

2.5.1 Non-Recursive Views

Finite Differencing

Koenig and Paige [KPSl] support derived data in the context of a functional/binary

association data model. In t heir framework, the derived data are base relation attributes

or aggregate functions on them. The average salary of employees is such an example.

Koening and Paige's approach to the automatic maintenance of derived data is based on

the transformat ional technique of finite differencing. Every transaction T is replaced by

a semantically equivalent transaction T', which, in addition to what T does, also adjusts

the views appropriately. Since Tt varies according to the view definitions, it is called

the diserential of the view definition with respect to T. Transaction T' is obtained from

transaction T by inserting into T certain lines of code that preserve the view definition.

The fundamental unit of such code is the derivative and is defined for single derived data

and single tuple updates. Hence, the algorithm for computing the differential depends

on the availability of derivatives for vanous derived datalprimitive update pairs.

This is the first proposa1 tha t addresses incrernental view maintenance and many

other rnethods are influenced by it. In the literature, such methods are referred to as

CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 18

program transformation methods: given a view definition, and perhaps an update, a

program is derived2? whose evaluation maintains the view.

Counting

Blakeley et al. [BLT86] propose an algorithm for updating views defined with select-

project-join (SPJ) expressions, an important subset of SQL. An additional attribute.

called the multiplicity counter, is attached to each tuple to handle deletions correctly.

For base relations, it need not be explicitly stored since i ts value for every tupie is always

one. For view tuples, the multiplicity counter records the number of operand tuples

that contribute to it. If a tuple is inserted into a relat.ion, its multiplicity counter is

incremented by one. If the tuple is deleted, its rnultiplicity counter is decremented by

one. The tuple is deleted only when its counter becomes zero. Basic set-manipulation

operations such as select and project are redefined to consider these counters. Given a set

of insertions into and deletions from base relations, the algorithm derives SP.Jelexpressions

whose evaluation determines the tuples to be inserted into or deleted from the view. A

transaction to update the view is also generated.

The count.ing algorithm of Gupta et al. [GKM92, GMS931 tracks the number of al-

ternative derivations, called count, of each tuple in the materialized view, in the same

way as the algorithm of Blakeley et al. [BLTSG]. Given a program T defining a set of

views, the counting algorithm derives a program Ta at view compile time. The incre-

mental program TA uses the changes made to base relations and the old values of the

base and view relations to produce as output the set of changes that need to be made

to the view relations. The count value for each tuple is stored in the materialized view.

The changes to base relations are specified by della predicates, where inserted tuples are

represented with positive counts and deleted tuples are represented with negative counts.

The incremental view maintenance algorithm works for both set and duplicate semantics

and for views wit h safe st ratified negation and st ratified aggregation3. On non- recursive

views, counts can be computed a t little or no cost above the cost of evaluating the view.

'A program is a collection of deductive rules or S&L statements.
3For definitions of stratified negation and aggregation, refer to Ullrnan [U1188] and Mumick et al.

[MPRSO].

CHAPTER 2- A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 19

The authors recommend the use of this algorithm for non-recursive views only (because

for recursive views their method may not terminate [GMSSS]).

Shmueli and Itai [SI841 also use multiplicity counters for the number of different

derivations of a tuple but they use specialized data structures to support them. For

i ICO- instance? each tuple in the database contains pointers to al1 tuples derived from it. Y'

las and Yazdanian [NYS3] use counts to reflect some types of derivations (but not al1

derivat ions).

Production Rules

Ceri and Widom [CW90, CW911 study views from a larger class of SQL. They define views

as general SQL queries with only a few limitations (such as? only one level of nesting in

subqueries). The user is required to specify the view dong with key information about

the base relations. Syntactic analysis on the view definition based on key information

determines whether the view may contain duplicates and whether efficient maintenance

is possible. If the view does not contain the keys of al1 relations used to defined it. then

it may contain duplicates, and this algorithm does not work. Otherwise. the method of

Ceri and Widom automaticaily derives a set of production rules (essentially active rules)

for it. This method has been implemented in the Starburst system [HCLC90, Wid961.

Algebraic Methods

Griffin and Libkin provide an algebraic approach to view maintenance [GL95]. They

algebraically define the notion of delta propagation and provide two sets of delta prop-

agation expressions: one for delet ions and one for insertions. Furt hermore, t heir results

are presented for an algebra with multiset semantics. In fact, this is the method adapted

in this thesis (see Chapter 3 for more information on this work). The work of Griffin and

Libkin was inspired by the earlier algebraic treatment of the problem for the traditional

relational algebra by Qian and Wiederhold [QW91], whicb was later corrected by Griffin,

Libkin, and Trickey [GLT]. A similar algebraic approach for views with aggregation has

been provided by Quass [Qua96].

CHAPTER 2. -4 SURVEY ON VIEW MAINTEPIANCE: APPLICATIONS AND TECHNIQUES 20

2.5.2 Recursive Views

Rederivation Methods

Gupta et al. [GMS93] suggest the use of tbeir counting aigorithm for non-recursive

views only. For recursive programs, they propose the "Delete and Reden'ven algorithm.

Instead of using counts to handle deletions, this method first deletes from the view

an overestimate of the tuples to be deleted and then re-derives t hose with alternative

derivations. Inserted tuples are handled by deriving al1 new tuples as well as tuples that

obtain additional derivations. Al1 these steps are carried out through the execution of

automatically generated delta rules. Similar algori t hms for strat ified Dat alog programs

are proposed by Küchenhoff [Küc9 11, and Harrison and Diet ricli [HD92].

Maintenance in Languages with Less Expressive Power

Dong and Topor [DTSP] study regular chain Datalog programs, which are prograrns with

some restricted form of linear recursion. Their algorithm constructs a non-recursive

program to compute the delta between the view after an update and the view before the

update. It first derives a regular expression that corresponds to the view definition, and

then, depending on the structure of that regular expression, it generates the appropriate

delta rules. Dong and Topor also discuss a modified version of this algorithm for arbitrary

Datalog programs but, for arbitrary programs, the generated incremental programs are

not necessarily non-recursive.

Their algorithm handles inserrions only. Dong, Libkin and Wong [DLW95] showed

that transitive closure cannot be maintained in traditional relational languages under

deletions of edges. Furthermore, they showed that recursive queries in general cannot be

maintained in languages with the expressive power of SQL (excluding, of course, SQL3

which supports recursion).

The problem of maintaining transitive closures h m also been studied [CCSS, CHgl,

Jag90, Jak92, BKVSO, AISNSO].

CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 21

Reasoning Methods

A method for computing changes in predicates defined in safe stratified Datalog is pre-

sented by Urpi and Olivé [U092]. Their method is based on the notion of events: external

euents are updates to base predicates; intemal euents are updates to derived predicates.

A transition is a transformation from one database state to the next. There exist equiv-

alences that relate the old state of each predicate with its new state. For example, such

an equivalence might be that &a tuple is in the old state, if and only if the tuple is un-

changed, or either deleted or modified in the new state". Given these equivalences and

the rules of the deductive database, the algorithm derives transition rules that relate the

old state of a predicate with the new state predicates and events. In addition, inser-

tion, deletion, and modification infernal events rules allow the deduction of the induced

insertions, deletions, and modifications that occur in a transition. Al1 these rules are

simplified and evaluated using standard SLDNF resolution.

Küchenhoff also develops an algorithm to compute changes induced by updates to

deductive databases [Küc91]. Three different classes of potential changes introduced by

updates are possible. Al1 of them are described by meta-predicates whose definitions are

expressed as rules. The evaluation of these rules is done using the standard evaluation

procedure of the deductive system. The first class of changes pertains to the dependency

of derived facts from given updates. A specific dependency is relevant to the computation

of change, if it corresponds to a successful derivation path before the update but not

afterwards (and vice versa). Thus, the second class of potential changes are those to the

derivation paths. The full delta is defined as the set difference between the stable mode1

of the state before the update and the state after the update.

Magic Methods

The proposa1 of Anand and Vista considers deductive databases and programs that con-

tain general recursion, negation and aggregat ion [AnaSG, AV95j. I t improves on previous

results [GKM92, BLT86, GMS931) in that i t does not require that every derived relation

be stored. Their proposa1 includes a rewriting stage that guarantees correct evaluation

of delta predicates, even when some of the intermediate results are not available in a ma-

terialized form. Another improvement of t his method is that it does not require a special

evaluation procedure for its implementation, but it can, quite naturally. be used wit h the

standard naive aod semi-naive evaluation procedures [Ban85, UIl88j. An op t imizat ion

similar to magic sets [BR87, MPR9Ol is also incorporated into the algorithm. Mumick

and Pirahesh [hW941 discuss the importance of integrating rnagic sets with traditional

optimizations, such as selection pushing.

2.6 Other View-Related Work

1. Queries Independent of Updates

Sometimes the updates to the database leave the views intact. Determining whether

a particular view is affected by a given update is a problem that has been stud-

ied [BLTS6, BCL89, Elk90, LS931. These proposals (some for relational alge-

bra [BI;T86, BCL891 and some for Datalog [Elk90, LS931) provide tests that the

database system must execute to determine the relevance of the update to a view.

To be useful, these tests should be not be very expensive to compute, compared to

the cost of determining (say through incremental cornputation) that nothing in the

view does, indeed, change.

2. Self-maintainable Views

The idea of self maintainable views can be summarized as follows: for certain

views, given an update and the view definition (and psrhaps additional information

about the view and the database), one might be able to determine that the view

can be updated without accessing the database, by simply manipulating the old

value of the view and the update [GM95' BCL89, Huy96, GJM96, QGMW961.

For example, views that correspond to selections from database relations are self-

maintainable, because one c m check whether an inserted (or deleted) tuple in the

database relation satisfies the selection condition of the view, and therefore whet her

it needs to be added into (or deleted from) the view.

CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 23

3. Adapting Views After Redefinitions

This problem refers to the following scenario. Suppose that a view is materialized

and the view is redefined by changing its definition slightly. If the second view is

also going to be materialized, it might be possible to use the old value of the view

and adapt it to conforrn to the view's new definition appropriately. This problem

has been studied by Gupta et al. [GMR95].

4. Answering Queries Using Views

If views are materialized, the query processor rnight be able to use this set of

materialized views, in order to answer other queries [LMSS95, FRVSG]. In general.

this problem is difficult, but a solution to it might be very useful, especiallp in

applications where the data are not available directly. An example of such an

application is the world wide web, where data of some conceptual schema are only

available though their views provided at certain web sites [LROSG]. The problem

of rewriting a query into an equivalent form that uses the views has been shown to

be (at least) NP-complete [LMSS95].

2.7 Previous Work on Performance Evaluation

Blakeley and Martin [BM90] have studied experimentally the relative performance of

three methods of obtaining the new value of a view. The view that they consider is the

equijoin of two relations, which is maintained in response to updates to one relation only.

Blakeley and Martin compare three different scenarios: a) maintaining a join index to

easily compute the view; b) using a materialized view; and, c) re-evaluating the view,

after each update, using a hybrid-hash join method. Their results indicate that the

materialized view has the fastest performance when the join selectivity and the update

activity are both moderate. The term update activity refers to the percentage of tuples

modified between two consecutive queries involving the view. When the selectivity is

high (more than llarger t han the base relations, re-evaluating the view performs better.

However, for selectivities lower t han land for update activity larger t han IOjoin-index

has the lowest cost.

CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS A N D TECHNIQUES 24

Roussopoulos tested experimentally the use of view caches to implement rnaterialized

views [RouSl]. A view cache is a data structure containing pointers to tuples of database

relations (or tuples of other view caches) needed to derive the tuples in the view. In

other words, a view cache does not exact.1~ implement a materialized relation, but it

can be used to efficiently compute its value. Roussopoulos tested the performance of

computing the relation of a view either by re-evaluation or by utilizing some incremental

maintenance method specific to view caches. He tested a join between two relations and a

join of three relations, with and without selection conditions on them. Only one relation

was modified during these experiments. His results indicate that when the update is no

bigger than 21% of the database size, then the incrementa! methods Save at least 69%

of the 1 /0 required by the re-execution methods. A similar observation is made for the

CPU time as well.

2.8 Relationship to our work

In this thesis we concentrate on the optimization aspect of query expressions for view

maintenance. Our work applies to the immediate update propagation strategy discussed

in Section 2.1. In our framework, views are implemented as relations and changes to

the database relations are also available as relations, as discussed in Sections 2.2 and

'2.3. The data model for which we study the incremental view maintenance problem is a

multiset algebra with SQL semantics without nulls. The change propagation expressions

that we study are taken from a paper of Griffin and Libkin [GL95]. Our experiments

compliment and ext,end those perforrned by other researchers.

Chapter 3

Change Propagation Expressions

In this chapter we lay the foundations of incremental computation. First. we present

the algebra Tor which change propagation and incremental expressions are studied and

we show how the data manipulation language SQL rnaps to this algebra. Then, we

present the formal definition of relation updates, database updates, change propagation

expressions and incremental expressions. Finally, for each operator in the algebra? we

present the change propagation expression t hat cornputes the change to the value of the

operator frorn the inputs to the operator and their changes.

3.1 DataModel

The underlying data model for which our results about incrernental computation are

presented is relational algebra, sufficiently extended to be consistent with the SQL query

language [DD93]. The database relations are typically sets or, less often, multisets. A

relation is a multiset when the relation contains one or more copies of one or more tuples.

As a special case, a set is a multiset. Moreover, the results of operations on multisets are

themselves multisets.

Addressing the problem of incremental computation for the algebra and not directly

for SQL has a oumber of advantages: a) it makes the presentation of change propagation

and incremental expressions compact; b) it makes the process of deriving these expres-

sions easy to understand; c) it simplifies the proofs of correctness; and, d) it malces the

framework extendible to allow for the easy addition of new operators.

The operations supported by our model are described next, together with their cor-

CHAPTER 3. CHANGE PROPAGATION EXPRESSIONS

responding SQL construct(s). In what follows, let A and B be two multisets.

The expression A is the multiset A. It corresponds to SQL7s "SELECT * FROM A"

clause where A is a table.

The cartesian product A x B has ci x c:! duplicates of tuple t = (t l , t 2) , if t l appears

cl times in A and t 2 appears cz times in B. The cartesian product corîesponds

to SQL7s ' L ~ ~ ~ ~ " clause when more than one table reference appears in it. It aIso

corresponds to the "CROSS JOIN" clause.

The selection o Q (A) , where 0 is a conditional expression, has c duplicates of tuple

t' if t satisfies the condition B and O duplicates if t does not satisfy the condition.

for each t that appears c times in A. The selection corresponds to SQL's "WHERE"

and "HAVINGn clauses.

The projection rx(A), where X is a list of select items, has as many tuples as A

has. From each tuple of A, a tuple appears in r X (A) with only the attributes of

X. il select item has the form "scaiar-expression C AS column]", where the

scalar expression typically (but not necessarily) involves one or more columns of

table A. The projection corresponds to SQL's "SELECT ALL" and "SELECT" clauses,

when the items appearing in them do not contain aggregate functions.

The duplicute elimination e (A) has one copy of each tuple t E A. It corresponds to

SQL7s "SELECT DISTINCT".

The projection distinct R$- (A) is equivalent to e (r x (A)) .

The aggregation ag[F;q (A) is an expression where F is a non-empty list of aggregate

items and G is a (possibly empty) list of attributes of A. Each nggregate item has the

form " f i (X) AS column" where f i is an aggregate function and X is an attribute

of A. Common aggregation functions are COUNT, MAX, M I N and SUM. Informally,

the meaning of this operator is defined as follows: We group the tuples of A in such

a way that each group contains ail tuples with the sarne values for the attributes

in G - thus havine as manv grouDs as there are distinct values for the attributes

in G. If G is empty, there is only one group. Then. for each resulting group,

we extend the attributes of the tuples in the group with as many new attributes

as aggregate items appearing in F. The name of a new attribute is described in

the corresponding aggregate item. The value of the new attribute is the result of

applying the aggregate function of the aggregate item on al1 the tuples in the group.

More formally,

and,

R x {aggregate f i (X) of Fi applied to attr. X of R) if C: = 0

Uie T$(R) (a ~ [~ (U R - G = ~ (R))) ot herwise

a The difierence A - B has max{cl -cz, O) duplicates of tuple t . if A has cl duplicates

of t and B has cz duplicates of t . The difference corresponds t o SQL7s "EXCEPT ALL*

clause.

rn The différence distinct A -d B has a single copy of each tuple t such that t E A

and t 6 B. The difference distinct corresponds to SQL1s "EXCEPT" clause.

O The union A U B has cl + c* copies of tuple t , if A has cl duplicates of t and B has

cz duplicates of t . The union corresponds to SQL's "UNION ALL" clause.

O The union distinct A U ~ B is equivalent to e (A U B).

to SQL's "UNION" clause.

The union distinct corresponds

a The intersection A n B has minicl , c z } copies of tuple t , if A has cl duplicates of

t and B has c* duplicates of t . The intersection corresponds to SQL's "INTERSECT

ALL1' clause.

The intersection distinct A nd P is equivalent to e(A n B). The intersection distinct

corresponds to SQL's "INTERSECTn clause.

O Finally, the join A B is a shorthand for ae (A x B) , where 0 is a conditional

expression. The join corresponds to SQL1s G A JOIN B ON 8" clause. If 0 is a con-

junctive condition involving only equations between attributes of A and attributes

of B whose names are identical. the join also corresponds to SQL's " A J O I N B

USING attribvtes of 8". Moreover. if 0 contains al1 attributes of A and B. the join

corresponds to the " A NATURAL J O I N B" clause.

Thus, the results of rd, -d, ud, nd7 e have no duplicates, while the result of the other

operators may have duplicates. Except from - d , these operators are not needed and can

be expressed easily in terms of e. We include them in the language only in order to show

the complete set of logical algebra operators supported by the optimizer presented in this

t hesis.

Note that there is no operator in the algebra that corresponds to sorting. We do

not regard this as a limitation of the language. The presented algebra is a declarative

language. An implementation of the algebra, such as the one by RHODES, can introduce

sorting, but sorting does not play a n important role in the issues discussed in this chapter.

Also, note that wve do not provide a forma1 proof of the equivalence of this algebra

wit h SQL (modulo sorting). Ceri and Gottlob [CGSJ] described a two-step translation

from SQL to a similar algebra. The algebra in their paper does not consider duplicates as

we do. The first step of their translation generates from an arbitrary SQL expression an

equivalent SQL expression that does not use several of SQL7s language constructs, such

as nested subqueries with EXISTS, ALL, ANY, IN, and so on. The second part of their

translation describes how a gramrnar con be used to map expressions of this restricted

form of SQL into relational algebra. The multiset algebra described here corresponds

more directly to the (generalization to multisets of the) restricted form of SQL. It is easy

to see that the key language constructs of SQL are preserved in the algebra and to verify

that the other SQL constructs can be mapped into the ones that are maintained without

difficulty.

3.2 Example

Let us see now an example of how typical SQL statements map into expressions of the

presented algebra. The "Top Supplier Query" of the TPC-D Benchmark (TPC951 finds

the supplier who contributed the most to the overall revenue for parts shipped in a

particular year. Say 1995. We assume the following database relations

LINEITEM(LSUPPKEY, LPARTKEY. LSHIPDATE, LDISCOUNT, LIRICE.. . . j

SUPPLIER(SSUPPKEY, SNAME, . . .)

The relation LINEITEM records the parts shipped by each supplier, the date of ship-

ment, the discount offered and the total price for the entire quantity of the shipped part

before any discount. The relation SUPPLIER records information about suppliers. To

compute the top supplier(s), we can execute the following SQL statements:

CREATE VIEW REVENUE (SUPPLIERlVO , TOTALEVENUE) AS

SELECT LSUPPKEY, SUM(LTR1CE * (1 - LBISCOUNT))

FROhl LINEITEM

WHERE LSHIPDATE = "1995"

GROUPBY LSVPPKEY;

SELECT SXAME , TOTALREVENUE

FROM SWPLIER, REVENUE

WNERE SSUPPKEY = SUPPLIER30

AND TOTAL_REVENUE =

(SELECT MAX(T0TALAEVENUE)

FR0 M REVENUE);

DROP VIEW REVENUE;

In our algebra the above SQL statements are equivalent to the following algebraic

expressions:

REVENUE = ~p(,q (agtFicl (od(LINEITEM))), where

O = (LSHIPDATE = WW)

F = SUM(L1RICE * (1 - LDISCOUNT)) as TOTALAEVENUE

G = LSUPPKEY

X = LSUPPKEY as SUPPLIERNO and

Y = TOTALREVENUE

aDi,Ul (SUPPLIER (REVENUE K $) (u ~ [~ ; ~] (REVENUE)))), where

F = MAX(TOTAL3EVENUE) as R M X

Z = R M X

e, = (TOTALREVENUE = RMX)

O2 = (SSUPPKEY = SUPPLIERNO)

X = SJAME and

Y = R M X

Having presented the database relations and the set of operations for mani pulating

these relations, we now continue with the forma1 definition of change propagation and

increment al expressions.

