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Abstract

Optimizing Incremental View Maintenance Expressions in Relational Databases

Dimitra Vista
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

1997

In the last few years, there has been significant interest in the design of incremental
methods to improve the performance of view maintenance. Despite that, very little
analysis or experimentation supports the predominant view that incremental methods are
more efficient than their non-incremental counterparts. We argue that the performance
of incremental view maintenance depends on system aspects of the database, such as the
availability of indices, the sizes of the relations involved, and the sizes of the database
updates. We also argue that the database query optimizer is a reasonable component of
the database system to decide, at the time of view maintenance, whether a view is to
be maintained incrementally or not, because the query optimizer has knowledge of, and
access to, all of the parameters that may affect this choice.

To support this argument, we have built the RHODES database query optimizer
that supports change propagation and view maintenance for relational queries. In addi-
tion to traditional optimizations, RHODES is also responsible for the generation of the
queries to be executed in order to support view maintenance. As there may be many
different ways to maintain a view incrementally, the choice of which one to use may af-

fect the performance of incremental view maintenance. Moreover, different maintenance
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queries are amenable to different optimizations. In this thesis, we present a repertoire
of maintenance-specific optimizations, especially in the presence of key constraints and
foreign key references. The underlying data model we use is relational algebra with mul-
tiset semantics. Experimental validation of the above claims has been conducted using

the TPC-D benchmark database on the DB2 Parallel Edition.
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Chapter 1

Introduction

1.1 View Maintenance

Traditionally, a database view is a query on a database that computes a relation whose
value is not stored explicitly in the database, but to the query users of the database
it appears as if it were. Database views are useful for a number of reasons. They can
be used to provide conceptual subsets of the database to different users. They can be
used as mechanisms to enforce security by allowing parts of the data to be seen only
by users with the appropriate access privileges. They provide a convenient shorthand
notation to facilitate query specification. They can be used to replicate data, possibly in
geographically remote data sources. Finally, they can be used in query optimization to
speed-up query evaluation.

There are two different ways to implement views. The traditional, and still most
popular approach, is the query modification approach [Sto75]. The definition of each
view is stored in the dictionary of the system. Queries referring to the view are answered
by substituting the view definition into the body of the queries. Since only the definition
is kept, query evaluation of a query involving a view results in re-evaluating (part of) the
view. The advantage of this method is that it requires practically no extra disk storage
or maintenance. However, it might have poor performance if the queries to the views
are more frequent than the updates to the database, because frequently accessed views

result in repetitive view construction.
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The second method to implement views is the view materialization approach where
the view is explicitly maintained as a stored relation [GM95]. This method requires more
storage than the query modification approach but its performance might be significantly
better, especially if updates are less frequent than queries referring to the views. A
database system should provide the option of materializing views. The choice of which
views to materialize should be guided by the actual or anticipated query load so that
frequently occurring queries can be evaluated quickly.

The view materialization approach, thus, has the potential of significantly improving
the time to access a view. However, it does have some effect on the overall performance
of the database system. Next, we describe the major problem associated with view

maintenance and its solutions.

1.2 Incremental View Maintenance

One problem with the view materialization approach is that every time a base relation
changes, the views that depend on it may need to be re-computed. One approach to this
problem is to re-compute all related views. This solution may be acceptable for relatively
static databases, but may be prohibitively expensive when updates are frequent. When
the views are frequently updated and expensive to compute, the cost of re-computation
may not be affordable. The alternative to re-computation is to identify which part of
the old materialized view is affected by the database update and to re-compute only the
affected part. An algorithm that carries out such a computation is called an incremental
view maintenance or incremental query evaluation' algorithm.

The idea of incremental view maintenance can be summarized as follows. Suppose V
is the query expression corresponding to a view definition and V[D)] is the materialized
value of V consistent with database D, i.e., V[D] is the value of V on database D.
Suppose that the database changes from D to DY by some update 6(D). In order to
find the new value of V, we evaluate two query expressions, §~(V) and §%(V), on the

database D and the database update 6(D). These query expressions define the change

! Although the two terms mean slightly different things, we choose to use them interchangeably in
this thesis, because each view is specified by some query expression.
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on V(D) i.e., §*(V)[D, 6(D}] are the tuples to be inserted into V[D] and §=(V')[D, §(D)]
are the tuples to be deleted from V[D], in order to make V consistent with the updated

database DY. In other words?,
VD] = (V[D] - 67(V)[D,é6(D)]) U s¥(V)[D,8(D)]

We call §=(V) and §*(V) the change propagation ezpressions of V. Their values under
database D, along with the database updates, represent the incremental changes to V
when D is updated to the next database state.

There are two main issues related to incremental view maintenance:

1. The choice of which change propagation expressions to use: How do we choose the
two query expressions 6~ (V') and é*(V)? Do these expressions depend only on the
view definition? Do they depend on the database update? Do they depend on the
old database? Do they depend on the old value of the view? For some views. there
is a choice amongst multiple possible change propagation expressions. How do we

chose between them?

o

The choice of the alternatives to “bring V up-to-date with the database”: If our
objective is to find the new value of the view V under the updated database.
should we use the incremental method and compute (V[D] — §=(V)[D,é(D)]) U
T (V)[D, (D)), or should we use the re-evaluation method and compute V[DY]

from scratch?

Recently, many approaches have been proposed to specify how the change propagation
expressions of a given view are formed in terms of the query expression corresponding to
the view, the old value of the database, the update, and, perhaps, the old value of the
view. Chapter 2 discusses many of them.

As we see in Chapter 2, a significant amount of research addresses the first is-
sue of incremental view maintenance. However, the second issue has not yet received

much attention. Very little analysis or experimentation supports the predominant view

2The operands of — and U, here, are multisets, i.e. sets with duplicates. The data model assumed in
this thesis is relational algebra with multiset semantics (bag algebra).
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that incremental methods are more efficient than their non-incremental counterparts
[Han87, BM90, SR88, Rou9l]. In fact, the consensus seems to be that, for small up-
dates, evaluating the change propagation expressions of a view is more beneficial than
re-evaluating the view. When one relation is completely deleted from the database, it is
almost always better to re-evaluate any join involving that relation. On the other hand,
when the updates to the database are small, compared to the database itself, the “prin-
ciple of inertia” [GM95], that small changes propagate small changes, seems to favor
incremental evaluation of the join. However, we found that the cost of propagating small
changes could be about the same as (or more than) the cost of evaluating the view again.
Also, when the updates to the database are neither very small nor very big®, compared
to the database, it is not at all clear which of the two alternatives is likely to provide a
better solution. Consequently, the choice of whether to perform incremental view main-
tenance or not cannot be made a priori without first examining all factors affecting this
choice.

The performance of incremental view maintenance depends on system aspects of the
database, such as availability of indices, sizes of the database relations involved, sizes of
the database updates, and so on. There are two justifications for the above statement.
The statement is true because incremental view maintenance requires evaluation of the
change propagation expressions, which are queries whose performance in general. like
that of many queries, depends on the physical design of the database system. However,
the statement is also true because the choice of which change propagation expressions to
use (and there may be many for the same view) depends both on the system aspects of
the database and on the specific database update. In this thesis we claim that we should
not commit to incremental view maintenance a priori, but, rather, we should let the
database query optimizer decide, at the time of view maintenance, if incremental view
maintenance is better than re-evaluation. We also claim that we should let the query
optimizer decide which change propagation expressions to use as well as how to execute

these change propagation expressions best.

We see the incremental view maintenance problem as an optimization problem. The

3Note that smail and big are rather loosely used here.
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objective of the optimization is to minimize the number of logical I/O operations neces-
sary to perform incremental view maintenance. The decision involves which maintenance
strategy to choose, among incremental maintenance and re-computation, for each mate-
rialized view, and each possible update and, if choosing incremental view maintenance
which change propagation expressions to chose. The knowledge available in this opti-
mization problem is the schema of the database, the definition of views, the update, the
cardinalities of the relations in the database and their updates, the distribution of data
values, and the physical design of the database system.

Most proposals for incremental view maintenance assume that for each view V, the
change propagation expressions §~ (V) and §*(V') are generated by a special software
component of the DBMS, most likely at view compile time but possibly at view main-
tenance time. Apart from the fact that the above approach requires a special software
component to be developed just for the purpose of generating the change propagation
expressions, there are other disadvantages with it. Before presenting these disadvantages,

however, let us see an example that demonstrates some of them.

1.3 Example

Let V.= AX B X, and suppose that each of the 4, B and C relations lose a number
of tuples specified by 83,685 and 85, respectively®. As we see in the next chapters, there
exists an algebraic equation that defines the deletions from a join expression given the
tables being joined and the deletions from these tables. Let 675 be the deletions from
the join A M B (as if this join were materialized); 65 the deletions from the join B X C
(as if this join were materialized); and, 6. the deletions from V. There are a number

of different ways to compute the deletions from V.

1. One alternative is to find the deletions from 4 X B and propagate these to V:

§38 = 6;XB U AN — 65 Xép.

4For simplicity of the presentation, we ignore the arguments of the join and we assume that all join
orderings are possible.
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The justification for the correctness of these equations is as follows®. Consider the
deletions from the join A M B. Tuples deleted from A that join with tuples in B,
generate deletions from A M4 B. Also, tuples deleted from B that join with tuples
in A, generate deletions to A X B. However, if a deleted tuple from A matches
a deleted tuple in B, each tuple to be deleted from A X B is generated twice:
once because of 6 X B and once because of A X é5. Since we support duplicate

semantics, each tuple must be deleted once and, therefore, we must subtract 63 ™

55.

(W)

Another alternative is to find the deletions from B X C and propagate these to V:

Jgc = AMXNbge U §3XMBXNC — §7{Xég., where

S50 = 65XC U BMXE; — 65M6;.

Note that a number of other alternatives are also possible. Our objective with this
example is not to list them all. The point that we are trying to make is that there may
be more than one alternative equivalent change propagation expression to compute the
deletions from a view V. The choice of the alternative may affect both the performance of
incremental view maintenance and the optimizations that are possible in the optimizer.

Even if we knew that V' is to be maintained incrementally, it is not clear wkich of the
two alternatives listed here offers a better way to maintain V. If a database optimizer is
given one of the alternatives to optimize, most likely it will not be able to transform it
into the other alternative and may, thus, miss a better execution plan.

Also, although seemingly very alike, the two alternatives are amenable to different
optimizations. Suppose, for example, that there is a foreign key reference from A to B.
Then, tuples that are deleted from B can only join with tuples deleted from A because,
otherwise, the foreign key reference would not be satisfied after the database update ©.

Thus, we can use the following equivalence

SNote that these equations are not correct, if A, B and C also have tuples inserted into them at the
time of view maintenance.

5The join argument must be in conjunctive form and it must include a conjunct equating the attribute
of A with the foreign key reference with the key attribute of B, for all this to make sense.
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-~

and, we can rewrite the first alternative as

bigc = ;X C U AXBMI: — 65MW6c, where

ag = O6;XB

while the second alternative cannot be rewritten.

Thus, by adopting the fist alternative, we were able to reduce access to the database

relations and the total number of joins, and, therefore, increase the likelihood that the

performance of the incremental approach be better than re-evaluation.

[t is not clear that a database optimizer could easily have incorporated that kind of

optimization if it was given the second alternative rather than the first’.

1.4 Problems

After the example, we are ready to list some of the disadvantages of using a special

component in the DBMS to generate the change propagation expressions for each view.

L.

Using the special software component, we commit to incremental view maintenance.
even in cases where re-evaluating the view is likely to be more efficient (such as,
for example, when deleting entirely a database relation). There is no choice of
performing or not performing incremental view maintenance, even though the size

of the database update clearly should affect this choice.

Even if the optimization of the change propagation expressions occurs when the
maintenance is performed, the choices of the query optimizer to generate an efficient
execution plan may be restricted. The reason for this is that the generation of
change propagation expressions is independent of the database and its updates.
The optimizer may not be able to “transform” the change propagation expressions
that it is given into equivalent forms that may be more efficient to evaluate (see

the example above).

“Note that it does not suffice that the database optimizer be given the unfolded expressions, instead of
the ones presented here. Simple unfolding is common in DBMS’s but different propagation expressions
result in different unfolded expressions. The reason is that the set difference operation is not distributive.
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3.

The generation of change propagation expressions occurs independently of the op-
timization process. Thus, the generation phase may produce change propagation
expressions for which certain optimizations, perhaps possible in other (equivalent)
change propagation expressions, are rather difficult to incorporate by an optimizer

(see the example above).

1.5 Our Approach

We have built the RHODES database query optimizer that addresses all of the above

problems. [n particular:

1.

o

At the time of view maintenance, RHODES determines, for each view, whether
the view is a candidate to be maintained incrementally or not, by examining both
alternatives and choosing the one with the lowest cost estimate. The cost that is

being minimized is the estimated I/O necessary during view maintenance.

For each view that should be maintained incrementally, RHODES finds the best
change propagation expressions that define the changes to the view. Each change
propagation expression is optimized using traditional optimization techniques, such

as relation indices, join orderings, sort orders, query transformations, and so on.

RHODES incorporates optimizations specific to incremental view maintenance, and
optimizations specific to change propagation expressions, especially in the presence

of key constraints and foreign key references.

For any query that contains a subexpression corresponding to a view, RHODES
examines the alternative to use the view in the place of the subquery. Using views
to improve the performance of ordinary queries has been recognized recently as a

potential for query optimization [LMSS95, FRV96].

The query language of RHODES is relational algebra extended to be consistent with

SQL semantics (bag algebra). Most research in incremental view maintenance assumes
that relations are sets and do not have duplicates [BCL89, BLT86, BC79, CW90, CW91,
DT92, Kic9l, QW91, SI84, U092, WDSY91]. However, most database systems use
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multisets (sets with duplicates), because many database applications require aggregation
and duplicates are very convenient for correctly computing aggregate functions. Another
reason for the use of duplicate semantics is that duplicate elimination is an expensive
operation and, for efficiency, is not enforced, unless specifically requested by the user. In
addition, having duplicates can increase the expressive power of query languages with
recursion [MS95]. There is some work related to multisets for the Datalog model [GKM92,
GMS93, Ana96, AV95] and the relational model [GL95, GMS93]. In this thesis, we use,
and build on, the change propagation expressions proposed by Griffin and Libkin [GL95]

for a multiset algebra.

1.6 Thesis Outline

Here is the outline of the rest of this thesis:

Chapter 2: We present a detailed discussion of previous work on incremental view main-
tenance and related research. We concentrate on incremental algorithms for view

maintenance as well as applications of incremental view maintenance techniques.

Chapter 3: We present our mathematical framework for incremental computation. We
present the change propagation expressions for relational algebra with duplicate

semantics and prove their correctness.

Chapter 4: We present a repertoire of optimizations specific to change propagation
expressions and incremental view maintenance, especially in the presence of key

constraints and foreign key references.

Chapter 5: We present an overview of the database query optimizer RHODES and its
extensions to support incremental view maintenance. We also discuss the visual

browser that accompanies RHODES.

Chapter 6: We present our experimental validation of the claims of this dissertation,
some obtained by estimating change propagation queries using RHODES, and others
by actually running change propagation queries on the DB2 PE (Parallel Edition)

for a number of updates and queries from the TPC-D benchmark.
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Chapter 7: We conclude the thesis by presenting the list of its contributions and a

discussion of open problems.



Chapter 2

A Survey on View Maintenance:
Applications and Techniques

This chapter surveys work related to incremental view maintenance with an emphasis on

the development and application of techniques for view implementation and maintenance.

2.1 Strategies for View Maintenance

When updates occur to a database, there are two distinct execution strategies to update

all affected materialized views, whether incrementally or not:

e [mmediate update: All affected views are immediately updated. This strategy
creates an overhead for the processing of the updates but minimizes the query
response time for queries accessing the view. This is the strategy assumed in this

thesis.

® Deferred update: All affected views stay outdated until an access to them is made.
This strategy avoids the system overhead associated with immediate update prop-

agation, but slows down query evaluation for queries accessing outdated views.

Both immediate and deferred maintenance guarantee that the view is consistent with
the underlying database at the time the view is accessed. In contrast, periodic updates
where all affected views are periodically updated is used to perform updates during
periods of low system use or at pre-specified times. Such views are sometimes called

snapshots and do not guarantee the consistency with the underlying database. Most

11
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work in view maintenance assumes the immediate update strategy. Deferred updates
have been studied only recently [Han87, Rou91, CG96, CM96, CGL*96, ZH96].

A number of more refined strategies for view maintenance are available in active
database management systems [WC96], where so called active rules are used for the
maintenance of views. Active systems can be used to support view maintenance quite
naturally. In fact, some active systems support incremental view maintenance. In con-
trast, passive database management systems require significant changes in their software
to support either materialized views or their incremental maintenance.

Active rules have the general form
if F, check C and execute A

where E is an event that causes the rule to be triggered, C is a condition that is
checked when the rule is triggered, and A is an action that is performed when the con-
dition of the triggered rule is true. The events of active rules are database access events
(such as updates or retrievals), transaction events (such as transaction commit), time
events (such as midnight), or combinations of the above [Has95, Has96, GJS92]. The
conditions of active rules are either predicates (whose value is true or false) or query
expressions (whose value is an empty or a non-empty relation) specified in the system’s
query language [(BW93, HBH*95]. Finally, the actions of active rules are sequences of
database manipulation commands (such as insertions and deletions). When active rules
are used for (incremental) view maintenance the events of the corresponding active rules
are the insertions and deletions to the database relations; the conditions are used to
determine if any updates must be made to the view: and, the actions are statements to
update the view.

The notion of coupling modes between the triggering event (which usually occurs in a
transaction) and the execution of the associated action (which may or may not occur in
the same transaction as the triggering event) yields a number of alternative strategies for
view maintenance. The immediate coupling mode signifies that maintenance is performed
within the same transaction, as soon as the triggering event occurs. The deferred coupling

mode signifies that the maintenance is performed at the commit point of the transaction
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with the triggering event (but within the same transaction). Finally, the decoupled mode
signifies that the maintenance is done independently of the triggering transaction. Within
the decoupled mode, only the dependent decoupled mode is relevant, which spawns a
different transaction for the maintenance only if the triggering transaction commits.
The independent decoupled spawns another transaction independently of whether the

triggering transaction commits’.

2.2 Implementation of Materialized Views

The are a number of different ways to store views:

1. Using Relations: This is the most popular approach and the one used in this thesis.
The view relation is stored in a database like any other relation. Index structures
may be built to facilitate fast access to the view’s data. Accessing the entire view

results in scanning the view relation.
2. Using alternative data structures, for example:

e Using View-Caches: A view-cache is an index-like structure that holds pointers
to tuples of the database relations (or pointers to tuples in other view-caches)
that are used to derive the view data [Rou91, RCK95]. Accessing the view
results in reading the index-like structure (which might be small enough to be
in main-memory) and then retrieving all related tuples from the underlying
database to compute the actual view data. View-caches have been imple-

mented and validated in the ADMS project [Rou91, RCK95].

e Using Discrimination Networks: A discrimination nefwork is a persistent data
structure in the form of a tree or a directed acyclic graph. Each node in the
network has a persistent relation associated with it. The immediate children
of the (artificial) root correspond to the database relations while the leaf nodes
correspond to the view relations. Intermediate nodes correspond to interme-

diate relations (usually selected portions of base relations) which are material-

IThe decoupled modes cannot be used for immediate view maintenance.
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ized (replicated). A discrimination network called Gator is implemented and

used in the ARIEL active database system [HBH*95, Han96].

The view maintenance problem takes a slightly different flavor depending on how

views are stored.

2.3 Deltas

Systems that support incremental maintenance need a structure that holds deltas: the
tuples to be inserted, deleted or modified in one database transition. A database transi-
tion is a transformation of the database from one state to another through a sequence
of data manipulation commands. A transaction for instance may be used to define a
database transition. A delta is defined as a data structure that holds (the net effect of)
the insertions and deletions to the database during one transition. Deltas are available
through system-defined transition tables [Wid96, SK96], or update logs. The Heraclitus
Project [GHJ92, GHJ*93, ZHKF95] elevates deltas into first class citizens of the database
management system and, in particular, of its query language. Deltas in Heraclitus are

available as system relations.

2.4 Applications

Apart from view maintenance, incremental view maintenance algorithms can be used in a
number of other application areas. This section discusses a few of these applications. The
presented list of applications is not intended to be complete, but, rather, indicative of the
use of incremental algorithms for both database management systems and application
programs that make use of database systems. Some additional applications can be found

elsewhere [Mum95].

Integrity Constraints

Certain types of integrity constraints, including referential integrity and uniqueness of
key constraints, can be expressed as views over the database state [CW90, Sto75]. If such

a view is non-empty in a particular state, then the constraint is violated and the state is
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inconsistent. Symmetrically, a constraint may be violated when its view becomes empty.
The former constraints are negative constraints (nothing can be in the view at any time)
while the latter are positive constraints {something must be in the view at all times). If an
update operation has no effect on the view associated with an integrity constraint, then
the update does not result in a database instance violating the constraint. Incremental
evaluation can be used to detect violations of integrity [CW90, BC79, BW93, Ple93].
Instead of evaluating the new value of the view every time we check for the integrity
of the database, we can use the fact that the view is empty (or non-empty) before an
update, and only determine whether the update induces any change to this view. If
it does, corrective actions, such as, for example, rolling back and undoing the update

operations, are necessary to restore the integrity of the database.

