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Abstract 

Op timizing Incremental View Maintenance Expressions in Relat ional Dat abases 

Dimitra Vista 

Doctor of Philosophy 

Graduate Department of Cornputer Science 

University of Toronto 

1997 

In the last few years, there has been significant interest in the design of incremental 

methods to improve the performance of view maintenance. Despite that, very little 

analysis or experimentation supports the predominant view that incremental methods are 

more efficient t han t heir non-increment al counterparts. We argue t hat the performance 

of incremental view maintenance depends on system aspects of the database, such as the 

availability of indices, the sizes of the relations involved, and the sizes of the  database 

updates. CVe also argue that the database query optimizer is a reasonable component of 

the database system to decide, at the time of view maintenance, wliether a view is to 

be maintained incrementally or not, because the query optimizer has knowledge of, and 

access to, al1 of the  parameters that may affect this choice. 

To support this argument, we have built the RHODES database query optimizer 

that supports change propagation and view maintenance for relational queries. In addi- 

tion to traditional optimizations, RHODES is also responsible for the generation of the 

queries to be executed in order to support view maintenance. As there may be many 

different ways to  maintain a view incrementally, the choice of which one to use may af- 

fect the ~erformance of incremental view maintenance. Moreover, different maintenance 



queries are amenable to different optimizations. In this thesis, ive present a repertoire 

of maintenance-specific optimizations, especially in the presence of key constraints and 

foreign key references. The underlying data mode1 we use is relational algebra wit h mul- 

tiset semantics. Experimental validation of the above claims has been conducted using 

the TPC-D benchmark database on the DB2 Parallel Edition. 
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Chapter 1 

Introduction 

1.1 View Maintenance 

Traditionally, a database view is a query on a database that  computes a relation whose 

value is not stored eaplicitly in the database, but to the query users of the database 

it appears as if it were. Database views are useful for a number of reasons. They can 

be used to provide conceptual subsets of the datalase to different users. They can be 

used as mechanisms to enforce security by allowing parts of the data to be seen only 

by users with the appropriate access privileges. Tliey provide a convenient shorthand 

notation to facilitate query specification. They can be used to  replicate data, possibly in 

geographically remote data sources. Finally, they can be used in que- optimization t.o 

speed-up query evaluation. 

There are two different ways to implement views. The traditional, and still most 

popular approach, is the query modification approach [Sto75]. The definition of each 

view is stored in the dictionary of the system. Queries referring to  the view are answered 

by substituting the view definition into the body of the queries. Since only the definition 

is kept, query evaluation of a query involving a view results in re-ewluating (part of) the 

view. The advantage of this method is that it requires practically no extra disk storage 

or maintenance. However, it might have poor performance if the queries to the views 

are more frequent than the updates to the database, because frequently accessed views 

result in repetitive view construction. 



The second method to implement views is the view rnateriaiization approach where 

the view is explicitly maintained as a stored relation [GM95]. This method requires more 

storage than the query modification approach but its performance might be significantly 

better, especially if updates are less frequent than queries referring to the views. A 

database system should provide the option of materializing views. The choice of which 

views to materialize should be guided by the actual or anticipated query load so that 

frequent ly occurring queries can be evaluat ed quickly. 

The view materialization approach, thus, has the potential of significantly improving 

the time to access a view. However, it does have some effect on the overall performance 

of the database system. Next, we describe the major problem associated with vietv 

maintenance and its solutions. 

1.2 Increment al View Maintenance 

One problem with the view materialization approach is that every tirne a base relation 

changes, the views that depend on it may need to be re-computed. One approach to this 

problem is to  re-compute al1 related views. This soiut ion may be acceptable for relatively 

stat ic databases, but rnay be prohibitively expensive when updates are frequent . When 

the views are frequently updated and expensive to cornpute, the cost of re-computation 

may not be affordable. The alternative to re-computation is to identify which part of 

the old materialized view is affected by the database update and to re-compute only the 

affected part. An algorithm that carries out such a computation is called an incremental 

view maintenance or incremental query evaluationl algorithm. 

The idea of incremental view maintenance can be surnmarized as follows. Suppose V 

is the query expression corresponding to a view definition and V[D] is the materialized 

value of V consistent with database D, i.e., V[D] is the value of V on database D. 

Suppose that the database changes from D to Du by some update 6 ( 0 ) .  In order to 

find the new value of V, we evaluate two query expressions, P ( V )  and bf ( V ) ,  on the 

database D and the database update 40). These query expressions define the change 

'Although the two terrns mean slightly different things, we choose to use them interchangeably in 
this thesis, because each view is specified by some query expression. 



on V[D] ,  i.e., 6+ (V)[D, b(D)] are the tuples to  be inserted into V [ D ]  and 6-(v)[D. 6(D)] 

are the tuples to be deleted from V[D],  in order to make V consistent with the updated 

database Du. In other words2, 

CVe cal1 6-(V)  and 6+(V)  the change propagation expressions of V. Their values under 

database D, along with the database updates, represent the incremental changes to V 

when D is updated to  the next database state. 

There are two main issues related to incremental view maintenance: 

1. The choice of which change propagation expressions to use: How do we choose the 

two query expressions 6 3 V )  and 6+ (V)? Do these expressions depend only on the 

view definition? Do they depend on the database update? Do they depend on the 

old database? Do they depend on the old value of the view? For some views. there 

is a choice amongst multiple possible change propagation expressions. How do we 

chose between t hem? 

2. The choice of the alternakives to "bring V up-to-date witli the database": If Our 

objective is to find the new value of the view V under the updated database. 

should we use the incremental method and compute (V[D]  - 6 - ( V ) [ D ,  6 ( D ) ] )  U 

6+ (l/)[D, 6(D)], or should we use the re-evaluation metliod and compute V [ D U ]  

from scratch? 

Recently, many approaches have been proposed to specify how the change propagation 

expressions of a given view are formed in terms of the query expression corresponding to 

the view, the old value of the database, the update, and, perhaps, the old value of the 

view. Chapter 2 discusses many of them. 

As we see in Chapter 2, a significant amount of research addresses the  first is- 

sue of incremental view maintenance. However, the second issue lias not yet received 

much attention. Very little analysis or experimentation supports the predorninant view 

'The operands of - and U, here, are multisets, i.e. sets with duplicatm. The data mode1 assunled in 
this thesis is relational algebra with multiset semantics (bag algebra). 



that incremental methods are more efficient than their non-incremental counterparts 

[Han85, BM90, SR88, Rougl]. In Lct, the consensus seems to be that, for small up- 

dates, evaluating the change propagation expressions of a view is more beneficial than 

re-evaluating the view. When one relation is completely deleted from the database, it is 

almost always better to  re-evaluate any join involving that  relation. On the other hand. 

when the updates to the database are small, compared to the database itself, the *prin- 

czple of inertia" [GM95], that small changes propagate small changes, seems to  favor 

incremental evaluation of the join. However, we found that the cost of propagating small 

changes could be about the same as (or more than) the cost of evaluating the view again. 

-41~0, when the updates to the database are neither very small nor very big3: compared 

to the database, it is not at al1 clear which of the two alternatives is likely to provide a 

bet ter solut ion. Consequently, the choice of whet her to perform incremental view main- 

tenance or not cannot be made a priori without first examining al1 factors affecting this 

choice. 

The performance of incremental view maintenance depends on system aspects of the 

database, such as availability of indices, sizes of the database relations involved, sizes of 

the database updates? and so on. There are two justifications for the above statement. 

The statement is true because incremental view maintenance requires evaluation of the 

change propagation expressions, which are queries whose performance in general. like 

that of many queries, depends an the physical design of the database system. However, 

the statement is also true because the choice of which change propagation expressions to 

use (and there may be many for the sarne view) depends both on the system aspects of 

the database and on the  specific database update. In this thesis we claim that we should 

not commit to incremental view maintenance a priori, but, rather, we should let the 

database query optimizer decide, at the time of view maintenance, if incremental view 

maintenance is better than re-evaluation. Mie also claim that we should let the query 

optimizer decide which change propagation expressions to use as  well as how to execute 

t hese change propagation expressions best . 
We see the incremental view maintenance problem as an optimization problern. The 

3Note that smoll and b ig  are rather Ioosely used here. 



objective of the optimization is to minimize the number of logical 110 operations neces- 

sary to perform incremental view maintenance. The decision involves which maintenance 

st rategy to choose, among incremental maintenance and re-computat ion, for each mate- 

rialized view? and each possible update and, if choosing incremental view maintenance 

which change propagation expressions to chose. The knowledge available in this opti- 

rnization problern is the schema of the database, the definition of views, the update, the 

cardinalities of the relations in the database and their updates, the distribution of data 

values, and the physical design of the database system. 

Most proposals for incremental view maintenance assume that for each view V ,  the 

change propagation expressions 6 3 V )  and 6+(V) are generated by a special software 

component of the DBMS, most likely at  view compile time but possibly at view main- 

tenance time. Apart from the fact that the above approach requires a special software 

component to be developed just for the purpose of generating the change propagation 

expressions, t here are other disadvantages wit h it. Before presenting t hese disadvantages, 

however, let us see an example that demonstrates some of them. 

1.3 Example 

Let V = A w B w C, and suppose that each of the A, B and C relations lose a number 

of tuples specified by 6-;, 6g and 6;, respectively4. As we see in the next chapters, there 

exists an algebraic equation that defioes the deletions from a join expression given the 

tables being joined and the deletions from these tables. Let 6 s  be the deletions from 

the join A w B (as if this join were materialized); 6EC the deletions from the join B C 

(as if this join were rnaterialized); and, 6-iBc the deletions from V. There are a number 

of different ways to compute the deletions from V. 

1. One alternative is to find the delet ions from A ixî B and propagate these to V: 

4For simplicity of the presentation, we ignore the arguments of the join and we assume that al1 join 
orderings are possible. 



The  justification for the correctness of t hese equations is as follows5. Consider the 

deletions from the join .4 B. Tuples deleted from A that  join with tuples in B. 

generate deletions from A B. Also, tuples deleted from B that  Join with tuples 

in A, generate deletions t o  A B. However, if a deleted tuple from A matches 

a deleted tuple in B? each tuple to be deleted from A B is generated twice: 

once because of 6 -  CU B and once because of A N 68. Since we support duplicate 

semantics, each tuple must be deleted once and, therefore, we must subtract 6; 

ag . 

2. Another alternative is to  find the deletions from B C and propagate these to V: 

Note that a number of other alternatives are also possible. Our objective with this 

example is not to list them all. The point that we are trying t o  make is that there rnay 

be more than one alternative equivalent change propagation expression to compute the 

deletions from a view V .  The choice of the alternative may affect bot h the performance of 

incremental view maintenance and the optimizations that are possible in the optimizer. 

Even if we knew that V is t o  be maintained incrementally, it is not clear which of the 

two alternatives listed here offers a better way to maintain V. If a database optimizer is 

given one of the alternatives to  optimize, most likely it will not be able to transform it 

into the other alternative and may, thus, miss a better execution plan. 

Also, although seemingly very alike, the two alternatives are arnenable to different 

optimizations. Suppose, for example. that there is a foreign key reference from A to B. 

Then? tuples that are deleted from B can only join with tuples deleted from '4 because, 

otherwise, the foreign key reference would not be satisfied after the database update 6 .  

Thus, we can use the following equivalence 

A LM 6 i  = 6, ûû 6g 

5 ~ o t e  that these equations are not correct, if A,  B and C also have tuples inserted into them at the 
time of view maintenance. 

6The join argument must be in conjunctive form and it must include a conjunct equating the attribute 
of -4 with the foreign key reference with the key attribute of B, for al1 this to make sense. 



and, we can rewrite the first alternative as 

while the second alternative cannot be rewritten. 

Thus, by adopting the fist alternative, we were able to reduce access to the database 

relations and the total number of joins, and, therefore, increase the  likelihood that the 

performance of the incremental approach be better than re-evaluation. 

It is not clear that a database optimizer could easily have incorporated that kind of 

optimization if it was given the second alternative rather than the first'. 

1.4 Problems 

.4fter the example, we are ready to list some of the disadvantages of using a special 

component in the DBMS to generate the change propagation expressions for each view. 

1. Using the special software cornponent, we commit to incremental view maintenance. 

even in cases where re-evaluating the view is likely to be more efficient (such as, 

for exarnple, when deleting entirely a database relation). There is no choice of 

performing or not performing incremental view maintenance. even though the size 

of the database update clearly should affect this choice. 

2. Even if the optimization of the change propagation expressions occurs when the 

maintenance is performed, the choices of the query optimizer to generate an efficient 

execution plan may be restricted. The reason for this is that the generation of 

change propagation expressions is independent of the database and its updates. 

The optimizer rnay not be able to "transform" the change propagation expressions 

that it is given into equivalent forms that may be more efficient to evaluate (see 

the example above). 

' ~ o t e  that it does not suffice that the database optimizer be given the unfolded expressions, instead of 
the ones presented here. Simple unfolding is common in DBMS's but different propagation expressions 
result in different unfoldcd expressions. The reason is that the set difference operation is not distributive. 



3. The generation of change propagation expressions occurs independently of the op- 

timization process. Thus, the generatioa phase may produce change propagation 

expressions for which certain opt imizat ions, perhaps possible in ot her (equivalent ) 

change propagation expressions, are rat her difficult to incorporate by an opt irnizer 

(see the example above). 

1.5 Our Approach 

W e  have built the RHODES database query optimizer that addresses al1 of the above 

problems. [n particular: 

At the time of view maintenance, RHODES determines, for each view, whether 

the view is a candidate to be maintained incrementally or not, by examining both 

alternatives and choosing the one with the lowest cost estimate. The cost that is 

being minimized is the est imated I/O necessary during view maintenance. 

For each view that should be maintained incrementally, RHODES finds the best 

change propagation expressions that define the changes to the view. Each change 

propagation expression is optimized using traditionai optimization techniques, such 

as relation indices, join orderings, sort orders, query transformations, and so on. 

RHODES incorporates optimizations specific to increment.al view maintenance, and 

optimizations specific to change propagation expressions, especialiy in the presence 

of key constraints and foreign key references. 

For any query that contains a subexpression corresponding to a view, RHODES 

examines the alternative to use the view in the place of the subquery. Using views 

to improve the performance of ordinary queries has been recognized recently as a 

potential for query optimization [LMSS95, FRV961. 

The query language of RHODES is relational algebra extended to be consistent with 

SQL semantics (bag algebra). Most research in incremental view maintenance assumes 

that relations are sets and do not have duplicates [BCL89, BLT86, BC79, CW90? CW91, 

DT92, Küc91, QW91, SI84, UO92, WDSYSl]. However, most database systerns use 



rnultisets (sets with d u p l i ~ a t e s ) ~  because many database applications require aggregation 

and duplicates are very convenient for correctly computing aggregate functions. Another 

reason for t.he use of duplicate semantics is that duplicate elimination is an expensive 

operation and, for efficiency, is not enforced, unless specifically requested by the user. In 

addition, having duplicates can increase the expressive power of query languages with 

recursion [MÇ95]. There is some work related to multisets for the Datalog model [GKM92, 

GMS93, Ana96, AV95] and the relational model [GL95, GMS931. In this thesis, we use. 

and build on, the change propagation expressions proposed by Griffin and Libkin [GL95] 

for a multiset algebra. 

1.6 Thesis Outline 

Here is the outline of the rest of t his thesis: 

Chapter 2: We present a detailed discussion of previous work on incremental view main- 

tenance and related research. We concent rate on incremental algori t hms for view 

maintenance as well as applications of incremental view maintenance teclmiquea. 

Chapter 3: LVe present our mathematical framework for incremental computation. FVe 

present the change propagation expressions for relational algebra with duplicate 

semantics and prove their correctness. 

Chapter 4: We present a repertoire of optimizations specific to change propagation 

expressions and incremental view maintenance, especially in the presence of key 

constraints and foreign key references. 

Chapter 5: We present an overview of the database query optimizrr RHODES and its 

extensions to support incremental view maintenance. We aIso discuss the visual 

browser that  accompanies RHODES. 

Chapter 6: We present our experimental validation of the claims of this dissertation, 

some obtained by estimat ing change propagation queries using RHODES, and others 

by actually running change propagation queries on the DB2 PE (ParaIlel Edition) 

for a number of updates and queries frorn the TPC-D benchmark. 



Chapter 7: We conclude the thesis by presenting the list of its contributions and a 

discussion of open problems. 



Chapter 2 

A Survey on View Maintenance: 
Applications and Techniques 

This chapter surveys work related to incremental view maintenance with an emphasis on 

the development and application of techniques for view implementation and maintenance. 

2.1 Strat egies for View Maintenance 

When updates occur to a database, there are two distinct esecution strategies to update 

al1 affected materialized views, w het her increment ally or not : 

a Immediate  update: Al1 affected views are irnmediately updated. This strategy 

creates an overhead for the processing of the updates but minimizes the query 

response time for queries accessing the view. This is the strategy assumed in this 

t hesis. 

0 Deferred update: Al1 affected views stay outdated until an access to them is made. 

This strategy avoids the systern overhead associated with irnmediate update prop- 

agation, but slows down query evaluation for queries accessing outdated views. 

Both immediate and deferred maintenance guarantee that the view is consistent with 

the underlying database at the time the view is accessed. In contrast, periodic updates 

where al1 affected views are periodically updated is used to perform updates during 

periods of low system use or at  pre-specified times. Such views are sometimes called 

snapshots and do not guarantee the consistency with the underlying database. Most 
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work in view maintenance assumes the immediate update strategy. Deferred updates 

have been studied only recently [HanU, Rou91, CG96. CM96, CGL+96, ZH961. 

A nurnber of more refined strategies for view maintenance are available in active 

database management systems [WCSG], where so called active rules are used for the 

maintenance of views. Active systems can be used to support view maintenance quite 

naturally. In fact , some active systems support incremental view maintenance. In con- 

trast. passive database management systems require significant changes in their software 

to support either materialized views or their incremental maintenance. 

Active rules have the general form 

if El check C and execute A 

where E is an euent that causes the rule to be triggered, C is a condition that is 

checked when the rule is triggered, and A is an action that is performed when the con- 

dition of the triggered rule is true. The events of active rules are database access events 

(such as updates or retrievals), transaction events (such as transaction commit), time 

events (such as midnight), or combinations of the above [Has95, Has96. GJS931. The 

conditions of active rules are either predicates (whose d u e  is true or false) or query 

expressions (whose value is an empty or a non-empty relation) specified in the system's 

query language [B W93, HBHf 951. Finally, the actions of active rules are sequences of 

database manipulation commands (such as insertions and deletions). When active rules 

are used for (incremental) view maintenance the events of the corresponding active rules 

are the insertions and deletions to the database relations; the conditions are used to 

determine if  any updates must be made to the view; and, the actions are statements to 

update the view. 

The notion of coupling modes between the triggering event (which usually occurs in a 

transaction) and the execution of the associated action (which may or may not occur in 

the same transaction as the triggering event) yields a number of alternative strategies for 

view maintenance. The immediate coupling mode signifies that maintenance is performed 

within the same transaction, as soon as the triggering event occurs. The defeerred coupling 

mode signifies that the maintenance is performed at the commit point of the transaction 
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with the triggering event (but within the same transaction). Finally, the decoupled mode 

signifies that the maintenance is done independently of the triggering transaction. Within 

the decoupled mode, only the dependent decovpled mode is relevant, which spawns a 

different transaction for the  maintenance only if the triggering transaction commits. 

The independent decoupled spawns another transaction independently of whether the 

triggering transaction commi ts '. 

2.2 Implementat ion of Materialized Views 

The are a number of different ways to store views: 

1. Using Relations: This is the most popular approach and the one used in this thesis. 

The view relation is stored in a database Iike any other relation. Index structures 

may be built to facilitate fast access to the view's data. Accessing the entire view 

results in scanning the view relation. 

3. Using alternative data structures, for example: 

0 k i n g  View-Caches: A Gew-cache is an index-like structure t hat holds pointers 

to tuples of the database relations (or pointers to tuples in other view-caches) 

that are used to derive the view data [RouSl, RCK951. Accessing the view 

results in reading the index-like structure (which rnight be small enough to be 

in main-memory) and then retrieving al1 related tuples from the underlying 

database to compute the actual view data. View-caches have been impie- 

mented and validated in the  ADMS project [Rougl, RCK95]. 

0 Using Discrimination Networks: A discrimination network is a persistent data 

structure in the form of a tree or a directed acyclic graph. Each node in the 

network has a persistent relation associated with it. The immediate cliildren 

of the (artificial) root correspond to the database relations while the leaf nodes 

correspond to the view relations. Intermediate nodes correspond to interme- 

diate relations (usually selected portions of base relations) which are material- 

'The decoupled modes cannot be used for immediate v i e ~  maintenance. 
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ized ( replicated). A discrimination network called Gator is implemented and 

used in the ARIEL active database system [HBH+95, Han96j. 

The view maintenance problem takes a slightly different Ravor depending on how 

views are stored. 

2.3 Deltas 

Systems that support incremental maintenance need a structure that holds ddtas: the 

tuples to be inserted, deleted or modified in one database transition. A database transi- 

tion is a transformation of the database from one state to  another through a sequence 

of data manipulation commands. .4 transaction for instance may be used to define a 

database transition. A delta is defined as a data structure that holds (the net effect of) 

the insertions and deletions to the database during one transition. Deltas are available 

t hrough systern-defined transition tables [Wid96, SK96], or update logs. The Heraclit us 

Project [GHJSS. GHJ+93, ZHKF951 elevates deltas into first class citizens of the database 

management system and. in particular, of its query language. Deltas in Heraclitus are 

available as system relations. 

2.4 Applications 

Apart from view maintenance, incremental view maintenance algorithms can be used in a 

number of other application areas. This section discusses a few of these applications. The 

presented list of applications is not intended to be complete, but, rather, indicative of the 

use of incremental algorithms for both database management systems and application 

programs that make use of database systems. Some additional applications can be found 

elsewhere [Mum95]. 

Integrity Constraints 

Certain types of integrity constraints, including referential integrity and uniqueness of 

key constraints, can be expressed as views over the database state [CW90, Sto751. If such 

a view is non-empty in a particular state, then the constraint is violated and the state is 
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inconsisfen,t. Symmetrically, a constraint may be violated when its view becomes empty. 

The former constraints are negative constraints (nothing can be in the view at any time) 

while the latter are positive constraints (something must be in the view at  al1 times). If an 

update operation has no effect on the view associated with an integrity constraint, then 

the update does not result in a database instance violating the constraint. Incremental 

evaluation can be used to  detect violations of integrity [CW90, BC79, BW93. PleSS]. 

Instead of evaluating the new value of the view every time we check for the integrity 

of the database, we can use the fact that the view is empty (or non-empty) before an  

update, and only determine whether the update induces any change to this view. If 

it does, corrective actions, such as, for example, rolling back and undoing the update 

operations, are necessary to restore the integrity of the database. 

