
UNIVERSITY OF CALGARY

Distributed Database and Knowledge Base Modeling

for Concurrent Design

b~

A THESIS

SWBMIïTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIEEJCE

DEPARTMENT OF MECHANICAL AND MANUF'ACTURING ENGINEERING

CALGARY, ALBERTA

DECEMBER, 2000

National Li'braiy I*I OfCsmada
Bibliothèque nationaIe
du Canada

uisitions and 3. A c q u i M i et
61 rographic Services senrices bibiiiraphiques

The author has granted a non-
exclusive licence allowing the
National Li'brary of Canada to
reproduce, loan, distribute or seil
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this diesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant B la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACï

This research focuses on the developmnt of a distributed database and knowledge

base modeling appmach and an Internet-based concurrent design system. Geographically

distnbuted databases and knowledge bases, representing product development life-cycle

activities, are integraieci through the Internet. The consistency of the distributed databases

is maintained using the distributeci data dependency relation maintenance mechanism

developed in this research. A distributed knowledge-based inference mechanism is

introduced to mate product Iife-cycle databases automaticaüy. Based upon the

distributed database and knowledge base modeling approach, a concurrent design system

has been âeveloped for modeling concurrent design alternatives. The optimal alternative

is identified using either the exhaustive methoâ or the Geaetic Programming method. The

optimal values of the design parameters are identified using the Particle Swann

Optimization method. The system has been implemented using VisualWorks. Example

applications have been developed to iliustrate the effectiveness of the concurrent design

system.

1 wouid like to take this opportunity to express my profound gratitude to my

supervisor Dr. D. Xue for his guidance, encouragement and continuous support during

my course of shidy and research in the Department of Mechanical and Manufacturing

Engineering. Thanks also go to my examining cornmittee members. Dr. D. H. Nome and

Dr. M. Ulieru, for their critical review of this thesis.

I wouid also like to thank the Faculty of Graduate Saidies and the Department of

Mechanical and Manufacturing Engineering for their generous financial suppori during

my study at University of Calgary.

Thanks are extended to the supporthg staff of the Department of Mechanical and

Manufacturing Engineering, especiaüy Nareeza Khan. Nick Vogt. Lynn Banach, Khee

Teck Wong, and Dan Forre. for their help and support during the course of my graduate

studies.

1 am also grateful to my niends for what they have done in different ways to help

and encourage me to complete my M.Sc. program.

Last but not least, my wife Dongmei Wang and my son Kan Zhang deseme my deep

appreciation for giving me unconditional support at a l i thes .

TABLE OF CONTENTS

. . APPROVAL PAGE, II

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

CaAPTER 2: RESEARCH BACKGROUND ~oooaaaoaaaoaoaa~ooo~aaaaooaaaoaaoaaoaaœoooaoaoaoaooaaaooao 11

2.1 Literahire Review oao~aoaoo~oaoaoaonaaooaoaaaonooooooaoa~aaoaaoaoaaaooaaaoaaaoaooaa~oaaoaoooooaoaaaoaaaaœ 11

2.1.1 Product Modeling 1 1

2.1.2 Roduct Development Techniques 14

2.1.3 Cornputer-Based Systems for Roduct Development 15

2.1.4 Integration of Distributed Product Databases and Knowledge Bases 17

2.1.5 Applications of Multi-Agent Systems in Product Development 18

2.1.6 Internet-Based Roduct Development 20

2 a 2 Related T ~ h n i q ~ ~ o ~ ~ ~ a ~ a a ~ ~ ~ ~ o a a o ~ o o a o a œ ~ o o ~ o o o o o o o a a a o . . o a o o o a œ a œ a o a a a a o a o a o a o a œ o a o o o o a a o o 22

2.2.1 Feature-Based Modehg 2 3

2.2.2 Concumnt Engineering 2 4

2.2.3 Object-Onented Programming and Smalltalk 26

2.2.4 Distributed Systems and the Internet 27

...... 2.2.5 Global Optimization 29

2.3 A FeatumBased Database and Knowledge Base Repraentation Scheme, JO

................................... 2.3.1 Database Representation 3 0

... 2.3.2.1 Chs Features and Ilcstance Features 3 0

................ 2.3.1.2 Maintenance of Data Dependency Relations ... 3 2

.................................... 2.3.2 Knowledge Base Representation 3 3

2.3.2.1 Rule-Bases .. 33

.. 2.3.2.2 Reasoning with Rule-Bases 3 4

3.1 Introduction mmeo~~~~~~~~~~~~~m~ommmoomoommoooommmooooemom~œmoomomœmm~mmmommo~~~oo~ommoooomm~~omomooomœmommmommomm 36

3.2 Dibutec l Product Database and Knowledge Base Modeling Architecturemo 37

3.2.1 Roduct Development Life-Cycle Activity Modehg 3 7

... 3.2.2 The Client-Semer Communication Architecture 3 8

3.2.3 Architecture of the Distributed Database and Knowledge Base

... Modehg S ystem 40

... 3.2.4 N d e De fuiitions and N d e Comec tions 43

.. 3.2.4.1 Defnition of Interner Nodes 4 3

... 3.2.4.2 Connection of Internet Nodes 4 5

3 3 Distribiited Fmture -Bd Database M d e l i n g a m . ~ ~ ~ a ~ m o ~ ~ ~ , m , m ~ ~ ~ ~ m ~ ~ o m ~ m m ~ ~ m a m m o m m ~ m o ~ m 46

.. 3.3.1 Virtual Features 46

..................................... 3.3.1.1 Virtual Class Features ... 4 6

................................. 3.3.1.2 Virtual Instance Features 4 7

3.3.1.3 Generution of Imtance Features fiom VirtuaZ Class Features 49
.. 3.3.2 Modeling Database Relations 5 1

.............................. 3.3.2.1 Mdeling Database Relations ut Cks Feature Level 52

3.3.2.2 Modeling Database Relations ut Insiance Feature Level 53

.................... 3.3.3 Maintenance of Depenâency Relations among Distributed Data 53

3.3.3.1 An Algonrhm for Maintuining Distributed Data Dependency Relations.. 55

.. 3.3.3.2 An Example of Amibute Propagation Process .. 5 7

3.4 Distributed Knowledge B ~ 9 e Modeling ~~~. .~m. .mmmmommm.~mmmommmaoommmmmommmommomoaom. 58

..................................... 3.4.1 Virtual Rule-Bases 5 9

...................................... 3 . 4.2 Seleetion of Virtual Rule4 ases 61

... 3.4.3 Reasoning with Distributed Rule-Bases 63

CHAPTER 4: CONCURRENT DESIGN BASED UPON DISTRIBUTED

DATABASE AND KNOWLEDGE BASE MODELINGm....m........... 67

4.1 Iatroducti~m ..mmmom.moomomooo.m.aoamaoo.moooommmoooo.maamoomoooomommo."aoommoaom..mmm.mo.mammomoommommmoamm.om..m m.. 67

4.2 Modeling of Roduet Reaiization pro ces^ Altcnintive~ mma~mo.m.moammammmmmmommmmm.ommmoaa 69

... 4.2.1 The Relations among Intemet Nodes 69

.. . 4.2. I 1 Logical Relations among Intemet Nodes 70

... 4.2.1.2 Creation of Intemet Node Relations 71

........................... 4.2.2 Representation of Roduct Realization Process Alternatives 72

... 4.2.2.1 Product Realization Process Alternatives 72

............................... 4.2.2.2 Displny of Product Realization Process Alternatives 73

4.3 Identification of the Opamal Produet Realization RocPss Alternative 75
.. 4.3.1 The Exhaustive Metbod 7 6

......................... 4.3.1.1 The Algorithm for Generating All Alternatives ... 76

.. 4.3. I.2 An Euunple of Generuting Al1 Altematives 76

... 4.3.2 The Genetic Programming (GP) Method 7 8

.. 4.3.2.1 Introduction to Genetic Programming Metho d. 78

................................. 4.3.2.2 Genetic Programming for Altemative Optirnizution 82

4.4 Identification of Optimal Design Parameter Vaiues ~ a ~ ~ ~ m m ~ m a m ~ m m ~ ~ m o m o m a m m m o a m o m a 90

........................ 4.4.1 Introduction to ParticIe Swarm Optimization (PSO) .. 90

vii

4.42 PSO in Design Parameter Oprimization 9 2

.................................. 4.4.2.1 Fumu~tion of Parameter Optimization Problems 93

4.4.2.2 Issues of Parameter Optimdtion with PSOW

......................... 4.4.2.3 Tlrr Parameter Optirnizution Inteflae 9 5

43 S- ~ ~ o m m ~ ~ m ~ o o o o o o o m ~ m m o o o o o o o m m m m m m œ o m œ m m m o o m ~ U o o m H o m m m o H m O ~ H m o o o o o O m o m o o m o o o m ~ o m %

CHAPTER 5: SYSTEM IMPLEMENTATION AND APPLICATION EXAMPLES

momoomooooemooom~oomooomoomemmo~mmmommoomooomoomooooo~~~oo-mmmommmmooomomoommooomooweoo~oomooooomwm~oomo~~~moo-omomommomoooo~m~~ 98

5.1 System Implemntntion m~.~...~~.m~~a ..m...~a~m.~~~l... ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ m ~ m m ~ ~ ~ ~ ~ m m a ~ m m ~ ~ m 98

5.1.1 System Interfaces 9 8

.................................. 5.1.2 New Classes Developed for System Implementation 101

... 5.1.3 Message Handling 103

5 3 Appiication ExPmpl~m~~moo~ommmoommooomom~mooooooo~oommooommoomo~omommommooomomwomooomoommmmeoomooommmo 104

.. 5.2.1 The Concurrent Design Roblem 105

... 5.2.2 Generation of Instance Features 107

.................... 5.2.3 Rule-Based Reasoning with Vimial Rule-Bases 107

... 5.2.4 Propagation of Changed Attribute Values 110

5.2.5 The Optimization of Design Parameter Values Using PSO 111

.... 5.2.6 The Optimization of Roduct Realization Process Alternatives Using GP 114

.. REFERENCES 127

viii

CaAPTER 1

INTRODUCTION

In this chapter, a bnef background introduction for thi s is provided. The

problems remaining in distributed database and knowledge base modeling for product

development are summarized. Based on these problerns, the objectives of this research

are outlined. The organization structure of the thesis is given at the end of this chapter.

1.1 Introduction

Development of a product is carried out through a sequence of processes inciuding

marketing, design, process planning, manufacturing, etc. With the advances of cornputer

technologies and information technoIogies in the new century, global cornpetition is

becoming the main characteristic of the marketplace. In responding to the increasingly

dynamic market requirements on product development tirne, cost, and environmentai

concerns, etc., many methodologies and computer-aided systems have been developeà

and used to improve the overd performance of products.

Among product development activities, design is the major process that affects the

performance of other down-stream Me-cycle phases. An effective design should be

identified based on customer requirements, with consideration of the down-stream

perforxnance of the design. Methodologies for improving product Ue-cycle performance

include Design for Manufacturing @FM) [Helander and Nagamachi 19921, Design for

Assembly @FA) Magrab 19971, and Design for Environment @FE) magrab 19971.

Design for Manufachiring @FM) is an approach that incorporates manufachuhg process

information into the design process. The basic objective of this approach is to reduce

manufacturing costs and lead-time by considering manufacturability aspects of the

product at the design stage. In Design for Manufacturing, information flows between the

process models of design and manufachiring. Similarly, Design for Assembly @FA) and

Design for Environment @FE) emphasize the assembly performance and environmental

impact of the product design respectively Magrab 19971.

To evaluate down-stream product life-cycle performance and use evaluation

measures to improve design, the concept of concurrent engineering was proposed

[Parsaei and Sullivan 19931. Mary studies in concurrent engineering focus on

incorporating all relevant dom-stream iife-cycle aspects into the design stage. In these

studies, the activities in dom-stream product development phases, such as production

process planning, manufacturing, service, and recycling, are handled concurrentiy with

the àesign process. However, the process of concurrent design is very cornplex, since it

involves dynamic information flows among ali related proàuct development processes.

Therefore, the concurrent design methods and twls that c m be used effectively to

improve product development We-cycle performance must be investigated.

To improve proâuct development efficiency and apply the methodologies mentioaed

above, many computer-based systems have been developed [Singh 19951. Cornputer-

Aided Design (CAD) systems help designers produce maable product designs easily

and perform design-related analysis efficiently. The effciency and productivity of the

design process are greatly improved using C A . systems. Cornputer-Aided Process

Planning (CAPP) and Cornputer-Aided Manufacturing (CAM) are used to assist process

planning and manufacturing activities respectively. Among these computer-aided

systems, Cornputer-Aided Design (C m) is widely used for product modeling by 2D and

3D geometry as well as in animation. CAD databases can be regarded as product

geometric models and can be used to generate down-stream product development data

such as manufachiring processes and assembly processes.

Roduct design is a complex process that involves considerable knowledge and

decision-making. Techniques in Artificial Intelligence (AI), such as expert system, fuzzy

logic, neural networlcs, genetic algorithm, etc., have been applied to cornputer systems to

improve product development capabilities and efficiency.

Of all the issues relatecl to cornputer-aided product development, the modeling of

product databases and knowledge bases is one of the most important. Feature-based

product modeling is one of the approaches used in cornputer-aided systems [Gardan and

Minich 1993, Xue and Dong 19931. The concept of feature was originaiiy used for

representing geomeûic primitives, such as blocks and holes, for modeling product

geometry [Shah and Mantyla 19951. In Xue's previous work, the concept of feahin was

extended to model other product life-cycle primitives, including design primitives and

manuf'turing primitives, for improving product life-cycle modeling efficiency mue and

Dong 1993, Xue et al. 19991. UnlüEe CAD systems in which mainly geomeaic

information of a product is modeleci, the feahue-based product life-cycle modeling

appmach c m build product descriptions in a more natuml way. It uses not only the

geometric primitives, but also non-geometrk properties and the relations among these

properties.

Object-oriented databases model products more efficiently than dational databases

because of the properties of inheritance, encapsulation, etc. Thus, a product family can

easily be modeled by a class and its sub-classes.

In most presentiy developed compter-based product development systems, the

databases and knowledge bases are modeled at the same location. In a concurrent design

system, all dom-stream aspects of product development, such as marketing, design,

manufacturing, and service, must be considered concurrently; however these activities,

usually take place in different geographical locations. It is very difficult to implement

concurrent design without the assistance of an effective computer system that can handle

distributed databases and bowledge bases.

Current distributed rnodeling and computing techniques fonis on integrating the

objects developed on different platforms (such as UNE, MS Windows) using different

computer languages (such as C, CH, Java) into the same environment. Typical

distributed. object modeling methods include Distributed Component Object Mode1

@COM) (Grimes 19971, Cornmon Object Request Broker Architecture (CORBA) [Otte

et al. 1996 1, and Remote Method Invocation 0 WcCarty and Cassady-Dorion 19991.

These methods provide interoperability between applications on different machines in

heterogeneous distributed environments.

The recent development of multi-agent systems provides another approach for

associating separated databases and knowledge bases and their related modeling systems

[Nome 19991. Multi-agent systems are software societies that hanàle al1 related tasks

through communication, negotiation, coliaboration and other activities among relevant

agents. In order for a multi-agent system to be successfd, the agents must be highiy

intelligent.

Despite considerable progress in cornputer-aided systems for assisting product

design and manufacturing, problems still remah in modeling distributed databases and

knowledge bases for concumnt engineering design. These problems are summarized as

follows.

Problems in distributed database modeling

In distributed object modeling approaches including DCOM, CORBA, and RMI,

association of the objects at different locations is predefhed by compiled cornputer

programs. However in the product development process using concurrent design

methodology, product realization process alternatives are generated and evaluated

dynamicaiiy in order to identify the best solution. The distributed databases must be

associated in a dynamic manner.

Distributed object models are primady used for representing objects, which are

described by data and fuactions to access these data. Collaboration of these objects is

M t e d to only the &ta and functions. Since the cornputer-based product development

process involves more sophisticated descriptions such as composing elements,

qualitative relations, dependency relations, and constraints, modeling of these

descriptions is also needed. These descriptions are usually associated with distributed

àatabases.

Problems in distributed knowledge base modeling

Multi-agent systems aim at decomposing a problem into many sub-problems and

using the knowledge of different agents to solve the different types of sub-problems.

The collaboration of agents is usually conducted through brokers called mediators. In

a multi-agent system, an agent is associated with certain knowledge for solving

problems of a certain type. In the product development pnness, since different

knowledge bases, including design knowledge bases and manufacturing knowledge

bases, are required ta access the same database, a more flexible mechanism is

required to dynamicaüy select and combine knowledge bases at dinerent locations.

In existing distributed systems, databases and knowledge bases are not well

integrateà. Databases are usualiy modeled as objects or relational databases.

Knowleàge bases are usually described by IF-THEN d e s . The feature-based product

modeling system provides a new approach for integrating the databases and

knowledge bases. It introduces feahirrs that are described by both qualitaiive

descriptions for symbolic reasoning and quantitative descriptions for numerical

calculation mue and Dong 1993, Xue et al. 19991. In existing knowledge-based

concurrent design systems, de-based reasoning is conducted only at one location. To

incorporate distributed databases and knowledge bases for concurrent design, a

distributed inference mechanism must be developed.

3). Problems in concurrent design with distributed databases and knowledge bases

Concurrent design has been recognized as a method that cm lead to lower production

costs, less lead-tirne, and better life-cycle performance. It has been widely accepted

as an engineering philosophy. Many cornputer-based twls have been employed for

modeling concurrent design [Reidsema and Szczerbicki 19971. Most of these twls,

however, can handle only centralized databases and knowledge bases. A concurrent

design tool that employs distributed product databases and knowledge bases wili

hcrease the advantages of a concurrent design system.

There is still little information on how a concurrent design candidate can be modeled,

evaluated, and modified dynamicaliy in terms of using a distributed database and

knowledge base modeling system.

In order to address the problems stated in Section 1.2, the objectives of this research

are summarized as follows:

1). To develop a distributed database and knowledge base modeling system with the

functions required for concumnt engineering design. These functions are:

The distributed database and knowledge base modehg system is open and dynamic.

The product modeling databases and knowledge bases, representing product

development activities, are associated by the Intemet. Each database model can be

included in or excluded from the system by connecting the model to the system and

disconnecting it fiom the system. This function provides choices of available

&tabases for concurrent design.

Product descriptions at different locations are kept consistent all the tirne by a relation

maintenance mechanism. This mechanism is the engine that propagates any data

changes to al1 related data, no matter where these data are located. It is critical to the

success of the system in concurrent design, since any value changes in design

databases WU lead to changes in ail down-stream product development modeling

databases.

Distributed knowledge bases should be integrated and used to access the same

databases. By means of such integration, knowledge at remote locations can be used

to assist local product modeling processes. To accommodate rule-based reasoning

into the distributed concurrent design system, a distributed inference mechanism must

be developed to conduct product development activities concurrently.

2). A concumnt design system must be developed, based on the distributed database and

knowledge base modeling approach. This system should have the following

functions:

Alternative product reaiization processes can be modeled effectively so that the

concurrent design system cm generate and evaluate the alternatives.

The optimal product realization process is reached through optimization conducted at

two different levels. Parameter optimixation is employed to identify the optimal

parameter vaiues for an alternative product realization process. Based on the results

of parameter optimization, alternative optimization is carried out for identifying the

optimal product realization process. Through these processes, ail relevant product

development activities interact dynamically to reach the goal of concurrent design.

1.4 Overview of This Research

This research is composed of two parts: development of the distributed database and

knowledge base modeling system, and application of this system in concurrent design.

The distributed database and kuowledge base modeling system can be used to mode1 and

integrate product development Mecycle activities that are geographically distributed.

The concurrent design system is used to iden- the optimal product realization process

alternative based on the distributed database and knowledge base modehg approach.

In the distributed database and knowledge base modehg system, different product

development activities are modeled in different computers at different locations. Al1 the

computers are connected to the Internet. Each cornputer is represented as an Intemet

node. The communications among these nodes are conducted through messages over the

Interne t .

Distributed database modeling is the core part of the distributed database and

knowledge base modeling system. The product databases, i.e., the product life-cycle

aspect models, are built using primitives called features. Features are described at two

different levels, class level and instance level. Features preserved in remote nodes are

cailed virtual features. Virtual class feahues can be used to generate a i e instance features

at the local node. Virtual instance features are actual product modeLing databases

preserved in different remote nodes. These product data cm be accessed fiom the local

node. The relations among viftual instance features and true instance features can also be

defined to establish relations of the related databases. The relations can be modeled at

both class feahue level and instance feature level. Through these relations, data changes

in one node can be propagated to other related nodes automatically by a relation

dependency maintenance mechanism. This fiuiction is critical to implementing

concurrent design methods.

h knowledge base modehg, knowledge is represented by d e s which are organized

into separated de-bases. The de-bases preserved in remote accessible nodes are c d e d

mai de-bases. Virtual rule-bases c m be selected for reasoning at the local node

together with hue de-bases. To assist in p d u c t developrnent, eafh instance feature can

be associated with a number of de-bases including v h a i de-bases. The product

databases can be generated and modified through nile-based reasoning. Since the product

databases are distributed at different locations, a distributed inference mechanism is

developed to automaticaiiy activate inference processes in remote nodes.

Based on the distributed database and knowledge base modeling approach, a

concurrent design system was developed. In this system, a product realization process

alternative is modeled by a coilection of Intemet node names that represent different

product development activities such as design, manufachiring, and assembly. If the

number of alternatives is small, the alternatives can be generated using an exhaustive

method. When the number of alternatives is large, the optimal alternative can be

identSed through a two-level optimization process, parameter optllnization and

alternative optimization. Parameter opthkation is conducted to obtain optimal values of

parameters for the alternatives. Particle Swann Uptimization (PSO) [Kennedy and

Eberhart 19951, a global optimization method, is used for parameter optimization. Based

on the results of parameter optimization, alternative optimization is conducted at the

second level to identify the optimal alternative. The Genetic Programming methoù (GP)

[Koza 1992, Angeline 19941 is used for alternative optimization.

1.5 Organjzation of This Thesis

There are seven chapters in this thesis. Chapter 2 starts with a detailed literanire

review that provides the research background of this work. This review covers topics

related to the work presented in this thesis, including design-forX techniques,

concurrent design methods considering alI relevant life-cycle aspects, product modeling

approaches, distributed systems for concurrent engineering design, and Internet-based

applications in concurrent design. The existing techniques that were used in this research,

including feature-based modeling, object-onented programming, distributed systems, the

Intemet, and engineering optimization, are then bnefly introduced. Since this resereSearch is

based on a previously developed system - a featwe-based intelligent design system mue

et ai. 19991, the structure and key functions of this system are described in this chapter.

Chapter 3 gives a detailed description of the distributed database and lcnowledge

base modeling system. First, the architecture used for integrating geographically

distributed databases and knowledge bases through the Internet is introduced. Then

details of distributed database modeiing and distributed knowledge base modeling are

described. As one of the core functions needed for concurrent design, distributed database

modeling is emphasized in this chapter.

Starting from the basic detinitions of vunial features, including virtuai class features

and virtual instance features, the rnodeling techniques of virtual features and data

relations involving virtual features are presented in detail. A mechanism for maintainhg

data dependency relation is then discussed by introducing an automated data propagation

algorithm and an example.

For knowledge base modeling, the vimial de-base concept is introduced.

Techniques for using vimial de-bases are described. A distributed reasorhg algorithm

is then discussed.

Chapter 4 presents a concurrent design system. This system is based on the

distnbuted database and knowledge base modeling approach described in Chapter 3. The

concurrent design system provides the functions of modeiing product realization process

alternatives and generaring the optimal concurrent design solution. Two levels of

optimizations are employed ia this system. First, the design parameter values are

optimized by Particle Swann Optimization (PSO). Then the product realization process

alternatives are optimized using Genetic Programrning method (GP). These methods are

described in detail in this chapter.

Chapter 5 discusses the issues in the impIementation of the distributed database and

knowledge base moàeling appmach and the concurrent design system. These issues

include data structures, class definitions and message handling.

Chapter 6 presents examples to illustrate the application of the distributed database

and knowledge base modeling approach and the concurrent design system.

Chapter 7 summarizes this thesis and gives conclusions. Possible future mearch

directions are also discussed in this chapter.

RESEARCH BACKGROUND

This chapter presents a general review on subjects relevant to the research introduçed

in this thesis. Subjects include product modeling and development, cornputer-based

systems for prodwt development, and distributed modeling techniques for product

development. As the basis of this research, the previously developed feature-based

intelligent design system [Xue et al. 19991 is htroduced. Techniques used in this research

are also briefly described.

2.1 Litemture Review

Product development is a complex process that involves human intelligence and

available techniques. To improve the efficiency of product development and the

performance of product life-cycles, many product modeling techniques and cornputer

systems have been developed. Recent advances in computing technology and the Internet

provide new approaches for developing and implementing more robust computer-based

systems to assist product developrnent Such systems can play an important role in

satisfying the requirements of the global market today.