3.3 Forma1 Definit ions

As discussed in Section 3.1, a relation is a finite multiset of tuples, al1 having the same

(finite) arity. Let R be the set of al1 possible values for a relation R.

Definition 3.1. A change or update 6(R) of a relation R E 'R is a pair 6(R) = (6 i , 6;)

where 6 i E R and 66 E R satisfy the following properties, knows as the strong minimality

conditions [GL95]:

We cal1 6 i the deletions from R arid 6; the insertions into R.

In condition 1 of Definition 3.1 above, we use 6R E R to mean that if tuple t appears

cl times in 6 i and t appears cz times in R, then cl 5 c2. Condition 1 states that al1 the

(duplicates of) tuples that we delete from a relation are in fact members of that relation.

Condition 2 states that no tuple is both inserted and deleted into the relation in the same

update.

A database is a finite set {RI , R2, . . . , Rk} of relations. The relation names Ri, Rz, Rk
form the schema of the database. Let 2, be the set of al1 possible databases of a given

schema' .

Definition 3.2. A change or update 6 (D) of a database D = {RI, R2,. . . , RI,} E D is a

pair 6 (D) = (6;: 6;) where 66 E D and 66 E D satisfy the following properties:

1. 6 , = {h i1 , h i 2 : . . . , h i k } ?

2. 62 = {b; , , 6&,. . . ,6;,}.

3. (b i t , 62,) is an update for relation Ri, i 5 k.

We call 6 i the database deietions and 66 the database insertions.

C.iven a relation R with deletions b i and insertions h i , the value of the relation after

the update is Ru = [R - &] U bRf = [R U 6;] - 6R. If a tuple appears c tirnes in R1 ct

times in 6; and CL> times in 56 (obviously cl and c~ cannot simultaneously be non-zero.

and cl 5 c) , t hen the tuple appears c - cl + c2 times in Ru. Similarly, the new value of

a database D is Du = [D - 661 U 6;, where here - and U are taken component-wise.

Definition 3.3. A query Q is an expression in the algebra of the data model, and can

be seen as a function Q : D - R. We call the single relation Q (D) the answer to query

Q on database D.

Let Q be the set of al1 queries in our data rnodel.

Definition 3.4. A change propagat ion query is a function CPQ : Q x 2) x (D x V) -
D x V such that, if

' ~ o t e that 2) niay not be finite. Al1 relations have finite attribute sets (arity), but attributes may
have infinite domains.

1. Q E Q is a query,

3. D E 23 is a database, and

3. 6 (0) E 2, x 27 is a database update,

then. CPQ(Q, D , 6 (0)) is an update 6 (Q (D)) E D x V in t.he answer Q (D) of query

Q on database D, such that, if 6&D) are the deletions and 6&D) the insertions of that

update. then

Essentially, t his definition says t hat if the change computed by the change propagation

query is incorporated into the value of the query answer that we had be fore t h e database

update, the result is the same as the value of the query answer nj ler the database update.

PVe cal1 the expression of the change propagation query, change propagation. delta or

diflerential espression of Q2. We call and 6&) the incremental updates to Q (D)

with respect to S (D) .

One corollary of Definition 3.4 is that for each query Q, database LI and database

update 6 (0) , the value of CPQ(Q,DJ (D)) is unique, i.e., there is a unique change

to every query's answer. A second corollary is that, if the change propagation query

computes tuples to be deleted, then these tuples are already in Q (D) , and no tuple is

computed to be both deleted and inserted in Q (D) . This is because we have defined

CPQ to return a change, according to Definition 3.1.

Definition 3.5. An incremental update is the update defined by the change propagation

query. In particular, if the change propagation query CPQ(Q, D, 6 (D)) computes the

change 6 (Q (D)) = (6&D),64f(D)), we call 6g(D) the incremental deletions, and 6&, the

incremental insertions of the change.

Definition 3.6. An incremental query, IQ(Q, D , 6 (D)) , of a query Q E Q, database

D E D and database update 6 (D) E 23 x D, is the syntactic expression

' ~ e use al1 these names because they al1 appear in the Iiterature.

where (CPQ-, C P Q f) are the incremental updates to Q (D) with respect to 40).

Therefore, we use the term "change propagation expression' to d e r to an expression

that specifies the incremental updôtes to a query's answer while we use the term "incre-

mental expression" to refer to an expression that incorporates incremental changes to a

query's old answer.

After having presented the forma1 definition of updates to bot h database relations

and relations computed by running queries, we are ready to present the major issues

associated with change propagation and incremental maintenance.

The Change Propagation Problem

Given a query Q , a database D and a database update b (D) , how do we express the

change propagation query CPQ(Q, D, b (D)) ? What query expression can we use to

compute incremental changes? bVe discuss a solution to the change propagation problem

in Section 3.4.

The Optimization Problems

How does computing the incremental changes CPQ(Q, D, 6 (0)) compare to computing

Q (D) or Q(Dv)? Also, how does evaluating the incremental expression of a query com-

pare to evaluating the query again? CVe address these issues experimentally in Chapter 6.

3.4 The Change Propagation Problem

Let D be a database and Q a query expression in the algebra of Section 3.1. By definition

3.4, the change propagation query C PQ(Q, D, 6 (0)) given a change 6 (0) to the database,

is the value of expressions 6; and 66, which are defined in terms of Q and the components

of Q as discussed in this section. To simplify the presentation, we use Q to refer to both

a query and the answer Q (D) of the query in a database D.

To derive the change propagation expressions for al1 operators in the algebra, our

methodology is the following. For each query Q, we algebraically manipulate the new

value of the query, Qu: in order to bring it into the form [Q - m] u p. The multisets rn

and p potentially define a change for Q. To prove that (m , p) is in fact a change. we

prove that:

1 Property 2: 1 m n p = 0.

The algebraic manipulations in this chapter generate m and p in such a way that

Property 1 holds but Property 2 may or rnay not hold. If Property 2 does not hold, then

(r n , p) is not a change. In this case. (m - p, p - rn) is a change, which we consider as the

change propagation expression. We can do this, because of the following result:

Lemma 3.1.

1. If rn Q? then [Q - ml u p = (Q - (n - p)) u (p - rn)

2. If rn C Q, then (m - p) 2 Q

3. For each m.p : (m - p) n (p - rn) = 0
O

Proof. Let cq, c, and c, be the number of duplicates of a tuple t in each of QI m and

p. To prove 1, we use the assumption that rn C Q to get that c, 5 c,. Tuple t appears

max{c, - c,, O} + cp = c, - c, + cp in the multiset in the left hand side of the equation.

Also? tuple t appears max{c, - max{c, - ç,, O } , O} + max{c, - c,, O} in the rnultiset in

the right hand side. If c, 5 c,, this expression is max{cq, 0) + c, - c, = c, - c, f q,.

Otherwise, it is max{c, - (c, - 5) } + O = cq - c, + cp. Rernoving the assumption rn C Q

rnakes Property 1 not to hold. Similarly manipulating the number of duplicates, we can

also prove the properties 2 and 3 of the lemma. LI

In the manipulations that follow, we use the algebraic properties that appear in

Table 3.1. Some of these properties are taken from the paper of Albert [Albgl] and the

paper of Grumbach and Milo [GM93b] on multisets. The others can be proven easily.

We continue by presenting the change propagation expressions for each operator in

the algebra. Most of these expressions have been discussed by Griffin and Libkin [GL95].

We prove the correct ness of the change propagation expressions, not only for pedagogical

reasons, but also because the proofs describe what over-estimations of changes rnay be

used for view maintenance instead of the actual changes. As we will see in Chapter 4, for

P l : A x (B u C) = (A X B) U (A X C)
P2: A x (~ - C) = (A x B) - (A x C)
P3: (A - B) - C = . 4 - (B u C)
Pd: (. 4 U B) - C ' = (A - C) u (B - (C - A))
P5: A - (B - C) = (d- B) U [[C - (C - B)] - (B - A)]
P,: A - (B - C) = (d- B) u [C - (B - A)] , when C C B
P,: A - B = . 4 - (B - (B - A))
Pi: (A - B) U (A - (A - B)) = A
P,: (A - B) u C = (A u C) - Z 3 , w h e n B G A
P9 : ae(A u B) = ae(A) U o e (B)
Plo : oe(A - B) = ae(A) - a@)
Pll : r X (A U B) = ~ x (- - l) U x x (B)
P12 : r X (A - B) = q (A) - r X (B) , when B C A
P13 : e(A u B) = e(A) U [e (B) - A]
Pl, : e (A - B) = e(A) - [B - (A - B)]
P15 : 4.4) - B = e (A) - e (B)

pis: A - (B - C) = A - B . w h e n A n C = @
P I ; : A - (B - A) = A , w h e n A n B = f l
Pl8: A-(-4- B) = B - (B - A)
Pis : (A U B) - C = (A - C) U B, whenB fi C = 0
Pzo: A - (B u C) = A - B , w h e n A n C = @

Table 3.1: Properties of Multisets

incremental view maintenance. it rnight be desirable to relax 1-1 and only insist

that (Propertyl be satisfied3. Therefore, instead of using the derived (and sirnplified)

(rn - p, p - rn) to do view maintenance, we can use (m, p) directly, which are not the

changes but over-estimations of them. Doing this has the potential to improve the

performance of incremental view maintenance.

3.4.1 Change Propagation Expressions

Database Relation

If Q = A, for any database relation A, then:

6; = 62

66 = 62

3This means that , instead of using the strong rninirnality conditions [GL95], we use weak rninimality
conditions [CGL+96].

Cartesian Product

Let d e l (A) = A - 6; and d e l (B) = B - 6 i . If Q = -4 x B, then

Qu = A' x BV

= (d e l (A) U 6:) x (d e l (B) U 6;)

= d d (. 4) x d e l (B) U 6; x d e l (B) U d e l (A) x 6; U 62 x 6; by Pl

Let p = 6: x d e l (B) U d e l (A) x 68 U 6; x 68.

Then,

Qu = d e l (A) x d e l (B) U p

= (A - 6 ;) x (B - 6 é) U p

= ([A x (B - h i)] - (6, x (B - 6 ;) j) U p by P2

= ([A x B - A x &] - (6.7 x B - 6; x s i]) u p by Pz

= (A x B - [A x 6; ~ (6 7 x B - 6 i x &)]) ~p by P3

Let ~ = A x & U (~ , ~ X B - ~ ; X ~ ~) = (A X ~ ~ U ~ ~ x B) - 6 ; ~ 6 , .

Then,

Qu = [A x B - m] U p

1s (m,p) a change'? The answer is no. It is easy to see that rn Ç Q. However,

n n p # 0. To see why, let A = { l . l) , B = { 1) & = {l},b$ = { l} . Thus, A x B =

{(l , l) , (i , l) } = (A x B)". However, m = { (l , l)} and p = {(l: l) } .

According to Lemma 3.1, (m-p' p - r n) is a change. To obtain the change propagation

expressions for cartesian product, we further simplify m - p and p - m. Before we do

this let us rewrite m as follows:

m = A x 68 U (QA x B - 6 A x 6i)

= A x 6; U 62 x d e l (B)

= (d e l (A) U 6,) x 6; U 6A x d e l (B)

= 6, x 6 ~ u d e l (A) x 6 i U 62 x d e [(B)

and,

p - m = [t: x d e l (B) u d e l (A) x 6 2 ~ 6 : x 621-

[(A x 6, U6; x B) - 6A x 6J

= [6,f x 6; u 6; x del(f3) u de l (A) x 681-

[A x 68 U 6; x BI by Pl6

= 6: x 62 C: ((6; x d e l (B) U de l (A) x 6;)-

(A x 6g U 6 ; x B)] b~ 9 9

= 6; x 68 U ([[b; x d e l (B) U d e l (A) x 651-

6, x B] - A x 6,) by P3

6; x 6 2 U [[(d e l (A) x 6; - 6 , x B)U

6-: x d e l (B)] - A x 683 by Pl9

= 62 x 6 2 LJ [d e l (A) x 6; - 6; x B]u

[Sf; x d e l (B) - A x b,] by PI,

Selection

If Q = gd(A) , t hen:

Let m = ad(&) and p = oe(6-;). It is clear that (ml p) is a change since both

propert ies of Defini t ion 3.1 are t rivially sat isfied.

Projection

Let rn = 7rX(6J and p = ~ ~ ~ (6 2) . Unlike the case of selection, (m , p) is not a

change. It is easy to see that m C Q. However, rn n p # 0. To see why. consider

.4(X, Y) = {(l, l)}, 6; = {(1,1)}, 6; = {(l, 2)}. Supposing t h e projection retains the

first attribute, X , of relation A, both m = p = 11).
According to Lemma 4.1, (m - p, p - m) is a change.

Duplicate Elimination

Let m = e(&) - (A - 6,;) and p = e(6:) - A. Intuitively, n contains a unique copy

of those tuples deleted from A that lost al1 the duplicates they had in A, while p contains

CHAPTER 3. CHANGE PROPAGATION EXPRESSIONS :39

those tuples inserted in A that did not exist in A before. The derived (m g) is a change.

Set Difference

If Q = A - B, let del(A) = A - 67 and ins(A) = .4 u 6:. Obviously, Au = del (A) U 6; =

ins(A) - 6 i . The following equivalences can easily be proven

Tl : ins(.4) - B = (A - B) U [bf; - (B - A)] by P4

T 2 : A - ins (B) = (A - B) -6; by P3

T3 : del(A) - B = (A - B) - 6.i by P3 (twice)

T4: A - d e l (B) = (A - B) U [& - (B - .4)] by Ps

We use the equivalences Ti to T4 and the equivalences ilv = del(A) U 6: and Bu =

ins(B) - 6; to get the following:

Q U = / l V - p '

= (del(A) - Bu) U [6* - (Bu - d e l @))] by Tt

= (de[(/ \) - i n s (B)) U [6, - (ins(B) - del(A))] U [6: - (Bu - del(A))] by T4

= (del(A) - i n s (B)) U [d i - (in@) - d e l (. 4))] ~

[6,f - ((ins (B) - d e l (A)) - 61;)) by T3

= (d e l (A) - ins (B)) U i(68 U 6;) - (ins(B) - del(A))] by P4

Let .Y = 6, U 62 and Y = U 6:.

And let,

p = (6; u 6:) - (ins(B) - del(A))

= Y - (ins(B) - del(A))

= Y - [(B - d e l (A)) U (6; - (del(A) - B))] by TI

= Y - [(B - A) U (6, - (A - B)) U [h i - ((A - B) - 6,))) by T4 and T3

= Y - [(B - A) U ((SA U 6;) - (A - B))] by p4

= (Y - (B - A)) - (X - (A - B)) by P3

Qu = (dei(A) - i n s (B)) U p

= [(de l (A) - B) - h i] U p by T2

= [(A - B) - (6; ~ S j ! j)] ~p by T3 and P3

= [(A - B) - X] U ~

= [(A - B) -[.Y - (X -(A - B))] j u p by P6

Let m = .Y - [X - (A - B)].

Qu = [(A - B) -ml U p

The first question that we must ask is whether the derived (m o p) is a change. The

answer is no. Obviously, rn C & (because rn equals, by definition, X n Q j. However.

m n p # 0. To see why, let A = {1,1}, B = {1},6, = 6~ = 11). Thus, A - B =

A" - Bu = 11) and B - A = 0. Also, X = Y = 11). Then m = { l } - ({ l} - {l}) = {l}

and p = ({l} - 0) - [{l} - {l}] = {l}.

-4ccording to Lemma 3.1, (m - p, p - m) is a change.

Let us sirnplify m - p:

[X - (X - (A - B))] - [(Y - (B - A)) - (X - (A - B))]

[(A - B) - ((A - B) - X)] - [(Y - (B - A)) - (X - (A - B))] by Pis
(A - B) - [((A - B) - X) U [(Y - (B - A)) - (X - (A - B))]] by P3

(A - B) - [[(A - B) u (Y - (B - A))] - X] by Pd

(A - B) - [[(YU (A - B)) - (B - A)] - XI by Pl9

(A - B) - [(YU (A - B)) - (X U (B - A))] by P3

(A - B) - [((A - B) - (X u (B - A)))u

[Y - ((X u (B - A)) - (A - ml1 by P4

(A - B) - [((A - B) - X) U (Y - (X - (A - B)))] by P4

= (A - B) - [((A - B) U 1') - XI by P4

= [(A - B) - ((A - B) U Y)]u

[(X - (X - ((A - B) U Y))) - [(Y u (A - B)) - (A - B)]] by Ps
= [.Y - (X - ((A - B) U Y))] - Y

= (.Y - Y) - (X - ((A - B) u Y)) by p3

= (-Y - Y -) - [(-Y - Y) - (A - B)]

= (x - Y) ~ (A - B)

Also: let us simplify p - m:

p - m = [(Y - (B - A)) - (- Y - (A - B j)] - [. Y - (- Y - (A - B))]

= (Y - (B - A) j - [(. Y - (A - B)) u [X - (X - (A - B))]] by p3

= [Y - (B - A)] - X by Pi

= (Y - - Y) - (B - A) by P3 (t wice)

Union

Let p = 66 u 6;.

Then,

Qu = ((A U (B - P B)) - ~ J U ~ by Pg

= (((A U B) - 6 s) - 6 ~) U p by Pg
= ((-4 u B) - (6- U 6 8)) U p by P3

Let rn = 6; U 6,.

Obviously n C (A U B). However (m,p) is not a change, because m n p # 0, when

6; n 62 # 0 or 6 2 n 6 8 f 0. According to Lemma 3.1, (m - p p - m) is a change. In

fact, n - p, p - m are the change propagation expressions for union.

Aggregat ion

Aggregation is the only operator in the algebra for which we do not adopt the algebraic

approach in proving the correctness of the change propagation expressions. Rather. for

aggregat ion, we describe algorithmically how the change propagation expressions to views

with aggregates are defined. W e do this first for views where aggregation is computed

with respect to al1 the tuples in the relation (one group), and then for views where

aggregation is computed with respect to some grouping attributes (many groups).

1 Aggregation over one group (

COUNT

Let Q = ag[comr(,.) as Y ; s I (A) - Let us abbreviate with F the aggregate item "COUNT(X) as 1'".

For COUNT, the aggregation column Y holds the number of different tuples appearing in

A. Let,

C' = n t (&) , i.e.. c E C is the number of tuples in A before the update,

Cf = R $ (~ ~ [~ ; (~ (S :)) , i.e.. cf E C+ is the nurnber of tuples inserted into A, and

C- = ~ $ (a ~ [~ , ~ ~ (6 ;)) , i.e., c- E C- is the number of tupies deleted from A.

We have two cases:

1. If c- = cC, then the number of tuples in A before the update is the same as the

number of tuples in A after the update. The value of the aggregate value of the

view is not affected. The change to the vierv is

2. If c- # c+, the number of tuples in A before the update is not the same as the

number of tuples in A after the update, which is c - c- + c+. Therefore al1 the view

tuples must change, and the update to the view is:

6~ = Q

66 = .4" x { c - c - + c C }

This shows a limitation of our approach to mode1 only insertions and deletions. In

this case, it is better to Say that 6; = 6; x { c } are the tuples that are deleted

from the view, 6Q = 6: x { c - c- + cf } are the tuples that are inserted into the

view. and the other tuples in the view are modified by chariging the aggregate value

from c to c - c- + cf. However, in this section, we are concerned with the change

propagation problem and not with the increniental maintenance problem.

We can test for conditions 1 and 2 by riinning the tests Testl and Test2 respectively4.

Test1 = C- ri C+

Test = C- - C+

Then, we can summarize the changes to Q as follows:

66 = rattrs of Q([Testl x bai x C] U [TestZ x &])

64 = rattrs of Q([Testl x 6; x C] U [Test2 x A" x T $ ~ - $ ~ + $ ~ (C x C- x C')])

The role of the dollar sign in the expression for 68 is to give the value of the cor-

responding attribute. Thus, $1 is the value of the first attribute, $2 is the value of the

second attribute, and so on. The - and + in the expression $1 - $2 + $3 correspond to

subtraction and addition of numbers.

SUM

The aggregate SUM is treated similarly to COUNT.

MIN

Let Q = a g [n r ~ (x) u;cl(A). Let us abbreviate with F the aggregate item "MIN(.y) as Y'.

For MIN, the aggregatioo column Y holds the minimum value of the attribute X. Let,

M = +(Q), i.e., rn E M is the minimum value for the attribute X in A before the

update,

Mf = ~ $ (a ~ [~ : ~] (6 2)) , i-e., mf E iIf+ is the minimum value for X from al1 the

inserted t uples, and

M - = nt (a g [F ; e l (S i)) , i.e., m- E M - is the minimum value for X from al1 the

deleted t uples.

4The test is successful if and only if the relation corresponding to the test is non-emptg.