Alerters 

Alerters [BCTS] are programs mhich monitor a database and report to some user when 

a specified condition occurs. An example of an alerter re-orders items for an inventory 

control system when t hese items are in stock nt a quanti ty below a pre-specified t hreshold. 

Alerters, like integrity constraints, can be associated wit h views. The t riggering events 

are insertions andfor delet ions from the view predicate associated wit h the alerter. Again, 

incremental evaluation may be a reasonable alternative to evaliiate the view associated 

with the alerter. 

Active Rules 

The concept of a trigger is also central to active databases [WC96, GJSY2, BA93, BM91, 

SPAM9 11 which monitor happenings of events for reasons such as authorization checking, 

general integri ty maintenance, alert ing, real- time application support, workflow manage- 

ment support and so on. Active rules are a very powerful modeling mechanism and, as 

discussed above, active rules can be used to specify how view maintenance relates to 

basic database manipulations. In general, one of the challenges that active rules pose is 

the efficient evaluation of rule conditions for triggered rules. Conditions are query ex- 

pressions in the query language of the system and their evaluation is considered to be the 
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"bottle-neck" in the execution of active rules. Note that activation of a rule may trigger 

other rules which may, in turn, trigger the initial rule again. One can use the fact that 

the rule did or did not trigger the last time the rule was considered and incrernentally 

determine if it needs to be re-triggered [BW93]. 

Real-Time Applications 

In real-time applications, such as in communication network management [WDSYSl , 

Has961, the database rnay change independently of query processing. For exaniple, dur- 

ing a network analysis process. certain connectivity data may change asynchronously- 

New data rnay arrive after the query or analysis process has already begun, which may 

invalidate the computed results. An alternative to starting the analysis process ogain 

could be to log al1 new data that has arrived after the process has started and incremen- 

tally correct the result based on t his information [WDSY 9 11. 

Data Warehousing 

A data warehouse is a repository of replicated or integrated information from a number of 

possi bly heterogeneous and geographically distributed informat ion sources [HGM W+9.5: 

ZHKF95. ZGMH W951. Data warehousing is being recognized as one of the promising new 

database applications, towards which current research will likely bc directed in the next 

few years [SSU95]. A data warehouse can be thought of as a view over the individual 

information sources. Special software cornponents in the architecture of a data ware- 

liouse, called mediators [ZHKF95, Wie92] or integrators [HGMW+95], are responsible for 

updating the warehouse view in response to updates to the individual data sources. An 

interest ing discussion on the architecture and formalization of mediators is presented by 

Zhou and Hull in [ZH96]. 

Other 

Incremental algorithms have also been studied in a nurnber of other areas. These in- 

clude: reasoning about changes [KÜcSl , U0921; dist ributed computing [AISNSO, Itagl], 

programming languages [SH91, TR811; maintenance of graph properties [BKVSO, CC%!]; 
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and maintenance of ot her da ta  structures [CH91 . Jag90t KP81] or database snapshots 

[LHMf 861. A study of methods for incremental database query computation is provided 

elsewhere [Vis94]. 

2.5 Algorit hms for Incremental View Maint enance 

In this thesis we concentrate solely on the problem of propagating updates from the 

database to the view. The reverse problem of translating updates submitted to a view 

into database updates is a complimentary problem, and is not iiicluded in the scope of 

this thesis. For related work in this area, the reader is referred to [DB82, FSDS79, Kel85, 

BSSl]. 

This section reviews proposals for incrernental que- evaluation for both relational 

and deductive databases [AB W88, BR86, UllSS, GM951. 

2.5.1 Non-Recursive Views 

Finite Differencing 

Koenig and Paige [KPSl] support derived data in the context of a functional/binary 

association data model. In t heir framework, the derived data are base relation attributes 

or aggregate functions on them. The  average salary of employees is such an example. 

Koening and Paige's approach to  the automatic maintenance of derived data is based on 

the transformat ional technique of finite differencing. Every transaction T is replaced by 

a semantically equivalent transaction T', which, in addition to what T does, also adjusts 

the views appropriately. Since Tt  varies according to the view definitions, it is called 

the diserential of the view definition with respect to T. Transaction T' is obtained from 

transaction T by inserting into T certain lines of code that preserve the view definition. 

The fundamental unit of such code is the derivative and is defined for single derived data  

and single tuple updates. Hence, the algorithm for computing the differential depends 

on the availability of derivatives for vanous derived datalprimitive update pairs. 

This is the first proposa1 tha t  addresses incrernental view maintenance and many 

other rnethods are influenced by it. In the literature, such methods are referred to as 
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program transformation methods: given a view definition, and perhaps an  update, a 

program is derived2? whose evaluation maintains the view. 

Counting 

Blakeley et al. [BLT86] propose an algorithm for updating views defined with select- 

project-join (SPJ) expressions, an important subset of SQL. An additional attribute. 

called the multiplicity counter, is attached to each tuple to  handle deletions correctly. 

For base relations, it need not be explicitly stored since i ts value for every tupie is always 

one. For view tuples, the multiplicity counter records the number of operand tuples 

that contribute to it. If a tuple is inserted into a relat.ion, its multiplicity counter is 

incremented by one. If the tuple is deleted, its rnultiplicity counter is decremented by 

one. The tuple is deleted only when its counter becomes zero. Basic set-manipulation 

operations such as select and project are redefined to consider these counters. Given a set 

of insertions into and deletions from base relations, the algorithm derives SP.Jelexpressions 

whose evaluation determines the tuples to be inserted into or deleted from the view. A 

transaction to update the view is also generated. 

The count.ing algorithm of Gupta et al. [GKM92, GMS931 tracks the number of al- 

ternative derivations, called count, of each tuple in the materialized view, in the same 

way as the algorithm of Blakeley et al. [BLTSG]. Given a program T defining a set of 

views, the counting algorithm derives a program Ta at view compile time. The incre- 

mental program TA uses the changes made to base relations and the old values of the 

base and view relations to produce as output the set of changes that need to be made 

to the view relations. The count value for each tuple is stored in the materialized view. 

The changes to base relations are specified by della predicates, where inserted tuples are 

represented with positive counts and deleted tuples are represented with negative counts. 

The incremental view maintenance algorithm works for both set and duplicate semantics 

and for views wit h safe st ratified negation and st ratified aggregation3. On non- recursive 

views, counts can be computed a t  little or no cost above the cost of evaluating the view. 

'A program is a collection of deductive rules or S&L statements. 
3For definitions of stratified negation and aggregation, refer to Ullrnan [U1188] and Mumick et al. 

[MPRSO]. 
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The  authors recommend the use of this algorithm for non-recursive views only (because 

for recursive views their method may not terminate [GMSSS]). 

Shmueli and Itai [SI841 also use multiplicity counters for the  number of different 

derivations of a tuple but they use specialized data structures to support them. For 

i ICO- instance? each tuple in the database contains pointers to al1 tuples derived from it. Y' 

las and Yazdanian [NYS3] use counts to reflect some types of derivations (but not al1 

derivat ions). 

Production Rules 

Ceri and Widom [CW90, CW911 study views from a larger class of SQL. They define views 

as general SQL queries with only a few limitations (such as? only one level of nesting in 

subqueries). The user is required to specify the view dong  with key information about 

the base relations. Syntactic analysis on the view definition based on key information 

determines whether the view may contain duplicates and whether efficient maintenance 

is possible. If the view does not contain the keys of al1 relations used to defined it. then 

it may contain duplicates, and this algorithm does not work. Otherwise. the method of 

Ceri and Widom automaticaily derives a set of production rules (essentially active rules) 

for it. This method has been implemented in the Starburst system [HCLC90, Wid961. 

Algebraic Methods 

Griffin and Libkin provide an algebraic approach to view maintenance [GL95]. They 

algebraically define the notion of delta propagation and provide two sets of delta prop- 

agation expressions: one for delet ions and one for insertions. Furt hermore, t heir results 

are presented for an algebra with multiset semantics. In fact, this is the method adapted 

in this thesis (see Chapter 3 for more information on this work). The work of Griffin and 

Libkin was inspired by the  earlier algebraic treatment of the problem for the traditional 

relational algebra by Qian and Wiederhold [QW91], whicb was later corrected by Griffin, 

Libkin, and Trickey [GLT]. A similar algebraic approach for views with aggregation has 

been provided by Quass [Qua96]. 
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2.5.2 Recursive Views 

Rederivation Methods 

Gupta et al. [GMS93] suggest the use of tbeir counting aigorithm for non-recursive 

views only. For recursive programs, they propose the "Delete and Reden'ven algorithm. 

Instead of using counts to handle deletions, this method first deletes from the  view 

an overestimate of the tuples to be deleted and then re-derives t hose with alternative 

derivations. Inserted tuples are handled by deriving al1 new tuples as well as tuples that 

obtain additional derivations. Al1 these steps are carried out through the execution of 

automatically generated delta rules. Similar algori t hms for strat ified Dat alog programs 

are proposed by Küchenhoff [Küc9 11, and Harrison and Diet ricli [HD92]. 

Maintenance in Languages with Less Expressive Power 

Dong and Topor [DTSP] study regular chain Datalog programs, which are prograrns with 

some restricted form of linear recursion. Their algorithm constructs a non-recursive 

program to compute the delta between the view after an update and the view before the 

update. It first derives a regular expression that corresponds to the view definition, and 

then, depending on the structure of that regular expression, it generates the appropriate 

delta rules. Dong and Topor also discuss a modified version of this algorithm for arbitrary 

Datalog programs but, for arbitrary programs, the generated incremental programs are 

not necessarily non-recursive. 

Their algorithm handles inserrions only. Dong, Libkin and Wong [DLW95] showed 

that transitive closure cannot be maintained in traditional relational languages under 

deletions of edges. Furthermore, they showed that recursive queries in general cannot be 

maintained in languages with the expressive power of SQL (excluding, of course, SQL3 

which supports recursion). 

The problem of maintaining transitive closures h m  also been studied [CCSS, CHgl,  

Jag90, Jak92, BKVSO, AISNSO]. 
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Reasoning Methods 

A method for computing changes in predicates defined in safe stratified Datalog is pre- 

sented by Urpi and Olivé [U092]. Their method is based on the notion of events: external 

euents are updates to base predicates; intemal euents are updates to derived predicates. 

A transition is a transformation from one database state to the next. There exist equiv- 

alences that relate the old state of each predicate with its new state. For example, such 

an equivalence might be that &a tuple is in the old state, if  and only if the tuple is un- 

changed, or either deleted or modified in the new state". Given these equivalences and 

the rules of the deductive database, the algorithm derives transition rules that relate the 

old state of a predicate with the new state predicates and events. In addition, inser- 

tion, deletion, and modification infernal events rules allow the deduction of the induced 

insertions, deletions, and modifications that occur in a transition. Al1 these rules are 

simplified and evaluated using standard SLDNF resolution. 

Küchenhoff also develops an algorithm to compute changes induced by updates to 

deductive databases [Küc91]. Three different classes of potential changes introduced by 

updates are possible. Al1 of them are described by meta-predicates whose definitions are 

expressed as rules. The evaluation of these rules is done using the standard evaluation 

procedure of the deductive system. The first class of changes pertains to the dependency 

of derived facts from given updates. A specific dependency is relevant to the computation 

of change, if it corresponds to a successful derivation path before the update but not 

afterwards (and vice versa). Thus, the second class of potential changes are those to the 

derivation paths. The full delta is defined as the set difference between the stable mode1 

of the state before the update and the state after the update. 

Magic Methods 

The proposa1 of Anand and Vista considers deductive databases and programs that con- 

tain general recursion, negation and aggregat ion [AnaSG, AV95j. I t  improves on previous 

results [GKM92, BLT86, GMS931) in that i t  does not require that every derived relation 

be stored. Their proposa1 includes a rewriting stage that guarantees correct evaluation 

of delta predicates, even when some of the intermediate results are not available in a ma- 



terialized form. Another improvement of t his method is that it does not require a special 

evaluation procedure for its implementation, but it can, quite naturally. be used wit h the 

standard naive aod semi-naive evaluation procedures [Ban85, UIl88j. An op t imizat ion 

similar to magic sets [BR87, MPR9Ol is also incorporated into the algorithm. Mumick 

and Pirahesh [hW941 discuss the importance of integrating rnagic sets with traditional 

optimizations, such as selection pushing. 

2.6 Other View-Related Work 

1. Queries Independent of Updates 

Sometimes the updates to the database leave the views intact. Determining whether 

a particular view is affected by a given update is a problem that has been stud- 

ied [BLTS6, BCL89, Elk90, LS931. These proposals (some for relational alge- 

bra [BI;T86, BCL891 and some for Datalog [Elk90, LS931) provide tests that the 

database system must execute to determine the relevance of the update to a view. 

To be useful, these tests should be not be very expensive to compute, compared to 

the cost of determining (say through incremental cornputation) that nothing in the  

view does, indeed, change. 

2. Self-maintainable Views 

The idea of self maintainable views can be summarized as follows: for certain 

views, given an update and the view definition (and psrhaps additional information 

about the view and the database), one might be able to determine that  the view 

can be updated without accessing the database, by simply manipulating the old 

value of the view and the update [GM95' BCL89, Huy96, GJM96, QGMW961. 

For example, views that correspond to selections from database relations are self- 

maintainable, because one c m  check whether an inserted (or deleted) tuple in the 

database relation satisfies the selection condition of the view, and therefore whet her 

it needs to be added into (or deleted from) the view. 
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3. Adapting Views After Redefinitions 

This problem refers to the following scenario. Suppose that a view is materialized 

and the view is redefined by changing its definition slightly. If the second view is 

also going to be materialized, it might be possible to use the old value of the view 

and adapt it to  conforrn to  the view's new definition appropriately. This problem 

has been studied by Gupta et al. [GMR95]. 

4. Answering Queries Using Views 

If views are materialized, the query processor rnight be able to use this set of 

materialized views, in order to answer other queries [LMSS95, FRVSG]. In general. 

this problem is difficult, but a solution to it might be very useful, especiallp in 

applications where the data are not available directly. An example of such an 

application is the world wide web, where data of some conceptual schema are only 

available though their views provided at certain web sites [LROSG]. The problem 

of rewriting a query into an equivalent form that uses the views has been shown to 

be (at least) NP-complete [LMSS95]. 

2.7 Previous Work on Performance Evaluation 

Blakeley and Martin [BM90] have studied experimentally the relative performance of 

three methods of obtaining the new value of a view. The view that they consider is the 

equijoin of two relations, which is maintained in response to updates to one relation only. 

Blakeley and Martin compare three different scenarios: a )  maintaining a join index to 

easily compute the view; b) using a materialized view; and, c) re-evaluating the  view, 

after each update, using a hybrid-hash join method. Their results indicate that  the 

materialized view has the  fastest performance when the join selectivity and the update 

activity are both moderate. The term update activity refers to the percentage of tuples 

modified between two consecutive queries involving the view. When the selectivity is 

high (more than llarger t han the base relations, re-evaluating the view performs better. 

However, for selectivities lower t han land for update activity larger t han IOjoin-index 

has the lowest cost. 



CHAPTER 2. A SURVEY ON VIEW MAINTENANCE: APPLICATIONS A N D  TECHNIQUES 24 

Roussopoulos tested experimentally the use of view caches to implement rnaterialized 

views [RouSl]. A view cache is a data structure containing pointers to tuples of database 

relations (or tuples of other view caches) needed to derive the tuples in the view. In 

other words, a view cache does not exact.1~ implement a materialized relation, but it  

can be used to efficiently compute its value. Roussopoulos tested the performance of 

computing the relation of a view either by re-evaluation or by utilizing some incremental 

maintenance method specific to view caches. He tested a join between two relations and a 

join of three relations, with and without selection conditions on them. Only one relation 

was modified during these experiments. His results indicate that when the update is no 

bigger than 21% of the database size, then the incrementa! methods Save at  least 69% 

of the 1 /0  required by the re-execution methods. A similar observation is made for the 

CPU time as well. 

2.8 Relationship to our work 

In this thesis we concentrate on the optimization aspect of query expressions for view 

maintenance. Our work applies to the immediate update propagation strategy discussed 

in Section 2.1. In our framework, views are implemented as relations and changes to  

the database relations are also available as relations, as discussed in Sections 2.2 and 

'2.3. The data model for which we study the incremental view maintenance problem is a 

multiset algebra with SQL semantics without nulls. The change propagation expressions 

that we study are taken from a paper of Griffin and Libkin [GL95]. Our experiments 

compliment and ext,end those perforrned by other researchers. 



Chapter 3 

Change Propagation Expressions 

In this chapter we lay the foundations of incremental computation. First. we present 

the algebra Tor which change propagation and incremental expressions are studied and 

we show how the data manipulation language SQL rnaps to  this algebra. Then, we 

present the formal definition of relation updates, database updates, change propagation 

expressions and incremental expressions. Finally, for each operator in the algebra? we 

present the change propagation expression t hat cornputes the change to the value of the 

operator frorn the inputs to the  operator and their changes. 

3.1 DataModel 

The underlying data model for which our results about incrernental computation are 

presented is relational algebra, sufficiently extended to be consistent with the SQL query 

language [DD93]. The database relations are typically sets or, less often, multisets. A 

relation is a multiset when the  relation contains one or more copies of one or more tuples. 

As a special case, a set is a multiset. Moreover, the results of operations on multisets are 

themselves multisets. 

Addressing the problem of incremental computation for the  algebra and not directly 

for SQL has a oumber of advantages: a) it makes the presentation of change propagation 

and incremental expressions compact; b) it makes the process of deriving these expres- 

sions easy to understand; c)  it simplifies the proofs of correctness; and, d )  it malces the 

framework extendible to allow for the easy addition of new operators. 

The operations supported by our model are described next, together with their cor- 
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responding SQL construct(s). In what follows, let A and B be two multisets. 

The expression A is the multiset A. It corresponds to SQL7s "SELECT * FROM A" 

clause where A is a table. 

The cartesian product A x B has ci x c:! duplicates of tuple t = ( t l ,  t 2 ) ,  if t l  appears 

cl times in A and t 2  appears cz times in B. The cartesian product corîesponds 

to SQL7s ' L ~ ~ ~ ~ "  clause when more than one table reference appears in it. It aIso 

corresponds to the "CROSS JOIN" clause. 

The selection o Q ( A ) ,  where 0 is a conditional expression, has c duplicates of tuple 

t' if t satisfies the condition B and O duplicates if t does not satisfy the condition. 

for each t that appears c times in A. The selection corresponds to SQL's "WHERE" 

and "HAVINGn clauses. 

The projection rx(A), where X is a list of select items, has as many tuples as A 

has. From each tuple of A, a tuple appears in r X ( A )  with only the attributes of 

X. il select item has the form "scaiar-expression C AS column ]", where the 

scalar expression typically (but not necessarily) involves one or more columns of 

table A. The projection corresponds to SQL's "SELECT ALL" and "SELECT" clauses, 

when the items appearing in them do not contain aggregate functions. 

The duplicute elimination e ( A )  has one copy of each tuple t E A. It corresponds to 

SQL7s "SELECT DISTINCT". 

The projection distinct R$- ( A )  is equivalent to e ( r x ( A ) ) .  

The aggregation ag[F;q ( A )  is an expression where F is a non-empty list of aggregate 

items and G is a (possibly empty) list of attributes of A. Each nggregate item has the 

form " f i ( X )  AS column" where f i  is an aggregate function and X is an attribute 

of A. Common aggregation functions are COUNT, MAX, M I N  and SUM. Informally, 

the meaning of this operator is defined as follows: We group the tuples of A in  such 

a way that each group contains ail tuples with the sarne values for the attributes 

in G - thus havine as manv grouDs as there are distinct values for the attributes 



in G. If G is empty, there is only one group. Then. for each resulting group, 

we extend the attributes of the tuples in the group with as many new attributes 

as aggregate items appearing in F. The name of a new attribute is described in 

the corresponding aggregate item. The value of the  new attribute is the result of 

applying the aggregate function of the aggregate item on al1 the tuples in the group. 

More formally, 

and, 

R x {aggregate f i ( X )  of Fi applied to  attr.  X of R )  if C: = 0 

Uie  T$(R) ( a ~ [ ~  ( U R - G = ~  ( R )  ) ) ot herwise 

a The  difierence A - B has max{cl -cz, O)  duplicates of tuple t .  if A has cl duplicates 

of t and B has cz duplicates of t .  The difference corresponds t o  SQL7s "EXCEPT ALL* 

clause. 

rn The  différence distinct A -d B has a single copy of each tuple t such that t E A 

and t 6 B. The difference distinct corresponds to SQL1s "EXCEPT" clause. 

O The union A U  B has cl + c* copies of tuple t ,  if A has cl duplicates of t and B has 

cz duplicates of t .  The union corresponds to SQL's "UNION ALL" clause. 

O The  union distinct A U ~ B  is equivalent to e ( A U  B). 

to SQL's "UNION" clause. 

The  union distinct corresponds 

a The intersection A n B has minicl ,  c z }  copies of tuple t ,  if A has cl duplicates of 

t and B has c* duplicates of t .  The intersection corresponds to  SQL's "INTERSECT 

ALL1' clause. 

The intersection distinct A nd P is equivalent to e( A n B). The intersection distinct 

corresponds to SQL's "INTERSECTn clause. 



O Finally, the join A B is a shorthand for ae (A x B ) ,  where 0 is a conditional 

expression. The join corresponds to SQL1s G A  JOIN B ON 8" clause. If 0 is a con- 

junctive condition involving only equations between attributes of A and attributes 

of B whose names are identical. the join also corresponds to SQL's " A  J O I N  B 

USING attribvtes of 8". Moreover. if 0 contains al1 attributes of A and B. the join 

corresponds to the " A  NATURAL J O I N  B" clause. 

Thus, the results of rd, -d, ud, nd7 e have no duplicates, while the result of the other 

operators may have duplicates. Except from - d ,  these operators are not needed and can 

be expressed easily in terms of e. We include them in the language only in order to show 

the complete set of logical algebra operators supported by the optimizer presented in this 

t hesis. 

Note that there is no operator in the algebra that corresponds to sorting. We do 

not regard this as a limitation of the language. The presented algebra is a declarative 

language. An implementation of the algebra, such as the one by RHODES, can introduce 

sorting, but sorting does not play a n  important role in the issues discussed in this chapter. 

Also, note that wve do not provide a forma1 proof of the equivalence of this algebra 

wit h SQL (modulo sorting). Ceri and Gottlob [CGSJ] described a two-step translation 

from SQL to a similar algebra. The algebra in their paper does not consider duplicates as 

we do. The first step of their translation generates from an arbitrary SQL expression an 

equivalent SQL expression that does not use several of SQL7s language constructs, such 

as nested subqueries with EXISTS, ALL, ANY, IN, and so on. The second part of their 

translation describes how a gramrnar con be used to map expressions of this restricted 

form of SQL into relational algebra. The multiset algebra described here corresponds 

more directly to the (generalization to multisets of the) restricted form of SQL. It is easy 

to see that the key language constructs of SQL are preserved in the  algebra and to verify 

that the other SQL constructs can be mapped into the ones that are maintained without 

difficulty. 