Alerters

Alerters [BC79] are programs which monitor a database and report to some user when
a specified condition occurs. An example of an alerter re-orders items for an inventory
control system when these items are in stock at a quantity below a pre-specified threshold.
Alerters, like integrity constraints, can be associated with views. The triggering events
are insertions and/or deletions from the view predicate associated with the alerter. Again,
incremental evaluation may be a reasonable alternative to evaluate the view associated

with the alerter.

Active Rules

The concept of a trigger is also central to active databases [WC96, GJS92, BA93, BMY1,
SPAMO91] which monitor happenings of events for reasons such as authorization checking,
general integrity maintenance, alerting, real-time application support, workflow manage-
ment support and so on. Active rules are a very powerful modeling mechanism and, as
discussed above, active rules can be used to specify how view maintenance relates to
basic database manipulations. In general, one of the challenges that active rules pose is
the efficient evaluation of rule conditions for triggered rules. Conditions are query ex-

pressions in the query language of the system and their evaluation is considered to be the
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“bottle-neck™ in the execution of active rules. Note that activation of a rule may trigger
other rules which may, in turn, trigger the initial rule again. One can use the fact that
the rule did or did not trigger the last time the rule was considered and incrementally

determine if it needs to be re-triggered [BW93].

Real-Time Applications

In real-time applications, such as in communication network management {[WDSY91,
Has96], the database may change independently of query processing. For example, dur-
ing a network analysis process, certain connectivity data may change asynchronously.
New data may arrive after the query or analysis process has already begun, which may
invalidate the computed results. An alternative to starting the analysis process again
could be to log all new data that has arrived after the process has started and incremen-

tally correct the result based on this information [WDSY91].

Data Warehousing

A data warehouse is a repository of replicated or integrated information from a number of
possibly heterogeneous and geographically distributed information sources [ HGMW*+95,
ZHKF95. ZGMHW95|. Data warehousing is being recognized as one of the promising new
database applications, towards which current research will likely be directed in the next
few years [SSU95]. A data warehouse can be thought of as a view over the individual
information sources. Special software components in the architecture of a data ware-
house, called mediators [ZHKF95, Wie92] or integrators HGMW*95], are responsible for
updating the warehouse view in response to updates to the individual data sources. An

interesting discussion on the architecture and formalization of mediators is presented by

Zhou and Hull in [ZH96].

Other

Incremental algorithms have also been studied in a number of other areas. These in-
clude: reasoning about changes [Kic91, UQ92]; distributed computing [AISN90, Ita9d1],
programming languages [SH91, TR81]; maintenance of graph properties [BKV90, CC82};
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and maintenance of other data structures [CH91, Jag90, KP81] or database snapshots
[LHM*86]. A study of methods for incremental database query computation is provided
elsewhere [Vis94].

2.5 Algorithms for Incremental View Maintenance

In this thesis we concentrate solely on the problem of propagating updates from the
database to the view. The reverse problem of translating updates submitted to a view
into database updates is a complimentary problem, and is not included in the scope of
this thesis. For related work in this area, the reader is referred to [DB82, FSDS79, Kel85,
BS81].

This section reviews proposals for incremental query evaluation for both relational

and deductive databases [ABW88, BR86, UlI88, GM95].

2.5.1 Non-Recursive Views
Finite Differencing

Koenig and Paige [KP81] support derived data in the context of a functional/binary
association data model. In their framework, the derived data are base relation attributes
or aggregate functions on them. The average salary of employees is such an example.
Koening and Paige’s approach to the automatic maintenance of derived data is based on
the transformational technique of finite differencing. Every transaction T is replaced by
a semantically equivalent transaction T”, which, in addition to what T does, also adjusts
the views appropriately. Since T varies according to the view definitions, it is called
the differential of the view definition with respect to T'. Transaction T” is obtained from
transaction T by inserting into T' certain lines of code that preserve the view definition.
The fundamental unit of such code is the derivative and is defined for single derived data
and single tuple updates. Hence, the algorithm for computing the differential depends
on the availability of derivatives for various derived data/primitive update pairs.

This is the first proposal that addresses incremental view maintenance and many

other methods are influenced by it. In the literature, such methods are referred to as
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program transformation methods: given a view definition, and perhaps an update, a

program is derived?, whose evaluation maintains the view.

Counting

Blakeley et al. [BLT86] propose an algorithm for updating views defined with select-
project-join (SPJ) expressions, an important subset of SQL. An additional attribute.
called the multiplicity counter, is attached to each tuple to handle deletions correctly.
For base relations, it need not be explicitly stored since its value for every tuple is always
one. For view tuples, the multiplicity counter records the number of operand tuples
that contribute to it. If a tuple is inserted into a relation, its multiplicity counter is
incremented by one. If the tuple is deleted, its multiplicity counter is decremented by
one. The tuple is deleted only when its counter becomes zero. Basic set-manipulation
operations such as select and project are redefined to consider these counters. Given a set
of insertions into and deletions from base relations, the algorithm derives SP.J expressions
whose evaluation determines the tuples to be inserted into or deleted from the view. A
transaction to update the view is also generated.

The counting algorithm of Gupta et al. [GKM92, GMS93] tracks the number of al-
ternative derivations, called count, of each tuple in the materialized view, in the same
way as the algorithm of Blakeley et al. [BLT86]. Given a program T defining a set of
views, the counting algorithm derives a program T at view compile time. The incre-
mental program T uses the changes made to base relations and the old values of the
base and view relations to produce as output the set of changes that need to be made
to the view relations. The count value for each tuple is stored in the materialized view.
The changes to base relations are specified by delta predicates, where inserted tuples are
represented with positive counts and deleted tuples are represented with negative counts.
The incremental view maintenance algorithm works for both set and duplicate semantics
and for views with safe stratified negation and stratified aggregation®. On non-recursive

views, counts can be computed at little or no cost above the cost of evaluating the view.

2A program is a collection of deductive rules or SQL statements.
3For definitions of stratified negation and aggregation, refer to Ullman [UlI88] and Mumick et al.
[MPRA0].



CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS AND TECHNIQUES 19

The authors recommend the use of this algorithm for non-recursive views only (because
for recursive views their method may not terminate (GMS93]).

Shmueli and Itai [SI84] also use multiplicity counters for the number of different
derivations of a tuple but they use specialized data structures to support them. For
instance, each tuple in the database contains pointers to all tuples derived from it. Nico-
las and Yazdanian [NY83] use counts to reflect some types of derivations (but not all

derivations).

Production Rules

Ceri and Widom [CW90, CW91] study views from a larger class of SQL. They define views
as general SQL queries with only a few limitations (such as, only one level of nesting in
subqueries). The user is required to specify the view along with key information about
the base relations. Syntactic analysis on the view definition based on key information
determines whether the view may contain duplicates and whether efficient maintenance
is possible. If the view does not contain the keys of all relations used to defined it. then
it may contain duplicates, and this algorithm does not work. Otherwise, the method of
Ceri and Widom automatically derives a set of production rules (essentially active rules)

for it. This method has been implemented in the Starburst system [HCL*90, Wid96].

Algebraic Methods

Griffin and Libkin provide an algebraic approach to view maintenance [GL95]. They
algebraically define the notion of delta propagation and provide two sets of delta prop-
agation expressions: one for deletions and one for insertions. Furthermore, their results
are presented for an algebra with multiset semantics. In fact, this is the method adapted
in this thesis (see Chapter 3 for more information on this work). The work of Griffin and
Libkin was inspired by the earlier algebraic treatment of the problem for the traditional
relational algebra by Qian and Wiederhold [QW91}, which was later corrected by Griffin,
Libkin, and Trickey [GLT]. A similar algebraic approach for views with aggregation has
been provided by Quass [Qua96].
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2.5.2 Recursive Views
Rederivation Methods

Gupta et al. [GMS93] suggest the use of their counting algorithm for non-recursive
views only. For recursive programs, they propose the “Delete and Rederive” algorithm.
Instead of using counts to handle deletions, this method first deletes from the view
an overestimate of the tuples to be deleted and then re-derives those with alternative
derivations. Inserted tuples are handled by deriving all new tuples as well as tuples that
obtain additional derivations. All these steps are carried out through the execution of
automatically generated delta rules. Similar algorithms for stratified Datalog programs

are proposed by Kiichenhoff [Kic91], and Harrison and Dietrich [HD92].

Maintenance in Languages with Less Expressive Power

Dong and Topor [DT92] study regular chain Datalog programs, which are programs with
some restricted form of linear recursion. Their algorithm constructs a nron-recursive
program to compute the delta between the view after an update and the view before the
update. It first derives a regular expression that corresponds to the view definition, and
then, depending on the structure of that regular expression, it generates the appropriate
delta rules. Dong and Topor also discuss a modified version of this algorithm for arbitrary
Datalog programs but, for arbitrary programs, the generated incremental programs are

not necessarily non-recursive.

Their algorithm handles insertions only. Dong, Libkin and Wong [DLW95] showed
that transitive closure cannot be maintained in traditional relational languages under
deletions of edges. Furthermore, they showed that recursive queries in general cannot be
maintained in languages with the expressive power of SQL (excluding, of course, SQL3

which supports recursion).

The problem of maintaining transitive closures has also been studied [CC82, CH91,

Jag90, Jak92, BKV90, AISN9Q).
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Reasoning Methods

A method for computing changes in predicates defined in safe stratified Datalog is pre-
sented by Urpi and Olivé {UQ92]. Their method is based on the notion of events: ezternal
events are updates to base predicates; internal events are updates to derived predicates.
A transition is a transformation from one database state to the next. There exist equiv-
alences that relate the old state of each predicate with its new state. For example, such
an equivalence might be that “a tuple is in the old state, if and only if the tuple is un-
changed, or either deleted or modified in the new state”. Given these equivalences and
the rules of the deductive database, the algorithm derives transition rules that relate the
old state of a predicate with the new state predicates and events. In addition, inser-
tion, deletion, and modification internal events rules allow the deduction of the induced
insertions, deletions, and modifications that occur in a transition. All these rules are
simplified and evaluated using standard SLDNF resolution.

Kichenhoff also develops an algorithm to compute changes induced by updates to
deductive databases {Kiic91]. Three different classes of potential changes introduced by
updates are possible. All of them are described by meta-predicates whose definitions are
expressed as rules. The evaluation of these rules is done using the standard evaluation
procedure of the deductive system. The first class of changes pertains to the dependency
of derived facts from given updates. A specific dependency is relevant to the computation
of change, if it corresponds to a successful derivation path before the update but not
afterwards (and vice versa). Thus, the second class of potential changes are those to the
derivation paths. The full delta is defined as the set difference between the stable model

of the state before the update and the state after the update.

Magic Methods

The proposal of Anand and Vista considers deductive databases and programs that con-
tain general recursion, negation and aggregation [Ana96, AV95]. It improves on previous
results [GKM92, BLT86, GMS93]) in that it does not require that every derived relation
be stored. Their proposal includes a rewriting stage that guarantees correct evaluation

of delta predicates, even when some of the intermediate results are not available in a ma-
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terialized form. Another improvement of this method is that it does not require a special
evaluation procedure for its implementation, but it can, quite naturally, be used with the
standard naive and semi-naive evaluation procedures [Ban85, Ull88]. An optimization
similar to magic sets [BR87, MPR90] is also incorporated into the algorithm. Mumick
and Pirahesh [MP94] discuss the importance of integrating magic sets with traditional

optimizations, such as selection pushing.

2.6 Other View-Related Work

1. Queries Independent of Updates

Sometimes the updates to the database leave the views intact. Determining whether
a particular view is affected by a given update is a problem that has been stud-
ied [BLT86, BCL89, Elk90, LS93]. These proposals (some for relational alge-
bra [BLT86, BCL89] and some for Datalog [Elk90, LS93]) provide tests that the
database system must execute to determine the relevance of the update to a view.
To be useful, these tests should be not be very expensive to compute, compared to
the cost of determining (say through incremental computation) that nothing in the

view does, indeed, change.

to

Self-maintainable Views

The idea of self maintainable views can be summarized as follows: for certain
views, given an update and the view definition (and perhaps additional information
about the view and the database), one might be able to determine that the view
can be updated without accessing the database, by simply manipulating the old
value of the view and the update [GM95. BCL89, Huy96, GIM96, QGMW96].
For example, views that correspond to selections from database relations are self-
maintainable, because one can check whether an inserted (or deleted) tuple in the
database relation satisfies the selection condition of the view, and therefore whether

it needs to be added into (or deleted from) the view.
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3. Adapting Views After Redefinitions

This problem refers to the following scenario. Suppose that a view is materialized
and the view is redefined by changing its definition slightly. If the second view is
also going to be materialized, it might be possible to use the old value of the view
and adapt it to conform to the view’s new definition appropriately. This problem

has been studied by Gupta et al. [GMR95].

4. Answering Queries Using Views

If views are materialized, the query processor might be able to use this set of
materialized views, in order to answer other queries [LMSS95, FRV96]. In general,
this problem is difficult, but a solution to it might be very useful, especially in
applications where the data are not available directly. An example of such an
application is the world wide web, where data of some conceptual schema are only
available though their views provided at certain web sites [LRO96]. The problem
of rewriting a query into an equivalent form that uses the views has been shown to

be (at least) NP-complete [LMSS95].

2.7 Previous Work on Performance Evaluation

Blakeley and Martin (BM90] have studied experimentally the relative performance of
three methods of obtaining the new value of a view. The view that they consider is the
equijoin of two relations, which is maintained in response to updates to one relation only.
Blakeley and Martin compare three different scenarios: a) maintaining a join index to
easily compute the view; b) using a materialized view; and, c) re-evaluating the view,
after each update, using a hybrid-hash join method. Their results indicate that the
materialized view has the fastest performance when the join selectivity and the update
activity are both moderate. The term update activity refers to the percentage of tuples
modified between two consecutive queries involving the view. When the selectivity is
high (more than llarger than the base relations, re-evaluating the view performs better.
However, for selectivities lower than land for update activity larger than 10join-index

has the lowest cost.
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Roussopoulos tested experimentally the use of view caches to implement materialized
views [Rou91]. A view cache is a data structure containing pointers to tuples of database
relations (or tuples of other view caches) needed to derive the tuples in the view. In
other words, a view cache does not exactly implement a materialized relation, but it
can be used to efficiently compute its value. Roussopoulos tested the performance of
computing the relation of a view either by re-evaluation or by utilizing some incremental
maintenance method specific to view caches. He tested a join between two relations and a
join of three relations, with and without selection conditions on them. Only one relation
was modified during these experiments. His results indicate that when the update is no
bigger than 21% of the database size, then the incremental methods save at least 69%
of the I/O required by the re-execution methods. A similar observation is made for the

CPU time as well.

2.8 Relationship to our work

In this thesis we concentrate on the optimization aspect of query expressions for view
maintenance. Qur work applies to the immediate update propagation strategy discussed
in Section 2.1. In our framework, views are implemented as relations and changes to
the database relations are also available as relations, as discussed in Sections 2.2 and
2.3. The data model for which we study the incremental view maintenance problem is a
multiset algebra with SQL semantics without nulls. The change propagation expressions
that we study are taken from a paper of Griffin and Libkin [GL95]. Our experiments

compliment and extend those performed by other researchers.



Chapter 3

Change Propagation Expressions

In this chapter we lay the foundations of incremental computation. First, we present
the algebra for which change propagation and incremental expressions are studied and
we show how the data manipulation language SQL maps to this algebra. Then, we
present the formal definition of relation updates, database updates, change propagation
expressions and incremental expressions. Finally, for each operator in the algebra, we
present the change propagation expression that computes the change to the value of the

operator from the inputs to the operator and their changes.

3.1 Data Model

The underlying data model for which our results about incremental computation are
presented is relational algebra, sufficiently extended to be consistent with the SQL query
language [DD93]. The database relations are typically sets or, less often, multisets. A
relation is a multiset when the relation contains one or more copies of one or more tuples.
As a special case, a set is a multiset. Moreover, the results of operations on multisets are
themselves multisets.

Addressing the problem of incremental computation for the algebra and not directly
for SQL has a number of advantages: a) it makes the presentation of change propagation
and incremental expressions compact; b) it makes the process of deriving these expres-
sions easy to understand; c) it simplifies the proofs of correctness; and, d) it makes the
framework extendible to allow for the easy addition of new operators.

The operations supported by our model are described next, together with their cor-

25
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responding SQL construct(s). In what follows, let A and B be two multisets.

e The expression A is the multiset A. [t corresponds to SQL’s “SELECT * FROM A”

clause where A is a table.

e The cartesian product A x B has ¢, x c; duplicates of tuple t = (¢, ), if t; appears
¢, times in A and t; appears ¢; times in B. The cartesian product corresponds
to SQL’s “FROM” clause when more than one table reference appears in it. [t also

corresponds to the “CROSS JOIN” clause.

e The selection og( A), where & is a conditional expression, has ¢ duplicates of tuple
t. if t satisfies the condition 8 and 0 duplicates if ¢ does not satisfy the condition,
for each ¢ that appears ¢ times in A. The selection corresponds to SQL’s “WHERE”
and “HAVING” clauses.

e The projection wx(A), where X is a list of select items, has as many tuples as A
has. From each tuple of A, a tuple appears in mx(A) with only the attributes of
X. A select item has the form “scalar-expression [ AS column ], where the
scalar expression typically (but not necessarily) involves one or more columns of
table A. The projection corresponds to SQL’s “SELECT ALL” and “SELECT” clauses,

when the items appearing in them do not contain aggregate functions.

e The duplicate elimination e( A) has one copy of each tuple t € A. It corresponds to
SQL’s “SELECT DISTINCT".

o The projection distinct n%(A) is equivalent to e(mx(A)).

o The aggregation agir.ci(A) is an expression where F' is a non-empty list of aggregate
items and G is a (possibly empty) list of attributes of A. Each aggregate item has the
form “f;(X) AS column” where f; is an aggregate function and X is an attribute
of A. Common aggregation functions are COUNT, MAX, MIN and SUM. Informally,
the meaning of this operator is defined as follows: We group the tuples of A in such
a way that each group contains all tuples with the same values for the attributes

in G - thus having as many groups as there are distinct values for the attributes
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in G. If G is empty, there is only one group. Then, for each resulting group,
we extend the attributes of the tuples in the group with as many new attributes
as aggregate items appearing in F. The name of a new attribute is described in
the corresponding aggregate item. The value of the new attribute is the result of

applying the aggregate function of the aggregate item on all the tuples in the group.

More formally,

agir.ci(A) = agir.q)(agim6i(- - - agimi61(A) .. .)), where each F; € F(1 < < k)
and,

R x {aggregate f;(X) of F; applied to attr. X of R} ifG =10
agircl(R) = :
Uten-‘*c(R)(ag[F'.;@](aR-Gzt(R))) otherwise
e The difference A — B has max{c; —c;, 0} duplicates of tuple £, if A has ¢; duplicates
of t and B has ¢; duplicates of . The difference corresponds to SQL’s “EXCEPT ALL”

clause.

o The difference distinct A —¢ B has a single copy of each tuple ¢ such that t € A
and t ¢ B. The difference distinct corresponds to SQL’s “EXCEPT” clause.

e The union AU B has ¢; + ¢, copies of tuple ¢, if A has ¢; duplicates of ¢ and B has
¢ duplicates of . The union corresponds to SQL’s “UNION ALL” clause.

¢ The union distinct AU? B is equivalent to e{ AU B). The union distinct corresponds

to SQL’s “UNION" clause.

e The intersection AN B has min{c;,c,} copies of tuple ¢, if A has ¢; duplicates of
t and B has ¢, duplicates of t. The intersection corresponds to SQL’s “INTERSECT
ALL” clause.

o The intersection distinct AN? B is equivalent to e(AN B). The intersection distinct
corresponds to SQL’s “INTERSECT” clause.
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e Finally, the join A My B is a shorthand for o4(A x B), where 8 is a conditional
expression. The join corresponds to SQL’s “A JOIN B ON 8" clause. If 8 is a con-
junctive condition involving only equations between attributes of A and attributes
of B whose names are identical, the join also corresponds to SQL’s “A JOIN B
USING attributes of 6”. Moreover, if § contains all attributes of A and B, the join
corresponds to the “A NATURAL JOIN B” clause.

Thus, the results of 74, —¢,U%,N%, e have no duplicates, while the result of the other
operators may have duplicates. Except from —¢, these operators are not needed and can
be expressed easily in terms of e. We include them in the language only in order to show
the complete set of logical algebra operators supported by the optimizer presented in this

thesis.

Note that there is no operator in the algebra that corresponds to sorting. We do
not regard this as a limitation of the language. The presented algebra is a declarative
language. An implementation of the algebra, such as the one by RHODES, can introduce

sorting, but sorting does not play an important role in the issues discussed in this chapter.

Also, note that we do not provide a formal proof of the equivalence of this algebra
with SQL (modulo sorting). Ceri and Gottlob [CG85] described a two-step translation
from SQL to a similar algebra. The algebra in their paper does not consider duplicates as
we do. The first step of their translation generates from an arbitrary SQL expression an
equivalent SQL expression that does not use several of SQL’s language constructs, such
as nested subqueries with EXISTS, ALL, ANY, IN, and so on. The second part of their
translation describes how a grammar can be used to map expressions of this restricted
form of SQL into relational algebra. The multiset algebra described here corresponds
more directly to the (generalization to multisets of the) restricted form of SQL. It is easy
to see that the key language constructs of SQL are preserved in the algebra and to verify

that the other SQL constructs can be mapped into the ones that are maintained without

difficulty.
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3.2 Example

Let us see now an example of how typical SQL statements map into expressions of the
presented algebra. The “Top Supplier Query™ of the TPC-D Benchmark [TPC93] finds
the supplier who contributed the most to the overall revenue for parts shipped in a

particular year, say 1995. We assume the following database relations

LINEITEM(L SUPPKEY, L PARTKEY, L SHIPDATE, L DISCOUNT, L_PRICE... )
SUPPLIER(S_SUPPKEY, SNAME,...)