2.1.1 Product Modeling

In computer-based product development, the techniques of product modeling are

important in improving the effectiveness of product development systems. CAD systems

have been widely used for modeling product geometry [Singh 19951. Three types of

geometric models are usuaiiy used for representing a product. They are the wireframe

model. the surface model, and the solid model. The wirefiame model builds a product

using its boundq lines and curves [Lae 19851. This model is simple but arnbiguws in

geometry interpretation. The surface model describes a geometric model using boundq

surfaces, such as plane surfaces, suffaces of revolution, etc. Mortenson 19851. The

surface model visuaiizes products better than the wireframe model. The solid model

provides more information of product geometry including topologicai relations among

geometric elements. Primitives such as spheres, cylinders, cones, blocks, etc. are used to

buiid a solid model pan et al. 19871. The solid model takes much more computer

memory than the other two models, but is the most suitable for product gwmetric

modeiing with a computer-based system.

The solid model has been used by conventional CAD systems for modeling product

geometric information. However, modeling of product geometry is only one aspect of

product modeling. 1t should be possible to mode1 more information, such as generic

relations among related products, non-geometric information, etc. For such purposes, the

feature model has drawn the attentions of researchers [Shah and Rogers 1988, Xue and

Dong 1993, Gardan and Minch 1993, Shah and Mantyla 19951. A feature is a description

necessary for modeling one aspect of a product. The feaîure model catches not oniy

geometry information, but also non-geometry information of products. More details about

feahue-based modeling are introduced in Sections 2.2 and 2.3 of this chapter. F e a m s of

a product can be classified into different categories. Examples are material features,

manufachuhg features, technological features, and geometric featwes [Shah and Rogers

1988, Vickers and Swanson 1988, Shah 19891. In feature-based product modeling

research area, feature recognition is an approach for extracthg the geometry fkom the

CAD database for planning production processes menderson 19841. Design-by-features

is another approach for modeling a product using manufacturing features at the very

beginning [Shah and Rogers 19881. An international product modeling standard. STEP.

has been developed to integrate the different product life-cycle models, ushg a universal

computer language [Gu and Chan 19953.

Research on functional modeling has also been reported [Nagarnatsu et al. 19991.

This research showed that the functional model has the potentiai capability of provicling

dynamic functional performance of products. It is suggested that the functional mode1 be

composed of block diagcams for explaining the hinctions, and mathematical models for

simulations. This method is still in the early developing phase.

Product database modeling is one of the important issues in product modeling,

especially for computer-based modeling systems maldron et al. 1992. Shah and Mantyla

19951.

Conventionally, relational data models are widely used because they are easy to leam

and easy to use. However, engineering product data are complex in terms of relations

among the element entities. The relational data mode1 has difficulty in modeiing such

relations [Seilonen 19951.

Object6ented data modeling is a data modeling rnethodology proposed as an

alternative to the relational modeling technique [Hughes 19911. The object-onented data

modeling technique le& to more maintainable and understandable models that

correspond more closely to real world entities and Sen 19941. The application of the

object-oriented database modeling in product development has been proven effective

[Xue and Dong 1993, Yadav 19991. The object-oriented database modeling technique is

often combined with feature-based product modeling technique to improve the

effectiveness of product modeling [Xue and Dong 1993, Yadav 19991.

In some cases, knowledge-based techniques are introduced to help manage the

databases. Stonebraker proposed an active database management system calied active

DBMS [Stonebraker 19921. Active DBMSs are databases that automatically carry out

triggered actions when certain situations arise. The active behaviors are specified by

production d e s integrated in the system.

In the work of Bassiliades and Viahavas [f997], a nile integration scheme in an .

object-onented database management system (OODBMS) was presented. An active

knowledge base system cailed DEVICE resulted f'rom this work. Domazet and San

119971 described a system that integrates an expert system with a passive object-oriented

management system to create active behavior in a single workspace environment. This

system is regarded as an active database semer. Rouer and Eck [1999] presented an

approach to a shared knowledge base for product development caîied the Active

Semantic Network (ASN). The ASN is an intelligent knowledge base that adapts

conventional database functions to the panicular requirements of modem cooperative

product design.

product &velopmept involves a~tivitie~ such marketing, design, manufacnving,

and sennce. ~ m a n g aese activities, design is the primary process that affects the

pefio-ce of the p&~t in all dom-strearn life-cycle aspects. Eighty percent of

- u f a e g k i s i a s result dinctly fiom the design stage m e t et al. 19991. In order

to i m p v e the competitjveûess of products, a number of product development techniques

that conc-nw consiw dom-strerun aspects of the product development process have

been developed.

Design for ~ ~ ~ u f a ~ t l l r h g (sometimes called Design for Manufechuability)

Belander and N a g m ~ b i 1992, Magrab 1997, met, et al. 19991 is widely accepted as

an approach for crrathj product designs that eases the manufachiriog task and reduces

-uf=nuing costs. Conventionally, designers must be provided with up-toaate

bowledge of manufacturing processes, tools and fktures in order to improve the

efficienc~ of the producg nalization process. Since manufacturing processes are cornplex,

designes often have difficulty in fully considering d the requiremenu of

manufmrnability. ~ h a t is where the DFM systerns are placed. To empbasize different

aspects of product developrIlent such as assembly, service, and environment at the design

stage, techniques of &$i@I for Assembly @FA), Design for Serviceability (DFS), and

m s i p for Eneonment @FE) have also been developed (Magrab 19971.

Sharing many sua r i t i e s with Design for ''X" in t e m of the concepts and

objectives, concurrent design (or concurrent engineering) has been recognized as an

approach to improve tpe quality and efficiency of product development. Concurrent

design refem to the s~ultaneous design of a promict and al l its related processes in a

manufm*g systea f i well as related processes in later phases of the product's life-

cycle Ipmaei and S a v a n 19931. This means that all information flows should be mufti-

direciional among the dwgn processes and al1 related processes. Since 1980s, the

ben&& provided by concurrent design philosophy have been recognized and many

indusaial applications heve been developed (Pemeli et al. 19891.

There are two approaches to implementing the concurrent design practice: the team-

based approach and the cornputer-based approach parsaei and Sullivan 19931. The team-

based approach is human-oriented. The members of the team are fiom aU related

fiinctional areas. They can therefore contribute to the design of products and proasses by

identifying potentiai problems early and avoiding a senes of costly reworks [Pemeil et al.

19891.

Though it is easy to implement, this approach has apparent shortcomings: the

difficulty and cost of managing the team, and team members' limited knowledge. So a

team-based approach also needs the assistance of computer systems to enhance the

team's performance. The cornputer-based approach is effective in integrating al1 related

process models of product development into the same environment. With the increasing

abiiity of handling large amount of information at high speed computer-based systerns

are playing increasingly more important roles in implementing concurrent design.

2.1 -3 Computer-Based S ys tems for Product Development

Among cornputer-based systems in product development, Computer-Aided Design

(CAD) is one of the most widely used tools currently avaiiable to the industries.

Conventional CAD systems are mainly used for geometric modeling and related

computation and analysis [Singh 19951. Even though it bas been very successful in

assisting designers to produce drawings and graphics in a fast and accurate way. CAD

systems still have difficulties in handling non-geometric information about products.

Computer-Aided Process Planning (CAPP) and Cornputer-Aided Manufacturing (CAM)

are systems to automate process planning and other manufactwing activities [Singh

19951.

With the development of Artificiai Intelligence (Al) techniques, knowledge-based

systems have been used to improve the efficiency of product development and the

performance of the product Me-cycle [Court 1998, Judson et al. 19991. Expert system is

one of the techniques often used in product development. To improve the performance of

conventional CAD systems, research has been conducted to introduce knowledge-based

systems to the CAD systems [Yoshürawa 1988, Anderson and Crawford 1988, Penoyer et

al. 20001. Penoyer et al. believe that future CAD systems should be open to integrating

Imowledge-based systems for ai l aspects of the product Iife-cycle [Penoyer et al. 20001.

Knowledge-based systems are also used in other computer-based systems to assist in

rnanufacturing, assembly, etc. iKn,ll et ai. 1989, Colton 19931.

Recentiy, more research on integrating knowledge in product development has been

done. Court [1998] identitied important issues to be consider& in order for knowledge or

information to be successfully integrated into hmue product development. These issues

include the media in which information and knowledge are provided, the manner in

which information and knowledge are presented, and the location and administration of

knowledge and information. Xue et al. [1999] presented a method for integrating

knowledge bases with feature-based product databases for intelligent concurrent design.

In Xue's previous research, an integrated and intelligent system was developed for

modeiing the databases and knowledge bases used at different product development

phases B u e and Dong 1993, Xue and Dong 1994, Xue et al. 1996, Xue 1997, Xue and

Dong 1997, Xue et al. 19991. In this research, product Me-cycle aspects are modeled by

aspect primitives called features, inc1uding design features such as mechanisrns and

components, manufachiring features such as holes and slots, and so on mue and Dong

19931. A de-based system was developed to generate product life-cycle aspect models

automaticdy through rule-based reasoning [Xue and Dong 19941. An optimization

model was introduced to identiQ optimal design considering both functional performance

and production cost [Xue et al. 19961. The optimization model was improved based on

genetic algorithm and simulated annealhg to identify the optimal product realization

process alternative and its parameter values mue 19971. A design feahue coding system

and a manufacturing feature coding system were developed to organize large featwe

libraries and iden* appropnate features during the product development process [Xue

and Dong 19971. Judson et al. [1999] discussed chailenging issues of introducing

knowledge-based engineering into an interconnected product development process. Even

tbough a Design Structure Matrix @SM) mode1 was proposeci to map the knowledge thst

might be involved at the system interaction level for several components, more dynamic

methods are still needed for such kxmwledge-based applications.

2.1.4 Integration of Distributed Product Databases and Knowledge Bases

In most of the presently developed computer-based product development systems,

the product databases and knowledge bases are modeleci ai the same location. However

product development activities, such as marketing. design. manufacturing, and service,

usualiy take place at different locations. To take advantage of globally available product

development resources, integration of these separateci product modeling databases and

knowledge bases becomes necessary in product development.

The research of distributed database modcling often focuses on integrating the

objects developed on dflerent platforms (such as MS Windows, UNIX, and Macintosh)

using different computer languages (such as CH, Java, and Visual BASIC) iato the same

environment. In order to manage distributed databases, integration of distributed database

management systems has k e n studied [Ozsu et al. 19941.

Research in this area also includes works on methodologies of collaboration and

coordination of distributed product information management systems and frameworks

that help designers make decisions. The SHARE project developed by Cutkosky et al.

[1993] allows designers to gather, organize, and communicate design information over

computer networks to establish shared understandhg of the design. Groupware

techniques are used in the SHARE project. Sriram and Logcher [1993] developed a

computer-based design system that provides a shared workspace where multiple

designers work in separate engineering disciplines. A global control system is used to

solve problems of coordination and communication. A system proposed by Bliznakov et

al. LI9951 aliows a designer to indicate the s t a t u of the tasks assigned so that other

designers can foliow over the computer network. This system incorporates a hybrid

mode1 for design information representation. Adamides [1995] presented a distributed

active-resource coordination fiamework for a class of flexible manufacturing systems.

Cooperative behavior is achieved by resolving conflicts and by maxim.izing the use of the

system's resources. This franiework relies on a timed Petri net representation of the

production responsibilities of each active resource in the system. Pahng et al. [1998]

proposed a fhamework for modeling and evaluating product âesign problems in a

cornputer network-oriented design environment. Design problems are decomposed into

modules (such as a cost module) that represent different aspects of the probletm. The

modules can be distributed. A module c m provide services to other modules through

standard communication protocol.

Research of distributed howledge base modeling has been conducted for developing

multi-agent systems to solve problems through collaboration of different agents with

dinerent types of howledge wuhns and Sin@ 19981.

Some commonly used methods that provide interoperability between applications on

different machines in heterogeneous distributed environment have become industrial

standards. Typical distributed object modeling methods include Distributed Component

Object Mode1 @COM) [Grimes 19971, Common Object Request Broker Architecture

(CORBA) [Otte et al. 19963, and Remote Method Invocation (RMI) WcCarty and

Cassady-Donon 19991. These different distributed object modeling methods have been

compared WcCarty and Cassady-Dorion 19991.

2.1.5 Applications of Multi-Age nt Systems in Product Development

Multi-agent systems are another approach that can be used for product development

in both centralized and distributed product development environments. Multi-Agent

Systems, also called Intelligent Agent Systems, are software systems that are composed

of program modules with intelligence and autoaomy. These modules, regarded as agents,

may collaborate dynamically to achieve the objectives of the systems morne 19991.

Many applications have been developed using the multi-agent system approach for

solving engineering problems [Shen and Nome 19991. Reidsema and Szczerbicki [19971

considered the complexity of implementing concurrent design that involves different Me-

cycle aspects of product development. They suggested that multi-agent distributed

systems should be used as the core concept in developing a concurrent engineering

concurrent design problems can be decomposed into

among different agents with the abilities to solve these

cooperation among agents help achieve the goals of

design system. Complicated

subtasks that are distributed

problems. Coordination and

l

concumnt design, such as minimiring lead time. reducing manufacturing costs, and

ensuring longer product life span.

An experimental multi-agent environment for engineering design was introduced by

Shen and Barthes [1995] using techniques of distributed aitincial intelligence. In this

system. various design activities are modeled by a population of asynchronous cognitive

agents. The agents communkate through a local network or the Intemet. AU agents in the

system are autonomous and independent Users of the system are regardecl as human

agents who are integrated into the design environment.

Danesh and Jin 119991 introduced an agent-based decision network framwork for

concurrent design and manufacturing. The design process is modeled using a decision-

based approach. There are two major models in this fraaework: the decision-based

design process mode1 and the condition-based negotiation model. These models are

introduced to help team members consider other members' decisions when rnaking their

own. Coherent design decisions among designers can therefore be achieved by explicitly

representing and capturing individual design decisions and negotiation processes. Each

designer is associated with an agent that is facilitated with the two models. This

framework was found to be effective in integrating design and manufacniring processes.

Also for collaborative product development, the mechanism of agent-based

workflow management was proposed to facilitate the team working in a coilaborative

product development framework [Huang et al. 20001. In this framework, a web-based

decision support system is used by team members who are geographically distributed.

Agents are representatives of their human users. Each agent is assumed to be responsible

for one work activity of the project. A limitation of the framework is that only static

dependency relations, such as predehed predecessors and successors between agents,

can be used in this system. Agent-based applications for product development also

include information integration and collaborative service support in ali aspects of a

product life-cycle [Gadh and Sonthi 1998, Tso et aI. 19991.

2.1.6 Intemet-Based R d u c t De velopment

Recent advances in Intemet technology provide new appmaches for integrating the

separated databases and knowledge bases into the same environment [Aiies and

Vergottini 1997, Huhns and Singh 19981. Intensive research has been carried out on

Internet-based or web-based product development. Nam and Engelstein [1998] provide

a brief overview of tools that could possibly be used to bring concurrent engineering to

fiuition. These tools include E d , Web sites, VRML (Virtual Reality Moâeling

hguage) , FîP (File Transfer Pmtocol), Multimedia, and Groupware.

Mendel [19991 predicted that the product data management software business would

be reshaped by the Internet techwlogy. Roy et al. [1997] reported a prototype framework

of web-based collaborative product development. In this framework, all designers

involved can collaborate through shared web pages and VRML models. Product

modeling databases and the VRML-based geometric models are associated with shared

web pages. Designers can access these data through hyperlinks. Adapalli and Addepalii

Cl9971 described different ways of integrating manufacturing process simulations by

means of the world wide web. Techniques used in this research include H"ïTP/CGI, java

sockets, etc. It was concluded that perfoxming manufacturing process simulations over

the web is possible, even though some problems, such as the immaturity of related

techniques, remain to be solved.

Methods for transmitting and viewing CAD data and engineering information

through the Intemet must be studied in order to develop web-based applications for

product development. With this concem in mind, Kim et ai. [1998] discussed the

possibility of storing STEP data using the Virtual Reality Modeling Lmpage (VRML)

so that the product can be viewed in interactive 3D on a number of platforms using the

htemet and World Wide Web. Formaiisms for storing STEP data in an object-oriented

database schema and converting STEP data to VRML are described. The prototype

system, called CyberView, can provide support for members of distributed concurrent

engineering teams to share and exchange 3D information. For the purpose of developing

a web-based DFX (Design for X) sheli that is intended to be used to develop DFX tools,

Huang et aï. [1999] studied the technique of web-based product and process data

modeLing. A method called bills-of-materials is used for outlining product structures. A

bill-of-materials is a list of the items or materials needed to produce a parent item. This

method cannot mode1 relationships between components and parts of the products

effectively.

To support product modeling and collaborative design activities, Lee et aI. [1999]

presented an approach for web-enabled feature-based modeling in a distributed design

environment. In this approach, there is a neutral feahue model in the server. This model

provides a generic naming scheme for naming consistency, so that the relationship

between geometric entities of the server and clients can be maintained.

In product development, the life-cycle support of products c m be enhauced by the

Enterprise-Web portal in terms of information and resowces sharing and management,

according to Rezayat [2ûûûa]. Rezayat also discussed problems that the web-based

technology, especially XML (extensible Markup Language), is used for defuiing

interfaces supporting knowledge capturing, storing, and sharing through out the product

development M e c ycle [Rezayat 2ûûûbI.

Another interesthg prototype system caiied WebCAD has been developed to allow

designers to define the geometry of parts [Kim et al. 19991. The basic objective of this

project is to provide manufachukg services, especially rnachining processes, through this

tool over the Intemet. In other words, this is a design interface that produces a high

probability of success in respect to manufacturability of the design.

Based on the similar ideas, Higgins and Langrana [1999] developed a web-based

user-fnenâiy virtual design and fabrication system using the imowledge-based approach.

Web technology is also used for communication and sharing information among

designers during product development [Ahn et al. 1999, Roy and Kodkani 2000, Chen

and Jan 2000, Domazet et al. 20001. Product development techniques such as design for

manufacturing @FM) can be enhanced by web technology Park and Baik 1999, Jiang

and Fukuda 19991. Product data exchange is also a field for applications of htemet

technologies (Zhang et al. 2000].

Concurrent product development is a subject involving a wide range of concepts,

methods, and technologieS. The advantages of concumnt design have been recognized,

but implementations of concumnt design systems need to be further explored Feature-

based product modeling method promises to be effective in product development

systems. Muiti-agent systems can reasonably be regarded as powenul tools for

developing future complex product development systems.

However, the difticulties in developing 'cintelligence" have limited the applications

of multi-agent systems in achial product development system implementations. Most of

the Intemet and web-based systems for product development focus on browsing product

geometric descriptions from remote product databases and exchanging idonnation

among designers. The real advantage of the htemet technology is the properties of an

open network and real time communications. Therefore Intemet-based product

development systems can go one step m e r in integrating distributed, especially

geographicaiiy distributed, product development activities in ail aspects of product life-

cycle.

23 Related Techniques

In this research, feature-based modeling was used as the approach of modeling

product and related processes. The feature-based distributed modeling system was

implemented using an object-oriented programrning technique. VisualWorks version of

Srnalltalk, an object-orienteci programming language, was used in this research.

Distributed modeling was the basic objective of this research. To improve the quality of

product development, engineering optimuation methods including Genetic Rogramming

(GP) and Particle Swarm Optimization (PSO) were used in idenwing the optimal

product reaüzation process. These techniques are briefly introduced in this section.

Conventional solid modeiing is efficient for defining the geometry of a product.

However there are two major deficiencies, according to Shah and Rogers [19881:

Roduct dennition is incomplete: Roduct tolerance, surface finish, surface

treatment, and other descriptions apart fiom geometry, carmot be reP&sented

and stored.

Roduct dennition is at a lower level: The product data are basically for

displayhg the image of the product. Higher level properties such as functions

cannot be defined.

In order to use the product mode1 to develop applications for manufacturability

evaluation and process planning, feature-based modeling was introduced Based on Shah

and Rogers [1988], a feature is a set of information related to a description of a part or a

product. The description may be used for design purposes, marketing requirements,

manufacnuiog process developmeat, assembly, inspection, and even administrative

purposes. By using feature-based modehg, the product models can be built using

features stored in the libraries.

There are different classifications of features. Based on the information sets related

to the p d u c t engineering, there are fom feahues, material feahues, precision features,

and technological features, etc. [Shah and Rogers 19881. Features c m also be classified

into design features, manufacturing features, assembly features, etc. according to the Me-

cycle functions of the features [Xue and Dong 19931.

Feature-based modeling provides a means for building product databases at multiple

abstraction levels. According to Chung et al. [199û], feature-based modeling is efficient

in the foilowing ways:

Human intent cm be expressed easily by rnanipulating both high and low

ievel features directly.

Feature databases aiiow the reasoning system to perform product development

tasks such as manufacturability evaluation, function anaiysis, and design

optimization.

Feature databases can contain howleàge to facilitate more applications such

as CNC programming.

Some applications of the feature-based approach in produa development were

introduced in Section 2.1.1. A more detailed explmation of feature-based modeling

concept will be given in Section 2.3.

2.2.2 Concurrent Engineering

Conventionally. product development follows a sequential development cycle, as

illustrated in Figure 2.1 (a). The cycle begins with a need based on market anaiysis or

research and development results. Then the product is developed step by step through

design. process planning, manufacniring, assembly, and shipping. Io this approach,

design concems are mainly focused on the functionality and performance of the product.

Very few requirements of down-stream life-cycle phases are considered, since there is no

dialogue established between design and down-stream processes. However most down-

Stream performance of a product is determined at the design stage. For example about 70-

8046 of rnanufacturing productivity can be determined at the design phase [Su& 19901.

In a global cornpetitive economy environment, a product with high quality. low cost,

and less environmental impact can be achieved with a new product developrnent

philosophy called Concurrent Engineering (CE) [Kusiak 1993, Prasad 19961.

In developing product using a concurrent engineering or concurrent design approach,

all related processes such as marketing, design, process planning, manufacturing.

assembly, and recyciing are considered concurrentïy, as illustrated in Figure 2.1 (b). The

design activities in concurrent engineering have been widely extended [Hyeon et ai.

19931 to the related processes. In other words, down-stream requirements should be

considered as early as possible, dong with the structural and huictional requirements of

the products. To implement this approach, organization-wide, even global-wide

information integration is required.

(a) Sequential Roduct Development

users -

Users I
Market analysis

R & D Manufacturing

Market analysis
R & D

(b) Concwrent Product Development

Figure 2.1 Sequential and Concumnt Roduct Development [Hyeon et al. 19931

Cumntly there are two basic approaches to implementing concurrent engineering

practice: the tearn-based collaboration approach and the computer-based development

approach. The former approach emphasizes information flows among designers and

individuals from al1 related areas. The multifunctional team is critical for effective

implementation of the concurrent development of products. The information flowing

among team members can be assisted by cornputer systems. The cornputer-based

approach enables design selection, justification, and optimization with respect to aU

aspects of a product's life-cycle. Therefore this approach emphasizes direct cooperation

and coordination among design and aU related dom-stream processes that are

I

Pmcess
planning + Maaufacturing

A series o f
engineering

change orders

4
I

represented as models to be handled by computea. Knowledge-based approaches are

often employed in a computer-based concurrent engineering environment [Court 19981.

With the rapid pmgress of Internet techniques, more attention has been paid to

developing Intemet-based distributed systems for concurrent engineering Boy et al.

19971.

22.3 Object-Oriented Programm ing and Smalltalk

Rogramming languages are traditionally composed of two parts - the data, and

operations on the data. For a procedural programmiag language U e C, functions and data

structures are the basic elements. Object-onented programmiag groups operations and

data into modular units called objects, and lets you combine objects into sa~ctured

networks to form a complete progrm. In an object-oriented programming language, the

objects and object interactions are the basic elements.

The four basic characteristics of object-oriented programming are Abstraction,

Encapsulation, Polymorphism, and Meritance. Abstraction refers to the essential

characteristic of an object that distinguishes it from other objects. Encapsulation keeps

the implementation of an object out of its interface. In other words, details of

implementation are hidden from other parts of the programs. Encapsulation not only

protects an implementation from unintended actions but also increases the modularïty of

the program. Polymorphism refers to the abiiity of different objects to respond, each in its

own way, to identical messages. The main benefit of polymorphism is that it simplifies

programmhg interfaces. Iustead of creating a new name for each new function to be

added to a program, the same names can be used by many objects. Inheritance is the

feature that an object can be defined based on an existing object and the characteristics of

the existing object are passed on to the new object automatically. Inheritance clarifies the

logic relations of objects. This property also brings benefits such as reusing code and

delivering generic huic tionality .
Object-oriented programming techniques are implemented using the concepts of

class and instance. Classes are genenc abstractions of physical objects with similar

characteristics. An instance is an object with specinc amibutes. An instance is created

using a class as the template. Inheritance is implemented by class-subclass relation

&finitions.