3.2 Example 

Let us see now an example of how typical SQL statements map into expressions of the 

presented algebra. The "Top Supplier Query" of the TPC-D Benchmark (TPC951 finds 

the supplier who contributed the most to the overall revenue for parts shipped in a 

particular year. Say 1995. We assume the following database relations 

LINEITEM(LSUPPKEY, LPARTKEY. LSHIPDATE, LDISCOUNT, LIRICE.. . . j 

SUPPLIER(SSUPPKEY, SNAME, . . .) 

The relation LINEITEM records the parts shipped by each supplier, the date of ship- 

ment, the discount offered and the total price for the entire quantity of the shipped part 

before any discount. The relation SUPPLIER records information about suppliers. To 

compute the top supplier(s), we can execute the following SQL statements: 

CREATE VIEW REVENUE (SUPPLIERlVO , TOTALEVENUE) AS 

SELECT LSUPPKEY, SUM(LTR1CE * (1 - LBISCOUNT) ) 

FROhl LINEITEM 

WHERE LSHIPDATE = "1995" 

GROUPBY LSVPPKEY; 

SELECT SXAME , TOTALREVENUE 

FROM SWPLIER, REVENUE 

WNERE SSUPPKEY = SUPPLIER30 

AND TOTAL_REVENUE = 

(SELECT MAX(T0TALAEVENUE) 

FR0 M REVENUE); 

DROP VIEW REVENUE; 

In our algebra the above SQL statements are equivalent to the following algebraic 

expressions: 



REVENUE = ~p(,q (agtFicl (od(LINEITEM))), where 

O = (LSHIPDATE = WW) 

F = SUM(L1RICE * (1 - LDISCOUNT)) as TOTALAEVENUE 

G = LSUPPKEY 

X = LSUPPKEY as SUPPLIERNO and 

Y = TOTALREVENUE 

aDi,Ul (SUPPLIER (REVENUE K $ ) ( u ~ [ ~ ; ~ ]  (REVENUE)))), where 

F = MAX(TOTAL3EVENUE) as R M X  

Z = R M X  

e, = (TOTALREVENUE = RMX) 

O2 = (SSUPPKEY = SUPPLIERNO) 

X = SJAME and 

Y = R M X  

Having presented the database relations and the set of operations for mani pulating 

these relations, we now continue with the forma1 definition of change propagation and 

increment al expressions. 

3.3 Forma1 Definit ions 

As discussed in Section 3.1, a relation is a finite multiset of tuples, al1 having the same 

(finite) arity. Let R be the set of al1 possible values for a relation R. 

Definition 3.1. A change or update 6(R) of a relation R E 'R is a pair 6(R) = ( 6 i ,  6;)  

where 6 i  E R and 66 E R satisfy the following properties, knows as the strong minimality 

conditions [GL95]: 

We cal1 6 i  the deletions from R arid 6; the insertions into R. 



In condition 1 of Definition 3.1 above, we use 6R E R to mean that if tuple t appears 

cl times in 6 i  and t appears cz times in R, then cl 5 c2. Condition 1 states that al1 the 

(duplicates of) tuples that  we delete from a relation are in fact members of that relation. 

Condition 2 states that no tuple is both inserted and deleted into the relation in the same 

update. 

A database  is a finite set {RI ,  R2, . . . , Rk} of relations. The relation names Ri,  Rz, . . . . Rk 
form the  schema of the database. Let 2, be the set of al1 possible databases of a given 

schema' . 

Definition 3.2. A change or update 6 ( D )  of a database D = {RI, R2,. . . , RI,} E D is a 

pair 6 ( D )  = (6;: 6;) where 66 E D and 66 E D satisfy the following properties: 

1. 6 ,  = {h i1 ,  h i 2 : .  . . , h i k } ?  

2. 62 = {b; , ,  6&,. . . ,6;,}. 

3. ( b i t ,  62, ) is an update for relation Ri,  i 5 k. 

We call 6 i  the database  deietions and 66 the database insertions. 

C.iven a relation R with deletions b i  and insertions h i ,  the value of the relation after 

the update is Ru = [ R  - &] U bRf = [R  U 6;] - 6R. If a tuple appears c tirnes in R1 ct 

times in 6; and CL> times in 56 (obviously cl and c~ cannot simultaneously be non-zero. 

and cl 5 c ) ,  t hen the tuple appears c - cl + c2 times in Ru. Similarly, the new value of 

a database D is Du = [D  - 661 U 6;, where here - and U are taken component-wise. 

Definition 3.3. A query Q is an expression in the algebra of the data model, and can 

be seen as a function Q : D - R. We call the single relation Q ( D )  the answer to query 

Q on database D. 

Let Q be the set of al1 queries in our data rnodel. 

Definition 3.4. A change propagat ion  query is a function CPQ : Q x 2) x (D x V) - 
D x V such that, if 

' ~ o t e  that 2) niay not be finite. Al1 relations have finite attribute sets (arity), but attributes may 
have infinite domains. 



1. Q E Q is a query, 

3. D E 23 is a database, and 

3. 6 ( 0 )  E 2, x 27 is a database update, 

then. CPQ(Q,  D , 6 ( 0 ) )  is an update 6 ( Q ( D ) )  E D x V in t.he answer Q ( D )  of query 

Q on database D, such that, if 6&D) are the  deletions and 6&D) the insertions of that 

update. then 

Essentially, t his definition says t hat if the  change computed by the change propagation 

query is incorporated into the value of the query answer that we had be fore t h e  database 

update, the result is the same as the value of the query answer nj ler  the database update. 

PVe cal1 the expression of the change propagation query, change propagation. delta or 

diflerential espression of Q2. We call and 6&) the incremental updates to Q ( D )  

with respect to S ( D ) .  

One corollary of Definition 3.4 is that for each query Q, database LI and database 

update 6 ( 0 ) ,  the value of CPQ(Q,DJ (D) )  is unique, i.e., there is a unique change 

to every query's answer. A second corollary is that,  if the change propagation query 

computes tuples to be deleted, then these tuples are already in Q ( D ) ,  and no tuple is 

computed to be both deleted and inserted in Q ( D ) .  This is because we have defined 

CPQ to return a change, according to Definition 3.1. 

Definition 3.5. An incremental update is the update defined by the change propagation 

query. In particular, if the change propagation query CPQ(Q, D, 6 ( D ) )  computes the 

change 6 ( Q ( D ) )  = (6&D),64f(D)), we call 6g(D) the incremental deletions, and 6&, the 

incremental insertions of the change. 

Definition 3.6. An incremental query, IQ(Q, D , 6 ( D ) ) ,  of a query Q E Q, database 

D E D and database update 6 ( D )  E 23 x D, is the syntactic expression 

' ~ e  use al1 these names because they al1 appear in the Iiterature. 



where (CPQ-,  C P Q f )  are the incremental updates to Q ( D )  with respect to 40). 

Therefore, we use the term "change propagation expression' to d e r  to an expression 

that  specifies the incremental updôtes to  a query's answer while we use the term "incre- 

mental expression" to refer to an expression that incorporates incremental changes to a 

query's old answer. 

After having presented the forma1 definition of updates to bot h database relations 

and relations computed by running queries, we are ready to present the major issues 

associated with change propagation and incremental maintenance. 

The Change Propagation Problem 

Given a query Q ,  a database D and a database update b ( D ) ,  how do we express the 

change propagation query CPQ(Q,  D, b ( D ) ) ?  What query expression can we use to 

compute incremental changes? bVe discuss a solution to the change propagation problem 

in Section 3.4. 

The Optimization Problems 

How does computing the incremental changes CPQ(Q,  D, 6 ( 0 ) )  compare to computing 

Q ( D )  or Q(Dv)?  Also, how does evaluating the incremental expression of a query com- 

pare to evaluating the query again? CVe address these issues experimentally in Chapter 6. 

3.4 The Change Propagation Problem 

Let D  be a database and Q a query expression in the algebra of Section 3.1. By definition 

3.4, the change propagation query C PQ(Q,  D, 6 ( 0 ) )  given a change 6 ( 0 )  to the database, 

is the value of expressions 6; and 66, which are defined in terms of Q and the components 

of Q as discussed in this section. To simplify the presentation, we use Q to refer to both 

a query and the answer Q ( D )  of the query in a database D. 

To derive the change propagation expressions for al1 operators in the algebra, our 

methodology is the following. For each query Q, we algebraically manipulate the new 

value of the query, Qu: in order to bring it into the form [Q - m] u p. The multisets rn 



and p potentially define a change for Q. To prove that ( m , p )  is in fact a change. we 

prove that: 

1 Property 2: 1 m n p = 0. 

The algebraic manipulations in this chapter generate m and p in such a way that 

Property 1 holds but Property 2 may or rnay not hold. If Property 2 does not hold, then 

( r n , p )  is not a change. In this case. (m - p, p - rn) is a change, which we consider as the 

change propagation expression. We can do this, because of the following result: 

Lemma 3.1. 

1. If rn Q? then [Q - ml u p = ( Q  - (n - p ) )  u ( p  - rn) 

2. If rn C Q, then (m - p) 2 Q 

3. For each m.p : ( m  - p )  n ( p  - rn) = 0 
O 

Proof. Let cq, c, and c, be the number of duplicates of a tuple t in each of QI  m and 

p. To prove 1, we use the assumption that rn C Q to get that c, 5 c,. Tuple t appears 

max{c, - c,, O} + cp = c, - c, + cp in the multiset in the left hand side of the equation. 

Also? tuple t appears max{c, - max{c, - ç,, O } ,  O} + max{c, - c,, O} in the rnultiset in 

the right hand side. If c, 5 c,, this expression is max{cq, 0) + c, - c, = c, - c, f q,. 

Otherwise, it is max{c, - (c, - 5) } + O = cq - c, + cp.  Rernoving the assumption rn C Q 

rnakes Property 1 not to hold. Similarly manipulating the number of duplicates, we can 

also prove the properties 2 and 3 of the lemma. LI 

In the manipulations that follow, we use the algebraic properties that appear in 

Table 3.1. Some of these properties are taken from the paper of Albert [Albgl] and the 

paper of Grumbach and Milo [GM93b] on multisets. The others can be proven easily. 

We continue by presenting the change propagation expressions for each operator in 

the algebra. Most of these expressions have been discussed by Griffin and Libkin [GL95]. 

We prove the correct ness of the change propagation expressions, not only for pedagogical 

reasons, but also because the proofs describe what over-estimations of changes rnay be 

used for view maintenance instead of the  actual changes. As we will see in Chapter 4, for 



P l :  A x ( B u C ) = ( A X B ) U ( A X C )  
P2: A x ( ~ - C ) = ( A x B ) - ( A x C )  
P3: ( A -  B ) - C = . 4 - ( B u C )  
Pd: ( . 4 U B ) - C ' = ( A - C ) u ( B - ( C - A ) )  
P5: A - ( B  - C )  = (d- B ) U [ [ C -  ( C -  B ) ]  - ( B  - A)] 
P,: A -  ( B  - C )  = (d- B ) u [ C  - ( B  - A)] ,  when C C B  
P,: A - B = . 4 - ( B - ( B - A ) )  
Pi: ( A - B ) U ( A - ( A - B ) ) = A  
P,: ( A -  B ) u C = ( A u C ) - Z 3 , w h e n B G  A 
P9 : ae(A u B )  = ae(A)  U o e ( B )  
Plo : oe(A - B )  = ae(A)  - a@) 
Pll : r X ( A U B )  = ~ x ( - - l ) U x x ( B )  
P12 : r X ( A  - B )  = q ( A )  - r X ( B ) ,  when B  C A 
P13 : e( A  u B )  = e( A )  U [e (B)  - A] 
Pl, : e ( A  - B )  = e(A) - [B - ( A  - B)]  
P15 : 4.4) - B = e ( A )  - e ( B )  

pis: A - ( B - C ) = A - B .  w h e n A n C = @  
P I ; :  A - ( B - A ) = A , w h e n A n B = f l  
Pl8: A-(-4- B ) =  B - ( B - A )  
Pis : ( A  U B )  - C  = ( A  - C )  U B,  whenB fi C = 0 
Pzo: A - ( B u C ) = A - B ,  w h e n A n C = @  

Table 3.1: Properties of Multisets 

incremental view maintenance. it rnight be desirable to relax 1-1 and only insist 

that (Propertyl be satisfied3. Therefore, instead of using the derived (and sirnplified) 

(rn - p, p - rn) to do view maintenance, we can use (m, p) directly, which are not the 

changes but over-estimations of them. Doing this has the potential to improve the 

performance of incremental view maintenance. 

3.4.1 Change Propagation Expressions 

Database Relation 

If Q = A, for any database relation A, then: 

6; = 62 

66 = 62 

3This means that ,  instead of using the strong rninirnality conditions [GL95], we use weak rninimality 
conditions [CGL+96]. 



Cartesian Product 

Let d e l ( A )  = A - 6; and d e l ( B )  = B - 6 i .  If Q = -4 x B, then 

Qu = A' x BV 

= ( d e l ( A )  U 6:) x ( d e l ( B )  U 6;) 

= d d ( . 4 )  x d e l ( B )  U 6; x d e l ( B )  U d e l ( A )  x 6; U 62 x 6; by Pl 

Let p = 6: x d e l ( B )  U d e l ( A )  x 68  U 6; x 68.  

Then, 

Qu = d e l ( A )  x d e l ( B )  U p 

= ( A - 6 ; )  x ( B - 6 é ) U p  

= ( [ A  x ( B - h i ) ]  - (6, x ( B - 6 ; ) j ) U p  by P2 

= ([A x B - A x &] - (6.7 x B - 6; x s i ] )  u p by Pz 

= ( A  x B - [ A  x 6; ~ ( 6 7  x B - 6 i  x &)]) ~p by P3 

Let ~ = A x & U ( ~ , ~ X B - ~ ; X ~ ~ ) = ( A X ~ ~ U ~ ~  x B ) - 6 ;  ~ 6 , .  

Then, 

Qu = [ A x B - m ] U p  

1s (m,p)  a change'? The answer is no. It is easy to see that  rn Ç Q. However, 

n n p # 0. To see why, let A = { l .  l ) ,  B = { 1 ) &  = {l},b$ = { l} .  Thus, A x B = 

{( l ,  l) ,  ( i , l ) }  = ( A  x B)". However, m = { ( l ,  l)} and p  = {(l: l ) } .  

According to Lemma 3.1, (m-p' p - r n )  is a change. To obtain the change propagation 

expressions for cartesian product, we further simplify m - p and p - m. Before we do 

this let us rewrite m as follows: 

m = A x 68 U (QA x B - 6 A  x 6i)  

= A x 6; U 62 x d e l ( B )  

= ( d e l ( A )  U 6,) x 6; U 6A x d e l ( B )  

= 6,  x 6 ~  u d e l ( A )  x 6 i  U 62 x d e [ ( B )  



and, 

p -  m = [t: x d e l ( B ) u d e l ( A )  x 6 2 ~ 6 :  x 621- 

[ ( A  x 6,  U6; x B )  - 6A x 6J  

= [6,f x 6; u 6; x del(f3) u de l (A)  x 681- 

[ A  x 68 U 6; x BI by Pl6 

= 6: x 62 C: ((6; x d e l ( B )  U de l (A)  x 6;)- 

( A  x 6g U 6 ;  x B ) ]  b~ 9 9  

= 6; x 68 U ([[b;  x d e l ( B )  U d e l ( A )  x 651- 

6,  x B] - A x 6,) by P3 

6; x 6 2  U [ [ ( d e l ( A )  x 6; - 6 ,  x B)U 

6-: x d e l ( B ) ]  - A x 683 by Pl9 

= 62 x 6 2  LJ [ d e l ( A )  x 6; - 6; x B]u  

[Sf; x d e l ( B )  - A x b,] by PI, 

Selection 

If Q = gd(A) ,  t hen: 



Let m = ad(&) and p = oe(6-;). It is clear that (ml p )  is a change since both 

propert ies of Defini t ion 3.1 are t rivially sat isfied. 

Projection 

Let rn = 7rX(6J and p = ~ ~ ~ ( 6 2 ) .  Unlike the case of selection, ( m , p )  is not a 

change. It is easy to see that m C Q. However, rn n p # 0. To see why. consider 

.4(X, Y) = {(l, l)}, 6; = {(1,1)}, 6; = {(l,  2)}. Supposing t h e  projection retains the 

first attribute, X ,  of relation A, both m = p = 11). 
According to Lemma 4.1, (m - p,  p - m )  is a change. 

Duplicate Elimination 

Let m = e(&) - ( A  - 6,;) and p = e(6:) - A. Intuitively, n contains a unique copy 

of those tuples deleted from A that lost al1 the duplicates they had in A, while p contains 
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those tuples inserted in A that did not exist in A before. The derived ( m g )  is a change. 

Set Difference 

If Q = A - B, let del( A) = A - 67 and ins( A) = .4 u 6:. Obviously, Au = del ( A )  U 6; = 

ins(A) - 6 i .  The following equivalences can easily be proven 

Tl : ins(.4) - B = ( A  - B )  U [bf; - ( B  - A)] by P4 

T 2 :  A - ins (B)  = (A  - B) -6; by P3 

T3 : del(A) - B = ( A  - B )  - 6.i by P3 (twice) 

T4: A - d e l ( B )  = ( A -  B ) U  [& - ( B  - .4)] by Ps 

We use the equivalences Ti to T4 and the equivalences ilv = del(A) U 6: and Bu = 

ins(B) - 6; to get the following: 

Q U  = / l V - p '  

= (del(A) - Bu) U [6* - (Bu - d e l @ ) ) ]  by Tt 

= (de[ ( / \ )  - i n s ( B ) )  U [6, - ( ins(B) - del(A))] U [6: - (Bu - del(A))] by T4 

= (del(A) - i n s ( B ) )  U [ d i  - (in@) - d e l ( . 4 ) ) ] ~  

[6,f - ( ( ins (B)  - d e l ( A ) )  - 61;)) by T3 

= ( d e l ( A )  - ins (B) )  U i(68 U 6;) - ( ins(B) - del(A))] by P4 

Let .Y = 6, U 62 and Y = U 6:. 

And let, 

p = (6; u 6:) - ( ins(B) - del(A)) 

= Y - ( ins(B) - del(A)) 

= Y - [ (B  - d e l ( A ) )  U (6; - (del(A) - B ) ) ]  by TI 

= Y - [ ( B  - A) U (6, - ( A  - B ) )  U [ h i  - ( ( A  - B )  - 6,))) by T4 and T3 

= Y - [(B - A )  U ((SA U 6;) - ( A  - B ) ) ]  by p4 

= (Y - (B - A ) )  - ( X  - ( A  - B ) )  by P3 



Qu = (dei(A) - i n s (B) )  U p 

= [ (de l (A)  - B )  - h i ]  U p by T2 

= [ ( A  - B )  - (6; ~ S j ! j ) ]  ~p by T3 and P3 

= [ ( A -  B )  - X ] U ~  

= [(A - B) -[.Y - (X -(A - B ) ) ] j u p  by P6 

Let m = .Y - [ X  - ( A -  B)]. 

Qu = [ ( A  - B) -ml U p  

The  first question that we must ask is whether the  derived ( m o  p) is a change. The  

answer is no. Obviously, rn C & (because rn equals, by definition, X n Q j. However. 

m n p # 0. To see why, let A = {1,1}, B = {1},6, = 6~ = 11). Thus, A - B = 

A" - Bu = 11) and B - A  = 0. Also, X = Y = 11). Then m = { l }  - ({ l}  - {l}) = {l} 

and p = ({l} - 0) - [{l} - {l}] = {l}. 

-4ccording to Lemma 3.1, ( m  - p, p - m )  is a change. 

Let us sirnplify m - p: 

[ X  - ( X  - ( A  - B ) ) ]  - [(Y - ( B  - A ) )  - ( X  - ( A  - B ) ) ]  

[ ( A  - B )  - ( ( A  - B )  - X ) ]  - [(Y - (B - A))  - (X - ( A  - B ) ) ]  by Pis 
( A  - B )  - [ ( ( A  - B )  - X) U [(Y - ( B  - A ) )  - (X - ( A  - B))]]  by P3 

( A - B ) - [ [ ( A - B ) u ( Y - ( B - A ) ) ] - X ]  by Pd 

( A  - B) - [[(YU (A - B ) )  - (B - A)] - XI by Pl9 

( A  - B )  - [ (YU ( A  - B)) - (X U (B - A))] by P3 

( A  - B) - [ ( ( A  - B) - (X u (B - A)) )u  

[Y - ( ( X  u ( B  - A ) )  - ( A  - ml1 by P4 

( A  - B) - [ ( ( A  - B) - X) U (Y - ( X  - ( A  - B ) ) ) ]  by P4 



= ( A  - B) - [((A - B) U 1') - XI by P4 

= [ ( A  - B )  - ( ( A  - B) U Y)]u 

[ ( X  - (X - ( ( A  - B )  U Y)) )  - [(Y u ( A  - B)) - ( A  - B)]] by Ps 
= [.Y - (X - ( (A  - B) U Y))] - Y 

= (.Y - Y) - (X - ( ( A  - B )  u Y ) )  by p3 

= (-Y - Y - )  - [(-Y - Y) - ( A  - B)]  

= ( x - Y ) ~ ( A - B )  

Also: let us simplify p - m: 

p - m  = [ ( Y - ( B - A ) ) - ( - Y - ( A - B j ) ] - [ . Y - ( - Y - ( A - B ) ) ]  

= ( Y - ( B - A ) j  - [ ( . Y - ( A -  B ) ) u [ X - ( X - ( A - B ) ) ] ]  by p3 

= [Y - ( B  - A ) ]  - X by Pi 

= ( Y - - Y ) - ( B - A )  by P3 ( t wice) 

Union 

Let p = 66 u 6;. 

Then, 

Qu = ( ( A U ( B - P B ) ) - ~ J U ~  by Pg 

= ( ( (A  U B) - 6 s )  - 6 ~ )  U p by Pg 
= ((-4 u B )  - (6- U 6 8 ) )  U p by P3 

Let rn = 6; U 6,. 

Obviously n C ( A  U B). However (m,p )  is not a change, because m n p # 0, when 

6; n 62 # 0 or 6 2  n 6 8  f 0. According to Lemma 3.1, (m - p p  - m)  is a change. In 

fact, n - p,  p - m are the change propagation expressions for union. 