The relation LINEITEM records the parts shipped by each supplier, the date of ship-
ment, the discount offered and the total price for the entire quantity of the shipped part
before any discount. The relation SUPPLIER records information about suppliers. To

compute the top supplier(s), we can execute the following SQL statements:

CREATE VIEW REVENUE (SUPPLIER.NO, TOTALREVENUE) AS
SELECT L_SUPPKEY, SUM(L_PRICE * (1 - L_DISCOUNT))
FROM LINEITEM
WHERE L_SHIPDATE = “1995”
GROUP_BY L_SUPPKEY;

SELECT S_NAME, TOTAL_REVENUE
FROM SUPPLIER, REVENUE
WHERE S_SUPPKEY = SUPPLIER_NO
AND TOTAL REVENUE =
(SELECT MAX(TOTAL_REVENUE)
FROM REVENUE);

DROP VIEW REVENUE;

In our algebra the above SQL statements are equivalent to the following algebraic

expressions:
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REVENUE = 7r[xvv(1(ag[F;G](G'g(LINEITEM))), where
6 = (L_SHIPDATE = “1995")

F = SUM(L_PRICE * (1 - LDISCOUNT)) as TOTAL_REVENUE
G = L_SUPPKEY

X = L_SUPPKEY as SUPPLIERNO and

Y = TOTAL_REVENUE

7ix,v](SUPPLIER M, (REVENUE My, % (ag(r.)(REVENUE)))), where

F = MAX(TOTALREVENUE) as R.MAX
Z = RMAX

6, = (TOTAL REVENUE = R.MAX)

0, = (S_SUPPKEY = SUPPLIER.NO)
X = S_NAME and

Y = RMAX

Having presented the database relations and the set of operations for manipulating
these relations, we now continue with the formal definition of change propagation and

incremental expressions.

3.3 Formal Definitions

As discussed in Section 3.1, a relation is a finite multiset of tuples, all having the same

(finite) arity. Let R be the set of all possible values for a relation R.

Definition 3.1. A change or update §(R) of a relation R € R is a pair §( R) = (6, 6}%)
where 7 € R and 8% € R satisfy the following properties, knows as the strong minimality

conditions [GL95]:

1. 65 C R,
2. gnéE = 0.

We call 8 the deletions from R and 6} the insertions into R.



CHAPTER 3. CHANGE PROPAGATION EXPRESSIONS 31

In condition 1 of Definition 3.1 above, we use 5 C R to mean that if tuple ¢ appears
¢; times in 8 and ¢t appears c; times in R, then ¢; < ¢;. Condition 1 states that all the
(duplicates of) tuples that we delete from a relation are in fact members of that relation.
Condition 2 states that no tuple is both inserted and deleted into the relation in the same
update.

A databaseis a finiteset { Ry, Ra, ..., Ri} of relations. The relation names Ry, R, . ... R
form the schema of the database. Let D be the set of all possible databases of a given

schema!.

Definition 3.2. A change or update §(D) of a database D = {R,, R,,. .., R} €Dis a
pair 8( D) = (85.6}) where 6 € D and 6}, € D satisfy the following properties:

1. 65 = {bg,,0Rr,:--+0R,}
2. &) = {6%.6%,.---. 6k}

3. (8g,,64,) is an update for relation R;,: < k.

We call 65 the database deletions and &f; the database insertions.

Given a relation R with deletions 85 and insertions &}, the value of the relation after
the update is R* = [R — §g] U8} = [RU6}] — 6. If a tuple appears c times in R, ¢
times in 85 and c; times in 8% (obviously ¢; and ¢, cannot simultaneously be non-zero.
and ¢; < c), then the tuple appears ¢ — ¢; + ¢, times in R”. Similarly, the new value of

a database D is D = [D — §5) U 8}, where here — and U are taken component-wise.

Definition 3.3. A query @ is an expression in the algebra of the data model, and can
be seen as a function @ : D — R. We call the single relation Q(D) the answer to query

@ on database D.

Let @ be the set of all queries in our data model.

Definition 3.4. A change propagation query is a function CPQ : @ XD x (D x D) —
D x D such that, if

!Note that D may not be finite. All relations have finite attribute sets (arity), but attributes may
have infinite domains.
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—

. @ € Q is a query,
D € D is a database, and
3. 6(D) € D x D is a database update,

then, CPQ(Q, D,6(D)) is an update 6(Q(D)) € D x D in the answer Q(D) of query

1o

@ on database D, such that, if 6gp, are the deletions and 65(0) the insertions of that

update, then

[Q(D) - 55(0)] U 55(1)) = Q([D—&B]U&B).

Essentially, this definition says that if the change computed by the change propagation
query is incorporated into the value of the query answer that we had before the database
update, the result is the same as the value of the query answer after the database update.
We call the expression of the change propagation query, change propagation, delta or
differential expression of Q2. We call 66(D} and 65'(13) the incremental updates to Q(D)
with respect to 6(D).

One corollary of Definition 3.4 is that for each query @), database D and database
update 6(D), the value of CPQ(Q, D,é(D)) is unique, i.e., there is a unique change
to every query’s answer. A second corollary is that, if the change propagation query
computes tuples to be deleted, then these tuples are already in Q(D), and no tuple is
computed to be both deleted and inserted in @(D). This is because we have defined

CPQ to return a change, according to Definition 3.1.

Definition 3.5. An incremental update is the update defined by the change propagation
query. In particular, if the change propagation query CPQ(Q, D, (D)) computes the
change 6(Q(D)) = (é5(py65(p))» We call 65 p) the incremental deletions, and &3, the

incremental insertions of the change.

Definition 3.6. An incremental query, IQ(Q,D,6(D)), of a query Q € Q, database
D € D and database update §( D) € D x D, is the syntactic expression

[Q(D) - CPQTIUCPQ?

2We use all these names because they all appear in the literature.
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where (CPQ~,C PQ") are the incremental updates to Q(D) with respect to §( D).

Therefore, we use the term “change propagation expression” to refer to an expression
that specifies the incremental updates to a query’s answer while we use the term “incre-
mental expression” to refer to an expression that incorporates incremental changes to a
query’s old answer.

After having presented the formal definition of updates to both database relations
and relations computed by running queries, we are ready to present the major issues

associated with change propagation and incremental maintenance.

The Change Propagation Problem

Given a query @, a database D and a database update §(D), how do we express the
change propagation query CPQ(Q, D,6(D))? What query expression can we use to
compute incremental changes? We discuss a solution to the change propagation problem

in Section 3.4.

The Optimization Problems

How does computing the incremental changes C PQ(Q, D, (D)) compare to computing
Q(D) or Q(D*)? Also, how does evaluating the incremental expression of a query com-

pare to evaluating the query again? We address these issues experimentally in Chapter 6.

3.4 The Change Propagation Problem

Let D be a database and @ a query expression in the algebra of Section 3.1. By definition
3.4, the change propagation query C PQ(Q, D, §(D)) given a change §( D) to the database,
is the value of expressions é5 and 55 , which are defined in terms of @) and the components
of @ as discussed in this section. To simplify the presentation, we use @ to refer to both
a query and the answer (D) of the query in a database D.

To derive the change propagation expressions for all operators in the algebra, our
methodology is the following. For each query @, we algebraically manipulate the new

value of the query, @Y, in order to bring it into the form [@ — m] U p. The multisets m
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and p potentially define a change for . To prove that (m,p) is in fact a change, we

prove that:

Property 1:| m C @, and

Property 2:{ mnNp=20.

The algebraic manipulations in this chapter generate m and p in such a way that
Property 1 holds but Property 2 may or may not hold. If Property 2 does not hold, then
(m,p) is not a change. In this case, (m — p,p —m) is a change, which we consider as the
change propagation expression. We can do this, because of the following result:
Lemma 3.1.

L Ifm CQ, then [Q —m]Up=(Q~(m—p))U(p—m)

ImCQ,then (m—p)CQ

[SV]

3. Foreachm,p: (m-p)Nn(p—m)=10
a

Proof. Let ¢, ¢, and ¢, be the number of duplicates of a tuple ¢ in each of @, m and
p- To prove 1, we use the assumption that m C @ to get that ¢,, < ¢,. Tuple ¢ appears
max{cq — tm,0} + ¢, = ¢; — cm + ¢, in the multiset in the left hand side of the equation.
Also, tuple t appears max{c, — max{cn — ¢;,0},0} + max{c, — cm,0} in the multiset in
the right hand side. If cm < ¢, this expression is max{c;,0} + ¢, — cm = ¢y — cm + -
Otherwise, it is max{c; —(cm —¢p)} +0 = ¢ — cm +¢,. Removing the assumption m C @
makes Property 1 not to hold. Similarly manipulating the number of duplicates, we can
also prove the properties 2 and 3 of the lemma. O

In the manipulations that follow, we use the algebraic properties that appear in
Table 3.1. Some of these properties are taken from the paper of Albert [Alb91] and the
paper of Grumbach and Milo [GM93b] on multisets. The others can be proven easily.

We continue by presenting the change propagation expressions for each operator in
the algebra. Most of these expressions have been discussed by Griffin and Libkin [GL95].
We prove the correctness of the change propagation expressions, not only for pedagogical
reasons, but also because the proofs describe what over-estimations of changes may be

used for view maintenance instead of the actual changes. As we will see in Chapter 4, for
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Ax(BUC)=(AXB)U(AXC)
AX(B-C)=(AxB)—(AxC(C)
(A~-B)-C=4~-(BuC()

(AUB)=C =(A-C)U(B - (C — 4))
A-(B-C)=(A-B)U[[C-(C~-B)-(B—4)]
A-(B-C)=(A-B)U[C—-(B-A)],when CC B
A-B=A-(B-(B-4))

(A= B)U(A—(A-B)) =4
(A-BY)UC=(AUC)—B,when BC 4
o9(AU B) = a9(A) U oge(B)

oo(A — B) = o4(A) — aa( B)

Tx(AUB) = 7x(4)Unx(B)
ax(A—-B)=7x(A)—nx(B), when BC A
e(AU B) = e(A)U [e(B) — A]

e(A— B)=e(A) = [B - (A - B)]
e(A)— B =e(A) —e(B)
A—(B-C)=A-B,when ANC =0
A—(B-A)=A,whenANB =90
A-(A-B)= B~ (B- A)
(AUB)-C=(A-C)UB,whenBNC =0
A—-(BUC)=A- B,whenAnC =0

Table 3.1: Properties of Multisets

incremental view maintenance, it might be desirable to relax | Property 2

that be satisfied®. Therefore, instead of using the derived (and simplified)

(m — p,p — m) to do view maintenance, we can use (m,p) directly, which are not the

and only insist

changes but over-estimations of them. Doing this has the potential to improve the

performance of incremental view maintenance.

3.4.1 Change Propagation Expressions

Database Relation

If @ = A, for any database relation A, then:

65 =6;
55 = &

3This means that, instead of using the strong minimality conditions [GL95], we use weak minimality

conditions [CGL*96].
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Cartesian Product

Let del{A) = A — 63 and del(B) = B — é5. If @ = A x B, then
QY = A'*x B?
= (del(A)U &%) x (del(B) U &%)
= del(A) x del(B)U 6% x del(B)U del(A) x §5 UL x 6% by P,

Let p= &85 x del(B) U del(A)x §§ U &% x &.

Then,

Q" = del(A)x del(B)Up
= (A-67)x (B-85)Up
= ([Ax (B~-685)]~[53 x (B—65)])Up by Py
= ([AxB—Axég]—[65xB—-63xbg])Up by P,
= (AXxB—-[Axé ;U6 xB—-63x65))Up by Ps

Let m=AxégU (6] xB—-63xég)=(AxégUb x B)—6é3 x bg.
Then,
R = [AxB-m]Up

[s (m,p) a change? The answer is no. It is easy to see that m C Q. However,
mNp # 0. Tosee why, let A = {1,1},B = {1}.6; = {1},65 = {1}. Thus, Ax B =
{(1,1),(1,1)} = (A x B)". However, m = {(1,1)} and p = {(1,1)}.

According to Lemma 3.1, (m—p, p—m) is a change. To obtain the change propagation
expressions for cartesian product, we further simplify m — p and p — m. Before we do
this let us rewrite m as follows:

m = AxégU(é; x B—6; x6g)

= AxégUéd; xdel(B)
= (del(A)U ;) x 85U b5 x del(B)
= 87 xdgUdel(A) x 65 U é; x del(B)
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m—p = [65 xbgUdel(A)xdgUé&; x del(B)]—
(6% x del(B) Udel(A) x 65U &% x 6%]
= &3 x 65U ([del(A) x 65 U &3 x del(B)]—

(6% x del(B) U del(A) x 6% U &% x 65]) by Pro
= 65 xbégU([del(A) x é5 U7 x del(B)]—

[6% x del(B) U del(A) x §3)) by Pao
= 63 x 65 U ([[del(A) x 65 U 85 x del(B)] — 6% x del(B)]—

del(A) x 6%) by P;
= 65 x 65U ([[del(A) x 85 — &% x del(B)] U &3 x del(B)]—

del(A) x §%) by Pjo
= 67 xégUldel(A) x b5 — 6% x del(B)|U

(63 x del(B) — del( A) x 6}] by Pis

and,
p—m = [67 xdel(B)Udel(A) x 65U &% x 6}]—
[(AxégUby x B)— 67 x 5]
= [6f x 85U 8Y x del(B) Udel(A) x 65]—

[A x 65U 63 x B by Pis
= &% x 65U [(6% x del(B) U del(A) x §%)—
(A x 65 Ud3 x B)] by Prg
= &% x §5 U ([[6% x del(B) U del(A) x 65]—
55 x B] — A x §3) by Ps
&% x 65 U [[(del(A) x 6 — 65 x B)U
6% x del(B)] — A x 6] by Pis

= &f x §fU[del(A) x 85 — 67 x BJU
[§% x del(B) — A x §3] by Pio

Selection

If Q@ =04(A), then:
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Q" = oA
= oo((A~87)Us)
= [oa(A) — 08(63)] Uaa(6%) by Ps and Pio

Let m = o04(6;) and p = o4(8}). It is clear that (m,p) is a change since both

properties of Definition 3.1 are trivially satisfied.

Projection

If @ =nx(A), then:
Q" = wx(AY)
= [rx(A) — 7x(63)]Unx(6%) by P and Py

Let m = wx(63) and p = wx(6%). Unlike the case of selection, (m,p) is not a
change. It is easy to see that m C Q. However, mNp # 0. To see why, consider
AX,Y) = {(1, )}, 67 = {(1,1)},8% = {(1,2)}. Supposing the projection retains the
first attribute, X, of relation A, both m =p = {1}.

According to Lemma 4.1, (m — p,p — m) is a change.

Duplicate Elimination

If @ =e(A), then
QR = e((A—63)Usk)

= e(A—83)U[e(87) — (A ~63)] by Py3
= e(A—-6837)Ue(8]) — A] by Pis
= [e(A) = (63 — (A - &)U [e(6F) — Al by Py
= [e(A) —e(85 — (A= 63))] U [e(63) — 4] by Pis
= [e(A) —[e(83) — (A= 83) = (85 ~ (A= 6N U [e(63) — A] by Py
= [e(A) — [e(83) — (A= 63) U [e(83) — A] by Pz

Let m = e(67) — (A — 63) and p = e(6}) — A. Intuitively, m contains a unique copy
of those tuples deleted from A that lost all the duplicates they had in A, while p contains
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those tuples inserted in A that did not exist in A before. The derived (m,p) is a change.

Set Difference

IfQ = A— B, let del(A) = A— 67 and ins(A) = AU Y. Obviously, A® = del(A)U s} =
ins(A) — é5. The following equivalences can easily be proven
T,: ins(A)—B=(A—-B)U[6} -(B—-A)] by P
T,: A—ins(B)=(A—- B)—-6} by P
T3: del(A)— B=(A—-B)—-63 by P (twice)
Ty: A—del{BY=(A—-B)U[ég—(B—-A)] by Ps
We use the equivalences T to Ty and the equivalences AY = del(A)U 6} and BY =
ins(B) — bz to get the following:
QY = A"-BY
= (del(A)— B*)U[6F — (BY —del(A))] by T}
= (del(A) — ins(B)) U [65 — (ins(B) — del(A))] U [6] — (B* — del(A))] by T,
= (del(A) — ins(B)) U (65 — (ins(B) — del( A))}|U
[6% — ((ins(B) — del(A)) — §3)] by Ts
(del(A) — ins(B)) U [(6g U &%) — (ins(B) — del(A))] by Py

Let X =6, U6} and Y =65 U 6].

And let,

p = (65U 87) — (ins(B) — del(A))
= Y — (ins(B) — del(A))

= Y —{(B - del(A)) U (83 — (del(A) — B))] by T
= Y-{(B-A)U(67 —(A—-B) U8 — ((A— B) - 87))] by Tsand T3
= —[(B—A JU((63 U éE) ~ (A - B))] by Py
= (Y- (B-4)-(X-(4-5)) by Ps
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Q' = (del(A)—-ins(B))Up
= [(del(A)—B)-$6tjup by T,
= [(A=B)—(85Uét)Up by T3 and P,

= (A-B)-X]Up
= [(A=-B)=[X—=(X~-(A-B))]jup by Fs

Let m= X — [X — (4 — B)].

Then,

Q' = [(A-B)—m]Up

The first question that we must ask is whether the derived (m,p) is a change. The
answer is no. Obviously, m C @ (because m equals, by definition, X N Q). However,
mnNp # 0. To see why, let A = {1,1},B = {1},6; = 65 = {1}. Thus, A - B =
A—-B'={1}and B—-A=0. Also, X =Y = {1}. Thenm = {1} - {{1} - {1}) = {1}
and p = ({1} - 0) — [{1} - {1}] = {1}.

According to Lemma 3.1, (m — p,p — m) is a change.
Let us simplify m — p:

m—p = [X—-(X-(A-B))|-[(Y - (B-A4)) - (X -(A-B))]
= [(A-B)-((A-B)-X)|-[(Y - (B-A)) - (X —(A-B))] by Ps
= (A-B)-[((A-B)-X)U[(Y = (B-A) - (X —(4-B))]] by P

= (A-B)-[(A- B)U(Y — (B — A))] - X] by P,
= (A—-B)~-[[(YU(A- B))- (B - A)] - X] by Pie
= (A=B)-[(YU(A-B))— (XU (B - A))] by P
= (A=B)—[((A-B) = (XU(B - A)))U

[Y — (X U(B = A)) = (A= B))] by P,

= (A-B)-[((A-B)-X)u (Y — (X - (A= B)))] by P4
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(A - B) —((A B)uY)U

(X —((A-B)UuY))-[(YU(A-B)) - (A= B)]] by Fs

(
[
[
= [X - X—((A ByUY)) -Y
(
(
(

X
X —
X -¥)=[(X -Y)=(A-B)]
X —-Y)N(A-B)

Also, let us simplify p — m

p—m = [(Y = (B-A) - (X-(A=-B))] - [X - (X - (A - B))]
= (Y-(B-4)-[(X-(A=-B)U[X - (X - (4-B)Il

= [Y-(B-A)-X
= (Y-X)~(B-A)

Union

If Q=AU B, then:
QU — Aquv
= (A-4637)U(B—-4dg5)Usiuéf

Let p = 8% U 65.

Then,

Q" = ((AU(B-6"B))—63)Up by Fs
= (((AUB)=b5)-63)Up by Fs
= ((AUuB)—(65Uég))Up by Ps

Let m = 65 U 65.

A—B)-[((A-B)UY) - X] by P,

Y)—(X-({(A-B)UY)) by Ps

41

by P3
by P7
by P; (twice}

Obviously m C (A U B). However (m,p) is not a change, because m N p # @, when

§7N65 # BoréiNég #0. According to Lemma 3.1, (m — p,p — m) is a change. In

fact, m — p,p — m are the change propagation expressions for union.



CHAPTER 3. CHANGE PROPAGATION EXPRESSIONS 42

Aggregation

Aggregation is the only operator in the algebra for which we do not adopt the algebraic
approach in proving the correctness of the change propagation expressions. Rather. for
aggregation, we describe algorithmically how the change propagation expressions to views
with aggregates are defined. We do this first for views where aggregation is computed
with respect to all the tuples in the relation (one group), and then for views where

aggregation is computed with respect to some grouping attributes {many groups).

Aggregation over one group

COUNT

Let @ = agicount(x) as v:0)(A). Let us abbreviate with F’ the aggregate item “COUNT(.X') as Y.
For COUNT, the aggregation column Y holds the number of different tuples appearing in
A. Let,

o C =1{(Q),i.e. c€ C is the number of tuples in A before the update,
o Ct = r}(agprg(6})), i.e., ¢t € C* is the number of tuples inserted into A, and
o C~ = r{(agrg(é7)), i-e., ¢~ € C~ is the number of tuples deleted from A.