Available objectaientesi programming languages include Smailtalk. C++, Java, etc.

Smalltaik, as a pure object-orïented programming language, was developed in the late

1970s [Goldberg and Robson 1983, Hopkins and Horan 19951. The S d W system has

two aspects: the programming language aad the programming environment. Smaütalk

was one of the first systems to use graphical interfaces to help the user navigate the

development system. In the Smalltalk environment, everything is an object. AU the

fuoctions of the system including file handling, compiling, debugging, window

rnanaging, etc. are defmed using classes and their instances. In the latest versions of

Smaiitalk, a large number of classes have been provided for developing applications.

New classes can be defmed as subclasses of the existhg classes.

There are several dialects of Smalltalk such as VisualWorks, SmalltallcAgents,

VisualAge, etc. VisualWorks has been relatively widely used. The syntax of Smalltalk is

descriptive and the d e s of the syntax are simple. This feature helps shorten the tirne of

developing Smailtalk applications. It has been proven that Smailtalk is effective for

developing resewh-oriented application prototype systems [Xue et al. 19921.

2.2.4 Distributed S ystems and t he internet

A distributed system is a collection of independent cornputers associated through

both hardwares and softwares. Generdy. a distributed system means a close coordination

among components at different sites wu 19991. Disûibuted systems are usually

composed of distributed hardwares, distributed data, and distributed controls. A

distributed system includes nodes that perform some aspects of computations. A node

may be a personal computer, or a mainfiame computer. The nodes of a distributed system

are usually geographically distributed. The node you currently use is regarded as the local

node and all others are remote nodes. The power of a distributed system denves from the

cooperation of the individual ndes that perform different functions.

The nodes in distributed systems are connected by computer networks. The advance

of the Intemet has been a force dnving distributed systems forward in recent years

WcCarty and Cassady-Dorion 19991.

The intemet is considereâ a global computer network that connects groups of sub-

networks. These networks contain many diffemnt types of computers. A protocol must be

used to ensure that the different types of computen can work together. A protocol is a set

of rules that specw how cornputers cooperate in exchanging messages [Hahn and Stout

19941. TCP/iP (Transmission Control Rotocol/intemet Rotocol) is the most popular

networking standard. TCPm is used to organize computers and other communication

devices into a network. IF transmits the data from place to place, while TCP formats the

data and manages the flow.

In the network, each cornputer must have an address in order to be located by other

computers. There are two formats: standard address and IP address. For example: the

standard address m70.enme.ucalgary.ca is equivalent to the IP address 136.159.105.70.

The P address is the real address used in idenafying the computer. The standard address

can be translated into the IP address by the Domain Name Service (DNS).

In order for TCP to locate a specifk process of an application in a computer, port

numbers are used to specify this process. Port numbers are 16-bit numbers such as 3456.

Some port numbers, cailed well-hown port numbers, are reserved for standard

applications such as mailing services. The remaining ports are dynamicaliy aîlocated

ports for implementing sockeis. The combination of an IP address and a port nurnber can

identify the required program.

Standard Intemet technologies, including WWW (World Wide Web), E-mail. and

VRML (Virtuai Reality Modehg Language). have &en studied for the ppurpose of

assisting product development. However the real power of the Intemet is the feahue of an

open nehuork and real time global connections. Internet makes it possible for giobaliy

scattered computers to work together dynarnicaily.

2.2.5 Global O p h h t i o n

Optimization is an approach used to identifjr the optimal solution for a problem based

on predetermined objectives. An optimization problem is made up of three basic

ingredieats :

An objective function which we want to minimise or maximize. For exampie, in a

design problem, we might want to maximize the proàuct Me span or minimize the

cost.

A set of variables that affect the value of the objective function. In mechanical

design problems, the speed of a mtating part and the distance between the centers

of two shafts are typical variables.

A set of constraints that allow the variables to take on certain values but exclude

others. For engineering problems, the length of a part cannot be negative, so this

variable shouid be constrained to be positive (or between two positive numbers).

The optimization problem is then to find values of the variables thai rninimize or

maximize the objective function, while satisfuing the constraints. Since many engineering

problems have local optimums, traditional approaches such as the hiliclimbing rnethod

may miss the global optimum [Arora et al. 19951. Global optimization is the task of

finding the absolutcly best set of conditions within the constraints to achieve the

objective. There are two basic categories of global optimization approaches: deterministic

and stochastic pardalos et al. 19991.

Detenninistic approaches exploit analytical properties of the given problem to

generate a detenninistic sequence of conditions that converge to the global optimal

solution. Stochastic approaches minimize a function over a random set of variable values.

These approaches cm be used for problems when no clearly hown structure can be

exploited. In the past decade, some stochastic approaches such as Simulated Annealing,

Genetic Algorithms, and Particle Swarm Optimization have been studied and effectively

applied to a wide range of industry applications [Arora et al. 1995, Shi et al. 1997,

Pardalos et al. 19991.

30

A FeatureBased Database and KnowIedge Base Representation Scheme

The research on inkgrathg databases and Lmowledge bases was started by Xue at the

University of Tokyo during the development of the Integrated Data Description

Language (IDDL) [Xue et al. 19921. Xue haî used IDDL to implement the previous

version of the feahire-based concurrent design system at the University of Victoria Bue

and Dong 1993, Xue and Dong 19941. A complete new feature modeling environment

was developed by Xue et al at the University of Calgary [Xue et al. 19991. The featwe-

based database and knowledge base replesentation scheme introduced by Xue at the

University of Calgary was employed in the research discussed in this thesis.

2.3.J.l Class Feahrres and Instance Features

Product Life-cycle aspect models are built using primitives cailed features. Features

are described at two dif5erent Ievels, the class level and the instance level, corresponding

to generic product libraries and specifïc product data respectively, as shown in Figure 2.2.

Instance features are generated using the cIass features as their templates. This

mechanism was implemented using an object-onented programming approach.

A class feature is defmed by element-features, attributes, qualitative relations

among features, and quautitative relations among attributes. Element-features are

described by variables and their feature types, representing the features used to compose

the feature king defmed. For instance, the ThreadHole class feature shown in Figure 2.2

consists of two element features, a hole and an intemal thread, represented by two

variables ?H and ?If. The class feature itself is descnbed by a built-in variable ?self in

the class feature def~t ion . Attributes in class features are defined by attribute names and

defauit attribute values. For instance, diameter, cl, and length, I, are two amibutes of the

class feature Hole shown in Figure 2.2. Qualitative relations among features are

rcpresented by predicates. A predicate takes the form of (p. x l , e , ..., x,,), where p is the

predicate relation and xl ,Q, ..., are terms of this predicate represented by symbols (e.g.,

hl), strings (e.g., Wello?, integers (e.g., 5). floats (e.g., 2.5), variables (e.g., ?H), and

attriiutes (e.g., d[hl D. The predicaîe (process. ?H. ?ln in class feature ThreadHole is a

qualitative relation among feahires. Quantitative relations among attributes are descnbed

by hctions. Each function uses a number of input attribute values to calculate an output

attribute value. For instance, the fimction, I[?H] := l[?lI + 5, in class feature ThreadHole

is a quantitative dation of two attributes.

C h Featurcs

Class Fcaturc: ïtmxdHole
Element-featurrs:

?H: Hole. ?il? In-
Fcatwt-dations:

nstance Feature: th 1 (ThrcadHolt) Instance Ftaturr: hl (Hole)
Ami butes: Elemcnt-featurcs:

?H: hl. ?IT: itl d@11]=20. I[hl]=45
... .*- Feature-relations:

(on, itl. hl).
Attriiute-relations: Instance Featun: itl (intanalThrad)

I[hl] := I[itl] + 5. Amibutcs:
d[hl] := d[itl], d[itl]=20,l[itl]=40, h[itl]=2, d2[itl]=24
... .-. Amibute-relations:

d2[itl] := ait11 + 2%[itl]

Figure 2.2 Class Features and Instance Features

Class features are organized in a hierarchical data structure. A class is defined as a

sub-class of an existing super-class. AU descriptions of a super-class are inhented by its

sub-classes automatically. When an instance feature is generated using a class feeture as

the template, ail the descriptions in that class feature and its superclass features should

be added to the database automatically. In an instance feanire, all the element-featwe

variables are instantiated by actual instance feahires with the required feature types. In

Figure 2.2, three instance features, representing a thread-hole of a product, are generated

fiom three class features.

2.3.1.2 Maintenance of Data Dependency Relations

The quantitative relations among attributes in the generated instance feanires form a

network called amibute relation network. An example of attribute relation network is

shown in Figure 2.3. An attribute relation network is composed of two types of nodes:

attribute nodes and function nodes. Each attribute node is associateci with an attribute

value. Each function node is linked with one or several input attribute nodes and one

output attribute node. When an attribute value is changed, the functions that use this

attribute as the input node are then activated to update this change to the output attribute

nodes. This attribute propagation process is carried out continuously until no amibute

value change is required. Since the attribute relation network c m be used for keeping the

consistency of the database, the mechanism to update attribute changes using the attribute

fl: l[sl] = 1.5 d[sl]
f2: l[etl] = l(sl] - 6
f3: l[itl] = l[etl] + 10
f4:][hl] = l[itl] + 5
f5: d[etl] = d[sl]
f6: d2[etl] = d[etl] - 2 * h[etl]
t7: d[itl] = d2[etl]
f8: d2[itl] = d[itl] + 2*h[itl]
ts: d[h 1) = d[it l]

(a) A Thread Joint (b) Attribute Relations

(c) An Amibute Relation Network

Figure 2.3 Maintenance of Data Dependency Relations

relation netwodr is cailed the &ta dependetlcy relation maintenance mechanism.

Propagation of attnbute value changes using the attribute relation network is

fomuiated into the following steps.

Step 1: Create a list caîled AITRIBUTE-CHANGE and add aü the changed attributes

to this list.

Step 2: If the A'ITRIBUTE-CHANGE list is empty, attribute change propagation

should be stopped.

Step 3: Remove one attribute fiom the ATTRIBUTE-CHANGE List. Identify the

functions chat use this attribute as an input attribute, and calculate the output

attribute values using these functions. If the value of an output attribute is

changed and this attribute is not on the A'ITRIBUTE-CHANGE list, add this

attribute to the list. Go to Step 2.

This attribute relation network is effective for modehg the relations defiied in the

databases for product development.

2.3.2 Knowledge Base Represe ntation

The knowledge base is repnsented by d e s . Since a product development process

involves a large number of d e s , these d e s are organized in separated de-bases.

During the product development process, ody partial rule-bases are considered to

improve the inference efficiency. Ail nile-bases are preserved in the rule-base library.

2.3.2.1 Rule-Bases

A de-base is defineci by a de-base name and a collection of d e s , as shown in

Figure 2.4. Each d e description is composed of a d e name and the nile itself. A rule

takes the fomi of IF-THEN data structure, representing a piece of cause-result

knowledge. Both the IF part and the THW part of a d e are represented by a number of

patterns linked with logical-and (&). A pattern is describeci by a predicate using the form

of (p. XI. *, ..., IC,,), where p is the relation and x,, x2, ...,)II are ternis. Ternis are

represented by symbols, numbers, variables, and attributes, as introduced in Section

34

2.3.1. The condition part and the resdt part of a d e are used for matching, creating,

deleting, and modifying the data in the product databases, induding feanires, attributes,

qualitative relations among featms (facts), and quantitative relations among attributes

(hinctions). In the de-base shown in Figure 2.4, the built-in predicates, featureTyp8,

assertfeature, and , arr used for matching the class types of instance features, creating

instance features, and adding fullctions, respectively.

Rule: ThfcadingProccss
IF (feahircType, ?X, IntcmalThtcad)
THEN (assatFcaturc. ?Y, IntcrnaIThrcading) & (=, d[W, d [? w) & (=,][?m. I[?X]).

..* ...

Figure 2.4 A Rule-Base

2.3.2.2 Reasoning with Rule-Bases

In a feature-based database and knowledge base d e l i n g system, the databases are

described by features and the knowledge bases are descnbed by de-bases. Since usualiy

a large number of features and mie-bases are used for modeling the development of a

product, a mechanism to select only partial database and knowledge base has to be

developed to improve the computation efficiency. In the feahm-based database modeling

system, since an instance feahire is composed of element feahues, attributes, qualitative

relations among feaaires, and quantitative relations ammg attributes, an instance feature

cm be selected as such a partial database considered in knowledge-based inference. The

partial knowledge base considered in inference is the de-bases selected from the d e -

base library for the selected instance featwe. Therefore, each instance feaiure is

associated with a nwnber of selected de-bases. This idea is illustrated in Figure 2.5.

The product modeling using knowledge-based reasoning approach starts with

selecting an instance feahue as the active instance featwe. For this active instance, a

number of de-bases are selected from the nile-base library. AU the d e s in the selected

35

de-bases are registered in the active instance feature. The inference is carried out k t

by matchhg the condition parts of ali the registered niles with the active instance feature

database. If multiple d e s are matcheâ, the best d e is selected and the result part of this

d e is executed. In this research, the h t matched nile is considered the best d e to be

fired. This matchingbexecution process is carried out continuously until no d e can be

matched.

iistance Features:
th1 : ThrcadHole
hl: Hote
itl: IntemalThrad
... ...

Sel& Rule-Bases:

Rule: rl W... THEN ...
Rule: R W... THEN ...
.-. ...

Rule: rl IF.. .THEN...
Rule: d IF ... THEN ...
... ...

Knowledge Base

Rute: rl IF. .. THEN ...
Rule: R IF... THEN ...

Rule: rl IF... THEN ...
Rule: d IF.-. THEN ...

C I

Rule-base: nircadingRocess
Rule: rl CF... THEN ...
Rule: R IF... THEN... 1

Figure 2.5 Selection of Partial Knowledge Base and Database for Reasoning

DISTRIBUTED PRODUCT DATABASE AND KNOWLEDGE BASE

MODELING

This chapter introduces the distributed feature-based product database and

knowledge base modehg system. Following the introduction of Section 3.1. the

architecture of the distributed database and knowledge base modeiing system is presented

in Section 3.2. Section 3.3 provides a detailed discussion on distributed âatabase

modeling. Fit, the concepts of virtual features including virtual class featiues and virtual

instance features are introduced. Then, the methods for associating the distributed

databases by denniog relations among tme features and virtual features are described. For

automatic data dependency relation maintenance, an algorithm for propagating data

changes to related data preserved in accessible remote nodes is given. Section 3.4

disasses issues in distributed knowledge base modeling for product development. These

issues include modeling of v h a l de-bases and the distributed knowledge-based

inference.

3.1 Introduction

Conventional product development follows sequential procedures from marketing,

design, manufacniring. and assembly to shipping and service. The life-cycle performance

of the product designed using this approach is not optimal because of insufficient

information exchanges among these iife-cycle development activities during the design

process. Concurrent design appmch considea relevant product development processes

concurrently. Since the= are mutual information flows between design and related down-

Stream development processes, the product design using concurrent engineering

methodology improves life-cycle performance of the product. The different product

development activities are usually geographically distributed. With the increasingly

cornpetitive global market, incorporation of the geographically separated product

development resources is required to improve the overall performance of the products.

The Intemet technique provides a unique tool for integrating distributed computer

systems. It aiiows people and computer systems to communicate dynamically in a global

computing environment. The low cost of comecting to an Internet service also makes it

advantageous to use the latemet as the medium for comecting product development

activities. In this research, the distnbuted product development activities are associated

using the Intemet.

3.2 Distributecl Proàuct Database and Knowledge Base Mdeiing Architecture

To develop the distributed product database and howledge base modeling system,

two issues have to be addressed: modeling of product development activities, and the

association of these activities.

3.2.1 Product Development Life -Cycle Activity Modeling

The product modeling technique is important to the effectiveness of computer-based

product development systems. To incorporate concurrent design methodology, moàeling

of product development activities at different development phases such as design,

manufacnuing, recycling, etc. is required. These activity descriptions are used for

modeling both geometric and non-geomeaic properties of products. In this research,

feature-based modeling technique is employed [Shah and Rogers 1988, Xue et al. 1999,

Yadav 19991. The feature-based modeling approach was introduced in Chapter 2.

In this research, modeling of activities of the product development Me-cycle is

ernphasized. Typical activities include marketing, design, manufacturing, service, and

recycling [Singh 19951. The feahires employed for modeling the product development

processes are described at two levels: class level and instance level. CIass featwes

represent generic p d u c t development libraries. Instance features are actual databases of

specific product àevelopment activities. Instance feahires are created using class features

as their templates. Figure 3.1 illustrates the class features and instance feahues for

modeiing shaft-manufacnuing process.

Amibutes:
cost[?selfl

S.. ...
Attributes:

Class Fcanirc - Instance Feanire Relation Feaîurc - Element Feature Relation

cost[?selfl,
Amibute-relations:
cost[?sclfl := cost[?TUCIllllgnocess]+
cost[?GrïndingRoccss]
S.. .S.

Figure 3.1 Modeling of a Shaft Manufacturing Process

cost[?selfJ
... .-.

Since the product development life-cycle activities are described using features

Instance Feature: shaftRocess l lnstancc Feaain: tumingRoccss 1
Qcmenc- feanircs: Attn'butes:

?TumhgProcess: furningPmccss 1 cost[nuningRoccss 1]=2CJ
?GrindingPrioccss: grindingProccss 1

Amibutes:
cost[shaFtProccss 11.

Ataibutc-relations: Instance Fcaîure: grindingPniccss 1
cost[shaftRoccssf] := cost(tumingProcess 1]+ Attributes:
cost[grindingProccss 11 - cos~~ndingProcess 1]=30,

m.. S..
... ...

preserved at different locations, modeling of the relations among these activities must be

incorporated into the developed system. Details about the relation modeling are

introduced in Section 3.3.

3.2.2 The Client-Server Commu nication Architecture

The integration of distributed product development models is accomplished through

the Internet. The integrated system is an Intemet-based computer network system. One

common architecture for a computer network has at les t three basic components

m a r t y and Cassady-Dorion 19991: a client, a server, and the network itself, as shown

in Figure 3.2.

Usually there are many clients in a computer network. The network associates the

clients with the server. The clients are usually operated by users to request information

fiom the server. A server holds resources needed to satism the client requests. Clients'

requests flow through the

the network to the clients.

clients and the servers.

network to the server, and the semer's responses flow across

In this research, the Internet is the medium for connecting the

Figure 3.2 Three Basic Components of a Computer Network

In product development with concurrent design methodology, information flows in

multiple ways among the different developrnent processes at different locations. This

requires the computer, used for modeling product development activities in certain

phases, to be both a client and a server. In such cases, client and server become roles in a

logicai sense rather than physical devices. Therefore, not only can a server have many

clients; a ciient can also comect to many servers.

Server Client

The computers C O M ~ C ~ ~ to the Internet can be called Intemet nodes. In this research

project, co~mUILication among the htemet nodes is impiemented using socket-based

client-server architecture mahn and Stout 19941. Sockets are computer programs that let

you send and receive messages among networked computers. As a data exchange tool,

sockets are simple to use and operate efnciently. The concurrent design methodology

requires that infonnation flow in and out of the Internet nodes. Therefore, each node can

Network

be a client or a server depending on the direction of information flow during product

modeling processes. So ail the Intemet nodes run both client side and server side socket

programs, in tems of sending and receiving messages.

In the example shown in Figure 3.3, ail computers at different locations are

connected to the Internet. Each node c m nin both a Smalltalk server socket and a client

socket. A node, (e.g., the node B), can be both a server and a client. While the server

socket of node B is running, the other nodes A, C, and D are then the clients of node B,

so they can request information from node B. The node B can aiso request information

h m other nodes. On such occasions, ail other nodes A, C, and D are semers of node B,

and node B is a client.

Node: A Node: B

Figure 3.3 Logical Ciients and Servers

Smalltalk Server Socket

Small talk Client Socket

I I

Node: C Node: D

3.2.3 Architecture of the Distributed Database and Knowledge Base Modeling System

Smalltallc Servet Socket

Smalltafk Client Socket

Small talk Server Soc ket

Smalltalk Client Socket

The architecture of the distributed database and howledge base modeling system is

shown in Figure 3.4. In this architecture, different databases and knowledge bases used

during different product development phases, including marketing, design,

manufacturing, etc., are modeled at different locations represented as nodes, such as

Marketing1 , Marketing2, Design1 , and so on. Since the databases and knowledge bases

are linked by the Intemet, these nodes are also called Intemet nodes. M n g the product

development process, the database and knowledge base accessibility relations among

these nodes are first defined for collaboration in concurrent design. When node A is

defmed to be able to access node B, ali the data and knowledge in node B cm be used in

node A automatically. Since the distributed database and knowledge base modeling

method associates different product developrnent activities at different locations into an

integrated environment, this approach c m evaluate dom-strearn product development

aspects during the early design stage, thus improving product development efficiency and

Internet

Smaiitalk Server Soc ke t

Smalltalk Client Socket

b

Figure 3.4 Architecture of the Distributed Database and

Knowledge Base Moàeing S ystem

In the example shown in Figure 3.4, the Marketingl node and the Designl node are

defmed to be mutuaily accessible. When certain requirements for products are identified

fiom customers at the Markerüngl node, these requirements are thea used as the

guidelines for creating and improving product designs at the Designl node. The designs

are then evaluated at the Marketingl node to see whether the customer requirernents have

k e n satisfied. If a design created at Designl node doesn't satisw the customer

requirements at Marketingl node, the accessibiiity relation between Marketingl node and

Designl node is removed. A new accessibility relation between Marketingl node and

Design2 node cm then be established to generate another candidate at Design2 node to

satisfy the customer requirements at Marketingl node. The design node Designl is linked

with two manufachiring nodes Manufacturingl and Manufacturing2 for evaluating the

manufacturability of the design aud using the evaluation measures to improve the design.

Each node in the Intemet is specified by its address and port number. A node address

can be descnbed either by an Intemet Protocol (IP) address, such as 1 36.1 59.1 05.72, or

by a standard address, such as m72.enme.ucalgaiy.ca. A port number is a 16-bit digit,

such as 9876. Examples of Internet node dennitions are shown in Figure 3.5.

Node: Manufacaiting 1
Address: lowcosunfg.com

Y Address: grcenmfg.com
Port: 9878 I

Node: Marketing2
Addrrss: self
Port 9878

- Accessibility Relation

Nodc: Design 1
Addrrss: smartdesign.com

Node: Marirctingl
Address-. self

Figure 3.5 Definitions of Intemet Nodes

Port: 9876 Port: 9876 \jNade: Manufacturing2

Address: aualitymfg.com

-
\ I~ode: ManufMunng3 1

- -
Node: Design2 [Port 9876

When a node A is defmed to be able to access node 8, ali the data and knowledge

H.

preserved in node B can be used by node A automatically. The data and knowledge in

Address: quicMcsign.com

node B are considered as v h a l data and knowledge in node A. This idea is Uustrated in

Figure 3.6. The database and knowledge base accessibiüty relation between two nodes is

implemented using client-server communication architecture. In this architecture, a node

to access other nodes is a client that sen& messages to the accessible nodes for obtaining

the information of available data and knowledge preserved in these accessible nodes, and

a node to be accessed by other nodes is a server that responses messages from the client

nodes for providing available data and lmowledge to these client nodes.

I
Port: 9877

I b 1

Nodc: Design1 (Semer) Node: Manufacniring 1 (Client)

0 T m DBtKB Vimai DBIKB

Figure 3.6 An Accessibility Relation between Two Nodes

Distributeci database and knowledge base modeling architecture is employed to link

the feature-based product development Me-cycle activities into an integrated

environment to irnprove the product development efficiency. Details regardhg the

feature-based distributcd database modehg and knowledge base modeling will be given

in Sections 3.3 and 3.4.

3 .Z.4 Node Definitions and Nod e Connections

The Internet serves as the tool for connecting the Intemet nodes involved in this

distributeci product datobase and knowledge base modeling system. For socket-based

client-server communication, both Intemet addresses (Standard addresses or P

addresses) and port numbers are required to identify the target pro- nuining on

dinerent cornputers. Before communication can be conducted among Intemet nodes, the

corresponding addresses and port numbers of these Internet nodes have to be defined

b t . In this distributed database and knowledge base modeling system, two browsers, the

lntemet Node Definition Browser and the Node Connection Browser, are used to

handle node definitions and connections.

3.2.4.1 Definition of Intemet Nodes

The Intemet nodes are defined by their Intemet addresses and port numbers. The

lntemet Node Definition Browser is used for defining the Intemet nodes involved in

the product development processes. Hardcopy and views of this browser are shown in

Figure 3.7 and 3.8. There are three views in this browser: A, B, and C. A is the category

list view, B is the node name list view, and C is the text view. The categories of the

nodes are Listed in the category list view. The nodes are grouped in the categones. When

one of the categories is selected, the nodes in that category are shown in the node name

list view. When a node name in the node name list view is selected, the node

descriptions, including node name, address, and port number are shown in the t ê ~ t view.