Aggregat ion 

Aggregation is the only operator in the algebra for which we do not adopt the algebraic 

approach in proving the correctness of the change propagation expressions. Rather. for 

aggregat ion, we describe algorithmically how the change propagation expressions to views 

with aggregates are defined. W e  do this first for views where aggregation is computed 

with respect to al1 the tuples in the relation (one group), and then for views where 

aggregation is computed with respect to some grouping attributes (many groups). 

1 Aggregation over one group ( 

COUNT 

Let Q = ag[comr(,.) as Y ; s I ( A ) -  Let us abbreviate with F the aggregate item "COUNT(X) as 1'". 

For COUNT, the aggregation column Y holds the number of different tuples appearing in 

A. Let, 

C' = n t (&) ,  i.e.. c E C is the number of tuples in A before the update, 

Cf = R $ ( ~ ~ [ ~ ; ( ~ ( S : ) ) ,  i.e.. cf E C+ is the nurnber of tuples inserted into A, and 

C- = ~ $ ( a ~ [ ~ , ~ ~ ( 6 ; ) ) ,  i.e., c- E C- is the number of tupies deleted from A. 

We have two cases: 

1. If c- = cC, then the number of tuples in A before the update is the same as the 

number of tuples in A after the update. The value of the aggregate value of the 

view is not affected. The change to the vierv is 

2. If c- # c+,  the number of tuples in A before the update is not the same as the 

number of tuples in A after the update, which is c - c- + c+. Therefore al1 the view 

tuples must change, and the update to the view is: 

6~ = Q 

66 = .4" x { c - c -  + c C }  



This shows a limitation of our approach to mode1 only insertions and deletions. In 

this case, it is better to Say that 6; = 6; x { c }  are the tuples that are deleted 

from the view, 6Q = 6: x { c  - c- + cf } are the tuples that are inserted into the 

view. and the other tuples in the view are modified by chariging the aggregate value 

from c to  c - c- + cf. However, in this section, we are concerned with the change 

propagation problem and not with the increniental maintenance problem. 

We can test for conditions 1 and 2 by riinning the tests Testl and Test2 respectively4. 

Test1 = C- ri C+ 

Test = C- - C+ 

Then, we can summarize the changes to Q as follows: 

66 = rattrs of Q([Testl x bai x C]  U [TestZ x &]) 

64 = rattrs of Q([Testl x 6; x C] U [Test2 x A" x T $ ~ - $ ~ + $ ~ ( C  x C- x C')])  

The role of the dollar sign in the expression for 68 is to give the value of the  cor- 

responding attribute. Thus, $1  is the value of the first attribute, $2 is the value of the 

second attribute, and so on. The - and + in the expression $1 - $2 + $3 correspond to 

subtraction and addition of numbers. 

SUM 

The aggregate SUM is treated similarly to COUNT. 

MIN 

Let Q = a g [ n r ~ ( x )  u;cl(A). Let us abbreviate with F the aggregate item "MIN(.y) as Y'. 

For MIN, the aggregatioo column Y holds the minimum value of the attribute X. Let, 

M = +(Q),  i.e., rn E M is the minimum value for the attribute X in A before the 

update, 

Mf = ~ $ ( a ~ [ ~ : ~ ] ( 6 2 ) ) ,  i-e., mf E iIf+ is the minimum value for X from al1 the 

inserted t uples, and 

M -  = nt ( a g [ F ; e l ( S i ) ) ,  i.e., m- E M -  is the minimum value for X from al1 the 

deleted t uples. 

4The test is successful if and only if the relation corresponding to the test is non-emptg. 



We have four cases: 

1. If rn+ < m, a new minimum is inserted and al1 the view tuples must change. The 

update to the view is: 

6; = Q 

66 = Au x {m+} 

2 .  If m+ 2 m and m- > rn; the minimum 1( value is not afFected. The update to the 

view is: 

6; = b , x { m }  

66 = 6; x { m }  

c- E C- counts the number of tuples deleted from A that give the minimum value 

for X. Then, if rnf 2 m,  m- = rn and c > c-, some tuples with the minimum 

.Y value are deleted but not al1 of them, and, t.herefore. the minimum value is not 

affected. The update to the view is: 

4. I f  m+ 2 m ,  rn- = m and c = c- ,  al1 the tuples with the minimum X value are 

deleted. The new minimum must be found. The update to the view is: 

6; = Q 

6; = a g [ ~ ; @ ] ( A " )  

We can test for conditions 1, 2, 3 and 4 by running the tests Testl, Test2, Test3, and 

Then, the changes to Q are described by the following: 



6; = rattrs of Q([(Testl  U Te&) x QI U [(Test2 U Test3) x 6; x Ml) 

66 = K a t t r s o f ~ ( [  Testl x Au x Mf] U [(Test* U Test3) x 6: x M ]  U [Test4 x ag[F,q(Au) l )  

MAX 

The aggregate MAX is treated similariy to MIN.  

1 ~ ~ ~ r e ~ a t i o n  over many groups 1 
Let Q = agpq(A) ,  where F is an aggregate item involving one of the aggregate 

functions COUNT, Sm, M I N  or MAX. The groups that are affected by the update to A can 

be determined by aX(6; U 6;). For each affected group g E aC(6; ü 6*), we have 

a O ~ , ~ ( A )  is the group in the relation A, 

a aC,,(6i) are the deletions to this group, and 

a ~ ~ , ~ ( 6 : )  are the insertions to this group. 

We can use the techniques discussed for the case of one group to find the updates to 

each group. The update to the view is the union of the updates for each group5. 

Other Operators 

The change propagation expressions for the rest of the operators are derived by rewriting 

their expressions. Thus, 

0 if Q = A -d  B, then Q can be rewritten as Q = e(A)  - B; 

O if Q = s$(~), then Q can be rewritten as Q = e(nx(.4)); 

a if Q = A ud B ,  then Q can be rewritten as Q = e(.4 U B); 

a if Q = A n B, then Q can be rewritten as Q = A - (A  - B); 

a if Q = A nd B, then Q cari be rewritten as Q = e ( A )  n B = A n e ( B )  = e(A n B ) ;  

a if Q = A Mo B, then Q can be rewritten as Q = od(A x B) .  

' ~ o t e ,  however, that this is an algorithmic treatment of the aggregation over many groups. The 
generalization over many groups cannot be expressed in our language. 



Chapter 4 

O pt imizat ions 

In this chapter we propose a variety of optirnization strategies in order to  sirnplify change 

propagation and incremental expressions. There are three main categories of such opt i- 

mizations: optimization specific to incremental maintenance, optirnization in the presence 

of key constraints, and optimization in the presence of foreign key references. 

4.1 The Incremental Maintenance Problem 

Yhe incremental maintenance problem is related to the change propagation problem 

discussed in the previous chapter. The change propagation problern pertains to the 

definition of changes to the value of queries. The incremental maintenance problem 

pertains to  the definition of the new value of the query using the old value of the query 

and the changes to it. In the previous chapter we showed how equations for change 

propagation are derived for each operator in the multiset algebra. In this chapter, we 

discuss ouer-estinations of changes that have the potential to improve the performance 

of incremental view maintenance. Using over-estimations of changes have been proposed 

by Colby et  al. [CGLf 96). 

The methodology used in the previous chapter to derive the change propagation 

equations was t he  following: 

1. we start with the new value of a query Qu, 

2. we algebraically manipulate the expressions for Qu to bring it into the form [Q - 

m] U p, in such a way as to ensure that  1 Property 1: m E Q 1 is satisfied, 



3. we use Lernma 3.1 to define (m - p, p - rn) 

when the generated m and p do not satisfy 

as the change propagation expressions. 

4. we sirnplify (rn - p, p - m), if possible. 

One question that we might want to ask is: what is the significance of the properties 

that the change propagation expressions satisfy? Why do we insist on them? Both 

these properties are very important when the change propagation expressions are used 

for integrity constraint maintenance, or reasoning about change; in other words, when 

the change of the old and new value of a query is necessary. Griffin and Libkin refer 

to satisfaction of both these properties as the rninirnality condition [GL%. CGLf96]. 

CVe make the observation that we can relax the second property when incrementally 

maintaining the  query. We can do this, because 'dm, pl Q such that m C Q, 

We cannot relax the first property, as the above equation no longer holds. 

The tradeoff between using (ml p) and using ( m  - p, p - rn) is analogous to  duplicate 

removal. In the sarne way that early duplicate removal rnay improve the performance of 

subsequent operat ions ( because it reduces the sizes of the relations involveci in subsequent 

operations), computing minimum deltas must be  done as early as possible. On the other 

hand. like duplicate removal. minimum delta computation is expensive, and expensive 

operations should be avoidecl if possible. 

Definition 4.1. For each query Q, database D and database update b ( D ) ,  any ( A i ,  AS) 

that satisfy 

1. Q V ( D )  = [Q(D) - &(D)] U A $ ( D )  

2. A,(D) c &(a 
specify ouer-estimations of the change to the query answer Q( D). 

In the previous chapter, in Section 3.4.1, we showed how we define the incremental 

changes 64 (the equation for m - p) and 6; ( the  equation for p - m) for each query 

expression Q. Tables 4.1 and 4.2 summarize these definitions. 



Table 4.1: Equations for computing 6- 

W o e j 4 )  =  OS(^:) 

S C ( Y i + W  = a x ( m  - .x(6,) 

sC(e (A) )  = e(6f;) - A 

6+(A x B )  = 6: x 6; u [ ( A -  6 ~ )  x 62 - 6; x B]u 

[6* x (B-6,) - A  x 6;] 

s'(A - B )  = ((6; U 6:) - (6, U 6;)) - ( B  - A) 

6+(A u B )  = (6.; u 62)  - (6, U 6,) 

Table 4.2: Equations for computing 6+ 

The proofs of correctness of Section 3.4.1 for the definitions of the incremental changes 

m - p and p - rn also provide one possible set of over-estimations, rn for delet ions and p 

for insertions. Thus, m gives the over-estimation of deletions A- and p gives the over- 

estimation of insertions A+. These A- and AC are expressed in terms of the 6- and 6+ 

of the inputs in Section 3.4.1. Except for the case of duplicate elirnination, in deriving 

the equations for them, we have not used the fact tliat the 6- and 6+ of each input are 

disjoint multisets and therefore we can safely substitute A- and AC for the inputs in 

place of their 6- and 6+. In the case of duplicate elimination, it is not possible to define 

over-estimations of the changes. The actual incremental changes are considered as t heir 

trivial over-estimations. 



Tables 4.3 and 4.4 summarize the definitions of the over-estimations 4- and A+. 

From now on7 when we Say over-estimations A- and Lif, we will mean the over-estimations 

defined by the equations in these tables. 

& ( A )  

h- (ae(A))  

~ - ( T Y ( ~ )  

W e W )  

A-(A x B )  

A-('4 - B )  

& ( A  U B )  

6, for database reIation A 

o e ( 4  

v@,) 

W M ) )  
[ A i x  B ~ A x h g l - h , x A ,  

(hi u A i )  n ( A  - B) 

a, u ag 

Table 4.3: Equations for computing A- 

- - - -  - - - - - . - - 

A+(.4) = 6; for database relation A 

Af(uo(A)) =  eu:) 

A+(r.u(A)) = ~x(&!i) 

A+ ( e ( A ) )  = 6 + ( e ( A ) )  

A f ( A x B )  = [ A ~ x ( B - A ~ ) u ( A - A ; ) x A ~ ] u A ~ x A ~  

A+(A - B )  = [(ni u a;) - ( B - A ) ]  - [(A, u A;) - ( A  - B ) ]  

.Af ( A  u B )  = Ai U AS 

Table 4.4: Equations for computing A+ 

The relationships between the operators discussed in this section are as follows: 

1. the incremental changes are the net effect of their over-estimations, i.e., 64 = 

A, - AS and 66 = A; - A;; 

2. each over-estimation contains the incremental change and an excess of tuples A 

(possibly empty), i.e., there exists a rnultiset of tuples A such that AG = 6; U A, 

A& = 66 U 4, and A = A4 fI A;. 



4.2 Optimization in the Absence of Duplicates 

The equations for the delta and the over-estimation of the delta of a relation can be 

simplified, if the relation is known not to contain duplicates. To verify that a relation does 

not contain duplicates, cve con use the following sufficient (but not necessary) conditions: 

.A relation does not contain duplicates, if 

O the relation is generated by rd.  el nd, ud7 - d .  or 

O the relation always contains at most one tuple, or 

O the relation contains at least one key. 

As in relational algebra, relations in our multiset algebra rnay have sets of one or 

more attributes serving as keys. We say that a non-empty set S of attributes of relation 

R is a key for R, if no instance of R can have two tuples that agree in al1 the attributes of 

S. Therefore, it follows from the definition that a relation with at least one key does not 

contain duplicates. For database relations that contain at least one key, exactly one of 

t hem is designated as the pn'rnary key; the others are called alternate or candidate keys. 

If R is generated by one of the operators rd, e ,  nd. ud or - d ,  then R has a key. The 

key is forrned by taking al1 the attributes of R. Also, if every instance of R is known to 

contain at most one tuple, then each attribute of R is sufficient to determine a unique 

tuple in the relation (if  one exists), and anÿ attribute can serve as a key This allows us 

to revise the sufficient condition for checking duplicates to: 

A relation does not contain duplicates, if the relation contains at least one 

key . 

From the above discussion it follows that a relation may have more than one key. The 

set keys(R) contains the keys for the relation R. Next, we describe how the keys for a 

relation computed by a query expression are generated from the inputs to the operators 

in the query expression and their keys. 



4.2.1 Generat ing Keys for Query Expressions 

The set of keys of a relation specified using a query expression can be generated recursively 

by applying the following algorit hm (bot tom-up) to al1 operators in the query expression. 

WC define the booIean condition Oltuple(R) to be true when R contains at most one 

tuple. There is a simple sufficient condition for testing whet her a relation contains at 

most one tuple (without cornputing the value of the relation) by examining its keys: a 

relation contains a t  most one tuple if the empty set of attributes is a key. The algorit hm 

for key derivation is based on the following inference rules1: 

A x B: The set of keys of the cartesian product contains al1 possible combinations 

of the keys of A with the keys of B, if both A and B have non-empty sets of keys 

and both A and B contain more than one tuple. In particular: 

if k e y s ( A )  = 0 or k e y s ( B j  = 0 
k e y s ( A )  if -Oltuple(A) A Ol lup le (B)  

b e y s ( A x B ) =  i f  O l t u p l e ( A )  h -Ol tuple(B)  
k e y s ( A )  U k e y s ( B )  if Oltuple(A) A 01tuple( B )  
{kl ü 1;2 : kl E k e y s ( d ) ,  kz E k c y s ( B ) }  otherwise 

u6(il): The key set of the 

selection filters more than 

selection is the same as the key set of the input, if the 

one tuple from A: 

{{X} : X E attrs(A)] if B selects O or L tuples 
keys(Aj if 8 selects > 1 tuples 

If the selection filters more than one tuple and the selection condition 8 bounds 

some attributes of A, the keys can be simplified by removing the bound attributes 

from them. An attribute of a relation is said to be bound if al1 tuples in the relation 

contain the same value for that attribute. Let S be the set of attributes of A 

that the condition 8 bounds. Also, let X C  be the set of at tributes that 0 directly 

or indirectly equates with the X attribute. In every key containing X, we can 

substitute ?5 with Y E X+. The simplification process is: 

'This is a sound but not complete set of inference ruIes. 



Repeat the following until no new keys are added into keys(ae(A)): 

1. Replace each k E keys(cd(A))  with k - S; if k - S = 0. stop and 

set Oltuple(ae(A)) to true - the selection returns at  most one tuple 

because al1 attributes in a key are bound. 

2. For each attribute X, for each Y E Xf and each k E k e y s ( a 6 ( 4 ) )  

such that 'C E k, add k - {X} U {II} into keys(uo(A)). 

O A W, B: the set of keys for the join is the same as the set of keys for the selection 

o o ( A  x B). However, an additional simplification is possible due to  the join. Xgain. 

let S be the set of bound attributes of O. If 0 is a conjunctive condition which 

contains an equality between the X attribute of A and the I; attribute of B,  then: 

1. if {X} E keys(A), then Vk2 E t e y s ( B )  add kî-S into k e y s ( A  B)? 

and 

2. if {Y} E k e y s ( B ) ,  then Vkl E keys(A) add kl -S into keys(A B) .  

0 nx(A): if the list of attributes ,Y includes some keys from A, then these keys are 

the keys for the projection. If X contains no key from A, then the projection does 

not have a key: 

O & ( A )  (and duplicate elimination e): the projection distinct generates no duplicates 

in the output; the set of al1 attributes in the output relation serves as a key, if the 

projection attributes do not contain a key from A: 

keys(n$(~)) = k e y s ( r x ( 4 )  if keys(TY(A))#0 
otherwise 

O ag[F;q ( A ) :  the grouping attributes serve as a key for the aggregation, if the relation 

does not have a key: 



{ ;;;(A) i U e y s ( A )  # 0 
keys( a g ( ~ ; ~  ( A ) ) = ot herwise 

O A - B: the keys for the set difference is the same as the keys of the left input: 

keys(A - B )  = k e y s ( A )  

A - d  B: the set of attributes in the output relation serve as a key if  the left input 

does not have a key: 

k e y s ( A  - B )  if keys(i1-  B )  # 0 
keys (A  - d  B )  = {{S : S E a t t r s ( A ) } }  otherwise 

A u B: even if  both input relations have keys there is no guarantee that any of 

t hem can serve as a key for the  output relation, therefore: 

beys( -4 u B )  = 0 

A ud B: the set of attributes in the output relation can serve as keys: 

keys(A U ~ R )  = {{X : X E attrs( A ) } }  

A n B: a key from each of the inputs can serve as key in the output relation: 

ke  y s ( A  fl B )  = ke y s ( A )  U k e y s ( B )  

A nd B: the set of attributes in the output relation serve as a key. if A fl B does 

not have a key: 

k e y s ( A  n B )  if k e y s ( A  n B )  # 0 
k e y s ( a  nd 8) = { {{X : X E a t t r s (A) ) }  otherwise 



4.2.2 Simplifications 

If a relation does not contain duplicates, the equations for defining its incremental changes 

can be simplified significantly. Next, we describe. for each basic operator. what these 

sirnplified versions of the change propagation expressions are. Using keys to simplify the 

expressions results in change propagation expressions for the (pure) relational model. 

such as the ones presented by Qian and Wiederhold [QÇVgl]. 

a A x B: If the output relation of a cartesian product A x B does not contain dupli- 

cates, the inputs A and B to  the cartesian product also do not contain duplicates 

and, 

6 - (A  x B) = (by definition) 
6; x 6 8  U [(il - 6;) x 6 8  - 6.: x ( B  - 6 8 ) ] ~  
[a, x (B - 6,) - (A-6,) x bg ]  

= (because A and B do not have duplicates and, i-e., ( -4 - 6.i ) n 6 2  = 0) 
6, x 6, u [ ( A - 6 A )  x 6 6 ] ~ [ 6 ~  x ( B  -68)] 

= (property of multisets) 

Similarly, we can prove that if A and B do not contain duplicates. then. 

Note the similarity between these two expressions and the ones used for the over- 

estimations of the changes for the cartesian product, in Tables 4.3 and 4.4. This 

shows that the simplifications due to  the key constraints invalidate the use of over- 

estimations: the over-estimations computed are the actual changes to be made. 

o e ( A ) :  No further simplification is possible because the equations for 6- and 6+ 

are already in the simplest form that  they can be. 

a x x ( A ) :  If the input relation to the projection does not contain duplicates, the 

output relation may or may not contain duplicates. If the output relation does not 

contain duplicates (because the projection retains at  least one key from the input 

relation), then xx (6J n 7rx(6f;) = 0, and, 

Sm(rX(A))  = ~ ~ ( 6 - i )  - ~ ~ ( 6 2 )  = 7rX(6;i) 

S+(rx(A)) = ~x(6:) - ~ ~ ( 6 2 )  = ~ ( 6 2 )  



A - B: If both input relations do not contain duplicates, in order to find the incre- 

mental deletions from the set difference, we must look at two situations. The first 

is whether deleted tuples from A were in the set difference before (or equivalently 

whether they were not in B before). The second is whether tuples inserted into B 

were in the set difference before (or equivalently whether they were in -4 before). 

That is. 

6-(A - B) = (6, - B )  U (66 n A )  

Similarly, we can argue that insertions into ,4 result in insertions into the set differ- 

ciice as long as these insertions are not in the new value of B. Mso? deletions from 

B result in insertions into the set difference as long as these deleted tuples also are 

in the new value of A. 

P ( A -  B )  = (6; - B") u (bg n A") 

'4 u B: N o  simplification is possible for union because even if the inputs A and B 

do not contain duplicates, there is no guarantee that their union A U B does not 

have duplicates. 

0 e(A):  If the input to  the duplicate eiimination does not contain duplicates, then 

duplicate elimination is a redundant operation and, obviously, 

6-(e(A)) = 6.; 

6+(e(A))  = 6.: 

4.3 Optimization due to Foreign Keys 

As in the relational model, in our multiset algebra, a foreign key is an attribute (or a 

combination of attributes) XA in a database relation A that is required to match values of 

the  designated primary key ,ris in some other database relation B, i.e., R$JA) 2 ax,(B). 

Suppose that database relations A and B are joined and the join condition is a 

conjunctive condition containing Xa = X B ,  where Xa is an attribute of A and X B  is 

the primary key attribute of B2. If there is a foreign key reference from Xa to B, tuples 

'Of course, X A  and XB may be sets of attributes. 



inserted into B do not join with tuples from the old value of A (before A is updated). 

This is because the values in A before the update already appear in the domain of 

-ICg in B before the update. Since B has at least one key. if t E s i ,  then t B. The 

following equivalences can easily be proven ( 8  stands for a join condition of the form 

discussed above): 

Also, tuples deleted from B either do not join with the value of A before the update, 

or they join with  tuples deleted from '4, or else the foreign key constraint would not be 

satisfied after the update3. For the same reason, tuples deleted from B do not join with 

t uples inserted into A. Therefore, the following equivalences also hold: 

These simplifications allow a database optimizer to transform a change propagation 

or incremental query into a simpler one that does not need to access database relations 

as many times and, thus, may be more efficient to evaluate. Note that some equivalences 

follow from others, for instance: equivalence 3 follows from 1 and 2, and equivalence 6 

follows from 5 .  These are al1 the forms in which these equivalences have been defined 

and used in the RHODES query optimizer. 

Using foreign keys for simplification of incremental expressions has been recognized 

by Quass et al. [QGMW96]. The purpose of that work is to use the knowledge about 

keys and foreing keys, in order to make a set of views self-maintainable. One of the 

simplification rules that is used is a generalization of equivalence 1 to many relations. 