We have two cases:

1. If ¢© = c¢*, then the number of tuples in A before the update is the same as the
number of tuples in A after the update. The value of the aggregate value of the
view is not affected. The change to the view is

bg = 65 x{c}
(53 = 51' X {c}

o

If ¢~ # c*, the number of tuples in A before the update is not the same as the
number of tuples in A after the update, which is ¢— ¢~ 4+ ¢t. Therefore all the view
tuples must change, and the update to the view is:

55 = Q

66 = A*x{c—c +ct}
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This shows a limitation of our approach to model only insertions and deletions. In
this case, it is better to say that 5 = 63 x {c} are the tuples that are deleted
from the view, 85 = &% x {c — ¢~ + c*} are the tuples that are inserted into the
view, and the other tuples in the view are modified by changing the aggregate value
from ¢ to ¢ — ¢~ + ¢*. However, in this section, we are concerned with the change

propagation problem and not with the incremental maintenance problem.

We can test for conditions 1 and 2 by running the tests Test;, and Test, respectively®.
Test, = C—nCt
Test, = C~ —=C*

Then, we can summarize the changes to @ as follows:
80 = Tattrs of Q([Testl x 63 x CJU [Test; x Q))
68 = Tattrs of Q([Testl X 6% x CJU [Testy x A¥ x mg1-52483(C x C~ x C*)])

The role of the dollar sign in the expression for 6} is to give the value of the cor-
responding attribute. Thus, $1 is the value of the first attribute, $2 is the value of the
second attribute, and so on. The — and + in the expression $1 — $2 + $3 correspond to
subtraction and addition of numbers.

sSUM

The aggregate SUM is treated similarly to COUNT.

MIN
Let Q = agpn(x) as v.9(A). Let us abbreviate with F' the aggregate item “MIN(.X) as Y.

For MIN, the aggregation column Y holds the minimum value of the attribute X. Let,
o M =r7{(Q),i.e., m € M is the minimum value for the attribute X in A before the

update,

o M* = ni(agirg(6})), i.e., m* € M* is the minimum value for X from all the

inserted tuples, and

o M~ = n{(agrg(87)), i.e, m~ € M~ is the minimum value for X from all the

deleted tuples.

4The test is successful if and only if the relation corresponding to the test is non-empty.
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We have four cases:

1. If m* < m, a new minimum is inserted and all the view tuples must change. The
update to the view is:
65 = Q
55 = AYx {m"'}

(V]

. If m* > m and m~ > m, the minimum X value is not affected. The update to the

view is:
bg = 63 x {m}

3. Let C = n%(agcomr(x) as z2)(0x=m(A))) and C~ = 7% (agicomr(x) as ze(Tx=m(63)))-

Thus, ¢ € C counts the number of tuples from A with the minimum value for X and

¢~ € C~ counts the number of tuples deleted from A that give the minimum value
for X. Then, if m* > m, m~ = m and ¢ > ¢, some tuples with the minimum
X value are deleted but not all of them, and, therefore, the minimum value is not
affected. The update to the view is:

bg = 63 x {m}

65 = &% x {m}

4. If m* > m, m~ = m and ¢ = ¢~, all the tuples with the minimum X value are

deleted. The new minimum must be found. The update to the view is:
bg = @
65 = agirg(A”)
We can test for conditions 1, 2, 3 and 4 by running the tests Test;, Test,, Test;, and

Test, respectively,

Testiy = ws1(0sa<s1(M x M™))

Test; = ms1(Ts2>s1a81<53(M X M+ x M™))

Test; = ms1(os23s1a81=53a845s5(M X M+ x M~ x C x C7))
Testy = ms1(0s2581n81=83n81=55(M X MT x M~ x C x C7))

Then, the changes to @ are described by the following:
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b = Tattrs of Q([(Testy U Testy) x QU [(Tests U Tests) x &3 x M])
68 = Tatirs of Q([Testl x AY x MY U [(Test, U Tests) x 65 x M| U [Testy x agrg(A°)])

MAX

The aggregate MAX is treated similarly to MIN.

lAggregation over many groups

Let @ = agirig)(A), where F' is an aggregate item involving one of the aggregate
functions COUNT, SUM, MIN or MAX. The groups that are affected by the update to A can

be determined by 7%(é; U 6Y). For each affected group g € n&(65 U 6Y), we have

® 0G=4(A) is the group in the relation A,
® 0¢=,(83) are the deletions to this group, and

® 06-,(8%) are the insertions to this group.

We can use the techniques discussed for the case of one group to find the updates to

each group. The update to the view is the union of the updates for each group?.

Other Operators

The change propagation expressions for the rest of the operators are derived by rewriting

their expressions. Thus,
o if Q = A—? B, then Q can be rewritten as Q = ¢(A) — B;
o if Q = 7% (A), then Q can be rewritten as Q = e(mx(A));
o if Q = AU? B, then Q can be rewritten as Q = e(AU B);
o if Q = AN B, then @ can be rewritten as Q@ = A — (A — B);
o if Q = AN? B, then Q can be rewritten as Q = e(A)N B = ANe(B) = e(AN B);

o if Q = ANy B, then @ can be rewritten as Q = g¢(A x B).

5Note, however, that this is an algorithmic treatment of the aggregation over many groups. The
generalization over many groups cannot be expressed in our language.



Chapter 4

Optimizations

In this chapter we propose a variety of optimization strategies in order to simplify change
propagation and incremental expressions. There are three main categories of such opti-
mizations: optimization specific to incremental maintenance, optimization in the presence

of key constraints, and optimization in the presence of foreign key references.

4.1 The Incremental Maintenance Problem

“’he incremental maintenance problem is related to the change propagation problem
discussed in the previous chapter. The change propagation problem pertains to the
definition of changes to the value of queries. The incremental maintenance problem
pertains to the definition of the new value of the query using the old value of the query
and the changes to it. In the previous chapter we showed how equations for change
propagation are derived for each operator in the multiset algebra. In this chapter, we
discuss over-estimations of changes that have the potential to improve the performance
of incremental view maintenance. Using over-estimations of changes have been proposed
by Colby et al. [CGL*96].

The methodology used in the previous chapter to derive the change propagation

equations was the following:

1. we start with the new value of a query QY

2. we algebraically manipulate the expressions for Q¥ to bring it into the form [Q —

m] U p, in such a way as to ensure that | Property 1: m C Q|is satisfied,

46
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3. we use Lemma 3.1 to define (m — p,p — m) as the change propagation expressions,

when the generated m and p do not satisfy | Property 2: mNp= @[ and

4. we simplify (m — p, p — m), if possible.

One question that we might want to ask is: what is the significance of the properties
that the change propagation expressions satisfy? Why do we insist on them? Both
these properties are very important when the change propagation expressions are used
for integrity constraint maintenance, or reasoning about change; in other words, when
the change of the old and new value of a query is necessary. Griffin and Libkin refer
to satisfaction of both these properties as the minimality condition [GL95, CGL*96].
We make the observation that we can relax the second property when incrementally

maintaining the query. We can do this, because Ym, p, @ such that m C @,

@—-(m~plU(p—m) = [Q-m]Up

We cannot relax the first property, as the above equation no longer holds.

The tradeoff between using {(m, p) and using (m — p, p — m) is analogous to duplicate
removal. In the same way that early duplicate removal may improve the performance of
subsequent operations {because it reduces the sizes of the relations involved in subsequent
operations), computing minimum deltas must be done as early as possible. On the other
hand, like duplicate removal, minimum delta computation is expensive, and expensive
operations should be avoided if possible.

Definition 4.1. For each query @, database D and database update 6( D), any (Ag, Af)
that satisfy

1. Q'(D)=[Q(D)— Ag(D)]UAY(D)

2. Ag(D) € Q(D)

specify over-estimations of the change to the query answer Q(D).
In the previous chapter, in Section 3.4.1, we showed how we define the incremental

changes 6, (the equation for m — p) and &3 (the equation for p — m) for each query

expression ). Tables 4.1 and 4.2 summarize these definitions.
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6~ (oe(A)) = 04(83)

§~(vx(A)) = mx(63)— mx(&Y)

6 ) = e(by)—(A-46))

6 (Ax B) = 6;x6gU[(A—637)xép~8% x(B-65)uU
[63 x (B —85) — (A = 83) x 6]

§7(A=B) = [(63U8h) - (sgudi)N(A—B)

§~(AUB) = (6;Ubz)—(61U6H)

Table 4.1: Equations for computing 6~

§*(0g(A)) = oo(63)

¥ (wx(A) = wx(8%) —7x(83)

§t{e(A)) = e(6f)—-A

8T (Ax B) = &y x&5U[(A—67) %65 —67 x BJU
[6% x (B —é5) — A x é3]

§*(A-B) = ((pUd}) — (87U 85)) — (B —A)

§T(AUB) = (65U édh)—(67U65)

Table 4.2: Equations for computing §*

The proofs of correctness of Section 3.4.1 for the definitions of the incremental changes
m — p and p — m also provide one possible set of over-estimations, m for deletions and p
for insertions. Thus, m gives the over-estimation of deletions A~ and p gives the over-
estimation of insertions A*. These A~ and A* are expressed in terms of the 6~ and 6%
of the inputs in Section 3.4.1. Except for the case of duplicate elimination, in deriving
the equations for them, we have not used the fact that the 6~ and §* of each input are
disjoint multisets and therefore we can safely substitute A~ and A* for the inputs in
place of their 6~ and é*. In the case of duplicate elimination, it is not possible to define
over-estimations of the changes. The actual incremental changes are considered as their

trivial over-estimations.
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Tables 4.3 and 4.4 summarize the definitions of the over-estimations A~ and A*Y.
From now on, when we say over-estimations A~ and A*, we will mean the over-estimations

defined by the equations in these tables.

A~(A) = 03 for database relation A

A7(ap(A)) = 09(A])

A (rx(A)) = 7x(A7)

A7(e(A)) = 67(e(A))

AT (Ax B) = [A7JxBUAxXxAg]—-A; xAjp

A“(A—-B) = (AjUAfN(A-B)

AT(AUB) = AJUAR

Table 4.3: Equations for computing A~

At(A) = &% for database relation A

A*(og(A)) = o9(AF)
At(rx(A)) = mx(AJ)

A*(e(A)) = &%(e(A))

At(Ax B) = [AYx(B-Aj)U(4A-Aj AU A x AL
A*(A~B) = [(AgUA})-(B-A)]- [(AZUL\E)—(A—B)]
At(AUB) = ATUAZ

Table 4.4: Equations for computing A*

The relationships between the operators discussed in this section are as follows:

1. the incremental changes are the net effect of their over-estimations, i.e., 65 =

Ag —A*Q' and 6% = Af — Ag;

2. each over-estimation contains the incremental change and an excess of tuples A
(possibly empty), i.e., there exists a multiset of tuples A such that Ay = 65 U A,

+ s+ — A= +

A =85UA, and A = Az NAJ.



CHAPTER 4. OPTIMIZATIONS 50
4.2 Optimization in the Absence of Duplicates

The equations for the delta and the over-estimation of the delta of a relation can be
simplified, if the relation is known not to contain duplicates. To verify that a relation does

not contain duplicates, we can use the following sufficient (but not necessary) conditions:

A relation does not contain duplicates, if

o the relation is generated by 7. e,n? U -2 or
e the relation always contains at most one tuple, or

e the relation contains at least one key.

As in relational algebra, relations in our multiset algebra may have sets of one or
more attributes serving as keys. We say that a non-empty set S of attributes of relation
R is a key for R, if no instance of R can have two tuples that agree in all the attributes of
S. Therefore, it follows from the definition that a relation with at least one key does not
contain duplicates. For database relations that contain at least one key, exactly one of
them is designated as the primary key; the others are called alternate or candidate keys.

If R is generated by one of the operators 7%, e,N% U% or —¢, then R has a key. The
key is formed by taking all the attributes of R. Also, if every instance of R is known to
contain at most one tuple, then each attribute of R is sufficient to determine a unique
tuple in the relation (if one exists), and any attribute can serve as a key. This allows us

to revise the sufficient condition for checking duplicates to:

A relation does not contain duplicates, if the relation contains at least one

key.

From the above discussion it follows that a relation may have more than one key. The
set keys(R) contains the keys for the relation R. Next, we describe how the keys for a
relation computed by a query expression are generated from the inputs to the operators

in the query expression and their keys.
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4.2.1 Generating Keys for Query Expressions

The set of keys of a relation specified using a query expression can be generated recursively
by applying the following algorithm (bottom-up) to all operators in the query expression.

We define the boolean condition Qlétuple(R) to be true when R contains at most one
tuple. There is a simple sufficient condition for testing whether a relation contains at
most one tuple (without computing the value of the relation) by examining its keys: a
relation contains at most one tuple if the empty set of attributes is a key. The algorithm

for key derivation is based on the following inference rules!:

e A x B: The set of keys of the cartesian product contains all possible combinations
of the keys of A with the keys of B, if both A and B have non-empty sets of keys

and both A and B contain more than one tuple. In particular:

) if keys(A) = @ or keys(B) =0

keys(A) if ~01tuple(A) A Oltuple(B)
keys(AxXB) = { keys(B) if Oltuple(A) A =01tuple(B)

keys(A)U keys(B) if Oltuple(A) A Oltuple( B)

{ky Uks : ky € keys(A), k2 € keys(B)} otherwise

e 0y(A): The key set of the selection is the same as the key set of the input, if the
selection filters more than one tuple from A:

> ) {X}: X €attrs(A)} if 9 selects 0 or 1 tuples
keys(aa(Ad)) = { keys(A) if @ selects > 1 tuples

If the selection filters more than one tuple and the selection condition 8 bounds
some attributes of A, the keys can be simplified by removing the bound attributes
from them. An attribute of a relation is said to be bound if all tuples in the relation
contain the same value for that attribute. Let S be the set of attributes of A
that the condition # bounds. Also, let X be the set of attributes that 8 directly
or indirectly equates with the X attribute. In every key containing X, we can

substitute X with ¥ € X*. The simplification process is:

YThis is a sound but not complete set of inference rules.
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Repeat the following until no new keys are added into keys(og(A)):

1. Replace each k € keys(cs(A)) with £ — S; if k — S = 0, stop and
set 01tuple(os(A)) to true — the selection returns at most one tuple
because all attributes in a key are bound.

2. For each attribute X, for each ¥ € X* and each £ € keys(os(A))
such that X € k, add & — { X} U {Y'} into keys(as(A)).

e A My B: the set of keys for the join is the same as the set of keys for the selection
o9(A x B). However, an additional simplification is possible due to the join. Again.
let S be the set of bound attributes of #. If  is a conjunctive condition which

contains an equality between the X attribute of A and the Y attribute of B, then:

1. if {X} € keys(A), then Vk, € keys(B) add k,— S into keys(A Xy B),
and

2. if {Y'} € keys(B), then Vk, € keys(A) add k; — S into keys(A Mg B).

o wx(A): if the list of attributes X includes some keys from A, then these keys are
the keys for the projection. If X contains no key from A, then the projection does

not have a key:

keys(rx(A)) = {XNk:XNk€ keys(A)}

o 7%(A) (and duplicate elimination e): the projection distinct generates no duplicates
in the output; the set of all attributes in the output relation serves as a key, if the

projection attributes do not contain a key from A:

_ ) keys(rx(A)) if keys(wx(A)) #0
keys(r%(A)) = { {X} otherwisex

¢ agir,c)(A): the grouping attributes serve as a key for the aggregation, if the relation

does not have a key:
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k A) ifk A
keyS(ag[F;Gl(A)) = { {gy}S( ! ;th:f:(ise) .

e A — B: the keys for the set difference is the same as the keys of the left input:

keys(A — B) = keys(A)

@ A —? B: the set of attributes in the output relation serve as a key if the left input

does not have a key:

. d ny_ | keys(A - B) if keys(A — B) # 0
keys(A =7 B) = { {{X : X € attrs(A)}} otherwise

® A U B: even if both input relations have keys there is no guarantee that any of

them can serve as a key for the output relation, therefore:

keys(AU B) =0

@ A U? B: the set of attributes in the output relation can serve as keys:

keys(AU?Y B) = {{X : X € attrs(A)}}

® AN B: akey from each of the inputs can serve as key in the output relation:

keys(AN B) = keys(A)U keys(B)

@ A N? B: the set of attributes in the output relation serve as a key, if AN B does

not have a key:

keys(AnN B) if keys(ANB)#0@

d =
keys(AN® B) = { {{X : X € attrs(A)}} otherwise
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4.2.2 Simplifications

If a relation does not contain duplicates, the equations for defining its incremental changes
can be simplified significantly. Next, we describe, for each basic operator, what these
simplified versions of the change propagation expressions are. Using keys to simplify the
expressions results in change propagation expressions for the (pure) relational model.

such as the ones presented by Qian and Wiederhold [QW91].

o A x B: If the output relation of a cartesian product A x B does not contain dupli-
cates, the inputs A and B to the cartesian product also do not contain duplicates

and,
6 (A x B)

(by definition)

65 X6gU[(A—67)x b5 — 6% x(B-ég)u

[63 X (B —dg) — (A—63) x §§]

= (because A and B do not have duplicates and, t.e., (4 —4d3)N 6"_'{ =0)
63 X0gU(A—063)xdg]lU[6; x (B -4dg)]

= (property of multisets)
BrU(A-61)]xégU[63 x B -6 xb5]

= AxdéguUdy x B -6 xég]

Similarly, we can prove that if A and B do not contain duplicates, then,

§t(Ax B) = 64 x(B-08g)u(A-67)x85ubh xét

Note the similarity between these two expressions and the ones used for the over-
estimations of the changes for the cartesian product, in Tables 4.3 and 4.4. This

shows that the simplifications due to the key constraints invalidate the use of over-

estimations: the over-estimations computed are the actual changes to be made.

e gs(A): No further simplification is possible because the equations for 6~ and 6

are already in the simplest form that they can be.

e wx{A): If the input relation to the projection does not contain duplicates, the
output relation may or may not contain duplicates. [f the output relation does not
contain duplicates (because the projection retains at least one key from the input
relation), then mx(63) N rx(8%) = 0, and,

6=(nx(A)) = 7x(67) — mx(6%) = 7x(63)
§*(rx(A)) = mx(87) — 7x(63) = mx(83)
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e A— B: If both input relations do not contain duplicates, in order to find the incre-
mental deletions from the set difference, we must look at two situations. The first
is whether deleted tuples from A were in the set difference before (or equivalently
whether they were not in B before). The second is whether tuples inserted into B

were in the set difference before (or equivalently whether they were in A before).

That is,

§(A- B)= (65 — B)U (65N A)

Similarly, we can argue that insertions into A result in insertions into the set differ-
ciice as long as these insertions are not in the new value of B. Also, deletions from

B result in insertions into the set difference as long as these deleted tuples also are

in the new value of A.
§T(A— B) = (65 — BY)U (6 N AY)

e AU B: No simplification is possible for union because even if the inputs A and B
do not contain duplicates, there is no guarantee that their union A U B does not

have duplicates.

e e¢(A): If the input to the duplicate elimination does not contain duplicates, then
duplicate elimination is a redundant operation and, obviously,
6=(e(A)) = b
6*(e(A)) = 6%

4.3 Optimization due to Foreign Keys

As in the relational model, in our multiset algebra, a foreign key is an attribute (or a
combination of attributes) X4 in a database relation A that is required to match values of
the designated primary key X in some other database relation B, i.e., n'j‘\,A(A) C mxy(B).

Suppose that database relations A and B are joined and the join condition is a
conjunctive condition containing X4 = Xpg, where X, is an attribute of A and Xp is

the primary key attribute of B2. If there is a foreign key reference from X4 to B, tuples

20f course, X4 and Xp may be sets of attributes.
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inserted into B do not join with tuples from the old value of A (before A is updated).
This is because the X4 values in A before the update already appear in the domain of
Xpg in B before the update. Since B has at least one key, if t € §F, then ¢ € B. The
following equivalences can easily be proven (8 stands for a join condition of the form

discussed above):

1. ANy éf = 0
2. 63 M, 65 = 0
3. (A-63)g85 = 0
4. A* My 63 = &% My 63

Also, tuples deleted from B either do not join with the value of A before the update,
or they join with tuples deleted from A, or else the foreign key constraint would not be
satisfied after the update®. For the same reason, tuples deleted from B do not join with

tuples inserted into A. Therefore, the following equivalences also hold:

5. &% Mg 85 = 0

6. ™My (B—65) = 6™y B
7. ANy = &My 85
8. A'My 65 = &7 Xy 65

These simplifications allow a database optimizer to transform a change propagation
or incremental query into a simpler one that does not need to access database relations
as many times and, thus, may be more efficient to evaluate. Note that some equivalences
follow from others, for instance, equivalence 3 follows from 1 and 2, and equivalence 6
follows from 5. These are all the forms in which these equivalences have been defined
and used in the RHODES query optimizer.

Using foreign keys for simplification of incremental expressions has been recognized
by Quass et al. [QGMW96]. The purpose of that work is to use the knowledge about
keys and foreing keys, in order to make a set of views self-maintainable. One of the

simplification rules that is used is a generalization of equivalence 1 to many relations.

3The constraint may be violated before the transaction commits, but we assume that view mainte-
nance occurs at the commit point of a transaction when the constraints are known to be satisfied. That
is, queries inside a transaction do not see the updated views.
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4.4 Example

Let us assume the following database relations:

P : PART(P_PARTKEY,...).
S : SUPPLIER(SSUPPKEY,...).
A : PARTSUPP(PS_PARTKEY, PS_SUPPKEY,...).