The text view is a text editor for editing the node information, including the node name,

address, and port number.

The menus of these views are also shown in the Figure 3.8. The commands of these

menus are mainly used for editing, adding, and deleting node definitions.

Address: m70.enrne.ucalgary.ca
Port: 3486,

Figure 3.7 A Snapshot of the Intemet Node Definition Browser

1 Internet Node Definition Browser

I Design 1

Mechanical Application

Remove
A

I Address: m70.enme.ucalgary.ca
Port: 6789

Design 1

Design2

B pGKFI

Figure 3.8 Corfqyation of the Intemet Node Definition Browser

The typical procedure for definhg an Internet node is:

.

a. Create a new category by selecting Add command of the category list view

menu, or select an existing category.

Cut
COPY
Paste
Accept

m..

b. Under this selected category, edit the descriptions of a node, including node

name, address, and port number, foilowing the required format in the t 8 ~ t view.

Select Accept menu item to Save the edited descriptions. The node name will

appear in the node name list view.

3.2.4.2 Connectiun of litternet No des

Comecting and discomecting a node are accomplished through the Node

Connection Browser. This browser, as shown in Figure 3.9 and 3.10, dows the user to

connect the local node to remote nodes by highlighting a node name and clickhg

Connect in the menu. If the connection is successful, the letter "C", representing

Connected, appears after the node name in the node name List view. Before a node can be

Feaîue
ThreeDFeatues
Doorûesign
MechanicalApplication
Power-Sieving-System
ConcurentDesign

BekDrive
BeiîûriveMfgA (C)
BeitDriveMfgB
CyiinderSieve
CyiinderSiEIVeMfgA
CylinderSlwehrlfgB
FlatSieve (C)
FiatSieveMfgA
flatSieveMfgB
GearPair
GearPairMfgA
GearPairMfgB
Requirernent (C)

Figure 3.9 A Snapshot of the Node Co~ect ion Browser

I Node Connection Browser

Figure 3.10 Configuration of the Node Connection Browser

Mechanical Application

O
A

Design 1
Design2

Disconnect
Start as server

B

connected to a server node, the server program in that server node must be executed. A

semr pmcess can be started by clicking on Stait as server in the menu. There are two

views in this browser: A - the category list view, and B - the node name list view.

These views are identical to the ones in the lntemet Node Definition Browser. When a

category in the category list view is selected, node names in that category are listed in the

node name list view. Those nodes that have been already defined in the system are ready

to be connected.

3.3 Diibuted Feature-Based Database Moàeiing

In the distributed feature-based database modeling approach, the class features and

instance features at accessible remote nodes are considered as virtual clacs features and

virtual instance features at the local node. Virtual class features can be used for

generating instance features at the local node. Vimial instance features are considered as

part of the database at the local node and can be accessed fkom the local node. By

def'ining the dependency relations among the data distributed at difierent locations, the

coasistency of the product development databases cm then be maintained using these

relations.

3.3.1 Virtual Features

In this research, databases for modeling product development activities are descnbed

by features. These features are modeled in different Intemet nodes at different locations.

When node A is defined to be able to access node B, the features preserved in node B are

considered as virtual features in node A. Virtual features are of two types: virtual class

featwes and virtuai instance features.

3.3.1.1 Virîual Class Feaîures

Vimial class features are class features preserved in accessible remote nodes. They

represent genenc libraries of different proâuct development life-cycle aspect databases.

During the product development processes, the instance feahires, representing the actual

product databases, are generated, using corresponding class features as their templates. If

the required class features cannot be found at the local node, virtual class features at

accessible remote nodes can be w d for generating the tme instance feature at the local

node. This characteristic cari irnprove the efficiency of product development by sharing

library resources ammg ali accessible Internet nodes.

A virtual class feature is defhed by the node name and the class feature name in the

form of:

enode narne>%cclass feature name>

The concept of virtual class feahms is illustrated in Figure 3.1 1. The class feature

Shaft in node A is described as A%Shaft in node B. The three class features in node A

are considered as virhial class features in node B.

Class Fcatures:
Shaft
Hole
IntemalThread

Accessible i-
Ctass Features: Viraial Class Feaiures:
DrillingProcess A%Shaft
ThreadingProccss A%HoIc
TumingProcess A%IntemalThread

Figure 3.1 1 V h a l Class Features

Virtual class features in remote nodes can be displayed in the Class Feature

Browser, by executing the Display Virtual Class Features in the menu of feature list

view as shown in Figure 3.12. The Class Feature Browser is a previously developed

browser, but more bctions, such as displaying virtual class features, are added. Detailed

descriptions about this browser are given in [Yadav 19991.

3.3.1.2 Virtual Instance Features

Vimial instance features are instance features preserved in the accessible remote

nodes. They are part of the databases for moàeling specific product development

activities. Similar to virtual class features, a virtual instance feature is named in the

following format:

enode name>%<instance feature narnew

Class Feature Browser

Category
List

View

1 Display Virtuai Clas Ratures I
... ..*

Figure 3.12 The Views in the Class Feature Browser

I

Feature
List

View

I

Text View

For example, an instance feature pulleyl preserved in node A is described as

A%pullêyl in node B (Figure 3.13). The m a l instance features at remote nodes

accessible fiom the local node are considered as part of the database at the local node. By

associating remote databases with the local database for modeling a product, the different

product development processes c m be integrated into the same environment. Such

integration is necessary for implementhg concurrent design using disiributed databases.

Instance Features:
beltDrive 1
puiley 1
paeyz

Element
Aspect

List
View

Accessible i-

Element
Name
List
View

Instance Fcatures: Virtual Instiuict Fcatures:
gearPai r 1 A%bcltJMve 1
Fart A%pulley 1
g-2 A%pulley2 S.. ...

Figure 3.1 3 Vimial Instance Features

In Figure 3.13, node A has instance features for modeling a pdley-belt drive

mechanism and node B bas instance featwes for modeling a gear pair mechanism. At

node 9, if a motion transfer mechanism consisting of both a gear pair and a pulley-belt

drive needs to be modeled, then the hue instance feahires gearPairl , gearl , gear2, etc.

and the virtud instance features A%beltDrive 1 , A%pulleyl, A%pulley2. etc. are

associated by defining their relations among the databases preserved in these two nodes.

AU virtual instance features in the accessible remote nodes, including their attributes,

attribute relations, feature relations, etc., can be displayed in the Instance Feature

Browser. The configuration of this previously developed browser, as shown in Figure

3.14, remains unchanged. The menus in this browser are modifed to accommodate more

cornmands such as Display Virtual Instance Features that is used to view the instance

features preserved in ail accessible remote nodes. The attributes of the v h a l instance

features are described in the format of

cattribute narne>[cvirtual instance feature name>]

For example, the attribute length of instance feature shaftl in a remote node cailed

ShaftDesign is described at the local node by:

1 Instance Featwe Browser 1

... ... Text View

Display V i d Instance Features

Category
List
View

Figure 3.14 The Views in the Instance Feature Browser

3.3.1.3 Generation of Instance Features from Virtual Chss Features

In this distributed database and knowledge base modeling system, a v h a l class

feature can be used to generate a true instance feature at the local node. The instance

features generated from the vimial class features are treated in the same manner as those

Feature
List

View

I

Elernent
Aspect

List
View

Element
Name
List
View

generated fkom the me class features. In other words, they are t d y part of the database

in the modehg processes.

A local true instance feature is an object that contains data and operations that are

necessary for modeling the products or the product development activities. In this

feature-based modeling system, the class features are translated into Smalltalk classes, so

the instance features are actually instances of Smalltalk classes. Therefore, the

operations, such as instance methods dehed in class features, can be inhented by the

instance features.

For generating a true instance feature using a virtual class feature preserved in a

remote node, a special class feature, caiied VirtualClassFeature, is predehned in the

system. An instance feature of this class feature is actuaiiy an empty instance with the

same structure as a reguiar tnie instance feature. This instance feature is then fded with

descriptions fiom the comsponding class feature and its super-class features in the

remote node. The descriptions are obtained by sending a message ftom the local node to

the remote node. Then the descriptions in that class, including those inhented

descnptions fiom superclasses, are copied to the empty instance feahue at the local

node. In this way, al1 the descnptions defmed in the virtual class feature and its super-

class features are inhented into this generated true instance feature automatically. During

the product development process, when an instance feature requires the information fiom

its virtuai class feature, a message is sent fkom the local node (client) to the remote node

(server) using the client-server communication architecture.

Figure 3.15 illustrates the process of generaîing a tme instance feature using a virtual

class feature. The class feature Gear in node Design1 is used to generate a tme instance

feature gearl in node Design2. First, the built-in class feature VirtualClassFeature is

selected to generate an empty instance featwe gearl which has the same structure as

those regular instance features. In other words, gearl bas al l buüt-in aspects such as

Element-features, Attributes, Attnbute-relations, Feature-relations, etc., but there

are no elements or descriptions in these aspects at this moment. When

VirtualClassFeature is used to generate an instance feature, the class feature narne

Node: Design 1 Node: Design2

r--------
I : Tempomy Insîance Feature
L--,,-J

Class Features: Gear

... '~~tmtiation
instance Features:
r---,,----,,---
pnpgear 1 : Gear 1 1

: Element-fatures

Figure 3.15 Generation of a Tme Instance Feahue from a Virtual Class Feature

Class Features: ViCIassFeature

...
InstanceFeanues:

gear 1 : VinualClassFeature
Element-features

Gear and the node name Designl are requested from the user and recorded as instance

variable values of the newly generated instance feature. A message is then sent to the

remote node Designl to ask that node to generate a temporary instance feature

tmpgearl from class feature Gear. After tmpgearl is generated the elements and

descriptions in all the aspects are copied back to the empty instance feature gearl in

node Design2 Since tmpgearl inherits ail descriptions from class feature Gear and its

super-class features, the instance feature gearl, a copy of tmpgearl , in node Design2

inherits ail descriptions fiom vimial class feature Designl %Gear and its super-class

features. The temporary instance feahire tmpgearl is then removed fiom node Design1 .
Except for the entering of the noûe name and the class feature name, ihis process of

generating a true instance feature from a virtuai class feature is conducted automatically.

3.3.2 Modehg Database Relations

One of the objectives of this research is to associate the different databases at

different locations into an integrated environment. The distributed cornputers. which

contain databases for modeling different product components or different product

development activities, are comected together through the Internet. The generic relations

of the databases, i.e., the relations among the true instance features and the virtual

Attributes
Attribute-relations
Feanrte-relations
S.. *..

: Attributes -
Amibute-relations Copy elements

; Feature-relations ;
1 1 1

I
:--,,,,,,,--,,------:

instance features, also need to be defined so that these distributed databases are integrated

effectively .

In this research, the relation between a viaual instance feature and a true instance

feaîure is modeled by deflaing the virtual instance featwe as an element feature of the

true instance feanire. The relation can be created at two different levels: class -feature

Ievel and instance feature level, respectively.

3.3.2.1 Modeling Database Relations at Class Feature Level

Creation of a relation between a virtual feature and a m e feature at chss feature

level is conducted by introducing a virtual element-featwe. A virtual element feature in a

class feanire is defmed by an element-feam variable and its class type called

VirtuallnstanceFeature, as shown in Figure 3.1 6. VirtuallnstanceFeature is a built-in

class feature used speciaily for modeling relations among mie features and virtual

Class Feanire: Hole
Element-features:
?Process: VimallnsranceFeature

Attributes:
d[?selfl, I[?selfj

Feanue-relations:
(proccss. ?self. ?Rocess)

Attribute-relations:
d[?Process] := d[?selfJ
I [W] := I[?sclfl

Instantiation

Instance Fuinirt: h 1
Elemcnt-featum:

1Process: mfgMrîllingl
Amibutes:

dF1]=20, I[h 1]=40
Feaaire-relations:
(process, h 1 , mfg%dnlling 1)

Attributc-relations:
d[mfg9bdnllingl] := d[h 1]
l[mf,drillingl] := l[hl]

d: diameter 1: length

Figure 3.16 Relations arnong True and Virtual Instance Featwes Defmed at
Class Feature Level

In the example show in Figure 3.16, the virtual instance feature is associated with

an element feature variable ?Process which represents a manufacturing process feature.

The diameter attribute, d, and the length attribute, 1, of this virtual feature are calculated

using the attributes of the m e featwe. When the class feahin Hole is used to generate the

instance feature hl, the user is asked to enter the virtual instance feahire name, including

the node name (e.g., mfg) and the instance feahue name (e.g., drillingl). AU the variables

related to the vimial element feature in the class feature definition should be replaced by

the actually created virtual instance feature name as shown-in Figure 3.16. When the

attribute values at the current node are chauged, the relevant attribute values at the remote

nodes should also be updated using these relations. Details regarding the maintenance of

the data dependency relations in the distributed database modehg system will be

discussed in Section 3.3 -3.

3.3.2.2 ModeLing Database Relut ions at Instance Feature Levet

Modeling of relations among tme and virtuai instance features at instance feature

level is conducted by adding an element-feahire, representhg a vimial instance feature, to

the current instance feature. In the example shown in Figure 3.17, an instance feature h l

with two attributes is fmt created. The virnial instance feature, mfg%dnllingl, is then

added to the instance feature hl as an element-feature. Subsequently, feature relations

and attribute relations are added. So the relations between true instance feature h l and

virtual instance feature rnfg%drillingl are established.

instance Feature: hl
Amibutcs:

d[h 1]=20,l[h 1]=40

Crcation of
Relations

among True and
Virnial instance

Instance Featun: hl
Element-features:
?Roccss: mfg4bdrilling 1

Amibutes:
d[hl]=20,][hl]=4û

Feature-relations:
(process. h 1, rnfg96drilling 1)

Amibute-relations:
d[mfg%drillingl] := dD 1]
l[rnfg%dniiingl] := l[h 1)

d: diameter 1: length

Figure 3.17 Relations arnong True and Virtual Instance Features Defmed at
Instance F e a m Level

3.3.3 Maintenance of Dependenc y Relations among Distnbuted Data

In the product development process ushg concurrent design methodology, the

databases at different locations are used to mode1 the different development life-cycle

aspects of the same product. The product development life-cycle covers marketing,

54

design, manufacturing, maintenance, and so on. The product design, modeled by a

feature-based database in this research, shouid be dynamically evaluated by the

perfomiance of this design in dom-stream life-cycle phases. In other words, any change

of the data in one product lifecycle aspect should be propagated to other aspects

automatically according to the data relations defined in the databases.

In the example shown in Figure 3.18, a relation bas been defined between instance

feature shaftl and vimial instance feature ShaftMfg%shaftProcessl. hiring

concumnt design process, if the value of length attribute I[shaftl] in node ShaftDesign

i s modified, the attribute relation

l[ShaftMfg%shaftProcessl] := l[shaftl]

defined in ShaftDesign wiU lead to the change of the attribute I[shaftProcessl]'s value

in node ShaftMfg. The value of attribute cost[shaftProcessl] is automaticaiiy modüied

based upon the updated value of I[shaftProcessl]. The value of cost[shaftProcessl] is

then propagated back to node ShaftDesign using attribute relation

mfgCost[ShaftDesign%shaft 1] := cost[shaftProcessl]

to update mfgCost[shaftl]. The value of mfgCost[shaftl] can be used as one of the

mesures to evaluate the manuf'turabiiity of the shaft design.

Node: ShaftDesign Node: ShaftMfg

Instance Ftature: shaftl
Elemcnt- feaiurts:

?Process: ShaftMfg4bshaftProccss 1
Attributes:

d[shaftl]=30, I [s h a f t l] ~ . mfgCostIshaftll=20
Attribu te-relations:
d[ShaftMfgSbshaftProcess 1] := d[shaftl]
l[ShaftMfg%shaWrocess l] := ~[shaftl] * * *

S.. **.

d: diameter 1: length

Instance Fcature: shaftProctss l
Element-fcatures:

?TumingProcess: turningProcess 1
Amibutes:

d[shaftnocess l]=3O
l[shaftProccssl]=400
cost(s-1]=XI

Attn'butc-relations:
d[tumingProcess 1] := d[shaftnocess 1]
~[huningPmcess l] := I[shaftRoœssl] i cost[shaftRosasl] := swt[tumingRoassl]

~ m f ~ o s t [~ h a f t ~ e s i ~ n % s h a f t 11 := cost[shaf@mœs1]

Figure 3.18 Attribute Propagation Process

55

In this research, a mechanism to maintain the dependency relations of distributed

attributes has been developed

3.3.3- 1 An Algorithm for Muintain ing Distrr'buted Data Dependency Relations

Maintenance of the attn'bute dependency relations within one htemet node is carried

out using the algorithm introduced in Section 2.3. When the attribute values of vimial

instance feahires are changed, the attribute dependency relation maintenance mechanisms

in these remote Intemet nodes are then activated to propagate the change using the

attribute relations defmed in these nodes. This process is carried out cootinuously until ail

the relevant attributes in these nodes are updated. The propagation of the amibute value

changes is started fkom a selected Internet node. The aigorithm for calculating attribute

change propagation at one Internet node to keep the consistency of the distributed

âatabase is formuiated in the following steps.

Step 1: Identify all the attributes, inctuding true attributes and virtual attributes, whose

values have been changed at the current node. Use the attribute dependency

relation maintenance mechanism introduced in Section 2.3 to update the change

of ataibute values using the attribute relations defined at the current node.

Step 2: Obtain al1 the attributes of the virtual instance features whose values have been

changed in Step 1. When such attributes can be found, jump to Step 3. When no

such attributes exist, if the current node is the one selected for starting the

calculation of the attribute change propagation, the calculation shouid be

terminated. If the calculation is initiated from another node, return a ni1 value to

this node to resume calculation at this remote node and terminate calculation at

the local node.

Step 3: Group ail the changed virtual attributes accordhg to their nodes. When no

changed virtual aitribute is in the node nom which the execution is initiated,

r e m a ni1 value to this node to resume the calculation at this node. For each

remote node, take the following steps:

(a) If the execution of the current attnbute dependency relation maintenance

mechanism is initiated fkom that node, the collection of the changed virtual

attributes should be sent back to this node as the return value to resume the

execution of the amibute dependency relation maintenance mechanism at

that node.

(b) If the node is not the one h m which the execution is initiated, send a

message to the node to inform the changed attributes and activate the

calculation using the attribute dependency relation maintenance mechanism

at this remote node. Suspend execution of the attribute àependency relation

maintenance mechanism at the local node to wait for the execution result

from the remote node.

S tep 4: Go to S tep 1.

The amibute change propagation calculation is started fiom one node. Since each

node is associated with an attribute dependency relation maintenance mechanism,

execution of these mechanisms at these nodes c m be conducted sirnultaneously.

Therefore, the distributed attribute dependency relation maintenance mechanism has the

nature of concurrent parallel computing. When no contradictory relations exists in the

distributed attribute relation network, the consistency of the distributed attribute relations

can be maintained.

In this algorithm, a node reacts firstly to the message received first. #en a large

number of nodes and large amount of information are Uivolved in the product

development process, a more robust coordination mechanism is required to handle the

messages and coordinate the actions among the distributed Intemet nodes. An intelligent

agent can be used for this task. The coordination and cooperation of the distributed

Intemet nodes should be improved in hiture shidies.

3.3.3.2 An of Amibute Propagation Process

This algorithm to maintain the consistency of the distributed database is iliustrated

using an example shown in Figure 3.19. In this example. the attribute al in node A is

changed at the very beginning. The calcuiation is conducted through the foilowing steps:

O A True Amibute O A VÜtuai Amibute

Figure 3.19 Maintenance of the Distributed Database

At node A, since al is the attribute whose value has been changed huiction fl is then

activated to update the change to the attribute a2. Because a2 is a virtual attribute

preserved in node 8, a message is then sent to node 8 to activate the calculation at

node B. The node A changes to the mode to wait for the execution result from node B.

At node 8, since a2 is the attribute whose value has been changed, functions f2 and f 3

are then activated to update the change to attributes a3 and a4. Because a3 and a4 are

mai attributes preserved in node C and node D respectively, messages are then sent

to node C and node D to activate the cdculation at these two nodes. The node B

changes to the mode to wait for the execution results fiom node C and node D. A

message is also sent to node A with a nil value.

At node A, a message ni1 is received fiom node B and the execution at node A is

terminated.

At node C, since a3 is the attribute whose value has been changed, function f4 is then

activateci to update the change to attribute a5. Because no viriual attribute is changed,

a message with return value ni1 is sent to node B and the calculation at node C is

terminated.

5. At node O, since a4 is the attribute whose value has been changed, fwictions f5 and 16

are then activated to update the change to attributes a6 and a7. Because a7 is a vimiai

attribute preserved in node B from which the execution is ùiitiated, a message with

return value of a7 is sent back to node B and the calculation at node D is tenninated.

6. At node 6, a message with r e m value nit is received nom node C and a message

with return value of a7 is received fiom node O. Since a7 is the attribute whose value

has b a n changed, function f7 is then activated to update the change to attribute a8.

Because a8 is a virtual attribute presewed in node A, a message is then sent to node A

to activate the calculation at node A. The node B changes to the mode to wait for the

execution tesult fiom node A.

7. At node A, since a8 is the attribute whose value has been changed, function 18 is then

activated to update the change to attribute a9. Because no virtual attribute is changed,

a message with re tm value ni1 is sent back to node B and the calculation at node A is

terminateci.

8. At node B. a message ni1 is received fiom node A and the execution at node B is

tenninated.

3.4 Distributecl ILnowledge B ase Modeling

To improve the efficiency of the product modeling process, a de-based inference

rnechanism is employed to help designers to modify the product databases. Ia the feahue-

based database and knowledge base modehg system, each instance feature is associated

with a number of de-bases as inîroduced in Section 2.3 to improve the inference

effciency by considering only partial database and knowledge base. In this research, this

idea is extended to the distributed database and knowledge base modeling.

In one node, if a de-base is selected for the active instance featwe, the name of t h i s

selected de-base is then registered in the active instance feature. During the reasoning

process, al1 d e s in the selected de-bases are used in inference. A previously developed

Rule-base Browser is used to define de-bases [Yadav 19993. This browser remains

mchanged except for aâding a cornmand in the menu for displayhg virtual de-bases.

Like pmduct daîabase modeling, product knowledge bases are modeled at different

locations. To use knowledge preserved in remote nodes for product development, the

concept of virtual de-bases, i.e., the de-bases defined in accessible remote nodes, is

introduced. A mechanism of distributed inference is also developed to handie the

distributed databases.

3.4.1 Virtual Rule-Bases

When a node A is defined to be able to access auother node B, al l the de-bases

defined in node B are then accessible fkom node A. The de-bases defined in accessible

remote nodes are called virtual rule-bases. A virtual de-base is described in the

foilowing format:

enode name>%<rule-base name>

For example, a de-base GearûesignRules in node 6 is described in node A by:

B%GearûesignRules

huing the product development process, virtual de-bases cm also be selected for

reasoning together with the selected mie de-bases at the local node. This idea is

illustrated in Figure 3.20.

Node: Design 1

instance Featurcs Rule-Bases
Selccted Rule-Bases

Figure 3.20 Vimial Rule-Bases

Acccssiblc
1

instance Features Rule-Bases
Sclected Rule-Bases

Vimiai DBKB 0 TrueDBIKB

Generaiiy the virtual de-bases are those preserved in the remote nodes and can be

selected to access the data in this active instance feature at the local node through

knowledge-based inference. When a virtuai de-base is selected, al l the d e s in this rule-

base are then copied to and registered in the active instance feature of the local node.

hiring the process of product development through knowledge-based reasoning,

both the true de-bases and the virtual de-bases selected for the active instance features

are used as the knowledge to access the data represented by active instance features at the

local node.

in the example shown in Figure 3.20, the node Designl is accessible fiom the node

Manufacturingl . The de-bases, dl. d2, d3, and d4 at node Design1 are virnial de-bases

at node Manufacturingl . In node Manufacturingl , the virtual de-base, d3, and true rule-

base m3, are selected to join the reasoning at the local node.

The virtual de-base modeling mechanism dows engineers to improve the

effciency of product development through sharing distributed knowledge bases. The

characteristics of this distributed knowledge base modeling approach are summarized

into the following hvo aspects.

(1) By using virtud de-bases at the local node, the standard knowledge at a remote

node can be "borrowed" to the local node. This mechanism allows the different

lcnowledge bases to be modeled at different places. During the process of

product development, when certain types of knowledge are required. the system

then identifies the locations of the required knowledge and introduces the

required knowledge for the product currently under development at the local

node. This mechanism cm also solve the problems of knowledge representation

redundancy due to the fact that the same knowledge is described in many places.