We have four cases:

1. If rn+ < m, a new minimum is inserted and al1 the view tuples must change. The

update to the view is:

6; = Q

66 = Au x {m+}

2 . If m+ 2 m and m- > rn; the minimum 1(value is not afFected. The update to the

view is:

6; = b , x { m }

66 = 6; x { m }

c- E C- counts the number of tuples deleted from A that give the minimum value

for X. Then, if rnf 2 m, m- = rn and c > c-, some tuples with the minimum

.Y value are deleted but not al1 of them, and, t.herefore. the minimum value is not

affected. The update to the view is:

4. I f m+ 2 m , rn- = m and c = c- , al1 the tuples with the minimum X value are

deleted. The new minimum must be found. The update to the view is:

6; = Q

6; = a g [~ ; @] (A ")

We can test for conditions 1, 2, 3 and 4 by running the tests Testl, Test2, Test3, and

Then, the changes to Q are described by the following:

6; = rattrs of Q([(Testl U Te&) x QI U [(Test2 U Test3) x 6; x Ml)

66 = K a t t r s o f ~ ([Testl x Au x Mf] U [(Test* U Test3) x 6: x M] U [Test4 x ag[F,q(Au) l)

MAX

The aggregate MAX is treated similariy to MIN.

1 ~ ~ ~ r e ~ a t i o n over many groups 1
Let Q = agpq(A) , where F is an aggregate item involving one of the aggregate

functions COUNT, Sm, M I N or MAX. The groups that are affected by the update to A can

be determined by aX(6; U 6;). For each affected group g E aC(6; ü 6*), we have

a O ~ , ~ (A) is the group in the relation A,

a aC,,(6i) are the deletions to this group, and

a ~ ~ , ~ (6 :) are the insertions to this group.

We can use the techniques discussed for the case of one group to find the updates to

each group. The update to the view is the union of the updates for each group5.

Other Operators

The change propagation expressions for the rest of the operators are derived by rewriting

their expressions. Thus,

0 if Q = A -d B, then Q can be rewritten as Q = e(A) - B;

O if Q = s$(~), then Q can be rewritten as Q = e(nx(.4));

a if Q = A ud B , then Q can be rewritten as Q = e(.4 U B);

a if Q = A n B, then Q can be rewritten as Q = A - (A - B);

a if Q = A nd B, then Q cari be rewritten as Q = e (A) n B = A n e (B) = e(A n B) ;

a if Q = A Mo B, then Q can be rewritten as Q = od(A x B) .

' ~ o t e , however, that this is an algorithmic treatment of the aggregation over many groups. The
generalization over many groups cannot be expressed in our language.

Chapter 4

O pt imizat ions

In this chapter we propose a variety of optirnization strategies in order to sirnplify change

propagation and incremental expressions. There are three main categories of such opt i-

mizations: optimization specific to incremental maintenance, optirnization in the presence

of key constraints, and optimization in the presence of foreign key references.

4.1 The Incremental Maintenance Problem

Yhe incremental maintenance problem is related to the change propagation problem

discussed in the previous chapter. The change propagation problern pertains to the

definition of changes to the value of queries. The incremental maintenance problem

pertains to the definition of the new value of the query using the old value of the query

and the changes to it. In the previous chapter we showed how equations for change

propagation are derived for each operator in the multiset algebra. In this chapter, we

discuss ouer-estinations of changes that have the potential to improve the performance

of incremental view maintenance. Using over-estimations of changes have been proposed

by Colby et al. [CGLf 96).

The methodology used in the previous chapter to derive the change propagation

equations was t he following:

1. we start with the new value of a query Qu,

2. we algebraically manipulate the expressions for Qu to bring it into the form [Q -

m] U p, in such a way as to ensure that 1 Property 1: m E Q 1 is satisfied,

3. we use Lernma 3.1 to define (m - p, p - rn)

when the generated m and p do not satisfy

as the change propagation expressions.

4. we sirnplify (rn - p, p - m), if possible.

One question that we might want to ask is: what is the significance of the properties

that the change propagation expressions satisfy? Why do we insist on them? Both

these properties are very important when the change propagation expressions are used

for integrity constraint maintenance, or reasoning about change; in other words, when

the change of the old and new value of a query is necessary. Griffin and Libkin refer

to satisfaction of both these properties as the rninirnality condition [GL%. CGLf96].

CVe make the observation that we can relax the second property when incrementally

maintaining the query. We can do this, because 'dm, pl Q such that m C Q,

We cannot relax the first property, as the above equation no longer holds.

The tradeoff between using (ml p) and using (m - p, p - rn) is analogous to duplicate

removal. In the sarne way that early duplicate removal rnay improve the performance of

subsequent operat ions (because it reduces the sizes of the relations involveci in subsequent

operations), computing minimum deltas must be done as early as possible. On the other

hand. like duplicate removal. minimum delta computation is expensive, and expensive

operations should be avoidecl if possible.

Definition 4.1. For each query Q, database D and database update b (D) , any (A i , AS)

that satisfy

1. Q V (D) = [Q(D) - &(D)] U A $ (D)

2. A,(D) c &(a
specify ouer-estimations of the change to the query answer Q(D).

In the previous chapter, in Section 3.4.1, we showed how we define the incremental

changes 64 (the equation for m - p) and 6; (the equation for p - m) for each query

expression Q. Tables 4.1 and 4.2 summarize these definitions.

Table 4.1: Equations for computing 6-

W o e j 4) = OS(^:)

S C (Y i + W = a x (m - .x(6,)

sC(e (A)) = e(6f;) - A

6+(A x B) = 6: x 6; u [(A - 6 ~) x 62 - 6; x B]u

[6* x (B-6,) - A x 6;]

s'(A - B) = ((6; U 6:) - (6, U 6;)) - (B - A)

6+(A u B) = (6.; u 62) - (6, U 6,)

Table 4.2: Equations for computing 6+

The proofs of correctness of Section 3.4.1 for the definitions of the incremental changes

m - p and p - rn also provide one possible set of over-estimations, rn for delet ions and p

for insertions. Thus, m gives the over-estimation of deletions A- and p gives the over-

estimation of insertions A+. These A- and AC are expressed in terms of the 6- and 6+

of the inputs in Section 3.4.1. Except for the case of duplicate elirnination, in deriving

the equations for them, we have not used the fact tliat the 6- and 6+ of each input are

disjoint multisets and therefore we can safely substitute A- and AC for the inputs in

place of their 6- and 6+. In the case of duplicate elimination, it is not possible to define

over-estimations of the changes. The actual incremental changes are considered as t heir

trivial over-estimations.

Tables 4.3 and 4.4 summarize the definitions of the over-estimations 4- and A+.

From now on7 when we Say over-estimations A- and Lif, we will mean the over-estimations

defined by the equations in these tables.

& (A)

h- (ae(A))

~ - (T Y (~)

W e W)

A-(A x B)

A-('4 - B)

& (A U B)

6, for database reIation A

o e (4

v@,)

W M))
[A i x B ~ A x h g l - h , x A ,

(hi u A i) n (A - B)

a, u ag

Table 4.3: Equations for computing A-

- - - - - - - - - . - -

A+(.4) = 6; for database relation A

Af(uo(A)) = eu:)

A+(r.u(A)) = ~x(&!i)

A+ (e (A)) = 6 + (e (A))

A f (A x B) = [A ~ x (B - A ~) u (A - A ;) x A ~] u A ~ x A ~

A+(A - B) = [(ni u a;) - (B - A)] - [(A, u A;) - (A - B)]

.Af (A u B) = Ai U AS

Table 4.4: Equations for computing A+

The relationships between the operators discussed in this section are as follows:

1. the incremental changes are the net effect of their over-estimations, i.e., 64 =

A, - AS and 66 = A; - A;;

2. each over-estimation contains the incremental change and an excess of tuples A

(possibly empty), i.e., there exists a rnultiset of tuples A such that AG = 6; U A,

A& = 66 U 4, and A = A4 fI A;.

4.2 Optimization in the Absence of Duplicates

The equations for the delta and the over-estimation of the delta of a relation can be

simplified, if the relation is known not to contain duplicates. To verify that a relation does

not contain duplicates, cve con use the following sufficient (but not necessary) conditions:

.A relation does not contain duplicates, if

O the relation is generated by rd. el nd, ud7 - d . or

O the relation always contains at most one tuple, or

O the relation contains at least one key.

As in relational algebra, relations in our multiset algebra rnay have sets of one or

more attributes serving as keys. We say that a non-empty set S of attributes of relation

R is a key for R, if no instance of R can have two tuples that agree in al1 the attributes of

S. Therefore, it follows from the definition that a relation with at least one key does not

contain duplicates. For database relations that contain at least one key, exactly one of

t hem is designated as the pn'rnary key; the others are called alternate or candidate keys.

If R is generated by one of the operators rd, e , nd. ud or - d , then R has a key. The

key is forrned by taking al1 the attributes of R. Also, if every instance of R is known to

contain at most one tuple, then each attribute of R is sufficient to determine a unique

tuple in the relation (if one exists), and anÿ attribute can serve as a key This allows us

to revise the sufficient condition for checking duplicates to:

A relation does not contain duplicates, if the relation contains at least one

key .

From the above discussion it follows that a relation may have more than one key. The

set keys(R) contains the keys for the relation R. Next, we describe how the keys for a

relation computed by a query expression are generated from the inputs to the operators

in the query expression and their keys.

4.2.1 Generat ing Keys for Query Expressions

The set of keys of a relation specified using a query expression can be generated recursively

by applying the following algorit hm (bot tom-up) to al1 operators in the query expression.

WC define the booIean condition Oltuple(R) to be true when R contains at most one

tuple. There is a simple sufficient condition for testing whet her a relation contains at

most one tuple (without cornputing the value of the relation) by examining its keys: a

relation contains a t most one tuple if the empty set of attributes is a key. The algorit hm

for key derivation is based on the following inference rules1:

A x B: The set of keys of the cartesian product contains al1 possible combinations

of the keys of A with the keys of B, if both A and B have non-empty sets of keys

and both A and B contain more than one tuple. In particular:

if k e y s (A) = 0 or k e y s (B j = 0
k e y s (A) if -Oltuple(A) A Ol lup le (B)

b e y s (A x B) = i f O l t u p l e (A) h -Ol tuple(B)
k e y s (A) U k e y s (B) if Oltuple(A) A 01tuple(B)
{kl ü 1;2 : kl E k e y s (d) , kz E k c y s (B) } otherwise

u6(il): The key set of the

selection filters more than

selection is the same as the key set of the input, if the

one tuple from A:

{{X} : X E attrs(A)] if B selects O or L tuples
keys(Aj if 8 selects > 1 tuples

If the selection filters more than one tuple and the selection condition 8 bounds

some attributes of A, the keys can be simplified by removing the bound attributes

from them. An attribute of a relation is said to be bound if al1 tuples in the relation

contain the same value for that attribute. Let S be the set of attributes of A

that the condition 8 bounds. Also, let X C be the set of at tributes that 0 directly

or indirectly equates with the X attribute. In every key containing X, we can

substitute ?5 with Y E X+. The simplification process is:

'This is a sound but not complete set of inference ruIes.

Repeat the following until no new keys are added into keys(ae(A)):

1. Replace each k E keys(cd(A)) with k - S; if k - S = 0. stop and

set Oltuple(ae(A)) to true - the selection returns at most one tuple

because al1 attributes in a key are bound.

2. For each attribute X, for each Y E Xf and each k E k e y s (a 6 (4))

such that 'C E k, add k - {X} U {II} into keys(uo(A)).

O A W, B: the set of keys for the join is the same as the set of keys for the selection

o o (A x B). However, an additional simplification is possible due to the join. Xgain.

let S be the set of bound attributes of O. If 0 is a conjunctive condition which

contains an equality between the X attribute of A and the I; attribute of B, then:

1. if {X} E keys(A), then Vk2 E t e y s (B) add kî-S into k e y s (A B)?

and

2. if {Y} E k e y s (B) , then Vkl E keys(A) add kl -S into keys(A B) .

0 nx(A): if the list of attributes ,Y includes some keys from A, then these keys are

the keys for the projection. If X contains no key from A, then the projection does

not have a key:

O & (A) (and duplicate elimination e): the projection distinct generates no duplicates

in the output; the set of al1 attributes in the output relation serves as a key, if the

projection attributes do not contain a key from A:

keys(n$(~)) = k e y s (r x (4) if keys(TY(A))#0
otherwise

O ag[F;q (A) : the grouping attributes serve as a key for the aggregation, if the relation

does not have a key:

{ ;;;(A) i U e y s (A) # 0
keys(a g (~ ; ~ (A)) = ot herwise

O A - B: the keys for the set difference is the same as the keys of the left input:

keys(A - B) = k e y s (A)

A - d B: the set of attributes in the output relation serve as a key if the left input

does not have a key:

k e y s (A - B) if keys(i1- B) # 0
keys (A - d B) = {{S : S E a t t r s (A) } } otherwise

A u B: even if both input relations have keys there is no guarantee that any of

t hem can serve as a key for the output relation, therefore:

beys(-4 u B) = 0

A ud B: the set of attributes in the output relation can serve as keys:

keys(A U ~ R) = {{X : X E attrs(A) } }

A n B: a key from each of the inputs can serve as key in the output relation:

ke y s (A fl B) = ke y s (A) U k e y s (B)

A nd B: the set of attributes in the output relation serve as a key. if A fl B does

not have a key:

k e y s (A n B) if k e y s (A n B) # 0
k e y s (a nd 8) = { {{X : X E a t t r s (A)) } otherwise

4.2.2 Simplifications

If a relation does not contain duplicates, the equations for defining its incremental changes

can be simplified significantly. Next, we describe. for each basic operator. what these

sirnplified versions of the change propagation expressions are. Using keys to simplify the

expressions results in change propagation expressions for the (pure) relational model.

such as the ones presented by Qian and Wiederhold [QÇVgl].

a A x B: If the output relation of a cartesian product A x B does not contain dupli-

cates, the inputs A and B to the cartesian product also do not contain duplicates

and,

6 - (A x B) = (by definition)
6; x 6 8 U [(il - 6;) x 6 8 - 6.: x (B - 6 8)] ~
[a, x (B - 6,) - (A-6,) x bg]

= (because A and B do not have duplicates and, i-e., (-4 - 6.i) n 6 2 = 0)
6, x 6, u [(A - 6 A) x 6 6] ~ [6 ~ x (B -68)]

= (property of multisets)

Similarly, we can prove that if A and B do not contain duplicates. then.

Note the similarity between these two expressions and the ones used for the over-

estimations of the changes for the cartesian product, in Tables 4.3 and 4.4. This

shows that the simplifications due to the key constraints invalidate the use of over-

estimations: the over-estimations computed are the actual changes to be made.

o e (A) : No further simplification is possible because the equations for 6- and 6+

are already in the simplest form that they can be.

a x x (A) : If the input relation to the projection does not contain duplicates, the

output relation may or may not contain duplicates. If the output relation does not

contain duplicates (because the projection retains at least one key from the input

relation), then xx (6J n 7rx(6f;) = 0, and,

Sm(rX(A)) = ~ ~ (6 - i) - ~ ~ (6 2) = 7rX(6;i)

S+(rx(A)) = ~x(6:) - ~ ~ (6 2) = ~ (6 2)

A - B: If both input relations do not contain duplicates, in order to find the incre-

mental deletions from the set difference, we must look at two situations. The first

is whether deleted tuples from A were in the set difference before (or equivalently

whether they were not in B before). The second is whether tuples inserted into B

were in the set difference before (or equivalently whether they were in -4 before).

That is.

6-(A - B) = (6, - B) U (66 n A)

Similarly, we can argue that insertions into ,4 result in insertions into the set differ-

ciice as long as these insertions are not in the new value of B. Mso? deletions from

B result in insertions into the set difference as long as these deleted tuples also are

in the new value of A.

P (A - B) = (6; - B") u (bg n A")

'4 u B: N o simplification is possible for union because even if the inputs A and B

do not contain duplicates, there is no guarantee that their union A U B does not

have duplicates.

0 e(A): If the input to the duplicate eiimination does not contain duplicates, then

duplicate elimination is a redundant operation and, obviously,

6-(e(A)) = 6.;

6+(e(A)) = 6.:

4.3 Optimization due to Foreign Keys

As in the relational model, in our multiset algebra, a foreign key is an attribute (or a

combination of attributes) XA in a database relation A that is required to match values of

the designated primary key ,ris in some other database relation B, i.e., R$JA) 2 ax,(B).

Suppose that database relations A and B are joined and the join condition is a

conjunctive condition containing Xa = X B , where Xa is an attribute of A and X B is

the primary key attribute of B2. If there is a foreign key reference from Xa to B, tuples

'Of course, X A and XB may be sets of attributes.

inserted into B do not join with tuples from the old value of A (before A is updated).

This is because the values in A before the update already appear in the domain of

-ICg in B before the update. Since B has at least one key. if t E s i , then t B. The

following equivalences can easily be proven (8 stands for a join condition of the form

discussed above):

Also, tuples deleted from B either do not join with the value of A before the update,

or they join with tuples deleted from '4, or else the foreign key constraint would not be

satisfied after the update3. For the same reason, tuples deleted from B do not join with

t uples inserted into A. Therefore, the following equivalences also hold:

These simplifications allow a database optimizer to transform a change propagation

or incremental query into a simpler one that does not need to access database relations

as many times and, thus, may be more efficient to evaluate. Note that some equivalences

follow from others, for instance: equivalence 3 follows from 1 and 2, and equivalence 6

follows from 5 . These are al1 the forms in which these equivalences have been defined

and used in the RHODES query optimizer.

Using foreign keys for simplification of incremental expressions has been recognized

by Quass et al. [QGMW96]. The purpose of that work is to use the knowledge about

keys and foreing keys, in order to make a set of views self-maintainable. One of the

simplification rules that is used is a generalization of equivalence 1 to many relations.

3The constraint may be violated before the transaction commits, but we assume ttiat view mainte-
nance occurs at the commit point of a transaction when the constraints are known to be satisfied. That
is, queries inside a transaction do not see the updated views.

4.4 Example

Let us assume the following database relations:

P : PART~PARTKEY. ...).

S : SUPPLIER(SSUPPKEY, . . .).

A : PARTSUPP(PS_PARTKEY, PSSUPPKEY, . . .).

The relation P records information about parts; the relation S records information

about suppliers; and the relation A relates suppliers with the part that each one supplies.

For referential integrity, al1 the values appearing in the PSSARTKEY of A must appear in

the PSARTKEY of P, and al1 the values appeariag in the PSSUPPKEY of A must appear

in the SSUPPKEY of S. so that al1 the parts supplied by a supplier are valid parts, and

al1 the suppliers supplying parts are valid suppliers.

Let us assume that we have a view V defined using the following SQL qiiery

select *

f r o m P, S, A

where A.PSPARTI1;EE' = P-PPARTKEY and

A.PSSUPPKEY = S.SSUPPKEY

Equivalently, we can specify the sa.me view as V = P w S D<i A (ignoring join

arguments). Suppose now that each of the P, S and A relations lose a number of tuples

specified by the system-defined relations S&6i and 6;, respectively. Let h i , be the

deletions from the join P w '4 (as if this join were rnaterialized) and 6; the deletions

from V. One way to compute the deletions from V is to find the deletions to P CU .4 and

propagate them to V, Le.,

Tuples that are deleted from A can only join with tuples deleted from P or tuples

deleted from S because, otherwise, the foreign key references would not be satisfied after

the database update. Thus, we can use the following equivalences to simplify the above

equations

and we can simplify the change propagation expression as

Thus, using this optimization, we were able to reduce accesses to the database rela-

ticns from five to two; accesses to the delta relations from eight to one; and, the total

number of joins from seven to two. Consequently, we increased the likelihood that the

performance of the change propagation query will be very good.

This concludes Our presentation of al1 proposed opt imizations for simplification of

change propagation and incremental expressions.

Chapter 5

The RHODES Database Optimizer

In this chapter we describe the design and implernentation of the RHODES query op-

timizer. We discuss the extensions to RHODES to support the optimization of change

propagation and incremental expressions. We also introduce the visual browser that

accompanies RHODES.

RHODES is a relational query optimizer that supports traditional optimization tech-

niques. such as join orderings, query transformation, use of indices, and so on. The

innovation of RHODES is t hat it understands and uses views during (general) query opti-

rnization. It also decides which views should be maintained incrementally and, for views

to be maintained incrementally, which change propagation expressions should be used

for t heir maintenance.

5.1 Query Optimization

A query expressed in a high level language is parsed by the DBMS to prodiice an interme-

diate form of the query known as the query parse tree. Before any further processing, the

query parse tree is validated, so that al1 of the relation and attribute names appearing in

it exist in the DBMS. Figure 5.1 outlines al1 of the different phases involved in executing

a high level query.

After the parsing and validation of the high-level query, the query optimizer of the

DBMS examines the query parse tree in order to find an efficient way to implement it. The

optimizer uses algebraic transformation rules to transform the query parse tree into one

or more equivalent parse trees, that produce the same result as the original one but may

CHAPTER 5 . THE RHODES DATABASE OPTIMIZER 60

give better performance [EN94]. After pruning the space of equivalent parse trees. the

optimizer determines the least expensive algorithms to implement each operator in the

chosen parse tree(s). This optimization phase is usually cost- based, sirice the optimizer

uses statistical information stored in a "mini-database", called the system catalog, to

estimate the cost of choosing different algorithms and decide which choice yields the

cheapest execution plan.