The relation P records information about parts; the relation S records information
about suppliers; and the relation A relates suppliers with the part that each one supplies.
For referential integrity, all the values appearing in the PS_PARTKEY of A must appear in
the P_PARTKEY of P, and all the values appearing in the PS_SUPPKEY of A must appear
in the S_SUPPKEY of S, so that all the parts supplied by a supplier are valid parts, and
all the suppliers supplying parts are valid suppliers.

Let us assume that we have a view V' defined using the following SQL query

select *

from P, S, A

where A.PS_ PARTKEY = P.P_ PARTKEY and
A.PSSUPPKEY = S.SSUPPKEY

Equivalently, we can specify the same view as V = P X § X A (ignoring join
arguments). Suppose now that each of the P, S and A relations lose a number of tuples
specified by the system-defined relations 65,65 and 63, respectively. Let 65, be the
deletions from the join P X A (as if this join were materialized) and é; the deletions
from V. One way to compute the deletions from V is to find the deletions to P ™ A and

propagate them to V, i.e.,

Sy = 6pa™MS U PMAXE; — ébp,™Mbs, where
dpy = 6p™MA U PME, — bp M3,
Tuples that are deleted from A can only join with tuples deleted from P or tuples

deleted from S because, otherwise, the foreign key references would not be satisfied after
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the database update. Thus, we can use the following equivalences to simplify the above

equations

AN 65 =65 ™65

AMXES =6 M 63
We can rewrite ép4 as
65, = PM&3

and we can simplify the change propagation expression as

g = 6pa ™S U PMANME — bpyMég
= $paMS U PXEIXE — b5, M5
= PMWFENS U PRI NS — PN Mg
= PX§ XS

Thus, using this optimization, we were able to reduce accesses to the database rela-
ticns from five to two; accesses to the deita relations from eight to one; and, the total
number of joins from seven to two. Consequently, we increased the likelihood that the
performance of the change propagation query will be very good.

This concludes our presentation of all proposed optimizations for simplification of

change propagation and incremental expressions.



Chapter 5
The RHODES Database Optimizer

In this chapter we describe the design and implementation of the RHODES query op-
timizer. We discuss the extensions to RHODES to support the optimization of change
propagation and incremental expressions. We also introduce the visual browser that
accompanies RHODES.

RHODES is a relational query optimizer that supports traditional optimization tech-
niques, such as join orderings, query transformation, use of indices, and so on. The
innovation of RHODES is that it understands and uses views during (general) query opti-
mization. It also decides which views should be maintained incrementally and, for views
to be maintained incrementally, which change propagation expressions should be used

for their maintenance.

5.1 Query Optimization

A query expressed in a high level language is parsed by the DBMS to produce an interme-
diate form of the query known as the query parse tree. Before any further processing, the
query parse tree is validated, so that all of the relation and attribute names appearing in
it exist in the DBMS. Figure 5.1 outlines all of the different phases involved in executing
a high level query.

After the parsing and validation of the high-level query, the query optimizer of the
DBMS examines the query parse tree in order to find an efficient way to implement it. The
optimizer uses algebraic transformation rules to transform the query parse tree into one

or more equivalent parse trees, that produce the same result as the original one but may
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give better performance [EN94]. After pruning the space of equivalent parse trees, the
optimizer determines the least expensive algorithms to implement each operator in the
chosen parse tree(s). This optimization phase is usually cost-based, since the optimizer
uses statistical information stored in a “mini-database”, called the system catalog, to
estimate the cost of choosing different algorithms and decide which choice yields the

cheapest ezecution plan.

Query in a high-leve! language

[ SCANNING. PARSING, VALIDATING ]

Intermediate form of query

[ QUERYOPTIMIZER |

System
Catalog

Execution plan

Code to execute the query

| RUN-TIME DATABASE PROCESSOR |

Stored
Database

>
Figure 5.1: The different phases in executing a high level query

The execution plan generated by the optimizer is not machine-executable code but,
instead, an intermediate form from which code can be generated. If the optimizer can
identify common subexpressions, the execution plan is a directed acyclic graph, otherwise
it is a tree. The query execution plan is traversed by a machine-specific component of
the DBMS that generates the code. The generated code is then executed (immediately or
not) by the run-time processor of the DBMS which is the operating system of the DBMS:

it is responsible for transferring memory blocks to and from disk, buffering, scheduling,
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and so on.

5.2 The Volcano Optimizer Generator

In this chapter, we present the design and implementation of the RHODES relational

database query optimizer built using the Volcano Optimizer Generator [Gra94, GM93al.

Model Specifi czmon Catalog Query Expmssmn

S CROeE

[Volcano _}—s-Optimizer's saurce code—————

Query Execution Pfan

Figure 5.2: Using the Volcano optimizer generator

Figure 5.2 shows how Volcano is used to generate RHODES. I[nput to the Volcano
Generator is a model specification of what the intended functionality of the generated
optimizer should be. The model specifies what query expressions are being optimized,
what algorithms are available to the DBMS for execution, what cost is being minimized
when searching for the cheapest execution plan, and so on. The output from the Volcano
Generator is the optimizer’s source code, which is compiled to produce the optimizer.

There are two inputs to RHODES: the system catalog and the query ezpression to
be optimized. The catalog contains all statistical information necessary for plan cost
estimation. Information about the database updates is also recorded in the catalog. The
query is an expression (parse tree) over the algebra of logical operators. The output
from the optimizer is a query ezecution plan, an expression (dag) over the algebra of
algorithms. In our working framework, the query evaluation plan is subsequently fed to
a plan visualization tool which allows us to view details of the chosen execution plan,
a functionality similar to DB2's explain facility [DB2]. We present this tool in more

detail later in the chapter.
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RHODES uses dynamic programming optimization with general algebraic query struc-
tures and not just select-project-join queries. The Volcano generator provides a search
engine to be used by all created optimizers with an exploration and optimization strat-
egy called directed dynamic programming [GM93a]. Other optimizers that use dynamic
programming, such as the System R optimizer [SAC*94] or the Starburst optimizer
[LFL88, Loh88], generate the space of equivalent expressions bottom-up, by creating all
expressions that seem useful to create (the query rewrite phase) and then estimating
all resulting expressions (the cost-based optimization). RHODES’s search engine creates
equivalent expressions and execution plans fop-down in a goal-oriented way, since it ex-
plores and optimizes only those subexpressions that participate in the actual query to be
optimized. It also uses the cost model and allows for some pruning of the search space

during the query rewrite phase.

5.3 The Catalog

The catalog is a “mini-database” and its function is to store the schema and statistics of
the database that the DBMS maintains. Although several components of the DBMS use
the catalog, it is the query optimizer whose operation is interwoven with the use of the
catalog, especially when the optimizer estimates the costs of different query execution
strategies.

The catalog used by RHODES specifies the following:

e For each relation, the catalog contains the name, arity and cardinality of the relation
and a list of the relation’s attributes. Each relation must also have a (unique)
primary key, i.e., one or more attributes that uniquely determine any tuple within

the relation.

e For each attribute in a relation, the catalog contains the name, type, and size,
in bytes, of the attribute. There are two data types currently supported by the
presented optimizer: string and integer. The string type may use any pre-
defined number of bytes to hold the string value, while the integer type requires

four bytes.
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If the attribute is an ordering attribute, if it is part of the primary key, or if it
has an index defined on it, this fact is also recorded in the catalog. There are
three alternatives for index specification: 1) a primary indez can be defined on
an ordering key attribute of the relation?; 2) a clustering index can be defined on
an ordering non-key attribute; and, 3) a secondary indez can be defined on any

non-key attribute, whether ordering or not.

Other important information about attributes is the number of distinct values
appearing in the domain of the attribute and, if the attribute is of type integer,

the minimum and maximum value in the domain.

o Foreign key references from attributes of one relation to the key attributes of other

relations are also recorded in the catalog.

o Finally, the catalog contains the name and definition of all user-defined materialized

views.

5.4 Model Specification

The model specification describes what the intended behavior of an optimizer generated
by Volcano is. The specification is semi-declarative: some parts of it are provided using
definitions and rules and some parts are provided using C code. In this section, we
outline the components of the model specification. In the following sections we present
each component in more detail.

To understand the outline of the model specification, it is important to know that
there is a distinct separation between the logical and the physical view of a DBMS’s func-
tionality. The input to the optimizer is an expression in the logical algebra of the DBMS.
The logical algebra is either the DBMS’s query language or some convenient intermediate
representation of it. The output of the optimizer, which is a plan to evaluate the logical

expression, is an expression in the physical algebra of the DBMS. The physical algebra

LAn ordering atirtbute is an attribute by which the relation is physically sorted.
2The key must be a single-attribute key for any index to be defined on it.
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is the collection of algorithms that the DBMS is capable of executing when evaluating a
logical expression.

The specification of the model for our optimizer, as with any optimizer built with

Volcano, includes [GM93a:

1. The set of logical operators and a definition of the structure of their arguments.

These constitute the operators of the logical algebra of the DBMS. For example,

JOIN is a logical operator whose argument is an equality condition. such as R;..X
R2.Y, where R; is a relation with attribute X and R, is a relation with attribute

Y.

o

An abstract data type “LOGICAL_PROPERTY” with associated functions for this
type. Each expression in the logical algebra has a set of associated logical properties.
Equivalent logical expressions share the same logical properties. For example, a

logical property is the arity of the relation that the logical expression represents.

3. For each operator in the logical algebra, a function to derive the logical properties
of an expression, given this logical operator as the top operator, from the logical

properties of the inputs.

4. Algebraic transformation rules, possibly with condition and/or application code,
used to generate equivalent logical expressions in the logical algebra. For example.

commuting a select with a join is expressed as a transformation rule.

5. The set of physical operators (algorithms and enforcers) implementing the logical
operators® and a definition of the structure of their arguments. These constitute the
operators of the physical algebra of the DBMS. For example, MERGE is an algorithm

whose argument is an equality condition, such as R;. X = R,.Y.

6. Implementation rules for logical operators describing which algorithm implements
each logical operator. For example, the fact that MERGE implements JOIN is ex-

pressed as an implementation rule.

3An enforcer does not really implement a logical operator but, instead, is used in conjunction with
physical algorithms to guarantee certain properties in the result.
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~1

oo

10.

11.

Y
o

An abstract data type “PHYSICAL_.PROPERTY” with associated functions for
this type. Each expression in the physical algebra has a set of associated physical
properties. Equivalent physical expressions computing the same relation do not
necessarily share the same physical properties. For example, a physical property
is the estimated cardinality of the relation that the physical expression computes.
Another physical property is the name of the attribute(s) on which the computed

relation is sorted on.

For each operator in the physical algebra, a function to derive the physical properties
of an expression, given this physical operator as the top operator, from the physical

properties of the inputs.

An applicebility function for each operator in the physical algebra which determines
whether the operator can be used to implement a given logical operator provided

that a set of requested physical properties must be present in the output.

A function for each operator in the physical algebra to determine what physical
properties are required from the operator’s inputs. For example, this function for

MERGE specifies that both inputs to the MERGE must be sorted.
An abstract data type “COST” with associated functions for this type.

. A cost function for each operator in the physical algebra.

5.5 Logical Operators

The set of logical operators in the logical algebra of RHODES is shown in the next

tabl

e. These are all the operators defined in Chapter 3, except that there is no operator

corresponding to aggregation.

The table contains the name of each operator, the number of inputs it accepts and

its standard abbreviating symbol. These logical operators were chosen so that the logical

algebra of the optimizer would be consistent with SQL, as was discussed in Chapter 3.

Except for PROJECT, PROJECT D, GET, SELECT and JOIN, the logical operators do not

have operator arguments. The argument to PROJECT and PROJECTD is a list of attribute
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Name # of Args Symbol
CARTESIAN 2 X

DIFF 2 -
DIFFD 2 —d

GET 0

INTERSECT 2 N
INTERSECTD 2 nd

Name # of Args Symbol
JOIN 2 X
PROJECT 1 T
PROJECT.D 1 74
SELECT 1

UNION 2

UNIOND 2 u?

Table 5.1: Logical Operators

names. The GET operator is used to retrieve a stored relation. The name of the relation is

given as an argument to GET (which justifies why GET accepts zero inputs). The argument

to SELECT is a list of selection criteria in conjunctive form. Finally, the argument to JOIN

is an equality condition between an attribute of the first input and an attribute of the

second input.

5.6 Logical Properties and Logical Property Deriva-

tion

Each logical expression has an associated set of logical properties. These include:

e the arity of the relation represented by the expression;

o the set of logical attributes of that relation (each logical attribute having a name,

a type, and, perhaps, a foreign key reference);

o the set of keys for the relation (each key being a set of one or more attribute names);

and,

o the set of bound attributes. An attribute of a relation is strongly bound, if all the

relation’s tuples contain the same value for that attribute®.

*Bound attributes are useful because keys can be simplified by removing the bound attributes from

them.
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The derivation of logical properties for an expression, given any logical operator as the
expression’s top operator, from the logical properties of the inputs is rather simple. Key
derivations follow the algorithm for generating the keys for query expressions presented

in Chapter 4.

5.7 Algebraic Transformation Rules

The goal of a query optimizer is to find the best possible plan to evaluate a given query.
However, there are many logical expressions that are semantically equivalent to the one
that the user provides. Two expressions are semantically equivalent, if and only if, for
every possible database instance, the two expressions represent the same relation in
the instance. In order to find the best plan, an optimizer must know how to generate
equivalent expressions for any expression provided by the user. In this section, we describe

these algebraic rules.

Laws involving JOIN:

e Join commutativity, i.e., AN, g1 B = B MNg;_4; A.
e Join associativity, i.e., (A M-8 B)Xy_c1 C = AN, _p; (BXx=c C)

This transformation is not applicable if the argument of the join operator to

be moved into the subtree, i.e., X, is not an attribute of B.
Laws involving SELECT:

e Commuting selects, i.e., ag,(09,(A)) = ag,{09,(A)).

e Combining a select with a get, i.e., gp(get(A)) = getg( A).

o Cascades of selects (one direction), i.e., gg,(ds,(A)) = T, ae,(A).

e Cascades of selects (other direction), i.e., g4, a4,(A) = 09, (04,(A)).

o Commuting a select with a join, i.e., g5(A X B) = g4(A) X B. This transfor-
mation can only be applied if @ involves only attributes of A.

e Commuting a select with a cartesian product, i.e., o4(A X B) = 09(A) x B.

This transformation can be applied only if § involves only attributes from A.
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¢ Commuting a select with a project or a project distinct, i.e., og(@D(A)) =
®(os(A)), where & € {x,r?}.

® Combining a select and a cartesian product into a join, i.e., gg(A x B) = A X,

B

This transformation can be applied, only if 8 is of the form Al = Bl1, Al is

an attribute of A and B1 is an attribute of B.

e Commuting a select with a set operator, i.e., gs(A D B) = g4(A) @ o(B).

where @ € {—. —%,U,u?, N, N}

Laws involving CARTESIAN:

® Cartesian product commutativity, i.e., A x B = B x A.

e Cartesian product associativity,i.e., AX (BxC)=(Ax B)xC.
Laws involving PROJECT and PROJECTD:

@ Replacing a project distinct with a project, i.e., 7% (A4) = 7x(A4).
This transformation can only be applied if X maintains one key from A.

® Cascades of projects with project distinct’s, i.e., mx(ry(A)) = wx(A) and
¢ (ry(A)) = 7%(A) and 7% (ri(A)) = 14 (A).
These transformations can only be applied if the list of attributes X is a subset
of the list of attributes Y.

o Cascades of a project and a project distinct, i.e., Tx(7$(A)) = wx(A).
This transformation can ounly be applied if the list of attributes ¥ maintains
a key from A and X is a subset of Y.

e Commutinga project or project distinct with a select, i.e, O x (g9 A) = g4(Ox(A)),
for © € {r,7?}.

This transformation can only be applied if § involves only attributes that

appear in the attribute list X.
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e Commuting a project or project distinct with a cartesian product, i.e., ©yx(AX
B) = ®x1(A) x Gx2(B).
This transformation can only be applied if X1 U X2 = X and X1 contains
only attributes of 4 and X2 contains only attributes of B.

o 74 (A x B)=1%(A).
This transformation can only be applied if X involves attributes of A only.

o Commuting a project or project distinct with a join (special case), i.e.,
Ox(A M1 B) = ©x1(A) Ma1251 ©x2(B), where © € {r, 7%}
This transformation can only be applied if X includes both Al and B1 (among
possibly other attributes) and X = X1U X2, where X1 involvesonly attributes
of A and X2 involves only attributes of B.

e Commuting a project or project distinct with a join (more general case), i.e.,
Ox(A M1 B) = Ox(Ox1(A) M=) Ox2(B)), where © € {r, 7%}
This transformation can be applied only if X does not contain both Al and
B1. Then, X1 contains the attributes of A that appear in X plus Al, if Al
does not appear in X, and X2 contains the attributes of B that appear in X

plus Bl, if Bl does not appear in X.
e Commuting a project or a project distinct with a union or union distinct, i.e.,
(A @ B) = ((0(A)) ® (2(B))), where ® € {r, 7%} and & € {U.U%}.

Laws involving set operators:

e Commutativity of set operators, i.e., A®B = B® A, where © € {U,u?,N,N*}.

e Associativity of set operators, i.e., AQ (BOC)=(A®B)®C, where ® €
{u,ud, N, N?}.

5.8 Physical Operators, Enforcers and Implemen-
tation Rules

In Volcano, a physical operator is either an algorithm that implements one or more

logical operators or an algorithm that does not directly implement a logical operator but
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is, instead, used to deliver a required physical property. The second kind of physical

operators are called enforcers. There are two enforcers in RHODES:
e SORT which is used to sort the input relation on a given attribute: and,

@ DUPLICATE ELIMINATION which is used to remove duplicates from the input rela-

tion.

The other physical operators and their implementation rules are:

CARTESIAN — CARTESIAN_ALGO GET -+ INDEX_SCAN
DIFF -+ SETDIFF GET — FILE._SCAN
DIFFD — SET.DIFF.D GET — BINARY_SEARCH
INTERSECT — SET.INTERSECT JOIN — MERGE
INTERSECTD -— SET.INTERSECTD JOIN — NESTED_LOOP
UNION — SET_UNION PROJECT — PROJECT_ALGO
UNIOND — SET.UNION.D PROJECTD — PROJECTALGO

SELECT — SELECT_ALGO

Table 5.2: Physical Operators and Implementation Rules

As we can see, there are logical operators (e.g., JOIN) that are implemented by more
that one physical operator (MERGE and NESTED_LOGOP). Also, the same physical opera-
tor (e.g., PROJECT-ALGO) may implement more than one logical operator (PROJECT and
PROJECTD). It is also possible that a logical operator is not implemented by any physical
algorithm at all. In fact, we use this third feature considerably when extending RHODES

with the knowledge of how to optimize incremental expressions.

5.9 Physical Properties and Physical Property Deriva-
tion

Each expression in the algebra of algorithms has a number of physical properties associ-

ated with it. The physical properties of expressions include:
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e the cardinality of the relation that the physical expression computes;
o the size, in bytes, of each tuple in the relation;

o the set of physical attributes (each physical attribute having a name, a type, the
number of distinct values in the attribute domain, the minimum and maximum

value, and the size, in bytes, of the attribute);
e the attribute names the relation is sorted on, if any; and,

a boolean variable specifying whether the relation contains duplicates or not.

For simplicity of the presentation, we omit the description of physical property deriva-
tions. Appendix A contains the derivation of the cardinality of a relation from the car-
dinality (as well as other information) of the inputs to the operator used to compute the
relation. Join selectivities that determine the cardinality of JOIN and predicate selectiv-

ities that determine the cardinality of SELECT are also discussed in Appendix A.

5.10 Applicability Functions and Input Requirements

For each algorithm of RHODES, there is a function that describes whether the algorithm
applies for a given logical operator, given certain physical properties that are requested
from the result of the algorithm. For example, for the join A X4,-5, B, if the requested
properties include sorted-ness on attribute Al of the output relation, the MERGE algorithm
applies {because MERGE delivers the output sorted on A,). However, if the requested
properties include sorted-ness on attribute A3 of the join, MERGE does not apply®.

In addition to the applicability functions, for each algorithm, there is a function that
specifies the required properties from the inputs of the algorithm. For example, for MERGE
to implement a given JOIN, each input to MERGE must be sorted on the corresponding
attribute of the join condition.

For simplicity of presentation, we do not describe the applicability and input require-

ments functions in any further detail.

®In this case, the SORT enforcer applies, or the NESTED.LOOP algorithm may apply if the relation A is
already sorted on A3.
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5.11 Cost Model and Cost Estimation

When optimizing a user’s query, RHODES systematically estimates the cost of different
execution strategies and chooses the one with the lowest cost estimate. In order to find
the least expensive plan, it performs an exhaustive search over all possible equivalent
expressions of the query and, for each such expression. all possible implementations of
logical operators by physical algorithms, estimating each one in turn. The cost that is
being minimized is an abstract data type in Volcano, that we defined, in RHODES, as the
expected [/O in executing the query, i.e., the number of block transfers between memory
and disk. In general, RHODES does not account for cached pages, that is it estimates
the logical [/O in executing a query, not the physical [/O. Memory size is taken into
account. Cashed pages are only taken into account when considering the cost of some
operations on base tables, such as duplicate elimination.