The introduced knowledge at the local node is dynamic in nature, i.e., when the

accessibility relations among the nodes are changed, the virtual de-bases at the

local node are then removed.

By using virtual rule-bases, ail the knowledge used in different product

development phases can be integtated into the same environment. The de-base

used by a down-stem phase of product development cm be htegrated into the

cumnt phase by selecting this virtual de-base. This approach can result in

better design databases in terms of the performance of the design in down-stem

development life-cycle. When the knowledge in dinerent knowledge bases is in

conflict, the contlict can be resolved either by changing the introduced

knowledge bases at different locations, or by modifjhg the accessibility

relations among the Intemet nodes to change the product development

alternatives.

3.4.2 Selection of Virtual Rule43 ases

The selection of de-bases, includiag true rule-bases and virtual rule-bases, is

conducted using the RuleBase Selection Browser shown in Figure 3.2 1 and 3.22.

Rule-base selection is a process of selecting relevant reasoning d e s for the active

Figure 3.21 A Snapshot of the Rule-Base Selection Browser

62

instance features. Therefore this browser contains information fiom both Instance
Feature 8rowser and Rule-Base Browser. In tbis browser, the lnstance Feature

Category List View and the Instance Feature List View are used to display instance

featiue categories and instance feanires, while Rule-Base Category iist View and

Rule-Base List View are used to display de-base categories and de-bases. The

Selected Rule-Base List View is used to display the selected de-bases for the instance

feature highlighted in the Instance Feature List View. Two commands, Select and

Remove, are implemented in the Rule-Base List View and Selected Rule-Base List

View respectively. The command Select is used to add the rule-base highiighted in the

Rule-Base List View to the active instance feature. The comrnand Remove is used to

delete a de-base highlighted in the Selected Rule-Base List View nom the current

active instance feature.

Rule-Base Selection Browser

Instance Feature Category
List View

Instance Feature
List View

Selected Rule-Base
List View

Rule-Base Category Rule-Base
List View List View

Figure 3.22 Configuration of the Rule-Base Selection Browser

For selecting virtual nile-bases, a special category for the de-bases, namely

VirtualRuleBases, is defiaed in the Rule-Base Category List View. Whcn the

VirtualRuleBases category is highlighted for de-base selection, the system WU ask for

the Internet node name and the de-base name. After that information is correctly

supplied, the vimial rule-base is selected and its name is displayed in the Selected Rule-

Base List View,

The virtual de-bases selected are treated the same as those tme de-bases selected

from the local knowledge base library. In this research project, the selection of relevant

de-bases for product development is conducted manualiy. Agent-assisted rule-base

selection should be snidied in the future to improve the efficiency of knowledge

selec tion.

3.4.3 Reasoning with Distribute d Rule-Bases

In feature-based product modeling system, development of a product c m be

conducted through de-based reasoning. Since the different product aspects are modeled

in different Intemet nodes, de-based reasoning is also conducted in these different

places.

In each Intemet node, only partial databases and knowledge bases are selected for

knowledge-based reasoning to improve product development efficiency. The selected

databases are represented by the active instance features, including attributes, qualitative

relations arnong instance features, and quantitative relations among attributes in

distributed accessible nodes. The selected knowledge bases are represented by both the

selected true de-bases and the selected virtual nile-bases. These rule-bases are registered

with the active instance features of the accessible nodes.

In the nile-based iderence, the condition parts of all the d e s in both tme de-bases

and virtual rule-bases are matched with the selected partial database. Among al1 the rules

whose condition parts have been satisfied, the best rule is selected according to the

conflict resolution strategy, and the result part of the best d e is then executed. In this

research, the first matched d e is considered as the best d e in de-based reasoning.

Matching of the condition parts and execution of the result parts for a nile in a v h a l

rule-base are conducted in the same manner as those of ûue de-bases introduced in

Section 2.3.2.

Since the ruie-baseâ reasoning at one node can result in the changes of the Wtual

&ta at the remote nodes, the executions of the rule-based reasoning mechanisrns at these

remote nodes is then required to update the changes. Since the de-based reasoning in the

different nodes can be conducted simultaneously, the distributed knowledge-based

reasoning mechanism has the nature of concurrent parailel computing.

The algorithm for executing the de-based inference mechanism at one Intemet node

d u h g distributed knowledge-based reasoning is formuiated in the following steps.

Step 1 :

Step 2:

Step 3:

Use al1 the niles in the selected the tme de-bases and virtual de-bases to

access the database represented by active instance features through matching

the condition parts and executing the result parts of these mies.

Obtain al l the virtual data that have ken changed in Step 1. When such data

can be found, jump to Step 3. When no such data exist, if the current node is the

one selected for starting the de-based reasoning, the inference should be

temiinated. If the reasoning is initiated h m another node, return a ni1 vdue to

this node to resume inference at this remote node and terminate inference at the

local node.

Group al1 the changed virtual data according to their nodes. When no changed

virtuai data is in the node h m which the inference is initiated, retwn a ni1 value

to this node to resume inference at this node. For each remote node, do the

following steps:

(a) If the execution of the current de-based reasoning is initiated h m that

node, send the collection of the changed vùtual data back to this node as the

retm value to resume the execution of the de-based inference at that

nde.

(b) If the node is not the one from which the execution of the de-based

inference is initiated, send a message to the node to infonn the changed data

and activate the de-based reasoning at this remote node. Suspend

execution of the rule-based inference at the local node to wait for the

inference result h m the remote node.

Step4: If the data preserved at the current node are changed, due to the inference

conducted at remote nodes, go to Step 1. ûtherwise, terminate the execution of

the de-based reasoning.

This distributed knowledge-based inference algorithm is very similar to the one

introduced in Section 3.3.3 for maintahhg the dependency relations ammg the

distributed attributes. Since loiowledge-based reasoning can resuit in the change of the

attribute values, propagation of the attribute change is then required. The attribute change

propagation can M e r change the product database, thus resulting in change of the

conditions for d e matching, and the de-based reasonhg is then required again.

This chapter presents a detailed discussion on issues in modeling a feature-based

disûibuted database and knowledge base for concurrent design of engineering products.

To associate geographically distributed product development activities. modeled by

feature-based databases and Lnowledge bases, the Intemet is employed as the media for

connecting the computea used for modeling these databases and knowledge bases.

Information flows among different product development activities that are modeled by

Intemet nodes are realized through the socket-based client-semer communication

architecture.

To use the remote databases and knowledge bases at a local site. the concepts of

virtual features and virtual rule-bases are introduced. The virnial databases and

knowledge bases are physically located at remote locations but accessible from the local

location. A virtual class feature can be used to generate a mie instance feature at the local

node. Virtual instance features are considered as part of the databases rquired for

moàeling product development processes. Vimial nile-bases can be selected for

reasoning together with the true rule-bases selected at local node. The relations among

virtual instance features and true instance features are also modeled.

To implement concurrent design, mechanisms for distributed data dependency

relation maintenance and distributed inference are developed. The rnechanism for

distributed data dependency relation maintenance serves as the engine to propagate data

changes among the Intemet nodes defined. This mechanism can give feedback fkom the

down-stream development processes if the design data are modified. The mechanism for

distributed inference helps designers to generate and modify geographically distributed

product development databases to impmve product development efficiency.

CONCURRENT DESIGN BASED UPON DISTRIBUTED DATABASE

AND KNOWLEDGE BASE MODELING

This chapter introduces the development of a product concurrent design system

based on the distributed database and knowledge base modeling approach descnbed in

chapter 3. Following an introduction, Section 4.2 discusses the methods of modeling

product realization pracesses for concurrent design, including modeiing of relations

among Intemet nodes and representation of product realization process altematives.

Section 4.3 introduces methods for identifying the optimal solution fiom aU feasible

product rralization process alternatives. Two methods are introduced: the exhaustive

method and the Genetic Programming (OP) method. The optimal parameter values for

each alternative are identified using a global optimization methoci called Particle Swarm

Optimixation (PSO). Section 4.4 introduces this method.

4.1 Introduction

Concurrent design is a methodology in which the related down-stream product

development processes are considered concurrently at the design stage [Hyeon et al.

19931. To apply concurrent design method in product development using computer-based

systems, the design mode1 and related down-stream development process models must be

integrated to ensure mutual information flows. When the databases used for modeling the

product development processes are geographically distributed at different locations, the

distributed database and knowledge base modeling system introduced in Chapter 3

provides an effective technique for integrating the distributed product development

models.

When the distributed databases are integrated, product concurrent design can then be

achieved by evaluating the design candidates using the dom-stream product

development process models. The distributed database and knowledge base modeling

approach introduced in Chapter 3 provides a framework for modeling the different

product development processes and their relations. Based on this approach, the design

parameters cm be optimized in terms of the product performance in dom-stream

development life-cycle phases. The product concmnt design can be conducted by

adjusting the design parameter values and evaluating the design using the feedback nom

the related dom-stream product development models. To improve the efficiency of

product development, a global optimization method is employed to automate the

concurrent design process in this research.

In today's &bal product development environment, alternative processes cm be

employed for product development at one We-cycle phase such as design and

manufacturing. For example, there may be two or three Internet nodes that can handle

gear manufacturing independently. By selecting different Mernet nodes, different

product nalization processes can be obtained. Selection of relevant Internet nodes,

representing different product development Me-cycle models, for identifying the optimal

alternative for product development, is one of the issues of the concurrent design to be

discussed in tbis research. If the number of involved Internet nodes is small, the best

concurrent design solution can be detennined by comparing aii feasible alternatives. If

the number of involved Intemet nodes is large, the optimal concurrent design solution

should be identified using the optimization method.

Figure 4.1 shows the architecture of the concurrent design system developed in this

research. The concurrent design module was developed based upon the distributed

database and knowledge base modeling approach introûuced in Chapter 3. This module is

accessed by the Concurrent Design Browser and the Design Solution Bmwser. The

distnbuted database and the knowledge base modeiing system is composed of the Intemet

communication module and distributed database and howledge base modeling module.

The foilowing sections wiil discuss the methods for moàeling product realization

pmcess alternatives and identifying the optimal product naiization process alternative.

The optimization method for identifying the optimal parameter values wili also be

introduced.

Concurrent Design

Solution I

Insiance

Browser Distributed DBKB
Modeling Module

Browser Selection
Browser

1 ~ e f i n i t i o l i (r

Communication
Browser ~onnection Module 1

DBKB: Database and Knowledge Base

Figure 4.1 Architecture of the Concurrent Design System

4.2 Modeling of Product R h t i o n Proeess Alternatives

A product realization process alternative is a route of product evolution fiom design

to dom-stream development processes. During concurrent design, the dom-stream

product development processes are considered concurrently to improve the performance

of the design in down-stream life-cycle phases. This section discusses issues in modeling

product reaiization processes.

4.2.1 The Relations among Inte rnet Nodes

The product development activities, such as design and rnanufacturing, are modeled

by features in this research. In the Intemet-based concumnt design system, the activities

for different product development stages are modeled using the features distributed at

different Intemet nodes. So the selection of proper databases and knowledge bases for

product development c m be regarded as the selection of suitable Intemet nodes that are

involved in the concurrent design. Therefore, an anIntemet node can be used to represent

the development activity in a certain phase of the product development lifecycle. For

example, an htemet node may represent design aaivity and another node may represent

manufacturing activity. and so on.

4.2.1.1 Logical Rehtions among Internet Nodes

In this research. the logical relations among Internet nodes that represent the

development activities at different stages of the product development life-cycle are

dehed as node-sub-nodes relations. These relations follow the sequence of activities in

the product development Mecycle. For example, a manufacturing node is a sub-node of

a design node, since the manufacniring activity usudy takes place after design activity.

The dation among the sub-nodes of an Intemet node is either an AND relation or an

OR relation. The AND relation means that ail these sub-nodes, representing sub-

processes, are nquired for moâeling the development activity at certain stage of the

product development lifecycle. When an OR relation is defhed. only one of the sub-

nodes is needed for modeling the required product development activity.

In Figure 4.2 (a), Gear Design represents a design node and Gear MfgA and Gear

MfgB represent two manufacauing nodes. Gear MfgA and Gear MfgB, the sub-nodes of

Gear Design, have an OR relation, which means that either Gear MfgA or Gear MfgB

is required for modeling the manufachuing process of the gear. Figure 4.2 @) shows two

sub-nodes with an AND relation. Each of the two nodes handles part of the

manufacturing processes: the Gear Casting node handles the casting process and the

11 2gnK
Mfg: Manufactunng

Two Sub-Nodes with an OR Rela~

1 casting 1

Mchg: Machinhg -
t) Two Sub-Nodes with an AND Rela

Figure 4.2 Intemet Node Relations

Gear Mchg node handles the machining processes. The gear can be produceci using the

data and knowledge in both Gear Casting node and Gear Mchg node.

Figure 4.3 A Snapshot of the Concurrent Design Browser

4.2.1.2 Creation of litternet N d e Relations

To create Internet node relations for identîfying the product realization process

alternatives, an interface called Concurrent Design Browser has k e n developed. A

snapshot of the Concurrent Design Browser is shown in Figure 4.3. The contiguration

of the browser is shown in Figure 4.4.

AU the Intemet nodes are grouped into different categones. The categories are

defmed in the category list view. When a category is selected, d Internet node names

defmed in that category are listed in the node name list view. A new node can be added to

a selected category. In the aspect list view, five built-in aspects: superNode, S U ~ N O ~ ~ S ,

andNodes, orNodes. and evaluationFunction, are listed for a selected node. The

element list view shows the elements: node names or an evaluation function for the

highlighted Intemet node. These elements are edited with the use of the text view. For the

example shown in Figure 4.5, the node 02 is defmed by

Node: 02

superNode: F

subNodes: M3, M4

andNodes: Dl

orl30des:

evaluationFunction: <anEvaluationFunction>

Afier the relations of the iavolved nodes are dehed, the product realization process

alternatives can be generated by executing the menu items of the Concurrent Design

Browser.

Category
List View

Concurrent Design Browser

Node Name Aspect List
List View View

Element List
View

-

- 7

I
Add
Remove

b Al1 Alternatives
Add OptimaI Alternative
Remove Start
Renarne Accept

Continue Text View
Terminate

Figure 4.4 Configuration of the Concurrent Design Browser

4.2.2 Representation of Roduct Reaiization Process Alternatives

After al1 the relations of the involved Intemet nodes are defined using the

Concurrent Design Browser. the product reaüzation process alternatives can then be

identified.

4.2.2. I Produet Realization Proce ss Altentatives

A product realization process alternative is described by a list of Intemet nodes that

contain the required databases and knowledge bases for modeiing the product

development activities at different stages of the product development life-cycle. For

example, Figure 4.5 shows the feasible product realization processes represented by an

AND/OR graph with seven Intemet nodes. Two product realization process alternatives

can be generated fkom this ANDIOR graph. The generated product reaiization pmcess

alternatives are displayed in the Design Solution Browser that wili be introduced in

Section 4.2.2.2.

Alternatives:

F: Function D: Design M: Manufacturing

Figure 4.5 An ANDIOR Graph for Modeling froduct Realization Process Alternatives

4.2.2.2 Display of Product Realiz ation Process Alternatives

The product realization process alternatives generated by the system are displayed in

the Design Solution Browser. These alternatives are then evaluated and compared with

each other to identify the solution that satisfies the design requirements. The Design

Solution Browser is shown in Figure 4.6 and 4.7.

There are five views in the Design Solution Browser as shown in Figure 4.7. The

category list view lis& the categories defined in the Design Solution Browser. The

product reaiization process alternatives arr Listed in the alternative List view. The data List

view displays al1 the instance feature names preserved in the nodes involved in the

product reaiization process alternative selected in the alternative list view. This view lets

users know aü the instance features used for modeling the development activities in this

product realization process. In the evaluation function list view, evaluation functions for

the selected product realization process alternative are listed. An evaluation function in

Figure 4.6 A Snapshot of the Design Solution Browser

I Design Solution Browser I

Figure 4.7 Configuration of the Design Solution Browser

Category List Alternative List Data List

Vie w

Remove Evaluation Function List View
Parame ter Optirnietion

I
r'

tbis list can be selected to evaluate the highlighted product realization process alternative

in the alternative list view. The text view (text editor) is used to edit the evaluation

functions. The edited function is saved using the Accept command of the text view

menu.

Text View Select
Unselec t
Update

An evaluation function is & h e d using the attributes of instance feanires preserved in

different Intemet nodes. It is used to evaluate the selected product realization process

alternative. An evaluation function can be describeci by F(%), wherez is a vector of

attributes:
i)

X = x i 9 + ,..., xi ?..., xm . (4-1)

where xi is the à-th attribute and n is the total number of attributes used to define this

function. For the example shown in Figwe 4.5, if the total manufacturing cost is used to

evaluate the product reaïization pmcess alternative (F, D 1 , D2, M2,M3, M4). the

evaluation function takes the following format:

Where cost is an attribute name, m2Process, m3Process, and m4Process are instance

features for modeling the manufacturing processes in nodes M2, M 3 and M4

respec tivel y.

The command Update in the menu of the evaluation function list view brings the

updated value of the evaluation function to the text view. Since the attributes used in the

evaluation function are àistributed at different Intemet nodes, messages are sent to these

nodes ta get the current values of these attributes. The resuIt of the evaluation function is

thea calculated and displayed.

4 3 IdentiFication of the Optimal Product Reaiization Process Alternative

The two methods used for identifying the optimal concurrent design schtion

alternative are (1) the exhaustive method and (2) the Genetic Programming method.

When the number of the involved Intemet nodes is small, the exhaustive method is used

first to generate al1 possible alternatives. Then the alternatives are evaluated and

compared to fmd the best one. When the number of the involved Intemet nodes is large.

the Genetic P r o g r m g method is used to identiq the optimal alternative.

4.3.1 The Exhaustive Method

In the exhaustive method, a iist of ali product reaüzation process alternatives is fmt

generated automaticaliy. Then the designers can evaluate and compare these alternatives

to h d the best one.

4.3.1.1 The Algorithm for Genera ting Al1 Altematives

Afier the relations among the involved Internet nodes are defined using the -

Concurrent Design Browser, alI possible alternatives c m be generated using the

following algorithm:

Step 1:

Step 2:

Step 3:

Step 4:

Create an empty collection caiied alternative collection and an empty list calied

the node list. Select the mot node as the element of the node list. Put the node

list into the alternative collection.

Pick up a node list, which has unexpanded nodes, fiom the alternative

colîection. From this list, pick up a noâe that is neither a leaf node nor an

expanded node. Identify di the sub-nodes of this node.

For those sub-nodes with an AND relation, add these nodes into the list. When

an OR relation is detected, for each sub-node, a copy of the current list is

created and this sub-node is added to the copy. Put these new node lists into the

alternative collection and remove the original list.

Check whether ai i the nodes in al l the lists are expanded. If no unexpanded

node can be found, the expanding process stops. Otherwise, go to Step 2.

4.3.1.2 An Euunple of Generating AIl Altematives

Suppose that the relations of the involved Intemet nodes are defmed as shown in

Figure 4.8 (a). The product realization process alternatives are generated in the following

process:

1. The mot node A is put into the node List 1. The node list 1 is put into the alternative

coilec tion.

77

2. The node A in node kt 1 is picked up for expansion. Since the two sub-nodes of node

A, B and C, have an AND relation, these sub-nodes are added to the original node List.

3. Node B in node list 1 is picked up for expansion. Since the two sub-nodes of node B.

D and E, have an OR relation, two copies of the original node list 1 are created. The

(a) Product Realization Rocesses Represented by an AND/OR Graph

1-1 Alternative Collection

(c) Created 9 Alternatives

A Expanded Node A Picked Node -
(b) Alternative Generation Rocess

Figure 4.8 Generation of Aii Alternatives

78

node 0 and E are added to the two new lists respectively. The original node iist 1 is

then removed Fom the altemative collection* Now there are two node lists, node list 1

and 2, in the alternative coiiection.

The node C in node list 1 is picked up for expansion. Node C has tbree sub-nodes, F,

G, and H. Since these sub-nodes have an OR relation, three copies of the original

node list 1 are created and the t h e nodes are added into the three copies

respectively. The original node list 1 is replaced with the three new lists.

Repeat this process until ai l nodes in al1 lists are expanded. Nine alternatives in total

are generated, as shown in Figure 4.8 (c).

This process is illustrated in Figure 4.8 (b). In the implemented concurrent design

system, the process of generating ail possible product realization process alternatives is

started by executing the command All Alternatives in the menu of node name list view of

Concurrent Design Browser. The generated alternatives are displayed in the Design

Solution Browser.

When the number of product realization process alternatives is not large, the

designers can evaluate each of them using the defmed evaiuation function. Then the best

alternative can be selected fkom these alternatives.

4.3.2 The Genetic Prograrnming (GP) Method

If the number of the involved Intemet nodes is large, it is impossible for a designer to

evaluate al1 the proàuct realization process alternatives manually. For this reason, Genetic

Rograrnming [Koza 19921 is used as an optimization method to identify the optimal

alternative.

4.3.2.1 Introduction to Genetic P rogramming Method

Genetic Prograrnming is an extension of the Genetic Algorithm [Goldberg 1989,

Angeline 19941. As an evolutionary method for search and optimuation, Genetic

Programmllig has features suitable for handling more complex problems than the Genetic

79

Algorithm. The main difference between the two methods is the representation of

solutions.

In the Genetic Aigorithm, the solution is represented as a string of nurnbers called

chromosomes. A population of such strings evolves generation by generation. These

strings are usually fixed-length binary strings and remain in the same length -during

evolution. One of the limitations of this representation method is that the solutions of

some problems are difficult to be coded into fixed-length strings.

In Genetic Programming, the problem solutions are represented by structures such as

trees. These structures are manipulated during the evolution process. When a tree is used,

the number of branches and the length of each branch change dynamicaiiy during the

evolution process. Therefore, such solution representation is considered as a dynamic

representation.

Though different in problem solution representations, Genetic Programming and

Genetic Algorithm share the s a m principles of evolution through natural selection.

Generally there are four steps to solving problems using genetic programming:

Step 1:

Step 2:

Step 3:

Generate initial population members randomly. In this research, the memben

are described as mes. In the population, each individual member, representing a

solution to the problem, has a valid structure according to the predefmed syntax.

Evaiuate each individual member based on the fitness predefraed according to

the problem to be solved. The fitness functions will be introduced at the end of

this section.

Create a new population using the following operations:

Reproduction: The individuals with better fitness have more chances to be

duplicated to the next generation. The individuals to be duplicated are

probabilisticaily selected, based on the fitness of each member, from the

population. The number of duplications to be produced depends on how fit the

member is.

Cnissover: Crossover is also called sexuai recombination. Two parental

individuai members are selected fiom the population. On each parent, a

crossover point is selected randomly. The sub-tree rooted at the selected

crossover point cm be identified on each parent. Then the sub-tree is removed

h m its parent and replaced with the sub-tree nom the other parent. By

switching the two sub-trees, two new offspring are praduced for the next

generation. ARer the cmssover operation, the syntax defined for the inâividuals

must be maintained.

Mutation: A single individuai is randomly selected from the population for

mutation. The mutation point is chosen randomly. The sub-tree rooted at that

point is replaced with a w w sub-tree. The new sub-tree is randomly generated.

Step 4: After the predetermïned maximum generations are created or a criterion is

satisfied, the best individual encountered in the evolution process is selected as

the solution.

The reproduction operation is simply the duplication of the original individual

probabilisticaiiy selected from the population based on fitness. An example illustrahg

the reproduction process is given in Figure 4.12 of Section 4.3.2.2.

The crossover and mutation operations described above are iiiustrated in Figure 4.9.

For the crossover operation, a crossover point on each parent is randomly selected. On

the fmt parent, node C is selected, and on the second parent, node H is selected. Then the

sub-tree rooted at C of the fmt parent (inside the doted boundary) is replaced with the

sub-tree rooted at H h m the second parent (inside the doted boundary). The same

operation is conducted on the second parent. As a result, two chiidren are produced, as

s h o w in Figure 4.9 (a). For the mutation operation, the node H of the original individual

is randomly chosen as the mutation point. Then the sub-tree rooted at H of the original

individual is deleted and a new sub-tree grows fkom the mutation point. The mutated

individual is show in Figure 4.9 @).

(a) Crossover Operation

a Mutation

'\ /
_ . - c - '

(b) Mutation Operation

Figure 4.9 Crossover and Mutation Operations in Genetic Programming

In the evolution process, each individual member of a population is evaluated based

upon its fitness. The individual mernber has more chance to survive if it bas a better

fitness evaluation measure for solving the problem. Usuaily a fitness function is used to

calculate the fitness of individual members. Several formats of fitness functions can be

used. If the original hinction used to evaluate the problem solutionsïs caiied raw fitness

function Hx), then we have the foilowing fitness function formats:

S tandardized Fitness s(x):

for Min F(x) problems.
S (X) =

for Max F(x) problems. r, is a positive constant.
(4 - 2)

Adjusted Fitness a(x):

Normalized Fitness n(x):

where m is the number of individuals in the population. The normalized fitness reflects

the fitness proportion of an individual member in the population. Therefore it can be used

as the reference for selecting the corresponding member to take part in evolution

operations such as reproduction.