3The constraint may be violated before the transaction commits, but we assume ttiat view mainte- 
nance occurs at the commit point of a transaction when the constraints are known to be satisfied. That 
is, queries inside a transaction do not see the updated views. 



4.4 Example 

Let us assume the following database relations: 

P : PART~PARTKEY.  ...). 

S : SUPPLIER(SSUPPKEY, . . .). 

A : PARTSUPP(PS_PARTKEY, PSSUPPKEY, . . .). 

The relation P records information about parts; the relation S records information 

about suppliers; and the relation A relates suppliers with the part that each one supplies. 

For referential integrity, al1 the values appearing in the PSSARTKEY of A must appear in 

the PSARTKEY of P, and al1 the values appeariag in the PSSUPPKEY of A must appear 

in the SSUPPKEY of S. so that al1 the parts supplied by a supplier are valid parts, and 

al1 the suppliers supplying parts are valid suppliers. 

Let us assume that  we have a view V defined using the following SQL qiiery 

select * 

f r o m  P, S, A 

where A.PSPARTI1;EE' = P-PPARTKEY and 

A.PSSUPPKEY = S.SSUPPKEY 

Equivalently, we can specify the sa.me view as V = P w S D<i A (ignoring join 

arguments). Suppose now that each of the P, S and A relations lose a number of tuples 

specified by the system-defined relations S&6i and 6;, respectively. Let h i ,  be the 

deletions from the join P w '4 (as if this join were rnaterialized) and 6; the deletions 

from V. One way to compute the deletions from V is to find the deletions to P CU .4 and 

propagate them to V, Le., 

Tuples that are deleted from A can only join with tuples deleted from P or tuples 

deleted from S because, otherwise, the foreign key references would not be satisfied after 



the database update. Thus, we can use the following equivalences to simplify the above 

equations 

and we can simplify the change propagation expression as 

Thus, using this optimization, we were able to reduce accesses to the database rela- 

ticns from five to two; accesses to the delta relations from eight to one; and, the total 

number of joins from seven to  two. Consequently, we increased the likelihood that the 

performance of the change propagation query will be very good. 

This concludes Our presentation of al1 proposed opt imizations for simplification of 

change propagation and incremental expressions. 



Chapter 5 

The RHODES Database Optimizer 

In this chapter we describe the design and implernentation of the RHODES query op- 

timizer. We discuss the extensions to  RHODES to support the optimization of change 

propagation and incremental expressions. We also introduce the visual browser that 

accompanies RHODES. 

RHODES is a relational query optimizer that supports traditional optimization tech- 

niques. such as join orderings, query transformation, use of indices, and so on. The 

innovation of RHODES is t hat it understands and uses views during (general) query opti- 

rnization. It also decides which views should be maintained incrementally and, for views 

to be maintained incrementally, which change propagation expressions should be used 

for t heir maintenance. 

5.1 Query Optimization 

A query expressed in a high level language is parsed by the DBMS to prodiice an interme- 

diate form of the query known as the query parse tree. Before any further processing, the 

query parse tree is validated, so that al1 of the relation and attribute names appearing in 

it exist in the DBMS. Figure 5.1 outlines al1 of the different phases involved in executing 

a high level query. 

After the parsing and validation of the high-level query, the query optimizer of the 

DBMS examines the query parse tree in order to find an efficient way to implement it. The 

optimizer uses algebraic transformation rules to transform the query parse tree into one 

or more equivalent parse trees, that produce the same result as the original one but may 
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give better performance [EN94]. After pruning the space of equivalent parse trees. the 

optimizer determines the least expensive algorithms to implement each operator in the 

chosen parse tree(s). This optimization phase is usually cost- based, sirice the optimizer 

uses statistical information stored in a "mini-database", called the system catalog, to 

estimate the cost of choosing different algorithms and decide which choice yields the 

cheapest execution plan. 

Intermediate form of query 

1 

.... ..... ..... Exccution p h  ...................... ...................... ..-. 

...................... 

Code to exccure the query 
I 

1 RUN-TIME DATABASE PROCESSOR I 
I 

Figure 5.1: The different phases in executing a high level query 

The execution plan generated by the optimizer is not machine-executable code but. 

instead, an intermediate form from which code can be generated. If the optimizer can 

identify common subexpressions, the execution plan is a directed acyclic graph, otherwise 

it is a tree. The query execution plan is traversed by a machine-specific component of 

the DBMS that generates the code. The generated code is then executed (immediately or 

not) by the run-time processor of the DBMS which is the operating system of the DBk1.S 

it is responsible for transferring memory blocks to and from disk, buffering, scheduling, 
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and so on. 

5.2 The Volcano Optimizer Generator 

In this chapter, we present the design and implementation of the RHODES relational 

database query optimizer built using the Volcano Optimizer Generator [Gra94, GM93aI. 

r Volcano %timizer's source cod- 

'4 
Query Execution P h  

I 

Figure 5.2: Using the Volcano optimizer generator 

Figure 5.2 shows how Volcano is used to generate RHODES. input to the Volcano 

Generator is a mode1 specification of what the intended functionality of the generated 

optimizer should be. The mode1 specifies what query expressions are being optimized. 

what aigorithms are available to the DBMS for execution, what cost is being niinimized 

when seârching for the cheapest execution plan, and so on. The output from the Volcano 

Generator is the optimizer's source code, which is compiled to produce the optimizer. 

There are two inputs to RHODES: the syslem catalog and the query expression to 

be optimized. The catalog contains ail statistical information necessary for plan cost 

estimation. Information about the database updates is also recorded in the catalog. The 

query is an expression (parse tree) over the algebra of logical operators. The output 

from the optimizer is a query ezecution pian, an expression (dag) over the algebra of 

algorithms. In our working framework, the query evaluation plan is subsequently fed to 

a plan visualization tool which allows us to view details of the chosen execution plan, 

a functionality similar to DB2's expiain facility [DB2]. We present this tool in more 

detail later in the chapter. 
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RHODES uses dynamic programming optimization with general algebraic query struc- 

t ures and not just select-project-join queries. The Volcano generator provides a search 

engine to be used by al1 created optimizers with an exploration and optimization strat- 

egy called directed dynamic programming [GM93a]. Other optimizers that use dynamic 

programming, such as the System R optimizer [SAC+94] or the Starburst optimizer 

[LFLSS, LohS81, generate the space of equivalent expressions botlorn-up, by creating al1 

expressions that seem useful to create (the query rewrite phase) and then estimating 

al1 resulting expressions (the cost-based optimization). RHODES'S search engine creates 

equivalent expressions and execution plans top-down in a goal-oriented way. since it ex- 

plores and optimizes only those subexpressions that participate in the actual query to be 

optimized. It also uses the cost model and allows for some pruning of the  search space 

during the query rewrite phase. 

5.3 The Catalog 

The catalog is a "mini-database" and its function is to store the schema and statistics of 

the database that the DBMS maintains. Although several components of the DBMS use 

the catalog, it is the query optimizer whose operation is interwoven with t h e  use of the 

catalog, especially when the opt imizer est i mates the cos ts of different query execut ion 

strategies. 

The catalog used by RHODES specifies the following: 

a For each relation, the catalog contains the name, arity and cardinality of the relation 

and a list of the relation's attributes. Each relation must also have a (unique) 

prirnary key, Le., one or more attributes that uniquely determine any tuple within 

the relation. 

For each attribute in a relation, the catalog contains the name, type, and size, 

in bytes, of the attribute. There are two data types currently supported by the 

presented optimizer: s t r ing  and integer. The s t r ing  type may use any pre- 

defined number of bytes to hold the string value, while the integer type requires 

four bytes. 
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If the attribute is an ordering attribute1. if it is part of the primary key, or if it 

has an indes defined on it, this b c t  is also recorded in the catalog. There are 

three alternatives for index specification: 1) a primary index can be defined on 

an ordering key attribute of the relation2: 2) a clustering index can be defined on 

an ordering non-key attribute; and, 3)  a secondary index can be defined on an- 

non-key attribute, whether ordering or not. 

Other important information about. attributes is the number of distinct values 

appearing in the domain of the attribute and, if the attribute is of type integer, 

the minimum and maximum value in the dornain. 

Foreign key references irom attributes of one relation to the key attributes of other 

relations are also recorded in the cat alog. 

Finally, the  catalog contains the name and defini tion of al1 user-defined materialized 

views. 

Mode1 Specificat ion 

The model specijicntion describes what the intended behavior of an optimizer generated 

by Volcano is. The specification is semi-declarative: some parts of it are provided using 

definitions and rules and some parts are provided using C code. In this section. we 

outline the components of the mode1 specification. In the following sections we present 

each component in more detail. 

To understand the outiine of the model specification, it is important to know that 

there is a distinct separation between the logical and the physical view of a DBLIS's func- 

tionality. The input to the optimizer is an expression ic the logical algebra of the  D B M S .  

The logical algebra is either the DBMS's query language or sorne convenient intermediate 

representation of it. The output of the optimizer, which is a plan to evaluate the logical 

expression, is an expression in the physical algebra of the D B M S .  The physical algebra 
- -- - -  

'An orden'ng attribute is an attribute by which the relation is physically sorted. 
'The key must be a singlcattribute key for any index to be defined on it, 
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is the collection of algorithms that the DBMS is capable of executing when evaluating a 

logicd expression. 

The specification of the mode1 for our optimizer, as with any optimizer built with 

Volcano, includes [GM93a]: 

The s e t  of fogical operators  and a definition of the structure of their arguments. 

These constitute the operators of the logical algebra of the DBMS. For example, 

J O I N  is a iogical operator whose argument is an equality condition. such as RI .-y = 

R2.Y, where RI is a reIation with attribiite X and R2 is a relation with attribute 

Y .  

An abstract da  ta t ype  "LOGICA LPROPERT Y '  wit h associated h n c t  ions for this 

type. Each expression in the logical algebra has a set of associated logical properties. 

Equivalent logical expressions share the same logical properties. For example, a 

logical property is the ari ty of the relation that the Iogical expression represents. 

For each operator in the logical algebra. a function Lo d e n i e  the logical propert ies  

of an expression, given this logical operator as the top operator, from the logical 

properties of the inputs. 

Alge braic t ransfonnation rules, possi bly wi t h condition and/or application code, 

used to generate equivalent logical expressions in the logical algebra. For example. 

comrnuting a select with a join is expressed as a transformation rule. 

The set of physical operators  (algon'thrns and enforcers) implementing the logical 

operators3 and a definition of the structure of their arguments. These constitute the 

operators of the physical algebra of the DBMS. For example, MERGE is an algorithm 

whose argument is an equality condition, such as  RI .X = R2.Y. 

i m p l e m e n t a t i o n  rules for logical operators describing which algori t hm implements 

each logical operator. For example: the fact that  MERGE implements J O I N  is ex- 

pressed as an implementation rule. 

3An enforcer does not really implcment a logical operator but, instead, is used in conjunction with 
physical algorithms to guarantee certain properties in the result. 
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7. An abstract data type "PHYSICAL-PROPERTY" with associated functions for 

this type. Each expression in the physical algebra has a set of associated physical 

properties. Equivalent physical expressions computing the same relation do not 

necessarily share the same physical properties. For example. a physical property 

is the estimated cardinality of the relation t hat the physical expression cornputes. 

Another physical property is the name of the attribute(s) on which the computed 

relation is sorted on. 

S. For each operator in the physical algebra, a function to d e n c e  the physical properties 

of an expression. given this physical operator as the top operator, from the physical 

properties of the inputs. 

9. An applicnbility function for each operator in the physical algebra which determines 

whether the operator can be used to implement a given logical operator provided 

that a set of requested physical properties rnust be present in the output. 

10. A function for each operator in the physical algebra to determine what physical 

properties are required from the operator's inputs. For exampie, this function for 

MERGE specifies that both inputs to the MERGE rnust be sorted. 

1 1 .  An abstract data type "COST" with associated functions for this type. 

12. A cost funcfion for each operator in the physical algebra. 

5.5 Logical Operators 

The set of logical operators in the logical algebra of RHODES is shown in the next 

table. These are al1 the operators defined in Chapter 3, except that there is no opera,tor 

corresponding to  aggregation. 

The table contains the nome of each operator, the number of inputs it accepts and 

its standard abbreviating symbol. These logical operators were chosen so t hat the logical 

algebra of the optimizer would be consistent with SQL, as was discussed in Chapter 3. 

Except for PROJECT, PROJECTD, GET, SELECT and J O I N ,  the logical operators do not 

have operator arguments. The argument to PRO JECT and PRO JECTD is a list of attribute 
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Name # of .4rgs Symbol Name # of Args Symbol 

CARTES I A N  2 x JOIN -2 - c-4 

DIFF 3 a - PRO JECT i 7r 

DIFFD 2 - PRO JECTD 1 rd d 

GET O SELECT 1 a 

INTERSECT 3 a n UNION 3 I u 
INTERSECTD i) I l-ld U N I O N J  i) - ud 

Table 5.1: Logical Operators 

names. The CET operator is used t o  retrieve a stored relation. The name of the  relation is 

given as an argument to GET (which justifies why GET accepts zero inputs). The argument 

to SELECT is a list of selection criteria in conjunctive forrn. Finally, the argument to J O I N  

is a n  equality condition betweeo a n  at tr ibute of the first input and an attribute of the 

second input. 

5.6 Logical Properties and Logical Property Deriva- 
tion 

Each logical expression has an associated set of logical properties. These include: 

a the ari ty  of the relation represented by the expression; 

a the set of logical attributes of that  relation (each logical attribute having a name, 

a type, and, perhaps, a foreign key reference); 

a the set of ke ys for the relation (each key being a set of one or more a t t  ribute names); 

and, 

O the  set of bound attributes. An attribute of a relation is strongly bound, if  al1 the 

relation's tuples contain the same value for that a t  tribute4. 

4 ~ o u n d  attributes are useful because keys can be simplified by removing the bound attributes froni 
them. 
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The derivation of logical properties for an expression, given any logical operator as the 

expression's top operator, from the logical properties of the inputs is rather simple. Key 

derivations follow the algorit hm for generating the keys for query expressions presented 

in Chapter 4. 

5.7 Algebraic Transformation Rules 

The goal of a query optimizer is to find the best possible plan to  evaluate a given query 

However, there are many logical expressions that are semantically equivalent to the one 

that  the user provides. Two expressions are semantically equiualent. if and only if. for 

every possible database instance, the two expressions represent the same relation in 

the instance. In order to find the best plan, an optirnizer must know how to generate 

equivalent expressions for any expression provided by the user. In this section, we describe 

t hese algebraic rules. 

Laws involving JOIN: 

O Join commutativity. i.e., A W . 4 1 = ~ i  B = B W S I = A I  A. 

a Join associativity, Le., ( A  W.41=s1 Bj C = A W;Ii=Bi ( B  W . Y = ~ ~  C) 

This transformation is not applicable if the argument of the join operator to 

be moved into the subtree, Le., X7 is not an attribute of B. 

Laws involving SELECT: 

Commuting selects, i-e., ce, (ae2 (A) )  = oe2 (os, ( A ) ) .  

Combining a select with a get, i.e., ae(get(A))  = gete(A).  

Cascades of selects (one direction), Le., bel (ae2 ( A ) )  = oelAe2 (A) .  

Cascades of selects (other direction), Le., O#, A#, (A)  = 00, (ae2 ( A ) ) .  

Commuting a select with a join, i.e., oe(A B )  = o0(A)  IX B. This transfor- 

mation can only be applied if 9 involves only attributes of A. 

Commuting a select with a cartesian product, i.e., o e ( A  x B) = o e ( A )  x B. 

This transformation can be applied only if 0 involves only attributes from A. 
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a Commuting a select with a project or a project distinct. Le., g e ( a ( A ) )  = 

c , ( u e ( A ) ) ,  where O E {ïr, rd } .  

Combining a select and a cartesian product into a join? Le.. a e ( A  x B )  = A  

B 

This transformation can be applied, only if 19 is of the form A l  = BI.  A l  is 

an  attribute of A and BI is an attribute of B. 

a Commuting a select with a set operator, i.e., o e ( A  B )  = ue(A)  (3 a s ( B ) ?  

where E {-. - d ,  U, ud, n, nd} .  

Laws involving CARTESI AN: 

Cartesian product commutativity, i.e., A x B = B x A. 

Cartesian product associativity, i.e., A  x (B  x C )  = ( A  x B )  x C. 

Laws involving PRO JECT and PRO JECTD: 

Replacing a project distinct with a project, i.e., R$-(A) = I T , ~ ( A ) .  

This transformation can only be applied if X maintains one key from A. 

Cascades of projects with project distinct's, Le., i r x ( r Y ( A ) )  = q ( A )  and 

a $ ( r r - ( ~ ) )  = IF$(A)  and a $ ( n $ ( ~ ) )  = I T $ ( A ) .  

These transformations can only be applied if the list of attributes .Y is a subset 

of the iist of attributes Y. 

Cascades of a project and a project distinct, Le., n x ( ï r $ ( ~ ) )  = ï rx(A) .  

This transformation can only be applied if the list of attributes Y maintains 

a key from A and X is a subset of Y. 

a Commuting a project or project distinct with a select, i-e, O x ( o e A )  = U ~ ( @ ~ ( A ) ) ,  

for O E { a ,  a d } .  

This transformatioil can only be applied if 6 involves only attributes that 

appear in the attribute list X .  
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O Commut ing a. project or project distinct wi t h a cartesian product. i.e., !3,, ( A x 

B) = Oxi(A) x Oxz(B). 

This transformation can only be applied if X 1 U -Y:! = X and X 1 contains 

only attributes of A and 5 2  contains only attributes of B. 

a & ( A  x B) = &(A) .  

This transformation can only be applied if X involves attributes of A only. 

a Commuting a project or project distinct with a join (special case). Le., 

O x ( A  w.41=,1 B) = Oxl(A)  w,,=,, (3,~2(B),  where E {r. rd}.  

This transformation can only be applied if X includes both Al and B1 (among 

possibly other attributes) and ,Y = ?ilU.YZ, where XI involves only attributes 

of A and .Y:! involves only attributes of B. 

0 Commuting a project or project distinct with a join (more general case), i.e., 

~ , Y ( A  W . 4 1 = ~ 1  B )  = @x(Oxl (A)  W . 4 1 = ~ l  O x 2 ( B ) ) ?  where (3 E {r: a d } -  

This transformation can be applied only if -Y does not contain both A l  and 

BI. Then, X1 contains the attributes of A that  appear in .Y plus Al ,  if Al 

does not appear in -Y1 and X:! contains the  attributes of B that  appear in -Y 

plus BI, if B1 does not appear in X. 

0 Commuting a project or a project distinct with a union or union distinct, i.e., 

O ( A  @ B )  = ( ( @ ( A ) )  @ (O(B) ) ) ,  where O E {R, r d }  and E {u. ud} .  

Laws involving set operators: 

a Commutativityof set operators, Le., ,4@B = BOA?  ivhere @ E {u, U$ n, n d } .  

0 Associativity of set operators, i.e., A (B C )  = ( A  O B )  O C, where O E 

{u, ud, n. nd} .  

5.8 P hysical Operat ors, Enforcers and Implemen- 
tation Rules 

in Volcano, a physical operator is either an algorithm that implements one or more 

logical operators or an algorithm that does not directly implement a logical operator but 
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is, instead. used to deliver a required physical property. The second kind of physical 

operators are called enforcers. There are two enforcers in RHODES: 

0 SORT which is used to sort the input relation on a given attribute; and. 

DUPLICATEELIMINATION which is used to rernove duplicates from the input rela- 

tion. 

The other physical operators and their implementation rules are: 

CARTESIAN + CARTESIANALGO 

DIFF + SETDIFF 

DIFFD 4 SETDIFFD 

INTERSECT + SETXNTERSECT 

INTERSECTD -+ SET JNTERSECTD 

UNION SET-UNION 

U N I O N D  SET-UNIOND 

GET + 

GET -+ 

GET + 

J O I N  + 

J O I N  + 

PROJECT + 

PROJECTD + 

SELECT + 

INDEXSCAN 

FILESCAN 

B INARYSEARCH 

MERGE 

NESTED-LOOP 

PRO JECTALGO 

PRO JECTALGO 

SELECTALGO 

Table 5.2: P hysical Operators and Implementat ion Rules 

As we can see, there are logical operators (e.g., J O I N )  that are implemented by more 

t hat one physical operator (MERGE and NESTEDLOOP) . Xlso, the same physical opera- 

tor (e.g., PRoJEcTALGO) may implement more than one logical operator (PRO JECT and 

PROJECTD). It is also possible that a iogicai operator is not implemented by any physical 

algorithm at  all. In fact, we use this third feature considerably when extending RHODES 

wit h the knowledge of how to optimize incremental expressions. 

5.9 Physical Properties and Physical Property Deriva- 
tion 

Each expression in the algebra of algorithms has a number of physical properties associ- 

ated vrith it. The physical properties of expressions include: 
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a the cardinality of the relation that the physical expression cornputes; 

a the size, in bytes, of each tuple in the relation: 

r the set of physical attributes (each physical attribute having a name, a type. the 

number of distinct values in the attribute domain, the minimum and maximum 

value, and the size, in bytes, of the attribute); 

a the attribute names the relation is sorted on, if any; and, 

a a boolean variable specifying whether the relation contains duplicates or not. 

For simplicity of the presentation, we omit the description of physical property deriva- 

tions. Appendix A contains the derivation of the cardinality of a relation from the car- 

dinality (as well as other information) of the inputs to the operator used to cornpute the 

relation. Join selectivities t hat determine the cardinal; ty of J O I N  and predicate selectiv- 

ities that determine the cardinality of SELECT are also discussed in Appendix A. 

Applicability Funct ions and Input Requirement s 

For eacli algorithm of RHODES. there is a function that describes whether the algorithm 

applies for a given logical operator? given certain physical properties t hat are requested 

from the result of the algorithm. For example, for the join A MAL=BI  B, if the requested 

properties include sorted-ness on attribute -41 of the output relation, the MERGE algorithm 

applies (because MERGE delivers the output sorted on Al) .  However, if the requested 

properties include sorted-ness on attribute A3 of the join, MERGE does not apply5. 

In addition to the applicability functions, for each algorithm, there is a function that 

specifies the required properties from the inputs of the algorithm. For example, for MERGE 

to implement a given J O I N ,  each input to MERGE must be sorted on the corresponding 

attribute of the join condition. 

For simplicity of presentation, we do not describe the applicability and input require- 

ments functions in any further detail. 