Intermediate form of query

1

.... Exccution p h -.

......................

Code to exccure the query
I

1 RUN-TIME DATABASE PROCESSOR I
I

Figure 5.1: The different phases in executing a high level query

The execution plan generated by the optimizer is not machine-executable code but.

instead, an intermediate form from which code can be generated. If the optimizer can

identify common subexpressions, the execution plan is a directed acyclic graph, otherwise

it is a tree. The query execution plan is traversed by a machine-specific component of

the DBMS that generates the code. The generated code is then executed (immediately or

not) by the run-time processor of the DBMS which is the operating system of the DBk1.S

it is responsible for transferring memory blocks to and from disk, buffering, scheduling,

CHAPTER 5. THE RHODES DATABASE OPTIMIZER

and so on.

5.2 The Volcano Optimizer Generator

In this chapter, we present the design and implementation of the RHODES relational

database query optimizer built using the Volcano Optimizer Generator [Gra94, GM93aI.

r Volcano %timizer's source cod-

'4
Query Execution P h

I

Figure 5.2: Using the Volcano optimizer generator

Figure 5.2 shows how Volcano is used to generate RHODES. input to the Volcano

Generator is a mode1 specification of what the intended functionality of the generated

optimizer should be. The mode1 specifies what query expressions are being optimized.

what aigorithms are available to the DBMS for execution, what cost is being niinimized

when seârching for the cheapest execution plan, and so on. The output from the Volcano

Generator is the optimizer's source code, which is compiled to produce the optimizer.

There are two inputs to RHODES: the syslem catalog and the query expression to

be optimized. The catalog contains ail statistical information necessary for plan cost

estimation. Information about the database updates is also recorded in the catalog. The

query is an expression (parse tree) over the algebra of logical operators. The output

from the optimizer is a query ezecution pian, an expression (dag) over the algebra of

algorithms. In our working framework, the query evaluation plan is subsequently fed to

a plan visualization tool which allows us to view details of the chosen execution plan,

a functionality similar to DB2's expiain facility [DB2]. We present this tool in more

detail later in the chapter.

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 62

RHODES uses dynamic programming optimization with general algebraic query struc-

t ures and not just select-project-join queries. The Volcano generator provides a search

engine to be used by al1 created optimizers with an exploration and optimization strat-

egy called directed dynamic programming [GM93a]. Other optimizers that use dynamic

programming, such as the System R optimizer [SAC+94] or the Starburst optimizer

[LFLSS, LohS81, generate the space of equivalent expressions botlorn-up, by creating al1

expressions that seem useful to create (the query rewrite phase) and then estimating

al1 resulting expressions (the cost-based optimization). RHODES'S search engine creates

equivalent expressions and execution plans top-down in a goal-oriented way. since it ex-

plores and optimizes only those subexpressions that participate in the actual query to be

optimized. It also uses the cost model and allows for some pruning of the search space

during the query rewrite phase.

5.3 The Catalog

The catalog is a "mini-database" and its function is to store the schema and statistics of

the database that the DBMS maintains. Although several components of the DBMS use

the catalog, it is the query optimizer whose operation is interwoven with t h e use of the

catalog, especially when the opt imizer est i mates the cos ts of different query execut ion

strategies.

The catalog used by RHODES specifies the following:

a For each relation, the catalog contains the name, arity and cardinality of the relation

and a list of the relation's attributes. Each relation must also have a (unique)

prirnary key, Le., one or more attributes that uniquely determine any tuple within

the relation.

For each attribute in a relation, the catalog contains the name, type, and size,

in bytes, of the attribute. There are two data types currently supported by the

presented optimizer: s t r ing and integer. The s t r ing type may use any pre-

defined number of bytes to hold the string value, while the integer type requires

four bytes.

CHAPTER 5 . THE RHODES DATABASE OPTIMIZER

If the attribute is an ordering attribute1. if it is part of the primary key, or if it

has an indes defined on it, this b c t is also recorded in the catalog. There are

three alternatives for index specification: 1) a primary index can be defined on

an ordering key attribute of the relation2: 2) a clustering index can be defined on

an ordering non-key attribute; and, 3) a secondary index can be defined on an-

non-key attribute, whether ordering or not.

Other important information about. attributes is the number of distinct values

appearing in the domain of the attribute and, if the attribute is of type integer,

the minimum and maximum value in the dornain.

Foreign key references irom attributes of one relation to the key attributes of other

relations are also recorded in the cat alog.

Finally, the catalog contains the name and defini tion of al1 user-defined materialized

views.

Mode1 Specificat ion

The model specijicntion describes what the intended behavior of an optimizer generated

by Volcano is. The specification is semi-declarative: some parts of it are provided using

definitions and rules and some parts are provided using C code. In this section. we

outline the components of the mode1 specification. In the following sections we present

each component in more detail.

To understand the outiine of the model specification, it is important to know that

there is a distinct separation between the logical and the physical view of a DBLIS's func-

tionality. The input to the optimizer is an expression ic the logical algebra of the D B M S .

The logical algebra is either the DBMS's query language or sorne convenient intermediate

representation of it. The output of the optimizer, which is a plan to evaluate the logical

expression, is an expression in the physical algebra of the D B M S . The physical algebra
- -- - -

'An orden'ng attribute is an attribute by which the relation is physically sorted.
'The key must be a singlcattribute key for any index to be defined on it,

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 64

is the collection of algorithms that the DBMS is capable of executing when evaluating a

logicd expression.

The specification of the mode1 for our optimizer, as with any optimizer built with

Volcano, includes [GM93a]:

The s e t of fogical operators and a definition of the structure of their arguments.

These constitute the operators of the logical algebra of the DBMS. For example,

J O I N is a iogical operator whose argument is an equality condition. such as RI .-y =

R2.Y, where RI is a reIation with attribiite X and R2 is a relation with attribute

Y .

An abstract da ta t ype "LOGICA LPROPERT Y ' wit h associated h n c t ions for this

type. Each expression in the logical algebra has a set of associated logical properties.

Equivalent logical expressions share the same logical properties. For example, a

logical property is the ari ty of the relation that the Iogical expression represents.

For each operator in the logical algebra. a function Lo d e n i e the logical propert ies

of an expression, given this logical operator as the top operator, from the logical

properties of the inputs.

Alge braic t ransfonnation rules, possi bly wi t h condition and/or application code,

used to generate equivalent logical expressions in the logical algebra. For example.

comrnuting a select with a join is expressed as a transformation rule.

The set of physical operators (algon'thrns and enforcers) implementing the logical

operators3 and a definition of the structure of their arguments. These constitute the

operators of the physical algebra of the DBMS. For example, MERGE is an algorithm

whose argument is an equality condition, such as RI .X = R2.Y.

i m p l e m e n t a t i o n rules for logical operators describing which algori t hm implements

each logical operator. For example: the fact that MERGE implements J O I N is ex-

pressed as an implementation rule.

3An enforcer does not really implcment a logical operator but, instead, is used in conjunction with
physical algorithms to guarantee certain properties in the result.

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 65

7. An abstract data type "PHYSICAL-PROPERTY" with associated functions for

this type. Each expression in the physical algebra has a set of associated physical

properties. Equivalent physical expressions computing the same relation do not

necessarily share the same physical properties. For example. a physical property

is the estimated cardinality of the relation t hat the physical expression cornputes.

Another physical property is the name of the attribute(s) on which the computed

relation is sorted on.

S. For each operator in the physical algebra, a function to d e n c e the physical properties

of an expression. given this physical operator as the top operator, from the physical

properties of the inputs.

9. An applicnbility function for each operator in the physical algebra which determines

whether the operator can be used to implement a given logical operator provided

that a set of requested physical properties rnust be present in the output.

10. A function for each operator in the physical algebra to determine what physical

properties are required from the operator's inputs. For exampie, this function for

MERGE specifies that both inputs to the MERGE rnust be sorted.

1 1 . An abstract data type "COST" with associated functions for this type.

12. A cost funcfion for each operator in the physical algebra.

5.5 Logical Operators

The set of logical operators in the logical algebra of RHODES is shown in the next

table. These are al1 the operators defined in Chapter 3, except that there is no opera,tor

corresponding to aggregation.

The table contains the nome of each operator, the number of inputs it accepts and

its standard abbreviating symbol. These logical operators were chosen so t hat the logical

algebra of the optimizer would be consistent with SQL, as was discussed in Chapter 3.

Except for PROJECT, PROJECTD, GET, SELECT and J O I N , the logical operators do not

have operator arguments. The argument to PRO JECT and PRO JECTD is a list of attribute

CHAPTER 5. THE RHODES DATABASE OPTIMIZER

Name # of .4rgs Symbol Name # of Args Symbol

CARTES I A N 2 x JOIN -2 - c-4

DIFF 3 a - PRO JECT i 7r

DIFFD 2 - PRO JECTD 1 rd d

GET O SELECT 1 a

INTERSECT 3 a n UNION 3 I u
INTERSECTD i) I l-ld U N I O N J i) - ud

Table 5.1: Logical Operators

names. The CET operator is used t o retrieve a stored relation. The name of the relation is

given as an argument to GET (which justifies why GET accepts zero inputs). The argument

to SELECT is a list of selection criteria in conjunctive forrn. Finally, the argument to J O I N

is a n equality condition betweeo a n at tr ibute of the first input and an attribute of the

second input.

5.6 Logical Properties and Logical Property Deriva-
tion

Each logical expression has an associated set of logical properties. These include:

a the ari ty of the relation represented by the expression;

a the set of logical attributes of that relation (each logical attribute having a name,

a type, and, perhaps, a foreign key reference);

a the set of ke ys for the relation (each key being a set of one or more a t t ribute names);

and,

O the set of bound attributes. An attribute of a relation is strongly bound, if al1 the

relation's tuples contain the same value for that a t tribute4.

4 ~ o u n d attributes are useful because keys can be simplified by removing the bound attributes froni
them.

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 67

The derivation of logical properties for an expression, given any logical operator as the

expression's top operator, from the logical properties of the inputs is rather simple. Key

derivations follow the algorit hm for generating the keys for query expressions presented

in Chapter 4.

5.7 Algebraic Transformation Rules

The goal of a query optimizer is to find the best possible plan to evaluate a given query

However, there are many logical expressions that are semantically equivalent to the one

that the user provides. Two expressions are semantically equiualent. if and only if. for

every possible database instance, the two expressions represent the same relation in

the instance. In order to find the best plan, an optirnizer must know how to generate

equivalent expressions for any expression provided by the user. In this section, we describe

t hese algebraic rules.

Laws involving JOIN:

O Join commutativity. i.e., A W . 4 1 = ~ i B = B W S I = A I A.

a Join associativity, Le., (A W.41=s1 Bj C = A W;Ii=Bi (B W . Y = ~ ~ C)

This transformation is not applicable if the argument of the join operator to

be moved into the subtree, Le., X7 is not an attribute of B.

Laws involving SELECT:

Commuting selects, i-e., ce, (ae2 (A)) = oe2 (os, (A)) .

Combining a select with a get, i.e., ae(get(A)) = gete(A).

Cascades of selects (one direction), Le., bel (ae2 (A)) = oelAe2 (A) .

Cascades of selects (other direction), Le., O#, A#, (A) = 00, (ae2 (A)) .

Commuting a select with a join, i.e., oe(A B) = o0(A) IX B. This transfor-

mation can only be applied if 9 involves only attributes of A.

Commuting a select with a cartesian product, i.e., o e (A x B) = o e (A) x B.

This transformation can be applied only if 0 involves only attributes from A.

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 68

a Commuting a select with a project or a project distinct. Le., g e (a (A)) =

c , (u e (A)) , where O E {ïr, rd } .

Combining a select and a cartesian product into a join? Le.. a e (A x B) = A

B

This transformation can be applied, only if 19 is of the form A l = BI. A l is

an attribute of A and BI is an attribute of B.

a Commuting a select with a set operator, i.e., o e (A B) = ue(A) (3 a s (B) ?

where E {-. - d , U, ud, n, nd} .

Laws involving CARTESI AN:

Cartesian product commutativity, i.e., A x B = B x A.

Cartesian product associativity, i.e., A x (B x C) = (A x B) x C.

Laws involving PRO JECT and PRO JECTD:

Replacing a project distinct with a project, i.e., R$-(A) = I T , ~ (A) .

This transformation can only be applied if X maintains one key from A.

Cascades of projects with project distinct's, Le., i r x (r Y (A)) = q (A) and

a $ (r r - (~)) = IF$(A) and a $ (n $ (~)) = I T $ (A) .

These transformations can only be applied if the list of attributes .Y is a subset

of the iist of attributes Y.

Cascades of a project and a project distinct, Le., n x (ï r $ (~)) = ï rx(A) .

This transformation can only be applied if the list of attributes Y maintains

a key from A and X is a subset of Y.

a Commuting a project or project distinct with a select, i-e, O x (o e A) = U ~ (@ ~ (A)) ,

for O E { a , a d } .

This transformatioil can only be applied if 6 involves only attributes that

appear in the attribute list X .

CHAPTER 5 . THE RHODES DATABASE OPTIMIZER 69

O Commut ing a. project or project distinct wi t h a cartesian product. i.e., !3,, (A x

B) = Oxi(A) x Oxz(B).

This transformation can only be applied if X 1 U -Y:! = X and X 1 contains

only attributes of A and 5 2 contains only attributes of B.

a & (A x B) = &(A) .

This transformation can only be applied if X involves attributes of A only.

a Commuting a project or project distinct with a join (special case). Le.,

O x (A w.41=,1 B) = Oxl(A) w,,=,, (3,~2(B), where E {r. rd}.

This transformation can only be applied if X includes both Al and B1 (among

possibly other attributes) and ,Y = ?ilU.YZ, where XI involves only attributes

of A and .Y:! involves only attributes of B.

0 Commuting a project or project distinct with a join (more general case), i.e.,

~ , Y (A W . 4 1 = ~ 1 B) = @x(Oxl (A) W . 4 1 = ~ l O x 2 (B)) ? where (3 E {r: a d } -

This transformation can be applied only if -Y does not contain both A l and

BI. Then, X1 contains the attributes of A that appear in .Y plus Al , if Al

does not appear in -Y1 and X:! contains the attributes of B that appear in -Y

plus BI, if B1 does not appear in X.

0 Commuting a project or a project distinct with a union or union distinct, i.e.,

O (A @ B) = ((@ (A)) @ (O(B))) , where O E {R, r d } and E {u. ud} .

Laws involving set operators:

a Commutativityof set operators, Le., ,4@B = BOA? ivhere @ E {u, U$ n, n d } .

0 Associativity of set operators, i.e., A (B C) = (A O B) O C, where O E

{u, ud, n. nd} .

5.8 P hysical Operat ors, Enforcers and Implemen-
tation Rules

in Volcano, a physical operator is either an algorithm that implements one or more

logical operators or an algorithm that does not directly implement a logical operator but

CHAPTER 5. THE RHODES DATABASE OPTIMIZER

is, instead. used to deliver a required physical property. The second kind of physical

operators are called enforcers. There are two enforcers in RHODES:

0 SORT which is used to sort the input relation on a given attribute; and.

DUPLICATEELIMINATION which is used to rernove duplicates from the input rela-

tion.

The other physical operators and their implementation rules are:

CARTESIAN + CARTESIANALGO

DIFF + SETDIFF

DIFFD 4 SETDIFFD

INTERSECT + SETXNTERSECT

INTERSECTD -+ SET JNTERSECTD

UNION SET-UNION

U N I O N D SET-UNIOND

GET +

GET -+

GET +

J O I N +

J O I N +

PROJECT +

PROJECTD +

SELECT +

INDEXSCAN

FILESCAN

B INARYSEARCH

MERGE

NESTED-LOOP

PRO JECTALGO

PRO JECTALGO

SELECTALGO

Table 5.2: P hysical Operators and Implementat ion Rules

As we can see, there are logical operators (e.g., J O I N) that are implemented by more

t hat one physical operator (MERGE and NESTEDLOOP) . Xlso, the same physical opera-

tor (e.g., PRoJEcTALGO) may implement more than one logical operator (PRO JECT and

PROJECTD). It is also possible that a iogicai operator is not implemented by any physical

algorithm at all. In fact, we use this third feature considerably when extending RHODES

wit h the knowledge of how to optimize incremental expressions.

5.9 Physical Properties and Physical Property Deriva-
tion

Each expression in the algebra of algorithms has a number of physical properties associ-

ated vrith it. The physical properties of expressions include:

CHAPTER 5. THE RHODES DATABASE OPTIMIZER

a the cardinality of the relation that the physical expression cornputes;

a the size, in bytes, of each tuple in the relation:

r the set of physical attributes (each physical attribute having a name, a type. the

number of distinct values in the attribute domain, the minimum and maximum

value, and the size, in bytes, of the attribute);

a the attribute names the relation is sorted on, if any; and,

a a boolean variable specifying whether the relation contains duplicates or not.

For simplicity of the presentation, we omit the description of physical property deriva-

tions. Appendix A contains the derivation of the cardinality of a relation from the car-

dinality (as well as other information) of the inputs to the operator used to cornpute the

relation. Join selectivities t hat determine the cardinal; ty of J O I N and predicate selectiv-

ities that determine the cardinality of SELECT are also discussed in Appendix A.

Applicability Funct ions and Input Requirement s

For eacli algorithm of RHODES. there is a function that describes whether the algorithm

applies for a given logical operator? given certain physical properties t hat are requested

from the result of the algorithm. For example, for the join A MAL=BI B, if the requested

properties include sorted-ness on attribute -41 of the output relation, the MERGE algorithm

applies (because MERGE delivers the output sorted on Al) . However, if the requested

properties include sorted-ness on attribute A3 of the join, MERGE does not apply5.

In addition to the applicability functions, for each algorithm, there is a function that

specifies the required properties from the inputs of the algorithm. For example, for MERGE

to implement a given J O I N , each input to MERGE must be sorted on the corresponding

attribute of the join condition.

For simplicity of presentation, we do not describe the applicability and input require-

ments functions in any further detail.

'1n this case, the SORT enforcer applies, or the BESTEDLOOP algorithm may apply if the relation A is
already sorted on A3.

CHAPTER 5. THE RHODES DATABASE OPTIMIZER

5.11 Cost Mode1 and Cost Estimation

When optimizing a user's query, RHODES systematically estimates the cost of different

execution strategies and chooses the one with the lowest cost estirnate. In order to find

the least expensive plan, it performs an exhaustive search over al1 possible equivalent

expressions of the query and, for each such expression, al1 possible implementations of

Iogical operators by physical algorithms. estimating each one in turn. The cost that is

being rninimized is an abstract data type in Volcano, that we defined, in RHODES, as the

expected 110 in executing the query, i.e., the number of block transfers between memory

and disk. In general, RHODES does not account for cached pages, that is it estimates

the logical I/O in executing a query, not the physical 110. Memory size is taken into

account. Cashed pages are only taken into account when considering the cost of some

operations on base tables, such as duplicate elimination.

The estimation of the cost to apply each of RHODES'S algorithms is described in

Appendix B.

5.12 Extensions to RHODES

We extended the basic RHODES presented so far with a) view maintenance support, b)

view maintenance specific optimization and c) query rewrite using materialized views.

Next, we present each one of these extensions in more detail.

5.12.1 View Maintenance Support

We extended RHODES with the ability to decide, for each view, what the besb way

to evaluate the view's new value is, after some update to the database has occurred.

Also, if a view is to be maintained incrernentally, RHODES can decide which incremental

expression to use for view maintenance. Before presenting the extensions to RHODES

to support this, we should explain how we envision the use of RHODES during view

maintenance. We perform view maintenance at the commit point of a transaction that

updates the database. At this point, the state of the database has not yet changed and the

updates to the database are available through system-defined tables (the delta tables).

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 73

Also, the catalog of the DBMS (or some in-memory portion of it) contains information

and statistics about these delta tables. Then.

1. for each view maintained by the system, RHODES decides what the best way to

maintain the view is;

2. for each view that is maintained incrernentally, the DBMS computes the changes to

the view;

3. the DBMS merges these changes with the old materialized view;

4. the database updates are rnerged in the database;

5 . for each view that is not maintained incrernentally, the view's expression is re-

evaluated; and,

6. the updating transaction commits.

To support optimizatiori of view maintenance, the set of logical operators for RHODES

is extended with five new operators:

a NEW(V): the NEW logical operator takes a query expression I/ as its argument and

returns the value of the expression V under the database that results from incor-

porating any non-cornmitted updates into the current database. If no updates are

recorded in the catalog, the result of NEW(V) is the same as the value of V. How-

ever, if some updates have been recorded in the catalog, the result of NEW(V) is the

value that V will have once the updates commit.

a DELTAMINUS(V): the DELTAMINUS iogical operator takes a query expression V as its

argument and returns (exactly) the set of tuples that must be deleted from the old

value of V (as if V was materialized), when the database changes are merged wit h

the old database.