The estimation of the cost to apply each of RHODES’s algorithms is described in

Appendix B.

5.12 Extensions to RHODES

We extended the basic RHODES presented so far with a) view maintenance support, b)
view maintenance specific optimization and c) query rewrite using materialized views.

Next, we present each one of these extensions in more detail.

5.12.1 View Maintenance Support

We extended RHODES with the ability to decide, for each view, what the best way
to evaluate the view’s new value is, after some update to the database has occurred.
Also, if a view is to be maintained incrementally, RHODES can decide which incremental
expression to use for view maintenance. Before presenting the extensions to RHODES
to support this, we should explain how we envision the use of RHODES during view
maintenance. We perform view maintenance at the commit point of a transaction that
updates the database. At this point, the state of the database has not yet changed and the
updates to the database are available through system-defined tables (the delta tables).



CHAPTER 5. THE RHODES DATABASE OPTIMIZER 73

Also, the catalog of the DBMS (or some in-memory portion of it) contains information

and statistics about these delta tables. Then,

1. for each view maintained by the system, RHODES decides what the best way to

maintain the view is;

[SV]

for each view that is maintained incrementally, the DBMS computes the changes to

the view;
3. the DBMS merges these changes with the old materialized view;
4. the database updates are merged in the database;

for each view that is not maintained incrementally, the view’s expression is re-

Ut

evaluated; and,
6. the updating transaction commits.

To support optimization of view maintenance, the set of logical operators for RHODES

is extended with five new operators:

e NEW(V): the NEW logical operator takes a query expression V" as its argument and
returns the value of the expression V' under the database that results from incor-
porating any non-committed updates into the current database. If no updates are
recorded in the catalog, the result of NEW(V) is the same as the value of V. How-
ever, if some updates have been recorded in the catalog, the result of NEW(V) is the

value that V will have once the updates commit.

e DELTAMINUS(V): the DELTAMINUS logical operator takes a query expression V as its
argument and returns (exactly) the set of tuples that must be deleted from the old
value of V' (as if V was materialized), when the database changes are merged with

the old database.

® DELTAPLUS(V): the DELTAPLUS logical operator takes a query expression V as its

argument and returns (exactly) the set of tuples to be inserted into the old value
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of V (as if V was materialized), when the database changes are merged with the

old database.

e OVERMINUS(V): the OVERMINUS logical operator takes a query expression V as its
argument and returns one over-estimation of the set of tuples to be deleted from the
value of V (as if V was materialized), when the database changes are merged with

the old database. The over-estimations computed are those defined in Chapter 4.

e OVERPLUS(V): the OVERPLUS logical operator takes a query expression V as its
argument and returns one over-estimation of the set of tuples to be deleted from the
value of V (as if V was materialized), when the database changes are merged with

the old database. The over-estimations computed are those defined in Chapter 4.

We symbolize each of DELTAMINUS, DELTAPLUS, OVERMINUS, and OVERPLUS logical
operators with 6,67, A~ and A*, respectively. When supporting these new operators
in the optimizer, the optimizer is not only responsible for optimizing incremental and
change propagation expressions for view maintenance, but also for generating the change
propagation expressions necessary for view maintenance. Supporting these new operators
in RHODES does not require any change in the physical algebra of the database system,
neither does it require special algorithms or specialized data structures to be built on
top of an existing DBMS. In fact, transformation rules are used in RHODES to erpand
the definition of each of the new logical operators. Let us see what these transformation

rules look like:

The NEW operator:

There are three different ways to compute the new value of a query expression V:

e by re-evaluating V; the transformation rules applied in this case are:
NEW(V) = NEW(A) O NEW(B), ifV=A0B, ©€{x,X - -%Uu,u?n,nd}
NEW(V) = O(NEW(A)), if V=0o(V), ©ce€ {GET,r, %o}

e by incremental computation with the use of the change propagation expressions of

V; the transformation rule applied in this case is:
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NEW(V) = [V — 67 (V)] U éF(V)

e and, by incremental computation with the use of the expressions for the over-

estimations of the changes of V; the transformation rule applied in this case is:

NEW(V) = [V — A~ (V) U AT(V)

The DELTAMINUS operator

There are two different ways to compute the incremental deletions of a query expression

V:

® by using the non-simplified change propagation expression given by the transfor-

mation rule:

§-(A) = A=(A) — A+(A)

e and, by using the simplified change propagation expression. In this case, there is
one transformation rule per logical operator that defines the incremental deletions

for the operator. Table 4.1 of Chapter 4 contains all of them.

The DELTAPLUS operator

There are two different ways to compute the incremental insertions of a query expression

V:

e by using the non-simplified change propagation expression given by the transfor-

mation rule:

§*(A) = A*(A) — A=(A)

e and, by using the simplified change propagation expression. In this case, there is
one transformation rule per logical operator that defines the incremental deletions

for the operator. Table 4.2 of Chapter 4 contains all of them.
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The OVERMINUS operator

There is one transformation rule per logical operator that defines the over-estimation of
incremental deletions for the operator. Table 4.3 of Chapter 4 contains these transfor-

mations.

The QVERPLUS operator

There is one transformation rule per logical operator that defines the over-estimation ot
incremental insertions for the operator. Table 4.4 of Chapter 4 contains these transfor-

mations.

5.12.2 View Maintenance Specific Optimization

In the previous section, we described what transformation rules are applied in order for
RHODES to decide, at the time of view maintenance, what the best way to maintain
a view is. If a view is to be maintained incrementally, RHODES determines the best
incremental query expression to use for view maintenance. However, as we showed in
Chapter 4, change propagation and incremental expressions are amenable to a number
of simplifications. Each one of the simplifications specified in Chapter 4 is expressed in
RHODES as a transformation rule.

In addition to the simplifications that we defined in Chapter 4, there are simplifi-
cations due to the fact that certain expressions during view maintenance evaluate to
empty. For example, if one database relation A is not updated during a transaction,
both its 67 (A) and §*(A) are empty. Since change propagation expressions may evaluate
to empty, RHODES uses transformation rules governing the empty set. The empty set

conforms to the following rules:
e O(0) = 0, for each ® € {o, 7, 7%, 6,6, NEW};
e 0 ®A=0, for each ® € {—, =%, x,M};
e A®D = A, for each © € {U,~};

o A @w = ‘ﬂ'fa‘n attrs Of A](A)’ fOI' each @ € {Uda —d}a a'nd
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® 57 (A) = 0 (or éT(A) = 0), for each database relation A that the catalog does not
contain statistics about its deletions (or its insertions). This is an assumption of
RHODES which expects the catalog (or some in memory portion of it) to contain

information about the database changes.

5.12.3 Query Rewriting using Views

During the optimization of a query, RHODES examines the possibility of using already
materialized views, in order to speed-up the execution of the query. This optimization
has been recognized recently as one of the promising advantages of materialized views

[LMSS95, FRV96|. There are two transformation rules that implement this idea:

¢ A® B =V, for each binary operator @ € {x,M —, —%,U,U% N,N¢}. This trans-
formation rule is valid only if the query expression A ® B matches the definition

of view V.

o ©(A) = V, for each unary operator ® € {GET,r,x% o}. This transformation rule

is valid only if the query expression ©(A) matches the definition of view V.

The algorithm for checking if a query expression expr matches a view definition v
first checks to see if the top operator of v is the same as the top operator of expr, and,
then, recursively applies the algorithm to each of the inputs of the expression and the

view.

Example

Suppose two materialized views have been defined as v; : A X B and vy : B X C
and suppose we are interested in evaluating the query expression A X B X C. During
the transformation of this query into its equivalent forms, all possible join orderings are
produced®. Since the subexpressions A ™} B and B ™ C match the definitions of the
views vy and vg, respectively, there are two additional equivalent forms for the same
query: vy X C and A X vy, and RHODES would examine the possibility of using either

of these equivalent forms in order to generate an efficient plan for this three-way join.

SFor simplicity of the presentation, we omit the join arguments here.
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Another possible rewriting of the same query that uses only the materialized views
IS Tiattrs of ANBNC](vl M v,). This equivalent form of the query is not examined by the
current version of RHODES.

After having presented the design and functionality of the RHODES database query

optimizer, we introduce and describe the graphical browser that accompanies it.

5.13 The Browser

We use a general visualization tool [Noi96] to display the output of RHODES graphically.
The nodes in the graph of a plan visualization correspond to the database relations, the
intermediate results and the output relation of the execution plan. The edges in the
graph relate a node v with all nodes corresponding to relations necessary to compute the
relation that corresponds to v.

Each node is labelled with the algorithm (physical operator) used to derive the relation
of the node. Database relations are accessed using file scans, binary search, or index
scans. Other relations are produced by executing one of (other) the physical operators
of RHODES. Each node in the visualization is also identified by an icon specifying the
type of the node. Figure 5.3 shows all the icons used by the browser and the physical

operator(s) to which they correspond.

A S U SRS SRR GRSy
RS LA AL R DL I S S LI N

Figure 5.3: The icons of the browser
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Textual representations of the generated plans of an optimizer are rather difficult to
manage or understand, especially for relatively large plans where the textual description
may be dozens or even hundreds of pages long. Our graphical tool provides the database
administrator, the anticipated user of the browser, with qualitative and quantitative
understanding of the execution plan. It can be used to help understand the output of the
optimizer and to facilitate tuning of the database system for better performance. The
database administrator could, for example, modify some physical aspect of the database

environment and visually monitor its effect in the execution plans for queries of interest.

Dynamic Mapping

QOur browser supports the technique of dynamic mapping [Bar92, Noi96, War], which
permits the dynamic binding of the elements in the visualization (nodes and edges) into
visual properties. We use this technique to dynamically map the relative size of each
node into the estimated cardinality of the relation corresponding to the node. Nodes
that correspond to large relations, thus, appear larger in the visualization. We also map
the color of each node into the estimated cost to compute the relation of the node. Nodes
that are expensive to compute, thus, appear more red (hot) in the visualization. It has
been argued elsewhere’ that our ability to perceive is greatly facilitated by the use of

such graphic properties as color and size.

Dynamic Querying and Manipulation

Our browser supports a limited form of querying, so that the database administrator can
better understand the output of the optimizer by selectively paying attention to only
parts of it. To support dynamic querying, each node being visualized has a number of

associated numeric attributes. These are:
o the estimated cardinality of the relation of the node;

e the estimated size, in blocks, of that relation;

"See Noik's thesis [N0i96] for references.
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o the estimated cost to compute the relation of the node from the relations of the

inputs (the node cost);
e the total cost to compute the relation of the node (the subtree cost);
e the size, in bytes, of records in the relation; and,
e a boolean attribute describing whether the relation contains duplicates or not.

With each numeric attribute there is an associated histogram representing the distri-
bution of values for this attribute. The range of these values is divided into a number of
equal subranges. Each subrange corresponds to a histogram bar, the height of which is
proportional to the number of nodes for which the value of the corresponding attribute
lies in the associated subrange. Clicking over a node in the graph results in the highlight-
ing of the histogram bars corresponding to each numeric attribute for that node. The
actual values for these attributes appear at the bottom of the histogram. Brushing over
the histogram bars results in highlighting of the nodes in the graph having a value for
the corresponding numeric attribute within the subrange that the histogram represents.
Clicking over a histogram results in hiding (or showing) the corresponding nodes in the

visualization.

These techniques have also been discussed elsewhere [Noi96, Shn83, Shn94].

5.13.1 Visual Explain Facility of DB2

The Visual Explain facility of DB2 provides a functionality similar to that of our browser
[DB2]. However, the visual explain facility does not provide any form of dynamic querying
of the visualized output or any manipulation of the visualization. Color in Visual Explain
has a predefined meaning: each node of a certain type has an associated (configurable)
color. However, color, as we use it in our browser, could be mapped to a number of
different attributes dynamically (the most common of which is the cost of the node but

it could be the type of the node).
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5.13.2 Examples of Plans Generated by RHODES

Join algorithms and index selection
Let us assume the following database relations, as in Section 4.4:

PART(P_PARTKEY ,P_.NAME, P.RETAILPRICE,...)
PARTSUPP(PS_PARTKEY , PS_SUPPKEY , PS_SUPPLYCOST, ...)
SUPPLIER(S_SUPPKEY,...)

The relation PART contains information about parts. A portion of this information
is the name and retail price for the part. The relation PARTSUPP contains information
about supplied parts. Such information relates suppliers with the parts they supply as
well as the cost of each part from each supplier. Finally, the relation SUPPLIER contains
information about each supplier.

Now, suppose we are interested in evaluating the following SQL query:

select P.NAME, PS SUPPLYCOST

from PART, PARTSUPP

where P_.PARTKEY = PS_.PARTKEY and
PS_SUPPLYCOST < 100 and
P_RETAILPRICE > 120

This query requests the name and prices of all products that are being sold at a
price greater than 120 but for which the retail price is not more than 100. Suppose
that a secondary dense index has been defined on the PS.SUPPLYCOST attribute of the
PARTSUPP relation. This index can be used to retrieve the tuples from PARTSUPP
with the specified supply cost. Also, suppose that no index has been defined on the
P_RETAILPRICE attribute of the PART relation. Thus, this relation must be scanned
entirely before all the tuples that have the specified retail price are found. The from
clause of the query, together with the condition P.PARTKEY = PS_PARTKEY , specify a
join on the two relations. RHODES examines all different join orderings (there are two)

and all different implementations of the join, in order to decide that, in this case, a merge
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join algorithm must be used. The merge algorithm requires its inputs to be sorted before
it can be applied. The sort enforcer guarantees that the two relations to be joined are
sorted before being joined.

Figure 5.4 shows the visualized optimized execution plan generated by RHODES for

this query.

Join orderings

In the same database, let us now examine the query:

select *
from PART, PARTSUPP, SUPPLIER
where P_.PARTREY = PS_PARTKEY and PS SUPPKEY = S SUPPKEY

The from clause of the query, together with the selection conditions, specify a 3-way
join among the three relations. The order of executing a series of joins may have a
significant impact on the performance of queries. RHODES examines all join orderings
and chooses the one with the lowest cost estimate. For this example, the generated join
ordering appears in Figure 5.5. In this example, we have also dynamically mapped the
thickness of each node to the estimated cardinality of the relation of the node and its
color to the estimated cost to compute the relation of the node. As we can see from the
picture, the relation PARTSUPP is bigger than either of the other relations. One merge
join and one nested-loops join are chosen in this execution plan. The merge join requires
both of its inputs to be sorted. A secondary dense index defined on the P.PARTKEY
of the PART relation is used to produce this relation sorted. The other relation is the
result of evaluating the join of PARTSUPP and SUPPLIER. There are two different ways
to produce this relation as sorted. The first is to compute the join and then use the sort
enforcer. The other is to sort the first input of the nested-loops algorithm. If the first
input of nested-loops is sorted, the result of the join is also sorted. In this particular
example, the size of the result of the join has as many tuples as the PARTSUPP relation,
and, therefore, it is better to sort the PARTSUPP relation instead of the result of its join
with SUPPLIER.
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Reasoning about keys and duplicates

Suppose A(Aj, Az, A3) and B(By, B;) are two database relations. Let attribute A; be
the key of A and let attribute B; be the key of B. Suppose now that we are interested

in evaluating the following query:

select distinct Az, By
from A, B
where A, = B, and A, > 1

The generated output of RHODES for this plan is shown in Figure 5.6. As before. the
from clause of the SQL query, together with the A; = B, predicate condition, results in
a join between A and B.

This example demonstrates the use of keys and reasoning about duplicatesin RHODES.
In the generated plan for this query, RHODES pushes the selection down and uses a file
scan with the predicate A; > 1. Since no index is defined on the A; attribute of A,
scanning the relation is necessary. Also, RHODES pushes the projection down and uses
two projections before joining A and B, one for each of the join inputs. Pushing the
projection inside the join operands has the desirable effect of reducing the sizes of the
join operands. Each tuple in a projection is smaller that a tuple in the original relation
and therefore many more tuples can fit into one memory page. Thus, the size of the
projection, in pages, is reduced. The cost estimation used by RHODES is such that the
size, in pages, of a join’s inputs is the most dominant factor in the estimated cost for the
join.

In a similar spirit to pushing projection, RHODES pushes duplicate elimination too,
because duplicate elimination reduces the number of tuples in the operands. The pro-
jection on the A relation maintains the key of A and therefore no duplicate elimination
is necessary in this projection (redundant operator). The projection on the B relation,
however, does not maintain the key of B. In this case, duplicate elimination is enforced.

Now consider the operands of the join. The left operand has A; as a key. The right

operand has B; as a key. Therefore, {A;, By} is a key for the join. However, because
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the join condition equates these two attributes the keyset for the join can be simplified
to {{A1},{B2}}. (See Chapter 4 for an algorithm to generate keys.) Either A, or B
alone is sufficient to uniquely determine each tuple in the output of the join. Therefore,
the final projection, the one that maintains A3, B> does not contain duplicates and no

duplicate elimination operation is necessary.

View maintenance

Suppose a view V has been defined which must be maintained under deletions (but not

insertions).

V : PART W PARTSUPP W SUPPLIER

To maintain the view, RHODES requires to sort the delta relations. External sort-
ing is not used for the database relations. If these relations need to be accessed in a
sorted manner, indices defined on them are used, instead. Figure 5.7 shows the RHODES

generated plan.
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Fignre 3.3: Choosing join orderings
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Figure 5.6: Reasoning with kevs and duplicates
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Chapter 6

Experiments

In this chapter, we present some examples of change propagation queries that provide
experimental evidence about the validity of the claims we make in this dissertation.
RHODES is called to decide on the best change propagation queries to be used during
incremental view maintenance. From the generated RHODES plan, an SQL query is

produced which we executed in DB2 Parallel Edition on the TPC-D benchmark database.

6.1 Stating the Questions
The questions that we are interested in addressing experimentally are the following:

1. Do different change propagation expressions for defining the incremental changes
to a view result in differences in the performance of computing these changes? Are
these performance differences big enough to justify our claim that an “intelligent”

component of the DBMS is needed to decide among the different choices?

(8]

Can we demonstrate experimentally that our optimization of change propagation

expressions in the presence of key constraints is a reasonable optimization?

3. Can we demonstrate experimentally that our optimization of change propagation

expressions in the presence of foreign key references is a reasonable optimization?

4. Can we demonstrate experimentally that the cost of computing incremental changes

to a view may be about the same as the cost of view re-computation?

39
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To address questions 1-3 above, we have designed three different sets of experiments.
one for each question. These experiments are conducted using the DB2 PE DBMS (DB2
Parallel Edition). To address question 4 we use the results of these same experiments in

addition to other experiments conducted using the RHODES optimizer.

6.2 Collecting Data: the Database

All experiments are run on the TPC-D database benchmark relations [TPC95]. In par-

ticular, we assume the following schema in the database, as in Section 4.4:

P: PART(PPARTKEY,...).
PS: PARTSUPP(PS_PARTKEY,PS_SUPPKEY,...).
S: SUPPLIER(S_SUPPKEY,...).
The relation PART, abbreviated with P, records information about specific parts in
a decision support environment. The relation SUPPLIER, abbreviated with S, records
information about suppliers of those parts. Finally, the relation PARTSUPP, abbreviated
with PS, relates suppliers with the parts that they supply. The distribution of values in

the attributes of each relation is uniform.

Relation Primary Key Index Type No. tuples No. pages
P P_PARTKEY P 25000 955
PS {PS_PARTKEY, PS_SUPPKEY} S,S 100000 4015
S S_SUPPKEY P 1250 61

Table 6.1: Information about the TPC-D relations

We store the three relations using the DB2 PE parallel edition. We have configured
the system so that it uses only one node in order to simulate a centralized database.
A node in a DB2 PE DBMS is one processor in the parallel database. By configuring
the system to use only one node, all relations reside in a single node and only one node
participates in query evaluation. Thus, the resulting system behaves as a centralized

system. We use the TPC-D database with a scale factor of 0.125!. This means that

'We use a scale factor because the TPC-D database could not fit in the memory we had available.
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the sizes of each database relation is one eighth of the suggested size. Table 6.1 contains
information about some of the relations in the database such as primary keys, cardinality,
memory pages and indices. A primary index (denoted in the table with P) is defined on
the P_PARTKEY attribute of P and on the S_SUPPKEY attribute of S. A dense secondary
index (denoted with S) has been defined on each of the PS_PARTKEY and PS_SUPPKEY of

the PS relation.

To answer questions 1-3 presented above, we use this database. Then, we conduct
a number of experiments and perform a number of measurements. Each experiment is
done independently. This means that before an experiment is conducted, the buffer of
the database is cleared of its contents. In this way, the result of an experiment does not
depend on the contents of the buffer and the hit-ratio resulting from previously cached
pages.

On top of this database, we define three views:

J1: select * from P, PS where P_PARTKEY = PS_PARTKEY

J2: select * from PS, S where PS_SUPPKEY = S_SUPPKEY

J3: select * from P, PS, S where P_.PARTKEY = PS_PARTKEY and
PS_SUPPKEY = S_SUPPKEY

In each experiment, we specify an update to the underlying database and we moni-
tor propagation of the incremental changes to these views. We measure the logical and
physical I/O necessary to perform change propagation and, sometimes, view evaluation.
Logical I/0 refers to the number of memory pages accessed during computation (inde-
pendently of whether these pages must be brought from the disk or are already cached
in main memory). Physical I/O refers to the number of memory pages transferred from
the disk into main memory during computation. To get the logical and physical [/O we
have used a monitor program that takes “snapshots” of the state of the DBMS. The state
contains, among other things, counters that record the activity of the DBMS since the

last time a “reset” of the counters was issued.
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6.3 Collecting Data: The Experiments
6.3.1 Using Different Incremental Queries

These experiments compare the performance of different queries computing incremental
changes. We take different equivalent queries corresponding to computing the incremental
changes to a view and, for a number of database updates, we run these queries on DB2.
We, then. measure the results (logical and physical [/O} of each experiment and compare

these results.