'1n this case, the SORT enforcer applies, or the BESTEDLOOP algorithm may apply if the relation A is 
already sorted on A3. 
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5.11 Cost Mode1 and Cost Estimation 

When optimizing a user's query, RHODES systematically estimates the cost of different 

execution strategies and chooses the one with the lowest cost estirnate. In order to  find 

the least expensive plan, it performs an exhaustive search over al1 possible equivalent 

expressions of the query and, for each such expression, al1 possible implementations of 

Iogical operators by physical algorithms. estimating each one in turn. The cost that is 

being rninimized is an abstract data type in Volcano, that we defined, in RHODES, as the 

expected 110 in executing the query, i.e., the number of block transfers between memory 

and disk. In general, RHODES does not account for cached pages, that is it estimates 

the logical I/O in executing a query, not the physical 110. Memory size is taken into 

account. Cashed pages are only taken into account when considering the cost of some 

operations on base tables, such as duplicate elimination. 

The estimation of the cost to apply each of RHODES'S algorithms is described in 

Appendix B. 

5.12 Extensions to RHODES 

We extended the basic RHODES presented so far with a) view maintenance support, b )  

view maintenance specific optimization and c) query rewrite using materialized views. 

Next, we present each one of these extensions in more detail. 

5.12.1 View Maintenance Support 

We extended RHODES with the ability to  decide, for each view, what the besb way 

to evaluate the view's new value is, after some update to the database has occurred. 

Also, if a view is to be maintained incrernentally, RHODES can decide which incremental 

expression to use for view maintenance. Before presenting the extensions to  RHODES 

to  support this, we should explain how we envision the use of RHODES during view 

maintenance. We perform view maintenance at the commit point of a transaction that 

updates the database. At this point, the state of the database has not yet changed and the 

updates to the database are available through system-defined tables (the delta tables). 
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Also, the catalog of the DBMS (or some in-memory portion of it) contains information 

and statistics about these delta tables. Then. 

1. for each view maintained by the system, RHODES decides what the best way to 

maintain the view is; 

2. for each view that is maintained incrernentally, the DBMS computes the changes to 

the view; 

3. the DBMS merges these changes with the old materialized view; 

4. the database updates are rnerged in the database; 

5 .  for each view that is not maintained incrernentally, the view's expression is re- 

evaluated; and, 

6. the updating transaction commits. 

To support optimizatiori of view maintenance, the set of logical operators for RHODES 

is extended with five new operators: 

a NEW(V): the NEW logical operator takes a query expression I/ as its argument and 

returns the value of the expression V under the database that results from incor- 

porating any non-cornmitted updates into the  current database. If no updates are 

recorded in the catalog, the result of NEW(V) is the  same as  the value of V. How- 

ever, if some updates have been recorded in the catalog, the result of NEW(V) is the 

value that V will have once the updates commit. 

a DELTAMINUS(V): the DELTAMINUS iogical operator takes a query expression V as its 

argument and returns (exactly) the set of tuples that must be deleted from the old 

value of V (as if V was materialized), when the database changes are merged wit h 

the old database. 

DELTA PLUS(^): the DELTAPLUS logical operator takes a query expression V as its 

argument and returns (exactly) the set of tuples to  be inserted into the old value 
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of V (as if V was materialized), when the database changes are merged with the 

old database. 

a OVERMINUS(V): the OVERMINUS logical operator takes a query expression V as its 

argument and cet urns one over-est imat ion of the set of t uples to be deleted from the 

value of V (as if V was materialized), when the database changes are merged with 

the old database. The over-estimations computed are those defined in Chapter 4. 

a OVERPLUS(~) :  the OVERPLUS logical operator takes a query expression V as its 

argument and returns one mer-estimation of the set of tuples to be deleted from the 

value of V (as if V was materialized), when the database changes are rnerged with 

the old database. The over-estimations computed are those defined in Chapter 4. 

We syrnbolize each of DELTAMINUS, DELTAPLUS, OVERMINUS, and OVERPLUS logicai 

operators with 6- ,  6+, A- and A+, respectively. When supporting these new operators 

in the optimizer, the optimizer is not only responsible for optimizing incrernental and 

change propagation expressions for view maintenance, but also for generating the change 

propagation expressions necessary for view maintenance. Supporting these new operators 

in RHODES does not require any change in the physical algebra of the database system. 

neither does it require special algorithms or specialized data structures to be built on 

top of an existing DBMS. In fact, transformation rules are used in RHODES to expnnd 

the definition of each of the new logical operators. Let us  see what these transformation 

rules look like: 

The NEW operator: 

There are three different ways to compute the new value of a query expression V: 

by re-evaluating V; the transformation rules applied in this case are: 

NEW(V)=NEW(A)ONEW(B), if V = A O B ,  O €  { x , W , - , - ~ , U , U ~ , ~ , ~ ~ ~ }  

NEW(V) = @(NEW(.4)), if V = @ ( V ) ,  <i E {GET,T,T~,O) 

a by incremental computation with the use of the change propagation expressions of 

V; the transformation rule applied in this case is: 
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0 and, by incremental computation with the use of the expressions for the over- 

estimations of the changes of V; the transformation rule applied in this case is: 

The DELTAMINUS operator 

There are two different ways to compute the incremental deletions of a query expression 

v: 

by using the non-simplified change propagation expression given by the transfor- 

mation rule: 

and, by using the simplified change propagation expression. In this case, there is 

one transformation rule per logical operator that defines the incremental deletions 

for the operator. Table 4.1 of Chapter 4 contains al1 of them. 

The DELTAPLUS operator 

There are two different ways to compute the incremental insertions of a query expression 

v: 

0 by using the non-simplified change propagation expression given by the transfor- 

mation rule: 

O and, by using the simplified change propagation expression. In this case, there is 

one transformation rule per logical operator that defines the incremental deletions 

for the operator. Table 4.2 of Chapter 4 contains al1 of them. 
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There is one transformation rule per logical operator that defines the over-estimation of 

incremental deletions for the operator. Table 4.3 of Chapter 4 contains these transfor- 

mations. 

The OVERPLUS operator 

There is one transformation rule per logical operator that defines the over-estimation of 

incremental insertions for the operator. Table 4.4 of Chapter 4 contains these transfor- 

mations. 

5.12.2 View Maint enance Specific Opt imizat ion 

In the previous section, we described what transformation rules are applied in order for 

RHODES to decide, at the time of view maintenance, what the best way to maintain 

a view is. If a view is to be maintained incrementally, RHODES determines the best 

incremental query expression to use for view maintenance. Hoivever, as we showed in 

Chapter 4, change propagation and incremental expressions are amenable to a number 

of simplifications. Each one of the simplifications specified in Chapter d is expressed in 

RHODES as a transformation rule. 

In addition to the simplifications that we defined in Chapter 4, there are simplifi- 

cations due to the fact that certain expressions during view maintenance evaluate to 

empty. For example, if one database relation A is not updated during a transaction, 

both its & ( A )  and b+(Aj are empty. Since change propagation expressions may evaluate 

to  empty, RHODES uses transformation rules governing the empty set. The empty set 

conforms to the following rules: 

@(@) = 0, for each @ E {a, A, ?rd, 6+, 6- ,  NEW}; 

0 a A = 0, for each O E {-, - d ,  X ,  W} ;  

A Q 0  = A, for each @ E {u,-); 

A @ ' = "kll attrs of A] ( A ) ,  for each @ E {ud, - d } ;  and 
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E ( A )  = 0 (or h C ( A )  = O ) ,  for each database relation A that the catalog does not 

contain statistics about its deletions (or its insertions). This is an assumption of 

RHODES which expects the catalog (or some in memory portion of i t )  to contain 

information about the database changes. 

5.12.3 Query Rewriting using Views 

During the optimization of a query, RHODES examines the possibility of using already 

materialized views, in order to speed-up the execution of the query. This optimization 

has been recognized recently as one of the promising advantages of materialized views 

[LMSS95, FRV961. There are two transformation rules that implement this idea: 

a A O B = V ,  For each binary operator @ E { x ,  -: - d y  U, ud, n, nd} .  This trans- 

formation rule is valid only if the query expression A a B mat chas the definition 

of view V. 

a @ ( A )  = V ,  for each unary operator a E {GET, T: rd, O } .  This transformation rule 

is valid only if the query expression a(A) matches the definition of view V .  

The algorithm for checking if a query expression expr matches a view definition v 

first checks t o  see if the top operator of v is the same as the top operator of expr, and, 

then, recursively applies the algorithm to  each of the inputs of the expression and the 

view . 

Suppose two materialized views have been defined as V I  : A B and v2 : B C 

and suppose we are interested in evaluating t.he query expression A B BI C. During 

the transformation of this query into its equivalent forms, al1 possible join orderings are 

produced6. Since the subexpressions A CU B and B C match the definitions of the 

views vi and vz, respectively, there are two additional equivalent forms for the sarne 

query: vl W C and A v2, and RHODES would examine the possibility of using either 

of these equivalent forms in order to generate an efficient plan for this three-way join. 

 or simplicity of the presentation, we omit the join arguments here. 
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Another possible rewriting of the same query that uses only the materialized views 

is RIattrs of ~ w s w C I ( ~ l  v2). This equivalent form of the query is not examined by the 

current version of RHODES. 

After having presented the design and functionality of the RHODES database query 

optimizer, we introduce and describe the graphical browser that accompanies it. 

5.13 The Browser 

We use a general visualization tool [Noi96] to  display the output of RHODES graphically. 

The nodes in the graph of a plan visualization correspond to the database relations. the 

intermediate results and the output relation of the execution plan. The edges in the 

graph relate a node v with al1 nodes corresponding to relations oecessary to  compute the 

relation that corresponds to v. 

Each node is labelled with the algorithm (physical operator) used to derive the relation 

of the node. Database relations are accessed using file scans, binary search, or index 

scans. Other relations are produced by executing one of (other) the physical operators 

of RHODES. Each node in the visualization is also identified by an icon specifying the 

type of the node. Figure .5.3 shows al1 the icons used by the browser and the physical 

operator(s) to which they correspond. 

Figure 5.3: The icons of the browser 
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Textual representations of the generated plans of an optirnizer are rather difficult to 

manage or understand, especially for relatively large plans where the textual description 

may be dozens or even hundreds of pages long. Our graphical tool provides the  database 

administrator, the anticipated user of the browser, wi th qualitative and quantitative 

understanding of the execution plan. It can be used to help understand the  output of the 

optimizer and to facilitate tuning of the database system for better performance. The 

database administrator could, for example, modify some physical aspect of the  database 

environment and visually monitor its effect in the execution plans for queries of interest. 

Dynamic Mapping 

Our  browser supports the technique of dynamic mapping [BarSZ, Noi96, \Var], which 

permits the dynamic binding of the elements in the visualization (nodes and edges) into 

visual properties. We use this technique to dynamically map the relative size of each 

node into the estimated cardinality of the relation corresponding to the node. Nodes 

that correspond to  large relations, thus. appear larger in the visualization. We also map 

the color of each node into the estimated cost to compute the relation of the  node. Nodes 

that are expensive to compute, thus, appear more red (hot) in the visualization. It has 

been argued elsewherei that our ability to  perceive is greatly facilitated by the use of 

sucli graphic properties as color and size. 

D ynamic Querying and Manipulation 

Our browser supports a limited Form of querying, so that the database administrator can 

better understand the output of the optimizer by selectively paying attention to only 

parts of it. To support dynamic querying, each node being visualized has a number of 

associated numeric attributes. These 

O the estimated cardinality of the 

rn the estimated size, in blocks, of 

7See Noik's thesis [Noi96] for references. 

are: 

relation of the  node; 

t hat relation; 
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the estimated cost to compute the relation of the node from the relations of the 

inputs (the node cost); 

the total cost to compute the relation of the node (the subtree cost); 

0 the size, in bytes, of records in the relation; and, 

a boolean attribute describing whether the  relation contains duplicates or not. 

With each numeric attribute t here is an associated histogram representing the distri- 

bution of values for this attribute. The range of these values is divided into a nurnber of 

equal subranges. Each subrange corresponds to  a histogram bar, the height of which is 

proportional to the number of nodes for which the value of the corresponding attribute 

lies in the associated subrange. Clicking over a node in the graph results in the highlight- 

ing of the histogram bars corresponding to each numeric attribute for that node. The 

actual values for these attributes appear at the bottom of the histogram. Brushing over 

the histogram bars results in highlighting of the nodes in the graph having a value for 

the corresponding numeric at tribute within the subrange that the histogram represents. 

Clicking over a histogram results in hiding (or showing) the corresponding nodes in the 

visualizat ion. 

T hese techniques have also been discussed elsewhere [Noi96, S hn83, S hn9.11. 

5.13.1 Visuai Explain Facility of DB2 

The Visual Explain facility of DB2 provides a functionality sirnilar to that of our browser 

[DBS]. However, the visual explain facility does not provide any form of dynamic querying 

of the visualized output or any manipulation of the  visualization. Color in Visual Explain 

has a predefined meaning: each node of a certain type h a  an associated (configurable) 

color. However, color, as we use it in our browser, could be mapped to  a number of 

different attributes dynamically (the most common of which is the cost of the node but 

it could be the type of the node). 
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5.13.2 Examples of Plans Generated by RHODES 

Join algorithms and index selection 

Let us assume the following database relations, as in Section 4.4: 

The relation PART contains information about parts. A portion of this information 

is the name and retail price for the part. The relation P.4RTSUPP contains information 

about supplied parts. Such information relates suppliers with the parts they supply as 

well as the cost of each part from each supplier. Finally, the relation SUPPLIER contains 

information about each supplier. 

Now, suppose we are interested in evaluating the following SQL query: 

select P-NAIClE. PSSUPPLYCOST 

f rom PART, PA RTSUPP 

where PPARTKEY = PSPARTKEY and 

PSSUPPLYCOST < 100 and 

P-RETAILPRICE > 120 

This query requests the name and prices of al1 products that are being sold at a 

price greater than 120 but for which the retail price is not more than 100. Suppose 

that a secondary dense index has been defined on the FSSUPPLYCOST attribute of the 

PARTSUPP relation. This index can be used to retrieve the tuples from P A R T S W P  

with the specified supply cost. Also, suppose that no index has been defined on the 

PBETAILPRICE attribute of the PART relation. Thus, this relation must be scanned 

entirely before al1 the tuples that have the specified retail price are found. The f rom 

clause of the query, together with the condition P-PA RTKEY = PSPA RTKEY, specify a 

join on the two relations. RHODES examines al1 different join orderings (there are two) 

and al1 different implementations of the join, in order to decide that, in this case, a rnerge 
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join algorit hm must be used. The merge algorit hm requires its inputs to be sorted before 

it can be applied. The sort enforcer guarantees that the two relations to be joined are 

sorted before being joined. 

Figure 5.4 shows the visualized optimized execution plan generated by RHODES for 

this query. 

Join orderings 

In the same database, let us now examine the query: 

select * 

f rom PART, PA RTSUPP, SUPPLIER 

where P P A R T K E Y  = PSPARTKEY and  PSSUPPKEY = SSUPPKEY 

The f rom clause of the query, toget her with the selection conditions, specify a 3-way 

join among the three relations. The order of executing a series of joins niay have a 

significant impact on the performance of queries. RHODES examines ail join orderings 

and chooses the one with the lowest cost estimate. For this example, the generated join 

ordering appears in Figure 5.5.  In this example, we have also dynamically mapped the 

thickness of each node to the estimated cardinality of the relation of the node and its 

color to the estimated cost to compute the relation of the node. As we c m  see from the 

picture, the relation PARTSUPP is bigger than eitlier of the other relations. One merge 

join and one nested-loops join are chosen in this execution plan. The merge join requires 

both of its inputs to be sorted. A secondary dense index defined on the P P A  RTKEY 

of the PART relation is used to produce this relation sorted. The other relation is the 

result of evaluating the join of PARTSUPP and SUPPLIER. There are two different ~ ~ a y s  

to produce this relation as sorted. The first is to compute the join and then use the sort 

enforcer. The other is to sort the first input of the nested-loops algorithm. If the first 

input of nested-loops is sorted, the result of the join is d so  sorted. In this particular 

example, the size of the result of the join has as many tuples as the PARTSUPP relation, 

and, therefore, it is better to sort the PARTSUPP relation instead of the result of its join 

with SUPPLIER. 



CHAPTER 5 .  THE RHODES DATABASE OPTIMIZER 53 

Reasoning about keys and duplicates 

Suppose A( Al,  A2, A3) and B(B1, B2) are two database relations. Let attribute Al be 

the key of A and let attribute BI be the key of B. Suppose now that we are interested 

in evaluating the following query: 

select d i s t i n c t  &. & 

from A, B 

where Al = B2 and > 1 

The generated output of RHODES for this plan is shown in Figure 5.6. As before. the 

from clause of the SQL query, together with the Al = B2 predicate condition, results in 

a join between A and B. 

This example demonstrates the use of keys and reasoning about duplicates in RHODES. 

In the generated plan for this query, RHODES pushes the selection down and uses a file 

scan with the predicate Al > 1. Since no index is defined on the Al attribute of A, 

scanning the relation is necessary. Also, RHODES pushes the projection down and uses 

two projections before joining A and B, one for each of the  join inputs. Pushing the 

projection inside the join operands has the  desirable effect of reducing the sizes of the 

join operands. Each tuple in a projection is smaller that a tuple in the original relation 

and therefore many more tuples can fit into one memory page. Thus, the size of the 

projection, in pages, is reduced. The cost estimation used by RHODES is such that the 

size, in pages, of a join's inputs is the most dominant factor in the  estimated cost for the 

join. 

In a similar spirit to pushing projection, RHODES pushes duplicate elimination too, 

because duplicate elimination reduces the number of tuples in the operands. The pro- 

jection on the A relation maintains the key of A and therefore no duplicate elimination 

is necessary in this projection (redundant operator). The projection on the B relation, 

however, does not maintain the  key of B. In this case, duplicate elimination is enforced. 

Now consider the operands of the join. The left operand has Ai as a key. The right 

operand has B2 as a key. Therefore, {A1, Bz)  is a key for the  join. However, because 
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the join condition equates these two attributes the keyset for the join can be simplified 

to {{A*),  {Bz}}. (See Chapter 4 for an algorithm to generate keys.) Either Al or B2 

alone is sufficient t.o uniquely determine each tuple in the output of the join. Therefore. 

the final projection, the one that maintains Ag, B2 does not contain duplicates and no 

duplicate elimination operation is necessary. 

View maintenance 

Suppose a view V has been defined which must be maintained under deletions (bu t  not 

insertions). 

V : PART PARTSUPP w SUPPLIER 

To maintain the view, RHODES requires to sort the delta relations. External sort- 

ing is not used for the database relations. If these relations need to be accessed in a 

sorted manner, indices defined on t hem are used. instead. Figure 5.7 shows the RHODES 

generated plan. 











Chapter 6 

In this chapter, we present some examples of change propagation queries that provide 

experimental evidence about the validity of the claims we make in this dissertation. 

RHODES is called to decide on the best change propagation queries to be used during 

incremental view maintenance. From the generated RHODES plan, an SQL query is 

produced which we executed in DB2 Parallel Edition on the TPC-D benchniark database. 

6.1 Statingthe Questions 

The questions t hat we are interested in addressing experimentally are the following: 

1. Do different change propagation expressions for defining the incremental changes 

to a view result in differences in the performance of computing these changes? Are 

these performance differences big enough to justify our da im that an "intelligent" 

component of the DBMS is needed to decide among the different choices? 

2. Car. ;TC Jemonstrate experimentally that our optimization of change propagation 

expressions in the presence of key constraints is a reasonable optimization? 

3. Can we demonstrate experimentally that our optirnization of change propagation 

expressions in the presence of foreign key references is a reasonable optimization? 

4. Can we demonstrate experimentally that the cost of computing incremental changes 

to a view may be about the same as the cost of view re-computation? 



To address questions 1-3 above, we have designed three different sets of experiments. 

one for each question. These experiments are conducted using the DB2 PE DBMS (DB2 

Parallel Edition). To address question 4 we use the results of t hese same experiments in 

addition to other experiments conducted using the RHODES optimizer. 

6.2 Collecting Data: the Database 

A11 experiments are run on the TPC-D database benchmark relations [TPC95]. In par- 

ticular, we assume the following schema in the database, as in Section 4.4: 

P: PART~PARTKEY, ...). 

PS : PARTSUPP(PSPARTKEY! PSSUPPKEY, . . .). 

s : SUPPLIER(SSUPPKEY, . . .). 

The relation PART, abbreviated with P, records information about specific parts in 

a decision support environment. The relation SUPPLIER, ahbreviated with S, records 

information about suppliers of those parts. Finally, the relation PARTSUPP, abbreviated 

with PS, relates suppliers with the parts that they supply. The distribution of values in 

the attributes of each relation is uniform. 

1 Relation Prirnary Key Index Type No. tuples No. pages 

Table 6.1 : Information about the TPC-D relations 

We store the three relations using the DB2 PE parallel edition. We have configured 

the system so that it uses only one node in order to  simulate a centralized database. 

A node in a DB2 PE DBMS is one processor in the parailei database. By configuring 

the systern to use only one node, al1 relations reside in a single node and only one node 

participates in  query evaluation. Thus, the resulting system behaves as a centralized 

system. We use the TPC-D database with a scale factor of 0.125'. This means that 

' ~ e  use a scale factor because the TPC-D database could not fit in the rnemory we had available. 



the sizes of each database relation is one eighth of the  suggested size. Table 6.1 contains 

information about some of the relations in the database such as primary keys, cardinality, 

memory pages and indices. A primary index (denoted in the table with P) is defined on 

the P-PARTKEY attribute of P and on the SSUPPKEY attribute of S. A dense secondary 

index (ilenotec! with S) has been defined on each of the  PSJARTKEY ana PSSUPPKEY of 

the PS relation. 

To answer questions 1-3 presented above, we use this database. Then, we conduct 

a number of experiments and perform a number of measurements. Each experiment is 

done independently. This means that before an experiment is conducted, the buffer of 

the database is cleared of its contents. In this way, the result of an experiment does not 

depend on the contents of the buffer and the hit-ratio resulting from previously cached 

pages. 

On top of this database. we define three views: 

J 1 : select * from P , PS where PSARTKEY = PSSARTKEY 

52 : select * from PS, S where PSSUPPKEY = SSUPPKEY 

53 : select * from P ,  PS , S where PSARTKEY = PSSARTKEY and 

PSSUPPKEY = SSUPPKEY 

In each experiment, we specify an update to  the underlying database and we moni- 

tor propagation of the incremental changes to these views. We measure the logical and 

physical I/O necessary to perform change propagation and, sometimes, view evaluation. 

Logical I/O refers to the number of memory pages accessed during computation (inde- 

pendently of whether these pages must be brought from the  disk or are already cached 

in main memory). Physical I/O refers to the number of memory pages transferred from 

the disk into main memory during computation. To get the logical and physical I/O we 

have used a monitor program that takes "snapshotsn of the  state of the DBMS. The  state 

contains, among other things, counters that record the  activity of the DBMS since the 

last time a "reset" of the counters was issued. 