DELTA PLUS(^): the DELTAPLUS logical operator takes a query expression V as its

argument and returns (exactly) the set of tuples to be inserted into the old value

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 74

of V (as if V was materialized), when the database changes are merged with the

old database.

a OVERMINUS(V): the OVERMINUS logical operator takes a query expression V as its

argument and cet urns one over-est imat ion of the set of t uples to be deleted from the

value of V (as if V was materialized), when the database changes are merged with

the old database. The over-estimations computed are those defined in Chapter 4.

a OVERPLUS(~) : the OVERPLUS logical operator takes a query expression V as its

argument and returns one mer-estimation of the set of tuples to be deleted from the

value of V (as if V was materialized), when the database changes are rnerged with

the old database. The over-estimations computed are those defined in Chapter 4.

We syrnbolize each of DELTAMINUS, DELTAPLUS, OVERMINUS, and OVERPLUS logicai

operators with 6- , 6+, A- and A+, respectively. When supporting these new operators

in the optimizer, the optimizer is not only responsible for optimizing incrernental and

change propagation expressions for view maintenance, but also for generating the change

propagation expressions necessary for view maintenance. Supporting these new operators

in RHODES does not require any change in the physical algebra of the database system.

neither does it require special algorithms or specialized data structures to be built on

top of an existing DBMS. In fact, transformation rules are used in RHODES to expnnd

the definition of each of the new logical operators. Let us see what these transformation

rules look like:

The NEW operator:

There are three different ways to compute the new value of a query expression V:

by re-evaluating V; the transformation rules applied in this case are:

NEW(V)=NEW(A)ONEW(B), if V = A O B , O € { x , W , - , - ~ , U , U ~ , ~ , ~ ~ ~ }

NEW(V) = @(NEW(.4)), if V = @ (V) , <i E {GET,T,T~,O)

a by incremental computation with the use of the change propagation expressions of

V; the transformation rule applied in this case is:

CHAPTER 5. THE RHODES DATABASE OPTIMIZER

0 and, by incremental computation with the use of the expressions for the over-

estimations of the changes of V; the transformation rule applied in this case is:

The DELTAMINUS operator

There are two different ways to compute the incremental deletions of a query expression

v:

by using the non-simplified change propagation expression given by the transfor-

mation rule:

and, by using the simplified change propagation expression. In this case, there is

one transformation rule per logical operator that defines the incremental deletions

for the operator. Table 4.1 of Chapter 4 contains al1 of them.

The DELTAPLUS operator

There are two different ways to compute the incremental insertions of a query expression

v:

0 by using the non-simplified change propagation expression given by the transfor-

mation rule:

O and, by using the simplified change propagation expression. In this case, there is

one transformation rule per logical operator that defines the incremental deletions

for the operator. Table 4.2 of Chapter 4 contains al1 of them.

CHAPTER 5 . THE RHODES DATABASE OPTIMIZER

There is one transformation rule per logical operator that defines the over-estimation of

incremental deletions for the operator. Table 4.3 of Chapter 4 contains these transfor-

mations.

The OVERPLUS operator

There is one transformation rule per logical operator that defines the over-estimation of

incremental insertions for the operator. Table 4.4 of Chapter 4 contains these transfor-

mations.

5.12.2 View Maint enance Specific Opt imizat ion

In the previous section, we described what transformation rules are applied in order for

RHODES to decide, at the time of view maintenance, what the best way to maintain

a view is. If a view is to be maintained incrementally, RHODES determines the best

incremental query expression to use for view maintenance. Hoivever, as we showed in

Chapter 4, change propagation and incremental expressions are amenable to a number

of simplifications. Each one of the simplifications specified in Chapter d is expressed in

RHODES as a transformation rule.

In addition to the simplifications that we defined in Chapter 4, there are simplifi-

cations due to the fact that certain expressions during view maintenance evaluate to

empty. For example, if one database relation A is not updated during a transaction,

both its & (A) and b+(Aj are empty. Since change propagation expressions may evaluate

to empty, RHODES uses transformation rules governing the empty set. The empty set

conforms to the following rules:

@(@) = 0, for each @ E {a, A, ?rd, 6+, 6- , NEW};

0 a A = 0, for each O E {-, - d , X , W} ;

A Q 0 = A, for each @ E {u,-);

A @ ' = "kll attrs of A] (A) , for each @ E {ud, - d } ; and

CHAPTER 5 . THE RHODES DATABASE OPTIMIZER "-
I I

E (A) = 0 (or h C (A) = O) , for each database relation A that the catalog does not

contain statistics about its deletions (or its insertions). This is an assumption of

RHODES which expects the catalog (or some in memory portion of i t) to contain

information about the database changes.

5.12.3 Query Rewriting using Views

During the optimization of a query, RHODES examines the possibility of using already

materialized views, in order to speed-up the execution of the query. This optimization

has been recognized recently as one of the promising advantages of materialized views

[LMSS95, FRV961. There are two transformation rules that implement this idea:

a A O B = V , For each binary operator @ E { x , -: - d y U, ud, n, nd} . This trans-

formation rule is valid only if the query expression A a B mat chas the definition

of view V.

a @ (A) = V , for each unary operator a E {GET, T: rd, O } . This transformation rule

is valid only if the query expression a(A) matches the definition of view V .

The algorithm for checking if a query expression expr matches a view definition v

first checks t o see if the top operator of v is the same as the top operator of expr, and,

then, recursively applies the algorithm to each of the inputs of the expression and the

view .

Suppose two materialized views have been defined as V I : A B and v2 : B C

and suppose we are interested in evaluating t.he query expression A B BI C. During

the transformation of this query into its equivalent forms, al1 possible join orderings are

produced6. Since the subexpressions A CU B and B C match the definitions of the

views vi and vz, respectively, there are two additional equivalent forms for the sarne

query: vl W C and A v2, and RHODES would examine the possibility of using either

of these equivalent forms in order to generate an efficient plan for this three-way join.

 or simplicity of the presentation, we omit the join arguments here.

CI~APTER 5. THE RHODES DATABASE OPTIMIZER 78

Another possible rewriting of the same query that uses only the materialized views

is RIattrs of ~ w s w C I (~ l v2). This equivalent form of the query is not examined by the

current version of RHODES.

After having presented the design and functionality of the RHODES database query

optimizer, we introduce and describe the graphical browser that accompanies it.

5.13 The Browser

We use a general visualization tool [Noi96] to display the output of RHODES graphically.

The nodes in the graph of a plan visualization correspond to the database relations. the

intermediate results and the output relation of the execution plan. The edges in the

graph relate a node v with al1 nodes corresponding to relations oecessary to compute the

relation that corresponds to v.

Each node is labelled with the algorithm (physical operator) used to derive the relation

of the node. Database relations are accessed using file scans, binary search, or index

scans. Other relations are produced by executing one of (other) the physical operators

of RHODES. Each node in the visualization is also identified by an icon specifying the

type of the node. Figure .5.3 shows al1 the icons used by the browser and the physical

operator(s) to which they correspond.

Figure 5.3: The icons of the browser

CHAPTER 5. THE RHODES DATABASE OPTIMIZER

Textual representations of the generated plans of an optirnizer are rather difficult to

manage or understand, especially for relatively large plans where the textual description

may be dozens or even hundreds of pages long. Our graphical tool provides the database

administrator, the anticipated user of the browser, wi th qualitative and quantitative

understanding of the execution plan. It can be used to help understand the output of the

optimizer and to facilitate tuning of the database system for better performance. The

database administrator could, for example, modify some physical aspect of the database

environment and visually monitor its effect in the execution plans for queries of interest.

Dynamic Mapping

Our browser supports the technique of dynamic mapping [BarSZ, Noi96, \Var], which

permits the dynamic binding of the elements in the visualization (nodes and edges) into

visual properties. We use this technique to dynamically map the relative size of each

node into the estimated cardinality of the relation corresponding to the node. Nodes

that correspond to large relations, thus. appear larger in the visualization. We also map

the color of each node into the estimated cost to compute the relation of the node. Nodes

that are expensive to compute, thus, appear more red (hot) in the visualization. It has

been argued elsewherei that our ability to perceive is greatly facilitated by the use of

sucli graphic properties as color and size.

D ynamic Querying and Manipulation

Our browser supports a limited Form of querying, so that the database administrator can

better understand the output of the optimizer by selectively paying attention to only

parts of it. To support dynamic querying, each node being visualized has a number of

associated numeric attributes. These

O the estimated cardinality of the

rn the estimated size, in blocks, of

7See Noik's thesis [Noi96] for references.

are:

relation of the node;

t hat relation;

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 80

the estimated cost to compute the relation of the node from the relations of the

inputs (the node cost);

the total cost to compute the relation of the node (the subtree cost);

0 the size, in bytes, of records in the relation; and,

a boolean attribute describing whether the relation contains duplicates or not.

With each numeric attribute t here is an associated histogram representing the distri-

bution of values for this attribute. The range of these values is divided into a nurnber of

equal subranges. Each subrange corresponds to a histogram bar, the height of which is

proportional to the number of nodes for which the value of the corresponding attribute

lies in the associated subrange. Clicking over a node in the graph results in the highlight-

ing of the histogram bars corresponding to each numeric attribute for that node. The

actual values for these attributes appear at the bottom of the histogram. Brushing over

the histogram bars results in highlighting of the nodes in the graph having a value for

the corresponding numeric at tribute within the subrange that the histogram represents.

Clicking over a histogram results in hiding (or showing) the corresponding nodes in the

visualizat ion.

T hese techniques have also been discussed elsewhere [Noi96, S hn83, S hn9.11.

5.13.1 Visuai Explain Facility of DB2

The Visual Explain facility of DB2 provides a functionality sirnilar to that of our browser

[DBS]. However, the visual explain facility does not provide any form of dynamic querying

of the visualized output or any manipulation of the visualization. Color in Visual Explain

has a predefined meaning: each node of a certain type h a an associated (configurable)

color. However, color, as we use it in our browser, could be mapped to a number of

different attributes dynamically (the most common of which is the cost of the node but

it could be the type of the node).

CHAPTER 5. THE RHODES DATABASE OPTIMIZER

5.13.2 Examples of Plans Generated by RHODES

Join algorithms and index selection

Let us assume the following database relations, as in Section 4.4:

The relation PART contains information about parts. A portion of this information

is the name and retail price for the part. The relation P.4RTSUPP contains information

about supplied parts. Such information relates suppliers with the parts they supply as

well as the cost of each part from each supplier. Finally, the relation SUPPLIER contains

information about each supplier.

Now, suppose we are interested in evaluating the following SQL query:

select P-NAIClE. PSSUPPLYCOST

f rom PART, PA RTSUPP

where PPARTKEY = PSPARTKEY and

PSSUPPLYCOST < 100 and

P-RETAILPRICE > 120

This query requests the name and prices of al1 products that are being sold at a

price greater than 120 but for which the retail price is not more than 100. Suppose

that a secondary dense index has been defined on the FSSUPPLYCOST attribute of the

PARTSUPP relation. This index can be used to retrieve the tuples from P A R T S W P

with the specified supply cost. Also, suppose that no index has been defined on the

PBETAILPRICE attribute of the PART relation. Thus, this relation must be scanned

entirely before al1 the tuples that have the specified retail price are found. The f rom

clause of the query, together with the condition P-PA RTKEY = PSPA RTKEY, specify a

join on the two relations. RHODES examines al1 different join orderings (there are two)

and al1 different implementations of the join, in order to decide that, in this case, a rnerge

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 82

join algorit hm must be used. The merge algorit hm requires its inputs to be sorted before

it can be applied. The sort enforcer guarantees that the two relations to be joined are

sorted before being joined.

Figure 5.4 shows the visualized optimized execution plan generated by RHODES for

this query.

Join orderings

In the same database, let us now examine the query:

select *

f rom PART, PA RTSUPP, SUPPLIER

where P P A R T K E Y = PSPARTKEY and PSSUPPKEY = SSUPPKEY

The f rom clause of the query, toget her with the selection conditions, specify a 3-way

join among the three relations. The order of executing a series of joins niay have a

significant impact on the performance of queries. RHODES examines ail join orderings

and chooses the one with the lowest cost estimate. For this example, the generated join

ordering appears in Figure 5.5. In this example, we have also dynamically mapped the

thickness of each node to the estimated cardinality of the relation of the node and its

color to the estimated cost to compute the relation of the node. As we c m see from the

picture, the relation PARTSUPP is bigger than eitlier of the other relations. One merge

join and one nested-loops join are chosen in this execution plan. The merge join requires

both of its inputs to be sorted. A secondary dense index defined on the P P A RTKEY

of the PART relation is used to produce this relation sorted. The other relation is the

result of evaluating the join of PARTSUPP and SUPPLIER. There are two different ~ ~ a y s

to produce this relation as sorted. The first is to compute the join and then use the sort

enforcer. The other is to sort the first input of the nested-loops algorithm. If the first

input of nested-loops is sorted, the result of the join is d so sorted. In this particular

example, the size of the result of the join has as many tuples as the PARTSUPP relation,

and, therefore, it is better to sort the PARTSUPP relation instead of the result of its join

with SUPPLIER.

CHAPTER 5 . THE RHODES DATABASE OPTIMIZER 53

Reasoning about keys and duplicates

Suppose A(Al, A2, A3) and B(B1, B2) are two database relations. Let attribute Al be

the key of A and let attribute BI be the key of B. Suppose now that we are interested

in evaluating the following query:

select d i s t i n c t &. &

from A, B

where Al = B2 and > 1

The generated output of RHODES for this plan is shown in Figure 5.6. As before. the

from clause of the SQL query, together with the Al = B2 predicate condition, results in

a join between A and B.

This example demonstrates the use of keys and reasoning about duplicates in RHODES.

In the generated plan for this query, RHODES pushes the selection down and uses a file

scan with the predicate Al > 1. Since no index is defined on the Al attribute of A,

scanning the relation is necessary. Also, RHODES pushes the projection down and uses

two projections before joining A and B, one for each of the join inputs. Pushing the

projection inside the join operands has the desirable effect of reducing the sizes of the

join operands. Each tuple in a projection is smaller that a tuple in the original relation

and therefore many more tuples can fit into one memory page. Thus, the size of the

projection, in pages, is reduced. The cost estimation used by RHODES is such that the

size, in pages, of a join's inputs is the most dominant factor in the estimated cost for the

join.

In a similar spirit to pushing projection, RHODES pushes duplicate elimination too,

because duplicate elimination reduces the number of tuples in the operands. The pro-

jection on the A relation maintains the key of A and therefore no duplicate elimination

is necessary in this projection (redundant operator). The projection on the B relation,

however, does not maintain the key of B. In this case, duplicate elimination is enforced.

Now consider the operands of the join. The left operand has Ai as a key. The right

operand has B2 as a key. Therefore, {A1, Bz) is a key for the join. However, because

CHAPTER 5. THE RHODES DATABASE OPTIMIZER 34

the join condition equates these two attributes the keyset for the join can be simplified

to {{A*), {Bz}}. (See Chapter 4 for an algorithm to generate keys.) Either Al or B2

alone is sufficient t.o uniquely determine each tuple in the output of the join. Therefore.

the final projection, the one that maintains Ag, B2 does not contain duplicates and no

duplicate elimination operation is necessary.

View maintenance

Suppose a view V has been defined which must be maintained under deletions (bu t not

insertions).

V : PART PARTSUPP w SUPPLIER

To maintain the view, RHODES requires to sort the delta relations. External sort-

ing is not used for the database relations. If these relations need to be accessed in a

sorted manner, indices defined on t hem are used. instead. Figure 5.7 shows the RHODES

generated plan.

Chapter 6

In this chapter, we present some examples of change propagation queries that provide

experimental evidence about the validity of the claims we make in this dissertation.

RHODES is called to decide on the best change propagation queries to be used during

incremental view maintenance. From the generated RHODES plan, an SQL query is

produced which we executed in DB2 Parallel Edition on the TPC-D benchniark database.

6.1 Statingthe Questions

The questions t hat we are interested in addressing experimentally are the following:

1. Do different change propagation expressions for defining the incremental changes

to a view result in differences in the performance of computing these changes? Are

these performance differences big enough to justify our da im that an "intelligent"

component of the DBMS is needed to decide among the different choices?

2. Car. ;TC Jemonstrate experimentally that our optimization of change propagation

expressions in the presence of key constraints is a reasonable optimization?

3. Can we demonstrate experimentally that our optirnization of change propagation

expressions in the presence of foreign key references is a reasonable optimization?

4. Can we demonstrate experimentally that the cost of computing incremental changes

to a view may be about the same as the cost of view re-computation?

To address questions 1-3 above, we have designed three different sets of experiments.

one for each question. These experiments are conducted using the DB2 PE DBMS (DB2

Parallel Edition). To address question 4 we use the results of t hese same experiments in

addition to other experiments conducted using the RHODES optimizer.

6.2 Collecting Data: the Database

A11 experiments are run on the TPC-D database benchmark relations [TPC95]. In par-

ticular, we assume the following schema in the database, as in Section 4.4:

P: PART~PARTKEY, ...).

PS : PARTSUPP(PSPARTKEY! PSSUPPKEY, . . .).

s : SUPPLIER(SSUPPKEY, . . .).

The relation PART, abbreviated with P, records information about specific parts in

a decision support environment. The relation SUPPLIER, ahbreviated with S, records

information about suppliers of those parts. Finally, the relation PARTSUPP, abbreviated

with PS, relates suppliers with the parts that they supply. The distribution of values in

the attributes of each relation is uniform.

1 Relation Prirnary Key Index Type No. tuples No. pages

Table 6.1 : Information about the TPC-D relations

We store the three relations using the DB2 PE parallel edition. We have configured

the system so that it uses only one node in order to simulate a centralized database.

A node in a DB2 PE DBMS is one processor in the parailei database. By configuring

the systern to use only one node, al1 relations reside in a single node and only one node

participates in query evaluation. Thus, the resulting system behaves as a centralized

system. We use the TPC-D database with a scale factor of 0.125'. This means that

' ~ e use a scale factor because the TPC-D database could not fit in the rnemory we had available.

the sizes of each database relation is one eighth of the suggested size. Table 6.1 contains

information about some of the relations in the database such as primary keys, cardinality,

memory pages and indices. A primary index (denoted in the table with P) is defined on

the P-PARTKEY attribute of P and on the SSUPPKEY attribute of S. A dense secondary

index (ilenotec! with S) has been defined on each of the PSJARTKEY ana PSSUPPKEY of

the PS relation.

To answer questions 1-3 presented above, we use this database. Then, we conduct

a number of experiments and perform a number of measurements. Each experiment is

done independently. This means that before an experiment is conducted, the buffer of

the database is cleared of its contents. In this way, the result of an experiment does not

depend on the contents of the buffer and the hit-ratio resulting from previously cached

pages.

On top of this database. we define three views:

J 1 : select * from P , PS where PSARTKEY = PSSARTKEY

52 : select * from PS, S where PSSUPPKEY = SSUPPKEY

53 : select * from P , PS , S where PSARTKEY = PSSARTKEY and

PSSUPPKEY = SSUPPKEY

In each experiment, we specify an update to the underlying database and we moni-

tor propagation of the incremental changes to these views. We measure the logical and

physical I/O necessary to perform change propagation and, sometimes, view evaluation.

Logical I/O refers to the number of memory pages accessed during computation (inde-

pendently of whether these pages must be brought from the disk or are already cached

in main memory). Physical I/O refers to the number of memory pages transferred from

the disk into main memory during computation. To get the logical and physical I/O we

have used a monitor program that takes "snapshotsn of the state of the DBMS. The state

contains, among other things, counters that record the activity of the DBMS since the

last time a "reset" of the counters was issued.

6.3 Collecting Data: The Experiments

6.3.1 Using DifZerent Incremental Queries

These experiments compare the performance of different queries computing incremental

changes. We t ake different equivalent queries corresponding to comput ing the increment al

changes to a view and, for a number of database updates, we run these queries on DB2.

We, then. measure the results (logical and physical 110) of each experirnent and compare

these results.

Experiment 1.1: In this experiment, we delete one tuple from S, a portion of P ranging

from 0.1% to 10% of P, and al1 related PS lacts and we monitor the propagation of

incremental deietions to 53.

Figure 6.1: Experiment 1.1: Incremental deletions to 53 with the index on PSSARTKEY

We use two different queries to compute the incremental deletions: the first is to

propagate the database deletions through P PS and the second is to propagate the

database deletions through PS S. W e also compare the results with computing

J3 before the update. Figure 6.1 shows the results of this experiment. As we can

see, the performance of the incremental methods is mucli better than evaluating

the view initially. This is especially true when considering the physical 110, which

is the dominating factor affecting performance.

Figure 6.2: Experiment 1.2: Incremental deletions to 53 without the index on PSJARTKEY

The plan chosen by DB2 to compute 53 in this experiment is as Çollows: first the

join bet ween PS and S is performed by scanning the S relation and looking-up, using

the index on the PSSUPPKEY of PS, the corresponding tuples in PS (nested-loops

join). Then, for each tuple in the intermediate join, the corresponding tuples in

the P relotion are found (merge join). As we see, the index on PS-PARTKEY of PS is

not used during the evaluation.

Next, we repeat the same experiment, only in this case, we drop the index on the

PSJARTKEY attribute of PS.