Experiment 1.1: In this experiment, we delete one tuple from S, a portion of P ranging
from 0.1% to 10% of P, and all related PS facts and we monitor the propagation of

incremental deletions to J3.
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Figure 6.1: Experiment 1.1: Incremental deletions to J3 with the index on PS_PARTKEY

We use two different queries to compute the incremental deletions: the first is to
propagate the database deletions through P X PS and the second is to propagate the
database deletions through PS X S. We also compare the results with computing
J3 before the update. Figure 6.1 shows the results of this experiment. As we can
see, the performance of the incremental methods is much better than evaluating
the view initially. This is especially true when considering the physical /O, which

is the dominating factor affecting performance.
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Figure 6.2: Experiment [.2: Incremental deletions to J3 without the index on PS_PARTKEY

The plan chosen by DB2 to compute J3 in this experiment is as follows: first the
join between PS and S is performed by scanning the S relation and looking-up, using
the index on the PS_SUPPKEY of PS, the corresponding tuples in PS (nested-loops
join). Then, for each tuple in the intermediate join, the corresponding tuples in
the P relation are found (merge join). As we see, the index on PS_PARTKEY of PS is

not used during the evaluation.

Next, we repeat the same experiment, only in this case, we drop the index on the

PS_PARTKEY attribute of PS.

Experiment 1.2: We use the same updates as before and monitor the propagation
of incremental deletions to J3 using the two different ways described above. This
time, no index exists on the PS_PARTKEY attribute of P. Figure 6.2 shows the results.
Note that to compute J3 in this and the previous experiment, the same amount of
logical and physical I1/O is necessary (because the index we dropped is not used in
the evaluation of J3). As we see, the performance difference between choosing to
propagate through P &4 PS or through PS X S is rather big. In fact, to compute the
incremental changes through P ™ PS the time? ranges from 54 sec to 3 min, while
through PS X S the time ranges from 26 min to 28 min. Computing J3 requires

approximately 34 min.

2This refers to real time, not cpu or system time.
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Experiment 1.3: We add a portion of P and related PS facts as well as one new supplier.

We monitor propagation of incremental insertions to J3. Figure 6.3 shows the

results. All defined indices are available during evaluation. Note that, in contrast

to propagating the deletions, the two methods of propagating insertions have a

slight difference in performance.
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Figure 6.3: Experiment 1.3: Incremental insertions
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Figure 6.4: Experiment 1.4: Incremental insertions to J3 (due to insertions and deletions)

Experiment 1.4: We delete a portion of P, one tuple from S and all related PS facts.

We also add a portion to P, one tuple to S, and related PS facts. We monitor

propagation of incremental insertions to J3. Figure 6.4 shows the results. As we
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see, one incremental method is better than view evaluation but the other is not. In
fact, the time to compute the incremental insertions through P X PS ranges from
12.5 min to 14 min while to compute them through PS X S the time ranges from
53 min to 34 min. Note that when considering the logical I/0O, view computation
seems to outperform both change propagation methods. However, when considering
the physical [/O (which is more representative of the actual time a query takes to

execute) propagation through PS M P is, in fact, a lot better.

In this set of experiments, we used optimized queries to propagate incremental changes
through P X PS and through PS ™ S. The only optimization that was not applied during
these experiments is the optimization due to foreign key references. As we will see later

on, this optimization greatly improves the performance of change propagation.

6.3.2 Using the Key Constraint Optimizations

In this section, we present examples where we compare the optimized change propagation
queries (where all optimizations except the foreign key reference optimization are active)
to the non-optimized change propagation queries (the ones derived by the method of
Griffin and Libkin [GL95]). These experiments demonstrate the benefit of using the
new key constraint optimizations proposed in the thesis in Section 4.2. We take the non-
optimized and the optimized change propagation queries and we run these queries on DB2.
Then, we measure the logical and physical I/O necessary to compute the incremental

changes and we compare the results.

Experiment 2.1: We add and delete a portion of P ranging from 0.1% to 10% of P,
we add and delete one tuple from S and we add and delete related PS facts. We
monitor propagation of incremental insertions to J3. Figure 6.5 shows the results.
We see that the proposed optimization reduces the physical I/O necessary to about

half the I/O needed to compute the original join.

Experiment 2.2: We use the same update as before but we measure the propagation

of incremental deletions to join J3. Figure 6.6 shows the results.
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Figure 6.5: Experiment 2.1: Incremental insertions to J3 with and without key optimiza-

tion

In the above two examples, the optimized queries that maintain the view coincide

with the over-estimations of the changes for these views. This shows that using over-

estimations of changes in place of their actual changes has the potential to improve the

performance of change propagation.
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Figure 6.6: Experiment 2.2: Incremental deletions to J3 with and without key optimiza-

tion
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6.3.3 Using the Foreign Key Constraint Optimizations

The experiments presented in this section demonstrate the benefit of using the new foreign

key constraint optimizations proposed in the thesis in Section 4.3. We take a number of

updates and monitor propagating these updates to each of the three defined views J1,

J2 and J3. In this database schema, there is a foreign key reference from PS_PARTKEY of

PS to P_PARTKEY of P and one foreign key reference from PS_SUPPKEY of PS to S_SUPPKEY

of S.

We use two different ways to propagate the updates: one uses all available optimiza-

tions except the optimization due to the foreign key references and the other also uses

this additional optimization. In both cases, we use the RHODES optimizer to optimize

the expressions for computing the incremental updates. First, we use RHODES without

declaring the foreign key references to derive an execution plan to propagate the updates.

From this plan, we construct an SQL query and execute it in DB2. Then, we define in

RHODES the foreign key reference and optimize the change propagation queries again.

From the execution plan that RHODES generates, we derive another SQL query which,

again, we execute in DB2. We compare the results. In the figures that follow, “without

fk opt” means that all optimizations but the one due to the foreign key references are

on, while “with fk opt” refers to all optimizations being active.
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Experiment 3.1: We delete a portion of P, one tuple from S and all related PS facts and
monitor the changes to J1. Figure 6.7 shows the results. As we see, the additional
optimization greatly improves the performance of the incremental method. The

optimized query due to the foreign key is §~(PS) X P.
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Figure 6.8: Experiment 3.2: Incremental deletions to J2 with and without foreign key

optimization

Experiment 3.2: We use the same updates as before, only now we look at the propa-
gation of incremental changes to J2. Figure 6.8 shows the results. The optimized
query is §~(PS) M S. Note the difference between this experiment and the previous
one, where we had a very smooth behavior of both the optimized and the non-
optimized method. We were not able to satisfactorily explain the irregularities in
the graphs. The execution plan for both queries remain the same throughout the
example (for all updates) and the join selectivity between the changes to PS and S
is constant. Also, one may be wondering why the cost is so high for propagating
changes to this join since only one tuple changes from S (which in this case joins
with about 80 tuples from PS). With no index on the changes of PS, scanning the
changes to PS is the most important factor that affects the performance. Finally,
note that the benefit of using the foreign key optimization in this case is relatively
smaller. This is mainly because the non-optimized version for this example takes

much less time to execute than the non-optimized version in the previous example.
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Experiment 3.3: We use the same updates as before, but we monitor propagation

of incremental changes to J3. The optimized query due to the foreign keys is

P X 6~(PS) X S. Figure 6.9 shows the results. As we see, in this case the plots are

smooth again. One can think of these plots as approximately the sum of the plots

presented for J1 and J2.
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Experiment 3.4: We add a portion to the P relation ranging from 0.1% to 10% of P
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and related PS facts. We monitor propagating the incremental insertions to Ji.
Figure 6.10 shows the results. The non-optimized change propagation query is
6t(P) XM PSUP X §F(PS) U 6+(P) M 6*(PS). The optimized query is §+(PS)
PU 6*(PS) X §+(P). As we see the only difference between the two queries is the
extra factor of §t(P) X PS which evaluates to empty. The DB2 system was able
to understand this by simply accessing the index on PS_PARTKEY of PS without
accessing the PS data at all. Thus, the optimized and the non-optimized queries
have almost the same run time performance. However, this is because the two
relations change by insertions only. Next, we repeat the same experiment, only in

this case we allow deletions as well as insertions to the two relations.

Experiment 3.5: We delete a portion to the P relation and add another one. We also

-+ Logical YO -

delete all related PS tuples and add PS facts. We monitor the incremental insertions

into J1. Figure 6.11 shows the results.

Figure 6.11: Experiment 3.5: Incremental insertions to J1 when both P and PS get

insertions and deletions, with and without foreign key optimization

The optimized query for this case is the same as before (Experiment 3.4). The non-
optimized query is §*(P) X (PS—é~(PS))U(P—4~(P)) X PSUST(P) X §T(PS). Asone
can see, DB2 was not able to efficiently evaluate the set differences required in this
query. The performance difference between the optimized and the non-optimized

change propagation queries is very big.

80C000 § SN Bt M S B R B S S S SEE SIS S St Ea T T T T T T T T T T T
w-ﬂ:&tg:oot— 30000 | wmout:out—-
— with fk opt ——
700000 [ oFt 7 °
25000 & j_—///:
600000 -
500000 | E g 20000 | <
K 3
400000 h B 15000 E
=
o
300000 J .
10000 -
200000 - b
S000 + s
100000
- "‘A’-“ _____
i e B IO
0.10203040506070809 %+ 2 3 4 5 6 7 8 % 10 010203040506070809 1 2 3 4 5 6 7 8 10
~Pearcentage of update to P —~ - Percentage of update to P



CHAPTER 6. EXPERIMENTS 101

6. Other Experiments

All the examples of the previous sections involved views computed using joins on the
database relations. This section contains a few more exampies involving other operators
in the algebra. For these experiments, the logical I/O necessary to compute the changes

to the views is estimated using the RHODES optimizer.

6.4.1 Project Distinct

Let us consider two views defined as

V1i: select distinct PS_PARTKEY from PS
V2: select distinct PS_SUPPKEY from PS

Figure 6.12 shows the estimated I/O necessary to compute V1 and V2 originally (shown
with the line “original” in the charts) as well as the estimated [/O to compute their
incremental deletions (shown as “deletions”) and insertions (shown as “insertions”) when
PS is updated. The sizes of the updates range from 0.1% to 10% of PS. When we say
updated we mean that some portion of PS is deleted from PS, and another portion, of the
same size, is added to PS. As we see, even for very small updates the [/O necessary to

propagate these changes to the views is rather high compared to computing the views.
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Figure 6.12: Incremental changes to V1 and V2
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6.4.2 Set Difference

Let us consider a view defined as

V3 : select P_PARTKEY from P except all select PS_PARTKEY from PS
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Figure 6.13: Incremental changes to V3 due to deletions from P (first figure) and due to

insertions to P (second figure)
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Figure 6.14: Incremental changes to V3 due to deletions from PS (first figure) and due to

insertions to PS (second figure)

Figure 6.13 shows the estimated logical I/O of propagating incremental changes to V3

when tuples are either only deleted from or only inserted to P. As we see in these figures,
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the cost of propagating the deletions from P is very low while the cost of propagating
the insertions to P is rather high and comparable to the cost of computing V3. Exactly
the opposite happens when, instead of P, it is the relation PS that accepts the changes.
Figure 6.14 shows the results in this case. Note however that propagating insertions in
this case is slightly more costiy ihan proragating deletions in the previous case.

Finally, Figure 6.15 show two more experiments. The first plot in the figure shows
what logical [/O is necessary to compute incremental changes when parts of both P
and PS are deleted. The second plot shows what logical [/O is necessary to compute
incremental changes when all relations incur a number of deletions and insertions, that is
they simultaneously change by both insertions and deletions. Note that computing the
incremental deletions is rather beneficial. But computing the incremental insertions is

comparable to computing the view from scratch.
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Figure 6.15: Incremental changes to V3 due to deletions from both P and PS (first figure)
and due to updates to both P and PS (second figure)

6.5 Making Inferences

The examples presented so far demonstrate a number of interesting points. First, they
show that it is indeed possible for different change propagation strategies to result in
significant performance differences. Second, they show that having indices defined on

the database data is very helpful during change propagation, even in the case where
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these indices do not participate in view creation (see example 1.2). Although, this is not
a surprising result, it is still interesting to see how the performance of change propagation
is affected by the creation and use of the index.

We can see that in most cases examined here, propagating deletions seems to be
less time consuming than propagating insertions. For database data with keys (such
as the ones used here), the deletions can be propagated independently of the database
insertions (see Tables 4.3 and 4.4). However, the same is not true for insertions. where
access and manipulation of the deletions is also necessary in order to correctly propagate
the insertions.

Another interesting point that we can make from these experiments is that the foreign
key optimizations greatly improve the performance of change propagation and, thus,
of view maintenance. As these optimizations are generally applicable only to certain
change propagation expressions but not to others (see Section 1.3 for an example), our
claim that “an intelligent component of the DBMS, such as the query optimizer, should
be responsible for the generation as well as the optimization of incremental and change
propagation queries” is strongly supported by the results of these experiments.

Looking at the results of these experiments, we can also see that even for small up-
dates, where relations change by no more than 10% of their original sizes, the performance
of change propagation may be comparable to the performance of view computation. In-
cremental view maintenance involves the computation of both insertions and deletions
before incremental changes can be incorporated into the old values of the views. If one
adds the cost to compute both insertions and deletions and the cost of incorporating
these insertions and deletions to the old value of the view, one can see that it is not
at all clear that incremental view maintenance is going to be always better than view

re-evaluation, but wins greatly in many cases.

6.6 Validation of RHODES

The examples of this chapter demonstrate that our proposed optimizations have the
potential to improve the performance of incremental view maintenance and change prop-

agation. This is especially true for the optimizations due to the foreign key references.
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The optimized queries that we ran on DB2 were generated using the RHODES opti-
mizer. RHODES was invoked, for each experiment in question, to chose and optimize the
change propagation queries of the experiment. From the plan produced by RHODES, an
SQL query was generated corresponding to the change propagation expression chosen by
RHODES for the view of the experiment. The non-optimized queries were generated by
applying the generation algorithm of Griffin and Libkin [GL95] (by hand). This algo-
rithm is described in Section 3.4.1. The experiments of this chapter, thus, provide an
indication that the optimizations that RHODES is capable of executing are very useful.

To further validate the basic RHODES optimizer, we can examine and compare the
execution plans generated by RHODES and the DB2 optimizer, for each of the three views
J1, J2 and J3. The DB2 output is generated by the dynexpln command of DB2.

6.6.1 Execution Plans for J1

Figure 6.16 shows the plans chosen by RHODES and DB2 for the view J1.

Both RHODES and the DB2 optimizer chose the same join algorithm to implement J1.
RHODES knows that the relation P is sorted on P_PARTKEY (because a primary index has
been defined on it). To retrieve the tuples from P, RHODES reasons that no (external)
sorting is necessary. A simple relation scan is sufficient to generate the tuples in a sorted
order. DB2, however, sorts the P tuples before further processing.

However, there is a second difference between the two plans. It is in how the PS
relation is accessed. RHODES retrieves the tuples of PS sorted using the secondary dense
index because it thinks that sorting such a big relation is rather expensive. DB2 instead
sorts the relation using external sorting (we know that this relation is not sorted in
memory because of the “not piped” keyword that appears in the access to PS in the DB2
plan, which means that insufficient memory exists during execution).

The data for this example were created in such a way that the PS relation is in
fact sorted according to the PS_PARTKEY. It seems that the DB2 optimizer was able to
recognize this fact, while RHODES could not.

RHODES estimates that the logical I/O to compute J1 is 154,558. The actual logical
I/0 is 135,013. The actual physical I/O is only 9,972. We believe that the physical I/O
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is so low because the sorting of PS on PS_PARTKEY (estimated to be rather expensive) is

in fact very fast because the data is already sorted on this attribute.

6.6.2 Execution Plans for J2

Figure 6.17 shows the plans chosen by RHODES and DB2 for the view J2.

For this view, the two execution plans chosen by the two optimizers are identical. A
nested loops join algorithm is chosen to perform the necessary join. All tuples of the
S relation are scanned and, for each one of them, the corresponding tuples in the PS
relation are found by using the index on the PS_SUPPKEY.

RHODES estimates that the logical I/O to compute J2 is 150,641. The actual logical
[/O is 101,278. The actual physical [/O is 101,260. We believe that the physical I/O is
so high, in this case, because PS is not clustered on PS_SUPPKEY and accessing each PS

tuple (and we need to access them all) results in one new page /0.

6.6.3 Execution Plans for J3

Figure 6.18 shows the plans chosen by RHODES and DB2 for the view J3.

RHODES chooses the join ordering (PS X S) X P while the DB2 optimizer chooses
(S ™M PS) X P. Note that the join between PS and S has a different ordering in the two
plans. Both RHODES and the DB2 choose the same join algorithms to execute these
joins. A nested loops join algorithm is used to implement the join between S and FS and
a merge join algorithm is used to implement the join between this intermediate result
and P.

RHODES reasons that since a primary key index has been defined on the P relation,
this relation is already sorted on the key attribute P_PARTKEY and no (external) sorting
is necessary. The DB2 optimizer scans the P relation and creates a sorted intermediate
table holding the tuples of the P relation sorted.

Also, let us call I the join between PS and S. The merge algorithm to implement
the join between I and P requires I to be sorted on PS_PARTKEY and P to be sorted on
P_PARTKEY. There are two different ways to sort I on the PS_PARTKEY attribute and the

two plans differ on how they deliver I sorted.
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The way chosen by the DB2 optimizer is to compute the join I first and, then, to
sort I on PS_PARTKEY. Because of the referential integrity, however, every tuple in the
PS relation joins with a tuple from the S relation and the join I has as many tuples as
the PS relation has. The difference is that the size of I in bytes is much bigger that the
size of PS in bytes because each I tuple also contains the supplier information. So, why
should we sort I and not sort PS instead?

RHODES chooses to sort the PS relation before using the nested loops algorithm with
S. If a nested loops algorithm is performed the output of the nested loops algorithm
is sorted on whatever attribute the first input is sorted on. To retrieve PS sorted on
PS_SUPPKEY, the secondary dense index defined on it is used.

There is also another reason why this is a better plan. Scanning the S relation first and
then using the index on PS_SUPPKEY results in finding for each S tuple all corresponding
PS tuples. But all PS tuples must be accessed. Since the PS relation is not clustered on
the PS_SUPPKEY attribute, finding the PS tuples requires as many page I/O’s as tuples in
PS approximately. Accessing the PS relation using the index defined on PS_SUPPKEY also
results in as many page I/O’s as tuples in PS, but it completely saves the cost of sorting
I.

RHODES estimates that the logical I/O to compute J3 is 353,662. The actual logical
I/0 is 345,099. The actual physical I/O is 122,194. Table 6.2 summarizes the estimated
[/O from both RHODES and DB2 for all three execution plans.