6.3 Collecting Data: The Experiments 

6.3.1 Using DifZerent Incremental Queries 

These experiments compare the performance of different queries computing incremental 

changes. We t ake different equivalent queries corresponding to comput ing the increment al 

changes to a view and, for a number of database updates, we run these queries on DB2. 

We, then. measure the results (logical and physical 110) of each experirnent and compare 

these results. 

Experiment 1.1: In this experiment, we delete one tuple from S, a portion of P ranging 

from 0.1% to 10% of P, and al1 related PS lacts and we monitor the propagation of 

incremental deietions to 53. 

Figure 6.1: Experiment 1.1: Incremental deletions to 53 with the index on PSSARTKEY 

We use two different queries to compute the incremental deletions: the first is to 

propagate the database deletions through P PS and the second is to propagate the 

database deletions through PS S. W e  also compare the results with computing 

J3 before the update. Figure 6.1 shows the results of this experiment. As we can 

see, the performance of the incremental methods is mucli better than evaluating 

the view initially. This is especially true when considering the physical 110, which 

is the dominating factor affecting performance. 



Figure 6.2: Experiment 1.2: Incremental deletions to 53 without the  index on PSJARTKEY 

The plan chosen by DB2 to compute 53 in this experiment is as Çollows: first the 

join bet ween PS and S is performed by scanning the S relation and looking-up, using 

the index on the PSSUPPKEY of PS, the corresponding tuples in PS (nested-loops 

join). Then, for each tuple in the intermediate join, the corresponding tuples in 

the P relotion are found (merge join). As we see, the index on PS-PARTKEY of PS is 

not used during the evaluation. 

Next, we repeat the same experiment, only in this case, we drop the index on the 

PSJARTKEY attribute of PS. 

Experiment 1.2: We use the same updates as before and monitor the propagation 

of incremental deletions to 53 using the two difFerent ways described above. This 

time, no index exists on the PS-PARTKEY attribute of P. Figure 6.2 shows the results. 

Note that to  compute J j  in this and the previous experiment, the same amount of 

logical and physical 110 is necessary (because the index we dropped is not used in 

the evaluation of 53). As we see, the performance difference between choosirig to 

propagate through P tû PS or through PS w S is rather big. In fact, to cornpute the 

incremental changes through P w PS the time2 ranges from 54 sec to 3 min, while 

through PS w S the time ranges from 26 min to 28 min. Computing 53 requires 

approximately 34 min. 

'This refers to real time, not cpu or system time. 



Experiment 1.3: We add a portion of P and related PS facts as well as one new supplier. 

We monitor propagation of incremental insertions to 53. Figure 6.3 shows the 

results. Al1 defined indices are available during evaluation. Note that, in contrast 

to propagating the deletions, the two methods of propagating insertions have a 

slight difFerence in performance. 

Figure 6.3: Experiment 1.3: Incrernental insertions to 53 (due to insertions only) 

Figure 6.4: Experiment 1.4: Incremental insertions to 53 (due to insertions and deletions) 

Experiment 1.4: We delete a portion of P, one tuple from s and al1 related PS facts. 

We also add a portion to P, one tuple to S, and related PS facts. We monitor 

propagation of incremental insertions to 53. Figure 6.4 shows the results. As we 



see, one incremental method is better than view evaluation but the other is not. In 

fact, the time to compute the incremental insertions through P PS ranges from 

13.5 min to 14 min while to compute them through PS PI S the tirne ranges from 

59 min to 54 min. Note that when considering the logical I/O. view computation 

seems to  outperform both change propagation methods. However, when considering 

the physical 110 (which is more iepresentative of the actual time a query takes to 

execute) propagation through PS P is, in fact, a lot better. 

In this set of experiments, we used optimized queries to propagate incremental changes 

through P DU PS and through PS WJ S. The only optimization that was not applied during 

t hese experiments is the  optimization due to foreign key references. As we will see later 

on, this optimization greatly iniproves the performance of change propagation. 

6.3.2 Using the Key Constraint Optimizations 

In this section, we present examples where we compare the optimized change propagation 

queries (where al1 optimizations except the foreign key reference opt imization are active) 

to the non-optimized change propagation queries ( the ones derived by the method of 

Griffin and Libkin [GL95]). These experiments demonstrate the benefit of using the 

new key constraint optimizations proposed in the thesis in Section 4.2. We take the non- 

optimized and the optimized change propagation queries and we run these queries or1 DB2. 

Then, we measure the logical and physical 110 necessary to compute the incremental 

changes and we compare t h e  results. 

Experiment 2.1: We add and delete a portion of P ranging from 0.1% to 10% of P, 

we add and delete one tuple from S and we add and delete related PS facts, We 

monitor propagation of incremental insertions to  53. Figure 6.5 shows the results. 

We see that the proposed optimization reduces the  physical I/O necessary to about 

half the 110 needed to compute the original join. 

Experiment 2.2: We use the same update as before but we measure the propagation 

of incremental deletions to join 53. Figure 6.6 shows the results. 



Figure 6.5: Experirnent 2.1: Incremental insertions to 53 with and without key optimiza- 

t ion 

In the above two examples, the optimized queries that maintain the view coincide 

with the over-estimations of the changes for t hese views. This shows t hat using over- 

estimations of changes in place of their actual changes has the potential to improve the 

performance of change propagation. 

Figure 6.6: Experiment 2.2: Incremental deletions to 53 with and wit hout key optimiza- 

t ion 



6.3.3 Using the Foreign Key Constraint Optimizations 

The experiments presented in this section demonstrate the benefit of using the new foreign 

key constraint optimizations proposed in the thesis in Section 4.3. We take a number of 

updates and monitor propagating these updates to each of the three defined views J I ,  

J2  and 53. In this database scherna, there is a foreign key reference from PSSARTKEY of 

PS to PSARTKEY of P and one foreign key reference from PSSUPPKEY of PS to SSUPPKEY 

of S .  

We use two different ways to propagate the updates: one uses d l  available optimiza- 

tions except the optimization due to the foreign key references and the other also uses 

this additional optimization. In both cases: we use the RHODES optimizer to optimize 

the espressions for cornputing the incremental updates. First. we use RHODES without 

declaring the foreign key references to derive an execution plan to propagate the updates. 

From this plan, we construct an SQL query and execute it in DB2. Then, we define in 

RHODES the Foreign key reference and optimize the change propagation queries again. 

From the execution plan that RHODES generates, we derive another SQL query which, 

again, we execute in DB2. We compare the results. In the figures that follow. "without 

fi opt" means that al1 optimizations but the one due to the foreign key references are 

on, while "with fk opt" refers to al1 optimizations being active. 

mthoul fk opt - 
m f k o p t  - P mthout fk opt - 

m*fkopt - 1 

Figure 6.7: Experiment 3.1: Incremental deletions to J i  with and without foreign key 

optimizat ion 



Experiment 3.1: We delete a portion of P, one tuple from S and al1 related PS facts and 

monitor the changes to JI. Figure 6.7 shows the results. As we seeo the additional 

optimization greatly improves the performance of the incremental rnethod. The 

optimized query due to the foreign key is 6-(PS) W P. 

6000 v . 1  r ~ I l , , , , , , , l , , l +  

mmut mmfkopt  fk opt - - 

Figure 6.8: Experiment 3.2: Incremental deletions to J2 with and without foreign key 

op t imization 

Experiment 3.2: We use the same updates as before, only now we look at the propa- 

gation of incremental changes to 52. Figure 6.S shows the results. The optimized 

query is 6-(PS) w S. Note the difference between this experiment and the previous 

one, where we had a very smooth behavior of both the optimized and the non- 

optimized method. We were not able to satisfactorily explain the irregularities in 

the graphs. The execution plan for both queries remain the same throughout the 

example (for al1 updates) and the join selectivity between the changes to PS and S 

is constant. Also, one may be wondering why the cost is so high for propagating 

changes to this join since only one tuple changes from S (which in this case joins 

with about 80 tuples from PS). With no index on the changes of PS, scanning the 

changes to PS is the most important factor that affects the performance. Finally. 

note that the benefit of using the foreign key optimization in this case is relatively 

smaller. This is mainly because the non-optimized version for this example takes 

rnuch less time to execute than the non-optimized version in the previous example. 



Experiment 3.3: We use the same updates as before. but we monitor propagation 

of incremental changes to 53. The optimized query due to the foreign keys is 

P w 6-(Ps) BI S. Figure 6.9 shows the results. As we see, in this case the plots are 

smooth again. One can think of these plots as approximately the s u m  of the  plots 

presented for J 1 and 52. 

Figure 6.9: Experiment 3.3: Incremental deletions t o  53 with and without foreigc key 

op t imizat ion 

Figure 6.10: Experiment 3.4: Incremental insertions to Ji when both P and PS get 

insertions, with and wit hout foreign key optimization 

Experiment 3.4: We add a portion to the P relation ranging from 0.1% to  10% of P 



and related PS facts. We monitor propagating the incremental insertions to JI. 

Figure 6.10 shows the results. The non-optimized change propagation query is 

6 + ( ~ )  W PS u P W P ( P s )  U P ( P )  hC(PS). The optimized query is 6+(PS) M 

P u 6+ (PS) 6 + ( ~ ) .  As we see the only difference between the two queries is the 

extra factor of 6+(P) PS which evaluates to empty. The DB2 system was able 

to understand this by simply accessing the index on PSSARTKEY of PS without 

accessing the PS data a t  all. Thus, the optimized and the non-optimized queries 

have almost the same run time performance. However, this is because the two 

relations change by insertions only. Next, we repeat the same experiment. only in 

this case we allow deletions as well as insertions to the ttvo relations. 

Experiment 3.5: We delete a portion to the P relation and add another one. Vie also 

delete al1 related PS tuples and add PS Eacts. We monitor the incremental insertions 

into Ji. Figure 6.1 1 shows the results. 

Figure 6.11: Experiment 3.5: Incremental insertions to J1 when both P and PS get 

insertions and deletions, with and without foreign key optimization 

The optimized query for this case is the same as before (Experiment 3.4). The non- 

optimized query is 6 + ( ~ )  W (PS-6-(PS))U(P-6-(P)) W P S U ~ + ( P )  W ~ + ( P s ) .  As one 

can see, DB2 was not able to  efficiently evaluate the set differences required in this 

query. The  performance difference between the optimized and the non-optimized 

change propagation queries is very big. 



6.- Other Experiments 

ALI the examples of the previous sections involved views computed using joins on the 

database relations. This section contains a few more exampies involving other operators 

in the algebra. For these experiments, the logical I/O necessary to compute the changes 

to the views is estimated using the  RHODES optimizer. 

6.4.1 Project Distinct 

Let us consider two views defined as 

V1 : select distinct PSSARTKEY from PS 

V2 : select distinct PSSUPPKEY from PS 

Figure 6.12 shows the estimated I/O necessary to compute V1 and V2 originally (shown 

with the line "original" in the charts) as well as the estimated 1 / 0  to compute their 

incremental delet ions (shown as "deletions" ) and insert ions (shown as  "insertions" ) mhen 

PS is updated. The sizes of the updates range from 0.1% to 10% of PS. When ive Say 

updated we mean t hat some portion of PS is deleted from PS, and another portion, of the 

same size, is added to PS. As we see, even for very small updates the 1/0 necessary to 

propagate these changes to the views is rather high compared to computing the views. 

Figure 6.12: Incremental changes to V1 and V2 
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6.4.2 Set Difference 

Let us consider a view defined as 

V3 : select PPARTKEY from P except ail select PSPARTKEY from PS 

Figure 6.13: Incremental changes to V 3  due to deletions from P (first figure) and due to 

insertions to P (second figure) 

Figure 6.14: Incremental changes to V 3  due to deletions from PS (first figure) and due to 

insertions to PS (second figure) 

Figure 6.13 shows the estimated logical I/O of propagating incrernental changes to V3 

when tuples are either only deleted from or only inserted to P. As we see in these figures, 



the cost of propagating the  deletions from P is very iow while the cost of propagating 

the insertions to  P is rather high and comparable to the cost of computing V3. Exactly 

the opposite bappens when, instead of P, it is the relation PS that accepts the changes. 

Figure 6.14 shows the results in this case. Note however that propagating insertions in 

this case is slightly more costiy ihor, pronrigating deletions in the previous case. 

Finally, Figure 6.15 show two more experiments. T h e  first plot in the figure shows 

what logical I/O is necessary to compute incremental changes when parts of both P 

and PS are deleted. The second plot shows what Iogical 110 is necessary to compute 

incremental changes when al1 relations incur a number of deletions and insertions? that  is 

they simultaneously change by both insertions and deletions. Note that computing the 

incremental delet ions is rat her beneficial. But computing the incremental insert ions is 

comparable to cornputing the view from scratch. 

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 tO 
-Pamtage of deletions fmm P and PS- 

0.t020.30.40.50.60.70.80.9 1 2 3 4 5 6 7 8 9 10 
-Perraitaga of ripdaim to P and PS- 

Figure 6.15: Incremental changes to V3 due to deletions from both P and PS (first figure) 

and due to updates to both P and PS (second figure) 

6.5 Making Inferences 

The examples presented so far demonstrate a number of interesting points. First, they 

show that it is indeed possible for different change propagation strategies to result in 

significant performance differences. Second, t hey show t hat having indices defined on 

the database data is very helpful during change propagation, even in the case where 



these indices do not participate in view creation (see example 1.2). Although, this is not 

a surprising result, it is still interesting to see how the performance of change propagation 

is affected by the creation and use of the index. 

We can see that in most cases examined here. propagating deletions seems to be 

less time consuming than propagating insertions. For database data  with keys (such 

as the ones used here), the deletions can be propagated independently of the database 

insertions (see Tables 4.3 and 4.4). However, the same is not true for insertions. where 

access and manipulation of the  deletions is also necessary in order to  correctly propagate 

the  insert ions. 

Another interesting point that  we can make from these experiments is that the foreign 

key optirnizations greatly improve the performance of change propagation and, thus? 

of view maintenance. As these optimizations are generally applicable only to certain 

change propagation expressions but not to others (see Section 1.3 for an example), our 

clairn that "an intelligent component of the DBMS, such as the query optirnizero should 

be responsible for the generation as well as the optimization of incremental and change 

propagation queries" is strongly supported by the results of t hese experiments. 

Looking a t  the resiilts of these experiments. rve can also see that  even For small up- 

dates. where relations change by no more than 10% of their original sizes, the performance 

of change propagation may be comparable to the performance of view computation. In- 

cremental view maintenance involves the computation of both insertions and delet ions 

before incrernental changes can be incorporated into the  old values of the views. If one 

adds the cost to compute both insertions and deletions and the cost of incorporating 

these insertions and deletions to the old value of the  view? one can see that it is not 

at al1 clear that incremental view maintenance is going to be always better than view 

re-evaluation, but wins greatly in many cases. 

6.6 Validation of RHODES 

The examples of this chapter demonstrate that our proposed optimizations have the 

potential to improve the performance of incremental view maintenance and change prop- 

agation. This is especially true for the optimizations due to  the foreign key references. 



The optirnized queries that we ran on DB2 were generated using the ILHODES opti- 

mizer. RHODES was invoked, for each experiment in question. to chose and optimize the 

change propagation queries of the experirnent. From the plan produced by RHODES, an 

SQL query was generated corresponding to the change propagation expression chosen by 

RHODES for the view of the experiment. The non-optimized queries were generated by 

applying the generation algorithm of Griffin and Libkin [GL95] (by hand). This algo- 

rithm is described in Section 3.4.1. The experiments of this chapter. thus. provide an 

indication that the optimizations that RHODES is capable of executing are very useful. 

To further validate the  basic RHODES optimizer, we can examine and compare the 

execution plans generated by RHODES and the DB2 optimizer, for each of the three views 

J 1, 52 and 53. The Dl32 output is generated by the dynexpln command of DB2. 

6.6.1 Execution Plans for Ji 

Figure 6.16 shows the plans chosen by RHODES and DB2 for the view J i .  

Both RHODES and the DB2 optimizer chose the same join algorithm to implement 31. 

RHODES knows that the  relation P is sorted on PJARTKEY (because a primary index has 

been defined on it). To retrieve the tuples from Pl RHODES reasons that no (external) 

sorting is necessary. A simple relation scan is sufficient to generate the tuples in a sorted 

order. DB2, however, sorts the P tuples before further processing. 

However, there is a second difference between the two plans. It is in how the PS 

relation is accessed. RHODES retrieves the tuples of PS sorted using the secondary dense 

index because it thinks that  sorting such a big relation is rather expensive. DB2 instead 

sorts the relation using external sorting (we know that this relation is not sorted in 

memory bccause of the "not piped" keyword that appears in the access to PS in the Dl32 

plan, which means that insufficient memory exists during execution). 

The  data for this example were created in such a way that the PS relation is in 

fact sorted according to the PSSARTKEY. It seems that the DB2 optimizer was able to 

recognize this fact, while RHODES could not. 

RHODES estimates that  the logical I/O to compute J 1  is 154,558. The actual logical 

I f 0  is 135,013. The actual physical I/O is only 9,972. We believe that the  physical 110 



is so low because the sorting of PS on PSPARTKEY (estimated to be rather expensive) is 

in fact very fast because the data is already sorted on this attribute. 

6.6.2 Execution Plans for 52 

Figure 6.17 shows the plans chosen by RHODES and DB2 for the view 32. 

For this view, the two execution plans chosen by the two optimizers are identical. A 

nested loops join algorithm is chosen to perform the necessary join. A11 tuples of the 

S relation are scanned and? for each one of them, the corresponding tuples in the ?S 

relation are found by using the index on the PSSUPPKEY. 

RHODES estimates that the logical I/O to compute J2 is 150,641. The actual logical 

[ / O  is 101,278. The actual physical 110 is 101,260. We believe that the physical I/O is 

so high, in this case, because PS is not clustered on PSSUPPKEY and accessing each PS 

tuple (and ive need to access thern all) results in one new page 110. 

6.6.3 Execution Plans for 53 

Figure 6.18 shows the plans chosen by RHODES and DB2 for the view 33. 

RHODES chooses the join ordering (PS w S) w P while the DB2 optimizer chooses 

(S W PS) P. Note that the join between PS and S has a different ordering in the two 

plans. Both RHODES and the DB2 choose the same join algorithms to execute these 

joins. A nested loops join algorithm is used to implement the join between S and FS and 

a rnerge join algorithm is used to implement the join between this intermediate result 

and P. 

RHODES reasons that since a primary key index has been defined on the P relation, 

this relation is already sorted on the key attribute PPARTKEY and no (external) sorting 

is necessary. The DB2 optimizer scans the P relation and creates a sorted intermediate 

table holding the tuples of the P relation sorted. 

Also, let us cal1 1 the join between PS and S. The merge algorithm to implement 

the join between 1 and P requires I to be sorted on PSPARTKEY and P to be sorted on 

PPARTKEY. There are two different ways to  sort I on the PSPARTKEY attribute and the 

two plans differ on how they deliver 1 sorted. 



The way chosen by the DB2 optimizer is to compute the join I first and, then, to 

sort 1 on PSPARTKEY. Because of the referential integrity, however, every tuple in the 

PS relation joins with a tuple from the S relation and the join 1 has as many tuples as 

the PS relation has. The difference is that the size of 1 in bytes is much bigger that the 

size of PS in bytes because each 1 tuple also contains the supplier information. So, why 

should we sort 1 and not sort PS instead? 

RHODES chooses to sort the PS relation before using the nested loops algorithm with 

S. If a nested loops algorithm is performed the output of the nested loops algorithm 

is sorted on whatever attribute the first input is sorted on. To retrieve PS sorted on 

PSSUPPKEY, the secondary dense index defined on it is used. 

There is also another reason why t his is a bet ter plan. Scanning the S relation first and 

then using the index on PSSUPPKEY results in finding for each S tuple al1 corresponding 

PS tuples. But al1 Ps tuples must be accessed. Since the PS relation is not clustercd on 

the PSSUPPKEY attribute, finding the PS tuples requires as many page I /07s  as tuples in 

PS approximately. Accessing the PS relation using the index defined on PSSUPPKEY ais0 

results in as many page I/O's as tuples in PS, but it completely saves the cost of sorting 

1. 

RHODES estimates that the logical I/O to compute 53 is 353,662. The actual logical 

1/0 is 345,099. The actual physical I/O is 122,194. Table 6.2 summarizes the estimated 

I/O from both RHODES and DB2 for al1 three execution pians. 