Experiment 1.2: We use the same updates as before and monitor the propagation

of incremental deletions to 53 using the two difFerent ways described above. This

time, no index exists on the PS-PARTKEY attribute of P. Figure 6.2 shows the results.

Note that to compute J j in this and the previous experiment, the same amount of

logical and physical 110 is necessary (because the index we dropped is not used in

the evaluation of 53). As we see, the performance difference between choosirig to

propagate through P tû PS or through PS w S is rather big. In fact, to cornpute the

incremental changes through P w PS the time2 ranges from 54 sec to 3 min, while

through PS w S the time ranges from 26 min to 28 min. Computing 53 requires

approximately 34 min.

'This refers to real time, not cpu or system time.

Experiment 1.3: We add a portion of P and related PS facts as well as one new supplier.

We monitor propagation of incremental insertions to 53. Figure 6.3 shows the

results. Al1 defined indices are available during evaluation. Note that, in contrast

to propagating the deletions, the two methods of propagating insertions have a

slight difFerence in performance.

Figure 6.3: Experiment 1.3: Incrernental insertions to 53 (due to insertions only)

Figure 6.4: Experiment 1.4: Incremental insertions to 53 (due to insertions and deletions)

Experiment 1.4: We delete a portion of P, one tuple from s and al1 related PS facts.

We also add a portion to P, one tuple to S, and related PS facts. We monitor

propagation of incremental insertions to 53. Figure 6.4 shows the results. As we

see, one incremental method is better than view evaluation but the other is not. In

fact, the time to compute the incremental insertions through P PS ranges from

13.5 min to 14 min while to compute them through PS PI S the tirne ranges from

59 min to 54 min. Note that when considering the logical I/O. view computation

seems to outperform both change propagation methods. However, when considering

the physical 110 (which is more iepresentative of the actual time a query takes to

execute) propagation through PS P is, in fact, a lot better.

In this set of experiments, we used optimized queries to propagate incremental changes

through P DU PS and through PS WJ S. The only optimization that was not applied during

t hese experiments is the optimization due to foreign key references. As we will see later

on, this optimization greatly iniproves the performance of change propagation.

6.3.2 Using the Key Constraint Optimizations

In this section, we present examples where we compare the optimized change propagation

queries (where al1 optimizations except the foreign key reference opt imization are active)

to the non-optimized change propagation queries (the ones derived by the method of

Griffin and Libkin [GL95]). These experiments demonstrate the benefit of using the

new key constraint optimizations proposed in the thesis in Section 4.2. We take the non-

optimized and the optimized change propagation queries and we run these queries or1 DB2.

Then, we measure the logical and physical 110 necessary to compute the incremental

changes and we compare t h e results.

Experiment 2.1: We add and delete a portion of P ranging from 0.1% to 10% of P,

we add and delete one tuple from S and we add and delete related PS facts, We

monitor propagation of incremental insertions to 53. Figure 6.5 shows the results.

We see that the proposed optimization reduces the physical I/O necessary to about

half the 110 needed to compute the original join.

Experiment 2.2: We use the same update as before but we measure the propagation

of incremental deletions to join 53. Figure 6.6 shows the results.

Figure 6.5: Experirnent 2.1: Incremental insertions to 53 with and without key optimiza-

t ion

In the above two examples, the optimized queries that maintain the view coincide

with the over-estimations of the changes for t hese views. This shows t hat using over-

estimations of changes in place of their actual changes has the potential to improve the

performance of change propagation.

Figure 6.6: Experiment 2.2: Incremental deletions to 53 with and wit hout key optimiza-

t ion

6.3.3 Using the Foreign Key Constraint Optimizations

The experiments presented in this section demonstrate the benefit of using the new foreign

key constraint optimizations proposed in the thesis in Section 4.3. We take a number of

updates and monitor propagating these updates to each of the three defined views J I ,

J2 and 53. In this database scherna, there is a foreign key reference from PSSARTKEY of

PS to PSARTKEY of P and one foreign key reference from PSSUPPKEY of PS to SSUPPKEY

of S .

We use two different ways to propagate the updates: one uses d l available optimiza-

tions except the optimization due to the foreign key references and the other also uses

this additional optimization. In both cases: we use the RHODES optimizer to optimize

the espressions for cornputing the incremental updates. First. we use RHODES without

declaring the foreign key references to derive an execution plan to propagate the updates.

From this plan, we construct an SQL query and execute it in DB2. Then, we define in

RHODES the Foreign key reference and optimize the change propagation queries again.

From the execution plan that RHODES generates, we derive another SQL query which,

again, we execute in DB2. We compare the results. In the figures that follow. "without

fi opt" means that al1 optimizations but the one due to the foreign key references are

on, while "with fk opt" refers to al1 optimizations being active.

mthoul fk opt -
m f k o p t - P mthout fk opt -

m*fkopt - 1

Figure 6.7: Experiment 3.1: Incremental deletions to J i with and without foreign key

optimizat ion

Experiment 3.1: We delete a portion of P, one tuple from S and al1 related PS facts and

monitor the changes to JI. Figure 6.7 shows the results. As we seeo the additional

optimization greatly improves the performance of the incremental rnethod. The

optimized query due to the foreign key is 6-(PS) W P.

6000 v . 1 r ~ I l , , , , , , , l , , l +

mmut mmfkopt fk opt - -

Figure 6.8: Experiment 3.2: Incremental deletions to J2 with and without foreign key

op t imization

Experiment 3.2: We use the same updates as before, only now we look at the propa-

gation of incremental changes to 52. Figure 6.S shows the results. The optimized

query is 6-(PS) w S. Note the difference between this experiment and the previous

one, where we had a very smooth behavior of both the optimized and the non-

optimized method. We were not able to satisfactorily explain the irregularities in

the graphs. The execution plan for both queries remain the same throughout the

example (for al1 updates) and the join selectivity between the changes to PS and S

is constant. Also, one may be wondering why the cost is so high for propagating

changes to this join since only one tuple changes from S (which in this case joins

with about 80 tuples from PS). With no index on the changes of PS, scanning the

changes to PS is the most important factor that affects the performance. Finally.

note that the benefit of using the foreign key optimization in this case is relatively

smaller. This is mainly because the non-optimized version for this example takes

rnuch less time to execute than the non-optimized version in the previous example.

Experiment 3.3: We use the same updates as before. but we monitor propagation

of incremental changes to 53. The optimized query due to the foreign keys is

P w 6-(Ps) BI S. Figure 6.9 shows the results. As we see, in this case the plots are

smooth again. One can think of these plots as approximately the s u m of the plots

presented for J 1 and 52.

Figure 6.9: Experiment 3.3: Incremental deletions t o 53 with and without foreigc key

op t imizat ion

Figure 6.10: Experiment 3.4: Incremental insertions to Ji when both P and PS get

insertions, with and wit hout foreign key optimization

Experiment 3.4: We add a portion to the P relation ranging from 0.1% to 10% of P

and related PS facts. We monitor propagating the incremental insertions to JI.

Figure 6.10 shows the results. The non-optimized change propagation query is

6 + (~) W PS u P W P (P s) U P (P) hC(PS). The optimized query is 6+(PS) M

P u 6+ (PS) 6 + (~) . As we see the only difference between the two queries is the

extra factor of 6+(P) PS which evaluates to empty. The DB2 system was able

to understand this by simply accessing the index on PSSARTKEY of PS without

accessing the PS data a t all. Thus, the optimized and the non-optimized queries

have almost the same run time performance. However, this is because the two

relations change by insertions only. Next, we repeat the same experiment. only in

this case we allow deletions as well as insertions to the ttvo relations.

Experiment 3.5: We delete a portion to the P relation and add another one. Vie also

delete al1 related PS tuples and add PS Eacts. We monitor the incremental insertions

into Ji. Figure 6.1 1 shows the results.

Figure 6.11: Experiment 3.5: Incremental insertions to J1 when both P and PS get

insertions and deletions, with and without foreign key optimization

The optimized query for this case is the same as before (Experiment 3.4). The non-

optimized query is 6 + (~) W (PS-6-(PS))U(P-6-(P)) W P S U ~ + (P) W ~ + (P s) . As one

can see, DB2 was not able to efficiently evaluate the set differences required in this

query. The performance difference between the optimized and the non-optimized

change propagation queries is very big.

6.- Other Experiments

ALI the examples of the previous sections involved views computed using joins on the

database relations. This section contains a few more exampies involving other operators

in the algebra. For these experiments, the logical I/O necessary to compute the changes

to the views is estimated using the RHODES optimizer.

6.4.1 Project Distinct

Let us consider two views defined as

V1 : select distinct PSSARTKEY from PS

V2 : select distinct PSSUPPKEY from PS

Figure 6.12 shows the estimated I/O necessary to compute V1 and V2 originally (shown

with the line "original" in the charts) as well as the estimated 1 / 0 to compute their

incremental delet ions (shown as "deletions") and insert ions (shown as "insertions") mhen

PS is updated. The sizes of the updates range from 0.1% to 10% of PS. When ive Say

updated we mean t hat some portion of PS is deleted from PS, and another portion, of the

same size, is added to PS. As we see, even for very small updates the 1/0 necessary to

propagate these changes to the views is rather high compared to computing the views.

Figure 6.12: Incremental changes to V1 and V2

CHAPTER 6 . EXPERIMENTS

6.4.2 Set Difference

Let us consider a view defined as

V3 : select PPARTKEY from P except ail select PSPARTKEY from PS

Figure 6.13: Incremental changes to V 3 due to deletions from P (first figure) and due to

insertions to P (second figure)

Figure 6.14: Incremental changes to V 3 due to deletions from PS (first figure) and due to

insertions to PS (second figure)

Figure 6.13 shows the estimated logical I/O of propagating incrernental changes to V3

when tuples are either only deleted from or only inserted to P. As we see in these figures,

the cost of propagating the deletions from P is very iow while the cost of propagating

the insertions to P is rather high and comparable to the cost of computing V3. Exactly

the opposite bappens when, instead of P, it is the relation PS that accepts the changes.

Figure 6.14 shows the results in this case. Note however that propagating insertions in

this case is slightly more costiy ihor, pronrigating deletions in the previous case.

Finally, Figure 6.15 show two more experiments. T h e first plot in the figure shows

what logical I/O is necessary to compute incremental changes when parts of both P

and PS are deleted. The second plot shows what Iogical 110 is necessary to compute

incremental changes when al1 relations incur a number of deletions and insertions? that is

they simultaneously change by both insertions and deletions. Note that computing the

incremental delet ions is rat her beneficial. But computing the incremental insert ions is

comparable to cornputing the view from scratch.

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 tO
-Pamtage of deletions fmm P and PS-

0.t020.30.40.50.60.70.80.9 1 2 3 4 5 6 7 8 9 10
-Perraitaga of ripdaim to P and PS-

Figure 6.15: Incremental changes to V3 due to deletions from both P and PS (first figure)

and due to updates to both P and PS (second figure)

6.5 Making Inferences

The examples presented so far demonstrate a number of interesting points. First, they

show that it is indeed possible for different change propagation strategies to result in

significant performance differences. Second, t hey show t hat having indices defined on

the database data is very helpful during change propagation, even in the case where

these indices do not participate in view creation (see example 1.2). Although, this is not

a surprising result, it is still interesting to see how the performance of change propagation

is affected by the creation and use of the index.

We can see that in most cases examined here. propagating deletions seems to be

less time consuming than propagating insertions. For database data with keys (such

as the ones used here), the deletions can be propagated independently of the database

insertions (see Tables 4.3 and 4.4). However, the same is not true for insertions. where

access and manipulation of the deletions is also necessary in order to correctly propagate

the insert ions.

Another interesting point that we can make from these experiments is that the foreign

key optirnizations greatly improve the performance of change propagation and, thus?

of view maintenance. As these optimizations are generally applicable only to certain

change propagation expressions but not to others (see Section 1.3 for an example), our

clairn that "an intelligent component of the DBMS, such as the query optirnizero should

be responsible for the generation as well as the optimization of incremental and change

propagation queries" is strongly supported by the results of t hese experiments.

Looking a t the resiilts of these experiments. rve can also see that even For small up-

dates. where relations change by no more than 10% of their original sizes, the performance

of change propagation may be comparable to the performance of view computation. In-

cremental view maintenance involves the computation of both insertions and delet ions

before incrernental changes can be incorporated into the old values of the views. If one

adds the cost to compute both insertions and deletions and the cost of incorporating

these insertions and deletions to the old value of the view? one can see that it is not

at al1 clear that incremental view maintenance is going to be always better than view

re-evaluation, but wins greatly in many cases.

6.6 Validation of RHODES

The examples of this chapter demonstrate that our proposed optimizations have the

potential to improve the performance of incremental view maintenance and change prop-

agation. This is especially true for the optimizations due to the foreign key references.

The optirnized queries that we ran on DB2 were generated using the ILHODES opti-

mizer. RHODES was invoked, for each experiment in question. to chose and optimize the

change propagation queries of the experirnent. From the plan produced by RHODES, an

SQL query was generated corresponding to the change propagation expression chosen by

RHODES for the view of the experiment. The non-optimized queries were generated by

applying the generation algorithm of Griffin and Libkin [GL95] (by hand). This algo-

rithm is described in Section 3.4.1. The experiments of this chapter. thus. provide an

indication that the optimizations that RHODES is capable of executing are very useful.

To further validate the basic RHODES optimizer, we can examine and compare the

execution plans generated by RHODES and the DB2 optimizer, for each of the three views

J 1, 52 and 53. The Dl32 output is generated by the dynexpln command of DB2.

6.6.1 Execution Plans for Ji

Figure 6.16 shows the plans chosen by RHODES and DB2 for the view J i .

Both RHODES and the DB2 optimizer chose the same join algorithm to implement 31.

RHODES knows that the relation P is sorted on PJARTKEY (because a primary index has

been defined on it). To retrieve the tuples from Pl RHODES reasons that no (external)

sorting is necessary. A simple relation scan is sufficient to generate the tuples in a sorted

order. DB2, however, sorts the P tuples before further processing.

However, there is a second difference between the two plans. It is in how the PS

relation is accessed. RHODES retrieves the tuples of PS sorted using the secondary dense

index because it thinks that sorting such a big relation is rather expensive. DB2 instead

sorts the relation using external sorting (we know that this relation is not sorted in

memory bccause of the "not piped" keyword that appears in the access to PS in the Dl32

plan, which means that insufficient memory exists during execution).

The data for this example were created in such a way that the PS relation is in

fact sorted according to the PSSARTKEY. It seems that the DB2 optimizer was able to

recognize this fact, while RHODES could not.

RHODES estimates that the logical I/O to compute J 1 is 154,558. The actual logical

I f 0 is 135,013. The actual physical I/O is only 9,972. We believe that the physical 110

is so low because the sorting of PS on PSPARTKEY (estimated to be rather expensive) is

in fact very fast because the data is already sorted on this attribute.

6.6.2 Execution Plans for 52

Figure 6.17 shows the plans chosen by RHODES and DB2 for the view 32.

For this view, the two execution plans chosen by the two optimizers are identical. A

nested loops join algorithm is chosen to perform the necessary join. A11 tuples of the

S relation are scanned and? for each one of them, the corresponding tuples in the ?S

relation are found by using the index on the PSSUPPKEY.

RHODES estimates that the logical I/O to compute J2 is 150,641. The actual logical

[/ O is 101,278. The actual physical 110 is 101,260. We believe that the physical I/O is

so high, in this case, because PS is not clustered on PSSUPPKEY and accessing each PS

tuple (and ive need to access thern all) results in one new page 110.

6.6.3 Execution Plans for 53

Figure 6.18 shows the plans chosen by RHODES and DB2 for the view 33.

RHODES chooses the join ordering (PS w S) w P while the DB2 optimizer chooses

(S W PS) P. Note that the join between PS and S has a different ordering in the two

plans. Both RHODES and the DB2 choose the same join algorithms to execute these

joins. A nested loops join algorithm is used to implement the join between S and FS and

a rnerge join algorithm is used to implement the join between this intermediate result

and P.

RHODES reasons that since a primary key index has been defined on the P relation,

this relation is already sorted on the key attribute PPARTKEY and no (external) sorting

is necessary. The DB2 optimizer scans the P relation and creates a sorted intermediate

table holding the tuples of the P relation sorted.

Also, let us cal1 1 the join between PS and S. The merge algorithm to implement

the join between 1 and P requires I to be sorted on PSPARTKEY and P to be sorted on

PPARTKEY. There are two different ways to sort I on the PSPARTKEY attribute and the

two plans differ on how they deliver 1 sorted.

The way chosen by the DB2 optimizer is to compute the join I first and, then, to

sort 1 on PSPARTKEY. Because of the referential integrity, however, every tuple in the

PS relation joins with a tuple from the S relation and the join 1 has as many tuples as

the PS relation has. The difference is that the size of 1 in bytes is much bigger that the

size of PS in bytes because each 1 tuple also contains the supplier information. So, why

should we sort 1 and not sort PS instead?

RHODES chooses to sort the PS relation before using the nested loops algorithm with

S. If a nested loops algorithm is performed the output of the nested loops algorithm

is sorted on whatever attribute the first input is sorted on. To retrieve PS sorted on

PSSUPPKEY, the secondary dense index defined on it is used.

There is also another reason why t his is a bet ter plan. Scanning the S relation first and

then using the index on PSSUPPKEY results in finding for each S tuple al1 corresponding

PS tuples. But al1 Ps tuples must be accessed. Since the PS relation is not clustercd on

the PSSUPPKEY attribute, finding the PS tuples requires as many page I /07s as tuples in

PS approximately. Accessing the PS relation using the index defined on PSSUPPKEY ais0

results in as many page I/O's as tuples in PS, but it completely saves the cost of sorting

1.

RHODES estimates that the logical I/O to compute 53 is 353,662. The actual logical

1/0 is 345,099. The actual physical I/O is 122,194. Table 6.2 summarizes the estimated

I/O from both RHODES and DB2 for al1 three execution pians.

Table 6.2: Logical and physical I/O

View

J 1 :

J2 :

RHODES I/O

154,558

150,641

DB2 Log I/O

135,013

101,278

DB2 Phys I/O

9,973

101, 260

SELECT
FROhI PART. PARTSUPP
WHERE PJ'ARTKEY = P S S A R T K E Y

Coordinator Subsection:
Distribute Subrectian # l

Directcd to Single Nodc
Partition h iap ID = 1. Nodegroup = IBMDEFAULTGRGUP, #Nodes = 1

Accesr Table Queue ID = q l #Columnir = 14

Subrection #1:
Access Table Name = V1STA.PARTSUPP ID = 23 #Columnr = 5

Scan Direction = Forward
Relation Scan
Lock Intent Share
Sargable Predicate(s)

#Predicatcs = 1
Create/Insert Into Sorted Tcmp Table fD = t I

Sort #Columnd = 1
Not Piped

Sorted Temp Table Completion ID = i l

Accerr Table Name = VISTA.PART ID r 21 #CoIumna = 9
Scan Direction = Forword
Relotion Scan
Lock Intent Shsre
Sargsble Predicate(6)

#Predicater = 1
Creatc/Inrert Into Sorted Temp Table ID = 12

Sort #Columnb = 1
Tiped

Sorred Temp Table Completion ID = t2

Access Temp Table ID = t2 #Colurnns = 9
Scan Direction = Forward
Relation Scan

Merge Join
Join Straicgy: Collocatcd

Acce~a Temp Table ID = t I #Columns = 5
Scan Direction = Forward
Relation Scan
Create/Inserr Into Table Queue ID = ql,

Figure 6.16: Execution plans for J1 chosen by RHODES and DB2

SQL Strterncnt:
SELECT '
FROM PARTSUPP. SUPPLIER
WHERE P 3 S U P P K E Y = S S U P P K E Y

Coordinator Suboection:
Distribute Subsection #l

Directed t o Single Node
Partition M a p ID = 1, Nodegroup = IBMDEFAULTGROUP. #Nodes = 1

Access Table Queue ID = q i #Columnr = 12

Subsection #l:
Accesr Table Nsme = VISTA.SUPPLIER ID = 22 #Columns = T

Scrn Direction = Forward
Rclation Scan
Lock Intent S h r r e

Xested Loop Join
Join Strategy: Collocated
Access Table Nome = VISTA.PARTSUPP ID = 2 3 #Colurnns = 5

Scsn Direction = Forward
Index Scsn: Narne = V1STA.PSSUPPKEYIND ID = 2 #Key Columnr = 1
Lock Intent Share

Creote/Inaert Into Table Q u e u e ID = ql . Broadcast

Figure 6.17: Execution plan for J2 chosen by RHODES and DB2

SELECT '
FROM PART. PARTSL'PP, SUPPLIER
WHERE P S S A R T K E Y = P S A R T K E Y AND P S S U P P K E Y = S S U P P K E Y

Coordinator Subrecrion:
Dir t r ibute S u b ~ e c i i o n # 1
Directed to Single Nodc
Parti t ion Map ID = 1. Nodegroup = IBMDEFAULTGROUP, #Nodes = 1
Acceis Table Queue ID = q l #Calurnns = 21

l u b r e c t i o n #1:
Access Table Name = VISTA.SUPPLIER ID = 22 #Colurnnr = 7

Scan Direction = Forward
Relation %an
Lock Intent Share

Nerted Loop Join
Join Strategy: Collocated
Accesr Table N i m e = VISTA.PARTSUPP ID = 2 3 #Colurnna = 5

Scan Direction = Forwird
Index Scan: Narne = VIBTA.PSSUPPKEY1ND ID = 2 #Key Columns = 1
Lock Intent Share
SrrgabIe Predic i te (s)

#Predicatea = 1
Creatc/Insert Into Sorted T e m p Table ID = i l

Sort #Columns = 1
Not Piped

Sorted Ternp Tsblc Completion ID = t l
Accesr Table Narne = VISTA.PART ID = 21 # C o l u m n ~ = 9

Scan Direction = Forward
Relation Scrn
Lock Intent Share
S u g a b l e Predicate(s)

#Predic;ltes = 1
Create/Inrert Into Sorted T e m p Table ID = t 2

Sort #Colurnns = 1
Piped

Sorred Tcmp Table Compleiion ID = t2
Xccess Trmp Table ID = t 2 #Columni = 9

Scan Dircction = Forward
Relation Scan

Merge Join
Jc in Jtrategy: Collocated
A C C ~ J ~ T e m p Table ID = t l #Columns = 12

Scan Direction = Forward
ReIation Scan

Create/Insert Into Table Queue ID = q l

Figure 6.18: Execution plan for 53 chosen by RHODES and DB2

Chapter 7

Conclusions

This chapter concludes the dissertation with a presentation of the research contributions

along with a discussion on the limitations of the approach and an outline for further

research. This chapter also includes a discussion of practicality and limitations of mate-

rialized views.