4.3.2.2 Genetic Programrning for Alternative Optimization

As described in Section 4.2, product realuation process alternatives are described by

tree structures. The number of branches and the length of each branch of the alternative

trees are different. The method used for alternative optimization should be able to hanclle

the tree structure effectively. The Genetic Programming method is selected in this

research because of its advantage in dynamic representation of problem solutions.

However, the problem of concurrent design with distributed databases has its own

characteristics that require some of the evolution procedures to be modified. Therefore

the concept of Genetic Programming plays a more important role in implementing the

optimization of product realization prmess alternatives.

The procedures and related issues using the Genetic Prograrnming methoci for

optimizing product realization process aitematives are discussed in this section.

1. Search Space Representation

Differeat Intemet nodes represent different p d u c t development activities. With all

possible choices of Internet nodes that are relevant to a given concurrent design problem.

alternative combinations of these nodes produce dinerent product reaiization routes. in

other words, different product realization process alternatives. These alternatives

compose the search space to be explored for identifjing the optimal one. Based on the

definitions of Internet node relations and product realization process alternatives in this

research, the search space can be represented using an ANDIOR graph. Usually the mot

node of the tree represents the database for modeling design requirements. The ANDIOR

graph shown in Figure 4.10 &fines twelve product reaiization process alternatives.

Figure 4.10 The ANDIOR Graph Representing a Search Space

2. Generation of Initiai Population

The members of the initial population should be randomly generated from the

predefmed search space. A random alternative is created through the foliowing steps:

Step 1:

Step 2:

Step 3:

Step 4:

Ideniify the root node. Put the root node into an empty iist.

Pick up a node h m the k t . This node should be neither a leaf node nor an

expanded node. Identify its sub-nodes.

If these sub-nodes have an AND relation, put ail of them into the list. If these

sub-nodes have an OR relation, select one of the nodes randomly and put it into

the k t .

Check whether ali the nodes in the list are expanded. If no unexpanded node

can be found, terminate this process. Otherwise, go to Step 2.

This pmcess is repeated until the required number of individuals is reached. These

procedures are similar to the procedures of the exhaustive method for generating ail

possible alternatives.

Based on the ANDIOR graph show in Figure 4.10, the creation process of a random

alternative is illustrated in Figure 4.1 1.

(a) The Process of Creating a Random Alternative

Figure 4.1 1 Creation of a Random Alternative

3. Reproduction

The nurnber of times that each individual should be duplicated in the next generation

is determined by a probabiiity that is proportional to the individual's fitness. In this

research, the nomaiized fimess n(x), representing the fitness proportion of the selected

individual, is used to calculate this number:

N~ = int [m - n i (x)] , i = 1, 2, ..., m (4 - 5)

where m is the number of individuai members in the population. The function int[]

converts the real number to its closest integer.

The reproduction operation is illustrated in Figure 4.12. The fitness of each

individual is caicuiated using Equations (4-4) based on the cost value. The number of

copies of an individual to be reproduced in the next generation is calculated using

Equation (4-5). In this example, two copies of Individual-3 are produced in the next

generation, since its fitness is high. Individual-2 died after reproduction because of its

very low fitness. The average cost of the population is improved after reproduction.

-
No. -

1

2

3

4 -

Population Bcfore
Reproduction

-1

Average Cost

Copies Population After
Reproduction

rÏzzGzl

Cost

300

100

100

280

195

4. Crossover

Crossover is the prïmary operation for producing new individuals. For concurrent

design problems considered in this research, the alternatives, represented by individual

members of a population, must foliow a predefined syntax. The syntax for the product

realization process alternatives refers to the relations defhed among the Intemet nodes.

Specifically, the children produced as the result of crossover operations have to be valid

product realization process alternatives. In other words, the syntax of the individuals

should be maintained intact after the crossover operations. Therefore the crossover point,

the location at which the crossover operation is conducted, must satisf'y the following

conditions :

(a) The node at the selected location should not be a mot node or a leaf node.

(b) The node at the selected location must have OR relation sub-nodes.

(c) The node at the selected location c m be found in the other alternative selected

for crossover.

Based on the above discussions, crossover operations can be performed when the

two selected individuals (alternatives) contain the same Internet node, no matter where

the node is located in each alternative. The procedure for crossover operations is as

follows:

The number of the crossover operations, N,, is calculated by:

Nc = i~t[0.5(m-1)P~~ J (4 - 6)

where Pcl is a random number between O and 1.

The two parent individuals, i-e., alternatives, are chosen randomly from the

cumnt population. If the two selected alternatives are marked as Al and A2

respectively, the selection of location on each individuai for crossover operation

is conducted through the following procedure.

Fïrst, if the location of mot node (the fust node in the node list) is defined as 1,

the location of crossover point on alternative Ai is calculated using the following

equation:

& = int[(n- 1)Pd + 1] (4 - 7)
where n is the number of nodes in alternative Ai and Pd is a random number

between O and 1. If the node at location L, does not meet the requirements for

crossover, the location is moved one step forward or backward to a new

location. The direction of movement is determined randomly. If the node at the

new location stiil cannot satisfy the requirements, the location is continuously

moved in the determined direction until a location that meets the conditions for

crossover is found. If the location has reached the top (or bottom) of the node

list and no valid location is found, then it is relocated to the bottom (or top) of

the node ïist to continue this process.

For each of the parent alternatives Al and Az identify the nodes on the sub-tree

rwted at the selected node. Together with the seIected node, these nodes are

deleted from their original node List and replaced with the nodes in the sub-tree

from the other alternative. Actuaily, the branch on one alternative tree is

87

replaced with a branch fiom the other tree. Then the two child alternatives are

produced.

The process of crossover is iliustrated in Figure 4.13. The two selected alternatives

are marked as Api and Api respectively. For alternative Api, if the initial location for

crossover is calculateci as 4 using Equation (M), the node at this location is D. Since

node D has oniy one sub-node (refer to Figure 4.10) and it cannot be found in alternative

Apr, the location of node D is not vaüd as a crossover point. Then the location is moved

one step forward or backward to a new location of the node List of Apis h this case the

next position can be either 3 or 5. The direction of this movement is determined

randomly. Supposing the backward direction is selected, the next location is then 3. The

node at this location is C, and node C meets ai l the conditions of a crossover point. So

crossover points are determined on both alternatives Api and Ap2.

Figure 4.13 Crossover Operation to Alternatives

The nodes on the sub-tree rooted at C on alternative Apl are identified as (C,H,O).

These nodes are deleted from the noàe list of Apl and replaced with the nodes, identifîed

as (C,G,M,N), on the sub-tree rooted at C of alternative Apz. The same operation is

conducted for alternative Then the two child alternatives Acl and Ac2 are produced as

shown in Figure 4.13.

5. Mutation

Mutation is another operation for producing w w individuals. Each newly produced

individual must be correct in the syntax defmed for representing the product reaiization

process alternatives. Theoretically, a mutation operation can be conducted at any location

on an alternative. To ensure that the sub-tree rooted at the selected node is replaced with

a different sub-tree in mutation operation, the selected node must be an OR node. The

mutation operation in this research is conducted by the foilowing procedure:

(1) Calculate the number of mutation operations Nm usiug:

where Pm is a predetermined probability value between O and 1.

(2) Pick up an individual randomly fkom the current population.

(3) Select the location for mutation randomly using the following equation:

Lm = int[(n - 1) - Pr + 11 (4 - 9)

where Pris a random number between O and 1, and n is the number of nodes in

the selected alternative. If the node at location Lm is not an OR node, the

location is moved one step forward or backward to a new location on the node

List. The direction is determined randomly. If the node at the aew location is still

not an OR node, the location is continuously moved mtil a valid location for

mutation operation is found. The location is valid as a mutation point if the

node at this location is an OR node. If the location has reached the top (or the

bottom) of the node list of the selected alternative and no valid location is found,

then it is relocated to the bottom (or the top) of the node list to continue this

process.

(4) Identify all the nodes on the sub-tree rooted at the selected node and delete all

these nodes from the node list of the selected alternative.

89 -

(5) Select a node randomly from the nodes that have an OR relation with the node at

the selected location. A new sub-tree grows with the new node as its root node.

The methad introâuced in Generation of Initiai Population for creating a random

alternative is used here to produce a random sub-tree. Then the nodes on this

new sub-tree are put into the node List of the selected alternative. Now this

selected alternative has been mutated.

This process of mutation operation is illustrated in Figure 4.14. If the location of the

mutation point of the original alternative is calculated as 7 using Equation (4-9), the

corresponding node at this location is M. From Figure 4.10. we can see that M is not an

OR node; therefore, this location is not a valid mutation point. To find a valid location,

the currently selected location is moved one step forwarâ or backward on the node List of

the alternative. The direction of movement is detennined randomly. If the direction is

determined to be backward in this case, the next location is 6. The node at location 6 is 1,

which is not an OR node either. So the location is continuously moved backward dong

the node list to location 5. This location is vaiid since the corresponding noâe G is an OR

node. The nodes on the sub-tree rooted at G, identified as (G,M,N), are removed fkom the

node list. From the two OR nodes of node G (refer to Figure 4. IO), node F is randomly

Mutation

a

/
The Mutated Alternative:

Figure 4.14 Mutation Operation to the Selected Alternative

selected as the new noàe to replace node 0. Using node F as the root node, the new sub-

tree (F,L) is generated through the method introduced in Generation of Initial Population.

Then the nodes on this newly generated sub-tree are put into the node list. The mutated

alternative is shown in Figure 4.14.

6. Solution

For each generation, the best individual (alternative) in the current population is

compared with the best individual produced in the previous generations. The better one is

selected as the best-so-far alternative. After the predefmed nurnber of generations is

reached, the evolution process is terminated and the best-so-far individual (alternative) is

the solution,

For each alternative produced in the evolution process, parameter optimization is

conducted for identifying the optimal parameter values of this alternative. The fitness of

the alternative should be calculated with the identified optimai parameter values.

4.4 Identification of Optimai Design Parameter Values

The identification of the optimal product realization process alternative is conducted

on the basis that the design parameter values have been optimized in terms of the

performance of the design in down-stream product development phases. In other words,

for a prduct realization process alternative, the design parameter optimization must be

conducted fmt, so that the alternative can be evaluated or compared with other

alternatives. In this research a population-based optimization method, Particle Swarm

Optimization (PSO) [Kennedy and Eberhart 1995, Shi and Eberhart 19981, is adopted for

design pamneter optimization.

4.4.1 Introduction to Particle S w arm Optimization (PSO)

Particle Swann Optimization (PSO) is a population-based optimization method

proposed by James K e ~ e d y and Russell Eberhart [G ~ e d y and Eberhart 19951. This

method simulates social behavior of organisms, such as bird-flocking and fish-schooling.

The idea is that when a bird in a f k k tries to h d food, it uses not only its own

knowledge and experience but also its neighbors' (other birds') experiences.

In PSO, particles fly around in the search space towards the destination (the best

position). hiring flying, each particle adjusts its flying direction and speeà according to

both its own flying experience and its companions' flying experiences.

If the position of i-th particle is represented as

Xi = (xi,, Xia ...r xid), i = 1,2, ..., AT (4 - 10)

where N is the number of particles in the space and d is the dimension of the space. The

best previous position of Xi is recorded and represented as

pi = (~ i h piz, *--s pid, i = 1' 2, ..., iv (4- 11)

X, and P, are used to represent the best particle (the one with best position) and the

best previous position of the best particle respectively. Then we have:

xg= (X'IS xg2, **-, xgd) (4 - 12)

Pg = &ID - = * B pgd) (4 - 13)

During flying, the position change (i.e. velocity) for Xi is represented as

= (vil Vi2, . . . , vid) (4 - 14)

The next position of Xi is then:

XiJ = X i + Vi (4 - 15)

The velocity Vi is calculated by:

&= w q + crPr1(P i - X i) +c2Pa(Pg-Xi) (4 -16)

where l$, is the previous velocity and w is a weighting number. A greater w value results

in strong global search ability and a smailer w value leads to a more local search.

Coefficients cl and c2 are positive constants. Pr, and Pr2 are two random numbers

between O and 1. The Equation (4-16) shows that the new velocity of a particle is

determined according to its previous velocity, the distance of its current position from its

own best position, and the distame of its cumnt position h m the group's best

experience (position). Then the particle flies to a new position calculated by Equation (4-

15).

PSO is conducted through the following steps:

Step 1 : Generate N particles with random positions and velocities in the search space.

Step 2: Evaluate each particle with a predefined fitness function that is related to the

problem to be solved so X' and P, can be identined.

Step 3: Calcuiate velocity for each particle using Equation (4-16) and the new positions

of the particles are detemiined using Equation (4-15).

Step 4: Repeat Step 2 and Step 3 until pre-determined termination cnteria, the

maximum position number or the minimum variation of the objective fünction

value, is reached.

According to Shi and Eberhart 119981 and Kemedy and Eberhart 119951, PSO has

the following advantages:

1. The concept of PSO is simple and the paradigms of P SO can be implemented in a

few lines of cornputer codes.

2. The methodology of PSO contains evolutionary concepts but needs no coding of
.

problem solutions as does Genetic Algorithm.

3. PSO is computationaiiy inexpensive in terms of both memory requirements and

speed because it requires only primitive mathematical operators.

4.4.2 PSO in Design Parameter Optimization

Since this research is concemed with integrating the distributed databases and

knowledge bases of different product development professes for concurrent design. the

data dependency relation maintenance mechanism is used to propagate data changes in

the optimization process.

4.4.2.1 Fomukùtion of Parameter Optirnizution Problems

Usuaily an optimization problem c m be formuiated by an objective function and a

collection of constraints. The parameter optimization problems is formuiated as:

Min F(%)
subjectto : h i (g) S O , i = l , 2 , . . . , n h

g j (Z) = ~ , j = 1 . 2 , "S
where F(Z) is the objective function and 2 represents the design parameters that are

usually the attributes of instance features preserved at different Intemet nodes. hi(%) and

g,< a) are two types of constrallit functions that define the conditions and requirements to

the problem to be solved. The numbers of the two types of constraints, hi(2) and g,{ 2) .
are noted as nh and n, respectively.

The objective function F(2) is used to evaluate the performance of the design in

down-stream product development processes. It is used directly as the fimess of the

particle that is under evaluation. The objective hinction F(2) can be described by an

equation or by a piece of cornputer program.

This constrained optimization problem is converted into a nonconstrained

optimization problem by adding a penalty factor to the objective fuaction. Then a pseudo-

objective function in the following form is created:

where p(d) is the penaity fûnction and W is a multiplier constant that determines

the magnitude of the penalty. The penalty fùnction takes the foilowing form in this

research:

With Equations (4-18) and (M g) , violations of constraints wili result in a penalty to

the original objective fimction. In other words, if constraints are violated, the fitness of

the particle in curent p s i tion will be low .

4.4.2.2 Issues of Parameter Optim ization with PSO

Since the parameter opiimization problems involve distributed databases that are

represented by instance feanups, the functiom that haadle distributed &tabases, such as

infoxming the changes of Mmial attribute values, obtainhg virtual attribute values, and

propagating &ta changes automaticdy, shouid be accommhted hto the o p e a t i o n

process. During optimization, whenever new values are assigneci to the design

parameten, the calculation for data dependency relation maintenance should be

conducted in order to detennine the effects of these values on the performance of the

design in down-stream product deveiopment phases. Since the distributed computing

invol ves communications among related Internet nodes, parameter optimization wi th

geographically distributed databases requises mucb longer compared with an

optimization with centralized databases.

When PSO is used in design parameter ~ptimization, the basic procedures are the

same as those introduced in Section 4.4.1. However the following issues must be

addressed:

1. Representation of Design Parameters

Design parameters are represented by attributes of instance feaaires preserved at

difierent locations. In PSO, a group of design parameten is npresented as a particle. The

different sets of values of the design parameters are ~presented as the different positions

of the particles flying in the search space. Therefore the objective of the pmblem is to

fmd the best position, i.e., the destination, of the particles.

2. Evaluation of Paxticles (Positions)

Parameter optimixation is conducted not only to identify the optimal design

parameter values, but also to bring the product databases of the selected alternative to an

optimal state in te= of concurrent design. To be consistent with the alternative

optirnization, the evaluation function defined in altemstive ophization is used as the

original objective function in design parameter optimization.

3. Ropagation of Design Parameter Values

Each position

parameters. When

of a particle in PSO represents one set of values of the design

a particle moves to a new position, a new set of values of the

parameters is obtained. In order to evaluate these values, the correspondhg attributes, no

matter where th& are located, are updated with the new values by sending messages to

the Intemet nodes where these attributes are preserved Then the attribute relation

maintenance mechanism is activated automatically to propagate the changes of these

attnbute values to aU related databases. To evaluate the performance of this set of values

of the design parameters, fitness is then calculated. If the value of a virtual attribute is

required to calculate fimess, a message is sent and the required value is retumed through

the Internet communication module.

In design parameter opimization using PSO, the values of the constants used in

calculation of particle velocity are selected as: w = 0.8, cl = ct = 2 according to Shi and

Eberhart [1998].

4.4.2.3 The Parameter Optimization Inteeace

An interface for defining design parameters, constraints and the objective functions

has been developed. This interface is named as Parameter Optimization Window. The

number of particles and the maximum number of positions are also defmed in this

window. A snapshot of the Parameter Optimization Window is shown in Figure 4.15.

The configuration of the window is given in Figure 4.16.

The alternative text view is a read-only text view used to display the selected

alternative. The three List views are the places for denning design parameters, constraints

and objective fûnctions respectively. Commands Add and Remove are implemented for

each of the list views. The two text views in the bottom of the window are used to input

the number of particles and the maximum number of positions. AU the information

displayed in the window can be cleared by clicking on the Clear button. M e r entering

all the required iafonnation, the optimization process can be started by clicking on the

Start button.

Constmints Oblechn Fundion 1

Figure 4.15 A Snapshot of the Parameter Optimization Window

I
-

Parameter Optimization Window
- -

(Alternative Text View - Read Only)

Parameters Constrain ts Objective Function

Number of Particles: Max Positions:

I I

(Parameter List Vie w)

1 /
Text Views

\ 1
Buttons

(Consrraint List View)

Figure 4.16 Configuration of the Parameter Optimization Window

(Function List View)

The distributed database and knowledge base modeling system has provided an

effective technique for the implementation of concurrent product design with distributed

information =sources. Since many mornes are available through Internet connections,

more alternatives for product naiization have brought more chances to d u c e product

development costs and lead-time.

To identify the optimal alternative for product àevelopment with concurrent design

technology, two levels of opthkation are employed in this research. At the alternative

level, two methods are introduced. The exhaustive method is used when the nurnber of

alternatives is small. The optimal alternative is selected by comparing aîi feasible

alternatives. When the number of alternatives is large, Genetic Programming method is

used to identify the optimal alternative more efficiently. The GP method has the

advantage of dynamic representation of the solutions, and therefore is suitable for

optimization of the product realization process aitematives. Based on the defdtion of the

product realization process alternatives, techniques used for generating random

altematives, selecting locations for crossover and mutation operations, and search space

representation are introduced.

The alternative optimization is conducted based on the results of design parameter

optimization. The challenge of design parameter optimization in this research is that the

design parameters and the related databases are distributed at different locations. To

improve the efficiency of parameter optimization, Particle Swarm Optimization is

employed because of the sirnplicity and quality of the algorithm. The issues of using PSO

with distributed design parameters and related databases are addressed. These issues

include problem formulation, particle evaluation, and the access of remote data during

optimization.

The interfaces developed for accessing the concurrent design system are also

inaoduced in this chapter.

SYSTElM IMPLEMENTATION AND APPLICATION EXAMPLES

This chapter discusses issues in implementing the Internet-based concurrent design

system which has been developed based on the distrïbuted database and knowledge base

modeling approach desdbed in Chapter 3. These issues include the system interfaces,

the data structures, message handling, etc. The system has been implemented using

VisualWorks 2.5, which provides a robust Smailtaik application development

environment. Application examples are also given in this chapter to illustrate the

effectiveness of the introduced methods in distributed database and knowledge base

modeling and the concurrent design system.

5.1 System ïmpîementation

5.1.1 System Interfaces

nie architecture of the Internet-based concurrent design system has k e n iiiustrated

in Figure 4.1. Based on this architecture, eight browsers have been developed as the

interfaces for this concumnt design system. The functions of each browser and the

relations among the eight browsers are shown in Figure 5.1.

The eight browsers of the concurrent design system are managed by a launcher

caiied CDS Launcher as shown in Figure 5.2. CDS stands for Concurrent Design

System. AU the browsers developed in this system can be activated through this launcher.

As shown in Figure 5.3, the browsers are organized into different groups and a drop-

down menu is implemented to create the browsers of each group. These browsers cm be

created by simply clicking on the corresponding menu items.

As described in Section 4.1, the Internet-based concurrent design system is

composed of three modules: .the concumnt design module, the distributed database and

knowledge base modeling module, and the Internet communication module. The Intemet

communication module is accessed by the lntemet Node Definition Browser and the

Node Connection Browser. This module provides services to both the concurrent

design module and the distributed database and knowledge base modeling module.

Figure 5.2 A Snapshot of the CDS Launcher

1 CDS Launchet

Concurrent Design Browser
Design Solution Browser 1 i

Internet Node Definition Browser
Node Connection Browser

Figure 5.3 Partial DropDown Menus of the CDS Launcher

The disaibuteci database and knowledge base modeling module handles the functions

such as creating databases and knowledge bases for product development. defhing

relations among the tme data and the virtual data, propagating attribute value changes,

and conduchg de-based inference for automathg product modeling. This module is

accessed by the Class Feature Browser, the Instance Feature Browser, the Rule-

Base Browser, and the Rule-Base Selection Browser. The Class Feature Browser

and the Rule-Base Browser are used for building the database and knowledge base

libmies for product development. T h u g h the Instance Feature Browser and the

Rule-Base Selection Browser, the information àefined in the libraries is used to

produce the product development databases. Functions related to product database

modeling, such as generating instance features, propagatiag changed attribute values,

selecting h a 1 de-bases, and conducting distributed inference, have been implemented

as fhctions of the Instance Feature Browser and the Rule-Base Selection Browser.

The concurrent design module provides the functions for conducting product

concurrent design, such as modeling product reaiization process alternatives and

identifjing the optimal design parameter values and the optimal product nalization

process. This module is accessed by the Concurrent Design Browser and the Design

Solution Browser. The relations among the involved Internet nodes, defmed in the

Concurrent Design Browser, provide the guidance for automatic generation of valid

product realization process alternatives. The Concurrent Design B rowse r also handles

the optimization of product reaiization process alternatives. The generated alternatives

are displayed in the Design Solution Browser. Parameter optimization is conducted

using the Design Solution Browser. The concurrent design module is supported by both

the distributed database and knowledge base modeling module and the Internet

communication module.

5.1.2 New Classes Developed for System Implementation

The concurrent design system has been implemented ushg VisualWorks [Hopkins

and H o m 19951. VisualWorks provides a large iibrary of classes that can be used for

application development. For implementing the concurrent design system, many new

classes have been developed in this research. Table 5.1 shows the major newly developed

classes.

In addition to the new classes, a number of giobal variables are defmed in the system

to preserve the knowledge and data. The names of these variables and the data they

represent are iisted in Table 5.2. Figure 5.4 shows an example of the typicd data structure

used in the implemented system. Together with the address and the node name, the port

number '8236' for node BeltDrive is stored in a node defmition object. This object is an

Table 5.1 Major Classes Developed for S ystem Implementation

Modules

c o n m n t Mp
Module

Module 1 NodeComection~rowser FeahueSocket I

Chss Names
ConcurrentDesignBowser IntemetNodeRelation
DesignSolutionBrowser Alternative
EvaluationFunction - DesignSolution
Particle

Knowledge Base
Modelinn Module*

* Most classes in this module were developed in [Yadav 19991, however a
large number of new methods have been developed in this research.

hstanceFeatweBromer FeatureInstance
RuleBro w ser RuleBase

Table 5.2 Major Global Variables Used in the Implemented System
- -

Global Variable Names

NodesAspectDic

ConnectedNodesDic

NodeRelationDic

DesignSolutionDic

Data

Intemet node defmition descriptions such
as addresses and port numbers

Ail connecteci node names

Descriptions of node relations such as
AND relations and OR relations
R d u c t realization process alternatives
generated in the system

Featurecategory Dic

RulesAspec tDic Rule-bases defined in the system I * I

Remarks

FeatureInstanceDic

* Implemented in wadav 19991

Class features defined in the system

instance of the class NodeDefinition. This abject is then put into the node dictionary

$:

Instance features generated in the system

with the node name (YBeitDrive as the key. This node dictionary is then stored in the

category dictionary with the category name #ABC-Food-lndustiy as the key. Finally,

rt

the category dictionary is stored into the Smalltalk system dictionary with the global

variable name #NodesAspectDic as the key. When the port number is requesteû, the

system looks for the key tNodesAspectDic in the system dictionary first and then goes

all the way down to the node dennition object and gets the requested port nurnber.