Table 6.2: Logical and physical I/O 

View 

J 1  : 

J2 : 

RHODES I/O 

154,558 

150,641 

DB2 Log I/O 

135,013 

101,278 

DB2 Phys I/O 

9,973 

101, 260 



SELECT 
FROhI PART. PARTSUPP 
WHERE PJ'ARTKEY = P S S A R T K E Y  

Coordinator Subsection: 
Distribute Subrectian # l  

Directcd to Single Nodc 
Partition h iap  ID = 1. Nodegroup = IBMDEFAULTGRGUP, #Nodes = 1 

Accesr Table Queue ID = q l  #Columnir = 14 

Subrection #1: 
Access Table Name = V1STA.PARTSUPP ID = 23 #Columnr = 5 

Scan Direction = Forward 
Relation Scan 
Lock Intent Share 
Sargable Predicate(s) 

#Predicatcs = 1 
Create/Insert Into Sorted Tcmp Table fD = t I  

Sort #Columnd = 1 
Not Piped 

Sorted Temp Table Completion ID = i l  

Accerr Table Name = VISTA.PART ID r 21 #CoIumna = 9 
Scan Direction = Forword 
Relotion Scan 
Lock Intent Shsre  
Sargsble Predicate(6) 

#Predicater = 1 
Creatc/Inrert  Into Sorted Temp  Table ID = 12 

Sort #Columnb = 1 
Tiped 

Sorred Temp Table Completion ID = t2  

Access Temp Table ID = t2 #Colurnns = 9 
Scan Direction = Forward 
Relation Scan 

Merge Join 
Join Straicgy: Collocatcd 

Acce~a  Temp Table ID = t I  #Columns = 5 
Scan Direction = Forward 
Relation Scan 
Create/Inserr Into Table Queue ID = ql, 

Figure 6.16: Execution plans for J1 chosen by RHODES and DB2 



SQL Strterncnt:  
SELECT ' 
FROM PARTSUPP. SUPPLIER 
WHERE P 3 S U P P K E Y  = S S U P P K E Y  

Coordinator Suboection: 
Distribute Subsection #l  

Directed t o  Single Node 
Partition M a p  ID = 1, Nodegroup = IBMDEFAULTGROUP. #Nodes = 1 

Access Table Queue ID = q i  #Columnr  = 12 

Subsection #l: 
Accesr Table Nsme = VISTA.SUPPLIER ID = 22 #Columns = T 

Scrn Direction = Forward 
Rclation Scan 
Lock Intent S h r r e  

Xested Loop Join 
Join Strategy: Collocated 
Access Table  Nome = VISTA.PARTSUPP ID = 2 3  #Colurnns = 5 

Scsn Direction = Forward 
Index Scsn: Narne = V1STA.PSSUPPKEYIND ID = 2 #Key Columnr = 1 
Lock Intent Share  

Creote/Inaert Into Table  Q u e u e  ID = ql .  Broadcast 

Figure 6.17: Execution plan for J2 chosen by RHODES and DB2 



SELECT ' 
FROM PART. PARTSL'PP, SUPPLIER 
WHERE P S S A R T K E Y  = P S A R T K E Y  AND P S S U P P K E Y  = S S U P P K E Y  

Coordinator Subrecrion: 
Dir t r ibute  S u b ~ e c i i o n  # 1  
Directed to  Single Nodc 
Parti t ion Map ID = 1. Nodegroup = IBMDEFAULTGROUP, #Nodes = 1 
Acceis Table Queue ID = q l  #Calurnns = 21 

l u b r e c t i o n  #1: 
Access Table  Name = VISTA.SUPPLIER ID = 22 #Colurnnr = 7 

Scan Direction = Forward 
Relation %an 
Lock Intent Share 

Nerted Loop Join 
Join Strategy: Collocated 
Accesr Table N i m e  = VISTA.PARTSUPP ID = 2 3  #Colurnna = 5 

Scan Direction = Forwird 
Index Scan: Narne = VIBTA.PSSUPPKEY1ND ID = 2 #Key Columns = 1 
Lock Intent Share 
SrrgabIe Predic i te (s )  

#Predicatea = 1 
Creatc/Insert  Into Sorted T e m p  Table ID = i l  

Sort #Columns = 1 
Not Piped 

Sorted Ternp Tsblc Completion ID = t l 
Accesr Table  Narne = VISTA.PART ID = 21 # C o l u m n ~  = 9 

Scan Direction = Forward 
Relation Scrn 
Lock Intent Share 
S u g a b l e  Predicate(s) 

#Predic;ltes = 1 
Create/Inrert  Into Sorted T e m p  Table ID = t 2  

Sort #Colurnns = 1 
Piped 

Sorred Tcmp Table Compleiion ID = t2  
Xccess Trmp Table ID = t 2  #Columni = 9 

Scan Dircction = Forward 
Relation Scan 

Merge Join 
Jc in  Jtrategy: Collocated 
A C C ~ J ~  T e m p  Table ID = t l  #Columns = 12 

Scan Direction = Forward 
ReIation Scan 

Create/Insert  Into Table  Queue ID = q l  

Figure 6.18: Execution plan for 53 chosen by RHODES and DB2 



Chapter 7 

Conclusions 

This chapter concludes the dissertation with a presentation of the research contributions 

along with a discussion on the limitations of the approach and an outline for further 

research. This chapter also includes a discussion of practicality and limitations of mate- 

rialized views. 

7.1 Research Contributions 

One primary contribution of our thesis is that we provide a different perspective to 

address view maintenance and, consequently, change propagation. We can summarize 

t his perspective wi t h: 

"both the choice of incremental view maintenance versus non-incremental 

view maintenance as well as the choice of an appropriate propagation strategy 

are best left to the database query optimizer to make." 

Another primary contribution is that we provide a repertoire of original optimizations 

specific to incremental view maintenance and change propagation. 

In particular: 

1. In this dissertation, we experimentally demonstrate that the performance of in- 

cremental view maintenance depends on the physical aspects of the underlying 

database management system, such as the availability of index structures, the sizes 

of the relations involved, as well as the sizes of the database updates. For this rea- 

son, we argue that incremental maintenance strategies should not be adopted by 



a dat abase system wi t hout first taking t hese system propert ies into considerat ion. 

CVe also argue that the  database query optimizer is a reasonable component of the 

database system to  decide, at the point of view maintenance, whether a view is 

to  be maintained incrementally or not, because the optimizer has knowledge of. 

and access to, al1 of the parameters that may affect this choice. To the best of our 

knowledge, this is the first work that does not commit to the a priori usage of incre- 

mental view maintenance due to assuming t hat in "typical" situations incremental 

view maintenance is very efficient. 

2. We demonstrate how one can take an algorithm for change propagation and incre- 

mental view maintenance, such as the one proposed by Griffin and Lipkin [GL95], 

and incorporate it into a database query optimizer. We have built the RHODES 

relational query optirnizer that supports both change propagation and incremental 

view maintenance. Our approach is to see view maintenance as an optimization 

problem that is best left to the database query optimizer to make. Our approach 

does not require significant changes in the DBMS, other than the proposed extension 

to the query optimizer and some bookkeeping about the database updates (which 

is necessary in any incremental maintenance technique). Therefore, using our ap- 

proach, no additional software must be written, and no special purpose evaluation 

component must be integrated into the DBMS'. 

3. Incorporating change propagation and view maintenance into the qucry optimizer 

allows the optimizer to  be responsible for the generation of the queries to be exe- 

cuted in order to support change propagation or incremental view maintenance. In 

incremental view maintenance, for example, there may be more than one different 

strategy to  maintain a view increment ally. Choosing among the different strategies 

is not an easy task and cannot always be done independently of the system aspects 

of the database. 

lRHODES has not been integrated into an existing DBMS; our daim is that the functionality 
supported by RHODES can easily be incorporated into any existing optimizer. 



4. Incorporating the generation of change propagation and view maintenance into 

the query optimizer also allows the query optimizer to use, in addition to tradi- 

tional optimizations, incrernental maintenance specific optimizations in order to  

find the best possible way to maintain a view. A reperioire of maintenance-specific 

optirnizations are provided in the thesis. These proposed opt iminations are also 

validated experimentally. For example, wheri the updates affect only part of the 

database, some view maintenance expressions may evaluate to empty and the opti- 

mizer may be able to recognize this in order to avoid extra computation involving 

the database? and, thus, to decide that incremental view maintenance is more effi- 

cient t han re-evaluation. 

Apart from the  above contributions, we also make two secondary contributions: 

1. The research of this dissertation bas lead to the irnplementation of an extensible 

relational query optimizer. The design of the query optimizer is such that it can 

be extended into, for example, a query optimizer for a parallel database rather 

easily [Zi196]. Another novel feature of RHODES is that it considers the alternative 

to use already materialized views in order to optimize the execution of general 

queries, which has recentiy been recognized as a potential for query optimization 

[LMSS95, FRVSG] . 

2. Textual representations of the generated plans of a query optimizer are rather dif- 

ficult to manage and understand, especially for relutively large plans where t h e  

textual description of the plan may be hundreds of pages long. The query plan 

generated by RHODES is supplied to a plan visualization tool generated by ap- 

propriately configuring a general visualization tool for graphical presentation of 

structured information [NoiSG]. The browser allows us to view the chosen plan 

for any given conventional or incrernenta query and to  view details of the plan, 

including statistics, access structures, and so on. This functionality is similar to  

DB2's visuai expiain facility [DBZ]. 

Next we describe some of the limitations of our approach. 



7.2 Limitations 

In this thesis, we showed how one cm take their favorite algorithm for incremental view 

maintenance and incorporate it into the database query optimizer. This allows the query 

optimizer to  be responsible for deciding whether a view is to  be maintained incrernentally 

as well as which change propagation expressions to  use to compute the  incremental 

changes. As a proof of concept that it is easy to extend an optimizer to  support this. 

we have built the  RHODES database optimizer that  supports both incremental view 

maintenance and change propagation. The implementation of RHODES is such that each 

view is examined independently of the other views. That is, if the views depend on 

each other, RHODES does net try to find the best way to maintain the set of views. 

LVe consider tliis as a major disadvantage of our work. However, we also consider it an 

implementation problern. I t  is possible to extend RHODES in order to optimize the set 

of available views in some topological ordering. Shen,  RHODES can use the fact that 

some of these views could have already been updated at  the time views that  depend on 

i t are examined by it. 

Another limitation of Our technique is the increase in time and system resource usage 

during view maintenance due to optimization. Many query expressions are examined 

for the maintenance of each view, and, if there are a lot of views to be maintainect, this 

may result in significant performance degradation. The view maintenance optimization 

time and resource consumption is influenced by the complexity of each view expression, 

especially by the number of joins and subqueries the view expressions contain. Ideally, the 

optimizer could be  configured to use default view maintenance expressions (obtained at 

view compilation time or at the first time view maintenance is performed) for views that 

require short time to be computed. Decision support queries or end-of-the-month queries, 

however, are good exarnples of complex queries, where the increase in the  optimization 

time may not affect the overall performance of the system very much. 

All experiments conducted to support our thesis were on data with uniform distri- 

butions. We consider this as a limitation of our thesis, since it is believed that uniform 

distribution are not very natural. It would be interesting to  see how the performance 



results would be affected under different distribut ions of data values. 

The impact on the overall performance of the database systern is a limitation of view 

maintenance, in general. both incremental and not. View maintenance a t  the end of 

each updating transaction slows down transactions. It is an open problem to determine 

how view maintenance and the overall performance of the database system are related. 

We believe that it would probably depend on each application whether the performance 

impact of materialized views is beneficial for the application or not. 

7.3 Discussion and Open Problems 

\Ne conclude this dissertation with a discussion on the practicality of materialized views 

dong with a discussion of some open problems. 

Almost every commercial database system supports views (Oracle, Sybase, DB2. etc.). 

Materialized views exist mostly during the execution of a single query (in the form of 

materialized intermediate results) but are destroyed right after the cornpletion of the 

query. Oracle is now implernenting materialized views and incremental view mainte- 

nance support. Active database systems, such as those described by Widom and Ceri 

[WC96], can support materialized views but it is (mostly) up to the user to specify how 

view maintenance is realized by specifying appropriate active rules in the system's rule 

language. Among t hose systems supporting materialized views, only the St arburst sys- 

tern [HCL+SO, Wid961 has automatically generated active rules for the views' incremen- 

ta1 maintenance. The ARIEL system [HBHe95. Han961 supports automatic incremental 

maintenance of (certain) materialized views by exploiting specialized data structures used 

by the system. 

According to representatives of major database cornpanies a t  the workshop on Ma- 

terialized Views at the SIGMOD '96 conference, most database vendors are considering 

incorporating materialized views into their products because of the demand for materi- 

alized views by new applications such as data replication, decision support, data mining, 

and so on. The requirements set by the vendors are that materialized views work well 

with the other components of the database system, that they do not have a negative 

effect on the overall performance of the system, and that they be used for optimization 



of general queries. Domain specific knowledge of each application will probably be used 

to  justify the use of materialized views. 

.4t the SIGMOD '96 workshop on Views, there was a debate on whether materialized 

views should be part of the SQL-3 standard. This would of course mean that al1 database 

products would support materialized views and perhaps their incremental maintenance. 

The majority of participants agreed that materialized views, like B-trees, are optimization 

techniques and should not be part of the standard. Others hoped that they will soon 

becorne part of the standard because of their potential for optimization. 

There are some problems associated with materialized views and these must be solved 

or appropriately addressed before materialized views becorne part of commercial database 

products. The maintenance of materialized views, for example, slows down update trans- 

actions, reduces query throughput and interferes with concurrency control. Materialized 

views require more disk space and, sometimes, special algorithms and data structures. 

Other problems associated with materialized views is what views to materialize, how 

to  store these views as aeli as how to keep them consistent with the database, and, as 

discussed above, how to do a11 this without affecting the performance of the rest of the 

database system. 

In the current state of incremental view maintenance research, there seems to be an 

over-formulation of how to do incremental view maintenance: there are too many pro- 

posed algorithms on how to do incremental view maintenance for a numher of different 

data models. What seems to be missing, though, is a thorough evaluation of the problems 

discussed above and implementation-specific proposals of how to incorporate materialized 

views and their incremental view maintenance into a database system without affecting 

performance unacceptably. Finally, database query optimizers must be extended to de- 

tect and use materialized views automatically, as they do with %-trees and join indices, 

for instance, which also need to be consistent with respect to the database. 
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Appendix A 

Cardinality Estimation 

In this appendix, we present the derivat ion of one physical property, the cardinality. from 

the  physicai properties of the inputs for each availabie physical operator. In what follows. 

we use n as the cardinality of the derived relation, and n l ,  nz as the cardinality of the 

input relations. 

A. 1 Cardinality Estimation 

BINARYSEARCH, FILE-SCAN, INDEX-SCAN, SELECTALGO 

The number of tuples in the output relation of these operators is a fraction of the nurn- 

ber of tuples in the input relation. We cal1 this fraction t he  selecti.uity of the  selection 

conditions that appear as arguments to the algorithms. At the end of the appendix? we 

describe how we estimate selectivi t ies. 

CARTESIANALGO 

T h e  number of tuples in the output relation is always 

DUPLICATEELIMINATION 

Let image(ai)  denote the number of distinct values that the i- th attribute in the input 

relation may have. This information is stored in the catalog. The output relation's size 



cannot be srnaller than the maximum image size. Thus, a Iower bound for the size of the 

output is 
ari t  y 

lower bound = max { image (a i ) }  
r=f 

The output cannot be larger than the input or the product of al1 attributes' image 

size, whichever is l e s .  Thus, an upper bound for the size is 

anty 

upper bound = min n l ,  n ( irnage(a;))  

We estimate the size of the output as 

Iower bound + upper bound 

3 

MERGE, NESTEDLOOP 

The number of tuples in the output relation is a fraction of the cartesian product of the 

two relations. We cal1 t his fraction the join selectivity. At the end of the appendix, we 

describe how we estirnate join selectivities. 

n = join selectivity x nl x nz 

PROJECTALGO, SORT 

For these operators, the input size does not change. 

SETINTERSECT 



CHAPTER A. CARDINALITY ESTIMATION 

SET-UNION 

For SETDIFFD, SETINTERSECTD and SET-UNIOND, we estimate the number of du- 

plicates in each input, and then we use tlie formulas presented above (thus. nl and n2, 

in these cases, are the sizes of the two inputs alter duplicate elimination). Duplicate 

estimation follows the formula presented for duplicate eliminat ion. 

A.2 Selectivity Estimation 

The fraction of tuples from a relation satisfying a given selection condition is called the 

selectivity of the condition. The smalleï the selectivity of a condition, the f e w r  ttiples 

the condition selects and the iarger the desirability of using this condition first to retrieve 

tuples. The selectivity of conjunctive condition O1 .A O2 A . . . A Ok is the product of the 

selectivities of each individüal selection condition Bi [EN94]. The different forms of Bi 

known to RH0DE.S are: op val )  and ( X i  op -Y,) wliere op E { = ?  >, <}. The 

selectivity of each 0i is defined according to the type of Oi [SACf 941: 

a For condition Xi = v a l  

selectivity = 
I 

irn age ( .Yi ) 

This formula assumes an even distribution of tuples among t h e  different values in 

the domain. However, if v a l  < min(Xi) ,  or v a l  > max(XK), the selectivity is O. 

a For condition *Yi > val ,  we do a linear interpolation of the value val within the 

range of values of attribute Xi from min(&) to max(Xi), and we estimate 

max(X;) - v a l  
selectivit y = 

max(Xi )  - min(Xi) 

If v a l  < min(Xi), the selectivity is 1, and if val > môx(Xi), the selectivity is O. 

r, For condition Xi < v a l  

selectivity(Xi < va l )  = 1 - seZec t i~ i t y (X~  = va l )  - sefectivity(Xi > v a l )  



O For condition Xi = X, 

This formuia assumes that each value in the domain of the at tribute with the smaIler 

image size has a matching value in the other attribute. If Xi is the same attribute 

name as Xj7 the selectivity is 1. Also, if max(.>;,) < min(lC,), or max(.Yj) < 

min(Xj), the seicctivity is O. 

O For condition Si > -Y,, if image(X,) > image(.Xi), then 

i m a p ( X j )  - inage(Xi)  
selectivity = 1 - 

image (.Yj) 

imnge(Si ) - image (.Yj) 
selectivit y = 

image(Xi) 

If X* is the same at tribute narne as .Yj, the selectivi ty is O. If max(. 

the selectivity is also O. If min(Xi) > max(,Yj), the selectivity is 1. 

Xi) < min 

For condit ion .Yi < -Yj 

e If the attribute(s) appearing in the  selection condition are not arithmetic or if, for 

some reason, the required statistics are not available in the catalog, for an  equality 

condit ion 
1 

selectivity = - 
10 

and for a comparison condition 

I 
selectivity = - 

3 

There is no significance to these default numbers, other that an equality condition 

is more selective than a comparison condition. 



A.3 Join Select ivity Estimation 

A join A B is a selection whose condition is the join condition, Al = BI: from 

the cartesian p r ~ d u c t ,  A x B: of the two relations being joined. The fraction of tuples 

from the cartesian product satisfying the join condition is called the join selectivity. The 

only join condition that is allowed in RHODES is of the form Al = BI where Al is an 

attribute of reiation A and BI is an attribute of relation B. There are two cases for 

estimating the join selectivity: 

If no foreign key constraint is known between attribute Al of A and attribute Bi 

of B ,  then 

- If Al and BI are not arithmetic, then 

1 
join selectivit y = - 

1000 

- Otherwise, let the  range of the domain of the Al attribute is dA4 = max(AL) - 
min(& ) + 1 and the range of the dornain of BI is d B  = mas(Bl ) - min(B1 ) + 1 

a i t h  an overlap d. (We assume that the distinct values are uniformly dis- 

tributed within each range and that the tuples are uniformly distributed in 

the distinct values.) If no overlap exists, then 

join selectivity = O 

else, let v.4 be the  total nurnber of values for the  Al attribute in the overlap 

and vs  the total number of values for the B1 attribute in the overlap. i-e.: 

U A  = rd/da * image(Ai)l and vs = rd/dB * irnage(B1)l. 

We define 

join selectivity = min{v.-I,z7e} 
image(Al)  * image(B1) 

O If, however, Bi 1 is the  key attribute of B and there is a foreign key reference from 

join selectivity = 
1 

irnage(Bi 1) 
In fact this selectivity is identical to the selectivity of selection condition Xi  = ,Y, 

only that we know that  image(Bll) is at least as big as image(Al) in this case. 



Appendix B 

Cost Estimation 

In this appendix we preseot the formulas for cost est-imation used by RHODES. In order to 

estimate the cost of different expressions, RHODES must know what the cost of clioosing 

each algorithm is. In presenting our cost model, we use the following symbols: 

a B is the size in bytes of one memory block (usually 1024 bytes); 

0 M is the size in pages of memory available to the optimizer; 

a n is the cardinality (number of tuples) of the output relation and nt,n2 are the 

cardinalities of each of the input relations; 

0 r is the size in bytes of each tuple in the output relation and r17 r2 are the record 

sizes of the input relations; 

a bf is the blocking factor of tlie output relation, that is, the number of tuples of the 

output relation that fit into one memory page, and bf ,, b f 2  are tlie blocking factors 

of the input relations. The blocking factor is defined as b j  = LBJr]; 

a b is the size in blocks of the output relation and bi,  b2 are the sizes in blocks of the 

input relations. The size in blocks is defined as b = rn/ b f l  ; and, 

a 1 is the size in bytes of one index tuple (we assume this number to be constant for 

each index). 

Next, we present the cost for each algorithm used by RHODES. 



FILESCAN 

This algorithm can be used for two purposes: a) to retrieve al1 tuples of the relation? 

and b) to retrieve those tuples satisfying a conjunctive selection condition. When no 

condition is specified, or when the selection conditions need to be checked against al1 

tuples in the relation. t hen, 

cost = b1 

If one selection condition is specified equaiing the key attribute of the relation with 

a constant, only half of the blocks are reached on the average before finding the  (unique) 

tuple in the result. Then, 

This algorithm can be used when a single selection condit.ion is specified equating the 

ordering attribute of a relation with a constant and the relation is contiguous. Then, 

cosi = max {rlog,(b)l + [&l - 1, l} 

This cost reduces to [log2(b)l, if the condition is an equality condition on a key 

attribute, because n = 1 in this case. 

INDEX-SCAN 

This algorithm can be used when a single condition is specified equating the indexing 

attribute of a relation with a constant. Let bi be the number of pages the index itself is 

stored into. The cost of an index scan depends on the type of the index used [EN94]. 

In a primary index, there is one index tupie per relation page and bi = rb lb f  i l ,  where 

the blocking factor for the index is (always constant) bf = LBII]. Then, 



In a clustering index, there is one index tuple per distinct value in the  indexing 

attribute and so bi = [i/bfi17 where i is the number of distinct values. Then, 

Finally, in a secondary index, there is one index tuple per re l~ i ion  tuple and so 

bi = rnl/bfil. Then. 

CARTESIANALGO, NESTEDLOOP 

This algorithm performs a block-nested-loop join where the inner input is scanned once 

for each page of the outer input. The mernory is completely filled with  the outer input 

except from one page that is reserved for the inner input. In addition, scans of the 

inner input are made a little faster by scanning the inner input once forwards and once 

backwards, thus reusing the last page of the previous scan [KimSO]. Then, 

MERGE, SELECTALGO, PROJECT, PROJECTD, SETDIFF, S E T D I F F D  

SET-INTERSECT, SET-INTERSECTD, SET-UNION, SET-UNIOND 

If t.he output relation can fit in mernory, i-e., if b < M ,  then, 

cost = O 

else the result must be written into disk, and 

cost = b 

SORT 

To sort a relation on a given attribute, the relation is written into initial sorted runs, 

each about the size of available memory. These runs are merged into larger and larger 



ones, two at a time, until only one run file, the final output, is produced. The number 

of initial runs, in this algorithm, is 

initial-runs = [bl /Ml 

The nurnber of merge levels necessary to complete the task is 

Using a factor of two for reading and writing, then 

cost = 2 x bl x merge-levels 

This algorithm is based on sorting to bring duplicates close together. The cost in sort- 

based duplicate removal is, thus, dominated by the cost of the sorting but it is smaller 

than it, because of the effect of early duplicate removal on each merge level. The total 

number of rnerge levels is unaffected by duplicate removal and is defined in terms of 

the number of initial ruos that the input file is split into. As in the case of sorting, 

ini t ial-runs = rbl/M] and merge  -2evels = [log, ( initial-runs 11. 
In the first merge levels, it is unlikely that duplicates of the same tuple are in the 

same run file, and therefore we can assume that the sizes of run files are unchanged until 

the last merge levels, where we can assume that each run file has the same size as the 

final output. The total number of merge levels with run file sizes equal to the output size 

( the  later rnerge levels) is, according to Graefe [Gra93], 

a ffected Jevels  = [log,(bl / b)l - I 

The merge levels where each run file has the same size as the input is 

unasected -2evels = merge-levels - a f fected Jeve ls  

Using a factor of two for reading and writing, then [Gra93] 

affected -1evels - 1 in i t ia l -n tns  
2 x bt x unaffected-levels + 2 x b x C 

unaflected -1evcls 
3' 
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