7.1 Research Contributions

One primary contribution of our thesis is that we provide a different perspective to

address view maintenance and, consequently, change propagation. We can summarize

t his perspective wi t h:

"both the choice of incremental view maintenance versus non-incremental

view maintenance as well as the choice of an appropriate propagation strategy

are best left to the database query optimizer to make."

Another primary contribution is that we provide a repertoire of original optimizations

specific to incremental view maintenance and change propagation.

In particular:

1. In this dissertation, we experimentally demonstrate that the performance of in-

cremental view maintenance depends on the physical aspects of the underlying

database management system, such as the availability of index structures, the sizes

of the relations involved, as well as the sizes of the database updates. For this rea-

son, we argue that incremental maintenance strategies should not be adopted by

a dat abase system wi t hout first taking t hese system propert ies into considerat ion.

CVe also argue that the database query optimizer is a reasonable component of the

database system to decide, at the point of view maintenance, whether a view is

to be maintained incrementally or not, because the optimizer has knowledge of.

and access to, al1 of the parameters that may affect this choice. To the best of our

knowledge, this is the first work that does not commit to the a priori usage of incre-

mental view maintenance due to assuming t hat in "typical" situations incremental

view maintenance is very efficient.

2. We demonstrate how one can take an algorithm for change propagation and incre-

mental view maintenance, such as the one proposed by Griffin and Lipkin [GL95],

and incorporate it into a database query optimizer. We have built the RHODES

relational query optirnizer that supports both change propagation and incremental

view maintenance. Our approach is to see view maintenance as an optimization

problem that is best left to the database query optimizer to make. Our approach

does not require significant changes in the DBMS, other than the proposed extension

to the query optimizer and some bookkeeping about the database updates (which

is necessary in any incremental maintenance technique). Therefore, using our ap-

proach, no additional software must be written, and no special purpose evaluation

component must be integrated into the DBMS'.

3. Incorporating change propagation and view maintenance into the qucry optimizer

allows the optimizer to be responsible for the generation of the queries to be exe-

cuted in order to support change propagation or incremental view maintenance. In

incremental view maintenance, for example, there may be more than one different

strategy to maintain a view increment ally. Choosing among the different strategies

is not an easy task and cannot always be done independently of the system aspects

of the database.

lRHODES has not been integrated into an existing DBMS; our daim is that the functionality
supported by RHODES can easily be incorporated into any existing optimizer.

4. Incorporating the generation of change propagation and view maintenance into

the query optimizer also allows the query optimizer to use, in addition to tradi-

tional optimizations, incrernental maintenance specific optimizations in order to

find the best possible way to maintain a view. A reperioire of maintenance-specific

optirnizations are provided in the thesis. These proposed opt iminations are also

validated experimentally. For example, wheri the updates affect only part of the

database, some view maintenance expressions may evaluate to empty and the opti-

mizer may be able to recognize this in order to avoid extra computation involving

the database? and, thus, to decide that incremental view maintenance is more effi-

cient t han re-evaluation.

Apart from the above contributions, we also make two secondary contributions:

1. The research of this dissertation bas lead to the irnplementation of an extensible

relational query optimizer. The design of the query optimizer is such that it can

be extended into, for example, a query optimizer for a parallel database rather

easily [Zi196]. Another novel feature of RHODES is that it considers the alternative

to use already materialized views in order to optimize the execution of general

queries, which has recentiy been recognized as a potential for query optimization

[LMSS95, FRVSG] .

2. Textual representations of the generated plans of a query optimizer are rather dif-

ficult to manage and understand, especially for relutively large plans where t h e

textual description of the plan may be hundreds of pages long. The query plan

generated by RHODES is supplied to a plan visualization tool generated by ap-

propriately configuring a general visualization tool for graphical presentation of

structured information [NoiSG]. The browser allows us to view the chosen plan

for any given conventional or incrernenta query and to view details of the plan,

including statistics, access structures, and so on. This functionality is similar to

DB2's visuai expiain facility [DBZ].

Next we describe some of the limitations of our approach.

7.2 Limitations

In this thesis, we showed how one cm take their favorite algorithm for incremental view

maintenance and incorporate it into the database query optimizer. This allows the query

optimizer to be responsible for deciding whether a view is to be maintained incrernentally

as well as which change propagation expressions to use to compute the incremental

changes. As a proof of concept that it is easy to extend an optimizer to support this.

we have built the RHODES database optimizer that supports both incremental view

maintenance and change propagation. The implementation of RHODES is such that each

view is examined independently of the other views. That is, if the views depend on

each other, RHODES does net try to find the best way to maintain the set of views.

LVe consider tliis as a major disadvantage of our work. However, we also consider it an

implementation problern. I t is possible to extend RHODES in order to optimize the set

of available views in some topological ordering. Shen, RHODES can use the fact that

some of these views could have already been updated at the time views that depend on

i t are examined by it.

Another limitation of Our technique is the increase in time and system resource usage

during view maintenance due to optimization. Many query expressions are examined

for the maintenance of each view, and, if there are a lot of views to be maintainect, this

may result in significant performance degradation. The view maintenance optimization

time and resource consumption is influenced by the complexity of each view expression,

especially by the number of joins and subqueries the view expressions contain. Ideally, the

optimizer could be configured to use default view maintenance expressions (obtained at

view compilation time or at the first time view maintenance is performed) for views that

require short time to be computed. Decision support queries or end-of-the-month queries,

however, are good exarnples of complex queries, where the increase in the optimization

time may not affect the overall performance of the system very much.

All experiments conducted to support our thesis were on data with uniform distri-

butions. We consider this as a limitation of our thesis, since it is believed that uniform

distribution are not very natural. It would be interesting to see how the performance

results would be affected under different distribut ions of data values.

The impact on the overall performance of the database systern is a limitation of view

maintenance, in general. both incremental and not. View maintenance a t the end of

each updating transaction slows down transactions. It is an open problem to determine

how view maintenance and the overall performance of the database system are related.

We believe that it would probably depend on each application whether the performance

impact of materialized views is beneficial for the application or not.

7.3 Discussion and Open Problems

\Ne conclude this dissertation with a discussion on the practicality of materialized views

dong with a discussion of some open problems.

Almost every commercial database system supports views (Oracle, Sybase, DB2. etc.).

Materialized views exist mostly during the execution of a single query (in the form of

materialized intermediate results) but are destroyed right after the cornpletion of the

query. Oracle is now implernenting materialized views and incremental view mainte-

nance support. Active database systems, such as those described by Widom and Ceri

[WC96], can support materialized views but it is (mostly) up to the user to specify how

view maintenance is realized by specifying appropriate active rules in the system's rule

language. Among t hose systems supporting materialized views, only the St arburst sys-

tern [HCL+SO, Wid961 has automatically generated active rules for the views' incremen-

ta1 maintenance. The ARIEL system [HBHe95. Han961 supports automatic incremental

maintenance of (certain) materialized views by exploiting specialized data structures used

by the system.

According to representatives of major database cornpanies a t the workshop on Ma-

terialized Views at the SIGMOD '96 conference, most database vendors are considering

incorporating materialized views into their products because of the demand for materi-

alized views by new applications such as data replication, decision support, data mining,

and so on. The requirements set by the vendors are that materialized views work well

with the other components of the database system, that they do not have a negative

effect on the overall performance of the system, and that they be used for optimization

of general queries. Domain specific knowledge of each application will probably be used

to justify the use of materialized views.

.4t the SIGMOD '96 workshop on Views, there was a debate on whether materialized

views should be part of the SQL-3 standard. This would of course mean that al1 database

products would support materialized views and perhaps their incremental maintenance.

The majority of participants agreed that materialized views, like B-trees, are optimization

techniques and should not be part of the standard. Others hoped that they will soon

becorne part of the standard because of their potential for optimization.

There are some problems associated with materialized views and these must be solved

or appropriately addressed before materialized views becorne part of commercial database

products. The maintenance of materialized views, for example, slows down update trans-

actions, reduces query throughput and interferes with concurrency control. Materialized

views require more disk space and, sometimes, special algorithms and data structures.

Other problems associated with materialized views is what views to materialize, how

to store these views as aeli as how to keep them consistent with the database, and, as

discussed above, how to do a11 this without affecting the performance of the rest of the

database system.

In the current state of incremental view maintenance research, there seems to be an

over-formulation of how to do incremental view maintenance: there are too many pro-

posed algorithms on how to do incremental view maintenance for a numher of different

data models. What seems to be missing, though, is a thorough evaluation of the problems

discussed above and implementation-specific proposals of how to incorporate materialized

views and their incremental view maintenance into a database system without affecting

performance unacceptably. Finally, database query optimizers must be extended to de-

tect and use materialized views automatically, as they do with %-trees and join indices,

for instance, which also need to be consistent with respect to the database.

Bibliography

[ABWSg] K. R. Apt, H. Blair' and A. Walker. Towards a Theory of Declarative

Knowledge. In J. Minlier, editor, Foundations o j Deductive Databases and

Logic Programnisg. Morgan Kaufrnann, 1988.

[AISNSO] G. Ausiello, G. Italiano, A.M. S paccamela, and U. Nanni. Incremental

Algorithm for Minimal Length. In 1st Annual ACM-SIAM Symposium on

Discrete iilgorithms, pages 12-21, 1990.

[Al b9 11 J. Albert. Algebraic Properties of Bag Data Types. In 17th International

Conjerence on V e r y Large Databases, pages 21 1-219. 1991.

(Ana961 T.K. Anand. Incremental Maintenance of Views in Database Systems.

Master's thesis, Department of Cornputer Science, University of Toronto.

1996.

[AV95] T.K. Anand and D. Vista. Incremental Query Evaluation for Programs

wit h Duplicate Semantics. Unpublished Manuscript, 1995.

[BA931 D. Barbara and R. Alonso. Answering Continuous Queries in General

Environments. Technical report, Matsushita Inforrnat ion Technology Lab-

oratory, 1993.

[Ban851 F. Bancilhon. Naive Evaluation of Recursively Defined Relations. In

M.L. Brodie and J. Mylopoulos, editors, On Ihowledge Base Manage-

ment Systems: Integrating Artificial Intelligence and Database Technolo-

gies. S pringer-Verlag, 1985.

D. Bardon. Management of Color Usage in Dynamic Mapping Envi-

ronrnents: Balancing Semantics, Visual Ordering and Discernability. In

T. Catarci, M.F. Costabile, and S. Levialdi, editors, Proc. of A dvanced

C'isual Interfaces 1992, volume 36 of Series in Cornputer Science, pages

50-67. World Scientific, 1992.

O .P. Bunernan and E. Ii. Clemons. Efficient ly Monitoring Relat ional

Databases. ACM Transactions on Data Base Systems, 4(3):368-352. 1949.

J.A. Blakeley, N. Coburn, and P-A. Larson. Updating Derived Rela-

tions: Detecting Irrelevant and Autonornously Comp~t~ab l e Updates. ACkf

Transactions on Data Base Systerns, 14(3):369-400. 1989.

A.L. Buchsbaum, P.C. Kanellakis, and J.S. Vitter. A Data Structure for

Arc Insertion and Regular Path Finding. In 1st Annual ACM-SIAM Sym-

posium on Diserete Algorithms, pages 22-31, 1990.

J.A. Blakeley, P-A. Larson, and F. W. Tompa. Efficiently Updating Materi-

alized Views. In Proceeding of ACiCI-SIGMOD Conjerence on Management

of Data, pages 61-71? 1386.

J..4. Blakeley and N.L. Martin. Join Index, Materialized View, and Hybrid-

Hash Join: X Performance Analysis. In Proceedings of the 6th International

Conference on Data Engineering, pages 256-263, 1990.

C. Beeri and T. Milo. -4 Mode1 for Active Object Oriented Database. In

Proceeding of the 17th International Conference on Very Large Data Bases,

pages 335-349, 1991.

F. Bancilhon and R. Ramakrishnan. An Amateur's Introduction to Recur-

sive Query Processing Strategies. In Proceeding of ACM-SIGMOD Con-

ference on Management of Data, pages 16-52, 1986.

BIBLIOGRAPHY 119

C. Beeri and R. Ramakrishnan. On the Power of Magic. In Proceedings

of iVinth ACM SIGACT-SIGMOD Symposium on Pn'nciples of Database

Systems, pages 269-283, 1987.

F. Bancilhon and N. Spyratos. Update Semantics of Relational Views.

A CM Transactions on Data Base Systems, 6(4):557-575. 1981.

E. Baralis and J. Widom. Using Delta Relations to Optimize Condition

Evaluation in Act ive Databases. Technical report, Depart ment of Corn-

puter Science, 1993. Technical Report Number Stan-CS-93- 1495.

G.A. Cheston and D.G. Corneil. Graph Property Update Algorithms and

their Applications to Distance Matrices. INFOR, ZO(3): l7S-?Ol, 1983.

S. Ceri and G. Gottlob. Translating SQL into Relational Algebra: Opti-

mizat ion, Semant ics. and Equivalence of SQ L Queries. IEEE Transactions

on Sofiware Engineering, 1 1(4):324-345, 1985.

L.S. Colby and T. Griffin. An Algebraic Approach to Supporting Multiple

Deferred Views. In SIG.MOD '96 Worbhop on lVaten'a1i;ed Views, pages

103-109, 1996.

L.S. Colby, T. Griffin, L. Libkin, I.S. klurnick, and H. Trickey. .4lgorithms

for Deferred View Maintenance. In Proceeding of A CiIl-SIGMOD Confer-

ence o n iîfanagement of Data, pages 469-480, 1996.

J-P. Cheiney and Y-N. Huang. Set-Oriented Propagation of Updates Into

Transit ively Closed Relations. in Proceeding of DOOD, pages 503-523,

1991.

L.S. Colby and 1.S Mumick. Staggered Maintenmce of Multiple Views. In

SIGMOD '96 Workshop on Materialized Views, pages 119-128, 1996.

S. Ceri and J. Widom. Deriving Production Rules for Constraint Mainte-

nance. In Proceeding of the 16th International Conference on Very Large

Data Bases, pages 566-577, 1990.

BIBLIOGRAPHY 120

S. Ceri and J. Widom. Deriving Production Rules for Incremental View

Maintenance. In Proceeding of the 17th Internatio,nal Conference on Very

Large Data Bases, pages 577-589, 1991.

U. Dayal and P. A. Bernstein. On the Correct Translation of Update Op-

erations on Relational Views. ACM Transactions on Data Base Systems.

8(:3):381-4160 1983.

DB2. On line documentation. IBM RS6000.

C. J. Date and H. Darwen. ri Guide to the SQL Standard (Third Edition).

Addison- Wesley, 1993.

G. Dong, L. Libkin, and L. Wong. On Impossibility of Decremental Re-

computation of Recursive Queries in Relational Calculus and SQL. In Pro-

ceedings O f International Workshop on Databasc Programming Languages.

1995.

G. Dong and R. Topor. Incremental Evaluation of Dataiog Queries. In J.

Bishup and R. Hull, editor, Proceeding of 4th International Conference on

Database Theory, pages 282-296, 1992.

C. Elkan. Independence of Logic Database Queries and Updates. In

Proceedings of the ACiCI SIGACT-SIGMOD Symposium on Principles of

Database Systems, pages 154-160, 1990.

R. Elmasri and S. B. Navathe. Fundarnentals oJ Database Systems (Second

Edition). The Benjamin/Cummings Publishing Company, Inc., 1994.

D. Florescu, L. Raschid7 and P. Valduriez. Answering Queries Using OQL

View Expressions. In SIGMOD '96 Workshop on Materialized Views, pages

84-90, 1996.

A.L. Furtado, K.C. Sevcik, and C.S. Dos Santos. Permitting Updates

Through Views of Dats. Bases. In/orrnation Systems, 4969-283, 1979.

S. Ghandeharizadeh, R. Hull, and D. Jacobs. Implernentation of Delayed

U pdates in Heraclit us. In Proceedings of the 9rd Internat ional Con ference

on Extending Database Technology, pages 261-276, 1992.

S. Ghandeharizadeh, R. Hull, D. Jacobs, J. CastiHo, M. Escobar-Molano,

S. Lu, J. Luo, C. Tsang, and G. Zhou. On Implementing a Language

for Specifying Act ive Dat abase Execution i'vlodels. In Proceedings of the

19th Internalion,al Conference on Very Large Data Bases. pages 441-454,

August 1993.

A. Gupta, H.V. Jagadish, and I.S. Mumick. Data Integration Usina Self-

Maintainable Views. In Proceedings of the 5th International Conference on

Extending Database Technology, pages 140-144, 1996.

M.H. Gehani, H.V. Jagadish, and 0. Shmueli. Event Specification in an

.4ct ive O bject Oriented Database. In Proceeding of A CM-SIGrCIOD Con-

ference on Managen2ent of Data, pages 81-90. 1992.

A. Gupta. D. Katiyar, and I.S. Mumick. Counting Solutions to the View

hlaintenance Problem. In Workshop on Dedudive Databases, JICSLP.

pages 185-194, 1992.

T. Griffin and L. Libkin. Incremental Maintenance of Views with Du-

plicates. In Proceeding of A CM-SICMOD Conference on Managemen t of

Data, pages 325-339, 1995.

T. Griffin, L. Libkin, and H. Trickey. A Correction to "Incremental Re-

computat ion of Active Relat ional Expressions" by Qian and Wiederhold.

To Appear in IEEE Transactions on Knowledge and Data Engineering.

G. Graefe and W. J. McKenna. The Volcano Optirnizer Generator: Ex-

tensibility and Efficient Search. In Proceedings of the 9th International

Conference on Data Engineering, pages 209-218. IEEE Computer Society

Press, 1993.

BIBLIOGRAPHY 122

S. Grumbach and T. Milo. Towards Tractable Algebras for Bags. In

Proceedings of the ACM SIGA CT-SIGMOD Symposium on Principles of

Database Systerns, pages 49-58, 1993.

A. Gupta and LS. Mumick. Maintenance of Materialized Views: Problems,

Techniques and Applications. Data Engineering, SpeciaZ Issue on Ma teri-

alized Views and Data Warehoasing, IEEE Cornputer Society, 18(2):3-18,

1995.

A. Gupta, I.S. Mumick, and K.A. Ross. Adapting Materialized Views after

Redefini t ions. In Proceeding of A CM-SIGMOD Confere nce on Management

of Data, pages 21 1-233, 199.5.

A. Gupta. I.S. Mumick, and V.S. Subrahmanian. Maintaining Views In-

crement aily . In Proceeding of A CM-SIGMOD Con ference on Management

of Data, pages 157-166, 1993.

G. Graefe. Query Evaluation Techniques for Large Databases. ACM Com-

puting Surveys? 25(%):73-170, 1993.

G. Graefe. Volcano - An Extensible and Parallel Query Evaluation System.

IEEE Transactions on Knonowledge and Data Engineering, 6(1): 120-135,

February 1994.

E.N. Hanson. A Performance Analysis of View Materialization Strate-

gies. In Proceeding of K M - S I G M O D Conference on Management of Data,

pages 440-453, 1987.

E.N. Hanson. The Ariel Project. In J. Widom and S. Ceri, editors, Active

Database Systems: Triggers and Rules for Aduanced Database Processing.

Morgan Kaufmann, 1996.

M. Hasan. An Active Temporal Mode1 for Network Management

Databases. In Proceedings of the IEEE/IFIP Fourth tnternational Sym-

BTBLIOGRAPHY 12.3

posium on Integrated Network Management, pages 524-535. Chapman and

Hall, May 1995.