Smalltrrlk
System Dictionary

......
port: '8236'

Figure 5.4 A Typical Data Structure Used in System Iinplementation

5.1.3 Message Handling

In this concurrent design system, information flows fiom one Intemet node to

another. The information is described by messages. In order to realize effective

communications among involved Intemet nodes, the messages are converted to the

predicate format:

Usuaiiy the name of a predicate States the objective of this message and the elements

of the predicate are the data to be transferred or the information required for executing

this message. For example, the message updateAttributeValue(gearl,z,30) asks the

receiver node to change the attribute z of instance feature gearl to the new value of 30.

Table 5.3 is a list of major predicate messages developed in this system.

A class called Predicate is used to convert a string message to a standard predicate

message and to extract information from the predicate messages.

Table 5.3 Partial Predicate Messages used in the System

Message Names

updateAttributeVdue(featureName, attributeName,

new Value)

5.2 Application Examples

Ask a server node for al1 class

feature narnes.

Retum dl the class feature names to

a client node.

Ask a server node for al1 instance

feanue names.

Retum aii the instance feature names

to a client node.

Ask a server node for al1 elernent

names. The corresponding instance

feature name and aspect name are

specified as the predicate elements.

Request the receiver node to update

an attribute's value. The

corresponding instance featwe name,

attribute name, and the new value are

specified as the predicate elements.

In order to iiiustrate the effectiveness of the distributed database and knowledge base

modeling approach and the concurrent design system, application examples in designing

a sieving system are given in this section.

Separation of particle materials based on their geometric dimensions is ofien

required in food pn>cessing, agricdtural engineering, mining and other industries. Such a

fimction can be realued by a mechanical sieving system. A sieving system is usuaily

composed of a power transfer device and a sieving device. When the sieve is in motion,

particles with srnalier size than the size of the sievc holes c m pass through the sieve, and

thus are separated from larger particles.

The two design requirements in this example are:

The capacity of the sieving system is Io00 kghour.

The input rotational speed of the system is 1000 rpm.

5.2.1 The Concurrent Design Problem

The sieving system design problem is composed of two tasks: (1) the design of a

power transfer mechanism, and (2) the design of a sieving mechanism. Two alternative

power transfer mechanisms, a belt drive mechanism aud a gear pair mechanism, and two

alternative sieving mechanisrns, a flat sieve mechanism and a cyhder sieve mechanism,

are considered in this example. These mechanisms are modeled at different htemet

nodes as show in Figure 5.5.

The objective of this design is to fmd the design alternative that has a minimum

manuf'turing cost, while satisfying the design requirements. To realue this objective,

the manufacturing aspects for the design models show in Figure 5.5 must be considered

during the design process. This is a typical concurrent design problem. in order to

consider manufachiriag aspects, the relevant manufachuing processes related to the

alternative mechaaisms are also modeled by different Intemet nodes. In this example, two

feasible manufacturing nodes, either BeltDriveMfgA or BeltDriveMfgB as shown in

Figure 5.6, can be accessed by the design node BeitDrive. These two nodes have an OR

relation and are modeled as two sub-nodes of BeltDrive. The design requirements are

modeled in an Intemet node called Requirement. To formulate this concurent design

problem, the ANDIOR graph with all the involved Iaternet nodes is formed as shown in

Figure 5.6. The node RI and node R2 in this graph are not real Intemet ndes. They are

used to mode1 ANDIOR relations of the product realization processes. In this research,

this type of nodes is cded a pseudo node.

I

shaftl shaft2 i

Accessible

Figure 5.5 Possible Design Alternatives

Figure 5.6 The ANDIOR Graph Formed with the Involved Internet Nodes

5.2.2 Generation of Instance Fe atures

To implement this example, an IP address and a port number are assigned to each of

the involved hternet node. In each Intemet node, all required instance features are

generated using the correspondhg class features. For example, at no& BeltDrive, the

instance feature behDrive1 is generated using the class feature BeltDrive that is

developed for modeling the beltdrive mechanisms. AU the element-features of

beltDrive1 , including pulleyl , pulley2, shaftl and shaft2, are generated using the class

feanires, Pulley and Shaft, preserved at the local node.

If a required class feature is not available at the local node, a v h a l class feahire at

a remote node can be used to generate the required instance features. For example, at

node CylinderSieve, instance features gearl is required. but there is no comsponding

class feature defiwd at the local node. Therefore. a virtual class feature Gear is required

to generate the required instance feature. In this case the class feature Gear defmed at

node GearPair can be used. M e r the accessible relation between GearPair and

CylinderSieve is established, the virtual class feature GearPaiPhGear. which is the

class feature Gear preserved at node GearPair, can be used for generating the instance

features gearl at node CylinderSieve. Partial instance features generated for this

example are shown in Figure 5.7 (b).

5.2.3 Rule-Based Reasoning wi th Virtual Rule-Bases

After all required instance features are generated, amibute values of the generated

instance feanirrs c m be modified manually or through mie-based reasooing. hiring the

database modeling process, if sufficient knowledge bases have been developed, nile-

based reasoning cm be used to generate or modify the product databases represented by

instance features. One of the advantages of the distributed knowledge base modeling

approach developed in this research is that the de-bases preserved in remote nodes cm

be used for de-based reasoning at the local node. For example, to design the gear gearl

in node CylinderSieve, two rule bases, GearMaterial and GearProcess, ciefined in

node GearPair for modeling the gears, can be used at node CylinderSieve. These two

(a) One M u c t Reaüzation Process Alternative

J Rcquirement 1 customerRequirernent 1
bcltDrive1
pulley 1

capacity, cost, inN, ..-
c, in& outN, distance. ...
d, n. z, c, mat, ...
d, n, z, c, mat, ...
d, 1, n, c, mat, ...
d, 1, n, c, mat. ...
inN, f, capacity, c, ...
I,w,f,d,c ,...

BeltDriveMfgA

I

inN: input rotational speed, outN: output rotational speed, d: diameter, n: rotational speed,
z: mth number, 1: length, w: width, f: fizquency, c: cost, a: area, t: thickness, mat: material.

..* S..
flatSieveMechProcess 1
flatSieveîmcess l
fsPunchingRocess 1
fsWeldingProcess 1
pin 1 Process 1

(b) Partial Instance Features and Attributes at Different Intemet Nodes

a..

beltDriveProcess 1
pulley 1 Process 1
p 1Tuninirprocess 1

~lTurningPr.ocess2
s hail 1 Rocess 1
s 1Tumingfrocess 1
s 1 GrindingProcess 1

S..

c, ...
1, W. d. c. ...
8, t, d, c, ...
IV c, ...
d, 1. c. ...

Figure 5.7 Partial Instance Feaîures Generated at Different Intemet Nodes

. .-
c, ...
d, m. L, c, .--
a, b G ..-
a, t, c, ...
d, IV c9 ...
4 t, c, ...
a, t, C, ...

example de-bases are shown in Figure 5.8 (a). At node CylinderSieve, the virtual nile

109

bases G earPair%GearMateria! and Gea rPaiPhGearP rocess are used for reasoning

with local instance feaaire gearl. The explanation of the d e s is given in Figure 5.8 (b).

One of the results of de-based reasoning in this case is that the value of amibute

matrgearl] is modined.

Rule: MaterialA
IF(gear, ?x) & (<=, m[?x], 2) & (<=, w[?x], 25) THEN (assignAttribute, maî[?x], #AISI1045)

Rule: Matcria
IF(gear, ?x) & (>c, m(?x], 25) & (=. m[?x], 5) & (>=, w[?x], 25) a(<=, w[?x], 50) THEN
(assignAttribute, mat [?XI, #AISI2340)

Rule: MaterialC
IF(gear, ?x) & (>=, m[?x], 6) & (>=, w[?x], 25) THEN (assignAtîribute, mat[?x], #AISI4140) / I
Rule: GdypeAndMaterial
E(gem, ?XI & (gearProcess. ?y) & (elementFeatutt, ?x, ?y)THEN (assignAttribute, gearType[?y],
gearType[?x]) & (assignAttribute, mat[?y] , mat[?x])

(a) Two Example Rule-Bases

Rule: MaterialA
IF there is a gear, and its module number is less than or equal to 2. and its widrh is less than or
equal to 25 THEN set the material of the gear qua i to AiSIfO45.

Rule: MateridB
IF there is a gear, and its module number is greater than or equal to 2.5, and less than or equal to 5,
and ifs w&h is greater than or equal to 25, and les. than or equal to 50 THEN set the tnaterial of
the gear equal ro AISI2340.

Rule: MaterialC
IF there is a gear, and its module number is greater than or equal to 6, anà its width is greater than
or equal to 25 THEN set the material of the gear equal to AIS11 4140.
...

i
1 RuleBase: GearRacess

f Rule: GtarTypeAndMaterial
IF there is a gear, and this gear hm a manufacturing process THEN set the type and material used

f in the manufacmring process equal IO the type a d m a z e ~ f of the gear.
f -..

(b) Rules Explained in Plain English

Figure 5.8 Two Exainple Rule-Bases for Gear Modeling

5.2.4 Ropagation of Changed A ttribute Values

When a product realization pnicess alternative, such as (Requirement,BeltDrive,

FlatSieve, Beit DriveMfgA, FlatS ieveMfgA), has been identifie4 the Internet node

accessibility relations among the involved nodes can be established. For instance, when

the accessibility behnreen node BeitDrive and node FlatSieve is defined, the class and

instance features in one node are then virtual class and instance features in another node.

The relations among true attributes and v h a l attributes are then defîed to link the

product databases at different Intemet nodes. During the design process, the attribute

values need to be modined and adjusted. The changes of the attribute values in one node

can be propagated to ail rielated attributes including the virtud attributes.

Figure 5.9 shows a partial propagation process started fkom attribute d[pulley2] in

node BeitDrive. As a result of this propagation process, the values of attribute

F1: n[pulley2] := n[puUey 1] d[pulleyl] / d[pulley2]
F2: n[shaft2] := n[pulley2]
F3: n[FlatSieve%whecl 1] := n[shaft2]
F4: d[BeltDriveMfgA%puiicy2Pnmssl] := d[pulley2]

fi frequcncy (Hz). a: rotational speed (rpm),
d: diameter (mm), c: cost (S)

t Virtual AtÉributc 0 Attributc Value '
O Atûibute Namc 0 Function

\ Node: FlatSieve
L

Figure 5.9 Distributed Attribute Relation Network for Modehg the Power Sieving

System (F7 and F8 are simplified for modaing the network graph)

qflatsievel] in node flatsieve and the attribute cIpulley2Processl] in node

BeltDriveMfgA are updated automatically. Through such automatic attribute change

propagation, designers can know the outcomes of the original attribute change as soon as

the propagation process finishes. Therefore, the modification to the original attribute

value c m be evaluated. In the example shown in Figure 5 9 , the manufacturing cost of

pulley;! is updated automaticaliy if the diameter of pulley2 is changed. So the diameter

change of pulley2 can be evaluated by comparing the updated manufachiring cost of

pulley2 with the previous cost.

5.2-5 The ûptimixation of Desi gn Parameter Values Using PSO

The identification of the optimal design parameter values for each alternative is

conducted using Particle Swam Optimization (PSO), as described in Chapter 4. In the

example given in this section, the alternative (Requi rement, BeitD rive, FlatSieve.

BeltDriveMfgA.FlatSieveMf@), as s h o w in Figure 5.7 (a), is selected to conduct the

parameter optimization.

1. Problem Formulation

The objective of parameter optimixation in this example is to determine the values of

the selected design parameters so that the sieving system has the minimum manufacturing

cost while satisfjmg the design requirement on system capacity. In this example, three

attributes are selected as the design parameters. These attributes are

d[BeltDrive%puiiey2], I[FlatSieve%flatSievel], and w[FlatSieve%flatSievel]. They

represent the diameter of pulley2, the length of flatsievel and the width of flatsievel

respectively. The value of attribute n[BeîtDrive%pulleyl], representing the input

rotational speed of the sieving system, is set at 1000 (rpm), based on the design

requirements. T ' e n this optimization problem can be formulated as foilows:

In this example, the value of F(X) is the total manufacturing cost of the belt drive

mechanism and the flat sieve mechanism:

cost[customerRequirementl] =c[BeitDriveMfgA %beltDtiveProcess I l +
c[FlatSieveMfgA%$latSieveMechProcessl]

The cost of each mechanism is the sum of manufachiring cos& of aii components of

the mechanism:

c[bertDriveProcessl]=c[pulfqI Prucessl] + c [1 2 P r o c e s s] + . .
clflatSieveMechProcessI] =cCflatSieveProcessl]+c[pin 1 Procesd] +. . .
The manufacturing cost of each component is calculated by the cost functions

defmed in the form of attribute relations of the instance feahue representing this

component. For instance, the flat sieve is manufactured through two manufacturing

processes: the punching process and the welding process. Then the following relations

have been defined in node FlatSieveMfgA:

F 1 : aLfsPunchingProcess l] : = 1~tSieveProcessl] *wLflatSieveProcessl]

F2: iffs WeYeldingProcessl] : = (~atSieveProcessl] + w flatSieveProcessl]) *2

F3: c ffsPunchingProcessI] : = aLfsPunchingProcessI] XtIfsPunchingProcess *
(dLfPunchingProcess1 Jn) *(dffsPun~hingProcessl]) 3 4 * O . O 0 4

F4: ccfs WeldingProcessl] : = lus WeldingProcessl] W.025

F5: c@atSieveProcess l] : = c~~PunchngProcessl]+c ffs WeidingProcessl]

When the length and width of the flat sieve are determined, the punching area

aCfsPunchingProcessI] and the welding length ILfsWeidingProcessI] are calculated first

by relation F1 and F2. Then the cost of the punching process ~LfsPunchingProcessl] and

the cost of the weldùig process cffsWeIdingProcessl] are calculated by relation F3 and

F4 respectively. The total rnanufacturing cost of the flat sieve ~CflatSieveProcessI] is

then obtained by relation F5. The cos& of other components are calculated in the same

way.

-

2. Design Parameter Op-
. .

on

The optimal values of these design

113

parameters are identified by the Particle Swarm

Optimuation (PSO) algorithm d e s c n i in Chapter 4. in this exampie, the dimension of

the search space is 3 since t h e attributes are selected as the design parameters.

Therefore, the position of a particle in the search space is represented by the values of the

three atîributes. The initiai positions of particles are randomly assigned. Then the

particles fiy in the search space towards a target that is the best position of the particles.

The flying directions of the particles in the search space are adjusted accordhg to the

fitness values of the particles. The fitness values are calculated using Equation (4-4).

based, in this example, on the manufachiring cost. Tàe position that the particles land on

is the target position, representing the optimal set of values of the design parameters in

this concurrent design problem. The sieving system with these atüibute values has the

minimum manuf'turing cost. Since ihis is an optimization process with distributed

parameters, the nurnber of particles affects the optimization eficiency significantly. The

p a t e r number of particles defined, the lower the efficiency is. The number of particles

chosen in this example is 3. M e r 200 iterations, the optimal parameter values are

obtained as:

X* = /164.785, 990.789,4#3.888}

cost[Requirement%customerRequirementl] = 994.776

capacity[Requirement%ocustornerRequirementI] = 1000.61

With this set of values, the sieving system has a minimum manufachuhg cost and

the design requirements are satisfied.

The convergence process is shown in Figure 5.10. The particle fitness is the sum of

the original objective function value and the penalty factor defined by Equation (4-19). if

constraints are vidatecl. Tests have showed that satisfactory convergence has been

achieved.

Figure 5.10 The Convergence Process of PSO

5.2.6 The Optirnization of Product Realization Process Alternatives Using GP

As show in Figure 5.6, there are total 12 alternatives for producing the sieving

system. The optimal alternative cm be identified using either the exhaustive method or

the GP methoci, depending on the number of alternatives. These two methods were

inaoduced in Chapter 4. In this section, the GP method is used to identify the optimal

alternative for producing the sieving system.

In this example, rnanufacturing cost is used as the function to evaluate al l

alternatives. The cos& are calculated in the same procedures described in Section 5.2.5.

Therefore the objective is to fmd a solution alternative that has the minimum

rnanufacturing cost. Based on the graph shown in Figure 5.6, the optimal alternative is

identified using the Genetic Rograrnming methoci, through the foîiowing proceduns.

1. Generation of the Initial Population

In this example, the number of individuais, ~presenting product realization process

alternatives, in the population is 4. The initial population with randomly generated

individuals is show in Figure 5.11. After parameter optimization for each aitemative, as

described in Section 5.2.5, the manufachiring costs to be used for evaluating the

alternatives are obtained. Based on these costs, the fitness of each individual can be

calculated ushg Equation (4-4). The number of Individuals m is 4, and the adjusted

fitness a(x) cm be calcuiated usïng:

a(x) = 1
1 + cost

The cost and caiculated fitness for each alternative are shown in Figure 5.11.

No. Individuais Cost Fitness Copy

OcarPairMfgB 1
(1) 1 Requirement 488053

CylinderSieveMfgA

CylinderSieveMfgB

BeltDriveMfgA 1
(2) 1 Requirement C ylinderSieveMfgA 1 287726

CylinderSieveMfgB 1
BeltDriveMf@ 1

(3) 1 Requirement 1188.41

FlacSieveMfgB 1

1 Requirement
Cyl inderSieveMfgA 1 3260.

CylinderSieve
CvlinderSieveMfnB 1

Average cost: 305 1.76

Figure 5.1 1 The Initiai Population

2. Reproduction

The fïrst evolution operation is reproduction. The number of each individual to be

copied to the next generation is determined by Equation (45). For the initial population,

the number that each individuai should be duplicated is caiculated and shown in Figure

5.1 1. AAer reproduction, the individuals in the population are shown in Figure 5.12.

Alternative (1) of the initial population died because of its high cost.

For alternative (3), the location for crossover is detenniaed by Equation (4-7). In the

implemented system, the alternarive is described by a list of node names. For example

alternative (3) is described as

For this alternative. the number of nodes is 5. Based on Equation (4-7). if the

random number is 0.812, then the location number is cdculated to be 4. The node at

location 4 is BeltDriveMfgB. Since BeitDriveMfgB is a leaf node, the location of

BeltDriveMfgB is not eligible for crossover. To find a new location, the original Location,

4 in this case, is moved step by step fonvard or backward depending on a random number

O or 1. The random number here is 1, so the location is moved forward one step and the

new location is 5. The node at this location FlatSieveMfgB is stiii a leaf node. Since the

location reached the bottom, the next location is 1 where the node Requirement is

located. The root node is not eligible for crossover. So the location is moved to 2. The

node at location 2 is BeltDrive and it satisfies the conditions for crossover. So the -

crossover location in both alternatives are detennined to be the locations of node

BeltDrive in their node lists. Starting h m this node, the sub-trees in both alternatives are

cut off and switched. In this example, the sub-tree (BeltDrive,BeltDriveMfgB) of

aiternative (3) and the sub-tne (Belt Drive, BeltDriveMfg A) of alternative (1) are

switched. After this operation two new individuals are generated and the new population

after the crossover operation is shown in Figure 5.13.

4. Mutation

The number of mutation to be conducted in the c w n t population is determined by

Equation (4-8). The mutation probability number is detemiined as 0.25 in this case.

Because the population has 4 individuals, one mutation operation is to be conducted. The

alternative selection is conducted the same way as the alternative selection for crossover

operations. The random number is 0.976; therefore, alternative (4) is selected. The

mutation point on this alternative is selected the same way as the location selection for

crossover operations. The selected location is valid as long as the node at the location is

an OR node. In other words there are optional choices of nodes to be selected to replace

the node at the selected location on the aiternative. In ihis way, node CylinderÇieve is

BelthiveMfgB 1
(1) 1 Requisement 2912.0 0.150

Cy IinderSieveMfgA

CylinderSieveMfgB

GearPair 1 1 GearPairMfgA 1
(4) 1 Requirement ~ ~ l i n d e r ~ i e v e ~ f ~ ~ J 3260.85 0.134

CylinderSieve
CyfinderSieveMfgB 1

Average cost: 2 150.92

Figure 5.13 The Population afier Crossover

To conduct mutation, the sub-tree rooted at the node CylinderSieve in individual (4)

shown in Figure 5.13 is cut off and replaced by a new node. This new node is randomly

selected h m the OR nodes of the selected node. In this case there is only one choice,

i.e., node FlatSieve. Starting fiom this new node, a new sub-tree,

(F IatSieve, Flat SieveMfgA), grows so that a new individual is generated. Afier the

mutation operation, the second generation of the population is produced, as shown in

Figure 5.14.

Comparing the average cost of al l alternatives in the second generation with the

average cost in the e s t generation, the quality of the population has been improved in

terms of the manufacturing cost. The above evolution process is continued until the

119

predetermined generation number is reached. Then the best alternative recorded in the

evolution process is the solution. In this example, the alternative (Requirement,

BeltDrive,FlatSieve,BeîtDriveMfgA,FlatSieveMfgA) is identifïed to be the optimal

alternative for realizing the sieving system, in terms of the minimum manufachiring cost.

The rnanufacturing cost for this alternative is 944.776.

Bellhive] [BeItDriveMfgB 1
(2) 1 Requirement 1188.41 0.312

BelDrive -1 BeltDriveMfgA 1
(3) 1 Requirement 1242.44 0.298

FîatSieve 1 FlatSieveMfgB 1
GearPair 1 1 GearPairMfgA 1

(4) 1 Requirement 1409.010 0.263

FiatSieve 1-1 FlatSieveMfgA 1
I Average cost: 1687.965

Figure 5.14 The Population after Mutation: The Second Generation

The concurrent design proass in tbis exampleshows that the distributed database and

knowledge base modeling system is effective for product development with concurrent

design methodology. The identification of optimal alternative and design parameter

values can be easily realized using the concurrent design system developed in this

researc h.

CONCLUSIONS AND FUTURE WORK

In this chapter, conclusions drawn fiom this research are sutnmarized, and related

future work is outheci.

Concurrent design is a design methodology by which the dom-stream product

development life-cycle aspects are considered concunently at the design stage. With the

rapid developqent of Intemet technology, idomtioo resources geographicaiiy

distributed at different locations are now available for proâuct development at a local

location. More alternative processes are available for producing a product, because of a

wider choice of Monnation resources fiom different locations. This research was

devoted to the development of a feature-based distributed database and knowledge base

modeling approach and an Intemet-based concurrent design system. The conclusions

drawn from this research are summarized in the following sections.

6.1.1 Distributeci Database and Knowledge Base ModeLing

(1) The feature-based product deveZupment Irjce-cycle &tabases and knowledge bases

disnibured at d i e e n ? locations c m be integrated dynamically through the Intemet.

Conventional product development approaches such as Design for "X" and

concurrent design were developed based on centralized computing techniques

[Kusiak 19931. In this research, physically distributed product development Me-

cycle databases and knowledge bases are integrated through the Internet. These

databases and knowledge bases are used for modeling product development Me-

cycle activities. The distributed product development activities are modeled at

different Intemet noâes. An Intemet node can be added to or removed fkom the

distributed database and knowledge base modeling system by connecting and

discomecting the node to the system. This hinction can be used to access the

globdy available Monnation resources for product development.

(2) Dishibuted pruduct development life-cycle &tabases, moàeled by both m e and

virtual instance features, c m be associated by defining rehtions mong these data.

Traditiondy, distributed database management systems are required to oiaoage

databases distributed at different locations [Bray 19821. In this research, the

distributed databases are associated directly by defining relations among the true and

virtual features. Though the Intemet provides the physical connections, the defined

relations among the distributed features and attributes htegrate the distributed

databases into the same environment. The data relations can be modified

conveniently during the product development process to i d e a m the optimal design,

considering the dom-stream product development Life-cycle aspects.

(3) Product development database libraries ut remote nodes c m be uscd to generate

product rnodeling dotabares at the local node to improve product development

mciency .

Instance features distributed at dinerent locations are generated using correspondhg

class features as their templates. If the required class feature is not defmed at the

local location, a virtual class feature can be used to generate tnic instance feahues

directly at the local site. This function provides support to product data library

sharing; therefore, the efficiency of product development is improved.

(4) Consistency of distributed product databases can be maintained using the distntnbuted

data dependency relation maintenance mechanism.

The consistency of the distributed product databases is maintained using the

distnbuted data dependency relation network. To propagate the data changes to

related data including virtuai data, a distributed data dependency relation

maintenance mechanism has been developed in this research. During the product

development process, modincations to product development data are! necessary.