View | RHODES I/0O | DB2 Log /O | DB2 Phys I/0
J1: 154, 558 135,013 9,972
J2 : 150, 641 101,278 101, 260
J3 353, 662 345,099 122, 194

Table 6.2: Logical and physical [/O
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5QL Statement:

SELECT *
FROM PART, PARTSUPP
WHERE P.PARTKEY = PS_PARTKEY

Coordinator Subsection:
Distribute Subsection #1
Directed to Single Node
Partition Map ID = 1, Nodegroup = IBMDEFAULTGROUP, #Nodes = 1|
Access Table Queue ID = q! #Columns = 14

Subsection #1:
Access Table Name = VISTA.PARTSUPP ID = 23 #Columns = §
Scan Direction = Forward
Relation Scan
Lock Intent Share
Sargable Predicate(s)
#Predicates = 1
Create/Insert Into Sorted Temp Table ID = t1
Sort #Columns =1
Not Piped
Sorted Temp Table Completion ID = t1

Access Table Name = VISTA.PART ID = 21 #Columns = 9
Scan Direction = Forward
Relation Scan
Lock Intent Share
Sargable Predicate(s)
#Predicates = 1
CreatefInsert Into Sorted Temp Table ID = 2
Sort #Columns = 1
Piped
Sorted Temp Table Completion ID = 2

Access Temp Table ID = 12 #Columns = 9
Scan Direction = Forward
Relation Scan

Mezrge Join
Join Strategy: Collocated

Access Temp Table ID = t1 #Columns = 5
Scan Direction = Forward
Relation Scan
Create/Insert Into Table Queue ID = ql,

Figure 6.16: Execution plans for J1 chosen by RHODES and DB2
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SQL Statement:
SELECT *
FROM PARTSUPP, SUPPLIER
WHERE PSSUPPKEY = SSUPPKEY

Coordinator Subsection:
Distribute Subsection #1
Directed to Single Node
Partition Map ID = 1, Nodegroup = IBMDEFAULTGROUP, #Nodes =1
Access Table Queue [ID = qi #Columns = 12

Subsection #1:
Access Table Name = VISTA.SUPPLIER ID = 22 #Columns = 7
Scan Direction = Forward
Relation Scan
Lock Intent Share

Nested Loop Join
Join Strategy: Collocated
Access Table Name = VISTA.PARTSUPP ID = 23 #Columns = 5
Scan Direction = Forward
Index Scan: Name = VISTA.PSSUPPREYIND ID = 2 #Key Columns = 1
Lock Intent Share
Create/Insert Into Table Queue [D = ql. Broadcast

Figure 6.17: Execution plan for J2 chosen by RHODES and DB2
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SQL Statement:

SELECT *
FROM PART. PARTSUPP, SUPPLIER
WHERE PS_PARTKEY = P_.PARTKEY AND PSSUPPKEY = SSUPPKEY

Coordinator Subsection:
Distribute Subsection #1
Directed to Single Node
Partition Map ID = 1. Nodegroup = IBMDEFAULTGROUP, #Nodes = 1
Access Table Queue ID = q1 #Celumns = 21

Subsection #1:
Access Table Name = VISTA.SUPPLIER ID = 22 #Columns =7
Scan Direction = Forward
Relation Scan
Lock Intent Share
Nested Loop Join
Join Strategy: Collocated
Access Table Name = VISTA.PARTSUPP ID = 23 #Columna = 5
Scan Direction = Forward
Index Scan: Name = VISTA.PSSUPPKEYIND ID = 2 #Key Columns = 1
Lock Intent Share
Sargable Predicate(s)
#Predicates = 1
CreatefInsert Into Sorted Temp Table ID = t1
Sort #Columns = 1
Not Piped
Sorted Temp Table Completion ID = t1
Access Table Name = VISTA.PART ID = 21 #Columns = 9
Scan Direction = Forward
Relation Scan
Lock Intent Share
Sargable Predicate(s)
#Predicates = 1
Create/Insest Into Sorted Temp Table ID = 2
Sort #Columns = 1
Piped
Sorted Temp Table Completion ID = 12
Access Temp Table ID = 12 #Columns = 9
Scan Direction = Forward
Relation Scan
Merge Join
Jein Strategy: Collocated
Access Temp Table ID = t1 #Columns = 12
Scan Direction = Forward
Relasion Scan
Create/Insert Into Table Queue ID = q1

Figure 6.18: Execution plan for J3 chosen by RHODES and DB2



Chapter 7

Conclusions

This chapter concludes the dissertation with a presentation of the research contributions
along with a discussion on the limitations of the approach and an outline for further
research. This chapter also includes a discussion of practicality and limitations of mate-

rialized views.

7.1 Research Contributions

One primary contribution of our thesis is that we provide a different perspective to
address view maintenance and, consequently, change propagation. We can summarize

this perspective with:

“both the choice of incremental view maintenance versus non-incremental
view maintenance as well as the choice of an appropriate propagation strategy

are best left to the database query optimizer to make.”

Another primary contribution is that we provide a repertoire of original optimizations
specific to incremental view maintenance and change propagation.

In particular:

L. In this dissertation, we experimentally demonstrate that the performance of in-
cremental view maintenance depends on the physical aspects of the underlying
database management system, such as the availability of index structures, the sizes
of the reiations involved, as well as the sizes of the database updates. For this rea-

son, we argue that incremental maintenance strategies should not be adopted by

111



CHAPTER 7. CONCLUSIONS 112

a database system without first taking these system properties into consideration.
We also argue that the database query optimizer is a reasonable component of the
database system to decide, at the point of view maintenance, whether a view is
to be maintained incrementally or not, because the optimizer has knowledge of,
and access to, all of the parameters that may affect this choice. To the best of our
knowledge, this is the first work that does not commit to the a priori usage of incre-
mental view maintenance due to assuming that in “typical” situations incremental

view maintenance is very efficient.

v

We demonstrate how one can take an algorithm for change propagation and incre-
mental view maintenance, such as the one proposed by Griffin and Lipkin [GL95],
and incorporate it into a database query optimizer. We have built the RHODES
relational query optimizer that supports both change propagation and incremental
view maintenance. Qur approach is to see view maintenance as an optimization
problem that is best left to the database query optimizer to make. Our approach
does not require significant changes in the DBMS, other than the proposed extension
to the query optimizer and some bookkeeping about the database updates (which
is necessary in any incremental maintenance technique). Therefore, using our ap-
proach, no additional software must be written, and no special purpose evaluation

component must be integrated into the DBMS!.

3. Incorporating change propagation and view maintenance into the query optimizer
allows the optimizer to be responsible for the generation of the queries to be exe-
cuted in order to support change propagation or incremental view maintenance. In
incremental view maintenance, for example, there may be more than one different
strategy to maintain a view incrementally. Choosing among the different strategies
is not an easy task and cannot always be done independently of the system aspects

of the database.

'RHODES has not been integrated intc an existing DBMS; our claim is that the functionality
supported by RHODES can easily be incorporated into any existing optimizer.
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4.

[ncorporating the generation of change propagation and view maintenance into
the query optimizer also allows the query optimizer to use, in addition to tradi-
tional optimizations, incremental maintenance specific optimizations in order to
find the best possible way to maintain a view. A reperioire of maintenance-specific
optimizations are provided in the thesis. These proposed optimizations are also
validated experimentally. For example, when the updates affect only part of the
database, some view maintenance expressions may evaluate to empty and the opti-
mizer may be able to recognize this in order to avoid extra computation involving
the database, and, thus, to decide that incremental view maintenance is more effi-

cient than re-evaluation.

Apart from the above contributions, we also make two secondary contributions:

1.

[SV]

The research of this dissertation has lead to the implementation of an extensible
relational query optimizer. The design of the query optimizer is such that it can
be extended into, for example, a query optimizer for a parallel database rather
easily [Zi196]. Another novel feature of RHODES is that it considers the alternative
to use already materialized views in order to optimize the execution of general

queries, which has recently been recognized as a potential for query optimization

[LMSS95, FRV96].

Textual representations of the generated plans of a query optimizer are rather dif-
ficult to manage and understand, especially for relatively large plans where the
textual description of the plan may be hundreds of pages long. The query plan
generated by RHODES is supplied to a plan visualization tool generated by ap-
propriately configuring a general visualization tool for graphical presentation of
structured information [Noi96]. The browser allows us to view the chosen plan
for any given conventional or incremental query and to view details of the plan,
including statistics, access structures, and so on. This functionality is similar to

DB2’s visual explain facility [DB2].

Next we describe some of the limitations of our approach.
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7.2 Limitations

In this thesis, we showed how one can take their favorite algorithm for incremental view
maintenance and incorporate it into the database query optimizer. This allows the query
optimizer to be responsible for deciding whether a view is to be maintained incrementally
as well as which change propagation expressions to use to compute the incremental
changes. As a proof of concept that it is easy to extend an optimizer to support this.
we have built the RHODES database optimizer that supports both incremental view
maintenance and change propagation. The implementation of RHODES is such that each
view is examined independently of the other views. That is, if the views depend on
each other, RHODES does not try to find the best way to maintain the set of views.
We consider this as a major disadvantage of our work. However, we also consider it an
implementation problem. It is possible to extend RHODES in order to optimize the set
of available views in some topological ordering. Then, RHODES can use the fact that
some of these views could have already been updated at the time views that depend on

it are examined by it.

Another limitation of our technique is the increase in time and system resource usage
during view maintenance due to optimization. Many query expressions are examined
for the maintenance of each view, and, if there are a lot of views to be maintained, this
may result in significant performance degradation. The view maintenance optimization
time and resource consumption is influenced by the complexity of each view expression,
especially by the number of joins and subqueries the view expressions contain. Ideally, the
optimizer could be configured to use default view maintenance expressions (obtained at
view compilation time or at the first time view maintenance is performed) for views that
require short time to be computed. Decision support queries or end-of-the-month queries,
however, are good examples of complex queries, where the increase in the optimization

time may not affect the overall performance of the system very much.

All experiments conducted to support our thesis were on data with uniform distri-
butions. We consider this as a limitation of our thesis, since it is believed that uniform

distribution are not very natural. It would be interesting to see how the performance
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results would be affected under different distributions of data values.

The impact on the overall performance of the database system is a limitation of view
maintenance, in general, both incremental and not. View maintenance at the end of
each updating transaction slows down transactions. [t is an open problem to determine
how view maintenance and the overall performance of the database system are related.
We believe that it would probably depend on each application whether the performance

impact of materialized views is beneficial for the application or not.

7.3 Discussion and Open Problems

We conclude this dissertation with a discussion on the practicality of materialized views
along with a discussion of some open problems.

Almost every commercial database system supports views (Oracle, Sybase, DB2, etc.).
Materialized views exist mostly during the execution of a single query (in the form of
materialized intermediate results) but are destroyed right after the completion of the
query. Oracle is now implementing materialized views and incremental view mainte-
nance support. Active database systems, such as those described by Widom and Ceri
[WC96], can support materialized views but it is (mostly) up to the user to specify how
view maintenance is realized by specifying appropriate active rules in the system’s rule
language. Among those systems supporting materialized views, only the Starburst sys-
tem [HCL*90, Wid96] has automatically generated active rules for the views’ incremen-
tal maintenance. The ARIEL system [HBH*95, Han96] supports automatic incremental
maintenance of (certain) materialized views by exploiting specialized data structures used
by the system.

According to representatives of major database companies at the workshop on Ma-
tertalized Views at the SIGMOD 96 conference, most database vendors are considering
incorporating materialized views into their products because of the demand for materi-
alized views by new applications such as data replication, decision support, data mining,
and so on. The requirements set by the vendors are that materialized views work well
with the other components of the database system, that they do not have a negative

effect on the overall performance of the system, and that they be used for optimization
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of general queries. Domain specific knowledge of each application will probably be used
to justify the use of materialized views.

At the SIGMOD ’96 workshop on Views, there was a debate on whether materialized
views should be part of the SQL-3 standard. This would of course mean that all database
products would support materialized views and perhaps their incremental maintenance.
The majority of participants agreed that materialized views, like B-trees, are optimization
techniques and should not be part of the standard. Others hoped that they will soon
become part of the standard because of their potential for optimization.

There are some problems associated with materialized views and these must be solved
or appropriately addressed before materialized views become part of commercial database
products. The maintenance of materialized views, for example, slows down update trans-
actions, reduces query throughput and interferes with concurrency control. Materialized
views require more disk space and, sometimes, special algorithms and data structures.
Other problems associated with materialized views is what views to materialize, how
to store these views as well as how to keep them consistent with the database, and, as
discussed above, how to do all this without affecting the performance of the rest of the
database system.

In the current state of incremental view maintenance research, there seems to be an
over-formulation of how to do incremental view maintenance: there are too many pro-
posed algorithms on how to do incremental view maintenance for a number of different
data models. What seems to be missing, though, is a thorough evaluation of the problems
discussed above and implementation-specific proposals of how to incorporate materialized
views and their incremental view maintenance into a database system without affecting
performance unacceptably. Finally, database query optimizers must be extended to de-
tect and use materialized views automatically, as they do with B-trees and join indices,

for instance, which also need to be consistent with respect to the database.
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Appendix A

Cardinality Estimation

In this appendix, we present the derivation of one physical property, the cardinality, from
the physical properties of the inputs for each available physical operator. [n what follows,
we use n as the cardinality of the derived relation, and ny, n, as the cardinality of the

input relations.

A.1 Cardinality Estimation
BINARY SEARCH, FILE_SCAN, INDEX_SCAN, SELECT_ALGO

The number of tuples in the output relation of these operators is a fraction of the num-
ber of tuples in the input relation. We call this fraction the selectivity of the selection
conditions that appear as arguments to the algorithms. At the end of the appendix, we

describe how we estimate selectivities.
n = selectivity X n,

CARTESIAN_ALGO

The number of tuples in the output relation is always

n=n; Xn,

DUPLICATE_ELIMINATION

Let tmage(a;) denote the number of distinct values that the z-th attribute in the input

relation may have. This information is stored in the catalog. The output relation’s size

130



CHAPTER A. CARDINALITY ESTIMATION 131

cannot be smaller than the maximum image size. Thus, a lower bound for the size of the
output is

arit
lower bound = m_alylcl {image(a;)}

The output cannot be larger than the input or the product of all attributes’ image

size, whichever is less. Thus, an upper bound for the size is

=1

arity
upper bound = min {nl, H (image(a,—))}

We estimate the size of the output as

S)

<

[lower bound + upper bound.l
n=

MERGE, NESTED_LOOP

The number of tuples in the output relation is a fraction of the cartesian product of the
two relations. We call this fraction the join selectivity. At the end of the appendix, we

describe how we estimate join selectivities.
n = join selectivity X n; X n,

PROJECT_ALGO, SORT

For these operators, the input size does not change.
n=n

SET_DIFF

SET INTERSECT
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SET_UNION

n=n; 4+ n,

For SET_DIFF.D, SET.INTERSECT.D and SET_UNIONLD, we estimate the number of du-
plicates in each input, and then we use the formulas presented above (thus, n; and n,,
in these cases, are the sizes of the two inputs after duplicate elimination). Duplicate

estimation follows the formula presented for duplicate elimination.

A.2 Selectivity Estimation

The fraction of tuples from a relation satisfving a given selection condition is called the
selectivity of the condition. The smaller the selectivity of a condition, the fewer tuples
the condition selects and the larger the desirability of using this condition first to retrieve
tuples. The selectivity of conjunctive condition §; A @y A ... A 8, is the product of the
selectivities of each individual selection condition §; [EN94]. The different forms of 6;
known to RHODES are: (X; op val) and (X; op X,) where op € {=,>,<}. The
selectivity of each §; is defined according to the type of 8; [SACt94]:

e For condition X; = val

selectivity = —————
y image( X;)

This formula assumes an even distribution of tuples among the different values in

the domain. However, if val < min(X;), or val > max(X;), the selectivity is 0.

e For condition X; > val, we do a linear interpolation of the value val within the

range of values of attribute X; from min(X;) to max(X;), and we estimate

max(X;) — val
max(X;) — min(X;)

selectivity =
If val < min(X;), the selectivity is 1, and if val > max(X;), the selectivity is 0.
® For condition X; < val

selectivity(X; < val) = 1 — selectivity(X; = val) — selectivity(X; > val)
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e For condition X; = Xj

1
max{image(X;), image(X,)}

selectivity =

This formula assumes that each value in the domain of the attribute with the smaller
image size has a matching value in the other attribute. If X; is the same attribute
name as .JXj, the selectivity is 1. Also, if max(.X;) < min(X;), or max(X;) <

min(X;), the selectivity is 0.

e For condition X; > Xj, if image(X;) > image(X;), then

image(X;) — image(X;)

selectivity = 1 — -

y image(.X;)

else

image(X;) — image(X;)
image( X;)

selectivity =

If X; is the same attribute name as X, the selectivity is 0. If max(X;) < min(X}),

the selectivity is also 0. If min(.X;) > max(.X;), the selectivity is I.
e For condition X; < X;

selectivity(X; < X;) = 1 — selectivity( X; = X;) — selectivity(X; > X)

o [f the attribute(s) appearing in the selection condition are not arithmetic or if, for
some reason, the required statistics are not available in the catalog, for an equality

condition

selectivit L
ectivity = —
10

and for a comparison condition
- l
selectivity = 3

There is no significance to these default numbers, other that an equality condition

is more selective than a comparison condition.
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A.3 Join Selectivity Estimation

A join A M4,-p, B is a selection whose condition is the join condition, A; = B, from
the cartesian product, A x B. of the two relations being joined. The fraction of tuples
from the cartesian product satisfying the join condition is called the join selectivity. The
only join condition that is allowed in RHODES is of the form A; = B; where 4, is an
attribute of relation A and B; is an attribute of relation B. There are two cases for

estimating the join selectivity:

e [f no foreign key constraint is known between attribute A, of A and attribute B,

of B, then

— If A; and B; are not arithmetic, then

join selectivity = ——
join selectivity 1000

— Otherwise, let the range of the domain of the A; attribute is d4 = max(A4;) —
min(A;)+1 and the range of the domain of B, is dg = max(B;})—min(B;}+1
with an overlap d. (We assume that the distinct values are uniformly dis-
tributed within each range and that the tuples are uniformly distributed in

the distinct values.) If no overlap exists, then
join selectivity = 0

else, let v4 be the total number of values for the A, attribute in the overlap
and vg the total number of values for the B; attribute in the overlap, i.e.,
va = [d/ds = image(A,)]| and vg = [d/dg * image(B,)].

We define

join selectivity = min{v., vp}
J V= image( A,) * image(B,)

e If, however, B,1 is the key attribute of B and there is a foreign key reference from
A; to Byl, then
1
join selectivity = ————
J v image( B 1)
In fact this selectivity is identical to the selectivity of selection condition X; = X

only that we know that image(B;1) is at least as big as image(A;) in this case.



Appendix B

Cost Estimation

In this appendix we present the formulas for cost estimation used by RHODES. In order to
estimate the cost of different expressions, RHODES must know what the cost of choosing

each algorithm is. In presenting our cost model, we use the following symbols:
e B is the size in bytes of one memory block (usually 1024 bytes);
e M is the size in pages of memory available to the optimizer;

e n is the cardinality (number of tuples) of the output relation and n,,n, are the

cardinalities of each of the input relations;

e r is the size in bytes of each tuple in the output relation and r,r, are the record

sizes of the input relations;

e bf is the blocking factor of the output relation, that is, the number of tuples of the
output relation that fit into one memory page, and bf,, 6f, are the blocking factors

of the input relations. The blocking factor is defined as bf = | B/r];

e b is the size in blocks of the output relation and b,, b, are the sizes in blocks of the

input relations. The size in blocks is defined as b = [n/bf]; and,

e [ is the size in bytes of one index tuple (we assume this number to be constant for

each index).

Next, we present the cost for each algorithm used by RHODES.

135
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FILE_SCAN

This algorithm can be used for two purposes: a) to retrieve all tuples of the relation,
and b) to retrieve those tuples satisfying a conjunctive selection condition. When no
condition is specified, or when the selection conditions need to be checked against all

tuples in the relation, then,
cost = bl

If one selection condition is specified equating the key attribute of the relation with

a constant, only half of the blocks are reached on the average before finding the (unique)

cost = [%1]

tuple in the result. Then,

BINARY SEARCH

This algorithm can be used when a single selection condition is specified equating the

ordering attribute of a relation with a constant and the relation is contiguous. Then,
n
cost = max{[[ogz(bﬂ + [—] -1, 1}
bf
This cost reduces to [log,(b)], if the condition is an equality condition on a key

attribute, because n = 1 in this case.

INDEX_SCAN

This algorithm can be used when a single condition is specified equating the indexing

attribute of a relation with a constant. Let b; be the number of pages the index itself is

stored into. The cost of an index scan depends on the type of the index used [EN94].
In a primary index, there is one index tuple per relation page and b; = [b/bf;], where

the blocking factor for the index is (always constant) 6f; = | B/I|. Then,

cost = [log,(b:)] + 1
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In a clustering index, there is one index tuple per distinct value in the indexing

attribute and so b; = [i/bf,], where 7 is the number of distinct values. Then,

cost = [log,(b;)] + b

Finally, in a secondary index, there is one index tuple per relziion tuple and so
bi = I—n]_/bfi'[. Then.

cost = [log,(b:)] + l—I;—J +n

CARTESIAN_ALGO, NESTED_LOOP

This algorithm performs a block-nested-loop join where the inner input is scanned once
for each page of the outer input. The memory is completely filled with the outer input
except from one page that is reserved for the inner input. In addition, scans of the
inner input are made a little faster by scanning the inner input once forwards and once

backwards, thus reusing the last page of the previous scan [Kim80]. Then,

by
cost—erM_I“ X (bp—1)+1+5b

MERGE, SELECT_ALGO, PROJECT, PROJECT D, SET_DIFF, SET_DIFF_D
SET_INTERSECT, SET INTERSECT D, SET_UNION, SET_.UNION_D
[f the output relation can fit in memory, i.e., if 6 < M, then,

cost =0

else the result must be written into disk, and

cost = b

SORT

To sort a relation on a given attribute, the relation is written into initial sorted runs,

each about the size of available memory. These runs are merged into larger and larger
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ones, two at a time, until only one run file, the final output, is produced. The number

of initial runs, in this algorithm, is
initial_runs = [b /M|
The number of merge levels necessary to complete the task is
merge levels = [log,(initial_runs)]

Using a factor of two for reading and writing, then

cost =2 x by x merge_levels

DUPLICATE_ELIMINATION

This algorithm is based on sorting to bring duplicates close together. The cost in sort-
based duplicate removal is, thus, dominated by the cost of the sorting but it is smaller
than it, because of the effect of early duplicate removal on each merge level. The total
number of merge levels is unaffected by duplicate removal and is defined in terms of
the number of initial runs that the input file is split into. As in the case of sorting,
initial_runs = [b;/M] and merge_levels = [log,(initial_runs}].

In the first merge levels, it is unlikely that duplicates of the same tuple are in the
same run file, and therefore we can assume that the sizes of run files are unchanged until
the last merge levels, where we can assume that each run file has the same size as the
final output. The total number of merge levels with run file sizes equal to the output size

(the later merge levels) is, according to Graefe [Gra93],

affected _levels = [log,(b1/b)] — 1
The merge levels where each run file has the same size as the input is
unaffected _levels = merge_levels — affected _levels

Using a factor of two for reading and writing, then [Gra93]

affected _levels—1
cost = |2 x by x unaffected levels + 2 x b x E

unaffected _levels

initial_runs
91
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