M.Z. Hasan. Active Temporal Rules and Declarative Visualization for

Network Management. Ph-D. Thesis to be submitted, 1996.

E.N. Hanson, S. Bodagala, M. Hasan, G. Ihlkarni? and J. Rangarajan. Op-

timized Rule Condition Testing in hie! using Gator Networks. Technical

report, CISE Department. University of Florida, October 1995. Technical

Report Number TR-95-027.

L.M. Haas, W. Chang, G.M. Lobman, J . McPherson, P.F. Wilms, B. Lind-

say, H. Pirahesh, M. Carey, and E. Shekita. Starburst Mid-Flight: As the

Dust Clears. IEEE Transactions on Knowledge and Data Engineering,

2(1):143-160, March 1990.

J.V. Harrison and S. Dietrich. Maintenance of Materialized Views in De-

ductive Databases: An Update Propagation Approach. In Workshop on

Deductive Databases, JICSLP, pages 56-65, 1992.

.J. Hammer, H. Garcia-klolina, J. Widom, W. Labio, and Y. Zhuge. The

S tanford Data Warehousing Project . Data Engineering, Special Issue

on Mat erialized Views and Data Warehousing, lEEE Compu ter Society,

18(2):41-43, 1995.

N. Huyn. Efficient View Self-Maintenance. In SIGMQD '96 Workshop on

içlaterialized Views, pages 17-25, 1996.

G.F. Italisno. Distributed Algorithms for Updating Shortest Paths (EX-

TENDED ABSTRACT). In Workshop on Distributed Algon'thms and

Graphs, pages 200-21 1, 1991.

H.V. Jagadish. A Compression Technique to Materialize Transitive C10-

sure. .4CM Transactions on Data Base Sustems. 15(4):558-598. 1990.

BIBLIOGRAPHY 134

H. Jakobsson. On Materializing Views and On-Line Queries (Extended

Abstract). In J. Bishup and R. Hull? editor, Proceeding of 4th International

Conference on Database Theory, pages 407-420. 1992.

A. M. Keller. Algorithms for Translating View Updates to Database Up-

dates for Views Involving Selections, Projections, and Joins. In Proceedings

of the K M SIGACT-SIGMOD Symposium on Pn'nciples O/ Database Sys-

tems, pages 154-163, 1985.

W. Kim. A New Way to Compute the Product and Join of Relations. In

Proceeding of ACM-SIGiWD Coderence on Management of Data. pages

179-157, 1980.

S. Koenig and R. Paige. A Transformational Framework for the Automatic

Control of Deriwd Data. In 7th International C o n J ~ r e n c ~ on Very Large

Databases, pages 306-318, 1981.

v. Küchenhoff. On the Efficient Cornputation of the Difference Between

Consecutive Database States. In Proceeding 01 0000, pages 478-502,

1991.

M. Lee, J-C. Freytag, and G.M. Lohman. Implementing an Interpreter

for Functional Rules in a Query Optirnizer. In Proceeding of the 14th

International Conference on Very Large Data Bases, pages 218-229, 1988.

B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms. A Snapshot

Differential Refresh Algorit hm. In Proceeding o j A CM-SICMOD Co nier-

ence on Management of Data, pages 53-60, 1986.

A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering

Queries Using Views. In Proceedings of the ACiZ.1 SIGACT-SIGICIOD Sym-

posium on Pnnciples of Database Systems, pages 95-104, 1995.

BZBLIOGRAFHY 125

[LS 931

G .M. Lohman. Grammar-Like Funct ional Rules for Represent ing Query

O ptimization Alternatives. In Proceeding o/ A CM-SIGMOD Con fere nce

on Management of Data, pages 15-27, 1988.

A. Levy, A. Rajaraman, and J. Ordille. The World Wide Web as a Collec-

tion of Views: Query Processine in the Information Manifold. In S I G I W D

'96 Workshop on Materialired Vie us, 1996.

A.Y. Levy and Y. Sagiv. Queries Independent of Updates. In Proceedings

of the 19th International Conference on Very Large Data Bases. pages

171-181. August 1993.

I.S. Mumick and H. Pirahesh. Implementation of Magic-Sets in a Relational

Database System. In Proceedings oJ the ACM SIGMOD Conference on

Management of Data? pages 103-114, 1994.

I.S. Mumick? H. Pirahesh, and R. Ramakrishnan. The Magic of Duplicates

and Aggregates. In Proceedings of the 16th [nternational Conference on

Very Large Databases, pages 264-277, 1990.

Inderpal Singh EvIurnick and Oded Shmueli. How expressive is stratified

aggregation. Annals of Mathematics and ArtiJicial Intelligence, L5:407-

435, 1995.

I.S. Murnick. The Rejuvenation of Materialized Views. In Proceeding of the

6th International Conference on Information Systenzs and Management O/

Data (Inuited Talk), 1995.

E.G. Noik. Dynamic Fisheye Views: Combining Dynamic Queries and

Mapping with Database Views. PhD thesis, Dept. of Comp. Sci., U. of

Toronto, April 1996.

J-M. Nicolas and K. Yazdanian. An Outline of BDGEN: A Deductive

DBMS. In Information Processing, pages 71 1-717, 1983.

BIBLIOGRAPHY 126

D. Plexousakis. Integrity Constraint and Rule Maintenance in Tempo-

ral Deduct ive Knowledge Bases. In Proceedings of the 19th Int emational

Conference on Very Large Data Bases, pages 146-157, August 1993.

D. Quass, A. Gupta, I.S. hhmick, and J. Widom. Making Views Self-

Maintainable for Data Warehousing (Extended Abstract). In Proceedings

of the Conference on Parallel and Distributed Information Systems, 1996.

D. Quass. Maintenance Expressions for Views wi t h Aggregation. In SIG-

MOD '96 Workshop on Materialzzed Views, pages 110-llY, 1996.

X. Qian and G. Wiederhold. Incremental Recomputation of Active Rela-

tional Expressions. IEEE Transactions on fhowledge and Data Engineer-

ing, 3(3):337-341. September 1991.

N. Roussopoulos. C.M. Chen, and S. Kelley. The ADMS Project: Views

"R" Us. Data Engineering, Special Issue on Mat erdized Views and Data

Warehousing, IEEE Computer Society, l8(3): 19-28, 1995.

N. Roussopoulos. An Incremental Access Method for ViewCache: Concept,

Algorithms, and Cost Analysis. ACM Transactions on Data Base Systems,

16(3):535-563, 1992.

P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G.

Price. Access Path Selection in a Relational Database Management Sys-

tem. In M. Stonebraker, editor, Readings in database Systems. Morgan

Kaufmann Publishers, 1994.

R.S. Sundaresh and P. Hudak. Incremental Computation via Partial Evalu-

ation. In Synposiurn on Principles of Programmiag Languages, pages 1-13.

1991.

B. Shneiderman. Direct manipulation: A step beyond programming. IEEE

Computer, 16(8):57-69, August 1983.

BIBLIOGRAPHY 1'37

B. Shneiderman. Dynamic queries for visual information seeking. IEEE

Soflware, 11 (6):70-77, November 1994.

O. Shmueli and A. Itai. Maintenance of Views. In Proceeding o/ ACM-

SIGMOD Conference on Management O/ Data, pages 340-25.5, 1954.

E. Simon and J. Kiernan. The A-RDL System. In J. Widom and S. Ceri? ed-

itors, Active Database Systems: Triygers and Rules for Advanced Database

Processing. Morgan Kaufmann, 1996.

U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert: An Architec-

ture for Transforming a Passive DBMS into an Active DBMS. In Proceed-

ing of the 17th International Conjerence on Very Large Data Bases, pages

469-478, 1991-

J. Srivastava and D. Rotem. Analytical Modeling of Materialized View

Maintenance. In Proceedings of the A CM SIGA CT-SIGM OD Symposium

on Principles of Database Systems, pages 126-134, 1988.

A. Silberschatz, $1. Stonebraker, and J. Ullman. Database Research:

Xchievements and Opportunities Into the 91st Century. Report of an NFS

Workshop on the Future of Database Systems Research, 1995.

M. S tonebraker. Implementation of Integri ty Constraints and Views by

Query Modification. In Proceeding of A C M - S I G M Conlerence on Man-

agement of Data, pages 65-75, 1975.

Transaction Processing Performance Council TPC. Benchmark D. Stan-

dard Specificat ion, Revision 1 .O, 1995.

T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: A Syntax-

Directed Programming Environment. Communications of the ACiII,

24(9):563-573, Septernber 1981.

J. D. Ullman. Prisciples of Database and Ihowledge Base Systems I.

Computer Science Press, 1988.

T. Urpi and A. Olivé. A Method for Change Computation in Deductive

Databases. In Proceeding of the 18th International Conference on Veq

Large Data Bases, pages 225-237, 1992.

D. Vista. View Maintenance in Relational and Deductive Databases by

Incremental Query Evaluation. In IBM CASCON Con ference. CD-ROICI,,

1994.

M. Ward. http://cs.wpi.edu/ matt/courses/cs563/ talks/datavis.html.

WPI CS Department.

J. Widom and S. Ceri. Actiue Database Sgstems: Trigers and Rules /or

Advanced Database Processing. Morgan Kaufmann Publishers, Inc.. 1996.

O. Wolfson, H M . Dewan, S.J. Stolfo, and Y. Yemini. Incrernental Evalu-

ation of Rules and its Relationship to Parallelism. In Proceeding of A CM-

SIGMOD Conference on Management of Data, pages 78-87. 1991.

J. Widom. The Starburst Rule System. In J. Widom and S. Ceri. edi-

tors, Active Database Systems: Triggers and Rules fo r Advanced Database

Processing. Morgan Kaufrnann, 1996.

G. Wiederhold. Mediators in the Architecture of Future Information Sys-

tems. IEEE Cornputer, 25(3):38-49. March 1992.

BIBLIOGRAPHY 1%

IZGMHW951 Y. Zhuge, H. Garcia-Molina, J. Hamrner, and J. Widom. View Mainte-

nance in a Warehousing Environment. In Proceeding of A CM-SIGM OD

Conj'erence on Management of Data, pages 316-32'7, 1995.

G. Zhou and R. Hull. A Framework for Supporting Data Integration Using

the Materialized and Virtual Approaches. In Proceeding of A CM-SIGhIOD

Conference on Management of Data, pages 481-492, 1996.

G. Zhou, R. Hull, R. King, and J. Franchitti. Supporting Data Integration

and Warehousing Using H20. Data Engineering, Special Issue on Material-

BIBLIOGRAPHY 129

ized Views and Data Warehousing, IEEE Cornputer Society. 1S(2):29-40,

1995.

D. Zilio. Personal Communication. University of Toronto, 1996.

Appendix A

Cardinality Estimation

In this appendix, we present the derivat ion of one physical property, the cardinality. from

the physicai properties of the inputs for each availabie physical operator. In what follows.

we use n as the cardinality of the derived relation, and n l , nz as the cardinality of the

input relations.

A. 1 Cardinality Estimation

BINARYSEARCH, FILE-SCAN, INDEX-SCAN, SELECTALGO

The number of tuples in the output relation of these operators is a fraction of the nurn-

ber of tuples in the input relation. We cal1 this fraction t he selecti.uity of the selection

conditions that appear as arguments to the algorithms. At the end of the appendix? we

describe how we estimate selectivi t ies.

CARTESIANALGO

T h e number of tuples in the output relation is always

DUPLICATEELIMINATION

Let image(ai) denote the number of distinct values that the i- th attribute in the input

relation may have. This information is stored in the catalog. The output relation's size

cannot be srnaller than the maximum image size. Thus, a Iower bound for the size of the

output is
ari t y

lower bound = max { image (a i) }
r=f

The output cannot be larger than the input or the product of al1 attributes' image

size, whichever is l e s . Thus, an upper bound for the size is

anty

upper bound = min n l , n (irnage(a;))

We estimate the size of the output as

Iower bound + upper bound

3

MERGE, NESTEDLOOP

The number of tuples in the output relation is a fraction of the cartesian product of the

two relations. We cal1 t his fraction the join selectivity. At the end of the appendix, we

describe how we estirnate join selectivities.

n = join selectivity x nl x nz

PROJECTALGO, SORT

For these operators, the input size does not change.

SETINTERSECT

CHAPTER A. CARDINALITY ESTIMATION

SET-UNION

For SETDIFFD, SETINTERSECTD and SET-UNIOND, we estimate the number of du-

plicates in each input, and then we use tlie formulas presented above (thus. nl and n2,

in these cases, are the sizes of the two inputs alter duplicate elimination). Duplicate

estimation follows the formula presented for duplicate eliminat ion.

A.2 Selectivity Estimation

The fraction of tuples from a relation satisfying a given selection condition is called the

selectivity of the condition. The smalleï the selectivity of a condition, the f e w r ttiples

the condition selects and the iarger the desirability of using this condition first to retrieve

tuples. The selectivity of conjunctive condition O1 .A O2 A . . . A Ok is the product of the

selectivities of each individüal selection condition Bi [EN94]. The different forms of Bi

known to RH0DE.S are: op val) and (X i op -Y,) wliere op E { = ? >, <}. The

selectivity of each 0i is defined according to the type of Oi [SACf 941:

a For condition Xi = v a l

selectivity =
I

irn age (.Yi)

This formula assumes an even distribution of tuples among t h e different values in

the domain. However, if v a l < min(Xi) , or v a l > max(XK), the selectivity is O.

a For condition *Yi > val , we do a linear interpolation of the value val within the

range of values of attribute Xi from min(&) to max(Xi), and we estimate

max(X;) - v a l
selectivit y =

max(Xi) - min(Xi)

If v a l < min(Xi), the selectivity is 1, and if val > môx(Xi), the selectivity is O.

r, For condition Xi < v a l

selectivity(Xi < va l) = 1 - seZec t i~ i t y (X~ = va l) - sefectivity(Xi > v a l)

O For condition Xi = X,

This formuia assumes that each value in the domain of the at tribute with the smaIler

image size has a matching value in the other attribute. If Xi is the same attribute

name as Xj7 the selectivity is 1. Also, if max(.>;,) < min(lC,), or max(.Yj) <

min(Xj), the seicctivity is O.

O For condition Si > -Y,, if image(X,) > image(.Xi), then

i m a p (X j) - inage(Xi)
selectivity = 1 -

image (.Yj)

imnge(Si) - image (.Yj)
selectivit y =

image(Xi)

If X* is the same at tribute narne as .Yj, the selectivi ty is O. If max(.

the selectivity is also O. If min(Xi) > max(,Yj), the selectivity is 1.

Xi) < min

For condit ion .Yi < -Yj

e If the attribute(s) appearing in the selection condition are not arithmetic or if, for

some reason, the required statistics are not available in the catalog, for an equality

condit ion
1

selectivity = -
10

and for a comparison condition

I
selectivity = -

3

There is no significance to these default numbers, other that an equality condition

is more selective than a comparison condition.

A.3 Join Select ivity Estimation

A join A B is a selection whose condition is the join condition, Al = BI: from

the cartesian p r ~ d u c t , A x B: of the two relations being joined. The fraction of tuples

from the cartesian product satisfying the join condition is called the join selectivity. The

only join condition that is allowed in RHODES is of the form Al = BI where Al is an

attribute of reiation A and BI is an attribute of relation B. There are two cases for

estimating the join selectivity:

If no foreign key constraint is known between attribute Al of A and attribute Bi

of B , then

- If Al and BI are not arithmetic, then

1
join selectivit y = -

1000

- Otherwise, let the range of the domain of the Al attribute is dA4 = max(AL) -
min(&) + 1 and the range of the dornain of BI is d B = mas(Bl) - min(B1) + 1

a i t h an overlap d. (We assume that the distinct values are uniformly dis-

tributed within each range and that the tuples are uniformly distributed in

the distinct values.) If no overlap exists, then

join selectivity = O

else, let v.4 be the total nurnber of values for the Al attribute in the overlap

and vs the total number of values for the B1 attribute in the overlap. i-e.:

U A = rd/da * image(Ai)l and vs = rd/dB * irnage(B1)l.

We define

join selectivity = min{v.-I,z7e}
image(Al) * image(B1)

O If, however, Bi 1 is the key attribute of B and there is a foreign key reference from

join selectivity =
1

irnage(Bi 1)
In fact this selectivity is identical to the selectivity of selection condition Xi = ,Y,

only that we know that image(Bll) is at least as big as image(Al) in this case.

Appendix B

Cost Estimation

In this appendix we preseot the formulas for cost est-imation used by RHODES. In order to

estimate the cost of different expressions, RHODES must know what the cost of clioosing

each algorithm is. In presenting our cost model, we use the following symbols:

a B is the size in bytes of one memory block (usually 1024 bytes);

0 M is the size in pages of memory available to the optimizer;

a n is the cardinality (number of tuples) of the output relation and nt,n2 are the

cardinalities of each of the input relations;

0 r is the size in bytes of each tuple in the output relation and r17 r2 are the record

sizes of the input relations;

a bf is the blocking factor of tlie output relation, that is, the number of tuples of the

output relation that fit into one memory page, and bf ,, b f 2 are tlie blocking factors

of the input relations. The blocking factor is defined as b j = LBJr];

a b is the size in blocks of the output relation and bi, b2 are the sizes in blocks of the

input relations. The size in blocks is defined as b = rn/ b f l ; and,

a 1 is the size in bytes of one index tuple (we assume this number to be constant for

each index).

Next, we present the cost for each algorithm used by RHODES.

FILESCAN

This algorithm can be used for two purposes: a) to retrieve al1 tuples of the relation?

and b) to retrieve those tuples satisfying a conjunctive selection condition. When no

condition is specified, or when the selection conditions need to be checked against al1

tuples in the relation. t hen,

cost = b1

If one selection condition is specified equaiing the key attribute of the relation with

a constant, only half of the blocks are reached on the average before finding the (unique)

tuple in the result. Then,

This algorithm can be used when a single selection condit.ion is specified equating the

ordering attribute of a relation with a constant and the relation is contiguous. Then,

cosi = max {rlog,(b)l + [&l - 1, l}

This cost reduces to [log2(b)l, if the condition is an equality condition on a key

attribute, because n = 1 in this case.

INDEX-SCAN

This algorithm can be used when a single condition is specified equating the indexing

attribute of a relation with a constant. Let bi be the number of pages the index itself is

stored into. The cost of an index scan depends on the type of the index used [EN94].

In a primary index, there is one index tupie per relation page and bi = rb lb f i l , where

the blocking factor for the index is (always constant) bf = LBII]. Then,

In a clustering index, there is one index tuple per distinct value in the indexing

attribute and so bi = [i/bfi17 where i is the number of distinct values. Then,

Finally, in a secondary index, there is one index tuple per re l~ i ion tuple and so

bi = rnl/bfil. Then.

CARTESIANALGO, NESTEDLOOP

This algorithm performs a block-nested-loop join where the inner input is scanned once

for each page of the outer input. The mernory is completely filled with the outer input

except from one page that is reserved for the inner input. In addition, scans of the

inner input are made a little faster by scanning the inner input once forwards and once

backwards, thus reusing the last page of the previous scan [KimSO]. Then,

MERGE, SELECTALGO, PROJECT, PROJECTD, SETDIFF, S E T D I F F D

SET-INTERSECT, SET-INTERSECTD, SET-UNION, SET-UNIOND

If t.he output relation can fit in mernory, i-e., if b < M , then,

cost = O

else the result must be written into disk, and

cost = b

SORT

To sort a relation on a given attribute, the relation is written into initial sorted runs,

each about the size of available memory. These runs are merged into larger and larger

ones, two at a time, until only one run file, the final output, is produced. The number

of initial runs, in this algorithm, is

initial-runs = [bl /Ml

The nurnber of merge levels necessary to complete the task is

Using a factor of two for reading and writing, then

cost = 2 x bl x merge-levels

This algorithm is based on sorting to bring duplicates close together. The cost in sort-

based duplicate removal is, thus, dominated by the cost of the sorting but it is smaller

than it, because of the effect of early duplicate removal on each merge level. The total

number of rnerge levels is unaffected by duplicate removal and is defined in terms of

the number of initial ruos that the input file is split into. As in the case of sorting,

ini t ial-runs = rbl/M] and merge -2evels = [log, (initial-runs 11.
In the first merge levels, it is unlikely that duplicates of the same tuple are in the

same run file, and therefore we can assume that the sizes of run files are unchanged until

the last merge levels, where we can assume that each run file has the same size as the

final output. The total number of merge levels with run file sizes equal to the output size

(the later rnerge levels) is, according to Graefe [Gra93],

a ffected Jevels = [log,(bl / b)l - I

The merge levels where each run file has the same size as the input is

unasected -2evels = merge-levels - a f fected Jeve ls

Using a factor of two for reading and writing, then [Gra93]

affected -1evels - 1 in i t ia l -n tns
2 x bt x unaffected-levels + 2 x b x C

unaflected -1evcls
3'

IMAGE NALUATION
TEST TARGET (QA-3)

APPLIED 2 IMAGE. lnc
1653 East Main Street

O 1993. App(W Image. lm.. All Rights Reserved