When part of the data are modifie& ai l the related data at the local site and the

remote sites are updated automatically. During product development. when the

design data are change& matlufacturing process desmiptions are updated using the

relations between design and manufacauing descriptions. The updated

manufactwing aspects can be used to evaluate the design. This function is very

effective in madeling product databases and produa development life-cycle aspects

for concurrent design.

(5) Knowledge bases preserved ut remote locations c m be used for knowledge-bd

inference at the local location.

The knowledge bases distributed at different locations can dso be integrated through

the Intemet. V h a l de-bases, the mie-bases preserved at remote nodes, can be used

for rule-based reasoning at the local node. Virtual de-bases are also visible at the

local node. The selection of virtual de-bases for reasoning at the local node is

accomplished through Intemet communications. A vimial de-base can be selected

and removed at the local node using a specialiy developed browser. This mechanism

is effective when no suficient knowledge bases are provided at the local site.

(6) The e i e n c y of product development with distributed databases and howledge

bases con be improved by using the distributed rule-based inference mechanim.

The process of product modeling using distributed databases can be automated by

de-based inference. Since de-based reasoning may result in data change in remote

nodes. a distributed inference mechanism has been developed in this research. When

the data in a remote node are changed as a result of local de-based reasoning, the

nile-based reasoning in that node is automatically activated. This hinction is

effective for creating distributed product descriptions.

6.1.2 Internet-Based Concurren t Design

(1) The Internet-based concurrent design system developed in this research cm mode1

alternative product realizution processes.

Based on the distributed aatahase and knowledge base modeling approach, an

htemet-based concumnt design system has k e n developed for product concurrent

design using the distributed product development life-cycle databases. Modehg of

product reaiization process alternatives is essential for conducting product concurrent

design using a cornputer-based concurrent design system. In this nsearch, the

diffemnt product development We-cycle aspects are modeled at different Intemet

nodes. The product realization process alternatives are modeled by ANDIOR graphs

in which the nodes are used to represent different product development activities

distributed at different locations. This product reaiization process alternative

modeling approach is effective for generating and evaluating the alternatives to

iden- the optimal one.

(2) The optimal design parameter values, considering the ntanufacturubility of the

design. c m be identified using a global optimization method.

For a generated product realization process alternative, the optimal design parameter

values c m be identified using the Particle Swarrn Optimization (PSO) method

employed in the implemented system. In PSO method. different positions of the

particles flying in the search space represent different sets of values of the design

parameters. For each set of new values, automatic data change propagation is

conducted to update the related data values. Then the updated results can be used to

evaluate the current position of the particle. For a concurrent design problem, the

design parameter values can be continuously evaluated using the manufacturability

measures during the optimization process. The design parameter values identified by

PSO are optimal in temis of the manufacturability of the products. In this research,

PSO is efficient and reliable in optimizing the design puameters distributed at

different locations.

(3) The optimal product realization process alternative con be identified by two different

methods: the exhaustive method Md the Genetic Programming (GP) method.

Among the feasible product realization process alternatives, the optimal alternative

cm be identified by two different methods: the exhaustive method and the Genetic

Programming method If the number of alternatives is small, the exhaustive method

can be used to generate ail feasible alternatives. These alternatives cm then be

evaluated and compared to ideam the optimal one. An algorithm has been

developed for generating al l feasible alternatives. If the number of aitematives is

large, the Genetic Programmhg method c m be used to identify the optimal

alternative. Modifications to the GP algorithm have been made for solving

concurrent design problems. The modifiecl GP meuiod is effective in alternative

optimization.

6.2 Future Work

The distributed database and knowledge base modeling approach and the Intemet-

based concurrent design system developed in this research are effective for engineering

product design with distributed resources. However, this work can be further improved in

the following aspects:

(1) Improvement using multi-agent s ystems

In this research project, the selection of relevant databases and knowledge bases for

product development is conducted manually by users. The algorithms introduced for

the attribute value change propagation and the distributed inference may be not

efficient when a complex project is involved. With the advances of multi-agent

systems Dome 1999, Shen and Nome 1999, Shen et al. 1999, Shen et al. 2000,

Ulieru et al. 20001, overall system performance can be improved if the fimctions,

such as Intemet communications, data dependency relation maintenance, distributed

inference, nile-base selections, and alternative optimization, are handled by agents,

especiaIly when large amount of a on nation and operations are involved in the

design process.

Product concurrent design with distributed databases and knowledge bases is a

complex process involving a wide range of technical and social knowledge. Different

types of autonomous agents with different knowledge c m be used to handle different

aspects of the product development Me-cycle. Through coordination and cooperation

among the involved agents, the goals of product concurrent design can be achieved.

(2) Rbduct geometric representation

This research focuses on modehg functionai design aspects of the products.

However the representation of product 2D and 3D geometry is another important

aspect in product development The existing system can be enhanced if a product

geometry modeling module is developed. Transfomation of the feature-based

product geometry data into a format understandable by commerciaiiy avaüable CAD

software shouid be a subject for m e r research.

(3) S ystem interfaces

The interfaces developed in this research are Smaiitallc browsers. The input and

output information is handled using text views. To improve the interface

environment, graphical windows with functions for defining and displaying the

Intemet node, the product databases and knowledge bases, as weii as product

realization process alternatives can be introduced. Using web browsen to access the

concurrent design system can also improve the interface environment.

(4) Incorporation of web techniques

The concurrent design system developed in this research has the potential to be

incorporated into a web-based product development environment. In this

environment, the systern c m be eady accessed through cornputers comected to

Intemet; therefore, accessibility to the concurrent design system can be improved.

(5) Improvement in alternative optimization

In this research, the Genetic Rogramming method has been employed for identifying

the optimal product realization process alternative. In the optimization process, the

alternatives are dynamically generated by the GP method. For each new alternative,

parameter optimization must be conducted to bring the alternative to an optimal

state, so that this alternative may be compared with others. Therefore the alternative

optimization is conductecl generation by generation with user interference. New

approaches should be studied to improve efficiency by combining the two

optimization processes without human interference.

Adamides, E. D., 1995, Coordination of Distributed Production Resources for

Responsibility-Based Manufacturing. Journal of Ik?elligent Monrrfoctunng. Vol. 6, No. 6,

pp. 415-427.

AdapaUi, S. and Addepalli. K.. 1997, World Wide Web Integration of Manufacturing

Process Simulations. Concurrency: Practice and werience, Vol. 9, No. 11, pp. 1341-

1350.

A h , S.-H.. Roundy. S.. Wright, P. K., and Liou, S.-Y., 1999, 'Design Consultant': A

Network-Based Concurrent Design Environment. MED 10, American Society of

Mechanical Engineers, Manufacturing Engineering Division. ASME. November, pp.

563-569.

Alles, D. and Vergonini, G., 1997, Taking a Look at Internet-Based Design in the Year

200 1. Electronic Design, January. pp. 42-50.

Anderson, D. C. and Crawford, R. H., 1988, Knowledge Management for Preliminary

Cornputer-Aided Mechanical Design. Orgrniration of Engineering Knowledge for

Product Modeling in Cornputer Integrated Manujiaccrirring. (ed.), T. Sata, Elsevier. pp.

15-38.

Angeline, P. J., 1994, Genetic Programming: A Current Snapshot. Proceedings of the

Third Annual Conference on Evolutionary Programrning, (eds.), A. Sebald and L. Fogel,

World Scientific, ,ver Edge, NJ, pp. 224-232.

Arora, J. S., Elwakeil, O. A., and Chahande, A. 1.. 1995, ~Lobal Optimization Methods

for Engineering Applications: A Review . Structural Op timization, Vol. 9, pp. 137- 159.

Bassiliades, N. and Vtahavas, I., 1997, Rocessing Production Rules in DEVICE, An

Active Knowledge Base System. Data & Knowledge Engineering. Vol. 4, pp. 117-155.

Bliznakov, P. L, Shah, J. J., Jeon, D. K., and Urban, S. D., 1995, Design Information

System Iafiastnicture to Support Coilaborative Design in a Large Organization.

Proceedings of the 1995 ASME Design Engineering Technical Conferences, Boston, Vol.

1, pp. 1-8.

Bray, O. H., 1982, Dishibured databasc management system, Lexington Books,

Lexington, Mass.

Ckn, Y.-M. and Jan, Y.-D., 2000, Enabling Aliied Concurrent Engineering through

Distrïbuted Engineering Information Management. Robotics and Cornputer-Integrated

Manufacturing, Vol. 16, NO. 1, pp. 9-27.

Chung, J. C. H., Patel, D. R., and Cook, P. L., 1990, Feature-Based Modehg for

Mechanical Design. Compter & Graphies, Vol. 14, No. 2, pp. 189-199.

Colton, J. S., 1993, An Intelligent Design for Manufacture System. Concurrent

Engineering: Automation, Tools, and Techniques, (ed.). A. Kusiak, John Wiley & Sons,

Inc.

Court, A. W., 1998, Issues for Integrating Knowledge in New Product Development:

Reflections nom an Empirical Shidy. ffiowledge-Bmd System, Vol. 11, pp. 391-398.

Cutkosky, T. G., Tenenbaum, M. R., and Glicksman, J., 1993, SHARE: A Methodology

and Environment for Coilaborative Product Development. Proceedings of IEEE

Infratructure for Collaborutive Enterprise, IEEE, Morgantown, pp. 3341.

Danesh, M. R. and Jin, Y., 1999, AND: An Agent-Based Decision Network for

Concurrent Design and Manufaturing. Proceedings of the 1999 ASME Design

Engineering Technical Conferences, Las Vegas, Nevada.

Domazet, D. S., Kong, H. P. H., Yan, M. C., Calvin, C. F. Y., and Goh, A., 2000,

Infrastructure for Inter-Organization Collaborative Product Development. Proceedings of

the Hawaii Intemational Conference on System Sciences, January, pp. 159.

Domazet, D. S. and San, L. S., 1997, Active Database Servers for Concurrent

Engineering EnvironmentS. Proceedings of the Fijth Intemational Conference on

Database Systems for Advanced Applications, Melbourne, Australiê

Dong, 2. (ed.), 1994, ArtijTcial Intelligence in Optimal Design and Munufacturing, FïR

Prentice Hall.

Gardan, Y. and Minich, C., 1993, Feature-Based Models for CADICAM and Theù

Limiîs. Computers in Industry, Vol. 23. pp. 3- 13.

Gadh, R and Sonthi, R., 1998, Geometric Shape Abstractions for Internet-Based Vimial

Protoîyping. Cornputer-Ai&d Design, Vol. 30, No. 6, pp. 473-486.

Goldberg, A. and Robson, D., 1983, Smalltalk-80: The Language and Its ImpIementation,

Addison-Wesley.

Goldberg, D. E., 1989, Genetic A l g o r i t h in Search, Optimization, and Machine

Leaming, Addison-Wesley, Reading, MA.

Grimes, R., 1 997, Profesional DCOM Prograrnming, Wrox Press.

Gu, P. and Chan, K., 1995, Product Modeling Using STEP. Compter-Aided Design,

Vol. 27, No. 3, pp. 163-179.

Hahn, H. and Stout, R., 1994, The Intemet: Complete Reference, McGraw-Hill.

Helander, M. and Nagamachi, M., 1992, Design for Manufacturubility. A System

Approach to Concurrent Engineering anà Ergonomies, Taylor & Francis Ltd.

Henderson, M. R., 1984, Extraction of Feature Information fiom Three Dimensional

CAD Data. Ph.D. Dissertation, Purdue University.

Higgins, K. B. and Langrana, N. A., 1999, Web-Based, User-Fnendly Design and Vimial

Fabrication for Layered Manufachuing. Proceedings of the 1999 ASME Design

EngineeMg Technical Conferences, Las Vegas, Nevada.

Hopkins, T. and Horan, B., 1995, SmalItalk: An Introduction to Application Devrlopment

Ushg VbuaWorks, Rentice Hall.

Huang, G. Q., Huang. J., and Mak, K. L., 2000, Agent-Based Work-Flow Management in

Coilaborative Product Development on the Internet. Cornputer-Aided Design, Vol. 32,

pp. 133-144.

Huang, G. Q., Lee, S. W., and Mak, K. L., 1999, Web-Based Product and Process Data

Modeling in Concurrent "Design for X'. Robotics Md Compter-lntcgrated

Mmufacturing, Vol. 15, pp. 53-63.

Hughes, J. G., 199 1, Object-Oriented Databases, Prentice-Hali.

Huhns, M. N. and Singh, M. P., 1998, Readings in Agents. Morgan Kaufmann Publishers.

Hyeon, H. J., Hamid, R. P., and Sullivan, W. G., 1993, Principles of Concurrent

Engineering. Concurrent Engineering, (eds.), H. R. Parsaei and W. G. Sullivan, Chapman

& Hall.

Jiang, P.-Y. and Fukuda, S., 1999, Intemet Service and Maintenance for RP-Oriented

Tele-Manufacairing. Concurrent Engineering: Research and Applications, Vol. 7, No. 3,

pp. 179- 189.

Judson. J., Dong, Q., and Mascoli. G.. 1999, Introducing Kaowledge-Based Engineering

into an Interco~ected Product Development Rocess. Proceedings of the 1999 ASME

Design Engineering Techical Conferences, Las Vegas, Nevada

Kennedy, J. and Eberhart, R., 1995, Particle Swarm Optimization. Proceedings of IEEE

International Conference on Neural Networks, Perth, Austraiia

Kim, Co-Y., Kim. N., Kim, Y., Kang, S.-H., and O'Grady, P., 1998, Distributed

Concurrent Engineering: Intemet-Based Interactive 3-D Dynamic Browsing and Markup

of STEP Data. Concurrent Engineering: Research and Applications. Vol. 6, No. 1, pp.

53-70.

Kim, J. H., Wang, F.X., Sequin, C. H., and Wright, P. K. 1999, Design for Machinhg

over the Internet Procredings of the 1999 M M E Design Engineering Technical

Conferences, Las Vegas, Nevada.

Koza J. R., 1992, Genetic Progrmnming: On the Programming of Cornputers by Means

of Naturai Selection, MlT Press.

Kroii, E., Lenz, E.. and Wolberg, J. R., 1989, Kwwledge-Based Synthesis in Design-for

Assembly. Concurrent Product and Process Design. (eds.), N. H. Chao and S. C.-Y. Lu.

The American Society of Mechanical Engineers.

Kusiak, A. (ed.), 1993, Concurrent Engineering: Automation, Tools, and Techniques,

John Wiley & Sons.

Lee, E. T. Y., 1985, Some Remarks Conceming B-Splines. CAGD Journal, Vol. 2, pp.

145- 149.

Lee, J. Y., Kim, H., and Han, S.-B., 1999, Web-Enabled Feature-Based Modeiing in a

Distributed Design Environment. Proceedings of the 1999 ASME Design Engineering

Technical Conferences, Las Vegas, Nevada.

Lee, K. H. and Sen, S., 1994, ICOSS: A Two-Layer Object-Based intelligent Ce11

Control Architecture. Computer Integrated ManufacturUig Systems, Vol. 7, No. 2, pp.

100-1 12.

Magrab. E. B., 1997, Integrated Product and Process Design and Development - the

Product Realization Process, CRC Press LLC.

Mendel, A., 1999, PDM and the Intemet. Mechanical Engineering, September.

McCarty, B. and Cassady-Donon. L., 1999, Java Dishibuted Objects, S M .

Mortenson, M. E., 1985, Geometric Modeiing, John Wiley, New York.

Nagamatsu. M., Sumida, S., and Nagamatsu, A., 1999, A New Approach on Modeling

for Roduct Development JSME international Journal, Senes C, Vol. 42, No. 1, pp. 234-

Name, E. V. and Eagelstein, G., 1998, The Wired Engineer: Emerging Technologies and

the Designer. ANTEC '98, pp. 3052-3055.

Nome, D. H., 1999, Multi-Agent Systems, Lecture Notes, The University of Calgary.

Otte, R., Patrick, P., and Roy, M., 1996, Understanding CORBA: The Commun Object

Request Broker Architecture, Addison-Wesley .

Ozsu, M. T., Dayal, U., and Vaiduriez, P., 1994, Distributed Object Management,

Morgan Kaufinann Publishers, San Mateo, California

Pahng, F., Senin, N., and WalIace, D., 1998, Distribution Modehg and Evaluation of

Product Design Problems. Cornputer-Aided Design, Vol. 30, No. 6, pp. 4 1 1-423.

Pardalos, P. M., Romeijin, H. E., and Tuy, H., 1999, Recent Developments and Trends in

Global Optimization. Research Report 99-15, Department of Industrial & System

Engineering, University of norida

Park, H. G. and Baik, J. M., 1999, Enhancing Manufachiring Roduct Development

through Leaming Agent System over Intemet. Cornputer and Industry Engineering, Vol.

37, NO. 1, pp. 1 17-120.

Parsaei, H. R. and Sullivan, W. G., 1993, Concurrent Engineering, Chapman & Hall.

Pennel, J. P. and m e r , R. 1.. and Slusarcntk, M. M. G., 1989, Concurrent Engineering:

An Overview for Autotestcon. AUTOTESTCON Proceedings '89: The System Readiness

Technology Conference, Philadelphia, PA, pp. 88-99.

Penoyer, J. A., Bumett, G., Fawcett, D. J., and Liou, S.-Y., 2000, Knowledge Based

Roduct Life Cycle systems: Rinciples of Integration of KBE and C3P. Cornputer-Aided

Design, Vol. 32, pp. 3 1 1-3 19.

Rasad, B., 1996, Concurrent Engineering Fundamentals: Volume 1, Prentice Hall.

Reidsema, C. and Szczerûicki, E., 1997, Multi-Agent Systems for Concurrent

Engineering. System Anolysis Modcllng Simulation, Vol. 28, pp. 257-279.

Rezayat, M., 2000% The Enterprise-Web Portal for Life-Cycle Support. Cornputer-Aided

Design, Vol 32, pp. 85-96.

Rezayat, M., 2 0 b , KnowledgeBased Roduct Development Using XML and KCs.

Compter-Aided Design, Vol. 32, pp. 299-309.

Roller, D. and Eck, O., 1999, Knowledge-Based Techniques for Product Databases.

International Journal of Vehicle Design, Vol. 2 1, No. 2/3, pp. 243-265.

Roy, U. and Kodkani, S. S., 2000, Collaborative Product Conceptualization Tool Using

Web Technology. Computers in Industry, Vol. 42, No. 2, pp. 195-20.

Roy, U., Bharadwaj, B., Kodkani, S. S., and Cargian, M., 1997, Product Development in

a Collaborative Design Environment. Concurrent Engineering Research and

Applicatiom, Vol. 5, NO. 4, pp. 347-365.

Seilonen, I., 1995, Data Modeling Issues in Roduct Management. VIT Symposium 160r

Product Models in Design and Producrion Planning, (ed.), H. Johinen, Technical

Research Centre of Finland, pp. 83- 104.

Shah, J. J., 1989, Feature Transformations Between Application Specif'ic Feature Spaces.

Computer-Aided Engineering Journal, Vol. 5, No. 6, pp. 247-255.

Shah, J. J. and Maatyla, M., 1995, Paramenic Md Feature-Based C . / C A M , John

Wiley & Sons.

Shah, J. J. and Rogers, M. T., 1988, Functional Requirernents and Conceptual Design of

the Feature-Based Modeling System. Cornputer-Aided Engineering Joumal, Vol. 5, No.

1, pp. 9-15.

Shen, W. and Barthes, J. P., 1995, DIDE: A Multi-Agent Environment for Engineering

Design. Proceedings of the First International Conference on Multi-Agent System, San

Francisco, pp. 344-35 1.

Shen, W. and Nomie, D. H., 1999, Agent-Based Systems for Intelligent Manufacturing: A

State-of-the-Art Survey. hhowledge and Information Systemc An International Joumal,

Vol. 1, No. 2, pp. 129-156.

Shen, W., Nome, D. H., and Barthes, J. P., 2000, Multi-Agent System for Concurrent

Intelligent Design and Manufacturing, Taylor & Francis, Lmndon, UK.

Shen, W., Nome, D. H., and Krerner, R., 1999, Developing Intelligent Manufacturing

Systems Using Collaborative Agents. ZMS 99, Leuven, Belgium.

Shi, Y. H., Eberthart, R. C., and Chen, Y. B., 1997, Design of Evolutionary Fuzzy Expert

System. Proceedings of 1997 Artrflcial Neural Networks in Engineering Conference, St.

Louis.

Shi, Y. H. and Eberthart, R. C., 1998, Parameter Selection in Particle Swann

Optimization. The P Annual Conference on Evolutionary Progruming, San Diego.

Singh, N., 1995, Systems Approach tu Cornputer-Integrated Design and Manufacturing,

John Wiley & Sons.

Sriram, D. and Logcher, R., 1993, The M ï ï DICE Project. IEEE Cornputer, Vol. 26. No.

1, pp. 64-65.

Stonebraker, M., 1992, The Integration of Rule Systems and Database Systems. ZEEE

Transactions on Knowledge and Data Engineering, Vol. 4, No. 5, pp. 415423.

Suh, N. P., 1990, The Principle of Design, Oxford University Press, New York.

Tan, S. T., Yuen, M. M. F., and Hui, K. C., 1987, Modeling Solids with Sweep

Rimitives. Cornputers in Mechanical Engineering (CZME) Magazine, September, pp. 60

-73.

Tso, S. K., Lau, H. C. W., Ho, J. K. L., and Zhang, W. J., 1999, A Framework for

Developing Agent-Based Collaborative Service-Support System in a Manufacturing

Information Network. Engineering Application of Artificial Intelligence, Vol. 12, pp. 43-

57.

135

Ulieni, M., Nome, D. H., Kremer, R., and Shen, W., 2000, A Multi-Resolution

Collaborative Architecture for Web-Centric Global Manufacturing. Infonnation Science

(an Elsevier Journal) - Special Issue on Computational Intelligence for Manufacniring

Applications.

Vickers, D. L. and Swanson, K. A-, 1988, A Fonn Feature-Centered Architecture for

Roduct Dennition Exchange. A(ITOFACT '88 Conference Proceedings, pp. (2-25) - (2-

37).

Vliet, J. W., Luttervelt, C. A., and Kals, H. J. J., 1999, State-of-theArt Report on Design

for Manufacturing. Proceedings of the 1999 ASME Design Engineering Technical

Conferences, Las Vegas, Nevada.

Waldron, M. B., Brown, D., and Yoshürawa, H. (eds.), 1992, Intelligent Cornputer Aided

Design, North-Holland, Amsterdam.

Wu, J., 1999, Distributed System Design, CRC Press.

Xue, D., 1997, A Mdtilevel Optimization Approach Considering Roduct Realization

Process Alternatives and Parameters for Improving Manufacturability. Journal of

Manufacturing Systerns, Vol. 16, No. 5. pp. 337-35 1.

Xue, D. and Dong, 2.. 1993, Feature Modeling Incorporating Tolerance and Production

Process for Concurrent Design. Concurrent Engineering: Research and Applications,

Vol. 1, pp. 107-1 16.

Xue, D. and Dong, 2.. 1994, Developing a Quantitative Intelligent System for

Implementing Concurrent Engineering Design. loumol of Intelligent Manu$acturing,

Vol. 5, pp. 25 1-267.

Xue, D. and Dong, Z., 1997, Coding and Clustering of Design and Manufacturing

Features for Concumnt Design. Conputen in Indwny, Vol. 34. pp. 139- 153.

Xue, D., Rousseau, J. H., and Dong, 2, 1996, Joint Optimization of Performance-and

Costs in Integrated Concumnt Design: Tolerance Synthesis Part. Engineering Design

and Automation, Vol. 2, No. 1, pp. 73-89.

Xue, D., Takeda, H., Kiriyama, T., Tomiyama, T., and Yoshikawa, H., 1992, An

Intelligent Integrated Interactive CAD - A Preliminary Report. Intelligent Computer

Aided Design, (eds.). M. B. Waldron, D. Brown, and H. Yoshhwa, North-Hoiiand,

Amsterdam, pp. 163-192.

Xue, D., Yadav, D., and Nome. D. H., 1999, Knowledge Base and Database

Representation for Intelligent Concumnt Design. Compter-Aided Design, Vol. 3 1 , pp.

13 1-145.

Yadav, S., 1999, Development of a Feuture-Based Intelligent Design System, A Master's

Thesis, Department of Mechanical and Manufacturing Engineering, The University of

CQFY-

YoshüEawa, H., 1988, Intelligent CAD. Organization of Engineering Knowledge for

Product Modeling in Computer Integrated Manufacturing, (eds.), T . Sata, Elsevier, pp. 1-

14.

Zhang, Y., Zhang, C, and Wang, H. P., 2000, Intemet Based STEP Data Exchange

Framework for Virtual Enterprises. Cornputers in Zndusny, Vol. 41, No. 1, pp. 5 1-63.

